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Medicinal value of sunflower pollen 
against bee pathogens
Jonathan J. Giacomini1, Jessica Leslie2, David R. Tarpy3, Evan C. Palmer-Young2, 
Rebecca E. Irwin1 & Lynn S. Adler2

Global declines in pollinators, including bees, can have major consequences for ecosystem services. 
Bees are dominant pollinators, making it imperative to mitigate declines. Pathogens are strongly 
implicated in the decline of native and honey bees. Diet affects bee immune responses, suggesting the 
potential for floral resources to provide natural resistance to pathogens. We discovered that sunflower 
(Helianthus annuus) pollen dramatically and consistently reduced a protozoan pathogen (Crithidia 
bombi) infection in bumble bees (Bombus impatiens) and also reduced a microsporidian pathogen 
(Nosema ceranae) of the European honey bee (Apis mellifera), indicating the potential for broad anti-
parasitic effects. In a field survey, bumble bees from farms with more sunflower area had lower Crithidia 
infection rates. Given consistent effects of sunflower in reducing pathogens, planting sunflower in 
agroecosystems and native habitat may provide a simple solution to reduce disease and improve the 
health of economically and ecologically important pollinators.

Pollinators are critically important for the preservation of plant biodiversity, and provide billions of dollars in 
crop pollination annually1,2. Bees are the dominant pollinators of the majority of animal-pollinated flowering 
plants globally3 and are important for the production of many crops4. There have been mounting concerns about 
increased mortality in both honey bees and native bees5. Although a variety of factors are involved, pathogens 
have been strongly implicated in the decline of many bee species5. One of the most pressing concerns in the 
management of bee disease is the identification of factors that could reduce bee disease in natural and managed 
landscapes.

Many studies have examined the role of landscape factors, including plant diversity, on pollinator abundance 
and colony growth6–9, but the role of particular plant species in mediating bee-pathogen dynamics is largely 
unknown. For example, previous work has linked bumble bee pollen collection and colony growth to land-use 
patterns, and found that quantity, rather than quality, of pollen was most important for growth8. However, this 
work did not consider the role of pathogens. Conversely, a recent study that incorporated a range of landscape 
factors and pesticide use data found that use of the fungicide chlorothalonil was the best predictor of the pathogen 
Nosema in four declining bumble bee species9, but this work did not consider the role of particular plant species 
or pollen quality. Although pathogens can be horizontally transferred among bees at shared flowers10,11, and 
flower species can differ in their transmission probabilities10,11, there is currently no published work suggesting 
that particular plant species may play significant roles in mediating bee-pathogen dynamics.

Pollen is the sole source of lipids and protein for bees, and varies widely in nutritional content12, morphology, 
and chemistry13. Pollen nutritional quality, including protein, is important for individual bee size14 and metrics of 
colony performance15,16 and pollen macronutrient ratio shapes bumble bee foraging preferences17. Pollen quality 
also affects the expression of genes relating to host immune function18, and pollen starvation increases the likeli-
hood of bees dying when infected with a common gut pathogen19. Previous work has shown that nectar chemistry 
can mediate bee disease20, and one study found that pollen from different plant species affects honey bee tolerance 
of the pathogen Nosema ceranae and expression of immune genes21. Thus, interspecific variation in pollen com-
position may have a critical but largely unknown effect not only on bee performance, but also interactions with 
pathogens21–23.

We conducted a series of laboratory experiments and a field survey to investigate the effect of pollen diet 
on bee disease and health using both the common eastern bumble bee, Bombus impatiens (Apidae), and the 
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European honey bee, Apis mellifera (Apidae). Bumble bees can be infected with a diversity of pathogens, includ-
ing Crithidia bombi (Trypanosomatidae), a protozoan gut pathogen contracted at flowers by fecal transmis-
sion11. Crithidia reduces learning and foraging efficiency in worker bees24, slows colony growth rates (especially 
at the start of the season25), increases worker mortality, and reduces queen fitness under stressful conditions19. 
Crithidia infection is common, with a prevalence of over 80% in B. impatiens in some regions26. Honey bees 
can also be infected by a diversity of pathogens, including an obligate intracellular pathogen Nosema ceranae 
(Microsporidia), which has been implicated in colony losses. Field experiments suggest that Nosema infection 
can cause a rapid collapse of otherwise healthy colonies27.

To test whether pollen from different plant species could influence bee-pathogen dynamics, we first com-
pared the effects of pollen from three different plant species on bumble bee infection intensities. Upon finding 
that sunflower pollen dramatically reduced infection intensity in multiple experiments, we assessed the effects 
of sunflower pollen on bumble bee microcolony performance in the presence and absence of infection. We then 
explored the generality of our findings with another bee-pathogen system, the European honey bee and the path-
ogen Nosema. Finally, we tested the hypothesis that increased sunflower crop area reduces Crithidia in wild bum-
ble bees at the farm level, to assess whether our laboratory results could extend to the field. Taken together, our 
findings suggest that sunflower pollen may serve as a novel tool to manage bee disease dynamics.

Results
Effects of pollen diet on Crithidia in bumble bees. We first tested the hypothesis that pollen from 
different plant species varies in its effects on bumble bee infection intensities. We focused on three monofloral 
pollens commonly grown in large monocultures in agroecosystems and visited by bees: rape (Brassica campestris), 
sunflower (Helianthus annuus), and buckwheat (Fagopyrum cymosum), as well as a mixed diet composed of the 
three monofloral pollens. We experimentally inoculated bees with Crithidia20, provided them with monofloral 
pollen diets of each species or the pollen diet mix, and measured subsequent infection intensity. Sunflower pol-
len significantly reduced Crithidia infection in bumble bees compared to all other pollen diets (χ2

(3) = 111.2, 
P < 0.001). Infection levels were 20- to 50-fold lower in bees fed sunflower pollen than either rape or buckwheat 
pollen, respectively (Fig. 1A). Moreover, two-thirds of the sunflower-fed bees had no detectable infection after 
one week of treatment. We found no effect of pollen diet on bee survival (χ2

(3) = 4.04, P = 0.257; Figs 1B; S1; 
Supplementary Information: Text 1), suggesting minimal mortality costs. In a separate experiment, we allowed 
infection levels to build for one week before providing pollen treatments, and we found a 5- to 8-fold reduction of 
infection within bees fed sunflower pollen compared to a wildflower pollen mixture or buckwheat pollen, respec-
tively (χ2

(2) = 17.2, P < 0.001; Fig. 1C).
The medicinal effects of sunflower pollen were consistent across pathogens collected from two locations, as 

well as with two different sources of sunflower pollen. In addition to our original results using Crithidia from 
Massachusetts, USA (Fig. 1A), sunflower pollen also reduced Crithidia infection intensity by 30-fold in a sep-
arate experiment where bees were infected with a pathogen lineage isolated in North Carolina, USA (Pollen 
treatment χ2

(1) = 30.7, P < 0.001; Fig. S2). We also compared domesticated sunflower pollen from two sources 
(Methods). Both showed medicinal effects compared to bees fed a wildflower pollen mixture (Pollen treatment: 
χ2

(2) = 23.6, P < 0.001; Fig. 1D), with sunflower pollen reducing disease at least 4-fold. There was no difference in 
pathogen reduction between the two sunflower sources (Z = 0.601, P = 0.82). Furthermore, the medicinal effects 
of sunflower pollen were not associated with any potential pesticide residues in the pollen diets (Supplementary 
Table 1).

Costs and benefits of sunflower pollen on bee health, reproduction and Crithidia. To ask how 
sunflower pollen affects bee performance, we conducted a factorial experiment using microcolonies of queenless 
workers with infection (yes or no) crossed by pollen diet treatment (sunflower or buckwheat). We used buck-
wheat as a comparison to sunflower pollen because it supported high Crithidia levels (Fig. 1A) but has a similar 
protein content as sunflower28, allowing us to compare pollens of relatively similar protein content but different 
effects on Crithidia. Over the course of the experiment, bees consumed more sunflower than buckwheat pollen 
(χ2

(1) = 66.67, P < 0.001; Fig. S3; Supplementary Information: Text 2), suggesting that the medicinal benefits of 
sunflower pollen were not due to lower pollen consumption, which can independently reduce Crithidia infec-
tion29. Consumption of sunflower pollen significantly increased nearly every measure of microcolony repro-
duction compared to buckwheat pollen, including number of eggs, larval number and mass, and probability of 
producing pupae (P < 0.004 in all cases; Fig. 2), but was marginally associated with increased worker mortality 
(χ2

(1) = 3.78, P = 0.051; Fig. S4). Moreover, infection reduced egg production in bees fed buckwheat but not sun-
flower (Infection x Pollen interaction χ2

(1) = 10.34, P = 0.0013; Fig. 2D), indicating that for this performance 
metric, sunflower pollen consumption can alleviate the negative effects of infection.

Effects of pollen diet on Nosema in honey bees. Having shown strong, consistent reductions in infec-
tion in bumble bees fed sunflower pollen, we then tested the effect of sunflower pollen on the pathogen Nosema 
in European honey bees. We experimentally infected groups of honey bees with Nosema and then fed them either 
buckwheat pollen, sunflower pollen, or no pollen as a negative control. At both 10 d (Z = −4.72, P < 0.001) and 
15 d (Z = −3.06, P = 0.006) post-infection, sunflower pollen reduced Nosema infection in honey bees relative to 
buckwheat pollen (Fig. 3A; Supplementary Information: Text 3). Averaged across both time periods, infection 
intensity was 29% lower in sunflower- than buckwheat-fed bees, although still more than twice as high as in 
bees denied pollen. Despite this reduction in infection, the consumption of sunflower pollen came at a cost of 
increased mortality relative to buckwheat-fed bees (hazard ratio = 3.8, Z = 5.175, P < 0.001) and was similar to 
mortality in bees given no pollen (Z = −0.75, P = 0.74; Figs 3B and S5).
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Effect of sunflower plantings on Crithidia in bumble bees at the farm scale. We sampled worker 
B. impatiens from 22 farms (approx. mean distance of 2.5 km between farms) in western Massachusetts, USA, 
between July 27 and September 18, 2015. Farms ranged in size between 0.3 ha and 62.9 ha, with an average size of 
16.3 ± 3.9 ha (Mean ± SE). We found a significant, negative relationship between the area of sunflower planted 
on farms and Crithidia infection intensity (linear mixed model β = −0.26 ± 0.010 SE, likelihood ratio χ2

(1) = 6.88, 
P = 0.009; Fig. 4). This corresponds to a 23.2% decrease in infection intensity on the linear scale (95% CI: 6.25% 
to 37.0%) for every 10-fold increase in sunflower area, or a 50% decrease for every 425-fold increase in sunflower 
area. Sampling date and sunflower area were not confounded (Pearson’s r = 0.02). However, there was a significant 
decrease in infection intensity over the course of the sampling period, which spanned 52 d from the beginning 
of August through late September (β = −0.038 ± 0.013 SE, likelihood ratio χ2

(1) = 14.46, P < 0.001). We sampled 
farms with different management practices (organic and conventional) and different varieties of sunflower (see 
Methods), but farm did not explain significant variation in infection intensity (χ2

(1) = 0.24, P = 0.62).

Figure 1. (A) Effects of pollen diets on Crithidia infection in individual Bombus impatiens workers. Bees 
were inoculated with Crithidia and fed a monofloral pollen diet commonly grown in large monocultures in 
agroecosystems: sunflower (Helianthus annuus; Sun), buckwheat (Fagopyrum cymosum; Buck), rapeseed 
(Brassica campestris; Rape), or a mixed diet composed of equal weights of the three monofloral pollens (Mix). 
(B) Pollen diets did not significantly affect rate of worker death over the 7 d experiment shown in (A). Y-axis 
shows exponentiated hazard rates ±1 standard error. (C) Crithidia infection was allowed to build for one week 
post-inoculation before providing pollen treatments: sunflower (Sun), buckwheat (Buck), or a wildflower pollen 
mixture (WF Mix). (D) Inoculated bees were fed sunflower pollen from two sources, China (CN) or USA 
(USA), or a control wildflower pollen mixture (WF Mix). Bars and error bars indicate negative binomial model 
means ±1 standard error back-transformed (i.e., exponentiated) from the scale of the linear predictor. Crithidia 
counts represent raw counts of cells diluted in a gut homogenate. Error bars represent uncertainty in fixed 
effects portions of models only, and do not account for variability due to random effects. Different letters above 
each bar within panels indicate significant differences based on Tukey’s HSD tests.
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Discussion
Sunflower pollen dramatically and consistently reduced Crithidia in bumble bees across a series of laboratory 
experiments. Sunflower pollen also resulted in greater bumble bee microcolony reproduction than buckwheat 
pollen, which matched sunflower pollen in protein content but did not reduce Crithidia infection. Additionally, 
these results were reflected in a field survey of pathogen infection intensity, which was reduced on farms with 
greater sunflower area. Sunflower is a common native plant in much of the US and is widely planted for agricul-
ture worldwide. Thus, the consequences of this bee-pathogen-sunflower interaction may be widespread; in the 
US, almost two million acres are planted with sunflower30, and in Europe, about ten million acres are planted with 
sunflower annually31. Furthermore, we found a significant relationship between infection intensity and sunflower 
coverage without considering other factors that could also explain variation in parasite infection, such as farm 
management practices, farm size, other flowering crops, or landscape context. Thus, while there is substantial 
unexplained variation in Crithidia infection intensity (Fig. 4), our results suggest that the relationship between 
infection and sunflower plantings is consistent across a wide range of contexts.

Figure 2. Bombus impatiens microcolony performance. Microcolonies were fed either buckwheat (Buck) 
or sunflower (Sun) pollen diets and either inoculated with Crithidia (Infected) or a Crithidia-free control 
solution (Uninfected). Infection did not significantly affect responses in A-C and so responses were averaged 
across infection treatments for these panels. (A) Mean number of larvae produced, (B) mean total larval mass, 
(C) proportion of microcolonies that produced pupae during the experiment, and (D) mean number of eggs 
produced. Crithidia infection reduced egg production in microcolonies fed buckwheat pollen, but not sunflower 
pollen. For all panels, error bars indicate ±1 standard error. Error bars represent uncertainty in fixed effects 
portions of models only, and do not account for variability due to random effect.

Figure 3. Effects of pollen diet on Nosema infection in honey bees (Apis mellifera). (A) Sunflower pollen 
reduced Nosema infection in honey bees by an average of 29% compared to buckwheat pollen across the two 
time periods. Bars and error bars indicate negative binomial model means ±1 standard error back-transformed 
(i.e., exponentiated) from the scale of the linear predictor. Error bars represent uncertainty in fixed effects 
portions of models only, and do not account for variability due to random effect. (B) Exponentiated hazard rates 
±1 standard error for mortality on different pollen diets. Sunflower-fed bees died at nearly four times the rate of 
buckwheat-fed bees and had equivalent survival to bees with no pollen. Lower-case letters indicate significant 
differences based on post hoc pairwise comparisons; in (A), comparisons are made within each time point (10 d 
and 15 d).
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We also found that sunflower pollen reduced Nosema in honey bees, although the effect was less dramatic 
than it was for Crithidia in bumble bees. Our results are consistent with previous work that demonstrates in 
vitro antimicrobial effects of secondary metabolite extracts from sunflower pollen against bacteria and fungi32 
and the medicinal value of sunflower honey against Nosema in honey bees33, but vastly expands the breadth and 
medicinal potential of sunflower pollen by demonstrating dramatic reductions in a distantly related pathogen of 
bumble bees. However, despite the reduction in Nosema infection, the consumption of sunflower pollen by honey 
bees came with a cost of greater mortality. Thus, any anti-parasitic benefits of sunflower pollen need to be viewed 
within the context of mortality costs for honey bees. Future work that examines the relative benefits of sunflower 
pollen consumption across a variety of doses for healthy vs. infected bees may indicate appropriate procedures for 
use as commercial dietary supplements.

Although our experiments were not designed to determine the mechanism(s) behind the medicinal effects 
of sunflower, the results allow us to rule out some potential mechanisms and suggest others for future research. 
The nutritional components of sunflower, buckwheat, rape, and many other species of pollen have been explo
red12,15,28,34,35, and a low protein pollen diet may induce physiological costs15,36 and reduce longevity of parasitized 
bees21. Although honey bee-collected sunflower pollen is notably low in total protein compared to pure pollen 
collected directly from flowers28,35, buckwheat is equally low28 (both 14–15 g/100 g compared to 27 g/100 g in 
rape), suggesting that low protein is not the mechanism. Similarly, although sunflower pollen is low in some 
amino acids including methionine, glutamic acid and proline28,35, all of these components are also relatively low 
in buckwheat pollen and much higher in rape pollen28, which does not correspond with relative medicinal effects. 
By contrast, concentrations of some key fatty acids correspond with relative medicinal quality (i.e., highest in 
sunflower, intermediate in rape, and low in buckwheat), including linoleic, decanoic and lauric acids, which are 
antimicrobial in honey bee brood combs37, and must be acquired in the diet38. Because fatty acids are ubiquitous 
components of pollen37, identifying fatty acids that affect bee disease could have broad implications for discover-
ing additional medicinal pollens, as well as breeding medicinal traits.

There are four additional, non-mutually exclusive hypotheses that could explain the medicinal properties of 
sunflower pollen. First, Asteraceae pollen is notable for its conspicuous spines on the outer coat39. Given that 
Crithidia is a gut parasite that attaches to the hindgut wall40, sunflower pollen could reduce parasitism by scouring 
the hindgut of parasite cells. Second, if sunflower pollen has laxative properties, it may decrease gut passage time 
and flush Crithidia and Nosema from bumble and honey bees before the pathogens can adhere to the gut. In a 
similar vein, the nectar alkaloids nicotine and anabasine can reduce Crithidia infection20, and these compounds 
also reduced gut passage time and sugar assimilation in the Palestine sunbird41. Although gut physiology is cer-
tainly different between sunbirds and bees, these results are consistent with the hypothesis that diet components 
could act as laxatives. Third, sunflower pollen could affect insect immune function. Recent work showed that 
sunflower pollen extract increased rather than suppressed Crithidia growth in vitro42, suggesting that the effect 
of sunflower pollen on Crithidia may be mediated by the bee host environment. Insect immune function occurs 
through a variety of processes, including melanization and encapsulation of foreign material, which is initiated 
by the activation of phenoloxidases43. It is possible that sunflower pollen may mediate Crithidia infection through 
changes in PO activity, encapsulation, or fat body production. Fourth, indirect pathogen resistance may also be 
mediated through changes in the host microbiome rather than the host itself. Gut microbiota can play a key role 
in Bombus resistance to Crithidia44,45, and diet can alter bee microbiome communities46. Thus, sunflower pollen 
may increase bee resistance to Crithidia via changes in the gut microbiome. Further research is needed to address 
each potential mechanism.

Figure 4. Negative relationship between the area of sunflower planted on farms and Crithidia infection 
intensity in Bombus impatiens workers. Line and shaded band indicate back-transformed mean Crithidia counts 
for area of sunflower planted ±1 standard error; points show counts for individual bees.
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In nature, pollen consumption by bees will be affected not only by availability, but also by bee preference. 
For example, bumble bees prefer to visit plant species that produce pollen with a high protein to lipid ratio17. 
However, bees can also alter foraging preferences when infected by Crithidia47,48. Interestingly, infection 
with Nosema increased honey bee attraction to sunflower honey, which also reduced infection33, suggesting 
self-medication behavior. However, honey bees have also demonstrated a relatively low attraction to sunflowers, 
preferring to forage on other plants surrounding sunflower fields, including corn, clover and flowering trees49,50. 
Controlled experiments that assess bee preference for sunflower as a function of pathogen infection will yield 
important ecological insights. In addition to foraging preference, farm management practices can also shape bee 
disease dynamics. For example, a greater use of the fungicide cholorothalonil was positively related to Nosema 
prevalence in four declining North American bumble bee species9. Interestingly, we found that the negative 
relationship between infection and sunflower crop area was robust to farm management practices (organic vs. 
conventional). Nonetheless, understanding bee disease dynamics at the landscape level will require knowledge 
of the combined effects of flower species identity, bee foraging preferences, and interactions with farm manage-
ment practices.

For both food security and biodiversity conservation, there is a critical need to move beyond documentation 
of pollinator declines and identify solutions to reduce bee disease and improve bee health. Sunflower pollen 
reduced the severity of infection by pathogens in bee species that are important for pollination services in natural 
and agroecosystems. Many beekeepers already provide pollen supplements to their colonies, and all levels of gov-
ernment, as well as growers, nonprofits, and the general public, are investing in plantings to improve pollinator 
habitat51. As both a domesticated crop and native wild species, sunflower could be prioritized for inclusion in 
agroecosystems and regionally appropriate native habitat. Our discovery that sunflower pollen reduced infection 
of multiple bee pathogens suggests the potential for simple, easily implemented approaches that could be tested 
for their ability to reduce disease and increase bee health.

Methods
Effects of pollen diet on Crithidia in bumble bees. Crithidia inoculum. Infected (‘source’) colonies 
were used to make Crithidia inoculum. The original Crithidia cells infecting colonies came from three wild B. 
impatiens workers collected from Stone Soup Farm (Hadley, MA, USA: 42.363911 N, −72.567747 W) unless oth-
erwise noted. To make inoculum, bees were dissected from the source colony daily using an established proto-
col20. Bee digestive tracts (excluding the honey crop) were removed, placed into a 1.5 mL microcentrifuge tube 
with 300 μL of 25% strength Ringer’s solution (Sigma-Aldrich, St. Louis, MO, USA), finely ground, and vortexed 
for 5 seconds. Each sample was allowed to rest at room temperature for 4–5 hours. Crithidia cells were counted 
from a 0.02 μL sample per bee with a Neubauer hemacytometer20. We mixed 150 μL of the supernatant with 25% 
strength Ringer’s solution to achieve a concentration of 1200 cells μL−1. The inoculum was then mixed with an 
equal volume of 50% sucrose solution to yield inoculum with 600 cells μL−1 and 25% sucrose. Experimentally 
infected bees were starved for 4–6 hours and then fed a 10 μL drop of inoculum with 6,000 Crithidia cells, which 
is within the range of concentrations bees are exposed to when foraging on flowers in the wild52. Only bees that 
consumed the entire droplet were used in experiments.

Monofloral and mixed pollen. Monofloral pollen diets (rape, sunflower or buckwheat – Brassica campestris, 
Helianthus annuus and Fagopyrum cymosum, respectively) were obtained by sorting honey bee collected pollen 
pellets (Changge Hauding Wax Industry, China) initially by color. We then verified microscopically that pollen 
pellets within treatment were morphologically consistent and as expected for that species. Pollen was provided to 
bees as a paste made by mixing ground pollen pellets with distilled water to achieve a uniform consistency, which 
required different amounts of water depending on pollen species (pollen: water ratio: sunflower & buckwheat: 5:1; 
rape: 1.67:1; pollen mix of equal weights of the three monofloral pollens: 3.33:1).

Newly emerged adult worker bees (callows) obtained from pupal clumps were removed from six uninfected B. 
impatiens colonies (n = 272 bees). All B. impatiens colonies were provided by BioBest LTD (Leamington, Ontario, 
Canada), and experimental colonies were confirmed to be pathogen-free bi-weekly by screening five workers (see 
Crithidia inoculum). We regularly supplied all colonies with pollen loaves made of 30% sucrose solution mixed 
with ground honeybee–collected wildflower pollen (Koppert Biological Systems; Howell, MI, USA). Each day, 
newly emerged callows were collected from pupal containers, weighed to the nearest 0.01 mg, and randomly 
assigned to one of the four pollen diets. Bees were randomly assigned to treatment within experimental colony 
and, when relevant, date of emergence, for all experiments here and below. Bees were housed individually in a 
growth chamber in darkness at 28 °C and fed 500 μL of 30% sucrose solution and a small ball of their respective 
pollen treatment daily for 9 days. Bees were inoculated two days after emergence, so that bees consumed their 
respective pollen treatments both before and after infection.

Crithidia infection intensity was measured as Crithidia cells per 0.02 μL (hereafter “cell counts”) one week 
after bees were infected (n = 234 bees due to mortality). After 7 d, Crithidia infection intensity reaches a sufficient 
level for measurement within the bee host53. Each experimental bee was dissected (see Crithidia inoculum). We 
removed the right forewing of each bee and mounted them on glass slides to measure radial cell length, a proxy 
for bee size54.

Consistency with a different pathogen strain. Crithidia infection can be heavily influenced by genotypic variation 
in hosts and pathogens55, which may yield genetically distinct strains with varying susceptibility to host immune 
defenses56 and potentially responses to pollen diet. Thus, we repeated our experiment testing the effects of pollen 
diet on a different set of colonies infected with a strain obtained from wild B. impatiens collected in Raleigh, 
North Carolina, USA (J.C. Roulston Arboretum: 35.794056 N, −78.698186 W). Given the strong negative effects 
of sunflower pollen on Crithidia (see Fig. 1A), we used only sunflower pollen (H. annuus) and buckwheat pollen 
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as our control (F. cymosum). In addition, adult workers (rather than newly emerged callow bees) were used in this 
experiment to ensure that results were consistent across bees of varying ages. Worker bees were used from three 
colonies, and bees were inoculated and Crithidia pathogen loads were measured (n = 149 bees).

Effect of diet post-infection. We tested whether sunflower pollen could reduce Crithidia infection in bees that 
already reached sufficient infection levels. Individual B. impatiens adult workers from three colonies were inoc-
ulated with Crithidia (North Carolina, USA strain) and fed a wildflower pollen mixture (Koppert Biological 
Systems; Howell, MI, USA) and 30% sucrose solution for 7 days. Each bee was then randomly assigned to one of 
three pollen diets: sunflower, buckwheat, or the same wildflower mix for 7 more days. By including a wildflower 
mix pollen treatment, we were able to compare monofloral pollen treatments to a more natural and diverse mix of 
pollens. Bees were then sacrificed (n = 74) and Crithidia pathogen loads were measured.

Consistency using two sources of sunflower pollen. Domesticated sunflower is a major oil crop distributed world-
wide35. Breeding practices have modified a wide array of economically important traits, including seed and oil 
production57, resistance to plant diseases and pests58, and resistance to drought59. We compared the medicinal 
effects of sunflower pollen from China versus sunflower pollen from the USA. Adult B. impatiens workers from 
three colonies were inoculated with Crithidia (n = 120 bees) and fed either sunflower pollen collected from an 
organic farm in Wisconsin, USA (44.731641 N, −91.948666 W, Cobalt II cultivar - NuSeed Inc.), sunflower pol-
len collected in China (Changge Hauding Wax Industry, China), or the wildflower pollen mixture. We measured 
pathogen loads (n = 110 bees) after 7 days.

Statistical analyses. All statistical analyses here and below were conducted using R version 3.1.260 
(Supplementary Information: Methods 1). To test how pollen diets affected Crithidia infection intensity, gener-
alized linear mixed models were used to analyze Crithidia cell counts using “glmmTMB”61, with pollen diet as a 
fixed effect, bee size as a covariate, and experimental bee colony and inoculation date (if applicable) as random 
effects. Significance of terms was evaluated with a likelihood ratio chi-squared test, implemented via the “drop1()” 
function. Tukey’s HSD tests were used for post hoc pairwise comparisons. All bees that died before their sched-
uled dissection date were excluded from analyses. To test how pollen diets affected bee survival, mixed-model 
Cox proportional hazards tests were used62, with pollen diet and bee size as fixed effects, and inoculation date 
(if applicable) and experimental bee colony as random effects. To assess the effects of pollen diet on mortality, 
log-likelihood of models were compared with and without pollen diet treatment as a predictor. Significance of 
terms was tested with a Wald chi-squared test, implemented via the Anova function in package “car”63. Plots (here 
and throughout) were produced with ggplot264, survminer65 and cowplot66.

Costs and benefits of sunflower pollen for bee health, reproduction and Crithidia. Using queen-
less B. impatiens microcolonies, we tested the impact of pollen diet and Crithidia infection on mortality, repro-
duction and Crithidia infection in a 2 × 2 factorial design manipulating pollen diet (sunflower or buckwheat) and 
Crithidia infection (uninfected or infected). When unmated workers are isolated from the queen, one will gain 
dominance and lay haploid (male) eggs. Microcolonies are an effective approach to estimate the effects of diet and 
pathogen infection on whole-colony reproduction15,20,67. We used 20 replicate microcolonies per treatment for a 
total of 80 microcolonies, carried out in two rounds (or blocks) of 40 microcolonies, with five workers per micro-
colony. The first 40 microcolonies were constructed using workers from two colonies, with 5 replicates per treat-
ment per colony of origin. The second set of 40 microcolonies were constructed from two new colonies of origin.

Microcolonies were randomly assigned to infection and diet treatments within rounds and colonies of ori-
gin. Bees were inoculated with Crithidia as in ‘Crithidia inoculum’ or given a sham control inoculum of 10 µL of 
sucrose solution without Crithidia cells. We maintained microcolonies in a growth chamber at 28 °C in darkness 
and fed them 400 mg of pollen each and ad libitum 30% sucrose solution, replaced and replenished 5 d per week. 
Pollen diets were made as in ‘Monofloral and mixed pollen’. We measured pollen and sucrose solution consump-
tion (in g) 5 days per week, calculating the total mass consumed (or used) per bee per hour. Pollen consumption 
was corrected for evaporation by subtracting the average weight lost to evaporation over 24 hr for each pollen 
type. To determine the average weight lost to evaporation, 15 samples of each pollen type were placed into empty 
microcolony containers without bees and in the same growth chamber for 24 hr. Each pollen sample was weighed 
at 0 hr and at 24 hr to determine the net weight lost to evaporation.

For each microcolony, we recorded the date of first eggs laid, male emergence and weight (which occurred in 
5 of the 80 microcolonies) and worker mortality. Microcolonies were terminated 35 days post-egg laying, or if 4 
out of the 5 worker bees died. We then measured Crithidia infection in the remaining worker bees (see Crithidia 
inoculum) and bee size. For each microcolony, the number of eggs, larvae, and pupae produced was counted 
and weighed. Because bees within microcolonies can vary in size and social dominance, which can affect food 
consumption and microcolony reproduction, we calculated a metric of within-microcolony size dimorphism 
[(largest bee radial cell/smallest bee radial cell) − 1]20,68,69 for use as a covariate.

To analyze pollen and nectar consumption, Crithidia infection intensity, and microcolony reproduc-
tion, generalized linear mixed effects models were fit with distributions specific to the type of data analyzed 
(Supplementary Information: Methods 2). Unless otherwise noted, all models included fixed effects of pollen diet 
(sunflower or buckwheat), infection treatment (infected or uninfected), and (when significant) their interaction. 
All statistical tests included block as a random effect, which corresponded to microcolonies inoculated on the 
same day. The block effect accounted for variation due to colony of origin (because each inoculation day used a 
different colony of origin) and variation due to different inoculation dates.
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Effects of pollen diet on Nosema in honey bees. Newly emerged worker honey bees from three col-
onies were mixed together and placed into cages in groups of 50 bees per cage70 with 50% sucrose solution. We 
experimentally infected the bees in each cage using a Nosema spore sucrose solution with a concentration of 
approx. 333,333 spores per bee71,72. Cages were randomly assigned to a pollen diet treatment and given a single 
20 g ball of sunflower or buckwheat pollen paste, or no pollen as a negative control for 15 days. Prior studies have 
shown that Nosema-infected honey bees that do not consume pollen have significantly lower Nosema infection 
intensity than bees provided with pollen71. There were 11–12 replicate cages per pollen diet treatment. On days 
10 and 15, samples of five bees and 10 bees per cage, respectively, were sacrificed to quantify Nosema infection 
intensity71,72. Any bees that died during the experiment were counted and removed from their cages.

We used generalized linear mixed effects models (R package glmmTMB) to test whether pollen diet affected 
Nosema infection intensity (spores per mL) on days 10 and 15 (Supplementary Information: Methods 3). Nosema 
infection intensity was used as the response variable; pollen treatment, days since inoculation, and their inter-
action were used as fixed predictors; cage was included as a random effect to account for repeated measures on 
each cage. Differences in survival were tested using a Cox Proportional Hazards mixed-effects model fit using 
“coxme”62, with pollen diet as a fixed effect and cage as a random effect.

Effect of sunflower plantings on Crithidia infection in bumble bees at the farm scale. Bees were 
collected directly from sunflowers if available, or else from a variety of flowering crops. Each farm was sampled 
on a single date. We quantified the area of sunflower grown at each farm in m2. We sampled a total of 667 B. 
impatiens workers (range: 19–62 bees per farm); all bees were sacrificed and we measured Crithidia infection (as 
in Crithidia inoculum).

We tested for spatial autocorrelation using a Monte-Carlo Mantel test and a Moran’s I test using the “ape” and 
“ade4” packages in R73,74. We found no indication of spatial autocorrelation (P > 0.15), and so considered farms to 
be independent sampling locations. We analyzed infection intensity (Crithidia cell counts) with a generalized lin-
ear mixed model with negative binomial error distribution using the “glmmTMB” package in R61. Sunflower area 
(log10 area (m2)) and Julian date of sampling were used as fixed covariates; farm was included as a random effect 
to account for non-independence of bees within a farm. Sampling date and sunflower area were not confounded 
(Pearson’s r = 0.02). Significance of predictors was tested by likelihood ratio chi-squared tests, implemented via 
the “drop1” function in R.

Pesticide analysis. To ensure that results were not associated with pesticide residues on pollen, the USA 
and Chinese sunflower, buckwheat, and the wildflower mix pollens were analyzed for 213 pesticides and other 
agrochemicals (Agricultural Marketing Services’ National Science Laboratories, United States Department of 
Agriculture, Gastonia, NC USA) (Supplementary Information: Table 1).

Data Availability
All data and custom scripts used for statistical analysis generated from this project is avaliable here: https://github.
com/FatherofEverest/Medicinal-value-of-sunflower-pollen-against-bee-pathogens-Data-Availability. 

References
 1. Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with 

pollinator decline. Ecol. Econ. 68, 810–821 (2009).
 2. Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).
 3. Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).
 4. Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313 (2007).
 5. Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of 

flowers. Science 347, 1255957 (2015).
 6. Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. Mass flowering crops enhance pollinator densities at a landscape scale. Ecol. Lett. 

6, 961–965 (2003).
 7. Williams, N. M., Regetz, J. & Kremen, C. Landscape-scale resources promote colony growth but not reproductive performance of 

bumble bees. Ecology 93, 1049–1058 (2012).
 8. Kämper, W. et al. How landscape, pollen intake and pollen quality affect colony growth in Bombus terrestris. Landsc. Ecol. 31, 

2245–2258 (2016).
 9. McArt, S. H., Urbanowicz, C., McCoshum, S., Irwin, R. E. & Adler, L. S. Landscape predictors of pathogen prevalence and range 

contractions in US bumblebees. In Proc. R. Soc. B284 20172181 (The Royal Society 2017).
 10. Durrer, S. & Schmid-Hempel, P. Shared use of flowers leads to horizontal pathogen transmission. Proc. R. Soc. B 258, 299–302 

(1994).
 11. Graystock, P., Goulson, D. & Hughes, W. O. Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within 

and between bee species. Proc. R. Soc. B 282, 20151371 (2015).
 12. Roulston, T. H. & Cane, J. H. Pollen nutritional content and digestibility for animals. Plant Syst. Evol. 222, 187–209 (2000).
 13. Detzel, A. & Wink, M. Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4, 8–18 

(1993).
 14. Roulston, T. H. & Cane, J. H. The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum 

(Hymenoptera: Apiformes). Evol. Ecol. 16, 49–65 (2002).
 15. Tasei, J.-N. & Aupinel, P. Validation of a method using queenless Bombus terrestris micro-colonies for testing nutritive value of 

commercial pollen mixes by comparison with queenright colonies. J. Econ. Entomol. 101, 1737–1742 (2008).
 16. Vanderplanck, M. et al. How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS ONE 9, 

e86209 (2014).
 17. Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee 

(Bombus impatiens) foraging strategies and floral preferences. Proc. Natl. Acad. Sci. 113, E4035–E4042 (2016).
 18. Brunner, F. S., Schmid-Hempel, P. & Barribeau, S. M. Protein-poor diet reduces host-specific immune gene expression in Bombus 

terrestris. Proc. R. Soc. B 281, 20140128 (2014).
 19. Brown, M. J. F., Loosli, R. & Schmid-Hempel, P. Condition-dependent expression of virulence in a trypanosome infecting 

bumblebees. Oikos 91, 421–427 (2000).

https://github.com/FatherofEverest/Medicinal-value-of-sunflower-pollen-against-bee-pathogens-Data-Availability
https://github.com/FatherofEverest/Medicinal-value-of-sunflower-pollen-against-bee-pathogens-Data-Availability


www.nature.com/scientificreports/

9Scientific REPORTs |  (2018) 8:14394  | DOI:10.1038/s41598-018-32681-y

 20. Richardson, L. L. et al. Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proc. R. Soc. B 282, 20142471 
(2015).

 21. Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PLoS ONE 8, e72016 
(2013).

 22. Spear, D. M., Silverman, S., Forrest, J. R. & McPeek, M. A. Asteraceae pollen provisions protect Osmia mason bees (Hymenoptera: 
Megachilidae) from brood parasitism. Am. Nat. 187, 797–803 (2016).

 23. Tihelka, E. The immunological dependence of plant-feeding animals on their host’s medical properties may explain part of honey 
bee colony losses. Arthropod-Plant Interact. 1–8 (2017).

 24. Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Does parasitic infection impair the ability of bumblebees to learn flower-handling 
techniques? Anim. Behav. 70, 209–215 (2005).

 25. Shykoff, J. A. & Schmid-Hempel, P. Parasites and the advantage of genetic variability within social insect colonies. Proc. R. Soc. B 
243, 55–58 (1991).

 26. Gillespie, S. Factors affecting parasite prevalence among wild bumblebees. Ecol. Entomol. 35, 737–747 (2010).
 27. Higes, M. et al. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol. 10, 2659–2669 

(2008).
 28. Yang, K. et al. Characterization of chemical composition of bee pollen in china. J. Agric. Food Chem. 61, 708–718 (2013).
 29. Logan, A., Ruiz-González, M. X. & Brown, M. J. F. The impact of host starvation on parasite development and population dynamics 

in an intestinal trypanosome parasite of bumble bees. Parasitology 130, 637–642 (2005).
 30. USDA. Acreage Report. (National Agricultural Statistics Service (NASS) 2015).
 31. Strange, K. et al. USDA Foreign Agricultural Service Gain Report: Oilseeds and Products Annual 2016. 45 (2016).
 32. Fatrcová-Šramková, K., Nôžková, J., Máriássyová, M. & Kačániová, M. Biologically active antimicrobial and antioxidant substances 

in the Helianthus annuus L. bee pollen. J. Environ. Sci. Health Part B 51, 176–181 (2016).
 33. Gherman, B. I. et al. Pathogen-associated self-medication behavior in the honeybee Apis mellifera. Behav. Ecol. Sociobiol. 68, 

1777–1784 (2014).
 34. Roulston, T. H., Cane, J. H. & Buchmann, S. L. What governs protein content of pollen: pollinator preferences, pollen–pistil 

interactions, or phylogeny? Ecol. Monogr. 70, 617–643 (2000).
 35. Nicolson, S. W. & Human, H. Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, Asteraceae). 

Apidologie 44, 144–152 (2012).
 36. Tasei, J.-N. & Aupinel, P. Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers 

(Bombus terrestris, Hymenoptera: Apidae). Apidologie 39, 397–409 (2008).
 37. Manning, R. Fatty acids in pollen: a review of their importance for honey bees. Bee World 82, 60–75 (2001).
 38. Cohen, A. C. Insect diets: science and technology. (CRC press, 2015).
 39. Blackmore, S., Wortley, A. H., Skvarla, J. J. & Rowley, J. R. Pollen wall development in flowering plants. New Phytol. 174, 483–498 

(2007).
 40. Gorbunov, P. S. Peculiarities of life cycle in flagellate Crithidia bombi (Protozoa, Trypanosomatidae). Zool. Zhurnal 75, 803–810 

(1996).
 41. Tadmor-Melamed, H. et al. Limited ability of Palestine sunbirds (Nectarinia osea) to cope with pyridine alkaloids in nectar of tree 

tobacco Nicotiana glauca. Funct. Ecol. 18, 844–850 (2004).
 42. Palmer-Young, E. C. Pollen extracts increase growth of a trypanosome parasite of bumble bees. PeerJ Prepr (2017).
 43. Roger, N., Michez, D., Wattiez, R., Sheridan, C. & Vanderplanck, M. Diet effects on bumblebee health. J. Insect Physiol. 96, 128–133 

(2017).
 44. Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. 

Acad. Sci. 108, 19288–19292 (2011).
 45. Mockler, B. K., Kwong, W. K., Moran, N. A. & Koch, H. Microbiome structure influences infection by the parasite Crithidia bombi 

in bumble bees. Appl. Environ. Microbiol. AEM.02335–17, https://doi.org/10.1128/AEM.02335-17 (2018).
 46. Maes, P. W., Rodrigues, P. A., Oliver, R., Mott, B. M. & Anderson, K. E. Diet-related gut bacterial dysbiosis correlates with impaired 

development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Mol. Ecol. 25, 5439–5450 (2016).
 47. Baracchi, D., Brown, M. J. & Chittka, L. Behavioural evidence for self-medication in bumblebees? F1000Research 4 (2015).
 48. Richardson, L. L., Bowers, M. D. & Irwin, R. E. Nectar chemistry mediates the behavior of parasitized bees: consequences for plant 

fitness. Ecology, https://doi.org/10.1890/15-0263.1 (2015).
 49. Andrada, A. C., Valle, A., Paoloni, P., Gallez, L. & Lamberto, S. Pollen and nectar sources used by honeybee colonies pollinating 

sunflower (Helianthus annuus) in the Colorado River Valley, Argentina. Bol. Soc. Argent. Botánica 39 (2004).
 50. Charrière, J.-D., Imdorf, A., Koenig, C., Gallmann, S. & Kuhn, R. Do sunflowers influence the development of honey bee, Apis 

mellifera, colonies in areas with diversified crop farming? J. Apic. Res. 49, 227–235 (2010).
 51. Vaughan, M. & Skinner, M. Using Farm Bill programs for pollinator conservation. (USDANRCS National Plant Data Center 2008).
 52. Schmid-Hempel, P. & Schmid-Hempel, R. Transmission of a pathogen in Bombus terrestris, with a note on division of labour in 

social insects. Behav. Ecol. Sociobiol. 33, 319–327 (1993).
 53. Otterstatter, M. C. & Thomson, J. D. Within-host dynamics of an intestinal pathogen of bumble bees. Parasitology 133, 749–761 

(2006).
 54. Harder, L. D. Measurement and estimation of functional proboscis length in bumblebees (Hymenoptera, Apidae). Can. J. Zool. 60, 

1073–1079 (1982).
 55. Schmid-Hempel, P. Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. (Oxford University 

Press 2011).
 56. Yourth, C. P. & Schmid-Hempel, P. Serial passage of the parasite Crithidia bombi within a colony of its host, Bombus terrestris, 

reduces success in unrelated hosts. Proc. R. Soc. B 273, 655–659 (2006).
 57. Miller, J. F., Zimmerman, D. C. & Vick, B. A. Genetic control of high oleic acid content in sunflower oil. Crop Sci. 27, 923–926 (1987).
 58. Seiler, G. J. Utilization of wild Helianthus species in breeding for disease resistance. In Proceedings of the International Sunflower 

Association (ISA) symposium: Sunflower breeding on resistance to diseases 36–50 (2010).
 59. Rauf, S. Breeding sunflower (Helianthus annuus L.) for drought tolerance. Commun. Biometry Crop Sci. 3, 29–44 (2008).
 60. R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing 2014).
 61. Magnusson, A. et al. glmmTMB: Generalized Linear Mixed Models using Template Model Builder. R package version 0.1.1. (2017).
 62. Therneau, T. M. coxme: Mixed Effects Cox Models. R package version 2.2-5 (2015).
 63. Fox, J. & Weisburg, S. An {R} Companion to Applied Regression (Sage, 2011).
 64. Wickham, H. ggplot2: elegant graphics for data analysis (Springer, 2016).
 65. Kassambara, A., Kosinski, M. & Biecek, P. Drawing Survival Curves using ‘ggplot2’. in R package version 0.2. 2 (R Software Project 

Cary NC 2016).
 66. Wilke, C. O. Cowplot: streamlined plot theme and plot annotations forggplot2. R Package Version 050 (2015).
 67. Arnold, S. E. J., Idrovo, M. E. P., Arias, L. J. L., Belmain, S. R. & Stevenson, P. C. Herbivore defence compounds occur in pollen and 

reduce bumblebee colony fitness. J. Chem. Ecol. 40, 878–881 (2014).
 68. Lovich, J. E. & Gibbons, J. W. A review of techniques for quantifying sexual size dimorphism. Growth. Dev. Aging 56, 269–269 

(1992).

http://dx.doi.org/10.1128/AEM.02335-17
http://dx.doi.org/10.1890/15-0263.1


www.nature.com/scientificreports/

1 0Scientific REPORTs |  (2018) 8:14394  | DOI:10.1038/s41598-018-32681-y

 69. Manson, J. S. & Thomson, J. D. Post-ingestive effects of nectar alkaloids depend on dominance status of bumble bees. Ecol. Entomol. 
34, 421–426 (2009).

 70. Evans, J. D., Chen, Y. P., di Prisco, G., Pettis, J. & Williams, V. Bee cups: single-use cages for honey bee experiments. J. Apic. Res 
(2009).

 71. Pettis, J. S., Johnson, J., Dively, G. & others. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. 
Naturwissenschaften 99, 153–158 (2012).

 72. Fries, I. et al. Standard methods for Nosema research. J. Apic. Res. 52, 1–28 (2013).
 73. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 

(2004).
 74. Dray, S. & Dufour, A. B. The ade4 package: implementing the duality for ecologists. J. Stat. Softw. 22, 1–20 (2007).

Acknowledgements
We thank SJ Giacomini for assistance with bumble bee experiments, J. Keller for assistance with the honey bee 
experiments, C. Sutherland for performing the spatial autocorrelation analysis of the farm sampling data, and 
Biobest LTD for donating bumble bee colonies. This project was supported by USDA-AFRI 2013–02536, USDA/
CSREES (Hatch) MAS000411, NSF-DEB-1258096/1638866, REU supplement NSF DEB-1415507, the NC 
Agricultural Foundation, and NC State University. Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

Author Contributions
J.J.G., J.L., L.S.A., D.R.T. and R.E.I. designed research; J.J.G. and J.L. performed research; J.J.G. and E.P.Y. analyzed 
data; J.J.G., L.S.A., R.E.I. and J.L. wrote the paper with feedback from all authors.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-32681-y.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-32681-y
http://creativecommons.org/licenses/by/4.0/

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2018

	Medicinal value of sunflower pollen against bee pathogens
	Jonathan J. Giacomini
	Jessica Leslie
	David R. Tarpy
	Evan C. Palmer-Young
	Rebecca E. Irwin
	See next page for additional authors
	Recommended Citation
	Authors


	Medicinal value of sunflower pollen against bee pathogens
	Results
	Effects of pollen diet on Crithidia in bumble bees. 
	Costs and benefits of sunflower pollen on bee health, reproduction and Crithidia. 
	Effects of pollen diet on Nosema in honey bees. 
	Effect of sunflower plantings on Crithidia in bumble bees at the farm scale. 

	Discussion
	Methods
	Effects of pollen diet on Crithidia in bumble bees. 
	Crithidia inoculum. 
	Monofloral and mixed pollen. 
	Consistency with a different pathogen strain. 
	Effect of diet post-infection. 
	Consistency using two sources of sunflower pollen. 
	Statistical analyses. 

	Costs and benefits of sunflower pollen for bee health, reproduction and Crithidia. 
	Effects of pollen diet on Nosema in honey bees. 
	Effect of sunflower plantings on Crithidia infection in bumble bees at the farm scale. 
	Pesticide analysis. 

	Acknowledgements
	Figure 1 (A) Effects of pollen diets on Crithidia infection in individual Bombus impatiens workers.
	Figure 2 Bombus impatiens microcolony performance.
	Figure 3 Effects of pollen diet on Nosema infection in honey bees (Apis mellifera).
	Figure 4 Negative relationship between the area of sunflower planted on farms and Crithidia infection intensity in Bombus impatiens workers.


