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ABSTRACT 

 

SCREENING OF COMMERCIALLY AVAILABLE CHLORINE BASED SANITIZERS AND 

THEIR EFFICACY IN REDUCING MICROBIAL LOAD LEVELS OF E. coli O157:H7 AT 

HIGH AND LOW ORGANIC LOAD ENVIRONMENTS 

 

SEPTEMBER 2018 

PAOLA ALEJANDRA MARTINEZ-RAMOS 

B.S. UNIVERSITY OF PUERTO RICO MAYAGÜEZ 

M.S. UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Amanda J. Kinchla 

 

The presence of postharvest sanitizers has shown to be an effective approach to reducing 

microbial cross contamination in agricultural washing operations. However, choosing an 

appropriate sanitizer can be challenging due to produce commodity, processing conditions and 

interference with organic load. Current research shows a wide variety of methods to mimic the 

organic load of vegetable processing conditions, with paddle mixing and blender as the most 

commonly used. Controlling and understanding the physiochemical properties of wash water is 

key in maintaining sanitizer efficacy. The effects of simulated wash water preparation method on 

the physiochemical properties were tested at 0 and 50 COD (mg/L) and no significant difference 

was observed. However, at high levels of organic load results showed a significant difference 

between turbidity values at 1,500 COD. Free residual chlorine titration methods were compared, 
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using DPD-titrimetric and Iodometric method. Results showed a significant difference between 

titration methods in organic load heavy environments. Commercially available chlorine based 

sanitizers, Pure Bright™ Germicidal Bleach and Clorox® Germicidal Bleach, were compared to 

a concentrated solution of sodium hypochlorite. Pure Bright™ Germicidal Bleach showed to 

perform the best by reducing 7 log CFU/ml of E. coli O157:H7 after 30 seconds in no organic load 

environments, whereas Clorox Germicidal bleach was able to reduce 7 log CFU/ml of E. coli 

O157:H7 after 30 minutes. These studies aim to provide best management practices for small in 

medium growers in the implementation of antimicrobial solutions for the maintenance of water 

quality in postharvest washing solutions.  
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CHAPTER 1 

INTRODUCTION 

 Fresh produce continues to be the leading food associated to foodborne outbreaks, where 

linked pathogens include Escherichia coli O157:H7, Salmonella spp and Listeria monocytogenes 

(Callejon et.al 2015). Foodborne illness associated with the consumption of fresh-cut produce in 

the United States have reached over 45 percent (Gombas et. al, 2017). Since fresh produce are a 

ready to eat product, the absence of a kill step increases the potential of pathogenic cross 

contamination, and thus the risk associated with their consumption could be minimized through 

good agricultural postharvest practices (Ghostlaw, Ramos, Kinchla, 2018). With the 

implementation of the Food Safety Modernization Act (FSMA) and the establishment of the 

“Produce Rule”, now requiring science-based minimum standard for the safe growing, harvesting, 

packing, holding and handing of fruits and vegetables for human consumption, has increased the 

need for sanitizer validation studies to ensure food safety. As stated by the Federal Drug 

Administration (FDA) in the “Produce Rule”, postharvest agricultural wash water is required to 

have no presence of generic E. coli. Not only is postharvest washing a method used for cooling 

produce after harvest, it is also a way of washing and removing soil and debris. However, it does 

not provide sufficient removal of microorganisms which increases the potential transfer of the 

pathogenic bacteria throughout the whole washing solution; Therefore, water maintenance is key 

in reducing microbial load for potential pathogenic cross-contamination (Joshi, Mhendran, 

Alagusundaram, Norotnm Tiwari, 2013). 

While sanitizer has proven to be a good tool in reducing the potential of cross 

contamination in postharvest wash water (Luo, Nou, Millner, Zhou, Shen, Yang, and Shelton, 

2012), the wide range of processing methods used to generate simulated wash water makes it 
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challenging to make comparison between sanitizer validation studies. Besides the preparation 

method, produce commodity used in the studies can also play a role in the changes of the 

physicochemical characteristics of the solutions, potentially providing large scatter in the results 

for sanitizer concentration and their efficacy in presence of organic matter (Holvoet et al., 2012; 

Callejon et al., 2015; Gil et al., 2015; Sharma and Reynnells 2016). Our goal with this study is to 

be able to provide guidance on the implementation of sanitizers for small and medium leafy green 

processors, specifically on the use of chlorine based sanitizers for produce washing and food 

contact surfaces. Before testing the sanitizers, we must first understand how the preparation 

methods can affect the physicochemical properties of the simulated wash water, and how the 

detection method used for testing free residual chlorine levels in solution can affect the overall 

results of a study when looking at the depletion behavior of chlorine in a high organic load 

environment.  

 

1.1  Objectives 

1. To compare preparation methods and test their effects on the physicochemical properties 

of simulated wash water solutions. 

2. To investigate the impact of organic load and bacteria on free residual chlorine detection 

methods in simulated wash water. 

3. To study the effects of organic load and time on the efficacy of commercial chlorine 

based sanitizers on E. coli O157:H7 inactivation in simulated wash water conditions.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Recent outbreaks associated with fresh fruits and vegetables have resulted in an increased 

interest in improved on-farm food safety practices. In light of the implementation of “The Food 

Safety Modernization Act” (FSMA) and the Produce Safety Rule, agricultural wash water is now 

required to have no detectable generic E. coli, which can indicate the potential presence of fecal 

contamination (Food & Drug Administration [FDA], 2017). While postharvest washing helps to 

remove field heat, soil and debris from produce this process can be a source of cross-contamination 

if water quality is not adequately maintained with the potential of becoming a vector for the spread 

of pathogens (FDA, 2008). The addition of an antimicrobial solution to agricultural wash water is 

a known practice that can reduce cross contamination of pathogens, such as E. coli O157:H7, 

Listeria monogytogenes and Salmonella spp. (Luo, Nou, Millner, Zhou, Shen, Yang, & Shelton, 

2012).  

The use of sanitizing agents in wash water has proven to be a good means to ensure and control 

water quality. However, choosing an appropriate sanitizer for a vegetable processing operation can 

be challenging due to the open nature of the farm processing operations, as well of the produce 

itself (Holvoet et al., 2012; Callejon et al., 2015; Gil et al., 2015; Sharma and Reynnells 2016). A 

survey by the Mid-Atlantic region stated that 47% of growers wash their produce first with just 

water and another 22.4% wash their produce with some sort of disinfectant (Marine, Martin, 

Adalja, Mathew & Everts, 2016). One of the problems stemming from the implementation of the 

Produce Rule is the lack of guidance provided for small and medium growers as to how to use and 
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implement sanitizers that best fit their processing operations. Therefore, it is critical to first 

understand what properties of processing water have the strongest effects on sanitizers’ efficacy 

in preventing cross contamination (Gil, Selma, López-Galvez & Allende, 2009). However, the 

wide range of processing methods being used to simulate wash water in a laboratory setting make 

it challenging to make comparisons between sanitizer validation studies. Not only are there a 

variety of processing methods, there is also a wide range of produce commodities being used to 

produce desired organic load levels. High organic load levels present in wash water can cause an 

increase in potential pathogens transfer to uncontaminated plants (Gombas et al., 2017; Allende, 

Selma, López-Gálvez, Villaescusa & Gil, 2008), due to the accumulation of organic load causing 

the sanitizer quenching capacity to decrease and thus affect it’s sanitizing capacity (Beuchat et al., 

2001). Due to the scatter approach, the capacity to compare the efficacy of different postharvest 

sanitizer studies is limited. The lack of a standard model for laboratory replication of simulated 

wash water, making it difficult to compare previous work on sanitizer efficacy, in presence of high 

and low organic load as well as microbial counts, and does not provide a clear guide for growers 

to implement such practices in their processing operations.   

There is a wide range of research conducted on chlorine and chlorine based sanitizers. This 

work focuses on the efficacy of commercially available products in presence of organic matter, 

and their ability of reducing pathogenic cross-contamination in wash water. The majority of 

previous published work has been done using a concentrated solution of sodium hypochlorite as a 

model for chlorine sanitizers. Most commercial chlorine based sanitizer use sodium hypochlorite 

as an active disinfectant ingredient, however this only makes up a small percentage of the solution 

and the rest is just labeled “other ingredients”. Products like Pure Bright™ and Clorox® 

Germicidal bleach where sodium hypochlorite only makes up 6.00% and the other 94% is “other 
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ingredients”. The lack of validation works available on commercial chlorine based system makes 

it challenging to compare and recommend best management practices on the implementation of 

sanitizer in postharvest wash water for small and medium growers.  

 

2.2 Physiochemical properties of wash water 

Previous and current work have utilized a myriad of different measurements of water 

quality in attempts of quantifying the effects of organic matter on sanitizers. Measurements such 

as Turbidity (NTU), Chemical Oxygen Demand (COD), Oxidation Reduction Potential (ORP), 

pH, Biochemical Oxygen Demand (BOD) and most recently UV254 have been proposed and 

previously used (Barrera, Blenkinsop, & Warriner, 2012; Luo et al., 2011; Selma, Allende, Lopez-

Galvez, Conesa & Gil, 2008; Suslow, 2004; Chen & Hung, 2016). While these have provided 

useful measurements of water quality, they all have their limitations and will not be equally 

effective under different processing conditions. For our work we mainly focused on four 

characteristics, these being COD, turbidity, ORP and pH; where we used both COD and turbidity 

as our methods for quantifying organic matter in our solutions. 

Chemical Oxygen Demand and turbidity are two of the most common methods used in 

research as indicators of organic load in simulated wash water. Turbidity is a measure of the 

particulate present in water, which can be composed of organic and inorganic particles and also 

plant material and it is reported in Nephelometric Turbidity Unit (NTU) (World Health 

Organization, 2006).  COD is a measurement of the amount of oxygen required to oxidize soluble 

organic matter in solution (Luo, 2007). In laboratory use, a COD test involves the the introduction 

of a strong oxidizer in excess into the test sample to oxidize the organic matter in solution to carbon 

dioxide and water under acidic conditions. This allows for the quantification of organic matter 
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degradation by measuring the organic material in solutions that has the capacity of being oxidized 

(Rice, Bridgewater, & American Public Health Association 2012).  

Oxidation Reduction Potential (ORP) is a measure of the the relative intensity of the 

electron activity in solution (Rice, Bridgewater, & American Public Health Association, 2012). 

This means is that ORP can be used as a measure for water quality, which allows for the monitoring 

of antimicrobials solutions levels in a postharvest wash water system (Suslow, 2004). However, a 

limitation with the use of ORP is that it is only feasible for a system that use a chlorine based 

sanitizer because of its ability to be a strong oxidizer. While ORP measurements are a rapid and 

single value assessment tool for the disinfection potential of an antimicrobial solution (Suslow, 

2004), readings can be affected by the pH and temperature of the washing system, as well as the 

presence of organic matter (Rice, Bridgewater, & American Public Health Association 2012).  

pH is as quantitative measure of the acidity or basicity of a solutions. Understanding the 

pH of a washing system can help determine the optimum conditions for antimicrobial solutions to 

be added. For example, the optimum pH for a chlorine as a produce sanitizer is in the 6.5-7.5 range 

to achieve the greatest antimicrobial effectiveness (Gombas et. al, 2017). The introduction of 

organic matter to solution can disrupt the pH of the water, causing the efficacy of the sanitizer to 

be affected.  

 

2.3 Preparation methods for simulated wash water 

To effectively test the efficacy of produce washing sanitizers we must conduct studies 

simulating on farm conditions of wash water with adequate and realistic loads of organic material. 

The amount and type of organic load plays an important role in sanitizer depletion (Gombas et. al, 

2017), and thus the most critical attribute to mimic in order to effectively test sanitizer disinfecting 
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capacity. Organic matter degrades overtime through biochemical reactions, where in large surface 

areas the presence of high organic load levels in less likely (Chaulk and Sheppard, 2011). However, 

in produce washing systems where there is a much smaller surface area, there can be an influx of 

organic matter constantly being introduced to the water causing a more rapid increasing of organic 

load levels (Ghostlaw, Ramos, Kinchla, 2018). Upon comparing research studies, a wide range of 

preparation methods for simulated wash water was observed with the most common methods being 

a paddle mixer and a blender. Table 1 showcases examples of the range of preparation methods 

used for generating simulated wash water using leafy greens. In order to develop a standard model, 

we must first understand how the preparation method used to replicate organic load for simulated 

wash.  Mechanical methods for breaking down the vegetative material can affect the 

physicochemical properties of the simulated wash water. Blenders have the ability to completely 

homogenize and breakdown the sample which allows for the inner cellular components of the 

produce to be in solution. On the other hand, a paddle mixer only has the ability to breakdown the 

material partially which when compared side by side with a blender, can cause differences in the 

organic load characteristics (Ghostlaw, Ramos, Kinchla, 2018). Besides the nature of the 

processing method, the preparation of the produce prior to creating simulated wash water can also 

affect the physicochemical characteristics of the water. For example, the removal of outer layers 

of produce, like lettuce and cabbage, removes any residual dirt which may be present, which is an 

essential step for decreasing any possible environmental contamination being introduced into 

solution. Chemical coatings and waxes can also affect the organic load values and potentially give 

incorrect COD for example (Baur, Klaiber, Hammes, Carle, 2004; Harris, Beauchat, Kajs, Ward, 

Taylor, 2011). In commodities such as spinach, that do not have outer layers to remove, any 

sanitizer residue present in the surface of the leaves will be introduced into water model. In order 
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to create a standard preparation model, we need to first understand the physicochemical properties 

of the wash water and how these can vary by produce which can be seen in Table 2. Differences 

between COD and turbidity values can be observed between different commodities.  

Purpose 

Organic load 

method 

Produce 

Model Source 

Evaluate minimum free residual 

chlorine levels required to inactivate 

E. coli O157:H7 and potential for 

THM generation in spinach, 

simulating dynamic washing 

conditions. 

Stomacher                                Spinach Gómez-López et. al,. (2014) 

Testing efficacy of  chlorine dioxide 

and sodium hypochlorite in E. coli 

inactivation in process water after 

cross-contamination in pre-washing 

tank 

Knife Lettuce López-Gálvez, Gil, 

Truchado, Selma & Allende 

(2010) 

Evaluate the efficacy of electrolyzed 

water in combination with salt on E. 

coli O157:H7 inactivation in vegetable 

washing systems 

Stomacher                       
Iceberg 

Lettuce 

Gómez-López et al.(2015). 

Inactivation of Salmonella , E. coli 

O157:H7, and non-O157 STEC in 

chlorinated solutions in varying 

concentrations of free chlorine 

Juicer to create 

extract 

Lettuce and 

Tomatoes Shen, Luo, Nou, Wang, & 

Millner (2013) 

Investigate the of E. coli O157:H7 

from inoculated lettuce leaves to 

inoculated pieces during washing and 

the efficacy of PAA and chlorine 

sanitizers in reducing the transfer of E. 

coli O157:H7 

High Speed Blender Lettuce 

Zhang, Ma, Phelan & Doyle 

(2009) 

Testing the efficacy of chlorine 

treatments against E. coli O157:H7 

during pilot-plant scale processing of 

iceberg lettuce and assessing the 

relationship between the 

physiochemical parameters of wash 

water and E. coli O157:H7 inactivation 

Blender 
Iceberg 

Lettuce 

Davidson, Kaminski, & 

Ryser (2014) 

The use of chlorine in water 

disinfection strategies in maintain 
Stomacher                                 

Butter head 

lettuce 

Van Haute, Sampers, 

Holvoet & Uyttendaele, M. 

(2013) 

Table 1: Comparison of simulated wash water preparation methods from previous work 
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It is critical to test sanitizers in presence of varying organic load levels. This to best 

understand how sanitizers would perform in a farm processing operation, and also accounting for 

the sanitizers quenching capacity (Gonzalez, Luo, Ruiz-Cruz & Cevoy, 2004). There are a variety 

of factors that make scaling up of laboratory research into industry application challenging, which 

could be eased with the implementation of a standardized organic load replication method 

(Beauchat et al 2001; Gil et al., 2009; Gombas et al., 2017). Standardizing a preparation method 

to replicate organic load seen in industry and on farm wash water will help to provide a controlled 

an appropriate environment for sanitizer validation research.  

 

microbial wash water quality without 

targeting the fresh-cut lettuce 

Investigate the effect of reusing wash 

water on the changes of water quality 

and the effect of water quality and 

microbial growth of packaged romaine 

lettuce 

Knife 
Romaine 

Lettuce 

Luo, Y. (2007) 

Table showcases the range of methods used to prepare the simulated wash water solutions, as well as the 

range in produce used. 
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 Table 2: Physiochemical properties of simulated wash water for varying produce commodities 

Produce Time of 

measurement 

COD 

(mg/L) 

pH Turbidity 

(NTU) 

ORP 

(mV) 

Source 

Lettuce 2hr 218.6 7.2 87.4 
 

 

 

 

Selma, et al., 

(2008) 

Escarole 2hr  173.6 7.3 95.7 
 

Chicory 2hr 33 7.8 42.4 
 

Carrot 2hr 18 7.6 0.6 
 

Onion 2hr 747.3 7.1 5040.4 
 

Spinach 2hr 68 7.5 88.9 
 

Sugar snap peas Approximately 

1hr 

30± 5 8.0 ± 0.1 5.2 ± 1.1 
 

Van Haute, 

Uyttendaele, 

Sampers (2013) 

Iceberg Lettuce 2-3 hr 119 
   

Baur, Klaiber, 

Hammes & 

Carle (2004) 

Lettuce 3 hr 2550 5.6  868 Davidson et al. 

2014 

Iceberg lettuce 

(Company 1) 

2hr 465 ± 2 7.34 ± 0.01 13.8 ± 0.9   

Van Haute, 

Sampers, 

Holvoet & 

Uyttendaele, 

(2013)a 

Iceberg lettuce 

(Company 2) 

2hr 1,405 ± 57 7.2 ± 0.1 72.6 ± 6.6  

Spinach 

(Facility A) 

5-8hr 
 

7.33±2.19 0.058±0.053 N/A  

 

Barrera et al., 

2012 
Spinach 

(Facility B) 

4-8hr 
 

7.53±0.11 0.036±0.036 383±127 

Spinach 

(Facility C) 

30hr 
 

7.47 ±0.26 0.123 ± 0.27 598 ±152 

Tomato 

(Facility A 

Primary Tank) 

4hr 390 7.0–7.5 38 950  

 

Zhou et al., 

2014 

 
Tomato 

(Facility B 

Primary Tank) 

8hr 732 5.5-6.5 74.90 1100 

Tomato 

(Facility C 

Primary Tank) 

4hr 519.5 6.5–7.0 107.0 870 

Table sourced from: Ghostlaw, Ramos, Kinchla (2018). This tables gives a brief overview of the methods that are 

used to measure the physiochemical properties of water that are used to establish water quality and the limitations to 

these tests. 
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2.4 Chlorine kinetics and detection methods  

 Chlorine is a disinfectant most commonly used for water and wastewater treatments. When 

added to water, hydrochloric and hypochlorous acids are formed, where the hypochlorous acid 

(HOCl) is the “bleaching” or disinfectant capacity of the reaction seen in the Figure 1. 

Cl2 + H2O ↔ HCl + HOCl 

HOCl ↔H+ + OCl- 

 

The two chemical species formed by chlorine in water are hypochlorus acid, HOCl, and 

hypochlorite ion, OCl-, and are defined as free available or free residual chlorine (Gombas et. al, 

2017). These two compounds have a disinfection ability, and are key for controlling microbial 

loads in both wash water and food contact surfaces when using chlorine based systems. In solutions 

with a pH ranging between 6.5 and 8.5, both species will be present with HOCl is the more 

germicidal of the two (Harp, 1995).  

 Studies have shown that HOCl is the most effective form of chlorine when it comes to 

inactivating pathogens (Luo et al., 2012). However, maintaining adequate levels of free available 

chlorine can be challenging in produce washing operations. The deterioration of water quality can 

be seen due to the accumulation of soil, debris and plant particles during processing, which causes 

an increase in both turbidity and COD, and thus a decrease in sanitizer efficacy (Luo et al., 2012). 

The longer the organic matter sits in the wash water, free available chlorine levels will continue to 

deplete to the point of no chlorine available for disinfection. Any pathogenic bacteria present will 

be able to survive and spread all throughout the wash water causing potential cross contamination 

to uncontaminated produce. In large fresh produce processing facilities, using chlorine as a 

Figure 1: Sodium hypochlorite reaction with water  
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sanitizer, periodic monitoring and replenishment of chlorine is a common practice. However the 

continuous addition of chlorine into high organic load solution can generate noxious chlorine by-

products and chlorine off-gassing (Cornell 1996; Suslow, 2001). It is critical for a sanitizer, like 

chlorine, to be tested in presence of different levels of organic load, even with small-scale studies, 

to better understand the efficacy and availability of free residual chlorine over time. This will help 

render more comparable results to on-farm conditions and will account for the sanitizer quenching 

capacity in processing water (Gonzalez et. al., 2004). 

 The use of chlorine as a produce sanitizer has been widely studied, due to its widespread 

use in industry and the availability of ORP probes or systems to monitor chlorine in large wash 

tanks (Shen et. al, 2013). However, due to the nature of the wash tank, the constant addition of 

produce and the constant movement of water, reports have shown that ORP readings do not fully 

reflected the free residual chlorine levels within the wash tank (Devkota et al., 2000; Kim & 

Hensley, 1997; Zhou et al., 2014). These discrepancies are due to displacement of the chlorine and 

water reaction.  

There are a variety of analytical methods 

used to measure chlorine levels in washing 

systems, both free residual and total. Free 

residual or free available chlorine represents 

the amount of chlorine available that has the 

oxidizing capacity. Whereas total chlorine is 

the sum of all forms of chlorine in solution. 

N,N-diethyl-p-phenylenediamine (DPD) 

methods are the one of the most common methods seen throughout academic research for 

Figure 2: DPD reaction with chlorine (Harp 1995) 

Reactio 
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quantifying the levels of free residual chlorine in water quality studies. The DPD titration method 

is based on the chemical reaction where DPD is oxidized by chlorine to create a bright magenta-

colored compound, where this compound will then be titrated with a ferrous reducing agent to a 

colorless endpoint (Harp, 1995) reaction seen in Figure 2. Another standard method is an 

iodometric titration, which is one of the oldest methods for determining chlorine. The reaction is 

based on the interaction with a sodium thiosulfate solution, where chlorine reacts with potassium 

iodide and a starch indicator is added to form a 

starch-iodide complex that is titrated to the 

endpoint where the blue colored starch-iodide 

complex disappears (Harp 1995). The 

Iodometric reaction can be seen in Figure 3. 

Limitation are associated to both methods. For example, detection range poses an issue for 

the DPD titration and interferences with organic material in solutions causing a disruption in the 

formation of the Würster dye, which can make the visual detection of the endpoint challenging. 

Limitations for both methods must be taken into consideration when choosing a method for 

measuring chlorine specifically when conducting studies for chlorine depletion in wash water and 

its ability to reduce microbial loads of pathogenic bacteria, since chlorine efficacy can be affected 

by the organic load present in wash water, pH and contact with metals, such as iron (Ghostlaw, 

Ramos, Kinchla, 2018).  

With such a variety of detection methods for free residual chlorine, it is important to keep 

in mind which test will work best in high organic load environments. Studies should look at the 

impact different produce have on detection methods capability and inferences with varying organic 

load levels for free residual chlorine detection.  

Figure 3: Iodometric Titration Equation (Harp 

1995) 



14 
 

2.5 Chlorine Sanitizer Applications 

 Chlorine has been one of the most heavily studied sanitizers, due to its low cost and efficacy 

in reducing pathogen cross-contamination. Besides price and efficacy, it can be utilized for both 

produce washing and food contact surfaces. Commercial brands like Pure Bright™ Germicidal 

bleach and Clorox® Germicidal bleach are readily accessible at a low cost, but chlorine 

concentrations in solution may not exceed 25ppm as stated by the Environmental Protection 

Agency (Environmental Protection Agency [EPA], 2007; EPA 2010). However, even with the 

availability of commercial available chlorine base antimicrobial solutions it can be seen in previous 

published work that the use of a concentrated sodium hypochlorite solution as a model sanitizer is 

common for for validation studies. Thus, making it challenging to compare and recommend best 

management practices on the implementation of sanitizer in postharvest wash water for small and 

medium growers because if the commercial brands of chlorine sanitizer will perform the same in 

farm processing conditions as seen in Table 3. More studies should be done using commercially 

available chlorine based sanitizer in efforts to identify the real performance of commercial 

antimicrobial solutions in reducing pathogenic cross-contamination in high organic load 

environments.  

 

Table 3: Summary of free residual chlorine detection methods and the sanitizers used in wash 

water quality studies 

Purpose Chlorine Sanitizer 

Used 

Free residual 

chlorine detection 

method Produce Reference 

Compare efficacy of 

antimicrobial solutions at 

various concentrations on 

cut cilantro.  

Sodium 

hypochlorite, 

acidified sodium 

chlorite citric acid                 

sodium chlorite 

Chlorine 

Photometer 
Cilantro 

Allende, McEvoy, 

Tao, & Luo (2009) 
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Evaluate the effects of 

sanitizer pH and initial 

chlorine concentration of 

NaOCl on chlorine demand 

of different fresh produce 

wash waters at different 

organic load. 

Sodium 

Hypochlorite 

DPD-FEAS 

Titration 

Romaine 

lettuce 

Chen & Hung 

(2017) 

Investigate the dynamic 

changes in organic load, pH 

and free concentration and 

the relationship between 

bacterial survival and the 

real time free chlorine 

concentration. 

Sodium 

Hypochlorite and 

phosphoric acid-

based acidulant 

Automated 

Analytical Platform 

Romaine 

lettuce              

Iceberg 

lettuce 

Cabbage 

Luo, Zhou, Van 

Haute, Nou, Zhang, 

Teng & Millner 

(2018)  

Study provided a feasible 

method for studying 

sanitizer/bacteria 

interaction and their effect 

on free chlorine levels. 

Sodium 

Hypochlorite 

DPD-FEAS 

Photometric 

Romaine 

lettuce 

Teng, Luo, Alborzi, 

Zhou, Chen, Zhang, 

& Wang (2018) 

Pilot-scale evaluation of a 

new process aid and its 

impact on enhancing the 

antimicrobial efficacy of 

chlorinated water against 

pathogen survival and 

cross-contamination. 

Sodium 

Hypochlorite 

DPD method using 

Chlorine 

Photometer 

Iceberg 

lettuce 

Spinach 

Lou et. al (2012) 

Study performed sampling 

visits within a commercial 

lettuce processing facility 

to determine the changes in 

free chlorine concentration 

during typical processing 

activities. 

Chlorine- Not 

specified 

Not specified, but 

monitored with 

ORP probe 

Iceberg 

lettuce 

Murray, Aldossari, 

Wu & Warriner 

(2018) 

Efficacy of sanitizers to 

inactivate Escherichia coli 

O157: H7 on fresh-cut 

carrot shreds under 

simulated process water 

conditions. 

Acidified sodium 

chlorite citric acid-

based sanitizer 

Tsunami 100 

Not specified Carrots 
Gonzalez et al. 

(2004) 

The efficacy of chlorine 

dioxide and sodium 

hypochlorite was evaluated 

by assessing E. coli 

inactivation in process 

water and fresh-cut iceberg 

lettuce after cross-

Sodium 

Hypochlorite 

DPD-FEAS 

Titration 

Iceberg 

lettuce 

Lopez-Galvez et al. 

(2010) 
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2.6 Conclusion  

 The need for a standardized preparation method for simulated wash water was seen after 

reviewing the research work available in agricultural wash water. More comparisons studies are 

needed, not only between preparation methods, but also between produce used for simulated 

wash water. More work is needed to best determine the depletion rates of commercially available 

chlorine sanitizer over long period of time in high organic load environments and conditions 

mimicking those seen in processing operations, to compare depletion rates observed in research 

when using concentrated sodium hypochlorite solutions.  

 

 

 

 

 

 

 

 

contamination in pre-

washing tank. 

Inactivation of Salmonella , 

E. coli O157:H7, and non-

O157 STEC in chlorinated 

solutions in varying 

concentrations of free 

chlorine 

Sodium 

Hypochlorite 

Chlorine 

Photometer 

Iceberg 

lettuce    

Tomatoes 

Shen et al. (2013) 



17 
 

CHAPTER 3 

ASSESSMENT OF PREPARATION METHODS TO PRODUCE A 

POSTHARVEST WASH WATER MODEL FOR FOOD SAFETY 

VALIDATION STUDIES 

 

3.1 Introduction  

 With the implementation of “The Food Safety Modernization Act” there has been an 

increase in food safety research, specifically produce safety, in efforts to better understand the 

needs of produce processing operations in compliance with FSMA’s rule regarding the presence 

of generic E. coli in postharvest agricultural wash water. Sanitizers have been proven to be an 

effective tool in maintaining water quality, however choosing an appropriate sanitizer for 

vegetable processing operations can be challenging. Mimicking farm wash water conditions is key 

to assessing sanitizer behavior at high organic load concentrations. Current research shows a wide 

range of different preparation methods to model organic load levels to mimic on-farm conditions. 

However, different produce can potentially affect the physicochemical properties of the wash 

water making it challenging to make comparisons on sanitizer effectivity from published work. 

Currently there is no standard for simulated wash water model. In order to develop such model, 

we must first understand how preparation methods can affect the physicochemical properties of 

the wash water, and thus the efficacy of sanitizers for future validation studies. Our work will focus 

mainly on leafy green processing operations and conditions using baby spinach as our commodity 

model due to the increase in outbreaks related to leafy greens in recent years like the E. coli 

O157:H7 outbreak with contaminated baby spinach in 2007. During the 2015 agricultural season 

a farm survey was conducted to asses wash water conditions of 10 farms in Western Massachusetts, 
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USA.  Each sample survey was test for NTD (Turbidity), ORP (Oxidation Reduction Potential), 

COD (Chemical Oxygen Demand), and pH. To determine the physicochemical characteristics of 

post-harvest wash water in this region. Based on our findings, we modeled the organic load levels 

for bench top trials on the average values observed on-farm, choosing COD and NTU levels as our 

organic load indicators. Laboratory trials were performed to determine the effects of organic load 

generated using paddle mixer and a on the physiochemical properties of the wash water. This study 

aims to identify a suitable preparation method to best represent leafy green processing conditions 

on farm, for future commercial sanitizer screening studies in efforts to provide best management 

practices for produce wash water quality. 

 

3.2 : Materials and methods 

3.2.1 Farm Survey in Pioneer Valley  

 Three wash water samples were obtained from each farm engaged in produce washing and 

cooling processes. Seven out of ten farms were leafy green processing operations using dunk tanks. 

The other three operated carrots, squash and melons; and were also included in the ten farms 

surveyed in this study. Water samples were taken and transported in Whirl pack bags (Nasco, Fort 

Atkins, WI) to the lab for analysis. Physicochemical properties analyzed included: Turbidity 

(NTU) using HACH 2100Q portable Turbidimeter (HACH Company, Loveland CO 80539), pH 

using the Thermo Scientific Orion Star A221 pH meter (Thermo Scientific, Waltham MA 02451), 

ORP using ORP/ATC electrode, 967961 attachment using Thermo Scientific Orion Star A221 

(Thermo Scientific, Waltham MA 02451) and Chemical Oxygen Demand (COD) using a HACH 

DRB200 Digital Reactor Block (HACH Company, Loveland CO 80539).  
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3.2.2 Organic load wash water preparation 

 Baby spinach (Spinacia oleracea) was purchased from a local grocery store and stored at 

4°C for no than 48 hours. For homogenized leafy matter solutions (blender), 40g of baby spinach 

was prepared with 200ml of distilled water and mixed using a high speed blender (Coolife 

Professional Kitchen Blender, Guangdong, China). For paddle mixing (stomacher) solutions, 40g 

of baby spinach was prepared with 200ml of distilled water and mixed using a Stomacher 

(Bagmixer 400 CC, Interscience Laboratories Inc., Woburn, MA). Organic load solutions prepared 

with both a blender and stomacher were filtered through cheesecloth and diluted to a final volume 

of 1,500ml with chemical oxygen demand concentrations of 50, 100, 400, 700, 1,000, 1,500 mg/l. 

Solutions were refrigerated for 24 hours at 4°C before analysis. 

 

3.2.3 Analysis of physicochemical properties of simulated wash water 

The physicochemical properties used for the analysis of simulated wash water were: Turbidity 

(NTU) measured using the HACH 2100Q portable Turbidimeter (HACH Company, Loveland CO 

80539), Chemical Oxygen Demand (COD) and using the HACH DRB200 Digital Reactor Block 

(HACH Company, Loveland CO 80539), Oxygen Reduction Potential (ORP) and pH were 

measured using HANNA instruments HI901C1-01 with both ORP and pH probe attachments 

(HANNA Instruments Inc., Woonsocket RI). 

 

3.2.4 Statistical Analysis 

Three samples were taken for each treatment and all experiments were performed in triplicate. 

The data was partitioned and assessed by an F-test and Analysis of variance (ANOVA) and Duncan 
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Multiple Range Test performed using SAS were statistical significance was set at p<0.05 (SAS 

Institute Inc., Cary, NC, USA).  

 

3.3: Results and Discussion 

3.3.1 Farm Survey and analysis of physiochemical properties 

To better understand the properties of postharvest agricultural wash water of the Western 

Massachusetts region, a farm survey was conducted during the 2015 agricultural season where 

seven out of the ten farms were leafy green processors, as seen in Table 4. 

 

 

 

 

 

 

 

 

 

 Based on the results from the farm survey and previous work, we chose COD and turbidity 

as indicators of organic load and their link to water quality (Barrera, Blenkinsop, & Warriner, 

2012; Luo et al., 2011; Selma, Allende, Lopez-Galvez, Conesa & Gil, 2008; Suslow, 2004; Chen 

& Hung, 2016). Target values were chosen as were 50mg/L and 100 mg/L COD and 100 NTU 

respectively. Bench top laboratory trials were conducted to make comparisons between common 

Farm 
Produce Type 

Processing 

Method 

1 Leafy Greens Dunk Tank 

2 Leafy Greens Dunk Tank 

3 Leafy Greens Dunk Tank 

4 Leafy Greens Dunk Tank 

5 Leafy Greens Dunk Tank 

6 Leafy Greens Dunk Tank 

7 Leafy Greens Hydro Cooler 

8 Carrots 

Tumble 

Washer 

9 Squash Spray Washer 

10 Melons Brush Washer 

Table 4: Processing characteristics of farms surveyed in Western Massachusetts, USA during 2015 
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preparation methods, a paddle mixer (stomacher) and a blender and their effects on the 

physicochemical properties of wash water. 

 

3.3.2 Comparison of organic load preparation methods  

Simulated wash water samples were prepared with baby spinach using two different 

methods, a stomacher and a blender. For each treatment we analyzed the physicochemical 

characteristics mentioned in section 3.2.3. Our goal was to evaluate if different processing methods 

had a significant effect on the physicochemical properties of the simulated wash water.  

 To better understand the properties of postharvest agricultural wash water of the Western 

Massachusetts region, a farm survey was conducted during the 2015 agricultural season where 

seven out of the ten farms were leafy green processors. Based on the results from the farm survey 

and published work, we chose COD and turbidity as our parameters of organic load quantification 

due to their relationship to water quality (Barrera, Blenkinsop, & Warriner, 2012; Luo et al., 2011; 

Selma, Allende, Lopez-Galvez, Conesa & Gil, 2008; Suslow, 2004; Chen & Hung, 2016). Target 

COD values were 50mg/L and 100 mg/L respectively, then values of 100 NTU for controlled 

turbidity studies. Values were chosen based on averages from wash water farm survey. 

Bench top laboratory trials were conducted to make comparisons between common 

preparation methods, a paddle mixer (stomacher) and a homogenized leafy matter (blender) at 

observed on farm organic load levels for future sanitizer validation studies. Simulated wash water 

samples were prepared with baby spinach using two different methods, a stomacher and a blender 

due to their common use in research work. Our goal was to evaluate if different processing methods 

had a significant effect on the physicochemical properties of the simulated wash water, and could 

in turn affect sanitizer efficacy in solution. The nature of the preparation method could cause 
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changes in the physicochemical properties of the wash water where a blender, which which causes 

a complete breakdown of baby spinach leaves, compared a stomacher which renders only a partial 

breakdown on the spinach leaves. These small differences can affect the properties of the simulated 

wash water, thus making it challenging to compare results to a wide range of commodities 

(Ghostlaw, Martinez, Kinchla, 2018)  

COD (mg/L) was used as measure of organic load for our simulated wash water, and then 

analyzed the physiochemical properties in simulated wash water. Results showed no statistical 

differences between preparation methods at 50 and 100 mg/L among the physiochemical 

properties analyzed in this study as seen in Table 5.  

 

 

After evaluating the effects of simulated wash water preparation methods using COD as a 

measure of organic load, we repeated the experiment this time changing the method of organic 

load quantification. We used turbidity, as it has also been used in previous work as an indirect 

method of organic load quantification (Gombas et. al, 2017). The turbidity target value was chosen 

based on average turbidity values observed in a farm survey conducted in leafy green processing 

operations of the Western Massachusetts region. The physicochemical properties of the simulated 

Physicochemical 

properties 

0 COD 50 COD 100 COD 

Blender Stomacher Blender Stomacher Blender Stomacher 

ORP (mv) 333 a 333 a 378 a 375 a 346 a 352 a  

pH 5.9 a 5.9 a 6.0 a 6.1 a 6.2 a 6.2 a 

Turbidity (NTU) 0.11 a 0.1a 8.6 a 8.3 a 15.7 a 15.5 a   

a Preparation methods were compared at 0, 50 and 100 COD for each wash water property 

Mean values in the same row that are not followed by the same letter are significantly different 

(Duncan’s Multiple Range Test, P=0.05)  

 

Table 5: Physicochemical Properties of simulated wash water at 50 and 100 mg/L 
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wash water are presented in Table 6. Results showed no significant difference between preparation 

methods when looking at their effects on the physicochemical properties of the solution at 100 

NTU.  

 

 

Organic load quantification methods were looked at separately in each experiment. The goal of the 

study was to evaluate the effects of the preparation method using baby spinach as a model to 

generate the organic load levels seen on-farm on the physiochemical properties of the wash water. 

Organic load measure methods were kept separate to assess each condition independently and later 

asses the relationship between COD and NTU when used for generating simulated wash water at 

increasing levels of organic load. Overall no significant difference was observed between 

preparation methods and the physicochemical properties of the simulated wash water (p>0.05).  

 

3.3.3 Comparison between paddle mixer and homogenized leafy matter at increasing COD 

(mg/L) concentrations   

  In the previous experiment preparation methods were compared at known organic load 

values using both COD and turbidity as indicators of the organic material, due to their use in the 

produce industry, and data showed no significant difference between preparation methods at 

Physicochemical 

properties 

0 NTU 100 NTU 

Blender Stomacher Blender Stomacher 

ORP (mv) 274 a 274 a 242 a 213 a 

pH 5.8 a 5.8 a 6.3 a 6.5 a 

Turbidity (NTU) 0 a 0 a 589 a 558 a 

Preparation methods were compared at 0 and 100 NTU for each wash water property 

Mean values in the same row that are not followed by the same letter are significantly different 

(Duncan Multiple Range Test P=0.05)  

Table 6: Physiochemical properties of simulated wash water at 100 NTU 
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known COD and NTU values when looking at the physicochemical properties of simulated wash 

water.  

 Besides looking at the differences between preparation methods at values seen on farm 

leafy green processors in the Western Massachusetts region, experiments also looked to test if at 

high levels of organic load, the preparation method would affect the physicochemical properties 

of the simulated wash water. The next study focused at testing the turbidity values of the simulated 

wash water when using COD as a measurement of organic load in the system. More focus was put 

on testing and understanding the use of COD and turbidity in generating simulated wash water, 

due to their use in the produce industry as organic load indicators, where the presence of organic 

load is known to impact the efficacy and quenching capacity of chlorine based system for the 

monitoring of water quality in produce washing operations. 

Simulated wash water was generated using baby spinach and processed using a stomacher 

and a blender to achieve COD levels of 0, 400, 700, 1,000 and 1,500 mg/L, which were chosen to 

showcase worst case scenarios in leafy green processing like those seen in previous work like Luo, 

Zhoum Van Haute, Nou, Zhang, Teng & Miller, 2018. Comparison between blender and 

stomacher turbidity values at increasing levels of organic load can be seen in Figure 4. At COD 

levels of 0, 100, 400, 700 and 1,000 no significant difference was observed between preparation 

methods. However, at 1,500 COD there is a significant difference in turbidity values between 

stomacher and the blender method, where the blender yielded a higher turbidity than the stomacher 

both at 1,500 COD.  
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Results showed, that while 1,500 COD was not representative of organic load levels 

observed in survey conducted on leafy green processing water in the Western Massachusetts, these 

levels have been reported in simulated wash water research studies (Luo et. al, 2018; Weng, Luo, 

Li,Zhou, Jacangelo and Schwab, 2016; Chen and Hung, 2016; Van Haute, Sampers, Holvoet and 

Uyttendaele, 2013). Further studies continued to use the blender as the preferred preparation 

method, because it proved to be more time efficient for experiments and required less amounts of 
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Figure 4: Comparison between Blender & Stomacher turbidity values at increasing organic load levels 
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produce to achieve both low and high levels of organic load, in comparison to a paddle mixing 

method like the Stomacher, to be used for sanitizer validation work. 

The physicochemical properties of the wash water need to be understood and maintained 

to ensure the efficacy of the antimicrobial solution added to the washing system in efforts to 

properly conduct validation studies on their use in wash water. Being that organic load is an 

essential parameter that should be monitored in washing systems (Gombas et. al, 2017), a study 

was conducted to evaluate the use of COD and turbidity measurements for monitoring organic 

load in wash water solutions.  

The use of turbidity measurements has been occasionally used in the produce industry in 

reference to the amount of organic load (Gombas et. al, 2017). However, results may be impacted 

based on the amount of soil and debris in the washing system, as well as any color developed in 

water. COD on the other hand, is a direct measurement of organic load and chlorine demand, 

depletion rate of free available chlorine, in a system. One of the main differences between methods 

is the cost and time of each. The COD assay uses heat and a strong oxidizer to oxidize the organic 

material present and thus measuring the amount of oxidizing agent consumed in the reaction. The 

reaction takes approximately two hours and one of the main components of the assay is mercury. 

The implementation of this method is not adequate for a small or medium scale farmer due to its 

high cost (example: HACH DRB200 Digital Reactor Block $1,670.08) and use of toxic and 

corrosive chemical which require separate disposal protocols. While the use of a turbidity meter is 

fairly low in cost when compared to a COD measuring device (example: SPER Scientific Direct 

Turbidity Meter-860040 $350.00) it is not a direct measurement of organic load, and thus the 

produce being washed will affect the clarity of the water and thus the values reported. In studies 

like Selma, Allende, Lopez-Galvez, Conesa and Gil (2008) reported NTU values varied 



27 
 

significantly when depending on the produce washed, where lettuce had a reported 87.4 NTU 

versus Onions reported 5040.4 NTU.  

Using the blender method, we processed baby 50g of baby spinach and 200ml of dH2O, 

filtered through cheesecloth and diluted to achieve COD values of 50, 100, 400, 700, 800, 1,000 

and 2,000 mg/L. Study evaluated the NTU values of each COD concentration and results are 

shown in Figure 5. Results showed that an increase in organic load showed an increase in NTU 

values which corresponded with a linear relationship between turbidity and COD.  

 

Previous studies such as that done by Luo et. al (2012) showed that when processing leafy 

greens like spinach and lettuce there was a linear increase in COD and turbidity in the wash water 

in relation to the amount of produce that was being washed. Future studies continued to use COD 

as the organic load monitor, instead of turbidity measurements due to its precision and accuracy 

in directly measuring organic load and chlorine demand.  
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Figure 5: Relationship between COD and turbidity at increasing levels of organic load 

At increasing levels of organic load data showed a liner relationship, when 

increasing COD levels as a measure of organic load.  
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3.4  Conclusion 

This study illustrated the need for a standard preparation method to produce simulated wash 

water solutions for laboratory trials. While the on farm observed concentrations of organic matter, 

established from the data obtained in the farm survey, of 50 & 100 mg/l and 100 NTU, showed no 

statistical difference between the stomacher and blender methods (p>0.05), high levels of organic 

matter in solution reflected a statistical difference between methods and their effects on the 

physiochemical properties of the simulated wash water. Ultimately the Blender (homogenized 

leafy matter) method worked best for our future sanitizer validation studies. The blender proved 

to be more time efficient, as well as providing a better control at mimicking on farm organic load 

levels at low, high and very high levels when compared to the stomacher (paddle mixer).  
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CHAPTER 4 

ASSESSMENT OF ANALYTICAL METHODS TO DETECT FREE 

RESIDUAL CHLORINE IN AGRICULTRUAL WASH WATER FOR 

SANITIZER VALIDATION 

 

4.1 Introduction 

 Previous work done on chlorine based sanitizers in produce washing operations indicates 

that the DPD-titrimetric is the method preferred when using a titration to detect free residual 

chlorine levels in wash water solutions. Another common method is the use of test kits, for example 

the HACH free chlorine test kit, which mimics the DPD reaction seen in Figure 2 where the 

intensity of color due to the formation of the Würster dye correlates with the amount of free 

chlorine present in the sample. In this study, besides comparing DPD methods for free residual 

chlorine detection, studies also evaluated the efficacy of an IOD-titration which is also categorized 

as a standard method for free residual chlorine detection in wash water solutions, specifically for 

sodium hypochlorite based chlorine sanitizers. The goal of the studies was to compare commonly 

used free chlorine detection to assess the best fit method for detection at high levels of organic 

load. Upon comparing all three detection methods, further studies were conducted to evaluate the 

differences between DPD and IOD titrations methods, which led to subsequent studies where the 

interaction between organic load, sanitizer and E. coli O157:H7 was tested and used to evaluate 

their effects on both DPD and IOD titrations. The main goal of the studies was to establish the best 

fit analytical method for free residual chlorine detection in samples with heavy organic load 

solutions. 
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4.2 Materials and Methods 

4.2.1 Organic load wash water preparation 

 Baby spinach (Spinacia oleracea) was purchased from a local grocery store and stored at 

4°C for less than 48hrs. Organic load solutions were prepared using baby spinach with distilled 

water using a high speed blender (Coolife Professional Kitchen Blender, Guangdong, China). 

Organic load solutions were then filtered through cheesecloth and diluted to desired COD levels 

of 50, 100, 400, 500 and 700 mg/l based on levels seen in previous work (HACH DRB200 Digital 

Reactor Block, Ames, IA). Samples were diluted for a total volume of 1,500ml for each sample 

and kept in the refrigerator for 24hrs at 4°C before analysis.  

 

4.2.2 Preparation of Sodium Hypochlorite (NaOCl) solutions 

25ppm of Sodium Hypochlorite (NaOCl) solutions were prepared by diluting at a ratio of 

1:10 (Clorox® germicidal bleach: dH2O). Free residual chlorine concentration was measured using 

two different titration methods, namely an Iodometric Titration (ASTM D2022-89, 2016) and 

DPD-titrimetric titration (Rice & Bridgewater, 2012) and one test kit being the HACH Kit for Free 

Chlorine testing (Free chlorine Color Disc Test it Model CN-66F, HACH, Ames, IA). Titrations 

were performed using a HANNA Instruments HI901C1-01 (HANNA Instruments Inc., 

Woonsocket RI). 

 

4.2.3 Comparison of Free Residual chlorine testing method comparison study 

  Free residual chlorine levels were tested using IOD and DPD titrations in addition to the 

HACH free chlorine test kit, to compare their ability to accurately detect chlorine levels in presence 

of organic material. Organic load levels chosen were based on our farm survey where 50mg/l was 
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the average value of COD levels observed in postharvest agricultural wash water on farm. Organic 

load samples were prepared at 0 and 50mg/L for a total volume of 1,500ml and stored in the 

refrigerator for 24hrs 4°C before analysis. Free chlorine levels were tested after adding 25ppm of 

a ratio of 1:10 (Clorox® germicidal bleach: dH2O) to solution and mixing for 30 seconds. Samples 

were taken from the same solution and tested at the same time for all three detection methods.  

 

4.2.4 E. coli O157:H7 strain preparation 

  E. coli O157:H7 strain was obtained from ATCC (ATCC 43894 Manasassas, VA) and 

grown to 100µg/ml nalidixic acid resistance. A single colony of the strain was grown in Tryptone 

soy broth (abbreviated TSB, Thermo Scientific™, Waltham, MA). Strain was stored in glycerol 

and TSB at -80°C. Strain was regrown in TSB for 18-24hrs for use and plated on Tryptone soy 

agar (abbreviated TSA, Thermo Scientific™, Waltham, MA) treated with 100µg/ml nalidixic acid. 

The samples were inoculated to obtain 107 CFU/ml of E. coli O157:H7 concentrations in samples. 

  

4.2.5 Comparison study of free residual chlorine titration methods at increasing organic load 

levels 

 A comparison study was done in two separate experiments, both of which to assess the 

efficacy and sensitivity of IOD and DPD titration methods. In the first experiment free residual 

chlorine levels were tested at 0,100, 400 and 500mg/L (HACH DRB200 Digital Reactor Block, 

Loveland, CO) after adding sanitizer to solution and mixing for 30s, running each titrations side 

by side at the same time. For the second experiment we tested free residual chlorine levels this 

time at 0,100,700mg/L (HACH DRB200 Digital Reactor Block, Loveland, CO) inoculating 

samples to obtain 107 CFU/ml of E. coli O157:H7.  
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4.2.6 Statistical Analysis of Free Residual Chlorine detection studies 

Three samples were taken for each treatment and all experiments were performed in triplicate. 

Analysis of variance (ANOVA), and data was partitioned and assessed using an F-test, test were 

performed using SAS where statistical significance was set at P=0.05 (SAS Institute Inc., Cary, 

NC, USA).  

 

4.3 Results & Discussion 

4.3.1 Comparison study between IOD and DPD titrations and a HACH kit for free residual 

chlorine detection at two low organic load levels (0 and 50mg/l) 

Free residual chlorine detection levels were compared between three different detection 

methods, two of which were titrations and one being a rapid testing kit. Figure 6 illustrates 

detection method and organic load combinations, which were all treated with 25ppm of a 1:10 

ration of Clorox® Germicidal bleach and dH2O at organic load levels of 0 and 50 mg/l, which 

are representative of observed on farm conditions from wash water farm survey 
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No significant difference was observed between free residual chlorine detection methods 

with no presence of organic load in solution. However, the presence of organic load of 50 COD 

(mg/L) had a significant effect on the detected sanitizer concentration for both DPD and IOD 

titration (P>0.05) when compared to the HACH kit. When looking at Figure 6, the results shows 

that the HACH kit seems to be the best fit method when comparing sanitizer levels in presence 

and absence of organic material, where Figure 4 shows that presence of organic load had no 
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Line represents sanitizer concentration added initially (25ppm of Clorox® Germicidal bleach) 

 

Figure 6: Free residual chlorine concentrations detected using different analytical methods at 

two COD levels 
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significant effect on detected sanitizer concentration when compared to the control which had no 

organic load in solution (0 COD). 

However, while conducting the experiment, we observed that due to the green color of our 

50 mg/L organic load stock created using baby spinach, made it challenging to effectively detect 

the free residual chlorine level change when using the HACH kit. The kit uses a color wheel, as 

seen in Figure 7, which correlates the level of free residual chlorine in solution to the intensity of 

the Würster dye (bright magenta in color) formed and compared to the color wheel seen in Figure 

7. The higher the levels of free residual chlorine in solutions, the more intense the magenta color 

will be. The kit has a maximum value of detection is 10ppm and the color wheel reports free 

residual chlorine levels in increments. In colored solutions such as the 50mg/L organic load stock, 

it was challenging to effectively identify the color formed from the reaction to the color wheel 

from the kit. Both the HACH test kit and the DPD titration 

follow the same reaction, in which a DPD (N, N-diethyl-

p-phenylenediamine) reagent reacts with chlorine to 

produce a bright magenta color known as the Würster 

dye. The more chlorine present in solution, the brighter 

the color. For the DPD titration, the titrant Ferrous 

Ammonium Sulfate (FAS) will be dispensed till the 

solution becomes colorless; whereas the HACH test kit compares the intensity of the Würster dye 

formed to a color wheel to identify the ppm of free residual chlorine in solution. The downfall with 

both methods, is that they both have a small test range for free residual chlorine detection. The 

HACH kit has a range of 001-10ppm whereas the DPD titration has a range of 0.01-5ppm of 

chlorine. In our case a solution of 25ppm must be further diluted prior to analysis which can cause 

Figure 7: HACH free chlorine test kit 
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increase variability between test, and since chlorine is known to dissociate into its two main 

components (HOCl and OCl-) in water, diluting the solution further can cause interferences with 

the formation of the HOCl which is the germicidal component of the reaction (Gombas et. al 2017) 

Overall, results showed that while the HACH kit seemed to work well in both no presence 

and absence of organic load in solution, the identification of the proper free residual chlorine values 

can be biased based on the person performing the analysis and in turn introduce variability between 

samples and would not be precise enough for our future experiments involving sanitizer screenings 

at increasing organic load levels. DPD, IOD and HACH kit comparison results showed a 

significant difference in detected sanitizer concentration at 50 mg/L (P<0.05). The HACH kit 

results showed no significant difference between organic load levels of 0 and 50 mg/L. Further 

studies were conducted to explore the dynamics of organic load and sanitizer and their effects the 

detection capabilities of both DPD and IOD titrations, as a preferred method of free residual 

chlorine detection for laboratory studies.   

 

4.3.2 Comparison between analytical method (IOD and DPD titrations) for free residual 

chlorine detection at increasing organic load levels 

Upon concluding that the rapid test kit from HACH would not fit our future experiments, 

we looked closer at the interaction between sanitizer and organic load using two different titration 

methods for the detection of free residual chlorine in solution for future sanitizer screening studies. 

DPD titration and the IOD titration were compared at at 0,100, 400 and 500 mg/L organic load 

levels all treated with 25ppm of Clorox® germicidal bleach in. Results can be seen in Figure 8. 

Results showed that there was a significant difference between DPD and IOD free residual chlorine 

concentrations detected at 100, 400 and 500 mg/L in which a significant interaction between 
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sanitizer concentration and organic load at 100, 400 and 500 mg/l was observed. From Figure 8 

we can see a decrease in free residual chlorine concentration in solution, with the addition of 

organic load in both titration results. For the IOD titration we see that at 0mg/L we have 25ppm 

and once organic load is introduced we have an average of a 5ppm decrease overall organic load 

is introduced we have an average of 5ppm decrease overall organic load levels tested. 

 

 

However, we can see that the results obtained from the DPD titration show a significant 

decrease in concentration over all levels of organic load when compared to the results seen for the 

IOD titrations going from around 25ppm initially at 0mg/L to 11ppm at 100 mg/L and 3ppm at 

500. The interaction between titration method and sanitizer concentration was also highly 
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significant where DPD and IOD results showed to be statistically different. Titration graphs can 

be seen in Figure 9 where it can be see that with increasing organic material the DPD titration had 

problems finding the endpoint of the reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Previous work has shown that the introduction of organic matter to a wash solution causes 

free residual chlorine concentrations to decline (Gombas et. al 2017), however the large 

D Represents titration values for DPD titration and I Represents titration values for 

IOD titration 
1 0 COD, 2 100 COD, 3 400 COD and 4 500 COD 
 

D.1 
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Figure 9: DPD and IOD titration screenshots in increasing organic load solutions treated 

with 25ppm of germicidal bleach 
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discrepancy in results seen from both titrations in this experiment, when titration samples were 

taken from the same solution and ran at the same time was alarming. The DPD titration method is 

a standard method for free residual chlorine analysis and commonly used in research, however 

when tested in presence of varying organic load levels it proved to not be as effective as we 

expected. This titration is very color and pH dependent, where the solution will turn a bright 

magenta color (Würster dye) in presence of chlorine and titrate to a colorless solution. Due to the 

nature of our simulated wash water solutions, created using baby spinach and deionized water, 

yielding varying shades of green it is possible that this color interference would cause the 

equipment to not find the endpoint. One critical problem when using a DPD method for wastewater 

or in this case simulated wash water is the interference one from turbidity and color (Harp 1995). 

An increase in organic load results is a linear increase in turbidity (Ghostlaw, Ramos, Kinchla, 

2018), which can explain the issues in the discrepancies when using aa DPD titration for simulated 

wash water systems with high levels of organic load which was discussed previously in Figure 4.  

While DPD methods are one of the most commonly used in previous published work as 

previously seen in Table 3 our results showed that in high organic load solutions, interferences 

with turbidity and color, in this case shades of green due to the use of baby spinach as our produce 

model for simulated wash water, can cause this method to be ineffective and render inaccurate 

readings by missing to find the correct end point of the titration reaction.  

 

4.3.3 Comparison study of IOD and DPD titrations for free residual chlorine detection at 

0,100 and 700 mg/l inoculated with E. coli O157:H7 

Before choosing one titration method over another, we tested both titrations not only in 

presence of increasing organic load levels, but also in presence of microbial counts by inoculating 
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samples with t107 CFU/ml of E. coli O157:H7 in stationary phase (refer to Table 9 in appendix 

for E. coli O157:H7 ATCC 43894 growth curve) and tested the interaction between organic load, 

sanitizer and bacteria and their effects on free residual chlorine concentration readings. The focus 

for this study was to see how the interaction between organic and microbial loads would affect the 

titrations ability to detect free residual chlorine levels due to the results seen in previous work 

where organic load has a significant effect on the DPD titration. Samples were tested at three levels 

of organic load- 0, 100 and 700 mg/l- at four different treatments, these being: treatment 1- 

sanitizer, treatment 2-no sanitizer, treatment 3- sanitizer + bacteria and treatment 4- control (no 

sanitizer or bacteria).  

Results showed no significant difference between organic load and treatments on free 

residual chlorine levels except for treatment 1 and 3 at 700 mg/L (p <0.001) as seen in Table 9. 

Results show that the presence of high organic load levels will have a significant impact on the 

free chlorine levels detected, regardless of presence or absence of bacteria. A significant 

interaction was also observed between method and treatment (p<0.05), in other words the presence 

of increasing organic load had a significant effect on the free residual chlorine detection capacity 

of the DPD titration methods as seen in our previous study.  

COD (mg/L) 
Titration 

Method 

Sanitizer 
No Sanitizer 

+ Bacteria 

Sanitizer + 

Bacteria 
Control 

Treatment 1 

(ppm) 

Treatment 2 

(ppm) 

Treatment 3 

(ppm) 

Treatment 4 

(ppm) 

0 

DPD 16.76 0.50 13.74 0.50 

IOD 21.63 1.78 19.19 1.78 

100 

DPD 4.09 0.50 3.15 0.50 

IOD 15.33 1.78 15.57 1.78 

700 

DPD 0 * 0.50 2.69** 0.50 

IOD 16.9* 1.78 23.7** 1.78 

 Values of 0.50 represent 0ppm for the DPD titration and 1.78 represents 0ppm for the IOD titrations.  

*Highly significant difference seen between titration methods in treatment 1 at 700mg/L (p<0.001). 

** Highly significant difference seen between titration methods in treatment 3 at 700mg/L (p<0.001). 

 

 

Table 7:  Titration method comparison within bacteria, organic load and sanitizer treatments 
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In comparison to the previous study, the responses observed for the DPD titration, with 

increasing organic load showing a significant decrease in free chlorine levels in solution, were 

consistent. High organic load levels present in solution caused an interference with the equilibrium 

of the DPD titration, as previously mentioned, by not allowing for the formation of Würster dye 

and thus the completion of the reaction. This leading to the inability of finding an endpoint to the 

titration, making it challenging for us to use this method in further studies. Results showed that the 

IOD titration method would be the best alternative for free residual chlorine detection in high 

organic load scenarios for our future sanitizer validation studies. 

 

4.4 Conclusion 

 Free residual chlorine levels were directly affected by the presence of organic matter in 

solution. While in a wash water environment of 50 mg/L treated with 25ppm of sanitizer the 

HACH kit seemed to be the best fit, we observed that any interference with the formation of the 

Würster dye would make interpreting free residual chlorine levels challenging. This pattern was 

also observed upon testing the DPD titration at increasing organic load levels. Both the HACH kit 

and the DPD titration failed to detect free residual chlorine levels effectively in organic load ridden 

environments, which suggest that for studies requiring high organic load levels the IOD titration 

would be the best fit under the experimental conditions. We also observed a significant interaction 

between bacteria and free residual chlorine levels in organic load solutions, which will discussed 

in the next chapter. 
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CHAPTER 5 

COMMERCIAL CHLORINE BASED SANITIZER SCREENING 

 

5.1 Introduction 

 The presence of sanitizers in postharvest agricultural wash water have shown to be an 

effective approach to reducing microbial cross contamination in agricultural washing operations 

(Luo, Nou, Millner, Zhou, Shen, Yang, and Shelton, 2012). However, choosing an appropriate 

sanitizer for a processing operation can be challenging due to processing conditions and produce 

commodity, which can lead to the degradation of sanitizer levels due to the interference with 

organic load present in solution. Cross contamination with E. coli O157:H7 in agricultural wash 

water has been widely studied, yet little research has focused on investigating the efficacy of 

commercially available chlorine based systems as sanitizer sources for postharvest applications. 

The goal of this study was to evaluate and compare two commercially available chlorine based 

sanitizers, whose active ingredient is sodium hypochlorite, being Clorox Germicidal bleach and 

Pure Bright™ Ultra Bleach to a sodium hypochlorite concentrated solution commonly used in 

research, to test their efficacy in reducing E. coli O157:H7 counts in high and low organic load 

solutions. Experiments tested the depletion of chlorine overtime at high and low organic load levels 

before conducting the final experiment where all three sanitizing solutions were compared at high 

and low organic load levels. This study aims to help better understand the performance of 

commercially available chlorine based antimicrobial solutions in reducing microbial loads in a 

wash water system in comparison to a sodium hypochlorite solution commonly used in research, 

in efforts to provide guidance on sanitizer implementation for small and medium leafy green 

processing operations. 
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5.2 Materials and Methods 

5.2.1 Organic load wash water preparation 

 Baby spinach (Spinacia oleracea) was purchased from local grocery store and stored at 

4°C for no more than 48hrs after purchase. . Organic load solutions were prepared using 40 g of 

baby spinach with 200 ml distilled water using a high speed blender (Coolife Professional Kitchen 

Blender, Guangdong, China). Organic load solutions were then filtered through cheesecloth and 

diluted to desired COD levels of 100 and 700 mg/L (HACH DRB200 Digital Reactor Block, Ames, 

IA) with a total volume of 1,500ml for each sample and kept refrigerated for 24hrs at 4°C before 

analysis.  

 

5.2.2 E. coli O157:H7 strain preparation 

           E. coli O157:H7 strain was obtained from ATCC (ATCC 43894 Manasassas, VA) and 

grown to 100µg/ml nalidixic acid resistance. A single colony of the strain was grown in Tryptone 

soy broth (abbreviated TSB, Thermo Scientific™, Waltham, MA). Strain was stored in glycerol 

and TSB at -80°C. Strain was regrown in TSB for 18-24hrs for use and plated on Tryptone soy 

agar (abbreviated TSA, Thermo Scientific™, Waltham, MA) treated with 100µg/ml nalidixic acid. 

The samples were inoculated to obtain 107 CFU/ml of E. coli O157:H7 concentrations in the 

samples. 

 

5.2.3 Preparation of Sodium Hypochlorite (NaOCl) solutions for chlorine depletion studies 

25ppm of Sodium Hypochlorite (NaOCl) solutions were prepared by diluting at a ratio of 1:10 

(Clorox germicidal bleach: dH2O). Free residual chlorine concentration was measured using two 

different titration methods, namely an Iodometric Titration (ASTM D2022-89, 2016). Titrations 



43 
 

were performed using a HANNA Instruments HI901C1-01 automatic titrator (HANNA 

Instruments Inc., Woonsocket RI). 

 

5.2.4 Chlorine depletion studies 

   Chlorine depletion studies were performed in three separate experiments. Simulated wash 

water solutions were prepared at organic load levels of 0, 100, 400, 500 and 700 mg/L (HACH 

DRB200 Digital Reactor Block, Ames, IA). Samples were treated with 25ppm of germicidal 

bleach following EPA regulation 5813-1(Germicidal Bleach, Clorox Company, Oakland CA) and 

mixed for 30s before free residual chlorine levels were measured using IOD titration (ASTM 

International Standard Methods of Sampling and Chemical Analysis in Sodium Hypochlorite 

Solutions method, West Conshohocken, PA). The first experiment tested free residual chlorine 

levels at 0, 100, 400 and 500mg/L organic load levels, right after adding the sanitizer. For the 

second experiment chlorine levels were tested in samples with 0, 100 and 700 mg/L at three 

separate time points after the addition of the sanitizer of 30 seconds, 1hour and 2 hour intervals. 

For the final study, the selected time intervals were tested and added 107 CFU/ml E. coli O157:H7 

to our organic load samples and tested the free chlorine levels at the three time intervals previously 

mentioned. Microbiological analysis was performed for samples at all three time points, plated on 

TSA treated with 100µg/ml of nalidixic acid and incubated for 24hrs at 37°C. 

 

5.2.5 Preparation of Sodium Hypochlorite (NaOCl) solutions for commercial sanitizer 

screenings 

Sanitizing solutions of 25ppm were prepared using a 1:10 ratio of sanitizer and deionized 

water. Clorox® Germicidal bleach with 5.75% available chorine (Germicidal Bleach, Clorox 
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Company, Oakland CA) and Pure Bright™ Germicidal bleach with 5.75% available chlorine (Pure 

Bright Ultra Bleach, KIK International Inc., Ontario, CA) were used as our model commercial 

chlorine sanitizers, and a sodium hypochlorite solution with 5% available chlorine as our control 

solution, based on its use in previous published work (Ricca Chemical Company LLC, Arlington, 

TX). 

 

5.2.6 Screening of commercial chlorine based systems sanitizers in high and low organic load 

solutions 

Two commercial brands of chlorine sanitizers, being Clorox® Germicidal Bleach and Pure 

Bright™ both of which yielding 5.75% of available chlorine, were compared to concentrated 

solution of sodium hypochlorite with 5% available chlorine. This in efforts to evaluate the 

antimicrobial capabilities of a commercial product when compared to an antimicrobial solution 

commonly used in previous published work. Sanitizers where tested in organic load solutions of 0 

and 700 mg/L inoculated with 7 log CFU/ml of E. coli O157:H7 by adding 25ppm of the sanitizer. 

After the addition of the sanitizer, samples were taken at 30 seconds and 30 minutes and tested the 

free residual chlorine concentration and the microbial load in solution. Microbiological analysis 

was performed for samples at all three time points, plated on TSA treated with 100µg/ml of 

nalidixic acid and incubated for 24 hours at 37°C. 

 

5.2.7 Statistical Analysis 

Three samples were taken for each treatment and all experiments were performed in triplicate. 

Data was partitioned and assesses by an F-test and Analysis of variance (ANOVA), Duncan’s 



45 
 

Multiple Range Test were performed using SAS where statistical significance was set at p<0.05 

(SAS Institute Inc., Cary, NC, USA).  

 

5.3 Results & Discussion 

5.3.1 Chlorine depletion at increasing organic load levels  

Free residual chlorine levels were tested at organic load levels of 0,100, 400 and 500 mg/L 

treated with 25ppm of a Clorox® Germicidal Bleach. Samples were prepared using baby spinach 

and deionized water filtered through cheesecloth to generate a homogenous solution with dissolved 

solids. Varying concentrations of organic load were chosen to evaluate the effects the amount of 

organic load present in solution to the depletion of antimicrobial chemicals. Analysis was done on 

each sample after adding and mixing sanitizer solution for 30 seconds.  

Results showed that free residual chlorine levels significantly depleted once organic load 

was present in solution, as seen in Figure 10. Data showed a significant interaction between the 

presence of organic matter and the amount of free residual chlorine present in solution (p<0.05). 

Sanitizer depletion behavior observed across all levels of organic load of 100, 400 and 500 COD 

(mg/L) showed a significant difference when compared to solutions not containing organic load 

(0 COD), showing that an increase in organic load would cause a significant decrease in initial free 

residual chlorine levels in solution. Upon the introduction of organic load into solution free 

residual chlorine levels showed a significant reduction in initial sanitizer levels from 25ppm added 

to 19, 20, 21 ppm in 100, 400 and 500 COD samples respectively. However, while there was an 

observed initial depletion, results showed that 100, 400 and 500 COD were statistically similar, 

meaning there was no significant difference in initial sanitizer concentration at increasing levels 

of organic load.  
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Upon introduction of organic matter into a wash water solution, free available chlorine 

concentrations are known to rapidly decline (Gombas et. al 2017). Data shown in Figure 10 shows 

how the introduction of organic load can rapidly impact the concentration of residual chlorine in 

solution in which the rapid reaction between organic load and chlorine can cause the discrepancy 

in sanitizer concentration added and the concentration detected (Gomez-Lopez, Lannoo, Gil and 

Allende, 2014; Shen, Luo, Nou, Wang and Millner, 2013; Zhou, Luo, Nuo, Lyu, and Wang 2015; 

Zhou, Luo, Nou and Millner; 2014). 
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Figure 10: Free residual chlorine levels at increasing organic load after mixing for 30 

seconds 
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5.3.2 Chlorine concentration overtime at high and low organic load levels with and without 

E. coli O157:H7 

In previous studies, results showed that the presence of organic matter in solution had a 

significant effect on the depletion of sanitizer concentration, as also seen in previous published 

work (Gomez-Lopez et. al, 2014; Luo, 2007; Luo, Nou, Millner, Zhou, Shen, Yang, Wu, Wang, 

Feng, and Shelton, 2012; Zhou et. al, 2015). This study focused on the interaction between organic 

load and time on sanitizer concentration, since contact time and sanitizer concentration are two 

main factors in pathogen inactivation in produce washing systems (Gombas et. al 2017). Samples 

were tested at 30 seconds, one hour and two hours (Time 0, 1 and 2 respectively) after the addition 

of 25ppm of Clorox® Germicidal bleach based on EPA Reg. No. 5813-1 (EPA, 2007). The 

interaction between organic load and time was highly significant (p<0.001) showing that the 

presence of organic matter had a significant effect on free residual chlorine depletion at 100 and 

700mg/L for overtime as seen in Figure 11.A. Free residual chlorine depletion pattern overtime 

for both organic load levels (100 and 700 mg/L) was consistent with that observed in previous 

experiments where the presence organic material, showed a significant effect on the depletion of 

free residual chlorine sanitizer like that seen in Figure 11.A. Significance was observed at time 2 

and time 3 (1 hour and 2 hours after mixing, respectively). While the free residual chlorine levels 

continued to deplete overtime, our results showed that after 30 minutes Clorox® Germicidal bleach 

was able o inactivate the bacteria present (data not shown). 

 

 

For the second study, all combinations of organic load and sanitizer, samples were inoculated 

to obtain 107 CFU/ml of E. coli O157:H7 in stationary phase (refer to appendix for E. coli 
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O157:H7 growth curve). We analyzed the interaction between organic load, time and inoculum on 

sanitizer concentration over a period of two hours.  

 

The interaction between organic load and time showed to be highly significant (P<0.001), 

showing that high organic load solutions cause a higher depletion of sanitizer concentration 

overtime. Highly significant differences in sanitizer concentration were observed at time 2 and 

time 3 (1 hour and 2 hours after mixing, respectively) in 700 COD samples as seen in Figure 11.B. 

The presence of bacteria showed no significant interaction with the sanitizer depletion over time. 

At high organic load (700mg/L), the sanitizer depletion pattern was consistent with our previous 

studies, regardless of the presence of bacteria in solution. However, in low organic load solutions 

(100mg/L) the presence of bacteria had a significant effect on sanitizer concentration, where in 
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Sanitizer levels were tested at three time points- 30s, 1 hr. and 2hrs - after adding 25ppm  
A Shows the free residual chlorine depletion overtime without bacteria 
B Shows the depletion of free residual chlorine overtime with E. coli O157:H7 at 107 CFU/ml  

*Represents highly statistical difference between 0, 100 and 700 COD at 1 hour (P<0.001) 

** Represents highly statistical difference between 0, 100 and 700 COD at 2 hours (P<0.001) 

Line represents initial sanitizer concentration added (25 ppm Clorox® Germicidal bleach) 

 

Figure 11: Sanitizer depletion overtime 
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solutions inoculated with 7 log CFU/ml of E. coli O157:H7 sanitizer concentration showed to 

deplete less overtime when compared to non-inoculated samples. Results shown in Figure 11. A 

& B.  

COD solutions of 100 mg/L treated with 25ppm of sanitizer 

can be seen in Figure 12. Sample A (to the left) was not 

inoculated with E. coli O157:H7, while sample B (to the 

right) was. Upon looking at both solutions we can see that 

the inoculated solution maintains its vibrant green color, 

whereas the non-inoculated solution is colorless. This 

phenomenon was observed during our study after adding 

sanitizer to the solution, where inoculated samples at 100 

COD (mg/L) showed less sanitizer depletion overtime 

when compared to non-inoculated samples (results shown 

in Figure 11. A & B). The vibrant green color began to fade 

approximately at 10 minutes after adding the sanitizing 

solutions, until it became colorless and remained this way during the course of the two-hour study. 

Virto, Manas, Alvarez, Condon, & Raso (2005) showed that Gram-negative microorganisms can 

have an increased resistance to free residual concentrations than Gram-positive microorganisms. 

This study also showed that the presence of TSB in solution, in this case our simulated inoculum 

in wash water, can have an increase microbial resistance to chlorine (Virtro, et al, 2005). Previous 

studies have also shown that that organic matter can have a protective effect against chlorine, in 

which this effect would result in a higher chlorine demand of organic compounds which in turn 

Figure 12: 100 mg/l solutions treated 

with 25ppm of sanitizer 
A. Without Bacteria 

B. With Bacteria 

A B 
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would cause a rapid decline in available free chlorine (Kotula, Kotula, Rose, Pierson, and Camp, 

1997; Lyndon, and Gordon, 1998; Nikaido, 1996).   

Overall, results show that both organic load and time are two main factors affecting sanitizer 

depletion. In the case of low organic load samples, like 100 COD (mg/L), when conducting bench 

top trials without presence of bacteria, the properties of the solutions can be affected with the use 

of a chlorine based antimicrobial solution. The use of both a chlorine based sanitizer and low levels 

of organic load used for simulated wash water, like 100mg/L solutions, should be taken into 

consideration we concluding laboratory trials for sanitizer efficacy studies.   

 

5.3.3 Screening of commercially available chlorine based sanitizer and their efficacy in 

reducing E. coli O157:H7 loads in high and low organic load solutions. 

For our final study we compared two commercially available chlorine based sanitizers- 

Pure Bright Germicidal bleach and Clorox Germicidal Bleach, with 5.75% of sodium 

hypochlorite active ingredient, against a common sanitizing agent used in research work which 

concentrated sodium hypochlorite is yielding 5% free residual chlorine. The reagents are shown 

in Figure 13. Our goal with this study was to evaluate the microbial inactivation capability of 

commercially available products to a concentrated sodium hypochlorite solution. The study also, 

aimed to assess the efficacy of chlorine based sanitizers and their depletion overtime; in efforts to 
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provide best practice recommendations for postharvest wash water quality controls for small and 

medium leafy green processors. 

All three sanitizers were tested in both no and high 

organic load environments inoculated to obtain 107 

CFU/ml of E. coli O157:H7. We tested free residual 

chlorine levels at two separate time points, 30 seconds 

and 30 minutes (Time 0 and 1 respectively) based on the 

results obtain in our previous studies were Clorox® 

Germicidal bleach completely inactivated the microbial 

load present in solution after 1 hour. We also 

determined the microbial load present in solution at 

three time points, before the addition of sanitizer and after adding sanitizer at 30 seconds and 30 

minutes (Time 0, 1 and 2 respectively). All solutions were maintained at room temperature and 

optimal pH for chlorine disinfecting performance, between 6.5-7.5 (Gombas et. al 2017). 

 Free residual chlorine levels were tested for all three sanitizers at 0 and 700 mg/L, in 

presence and absence of E. coli O157:H7, during a period of 30 minutes chosen based on results 

obtained from previous experiment looking and the sanitizer depletion overtime. Results showed 

that the interaction between organic load, bacteria and time was significant. All three sanitizers- 

Pure Bright Germicidal bleach, Clorox Germicidal Bleach and sodium hypochlorite 

concentrated solution- showed a significant reduction in free residual chlorine levels after 30 

seconds and 30 minutes after being added to high organic load environments of 700mg/L. The 

interaction between organic load and time was significant for all three sanitizing solutions at 30 

seconds after the addition of the sanitizing solution. However, 30 minutes after adding sanitizer 

Figure 13: Chlorine solutions for sanitizer 

screening study 

A. Pure Bright Germicidal bleach 

B. Sodium Hypochlorite 5% residual 

chlorine 

C. Clorox® Germicidal bleach 

A 

B

 

C
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only Pure Bright Germicidal bleach and Clorox Germicidal Bleach sanitizer showed a 

significant depletion at 700 mg/L, as seen in Figure 14.  

 

For sodium hypochlorite sanitizer there was an initial reduction immediately after adding 

sanitizer in high organic load solutions of 700 mg/L, and same was observed for Clorox® 

Germicidal Bleach and Pure Bright™ Germicidal Bleach. However, after 30 minutes the free 

residual chlorine levels did not change, in comparison to Pure Bright™ Germicidal Bleach and 

Clorox® Germicidal Bleach where the free residual chlorine levels continued to deplete. After 30 

seconds of the addition of the sanitizers, all three sanitizers showed no significant difference 

amongst each other at 700 mg/L and all showed a significant depletion in comparison to the 

concentrations seen at no organic load solutions (Control- 0mg/L) as seen in Figure 4. However, 

A Sanitizer Depletion after 30 seconds 
B Sanitizer Depletion after 30 minutes 

*Represents highly significant difference in free residual chlorine levels between 0 COD and 700 COD 

(p<0.0001).  

PB: Pure Bright™ Germicidal Bleach, GB: Clorox® Germicidal Bleach, SH: Sodium Hypochlorite 
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after 30 minutes’ sodium hypochlorite sanitizer maintained its free residual chlorine levels 

observed at 30 seconds (Figure 14. A & B); whereas both Pure Bright™ Germicidal Bleach and 

Clorox® Germicidal Bleach levels were lower than those observed in Figure 14.A & B. Sanitizers 

showed no significant difference amongst each other at 700 mg/L 30 seconds after the addition of 

each. However, after 30 minutes’ sodium hypochlorite sanitizer maintained its free residual 

chlorine levels the same); whereas both Pure Bright™ Germicidal bleach and Clorox® Germicidal 

bleach levels were lower than those observed in Figure 14.A& B.   

Even though both Pure Bright Germicidal bleach and Clorox Germicidal Bleach 

showed a more rapid depletion of free residual chlorine at 700 mg/l after 30 minutes in comparison 

to the concentrated sodium hypochlorite solution, all sanitizers were able to inactivate 7 logs 

CFU/ml of E. coli O157:H7 after 30 minutes, results shown in Table 11. However, when looking 

closely at their disinfecting performance in reducing 7 log CFU/ml of E. coli O157:H7 over a 

period of 30 minutes, at 0 mg/l there was a significant difference between Clorox Germicidal 

Bleach and both Pure BrightGermicidal bleach and sodium hypochlorite. Both Pure 

BrightGermicidal bleach and sodium hypochlorite were able to reduce 7 log CFU/ml of E. coli 

O157:H7 after 30 seconds, whereas it took Clorox Germicidal Bleach 30 minutes to reduce the 

7 log CFU/ml of bacteria in solution. At 700 mg/l all three sanitizing solutions were able to reduce 

the 7 log CFU/ml of bacteria in solution after 30 minutes. Organic load and TSB solution used as 

a growth medium can play a protective role on the bacteria itself (Virtro, et al, 2005) causing the 

sanitizers activity to take longer in order to eliminate the microbial load present.  
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Antimicrobial Solutions Time 1 

(Before sanitizer) 

Time 2  

(30 seconds) 

Time 3  

(30 minutes) 

0 COD 700 COD 0 COD 700 COD 0 COD 700 COD 

Pure Bright™ 6.7 6.9 nd 6.5 nd nd 

Clorox® 7.0 6.9 5.1* 6.4 nd nd 

Sodium Hypochlorite  6.8 6.8 nd 6.5 nd nd 

No Sanitizer 7.1 7.0 7.0* 7.0 7.0* 7.0* 

 

Both Pure Bright Germicidal bleach and Clorox Germicidal Bleach are labeled as 

germicidal bleach and both fall under the same regulations by the EPA where a maximum of 

25ppm can be used for fruit and vegetable washing (EPA, 2007; EPA 2010). Both of them use 

sodium hypochlorite as an active ingredient and both state yield 5.75% free residual chlorine. Such 

similarities would suggest a similar disinfectant activity, however it took Clorox Germicidal 

Bleach up to 30 minutes to inactivate the microbial load in solutions, whereas Pure Bright 

Germicidal bleach was able to do it in just after 30 seconds. The MSDS for both products do not 

contain information about the other ingredients used, which makes it challenging to identify the 

specific differences between the products and how the other ingredients may play a role in the 

disinfecting capacity. Sodium hypochlorite concentrations for both were labeled as trade secret, 

where Pure Bright Germicidal bleach states it contains 5-7% of sodium hypochlorite, and 

Table 8: Comparison of reduction times of microbial counts of E. coli O157:H7 using commercially available 

chlorine based antimicrobial  
 

Organic load solutions were treated with 25ppm of chlorine based sanitizer and 7 log CFU/ml of E. coli 

O157:H7.  

PB: Pure Bright Germicidal Bleach, GB: Clorox Germicidal Bleach, SH:  Concentrated Sodium 

Hypochlorite, NS: No sanitizer/Control 

Time 1: Before sanitizer, Time 2: After sanitizer, 30 seconds, Time 3: After sanitizer, 30 min 

* Significant difference (p<0.05)  

nd: Not detected 
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Clorox Germicidal Bleach contains 5-10% sodium hypochlorite (Refer to Figures 17 and 18 in 

appendix for label information). Clorox Germicidal Bleach claims that it can eliminate E. coli 

O157:H7 within 5 minutes of contact, however based on our results this is more likely to be in the 

case in no organic load solutions (0mg/L), than in high organic load environments. At high organic 

load levels of 700 mg/l all three sanitizer showed the same efficacy behavior in reducing E. coli 

O157:H7 present in solution after 30 minutes. However, with on organic load (0mg/L) both PB 

and SH were able to eliminate the 7 log CFU/ml of bacteria present after 30 seconds, whereas GB 

was not able to achieve 7 log CFU/ml of bacteria present in the same time. Overall, results showed 

that Pure Bright Germicidal Bleach performed the best at reducing 7 logs CFU/ml of E. coli 

O157:H7 in high organic load solutions overtime when compared to Clorox® Germicidal bleach.  

   

5.4 Conclusion 

Data showed that the presence of organic load in in simulated wash water solutions had a 

significant effect on free residual chlorine levels on antimicrobial solutions studied. High organic 

load solutions at 700 mg/L showed a significant reduction of free residual chlorine levels at 

overtime (period of 2 hours). Sanitizer screening study, results showed all three antimicrobial 

solutions (Pure Bright™ Germicidal bleach, Clorox® Germicidal bleach and solution of sodium 

hypochlorite) effectively inactivated 7 log CFU/ml in both high and low organic load environments 

after a period of 30 minutes. In no organic load samples both Pure Bright™ Germicidal bleach and 

sodium hypochlorite were able to eliminate the 7 log CFU/ml of bacteria present after 30 seconds. 

However, Clorox® Germicidal bleach was unable to achieve a 7 log CFU/ml of within 30 seconds 

after the addition of the sanitizer. While both Pure Bright Germicidal Bleach and Clorox 

Germicidal bleach are sanitizer options for both produce washing and food contact surfaces, results 
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showed that Pure Bright Germicidal Bleach performed better by inactivating the bacteria present 

within 30 seconds. Future studies can focus on evaluating the changes in performance of 

commercial sanitizing products over a long period a time by mimicking on farm conditions, like 

temperature variation and exposure to air, and how sanitizing capabilities withstand at high organic 

load environments.  
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CHAPTER 6 

SUMMARY AND CONCLUSION 

 

 Simulated wash water preparation methods comparison study, no significant difference 

was observed between methods at on-farm observed conditions of COD and NTU, being 50 and 

100 COD and 100 NTU respectively. However, at increasing levels of organic load there was a 

significant difference at high levels of organic load of 1,500mg/L where a blender method yielded 

a higher turbidity than the Stomacher both at the same COD concentration. These results showcase 

the need for a standard method of simulated wash water replication model in efforts to control 

variability introduced by the preparation method in efforts to compare sanitizer efficacy studies 

for produce washing systems. 

 Besides preparation methods, free residual chlorine detection methods were compared use. 

Two being standard titration method and one being a rapid commercial test kit. DPD and IOD 

titration methods when compared to a rapid test kit like HACH free chlorine test kit showed to be 

a better fit for laboratory studies by providing more accurate measurements of sanitizer 

concentration in organic load heavy solutions. However, when comparing titration methods side 

by a significant difference was observed between methods at increasing levels of organic load of 

100, 400 and 500 mg/L. The presence of high levels of organic load interfered with the formation 

of the Würster dye in the DPD titrations, inhibiting the titration method to adequate detect the 

endpoint, and thus potentially reporting inaccurate values.  

 When studying the depletion of free residual chlorine overtime, our results showed that the 

presence organic load had a significant effect on free residual chlorine levels when compared to 

those seen in no organic load solutions. Our results also showed that in the presence and absence 
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of bacteria can play a major role in the depletion of free residual chlorine in low organic load 

solutions like that of 100 mg/L (based on our studies).  

 When comparing commercially available chlorine based sanitizers to a concentrated 

sodium hypochlorite solution, Pure Bright Germicidal Bleach performed the best when 

compared to Clorox Germicidal bleach. While both commercial sanitizers took an average of 30 

minutes to inactivate 7 log CFU/ml of E. coli O157:H7 at high organic load levels (700 mg/L), in 

absence of organic load (0 mg/L) Clorox Germicidal bleach still took an average of 30 minutes 

to eliminate the bacteria present, whereas Pure Bright Germicidal Bleach was able to inactivate 

the bacteria present within 30 seconds after adding the antimicrobial solution. While both 

commercial products seemed almost identical in chemical composition (based on label 

information), future work can investigate the chemistry and kinetics of each sanitizer in simulated 

wash water solutions and how different microorganisms how the chemical composition changes 

can play a role in the disinfecting capabilities commercial sanitizers.  
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APPENDIX 

SUPPLEMENTARY TABLES AND GRAPHS 
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Figure 15: E. coli O157:H7 48934 Growth Curve of 100ug/ml of NAL expressed as ODS (left) and log 

counts (right) as a function of time 

 

The growth of E. coli O157:H7 ATCC 43894 was evaluated over a 12-hour period testing both ODS and 

growth on TSA treated with 100ug/ml. Growth curve was replicated three times, and averages are 

represented in graphs above  

A: Optical Density 

B: Microbiological Growth on TSA 

A B 
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Figure 16: Pure Bright Germicidal Ultra Bleach label information 

 

Figure 17: Clorox® Germicidal bleach label information 
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Figure 18: Comparison between Clorox® Germicidal Bleach and Pure Bright 

Germicidal Ultra Bleach 

  Source: Cloroxprofessional.com 

 

* Based on master label comparisons of Clorox® Germicidal Bleach and Pure 

Bright® Germicidal Ultra Bleach (KIK) as of Oct. 2012. 

† CDC, http://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html 

http://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html
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