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Abstract
We study dynamics of Dirac solitons in prototypical networks modeling them 
by the nonlinear Dirac equation on metric graphs. Stationary soliton solutions 
of the nonlinear Dirac equation on simple metric graphs are obtained. It is 
shown that these solutions provide reflectionless vertex transmission of the 
Dirac solitons under suitable conditions. The constraints for bond nonlinearity 
coefficients, conjectured to represent necessary conditions for allowing 
reflectionless transmission over a Y-junction are derived. The Y-junction 
considerations are also generalized to a tree and triangle network. The 
analytical results are confirmed by direct numerical simulations.

Keywords: nonlinear Dirac equation, metric graphs, Lorentz transformation, 
Gross–Neveu model, Dirac solitons, reflectionless transport

(Some figures may appear in colour only in the online journal)

1. Introduction

Nonlinear evolution equations  on networks have attracted much attention recently [1–10]. 
Such interest is caused by a broad variety of potential applications of the nonlinear wave 
dynamics and soliton transport in networks, such as Bose–Einstein condensates (BECs) in 
branched traps, Josephson junction networks, the DNA double helix, polymer chains, etc.

Despite the rapidly growing interest in wave dynamics on networks, most of the studies are 
mainly focused on nonrelativistic wave equations such as the nonlinear Schrödinger (NLS) 
equation [1–7, 10]. Nevertheless, there is a number of works on the sine-Gordon (sG) equa-
tion in branched systems [8, 9, 11]. However, relativistic wave equations such as the nonlinear 
Klein–Gordon and Dirac equations are important in field theory and condensed matter physics 
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and hence exploring them on metric graphs is of interest in its own right. These graphs consist 
of a system of bonds which are connected at one or more vertices (branching points). The 
connection rule is associated with the topology of a graph. When the bonds can be assigned a 
length, the graph is called a metric graph.

In this paper we address the problem of the nonlinear Dirac equation on simple metric 
graphs by focusing on conservation laws and soliton transmission at the graph vertices. 
Our prototypical example will be the Y-junction. Early studies of the nonlinear Dirac equa-
tion date back to Thirring [12] and Gross–Neveu [13] models of field theory. Integrability, 
the nonrelativistic limit and exact solutions of the relevant models have been considered 
in, e.g. [14–19] among others. A potential application of the nonlinear Dirac equation to 
neutrino oscillations was discussed in [20]. Recently, the possibility of experimental reali-
zation of Dirac solitons in Bose–Einstein condensates in honeycomb optical lattices was 
discussed in [21] where the nonlinear Dirac equation  was derived. Further analysis of 
this setting in [22–26] has excited a rapidly growing interest in the nonlinear Dirac equa-
tion and its soliton solutions (see, e.g. [27–48]). In [27, 28, 31–34], a detailed study of 
soliton solutions for different types of nonlinearity, their stability and discussions of con-
servation laws were presented. These developments have, in turn, had an impact also on the 
mathematical literature where the stability of solutions for different forms of the nonlinear 
Dirac equation was explored in [29, 30, 36]. In [35, 37–40], the stability of Gross–Neveu 
solitons in both 1D and 3D and for other nonlinear Dirac models an important energy-
based stability criterion was developed. The numerical corroboration of the stability for 
solitary waves and vortices in 2D nonlinear Dirac models of the Gross–Neveu type was 
considered quite recently in [35].

Dirac solitons in branched systems can, in principle, be experimentally realized in different 
systems of optics, but also envisioned elsewhere (e.g. in atomic physics etc).

A relevant such possibility consists of the discrete waveguide arrays of [43, 48] that can 
be formulated as a branched system to be described (in the appropriate long wavelength limit 
[43]) by a nonlinear Dirac equation on metric graphs. Such networks in optical systems have 
been proposed, e.g. earlier in [49]. More exotic possibilities can be envisioned in branched 
networks of honeycomb (i.e. armchair nanoribbon) optical lattices for atomic BECs [23], 
although we will not focus on the latter here.

In the present work, we focus on a prototypical example of exact solutions and transport 
of Dirac solitons through the network vertices. In particular, we show that under certain con-
straints, exact soliton solutions of the nonlinear Dirac equation on simple metric graphs can 
be obtained. The identified soliton solutions provide reflectionless transmission of the Dirac 
solitons at the vertices. This renders possible the tuning of the transport properties of a net-
work in such a way that it can provide ballistic transport of the Dirac solitons. This paper is 
organized as follows: in the next section we give the formulation of the problem on a metric 
star graph which includes the derivation of the vertex boundary conditions. Section 3 presents 
soliton solutions of the nonlinear Dirac equation on a metric star graph for fixed and moving 
frames. Also, an analysis of the vertex transmission of the Dirac solitons on the basis of the 
numerical solution of the nonlinear Dirac equation is presented. In section 4 we extend the 
treatment to a metric tree graph and discuss the extension to other simple topologies. Finally, 
section 5 presents some concluding remarks and a number of important directions for future 
work. These include a conjecture about the sufficient, yet not necessary nature of our vertex 
conditions towards ensuring reflectionless transmission.

K K Sabirov et alJ. Phys. A: Math. Theor. 51 (2018) 435203



3

2. Conservation laws and vertex boundary conditions

The nonlinear Dirac system that we are going to explore, i.e. specifically the Gross–Neveu 
model, follows from the Lagrangian (in the units � = c = 1) [27, 28, 31]

L =
i
2
Ψ̄γµ∂µΨ− mΨ̄Ψ +

g2

2
(
Ψ̄Ψ

)2
, µ = 0, 1, (1)

and describes interacting Dirac fields with 0 and 1 corresponding to time and coordinate 
variables, respectively. Here g is the nonlinearity coefficient characterizing the strength of 
the nonlinear interaction. The field equations for this Lagrangian lead to the nonlinear Dirac 
model of the form

(iγµ∂µ − m)Ψ + g2 (Ψ̄Ψ
)
Ψ = 0, (2)

where

Ψ(x, t) =
(
φ(x, t)
χ(x, t)

)
; Ψ̄ = Ψ†γ0 = (φ∗(x, t),−χ∗(x, t)), (3)

and γ0 =

(
1 0
0 −1

)
, γ1 =

(
0 1
−1 0

)
.

For a metric star graph consisting of three semi-infinite bonds (see, e.g. figure  1), the 
Lagrangian density of the nonlinear Dirac field for each bond can be written as Lj where j 
parametrizes the bond and L for each is of the form of equation (1).

The field equation following from this Lagrangian density can be written as equation (2) 
before, where the spatial coordinates are defined as x1 ∈ (−∞, 0] and x2,3 ∈ [0,∞), while 0 
coincides with the graph vertex.

The formulation of an evolution set of equations on metric graphs requires imposing ver-
tex boundary conditions which provide ‘gluing’ of the graph bonds at the graph vertices. For 
the linear Dirac equation on a metric graph studied earlier by Bolte and Harrison in [50], the 
general vertex boundary conditions have been derived from the self-adjointness of the Dirac 
operator on a graph. In that case such conditions led to Kirchhoff rules and continuity of the 
wave function at the graph vertex [50]. However, for the nonlinear problem in order to derive 
vertex BCs, it is arguably more natural to use suitable conservation laws of the nonlinear flow, 
which give rise to appropriate BCs. For the nonlinear Dirac system fundamental conservation 
laws can be presented in terms of the momentum-energy tensor given by [27, 28]

T j
µν =

i
2
[Ψ̄jγ

µ∂νΨj − ∂νΨ̄jγ
µΨj]− gµνLj,

where gµν =

(
1 0
0 1

)
.

Figure 1. Metric star graph.

K K Sabirov et alJ. Phys. A: Math. Theor. 51 (2018) 435203
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The energy on each bond of a star graph can be written as

Ej = −
∫

bj

T j
00dx = −

∫

bj

[
i
2
[Ψ̄jγ

1∂xΨj − ∂xΨ̄jγ
1Ψj]− mΨ̄jΨj +

g2
j

2
(Ψ̄jΨj)

2]dx,

 

(4)

where integration is performed along the bond bj. Here, to derive the vertex boundary condi-
tions (VBC) we use conservations of charge and energy. The total charge for the star graph is 
defined as

Q = Q1 + Q2 + Q3,

where the charge for each bond is given by

Qj =

∫

bj

(
|φj|2 + |χj|2

)
dx. (5)

The conservation of charge (Kirchhoff rule for charge current), Q̇ = 0 yields the following 
vertex boundary condition:

Re [φ1χ
∗
1 ]|x=0 = Re [φ2χ

∗
2 ]|x=0 + Re [φ3χ

∗
3 ]|x=0 . (6)

Here we used the asymptotic conditions

Ψ1 → 0 at x → −∞ and Ψ2,3 → 0 at x → ∞. (7)

We note that the boundary conditions (6) can be derived also from the conservation of the cur-
rent density given by j = ϕχ∗ + χϕ∗.

The energy conservation, Ė = 0 leads to

Im [φ1∂tχ
∗
1 + χ1∂tφ

∗
1 ]|x=0

= Im [φ2∂tχ
∗
2 + χ2∂tφ

∗
2 ]|x=0 + Im [φ3∂tχ

∗
3 + χ3∂tφ

∗
3 ]|x=0 .

 
(8)

As per the above analysis, the VBC for NLDE on metric graphs have been obtained from 
the energy and charge conservation. However, the VBC given by equation (6) can be fulfilled, 
if the following linear relations at the vertices are imposed (see appendix for details):

α1φ1|x=0 = α2φ2|x=0 + α3φ3|x=0,
1
α1

χ1|x=0 =
1
α2

χ2|x=0 =
1
α3

χ3|x=0,
 (9)

where α1,α2,α3 are the real constants which will be determined below. In the following we 
will use equation (9) as the vertex boundary conditions for equation (2) on a metric star graph. 
When applied to the exact soliton solutions of the NLDE, the VBC will lead to algebraic 
conditions connecting αj and gj, as will be derived in the next section. We note that in the 
linear limit (gj → 0) the vertex boundary conditions given by equation (9) preserve the self-
adjointness of the (linear) Dirac equation on metric graph, i.e. belong to the class of general 
boundary conditions derived by Bolte and Harrison in [50].

3. Soliton dynamics and vertex transmission

In [27, 28, 31] the soliton solutions of the nonlinear Dirac equation on the line have been 
obtained in the form of standing wave solutions asymptoting to zero as x → ±∞. Here, we 
use the same definition for soliton solutions of the nonlinear Dirac equation on the metric star 
graph presented in figure 1. We note in passing that for soliton solutions of the NLDE derived 

K K Sabirov et alJ. Phys. A: Math. Theor. 51 (2018) 435203
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in the [27, 28, 31] all elements of the energy-momentum tensor, except T00 become zero, i.e. 
T01 = T10 = T11 = 0.

We look for the soliton solution of NLDE on a metric star graph in the form

Ψj(x, t) =
(
ψ1j(x, t)
ψ2j(x, t)

)
= e−iωt

(
Aj(x)
iBj(x)

)
. (10)

Then, from equations (2) and (10) we have

dAj

dx
+ (m + ω)Bj − g2

j (A
2
j − B2

j )Bj = 0, (11)

dBj

dx
+ (m − ω)Aj − g2

j (A
2
j − B2

j )Aj = 0. (12)

The vertex boundary conditions for the functions Aj and Bj can be written as

α1A1|x=0 = α2A2|x=0 + α3A3|x=0,
1
α1

B1|x=0 =
1
α2

B2|x=0 =
1
α3

B3|x=0.
 (13)

A prototypical static solution of the system (11) and (12) vanishing at x → ±∞ can be 
written as [28]

Aj(x) =

√
(m + ω) cosh2(β(x − x0))

m + ω cosh(2β(x − x0))

√
2β2

g2
j (m + ω cosh(2β(x − x0)))

, (14)

Bj(x) =

√
(m − ω) sinh2(β(x − x0))

m + ω cosh(2β(x − x0))

√
2β2

g2
j (m + ω cosh(2β(x − x0)))

, (15)

where x0 is the position of the soliton’s center of mass and β =
√

m2 − ω2. In order for these 
solutions of equations (11) and (12) to solve the problem on the metric graph, they need to 
also satisfy the vertex boundary conditions (13). This can be achieved if the constants αj and 
coupling parameters gj fulfill the following conditions:

α1

|g1|
=

α2

|g2|
+

α3

|g3|
, (16)

which stems from the first of equation (9) and

α2,3

α1
=

|g1|
|g2,3|

, (17)

in accordance with the second one of conditions (9). The combination of the two leads to the 
‘sum rule’:

1
g2

1
=

1
g2

2
+

1
g2

3
. (18)

It is important to note that this sum rule is derived by assuming that incoming wave comes 
from the first bond, b1, while if it comes from the bond b2 (or b3) one should replace g1 in 
equation (18) with g2 (or g3). In figure 2 plots of the soliton solutions of NLDE on metric star 
graph corresponding to equations (14) and (15), satisfying the vertex conditions are given.

K K Sabirov et alJ. Phys. A: Math. Theor. 51 (2018) 435203
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We note that soliton solutions given by equations (14) and (15) describe the standing waves 
in metric graphs. The traveling wave (soliton) solutions of NLDE can be obtained by consider-
ing the case of the moving frame and taking into account the Lorentz invariance [28], in the 
case of the homogeneous domain (i.e. without a Y-junction). Assuming implicitly that the 
solitary wave is centered around a position well to the left of the origin, the Lorentz transfor-
mations between the frames moving with relative velocity, v can be written as [28]

x′ = γ(x − vt); t′ = γ(t − vx), (19)

where

γ =
1√

1 − v2
= cosh η, sinh η =

v√
1 − v2

. (20)

Using these transformations, the traveling wave (soliton) solutions of the nonlinear Dirac 
equation in the moving frame determined by the constraints (16) can be written as

ψ1j(x, t) = [cosh(η/2)Aj(x′) + i sinh(η/2)Bj(x′)]e−iωt′ ,

Ψ2j(x, t) = [sinh(η/2)Aj(x′) + i cosh(η/2)Bj(x′)]e−iωt′
 (21)

where x′, t′ and η are given by equations (19) and (20).
It is important to note that this transformation does not affect the scaling dependence on the 

coupling parameters gj. For that reason, we expect the form of equation (16) to still be valid in 
the case of traveling/moving wave solutions.

To analyze the dynamics of the Dirac solitons on a metric graph, we solve numerically 
the time-dependent NLDE given by equation (2) for the vertex boundary conditions given by 
equation (9) by considering the an initially traveling waveform localized in bond 1, far from 
the vertex. We do this for the case when the constraint given by equation (18) is fulfilled, as 
well as for the case of arbitrary gj which do not respect the relevant constraints. Figure 3(a) pre-
sents the plots of the solution of equations (2) and (9) obtained numerically for the values of gj 
obeying the constraint (18). For vertex boundary conditions given by equation (13) parameters 
αj are chosen as α2 = 1/|g2|, α3 = 1/|g3|, α1 = |g1|(α2/|g2|+ α3/|g3|). One can observe the 
absence of the vertex reflection in this case. Figure 3(b) presents soliton solutions of nonlin-
ear Dirac equation for the boundary conditions (9) obtained numerically for those values of 

Figure 2. Charge density, |Ψj|2 = Ψ†
j Ψj = |Aj(x)|2 + |Bj(x)|2, plotted using the 

standing wave soliton solutions given by equations  (14) and (15) (x0  =  0) for 
g1 = 1, g2 = g3 =

√
2.

K K Sabirov et alJ. Phys. A: Math. Theor. 51 (2018) 435203



7

gj which do not fulfill equation (18)). Here, reflection can be clearly discerned. Figure 4(a) 
shows the conservation of the energy and reflectionless transmission through the Y-junction 
during the propagation of Dirac soliton in graph. The emergence of the vertex reflection when 
the constraints (18) are not fulfilled, can also be seen from the figure 4(b). Here the vertex 
reflection coefficient, which is determined according to the definition R  =  E1(t  =  7)/E(t  =  7) 
(with E(t = 7) = E1(t = 7) + E2(t = 7) + E3(t = 7)) is plotted as a function of g3 for fixed 
values of g1 and g2. This systematic analysis clearly illustrates the necessity of the symmetric 
scenario of g3 =

√
2, consonant with our vertex sum rule, for reflection to be absent. A similar 

phenomenon was observed in the case of other nonlinear PDEs on metric graphs, such as the 
NLS and sG equations, considered earlier in the [1] and [11], respectively. For the initial con-
dition corresponding to a traveling wave of the NLDE in the form of (21) centered at x0, with 
initial velocity v > 0 for t → +∞, our numerical computations provide strong evidence to the 
following fact. The solution can be asymptotically represented as a superposition of solitary 
waves in the branches associated with the second and third bonds, only if the condition (9) 
holds. In other words, under the necessary constraints (18), equation (9) asymptotically lead 
to refectionless transmission through the vertex.

4. Extension for other graphs

The above treatment of the NLDE on the metric star graph can be extended to the tree graph 
presented in figure 5. It consists of three subgraphs b1, (b1i), (b1ij), where i, j run over the given 
bonds of a subgraph. On each bond b1, b1i, b1ij we posit that the nonlinear Dirac equation is 

Figure 3. Time and coordinate dependence of the charge density obtained from the 
numerical solution of equation  (2) (x0  =  −2.5) for boundary conditions (9) for the 
case (a) when constraints (18) are fulfilled (g1 = 1, g2 = g3 =

√
2), (b) when these 

constraints are not fulfilled (g1 = 1, g2 =
√

2; g3 = 3.5).

K K Sabirov et alJ. Phys. A: Math. Theor. 51 (2018) 435203



8

satisfied as given by equation (2). The vertex boundary conditions can be written similarly to 
those in equation (13). Soliton solutions have a similar form to those in equations (14) and 
(15) where x is replaced by x  +  sb, with s1 = s1i = l, s1ij = l + Li, with l being position of the 
center of mass of soliton. The sum rules in this case generalize according to:

1
g2

1
=

2∑
i=1

1
g2

1i
,

1
g2

1i
=

3∑
j=1

1
g2

1ij
, i = 1, 2.

Similarly to that for star graph, one can obtain soliton solutions of the nonlinear Dirac 
equation on the tree graph for the moving frame.

Another graph for which a soliton solution of the nonlinear Dirac equation can be obtained, 
is presented in figure 6. It has the form of a triangle whose vertices are connected to outgoing 
semi-infinite leads. The vertex boundary conditions for equations (11) and (12) which follow 
from the conservation of current and energy can be written as

Figure 4. Numerical solution of equation  (2) for boundary conditions (9). (a) Total 
energy and time-dependence of the energy for each bond with g1 = 1, g2 = g3 =

√
2. 

(b) Reflection coefficient as a function of g3 for g1 = 1, g2 =
√

2.

Figure 5. Tree graph. x1 ∈ (−∞, 0], x1i ∈ [0, Li], and x1ij ∈ [0,+∞) with 
i = 1, 2; j = 1, 2, 3.

K K Sabirov et alJ. Phys. A: Math. Theor. 51 (2018) 435203
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α1φ1|x=0 = α2φ2|x=0 + α3φ3|x=0,
1
α1

χ1|x=0 =
1
α2

χ2|x=0 =
1
α3

χ3|x=0,

α2φ2|x=L2 = α4φ4|x=0 + α5φ5|x=0,
1
α2

χ2|x=L2 =
1
α4

χ4|x=0 =
1
α5

χ5|x=0,

α3φ3|x=L3 + α4φ4|x=L4 = α6φ6|x=0,
1
α3

χ3|x=L3 =
1
α4

χ4|x=L4 =
1
α6

χ6|x=0.

In short, the conditions matching the of charge and energy conservations must be applied 
to each node connecting the multiple vertices of the graph. The soliton solution obeying these 
boundary conditions can be written as

Ab(x) =
1
|gb|

cosh(β(x + sb))

√
m + ω

m + ω cosh(2β(x + sb))

×

√
2β2

m + ω cosh(2β(x + sb))
,

 

(22)

Bb(x) =
1
|gb|

| sinh(β(x + sb))|
√

m − ω

m + ω cosh(2β(x + sb))

×

√
2β2

m + ω cosh(2β(x + sb))
,

 

(23)

where b is considered to be an index running from 1– 6, s1 = s2 = s3 = l, s4 = l + L2,
s5 = l + L2, s6 = l + L3, L3 = L2 + L4 (this condition is necessary for the waves traveling 
along b3 and those split along b2 and b4 to arrive at the vertex between b3 and b4 concurrently) 
and coefficients gj fulfill the following constraints:

1
g2

1
=

1
g2

2
+

1
g2

3
, (24)

1
g2

2
=

1
g2

4
+

1
g2

5
, (25)

1
g2

3
+

1
g2

4
=

1
g2

6
. (26)

Figure 6. Triangle graph. x1 ∈ (−∞, 0], xi ∈ [0, Li] with i = 2, 3, 4, and xj ∈ [0,+∞) 
with j = 5, 6.

K K Sabirov et alJ. Phys. A: Math. Theor. 51 (2018) 435203
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Again, the traveling wave (soliton) solutions can be obtained in case of the moving frame 
using the Lorentz transformations. This approach for designing soliton solutions of the nonlin-
ear Dirac equation can be applied to other graph topologies with multiple junctions, provided 
a graph consists of finite parts connected to outgoing semi-infinite bonds.

In figure 7 the solution of NLDE on each bond of this triangle graph is plotted for the cases 
when the sum rule given by equations (24)–(26) is fulfilled (a) and is broken (b). Absence of 
the vertex reflection in figure 7(a) is clearly seen, while in figure 7(b) the transmission of Dirac 
solitons through the graph vertices is clearly impeded by the mismatch at the VBC. Thus, 
reflection events are clearly discernible in bonds such as 1, 3 and 4.

5. Conclusions and future challenges

In this paper we studied dynamics of Dirac solitons in networks by considering the case of met-
ric graphs. We obtained soliton solutions of the nonlinear Dirac equation on some of the simplest 
metric graphs such as the star, tree and triangle graphs. Constraints enabling such exact solutions 
to exist are derived in the form of sum rules for bond nonlinearity coefficients. The bound-
ary conditions at the branching points (vertices) are derived from the fundamental conservation 
laws. It is shown via direct numerical simulations that within the corresponding dynamics the 
obtained constraints provide for reflectionless transmission of solitary waves at the graph vertex. 
In the case where the relevant conditions are violated, nontrivial reflections ensue.

Our computations clearly suggest that the considered vertex boundary conditions are nec-
essary (yet not necessarily sufficient) conditions for reflectionless transmission through the 

Figure 7. Time and coordinate dependence of the charge density obtained from the  
numerical solution of equation  (2) for the triangle graph in figure  6 (l  =  2.5)  
for the case (a) when constraints (24)–(26) are fulfilled (g1 = 1, g2 = g3 =

√
2,  

g4 = g5 = 2, g6 = 2/
√

3), (b) when these constraints are not fulfilled (g1 = g3 =  
g5 = 1, g2 = g4 = g6 = 2).
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junctions of interest. This is also in line with the recent homogenization calculation of [53]. It 
is thus natural to formulate the following conjecture. Assume that the initial data correspond 
to a traveling wave of the NLDE in the form of equation (21) centered at x0, with v > 0. Then 
for t → +∞, the solution can consist asymptotically of a superposition of solitary waves in 
branches 2 and 3, only if the condition of equation (18) holds. This conjecture poses a chal-
lenging mathematical question for further rigorous study in the problem at hand, both at the 
level of the NLDE, but also by direct analogy in the context of the NLS and other similar 
models.

It should be noted that an important, additional set of challenges emerges as regards the 
study of stationary solutions involving the vertex. In the language of the very recent work of 
[53], the states considered herein are the so-called half-soliton states. Yet in the NLS frame-
work of the latter work, additional so-called shifted (non-monotone in the different branches) 
states also exist, yet they may be spectrally unstable, depending on whether they are mono-
tonic or non-monotonic in the outgoing edges of the metric graph. The half-soliton considered 
here is especially interesting as at the NLS level it turns out to be spectrally stable, yet nonlin-
early unstable. This issue of the (more involved at the NLDE level [54]) spectral stability of 
these stationary states is also an especially interesting direction for future study.

Naturally, the above study can be extended for other simple topologies, such as a graph 
with one or multiple loops (e.g. the dumbbell graph), or other combinations of star, tree and 
loop graphs.

It will be extremely interesting if these ideas induce experimental interest in systems such 
as suitably tailored discrete optical waveguides [51, 52] or in atomic settings, in the same way 
as they have for instance for the propagation of traveling waves through networks of granular 
crystals [55].
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Appendix

Here we will show that the linear vertex boundary conditions given by equation (9) lead to 
the ones given by (6)–(8). Consider the following (linear) relations given at the vertex of the 
a metric star graph

α1φ1|x=0 = α2φ2|x=0 + α3φ3|x=0, (A.1)

1
α1

χ1|x=0 =
1
α2

χ2|x=0 =
1
α3

χ3|x=0,
 (A.2)

where α1, α2, α3 are real constants.

Multiplying both sides of equation (A.1) by 1
α1
χ∗

1 |x=0, from equation (A.2) we have

φ1χ
∗
1 |x=0 = φ2χ

∗
2 |x=0 + φ3χ

∗
3 |x=0. (A.3)

From equation (A.3) we get

Re[φ1χ
∗
1 ]|x=0 = Re[φ2χ

∗
2 ]|x=0 + Re[φ3χ

∗
3 ]|x=0, (A.4)
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which is nothing but the vertex boundary condition given by equation (6). Taking the time 

derivative from equation (A.2) and multiplying both sides of (A.1) by 1
α1
∂tχ

∗
1 |x=0, we obtain

φ1∂tχ
∗
1 |x=0 = φ2∂tχ

∗
2 |x=0 + φ3∂tχ

∗
3 |x=0. (A.5)

Taking the time-derivative from equation (A.1) and multiplying the complex conjugate of the 

obtained expression by 1
α1
χ1|x=0 we get

χ1∂tφ
∗
1 |x=0 = χ2∂tφ

∗
2 |x=0 + χ3∂tφ

∗
3 |x=0. (A.6)

Adding equations (A.5) and (A.6) leads to

[φ1∂tχ
∗
1 + χ1∂tφ

∗
1 ]|x=0 = [φ2∂tχ

∗
2 + χ2∂tφ

∗
2 ]|x=0

+ [φ3∂tχ
∗
3 + χ3∂tφ

∗
3 ]|x=0.

 (A.7)

The last equation yields the vertex boundary condition given by equation (8).
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