University of Massachusetts Amherst ScholarWorks@UMass Amherst

Cranberry Station Extension meetings

Cranberry Station Outreach and Public Service Activities

2018

2018 Update Mtg: Pesticide Resistance Management in Cranberry

Katherine Ghantous *UMass Amherst*, kghantou@umass.edu

Martha Sylvia *UMass Cranberry Station,* martys@umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/cranberry_extension Part of the <u>Agriculture Commons</u>

Recommended Citation

Ghantous, Katherine and Sylvia, Martha, "2018 Update Mtg: Pesticide Resistance Management in Cranberry" (2018). *Cranberry Station Extension meetings*. 261. Retrieved from https://scholarworks.umass.edu/cranberry_extension/261

This Article is brought to you for free and open access by the Cranberry Station Outreach and Public Service Activities at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Cranberry Station Extension meetings by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Pesticide Resistance Management in CRANBERRY

by Katie Ghantous and Marty Sylvia

with input from Hilary Sandler and Laura McDermott

With special thanks to:

- Dr. Margaret McGrath, Cornell University
- Dr. Andrei Alyokhin, University of Maine
- Dr. Richard Bonanno, University of Massachusetts

NE-SARE Professional Development Program ENE15-140-29994

What is Pesticide Resistance?

Genes naturally occur in pest population

- Not mutations caused by chemical
- Pesticide use "selects" for resistance
 - Kills susceptible individuals those without the gene to protect them die
 - Those with the gene don't die, and are
 "Selected" for by killing off other types

What is Pesticide Resistance?

- Pests with gene live, reproduce, and pass on the genes for resistance to their offspring
- The pest population has increasing numbers of resistant individuals
- Over time, population as a whole is more resistant to the pesticide

What is Pesticide Resistance?

<u>Inheritable</u> (genetic) characteristic of a pest that makes it less sensitive to a pesticide

- Can occur in **all** types of pests
 - weeds, insects, fungi, etc.

• Pest is able to survive pesticide exposure that would kill those without the genes

All types of pesticides are at risk for resistance!

<u>Herbicides</u>

Herbicide Resistance Action Committee (HRAC) http://www.hracglobal.com

Fungicides

Fungicide Resistance Action Committee (FRAC) <u>http://www.frac.info</u>

IRAC Insecticides Insecticide Resistance Action Committee (IRAC) http://www.irac-online.org

International groups founded by the agrochemical industry for a cooperative approach to resistance management. Sources for info and education materials.

Why is Managing Resistance Important?

- Pesticide resistance is increasing
- Currently:
 - \circ 520 insect and mite species
 - At least 17 insect species are resistant to <u>all</u> major classes of insecticides
 - \circ 273 weed species
 - 150 plant diseases
 - 10 rodent species

Mode of action (MoA)

The chemical structure of a pesticide defines:

- <u>Target site</u> the "where" physical location within an organism where the pesticide acts
- Mode of action the "how" action of a pesticide at its target site.

Pesticide Groups

- Each pesticide has been assigned a Group Number to help growers make resistance management decisions
- Group number based on target site and MoA
- Pesticides in a group share similar characteristics and risk cross-resitance
- Group number is clearly marked on most labels

Herbicides - HRAC and WSSA groups

HRAC (letters) and WSSA (Weed Science Society of America, #'s) codes, differ slightly but very similar

Herbicides - HRAC and WSSA groups

HRAC (letters) and WSSA (Weed Science Society of America, #'s) codes, differ slightly but very similar

HRAC Group	Site of Action	Chemical Family	Active Ingredient	WSSA Group				
A	Inhibition of acetyl CoA carboxylase (ACCase)	Aryloxyphenoxy-propionate 'FOPs'	clodinafop-propargyl cyhalofop-butyl diclofop-methyl fenoxaprop-P-ethyl fluazifop-P-butyl haloxyfop-R-methyl propaquizafop quizalofop-P-ethyl	1				
		Cyclohexanedione 'DIMs'	alloxydim butroxydim clethodim cycloxydim <i>profoxydim</i> sethoxydim <i>tepraloxydin</i> tralkoxydim					
		Phenylpyrazoline 'DEN'	pinoxaden					
В	Inhibition of acetolactate synthase ALS (acetohydroxyacid synthase AHAS)	Sulfonylurea	amidosulfuron azimsulfuron bensulfuron-methyl chlorimuron-ethyl	2				

Consult the label for RM info

RESISTANCE MANAGEMENT

GROUP 11 FUNGICIDE

Abound (azoxystrobin) is a Group 11 fungicide. The mode of action for Abound is the inhibition of the Qol (quinone outside) site within the electron transport system [Group 11]. Fungal pathogens can develop resistance to products with the same mode of action when used repeatedly. Because resistance development cannot be predicted, use of this product should conform to resistance management strategies established for the crop and use area. Consult your local or State agricultural authorities for resistance management strategies that are complementary to those in this label. Resistance management strategies may include alternating and/or tank-mixing with products having different modes of action or limiting the total number of applications per season. Syngenta encourages responsible resistance management to ensure effective long-term control of the fungal diseases on this label.

Follow the crop specific resistance management recommendations in the directions for use.

If no resistance recommendation on number of applications is specified in the directions for use, follow the recommendations in the table below.

If planned total number of fungicide applications per crop is:	1	2	3	4	5	6	7	8	9	10	11	12
Recommended Solo Qol fungicide sprays	1	1	2	2	2	2	2	3	3	3	3	4
Recommended Qol fungicide sprays in												

Consult the Cranberry Chart book!

6 RESISTANCE MANAGEMENT

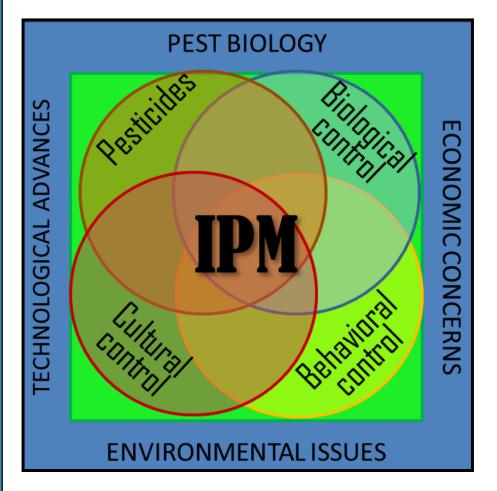
Fungicide Resistance Action Committee (FRAC) Grouping for cranberry fungicides

FRAC GROUP	TRADE NAME	COMMON NAME	MODE OF ACTION	GROUP NAME	CHEMICAL GROUP	Resistance Development Risk
4	Metastar Ridomil Ultra Flourish	mefenoxam metalaxyl	Al: RNA polymerase I	PA – fungicides (PhenylAmides)	acylalanines	High Risk
	Abound	azoxystrobin	C3: cytochrome	QoI-fungicides	methoxy- acrylates	
11	Aftershock Evito	fluoxastrobin	bc1 at Qo site	Strobilurins	dihydro- dioxazines	High Risk
3	Indar Proline	fenbuconazole prothioconazole	G1: c14- demethylase in sterol biosynthesis	DMI-fungicides (DeMethylation In	triazoles hibitors)	Medium Risk
19	OSO Ph-D	polyoxin	H4: chitin synthase	polyoxins	peptidyl pyrimidine nucleoside	Medium Risk
	Aliette	fosetyl-Al			ethvl	

Key Points About Managing Resistance

- Goal is delaying development of resistance, <u>not</u> managing resistant pest biotypes once detected
- Use Integrated Pest Management (IPM) program
- Minimize use of at-risk products

Applications must be timed correctly

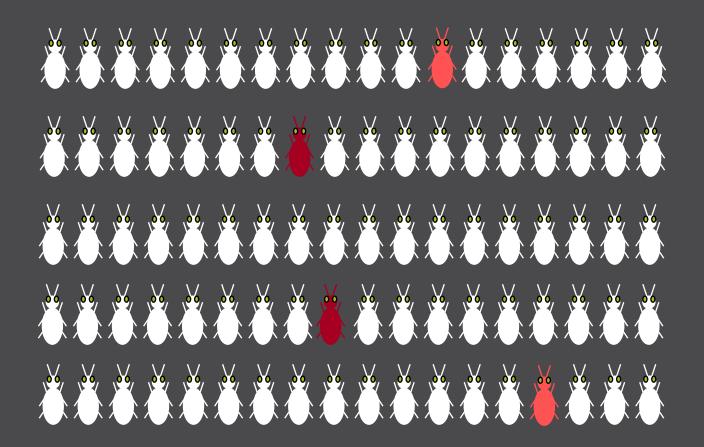

- Target the most vulnerable life stage of the pest
- Use spray rates and application intervals recommended by the manufacturer and in compliance with local agricultural extension regulations.
 - A high rate can take out pests that might be somewhat resistant, but using a rate too low may allow them to survive

Challenges to Managing Resistance

- Not always something to rotate to, even if you try!
- Not many cranberry herbicides
 - $\circ~$ e.g. clethodim and sethoydim for grasses

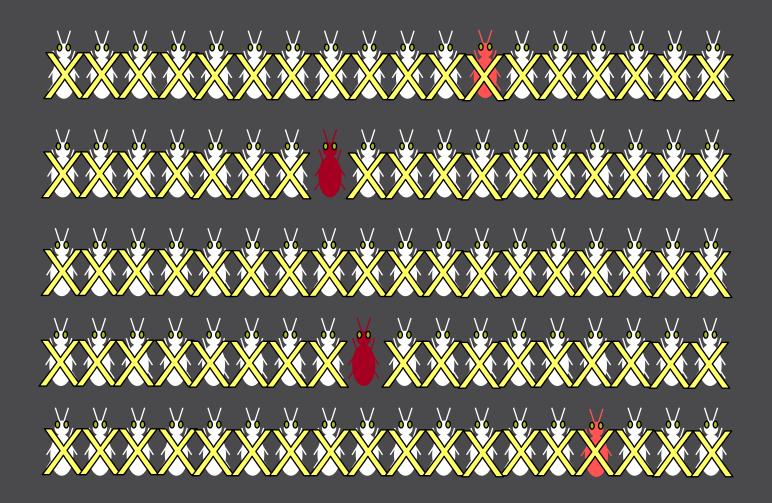
Do not rely on pesticides alone

Integrate different controls!



- synthetic pesticides
- biological pesticides
- beneficial insects (predators/parasites)
- cultural practices
- chemical

attractants/deterrents


Natural pest population

 Some bugs have genes that make them less sensitive to a pesticide

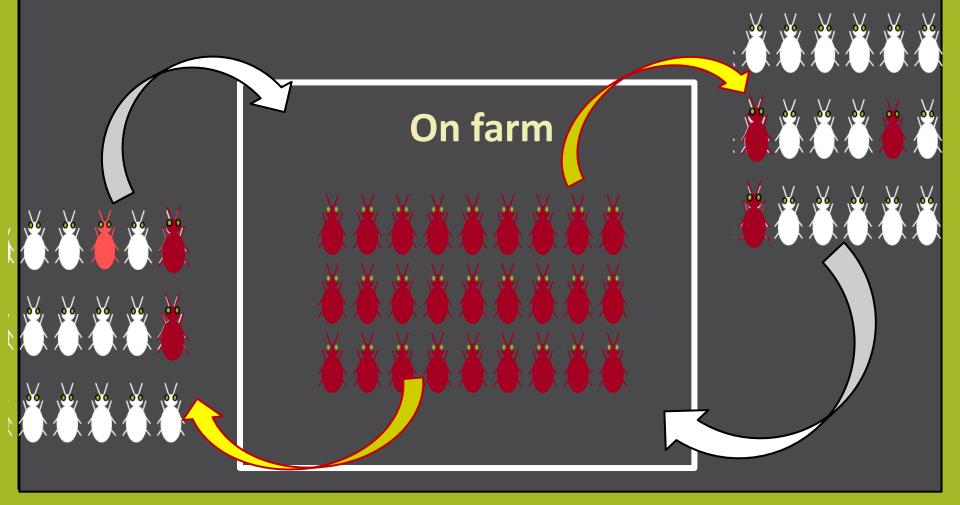
Pesticide application

• The bugs that are susceptible die

Pesticide application

 The bugs that have naturally occurring genes that make them less sensitive to a pesticide survive...

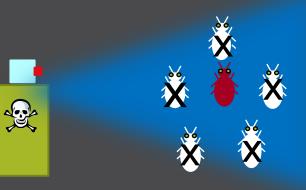
After pesticide application

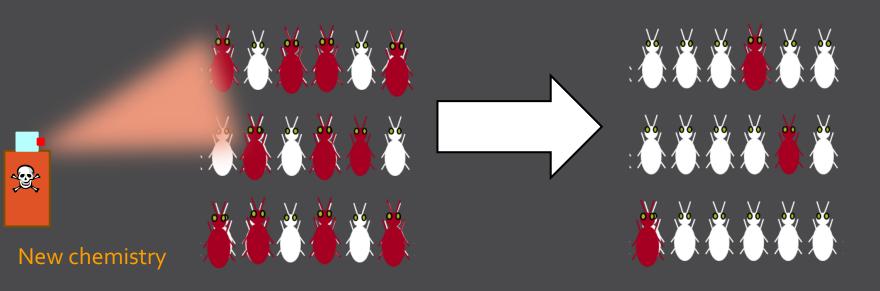

- We have applied selection pressure.
- The bugs with genes that make them less sensitive to a pesticide reproduce.
- The offspring have the genes that make them less sensitive to the pesticide.
- The new population is more resistant than a natural population.

- Eventually, the population is mostly made up of resistant individuals.
- Under permanent selection pressure, resistant insects outnumber susceptible ones and the insecticide is no longer effective.

Cranberry Weevil

- Resistant to organophosphates in 2000
- Lorsban
- Guthion
- Parathion
- Imidan
- Orthene
- Sevin


Resistance takes time to develop!


- Outside population brings in susceptible gene.
- But it takes a long time to change.

Resistance takes time to develop!

Same chemistry

Insecticide Mode of Action Classification: CropLi

Diversity is a key to successful resistance management

IRAC promotes the use of a mode of action classification of insecticides as the basis for effective and sustainable insecticide resistance management. Insecticides are allocated to specific groups based on their target site. The use of sequences or alternations of insecticides with different modes of action reduces selection pressure on individual target sites. This prevents, delays or reverses resistance and helps maintain product diversity and efficacy.

Use Mode of action wisely for good IRM!

Cuticle Synthesis Groups 15, 16 and 17 Inhibitors of chitin biosynthesis New cuticle is synthesised deprovement cycle. The Benzoylureds in Group 15

are broadly active and inhibit a key part of this process, leading to insect death. Similar Inhibitors of Homopteran and Dipteran chitin biosynthesis are in Groups 16 (Buprofezin) and

17 (Cyromazine).

Midgut

Moulting &

ecdysone.

Metamorphosis

Group 18 Ecdysone

Tebucrovide acts RM ecdyCroathrist RM

Group 7 Luvenile hormone mim de TREPID

metamorphic instar, disrupt

and prevent metamorphosis

agonist / disruptor

Applied in the pre-

Controlled by two hormones,

juvenile hormone (JH) and

Group 11 Microbial disruptors of insect midgut membranes The midgut is the target for the toxins produced by the bac pinn Bacins thering insis (Bt) bit oxins caus Dash lesions in the midgut wall. Transgenic crops such as Btcotton express high levels of specific Bt toxins. Sprayable Bt

also contains such toxins.

Stimulatory Nervous System

The nervous system is the target for most current insecticides, but within this system are many target sites. Insecticides with specific modes of action act at these targets: Group 1 Acetylcholinesterase (AChE) inhibitors

Carbamater and Canapto space Boda Ninhibitor of the at nerve synapses. This results in hyperactivity in the Revelopment System.

Group 4 Acetylcholine receptor agonists / antagonists The Chlorodictily A R A ago i Mithenolia Store synaptic nicotinic ACh receptor (nAChR). This leads to neuronal overstimulation and hyperactivity. Group 5 Activity contraction of the contraction of the synaptic nicotinic Spinosyns and the ACHA, interfering with NrmaO Rejo En NTRUST... Group 3 Sodium channel modulators

Sodium channel Date (Woven II) file propagation of action potentials along nerves. Pyrethroids rapidly interfere with their action, causing hyperactivity and nerve block. *Group 22 Voltage degendent* of virtuanel blocker Indoxacarb blocks sodium channels leading to neural dysfunction.

Metabolic Processes

Acting on a wide range of metabolic processes:

Group 12 Inhibitors of oxidative phosphorylation, disruptors of ATP - Diafenthiuron & Organotin miticides Group 12 Uncoupler of oxidative phosphorylation via disruption of H proton gradient – Chlorfenapyr Group 20 Site I electron transport inhibitors – Hydramethylon and Dicofol Group 21 Site II electron transport inhibitors – Rotenone, METI acaricides

Inhibitory Nervous System

In the insect nervous system system GABA is an inhibitory neurotransmitter. The GABA receptor is a target for a number of insecticide groups.

Group 2 GABA-gated chloride channel antagonists

The Cyclodienes and Fiproles bind to the GABA receptor complex and inhibit the action of GABA causing neuronal hyperactivity.

Group 6 Chloride channel activators

Avermectin, Emamectin Benzoate and Milbemycin. The mectins bind to the GABA receptor complex, mimicking GABA and causing paralysis.

Insecticide Mode of Action Classification

Insecticide Resistance Action Committee www.irac-online.org

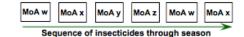
CropLife Υ

Introduction

Insecticide Resistance Action Committee [IRAC] promotes the use of a Mode of Action (MoA) classification of insecticides as the basis for effective and sustainable insecticide resistance management (IRM). Insecticides are allocated to specific groups based on their target site. Reviewed and re-issued periodically, the IRAC MoA classification list provides farmers, growers, advisors, extension staff, consultants and crop protection professionals with a guide to the selection of insecticides or acaricides in IRM programs. Effective IRM of this type preserves the utility and diversity of available insecticides and acaricides.

Nerve & Muscle Targets

Group 1 Acetyle Com stasse AChelly in the RSBAN, SEV 1A: Cale and us the piodes of RSBAN, SEV 1B: Organophosphates (e.g. Chlorpyrifos) Group 2 GABA-gated chloride channel blockers 2A: Cyclodiene Organochlorines (e.g. Endosulfan) 2B: Phenylpyrazoles (e.g. Fipronil) Group 3 hanvel models annus, Pyretas , Methoxychlor it is Cypermethrin) 3B: DDT Group 4 Nicotinic acetylcholine 4A: NeAcotinois A. RdAoprid Aister Mar RE, AS 4C: Sulfoximines (e.g. Sulfoxaflor) 4D: Butenolides (e.g. Flupyradifurone) Group 5 Nicotir avinnoi ne ricepto (m. C. K.) allo renic D st (e.g., soin os d'Avineto sm) Group 6 Glutamate-gated chloride channel (GluCI) allosteric modulators 6: Avermectins, Milberrycins (e.g. Abamectin, Emamectin benzoate) Chordotonal organ TRPV channel modulators Group 9 9B: Pyridine azomethine derivatives (e.g. Pymetrozine, Pyrfluquinazon) Group 14 Nicotinic acetylcholine receptor (nAChR) channel blockers 14: Nereistoxin analogs (e.g. Cartap hydrochloride) Group 19 Octopamine receptor agonists 19: Amitraz Group 22 Voltage den el blockers Voltage dependent sodi 22A: C 4 diation 4 (e.g. 22B: Semica Group 28 Ryand 28: D/ A. des (e. Group 29 Chordotonal orga Ch à (e.ç niliprole, Flubendiamide) 29: Flonicamid Midgut Targets Group 11 Microbiol discustors of 11A: *Loc lus huringie* 11B: *Loc lus pheeric* huringie sis 11A: 11B:


Miscellaneous non-specific (multi-site) inhibitors

Group 8 8A: Alkyl halides, 8B: Chloropicrin, 8C: Fluorides, 8D: Borates, 8E: Tartar emetic, 8F: Methyl isothiocyanate generators

Effective IRM strategies: MoA Sequences & alternations

All effective insecticide resistance management (IRM) strategies seek to minimise the selection of resistance to any one type of insecticide. In practice, alternations, sequences or rotations of compounds from different MoA groups provide sustainable and effective IRM for pest insects. This ensures that selection from compounds in the same MoA group is minimised, and resistance is less likely to evolve.

Applications are often arranged into MoA spray windows or blocks that are defined by the stage of crop development and the biology of the pest species of concern. Local expert advice should always be followed with regard to spray windows and timings. Several sprays may be possible within each spray window but it is generally essential to ensure that successive generations of the pest are not treated with compounds from the same MoA group. Metabolic resistance mechanisms may give cross-resistance between MoA groups, and where this is income to occur, the above advice must be modified accordingly. IRAC also provides general neonicotinoids (Group 4A).

MoA Sequences & alternations – Exceptions

IRAC recommends alternations, sequences or rotations of compounds from different MoA groups

to provide a sustainable and effective approach to IRM. Three groups (8, 13 and UN) are exempt

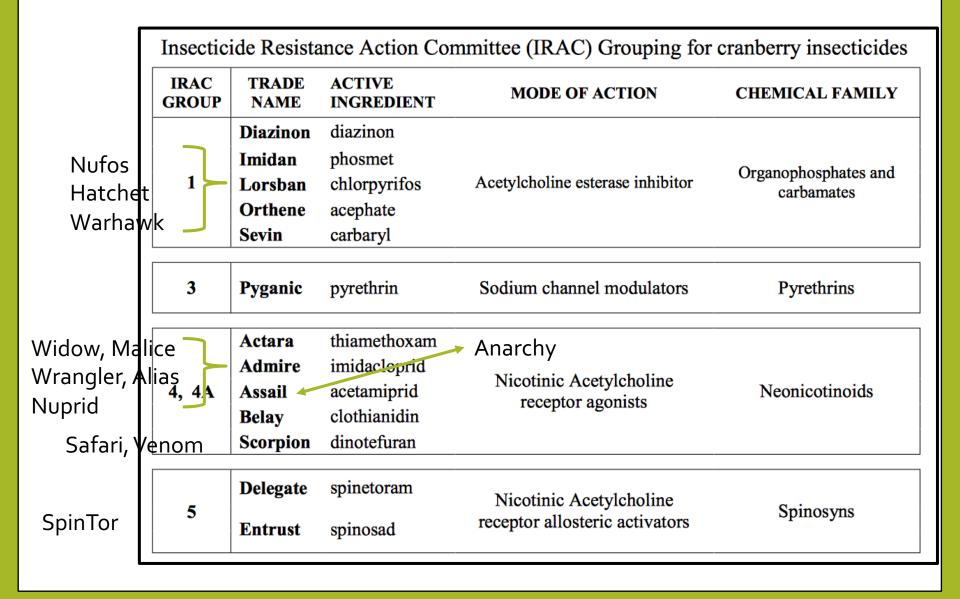
from the recommendations as they do not contain compounds acting at a common target site

Color Scheme Notes:

The color scheme used here associates modes of action into broad categories based on the physiological functions affected, as an aid to understanding symptomology, speed of action and other properties of the insecticides, and not for any resistance management purpose. Rotations for resistance management should be based only on the numbered mode of action groups. The cross-resistance potential between sub-groups is higher than that between different groups, so rotation between sub-groups should only be used where effective registered insecticides from other MoA groups are unavailable.

Respiration targets

- Group 12 Inhibitors of mitochondrial ATP synthesis
 - 12A: Diafenthiuron 12B: Organotin miticides (e.g. Cyhexatin)
 - 12C: Propargite
 - 12D: Tetradifon
- Group 13 Uncouplers of oxidative phosphorylation via disruption of the proton gradient 13: Pyrroles (e.g. Chlorfenapyr), Dinitrophenols, (e.g.DNOC), Sulfuramid
- Group 20 Mitochondrial complex III electron transport inhibitors
 - 20A: Hydramethylnon 20B: Acequinocyl
 - 20C: Fluacrypyrim 20D: Bifenazate
 - 20D: birenazate
- Group 21 Mitochondrial complex I electron transport inhibitors 21A: METI acaricides & insecticides (e.g. Pyridaben) 21B: Rotenone (Derris)
- Group 24 Mitochondrial complex IV electron transport inhibitors 24A: Phosphides (e.g. Phosphine) 24B: Cyanides (e.g. Sodium cyanide)
- Group 25 Mitochondrial complex II electron transport inhibitors 25A: Beta-ketonitrile derivatives (e.g. Cyenopyrafen, Cyflumetofen) 25B: Carboxanilides, (e.g. Pyflubumide)



Unknown

Group UN Compounds of unknown or uncertain mode of action (e.g. Azadiractin, Benzoximate, Bromopropylate, Chinomethionat, Dicofol, Lime sulfur, Pyridalyl, Sulfur)

This poster is for educational purposes only. Details are accurate to the best of our knowledge but IRAC and its member companies cannot accept responsibility for how this information is used or interpreted. Advice should always be sought from local experts or advisors and health and safety recommendations followed. Designed & produced by the IRAC MoA Team, Dec. 2015, Ver. 4, Based on MoA Classification Ver. 8.0, Photograph courtesy of N. Armes For further information visit the IRAC website: www.irac-online.org, IRAC document protected by © Copyright

INSECTICIDE RESISTANCE

INSECTICIDE RESISTANCE

Г		Dire el						
	11	Dipel Xentari Biobit	Bacillus thuringiensis	Microbial disruptors of insect midgut membranes	Bacillus thuringiensis			
	15 let	Rimon	novaluron	Inhibitors of chitin biosynthesis	Benzoylureas			
Jbad Jbad	le us	Biobit Rimon Confirm Intrepid Nexter	tebufenozide methoxyfenozide	Ecdysone agonists / molting disruptors	Diacylhydrazines			
K 112	21	21 Nexter pyridaben		Mitochondrial complex / electron transport inhibitor	Meti acaracides			
	22	Avaunt	indoxacarb	Voltage-dependent sodium channel blockers	Oxadiazines			
	23	Oberon	spiromesifen	Inhibitors of acetyl CoA carboxylase	Tetramic acid derivatives			
	28	Altacor	chlorantraniliprole	Ryanodine receptor modulators	Diamides			
	Exirel cyantraniliprole							
L								

We have seen this in cranberry already....

<u>Weevil</u>

- Resistant to organophosphates
- Worried developing resistance to Avaunt

<u>Spag</u>

- Resistant to organophosphates
- May be developing to Delegate

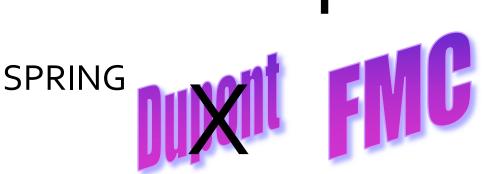
Good news....

BHF – Blackheaded fireworm

Not likely to develop resistance

CFW – Cranberry Fruitworm

• Not likely to develop resistance



photos by C. Armstrong

Cranberry Weevil Compounds

• Avaunt 2007 S Indoxacarb

- Actara 2005 SPRING OR SUMMER
 Thiamethoxam (also known as Helix, Cruiser, Vigor) neonicotinoid, high bee toxicity
 Zone II Restricted
- Belay 2010 SUMMER Clothianidin (also known as Clutch, Arena) neonicotinoid, high bee toxicity

Avaunt (indoxacarb)

Spring population

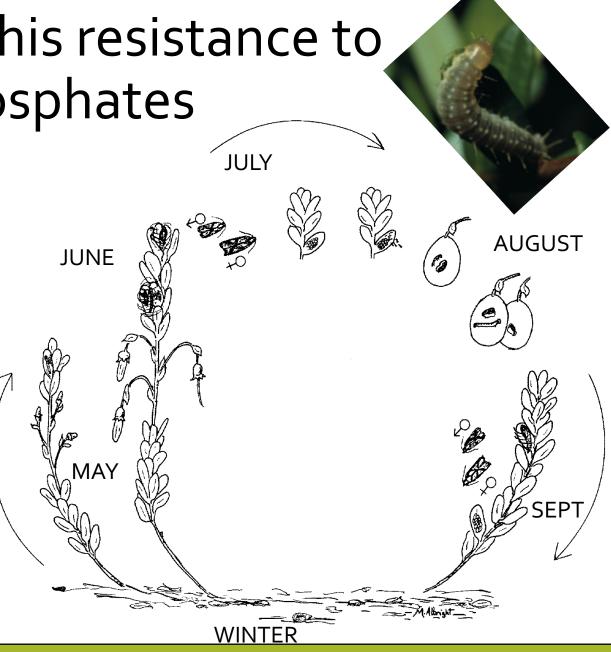
Superb! weevil control!

May have to retreat as more weevil come in from woods

Summer population

NOT EFFECTIVE Do not use Avaunt

Sparganothis fruitworm



Comes in different styles— the wriggler

Sparganothis resistance to organophosphates

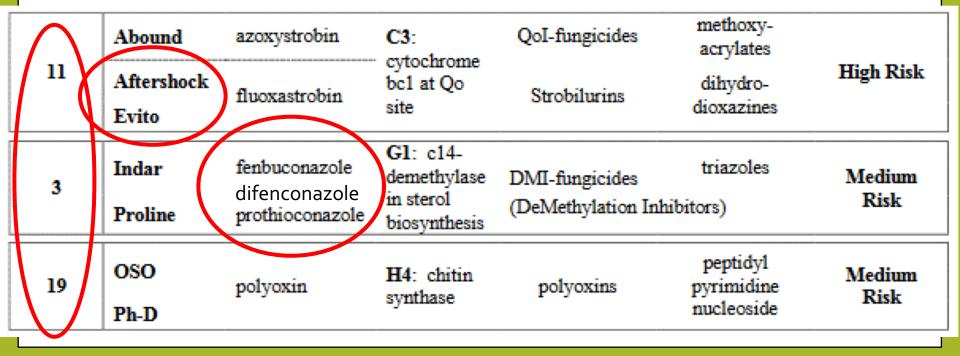
- Began ca. 20 years ago in Carver area
- Spread throughout industry
- Lorsban, Orthene no longer effective on most populations

80 bog sites monitored (10 years ago)

- ALL SITES had some Sparganothis flight!
- 32 (40%) had a peak flight of 50-100 moths
- 40 (50%) had a peak flight of 100-200 moths
- 8 (10%) had a peak flight over 200 moths (per week monitored).
- Peak flight was 1st or 2nd week of JULY

SPAG Spring Spray Options

- Altacor
- Assail
- Avaunt
- Intrepid, Confirm
 - Troubadour Helena
 - Turnstyle UPI



- Best management approach is to focus on the spring
- Summer populations much harder to monitor and manage
- Delegate and Intrepid best (only) choices for spring management
- Med-large larvae Delegate?
- Some growers have better luck with Intrepid even on larger larvae!

FUNGICIDES - Alternate, rotate, or sequence different pesticide MoA classes

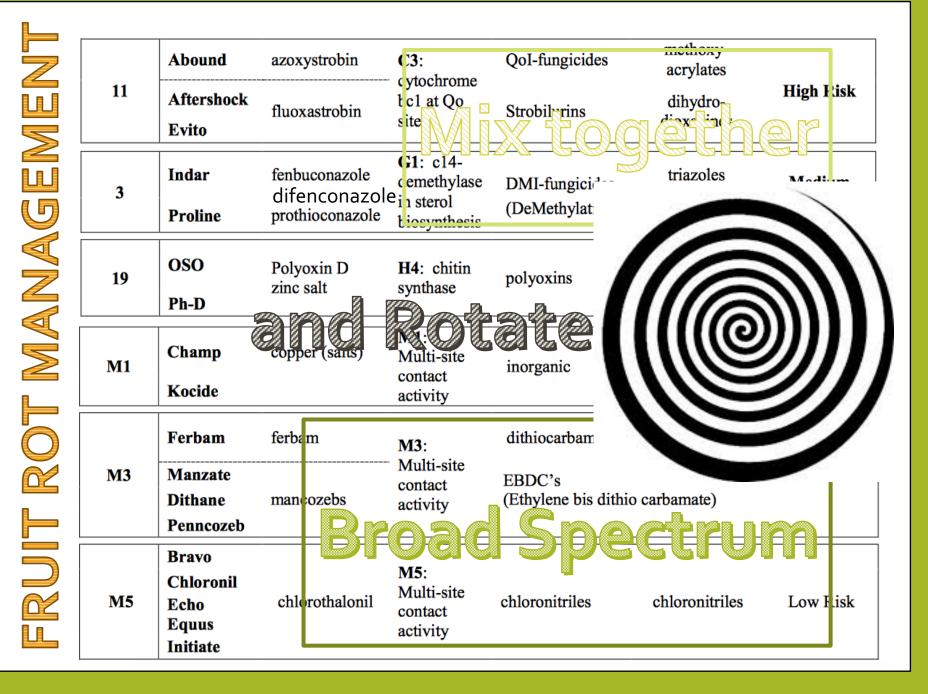
Use FRAC, IRAC, and HRAC when choosing chemicals!

- Do not rely on product names
- Do not rely on active ingredients
 - Many different products and active ingredients can be in the same group!

FUNGICIDE RESISTANCE

Fungicide Resistance Action Committee (FRAC) Grouping for cranberry fungicides

	FRAC GROUP	TRADE NAME	COMMON NAME	MODE OF ACTION	GROUP NAME	CHEMICAL GROUP	Resistance Development Risk
	4	Metastar Ridomil Ultra Flourish	mefenoxam metalaxyl	A1: RNA polymerase I	PA – fungicides (PhenylAmides)	acylalanines	High Risk
Satori Quadris⊺		Abound Aftershock Evito	azoxystrobin fluoxastrobin	C3: cytochrome bc1 at Qo site	QoI-fungicides Strobilurins	methoxy- acrylates dihydro- dioxazines	High Risk
azoxy+di	tencona 3	zole Indar Proline	fenbuconazole prothioconazole	G1: c14- demethylase in sterol biosynthesis	DMI-fungicides (DeMethylation Inh	triazoles ibitors)	Medium Risk
	19	OSO Ph-D	Polyoxin D zinc salt	H4: chitin synthase	polyoxins	peptidyl pyrimidine nucleoside	Medium Risk


FUNGICIDE RESISTANCE


		Aliette Legion	fosetyl-Al aluminum-tris			ethyl phosphonates	
Badge Copper (Fosphite Fungi-Phite K-Phite Phostrol ProPhyt Rampart	phosphorous acids and salts	Unknown	phosphonates		Low Risk
Cuprofix Kentan Kocide	<u>M1</u>	Champ Kocide	copper (salts)	M1: Multi-site contact activity	inorganic	inorganic	Low Risk
MasterC Nordox		Ferbam	ferbam	M3:	dithiocarbamates	dithiocarbamates	
Nu-Сор Тор Сор	1110	Manzate Dithane Penncozeb	mancozebs	 Multi-site contact activity 	EBDC's (Ethylene bis dithio	EBDC's Ethylene bis dithio carbamate)	
	M5	Bravo Chloronil Echo Equus Initiate	chlorothalonil	M5: Multi-site contact activity	chloronitriles	chloronitriles	Low Risk

FUNGICIDE RESISTANCE

	33	AliettefosetyLegionalumi				ethyl phosphonates	
		Fosphite Fungi-Phite K-Phite Phostrol ProPhyt Rampart	phosphorous acids and salts	Unknown	phosphonates		Low Risk
	M1	Champ Kocide	copper (salts)	M1: Multi-site contact activity	inorganic	inorganic	Low Risk
		Ferbam	ferbam	M3:	dithiocarbamates	dithiocarbamates	
Rop	M3 Der	Manzate Dithane Penncozeb	mancozebs	Multi-site contact activity	EBDC's (Ethylene bis dithio carbamate)		Low Risk
	M5	Bravo Chloronil Echo Equus Initiate	chlorothalonil	M5: Multi-site contact activity	chloronitriles	chloronitriles	Low Risk

		Abound	azoxystrobin	C 3:	QoI-fungicides	acrylates	
	11	Aftershock Evito	fluoxastrobin	cytochrome l c1 at Qo site	Strobiltrins	dihydro-	High <mark>L</mark> isk
	3	Indar Proline	fenbuconazole difenconazo prothioconazole	G1: c14- cemethylase bleinsterol tiosynthesis	DMI-fungicides (DeMethylation In	triazoles	Medium Risla
	19	OSO Ph-D	Polyoxin D zinc salt	H4: chitin synthase	polyoxins	peptidyl pyrimidine nucleoside	Medium Risk
T MANAGEMEN	M1	Champ Kocide	copper (salts)	M1: Multi-site contact activity	inorganic	inorganic	Low Risk
	М3	Ferbam Manzate Dithane Penncozeb	ferbam mancozebs	M3: Multi-site contact activity	dithiocarbamates EBDC's (Ethylene bis dithio	dithiocarbamates	Low Lisk
	M5	Bravo Chloronil Echo Equus Initiate	chlorothalonil	M5: Multi-site contact activity	chloronitriles	chloronitriles	Low Lisk

