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Topological defects are crucial to the thermodynamics and structure of condensed matter systems. For
instance, when incorporated into crystalline membranes like graphene, disclinations with positive and
negative topological charge elastically buckle the material into conical and saddlelike shapes, respectively.
A recently uncovered mapping between the interelement spacing in 2D columnar structures and the metric
properties of curved surfaces motivates basic questions about the interplay between defects in the cross
section of a columnar bundle and its 3D shape. Such questions are critical to the structure of a broad class of
filamentous materials, from biological assemblies like protein fibers to nanostructured or microstructured
synthetic materials like carbon nanotube bundles. Here, we explore the buckling behavior for elementary
disclinations in hexagonal bundles using a combination of continuum elasticity theory and numerical
simulations of discrete filaments. We show that shape instabilities are controlled by a single material-
dependent parameter that characterizes the ratio of interfilament to intrafilament elastic energies. Along
with a host of previously unknown shape equilibria—the filamentous analogs to the conical and saddlelike
shapes of defective membranes—we find a profoundly asymmetric response to positive and negative
topologically charged defects in the infinite length limit that is without parallel to the membrane analog.
The highly nonlinear dependence on the sign of the disclination charge is shown to have a purely geometric
origin, stemming from the distinct compatibility (or incompatibility) of effectively positive- (or negative-)
curvature geometries with lengthwise-constant filament spacing.

DOI: 10.1103/PhysRevX.8.031046 Subject Areas: Condensed Matter Physics,
Materials Science, Soft Matter

I. INTRODUCTION

Topological defects are fundamental to the properties of
ordered materials, from their structure and thermodynamics
to their dynamics and mechanical response. There is a long
history, dating back to some of the earliest mathematical
models of defects [1–3], of understanding the nonlinear
influence of topological defects onmaterial structure through
the lens of differential geometry. In such a description,
topological defects are understood as sources for metric
deformation in solid media [4], specifically curvature multi-
poles, leading to intrinsic stresses that reshape the material
and its stress response. Far more than descriptive, the
relationship between intrinsic (Gaussian) curvature and
topological defects becomes evenmore profound for ordered

systems that are free to “reshape their metrics,” such as 2D
ordered membranes of both crystalline and liquid crystalline
(e.g., 2D in-plane polar, nematic, or smectic order) varieties
[5–9]. The flexibility of out-of-plane deformations in such
systems gives rise to an instability, in which the in-plane
metric of a thin membrane may adapt to its 3D environment
to accommodate the non-Euclidean geometry favored by
disclinations (and multipole combinations thereof, such as
dislocations), leading to a spontaneous buckling of suffi-
ciently thin membranes [6]. Beyond the relevance to self-
organizedmatter, themechanical and geometric principles of
defects in elastic sheets is now a cornerstone of the current
approaches for designing and engineering 2D origami and
kirigami materials [10–13].
In this paper, we analyze the defect-induced geometric

instability of a parallel class of 2D ordered matter:
columnar or filamentous bundles. This is done using a
structural model that describes cohesive assemblies of
many quasi-1D elements (e.g., filaments or columns)
possessing 2D order transverse to their backbone. This
model applies to a broad class of materials, from assemblies
of flexible filaments (e.g., protein filaments [14–18] or
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synthetic nanotubes [19–22]) that self-assemble into cable-
like structures via attractive interactions and fibers formed
by self-stacking molecules [23,24], to finite domains of
columnar liquid crystals [25–27], or even condensed phases
of vortices on multicomponent superconductors [28]. This
class of material is two-dimensionally ordered in the sense
that it retains translational symmetry along the filaments or
columns [29]. Recent works [30–32] demonstrate that
columnar systems, like membranes, are also capable of
altering their geometry by modifying their 3D embedding.
But unlike membranes which deflect out of plane, this
deformation occurs through the geometrically nonlinear
coupling between the columns’ orientations and transverse
spacings (i.e., their metric). Awell-known example of such
a coupling in bulk columnar media is the Helfrich-Hurault
instability [33], in which a sufficiently large transverse
tension drives a nonuniform tilt of the columns, thus
maintaining a more uniform intercolumn spacing at the
expense of bending [34]. Driven by the mechanics of metric
deformation, this instability is the columnar analogy to the
Euler buckling of a 2D elastic sheet under compression,
which underlies the 3D buckling behavior of defective
crystalline membranes. In contrast, for columnar media
with defects, the consequences of the geometric instability
to tension are not known.
We exploit this analogy between 2D crystals and

columnar materials to characterize the structural instabil-
ities triggered by the stress from topological defects in the
cross-sectional order of bundles. Specifically, we consider
the instabilities driven by elementary fivefold (positive) and
sevenfold (negative) disclinations in otherwise hexago-
nally ordered bundles, characterized, respectively, by the
removal or insertion of a 60° wedge of crystalline material
[29]. Just as in 2D crystals, disclinations and dislocations
can be characterized via a Volterra construction corre-
sponding to the mismatch of lattice rotation and displace-
ment around a closed loop encircling the defect.
Disclinations are quantified by a topological charge s
measuring the angular turning of lattice directions around
the defect, which must be integer multiples of 2π=6 so that
the array remains sixfold at all points except defect cores.
The analogous problem, the shape of hexagonally ordered
membranes with five- and sevenfold disclinations, was
studied by Seung and Nelson, in the context of the Föppl–
von Kármán (FvK) theory of crystalline sheets [6]. Creating
a fivefold (sevenfold) disclination requires removing (add-
ing) a wedge of crystalline material from the sheet, which
stretches (compresses) distances azimuthally around the
defect, yielding tensile (compressive) stresses along the
hoop direction. These stresses are mechanically balanced
by compressive (tensile) stresses along the radial lines
extending from the disclination. The fact that thin elastic
sheets are unstable to compression now justifies the shapes
favored by disclinations: Fivefold defects favor conical
shapes—with positive Gaussian curvature—buckled along

the radial lines extending from the defect, while sevenfold
defects favor saddle shapes—with negative Gaussian
curvature—buckled along the azimuthal hoops surrounding
the defect [shown visually in Fig. 1(a)]. The buckling
behavior of a crystalline sheet of radius R is governed by
a single dimensionless number, the Föppl–von Kármán

FIG. 1. (a) A flat flexible crystalline membrane will buckle into
a positively curved dome (left) or negatively curved saddle (right)
in response to the insertion of a fivefold (red) or sevenfold (blue)
disclination. (b) The differing geometries can be characterized by
comparing the radial distance between two disks R (dashed black
line) and the circumferential distance from an outer disk to itself
C (solid purple line). For a flat surface, C ¼ 2πR (center), but for
a positively curved surface, C < 2πR (left), while a for a
negatively curved surface, C > 2πR (right). (c) Equivalent geom-
etries exist for flexible columnar materials when we consider the
distance of separation perpendicular to the filaments. A pattern of
twist (left) reduces the circumferential distance between filaments
(solid purple), similar to a dome. Alternatively, a pattern of splay
(right) reduces the radial (dashed black line) distance between
filaments, similar to a saddle. (d) Based on these geometries,
conjectured structures are shown for a bundle with a fivefold
disclination (left) and sevenfold disclination (right).
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number, γs ≡ YR2=B, which characterizes the crystal’s
relative resistance to in-plane stretching versus out-of-plane
bending, described by the elastic moduli Y and B, respec-
tively. Disclinated crystals remain flat for small γs, but
become unstable above a threshold value (which is some-
what higher for sevenfold than fivefold), at which point in-
plane stretching exceeds the cost of bending to yield a
buckled 3D shape.
Complementary to this mechanical perspective is the

geometrical one, in which topological defects redefine the
metric of the 2D surface inwhich the crystal is embedded [4].
Consistent with the Gauss-Bonnet theorem [35], the deficit
or excess angle associated with disclinations can be accom-
modated without far-field strain, provided that it is balanced
by the integrated Gaussian curvature of the sheet. This is
illustrated in Fig. 1(b), where the relative lengths of the radial
(dashed black line) and circumferential (solid purple) paths
along the surface depend on the curvature. Similarly, in a
columnar material, variations in filament orientation can be
linked to geometrical constraints on their spacing [30,32],
which in turn has a precise connection to themetric geometry.
This can be seen in the simplified depictions of filament
bundles in Fig. 1(c), which also shows the radial (dashed
black line) and circumferential (solid purple) distances
between filaments. The result is a unique equivalence
between a pattern of filament orientation and a corresponding
surface with a Gaussian curvature of

Keff ≃
1

2
½∂2

xðtyÞ2 þ ∂2
yðtxÞ2 − 2∂x∂yðtxtyÞ�; ð1Þ

where tx and ty are, respectively, the x and y components of
filament tilt in the plane normal to their mean orientation ẑ.
Given the generic instability of columnar structures to

the internal tensile stresses generated by disclinations, it is
reasonable to expect that sufficiently flexible bundles will
buckle into nonparallel 3D shapes. However, it is a priori
unclear exactly what 3D patterns of orientation will be
triggered by such defect-generated stresses, nor what
parameters control their relaxed shapes (as γs does for
crystalline sheets). Beyond their mechanical and geomet-
rical correspondence as 2D ordered materials, crystalline
membranes and columnar bundles have obvious and
profound differences. Specifically, bundles are fully three-
dimensional structures; i.e., their full degrees of freedom
are not reducible to a 2D manifold. And it remains to be
understood how their buckling behavior relates to their
well-studied 2D membrane counterparts. For example,
assuming the pattern of tilt to be axisymmetric in response
to a centered disclination, one might anticipate that five-
and sevenfold defects generate the respective 3D double-
twist (left) and undulating splay (right) tilt patterns shown
in Fig. 1(d) [32]. As we describe below, the distinction
between such shape modes gives rise to vastly different
elastic energies. This reveals a fundamental asymmetry

between the ability of bundles to realize the analogs of
positive- or negative-curvature metric geometries, and
as a consequence, we observe a profoundly asymmetric
response to these two elementary defect types.
In this paper, we employ a combination of continuum

elastic theory and discrete-filament simulations of a min-
imal model of cohesive bundles to study the shape
transitions driven by single elementary five- or sevenfold
disclinations. Based on an axisymmetric model of infinite-
length bundles, we show that the buckling behavior of
bundles is governed by a parameter that we a call the
filamentary von Karman (fil-vK) number. Analogous to
the FvK number for membranes, the fil-vK measures the
dimensionless ratio of intercolumnar distortions (imposed
by defects) to the cost of the lengthwise bending of
filaments. However, unlike the case of crystalline sheets,
we show that fivefold defects lead to shape buckling of all
bundles, without a threshold for size or filament flexibility.
In contrast, we show that sevenfold defects are charac-
terized by a finite fil-vK number instability threshold for
axisymmetric splay undulations (i.e., finite bundle diameter
or filament stiffness). We show that this dramatic asym-
metry derives from the existence of a uniquely soft tor-
sional mode available to fivefold defects that generates an
equivalent positive curvature without lengthwise variation
in strains, whereas for sevenfold defects, no such shape
mode exists that provides “negative curvature” without
breaking longitudinal (i.e., lengthwise) symmetry, and thus
amplifying intercolumn strains. Indeed, we find that this
additional frustration of negative curvature underlies a
much more profound symmetry breaking for sevenfold
bundles that can be described with the simplistic
assumption of axisymmetry. Comparing our continuum
analysis to discrete-filament simulations, we find that for
fivefold defective bundles composed of very flexible
filaments, there is a spectrum of metastable torsionally
wrinkled modes, while for sevenfold defective bundles, we
find significantly more complex nonaxisymmetric modes
that compromise the drive for negative curvature with the
preference for uniform interfilament strains along the
length. We argue that these low-symmetry “countertwisted”
tilt patterns allow for a significant reduction of the thresh-
old diameter for buckling sevefold defective bundles, yet a
finite threshold must remain in the infinite length limit
due to the breaking of lengthwise symmetry. Nevertheless,
these results are consistent with the qualitative distinctions
captured by the asymmetric shape modes. Finally, we
conclude with a discussion of fil-vK number values and
their ramifications for various experimental systems of
cohesive filament bundles.

II. AXISYMMETRIC SHAPE INSTABILITIES

In this section, we explore a continuum elastic descrip-
tion of a columnar bundle possessing a five- or sevenfold
disclination in its cross section. We then analyze how these
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defects trigger axisymmetric shape instabilities. While we
show in Sec. III that the assumption of axisymmetry
ultimately fails for sevenfold defective bundles due to
frustration between negative-curvature geometry and longi-
tudinal symmetry, the analysis of the axisymmetric shape
modes most clearly illustrates the mechanical and geo-
metric principles that underly a profoundly asymmetric
response to positive versus negative disclinations. Further-
more, it highlights the critical combination of the material
parameters that govern the shape response of bundles to
defects. Our analysis examines the case of a hexagonally
ordered columnar material, which can be considered to be a
generic example of a filament bundle.

A. Continuum elasticity of defective bundles

Consider an initially cylindrical bundles with a radius R
and length L → ∞ along the ẑ axis. Here, as in
Refs. [30,36], the stress-free reference state is described
as a 2D hexagonal array of parallel filaments. Deformations
are measured relative to the reference configuration by the
displacements u⊥ðxÞ of local filaments at a point x in the
bundle. As there is no cost for lengthwise displacements in
such a material, u⊥ðxÞ is 2D and perpendicular to ẑ. The
elastic energy for deformation is

Eelas ¼
1

2

Z
dVðλu2ii þ 2μuijuijÞ; ð2Þ

where λ and μ are the Lamé coefficients deriving from
interfilament cohesive forces [33,37], and related to the 2D
Young’s modulus, Y ¼ 4μðλþ μÞ=ðλþ 2μÞ, and Poisson
ratio, ν ¼ λ=ðλþ 2μÞ of the filament array. The strain
tensor has components in the xy plane [38],

uij ¼
1

2
ð∂iuj þ ∂jui − titjÞ; ð3Þ

where ti is the in-plane component of the filament tangent
unit vector. In the limit of small tilt (j∂zu⊥j ≪ 1), the
tangent is

tðxÞ ≃ ẑþ ∂zu⊥: ð4Þ

Additionally, we consider the elastic cost of lengthwise
gradients of tðxÞ associated with filament curvature κ ¼
jðt · ∇Þtj [39],

Ebend ¼
K
2

Z
dVj∂ztj2; ð5Þ

where the value of the Frank constant K is proportional to
the intrinsic bending modulus of filaments B. The ratio of
intra- to interfilament elastic moduli defines a length scale
λ2b ≡ K=Y, typically associated with the penetration depth
of bending deformation in a columnar material [34].

Comparing this size scale to the lateral size of the bundle
defines the dimensionless fil-vK number:

γ ≡
�
R
λb

�
2

¼ YR2

K
: ð6Þ

Analogous to the FvK number for thin membranes γs, γ
assesses the relative costs of interfilament versus intrafila-
ment deformations in the bundle and, as we show below, is
critical for regulating the buckling of unstable bundles.
To explore the connection between the defect-induced

instabilities of crystalline membranes and columnar bun-
dles, we first consider the Euler-Lagrange equations of E ¼
Eelas þ Ebend for the case of a tilt pattern tðxÞ that is fixed
along the length [δtðxÞ ¼ 0]. These are simply conditions
of in-plane force balance,

�
δE

δujðxÞ
�

δtðxÞ¼0

¼ −∂iσij ¼ 0; ð7Þ

with a stress of σij ¼ δijλuii þ 2μuij. Like the case of a
membrane with a fixed topography, the relaxation of the
displacement u⊥ for bundles can be derived from the
conditions of in-plane force balance augmented with a
compatibility equation. This equation enforces the stress
contributions from both the in-plane components of tðxÞ as
well as singularities in the displacement fields associated
with topological defects in the 2D crystalline order,

Y−1∇2⊥σii ¼ sðxÞ − Keff ; for δtðxÞ ¼ 0; ð8Þ

where sðxÞ ¼ P
α sαδ

ð2Þðx − xαÞ is the areal density of a
topological disclination charge (sα is the charge and xα is
the position of the disclination α), and Keff is the Gaussian
curvature of a surface that approximates the intercolumnar
metric of the 2D bundle cross section [32]. Illustrated
visually, Fig. 1(b) shows a 2D surface that approximates the
interfilament distances found in Fig. 1(c). Hence, both
topological defects [sðxÞ] and filament tilt patterns for
which Keff ≠ 0 act as sources for far-field interfilament
stresses. This relation has been previously used to show, for
example, that positively charged (fivefold) disclinations
become stable for bundles with fixed and sufficiently large
double twist [i.e., the tilt pattern shown on the left in
Fig. 1(d)].
However, there is a complication in determining the

buckling modes for negatively charged (sevenfold) discli-
nations: this unusual case of double twist is the only tilt
pattern that yields a constant strain along the bundle’s
length, but this pattern alone creates the wrong effective
curvature (positive rather than negative). Alternatively,
while a locally splayed geometry where Keff < 0 may
partially neutralized a negatively charged (sevenfold)
disclination—the right-hand image in Fig. 1(d)—this tilt
pattern unfavorably breaks lengthwise symmetry (i.e.,
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because ∂zu⊥ ¼ t⊥). In Sec. II B, this axisymmetric splay
pattern is used to determine the generic γ dependence of
buckling sevenfold defective bundles. However, in Sec. III,
our discrete filament simulations reveal that frustration
between negative curvature and longitudinal symmetry
leads to a far more complex and lower-energy tilt pattern
that preempts the axisymmetric instability for sevenfold,
but not fivefold, defective bundles. We show that the
breaking of lengthwise symmetry cannot be avoided for
a sevenfold defective bundle, and thus, the qualitative and
profound distinctions between five- and sevenfold defective
bundles predicted by the continuum analysis are still borne
out by simulations with unconstrained shapes.
Our purpose is to understand the equilibrium patterns of

displacement (and thus orientation) that result from fixed
topological defect structure. Therefore, to accurately deter-
mine mechanical equilibrium through the Euler-Lagrange
conditions, we must consider lengthwise variation of u⊥
and the associated variation of t⊥ ≃ ∂zu⊥. These more
general equilibrium conditions used in the instability
analysis below take the form

δE
δujðxÞ

¼ −∂iσij þ ∂z½tiσij� þ K∂3
zti ¼ 0: ð9Þ

Relative to the case of a fixed tilt pattern in Eq. (7), this
force balance introduces two additional terms. The first
term, ∂z½tiσij�, couples stresses in consecutive “layers” of
the bundle, and it is the analog of the “Young-Laplace”
contribution to the normal force (i.e., in the first FvK
equation) from in-plane stresses in curved membranes. The
last term, proportional to K, derives from torques generated
by bending of the filaments, which are expressed here as in-
plane forces.

B. Linear stability of parallel, defective bundles

Given this foundation of a continuum elastic model of
columnar materials, we now employ linear stability to
determine the buckling patterns caused by centered dis-
clinations. The results will reveal a fundamental difference
in the charge (seven- versus fivefold) dependence of
deformation, owing to symmetry breaking in the length-
wise direction, an aspect unique to columnar materials.
To begin, we consider the stability of an initially parallel

bundle (t0 ¼ ẑ) possessing a centered disclination, whose
equilibrium stress σ0ij satisfies Eqs. (8) and (9),

σ0rr ¼
Ys
4π

lnðr=RÞ; σ0ϕϕ ¼ Ys
4π

½lnðr=RÞ þ 1�; ð10Þ

and σrϕ ¼ 0, where r and ϕ are, respectively, the cross-
sectional in-plane radial and polar angle coordinates, and
s ¼ �π=3 is the topological disclination charge (where �
refers, respectively, to five- and sevenfold defects). From
this base displacement field u0, generated by the defect

(associated with σ0ij), we apply nonparallel displacements
of δuðxÞ, such that uðxÞ ¼ u0ðxÞ þ δuðxÞ. In particular,
we consider deformations that are periodic along z and
axisymmetric in the plane:

δuðxÞ ¼ δurðrÞ cosðkzÞr̂þ δuϕðrÞ cosðkzÞϕ̂: ð11Þ

These two periodic shape modes we refer to as splay and
torsional wrinkles, respectively, for k ≠ 0. We can now
analyze the instability of a parallel bundle to splay
(δur ≠ 0) or torsional (δuϕ ≠ 0) shape modes derived from
the existence of solutions to the force balance equations.
Naturally, we consider the limit of small deflections from
the initial parallel state, or in other words, the solution to
Eq. (9), to linear order in δuðxÞ.
The (linearized) force balance equations can be recast in

a simple and surprisingly familiar form (see Appendix B),

�
−
R2

2
∇2
r þ VαðrÞ

�
δuα ¼ −ϵαδuα; ð12Þ

where ∇2
rf ¼ ∂r½r−1∂rðrfÞ� is the radial part of the 2D

Laplacian, and the exact forms of VαðrÞ and ϵα are given
in Eqs. (B13) and (B15). The “potential,” VαðrÞ∝
−sðkRÞ2ðlnrþC0Þ, derives from the coupling of tilt to the
defect-induced stress, while the eigenvalue, ϵα∝ ðkRÞ4=γ,
derives from forces induced by bending. Thus, the stability of
defective bundles to axisymmetric splay or torsionally
wrinkled shapes are formally equivalent to finding (zero
angular momentum) bound states of a 2D hydrogen atom
“energy” −ϵα, whose central “charge” is sk2. The boundary
conditions are determined by the condition of finite stress
at the center of the bundle, or δuð0Þ ¼ 0, and vanishing
stresses at the outer bundle surface, which take the form for
radial stresses,

ð∂rδur þ νδur=rÞr¼R ¼ 0; ð13Þ

and azimuthal stresses,

ð∂rδuϕ − δuϕ=rÞr¼R ¼ 0: ð14Þ

While superficially similar in form, the distinct boundary
conditions underly profound difference between splay and
torsional deformations of 2D columnar materials. Torsional
modes with “zero kinetic energy,” that is, δuϕ ∝ r, generate
no shear stress at the bundle surface, while the same is not
true corresponding to radial modes, which indicate that splay
ground states acquire “kinetic energy.” As a result, for splay
modes the existence of “bound states,”where ϵα ≥ 0, occurs
only for finite k where VrðrÞ is sufficiently strong, while
for torsional modes bound states exist for all wave vectors
down to k → 0.
The results of this ground-state analysis are shown in

Fig. 2 (for ν ¼ 1=3, chosen to make comparisons to our
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discrete model later on). Here, γcðkÞ shows the critical
fil-vK number, above which five- and sevenfold defective
bundles are unstable to torsional and splay instabilities at a
wave vector k. The distinct wave vector dependence of
these instabilities follows from simple energetic arguments:
Consider first a torsional mode, δuϕ ≈ τ0r cosðkzÞ, where
τ0 is a constant. Because this mode is a purely rigid rotation
around ẑ, to linear order elastic strains vanish (i.e.,
∂iuj þ ∂jui ¼ 0), and the only elastic strains are generated

by tilt δt ≈ τ0krϕ̂, leading to a mean strain hδuϕϕi ≈
−k2τ20r2 that is compressive in the hoop direction. This
leads to a relaxation of defect-induced stress ofR
dAσ0ϕϕhδuϕϕi ≈ −Ysk2R4τ20, which is dominated by large

r, where σ0ϕϕðrÞ=s > 0. Combining this with the bending
cost gives an energy density εtor for torsional wrinkling
(relative to the parallel state):

Δεtor ≈ ½−Ysk2R2 þ Kk4R2�τ20 þOðτ40Þ: ð15Þ

This shows that the relaxation of tensile strain generated by
fivefold defects (s ¼ þπ=3) exceeds the bending cost for
modes, k < kc ≈ λ−1b , or γc ∼ ðkRÞ2, with the scaling shown
in Fig. 2(a). Hence, bundles of any size or stiffness are
unstable to long-wavelength (k → 0) torsional wrinkles.
In infinite bundles, such modes correspond to uniform
helical twist δt ≃Ωrϕ̂, studied previously as an ansatz for
elastic energy ground states in the presence of fivefold
disclinations [30].

As L → ∞, this lack of a threshold for the shape
instability driven by fivefold defects is unlike the analogous
problem of conical buckling of crystalline sheets. This
difference derives from the fact that in the latter case the
elastic energy released by conical buckling is proportional
to the square of the sheet curvature (i.e., the Gaussian
curvature), just as the (positive) energy cost of bending.
Hence, membrane stiffness must fall below a critical value
for shape buckling. However, for cohesive bundles, the
specific shape mode driven by positive disclinations is a
soft mode, generating elastic costs only atOðΩ4Þ, which for
small twists are always overwhelmed by the elastic energy
released by twist, proportional to sΩ2.
Turning to the case of sevenfold defects (s ¼ −π=3), the

energetic analysis proceeds along similar lines for a shape
mode ansatz of radial splay, which we approximate by the
linear profile δur ≈ ρ0r cosðkzÞ, where ρ0 is a constant.
However, unlike torsional wrinkles, splay leads not only to
tilt-induced radial strains (∝ ðkρ0rÞ2) but also to linear
in-plane strains, due to area dilation ∇⊥ · δu ∼ ρ0 cosðkzÞ,
generating an elastic cost (per unit volume) of ≈ Yρ20. Thus,
the cost of splay modes has the form

Δεsplay ≈ ½Y þ Ysk2R2 þ Kk4R2�ρ20 þOðρ40Þ; ð16Þ

where the cost at k → 0 derives from thewell-known coupling
between splay and lengthwise density variations in columnar
systems. The radial splay modes that relax elastic energy (due
to the collapse of the radial tension generated by sevenfold
defects) are unlike twist in that they are not soft modes.
The balance between relaxing bending and elastic energy
selects an optimal wrinkling wavelength kc ≈ jsj1=2λ−1b , with
a net relaxation proportional to −Ys2γ. Thus, only when the
fil-vK number exceeds a threshold value will the sevenfold
defect drive (finite k) splaywrinkling of the bundle. This result
for sevenfold defects is shown inFig. 2(b).Unlike the torsional
wrinkling in the presence of a fivefold defect, which becomes
unstable at long wavelengths, now there is a range of long
wavelengths (small k) for which no unstable solution exists at
any γ. The minimum unstable value of γc occurs at a mode
kR ¼ 21.8, for which γc ¼ 13685, setting an upper limit
threshold fil-vK number for the splay instability driven by a
sevenfold disclination. For large k, the stability line again
follows the scaling of γc ∼ ðkRÞ2.
The stability analysis to axisymmetric shape modes

illustrates a profound asymmetry between the response
to five- versus sevenfold defects in the infinite length limit.
Bundles with centered fivefold defects are always unstable,
while for sevenfold defects parallel bundles are stable up to
a finite γ (proportional to their lateral area), beyond which
they become unstable to lengthwise shape modes at a finite
wavelength. This is in sharp contrast to crystalline mem-
branes, where the modest asymmetry in the bending cost of
respectively conical versus saddlelike shapes driven by
five- and sevenfold defects leads to only slight difference in

FIG. 2. The stability map of torsional wrinkles for a bundle in
terms of the wave vector k and the fil-vK number γ. Above this
line, bundles are unstable to torsional wrinkling. Visualizations of
the unstable modes are shown for each case. (a) A fivefold
disclination yields a stability range that decreases to zero in the
long-wavelength limit of k → 0, i.e., homogeneous pitch. (b) Al-
ternatively, a sevenfold disclination is unstable to splay undu-
lations. The minimum γ unstable mode (black dot) occurs for
kR ¼ 21.8 and γc ¼ 13685. The inset shows a schematic com-
parison between the axisymmetric instability and the γc corre-
sponding to the nonaxisymmetric shape modes explored by the
discrete filament simulations (green dot), analyzed in Sec. III B
and extrapolated to the L → ∞ limit.
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the critical FvK number for buckling. For bundles, this
dramatic asymmetry can be attributed to the fact that
“double twist” generates the equivalent of positive curva-
ture geometries (Keff > 0), but requires no strain variation
along the bundle’s length. In fact, it can be shown that the
uniform double-twist pattern is the only texture that does
not break lengthwise symmetry [40]. Therefore, it is the
only soft mode available for deformation (i.e., available to
any γ ≠ 0) because it does not lead to the immense strains
caused by area dilation. Consequently, generating negative
equivalent curvature (Keff < 0) through axisymmetric
splay leads to an elastic cost for such modes that does
not vanish in the k → 0 limit.
In Sec. III B, we find that sevenfold defective bundles are

still unstable to modes that (must) break lengthwise
symmetry; however, there exists a more exotic tilt pattern
of lower energy that allows for buckling at a lower (though
necessarily still nonzero) γ. As a consequence, the asym-
metric splay mode that was described analytically in the
current section is in fact preempted by this nonaxisym-
metric shape mode, shown schematically in the inset to
Fig. 2(b). Although this instability is triggered earlier
(γc ≈ 1500 and kR ≈ 3), we show below that the nega-
tive-curvature tilt pattern breaks lengthwise symmetry as
required, and therefore imposes a finite value for the critical
fil-vK number. This behavior is in stark contrast to fivefold
defective bundles that are unstable for all γ.
As alluded to above, the linear stability analysis of

axisymmetric modes does not necessarily capture the true
symmetries of the most stable deformation pattern, nor the
far-from-threshold buckled configuration. Additionally, we
have ignored the effects of bundle ends by taking theL=R →
∞ limit. In the following sections, we lift these constraints
and compare our analytic results to those from simulations of
a finite-length discrete-filament model of cohesive bundles.

III. DISCRETE MODEL OF COHESIVE
FILAMENT BUNDLES

Here, we introduce a bead-spring model of cohesive
filaments. Our purpose is to determine the elastic energy
ground states of bundles containing disclinations, without
constraining the symmetry of their deformed shapes, as was
done in Sec. II. This model treats individual filaments as
semiflexible and cohesive “featureless” tubes that incur no
elastic cost for lengthwise sliding of neighboring filaments,
but do generate costs for lateral deformations that strain
interfilament distances.
A bundle containsNf filaments, indexed by i ¼ 1;…; Nf,

with each filament discretized into Nv vertices, or “beads,”
indexed by n ¼ 1;…; Nv. Vertex positions along a single
filament are located at the position xi;n, and we define li;n as
the length of the line segment between vertices n and nþ 1

on filament i. The local tangent at n is defined as T̂i;n ¼
ðxi;nþ1 − xi;nÞ=li;n, from which the cost of intrafilament
bending is defined,

EðiÞ
b ¼ B

XNv−1

n¼1

1 − T̂i;n · T̂i;nþ1

li;n
: ð17Þ

In the limit that Nv → ∞, this energy asymptotically
approaches the standard elastic energy for a semiflexible,
wormlike chain.
The elastic cost of cohesive interactions between neigh-

boring filaments i and j is modeled as a series of generic
Hookean springs,

Eði;jÞ
elas ¼ ϵ

2

XNv

n¼1

ðΔn;ij − Δ0Þ2; ð18Þ

where Δn;ij represents the distance of closest contact from
vertex n on filament i to a point along filament j. This
distance intersects j at a right angle, as shown in Fig. 3 [41].
In our discretized model, filaments are composed of line
segments anchored to jointed vertices, where Δn;hiji is
calculated between a vertex and its neighboring segment,
rather than between vertices [42]. For sufficiently large Nv,
this model allows for frictionless sliding between neighbor
filaments (particularly when they are straight).
Assembling Eqs. (17) and (18), the total free energy of

our discrete filament model is

E ¼
XNf

i¼1

�
EðiÞ
b þ 1

2

X
hiji

Eði;jÞ
elas

�
; ð19Þ

where the final sum is over all the nearest-neighbor
filaments j to filament i. In Appendix A, it is shown
that in the limit of Nv → ∞ and Nf → ∞, the elasticity
of this model approaches the continuum limit described
by Eqs. (2) and (5) with μ ¼ λ ¼ ffiffiffi

3
p

ϵ=2l0, ν ¼ 1=3, and

FIG. 3. Discrete model of cohesive filaments and their inter-
actions, for Eqs. (17) and (18). The distance of closest contact
(red line) represents the true separation between filaments i and j.
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K ¼ 2B=
ffiffiffi
3

p
Δ2

0, where l0 is the initial intrafilament vertex
spacing [43].
It is straightforward to include an intrafilament stretching

cost that favors a constant li;n ¼ l0 and acts to maintain
inextensibility of filaments. This would be necessary,
for example, for a physically accurate description of the
interplay between 3D shape and the loss of cohesive
contact at the ends of fixed-length filaments. However,
the present goal is to explore and analyze the buckling
behavior of defective bundles, extrapolating to the L → ∞
limit where the effects of boundary interactions are pre-
sumably negligible. Hence, filament lengths are not fixed,
and rather the vertical z coordinates of vertices are fixed at
equally spaced layers (with a separation of l0). This has the
effect of achieving smaller interfilament elastic stretching at
bundle ends than would occur in the fixed-length case.
Strictly speaking, in this model the volume of the bundle
and the length of the filaments are no longer conserved.
However, this situation is arguably more relevant of certain
biological or supramolecular fibers that self-assemble by
adjusting length and radius simultaneously. Regardless, we
discuss how the nongeneric treatment of the bundle ends
influences the buckling behavior for finite bundle length.

A. Fivefold disclinations

Here, we consider the shape transition of bundles with a
central fivefold disclination, introduced through a fixed
topology of interfilament elastic bonds. We focus on the
case of a high aspect ratio with L=R ¼ 8, as we find that
finite-length end effects play a relatively small role in the
their buckling behavior. We consider bundles with Nf ¼
306 filaments (radius R ≈ 10Δ0) and a vertex spacing
of l0 ¼ 0.2Δ0. Energy minimization was performed using
the GSL conjugate gradient package for C [44]. Below,
we explore the structure and energetics of stable and

metastable states beginning with highly flexible filaments
with γ ¼ 25 000. Then, after energy minimization, γ is
reduced by increasing B, and the energy is minimized
again. This process is repeated over 50 steps (in even
logarithmic decrements of γ) until γ ¼ 0.25.
Results for fivefold disclinations are shown in Fig. 4,

where we plot the mean filament twist angle hθi defined as
the mean angle of all filaments with the centerline (i.e.,
cos θi;n ¼ T̂i;n · ẑ) versus γ. Data point colors represent
different initial configurations generated by applying an
azimuthal displacement pattern to all filament vertices of the
form 0.2r cosðnπz=LÞ, where n is an integer that counts the
number of times the handedness of the helical twist changes
along the bundle length. This procedure allows us to bias the
lengthwise symmetry of distinct equilibrium shapes. The
case of n ¼ 0 produces a homogeneously twisted bundle,
where all filaments possess an identical pitch, which is the
lowest-energy state for all tested values of γ. Note that
bundles with fivefold disclinations are always unstable to
homogeneous twist (n ¼ 0) for all values of γ, consistent
with the L → ∞ linear-stability results described above.
In addition to uniform pitch states, we see in Fig. 4 that

metastable oscillating twist states are mechanically stable for
sufficiently large values of γ. These torsionally wrinkled
shapes are characterized by an alternating direction of twist
along the z axis. Our discrete-filament simulations find that
for a given n-wrinkled shape, there is a value of fil-vK,
designated γ�ðnÞ, below which the bundle becomes unstable
to a lower-n structure. These points are highlighted as the
large dots in Fig. 4(a). As γ is decreased, eventually γ�ðnÞ is
reached, and the bundle becomes unstable and undergoes a
large transition to a new lower energy and lower n of
torsional wrinkles. To highlight this trend, Fig. 5(a) shows
the total energy versus γ. For large γ, the transitions between
alternating handedness of twist become sharp kinklike
boundaries, consistent with bending being concentrated over
length scales proportional to λb ¼ R=γ−1=2.

FIG. 4. Minimal energy results for the discrete model of bundles containing a single centered fivefold disclination, for various
numbers of torsional wrinkles n. The mean twist angle hθi is the mean angle of the filaments with respect to the z axis. Dashed black line
shows Eq. (20) for the n ¼ 0 bundles, with γc ¼ 0, θ0 ¼ 22.1°, and ζ ¼ 32=3, consistent with continuum elastic theory [30]. Renderings
are shown of twisted bundles for four values of n at hθi ≈ 20°. Select outer filaments are highlighted orange for viewing purposes.
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The region of stability of n-wrinkled bundles is consistent
with the linear-stability analysis of the continuum model, by
assuming that torsional oscillations are commensurate with
the finite length of the bundle, or kn ¼ πn=L. On one hand,
γcðkÞ, predicted by the continuummodel, defines the point at
which the straight bundle becomes unstable to torsional
wrinkling at wave vector k, while γ�ðnÞ, measured from
simulation results, is the smallest value that an n-wrinkled
bundle is observed to be stable. These two thresholds always
satisfy γ�ðnÞ > γcðknÞ. It is not clear what limits the ability to
resolve mechanical equilibrium of the n-wrinkled state all the
way down to the parallel state (i.e., hθi ¼ 0); presumably this
derives from the combination of the inherent precision limit
of our discrete-filament model and the vanishing of energetic
barriers between nearly unstable and stable modes (with
lowern). Notwithstanding the loss of stability as γ approaches
the limit of stability for the n-wrinkled mode, we estimate the
value of this threshold by fitting the γ dependence of an
n-wrinkled mode to the region near γ ≳ γ�ðnÞ,

hθi ≈ θ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ=ðγ − γcÞ

p −1; ð20Þ

where θ0 is the maximum twist angle far from the transition
point (22.1° for a fivefold disclination), and ζ is a value that
regulates the speed of the transition. This particular form has
twomotivations: first, the expectation that near to the stability
threshold hθi ∼ jγ − γcj−1=2, a characteristic of a supercritical
bifurcation, and second, the predicted γ dependence for
equilibriumuniformn ¼ 0 twist of fivefold defective bundles
has the form of Eq. (20), with θ0 ¼ 2

ffiffiffi
3

p
=9 rad, ζ ¼ 32=3,

and γc ¼ 0 [30]. This formula is shown to agreewell with the
n ¼ 0 results in Fig. 4 (dashed line). The values of the γc ≠ 0

for n ≥ 1 extracted from fits to Eq. (20) are shown in Fig. 6,
with the upper and lower bounding estimates of γ� and
γfitc , showing reasonable agreement between the predicted
dependence γc on k from the continuum theory.
While the total energy of a wrinkled bundle is always

found to be increasing with n for a given γ, we find
evidence that in the large-γ limit oscillating twist structures
for high n tend towards a lower elastic energy than lower-n

FIG. 5. (a) Total energy versus fil-vK number for various n. (b) Just the elastic contribution of the total energy, showing a trend for
higher n modes overtaking lower ones. For γ ¼ 25 000, (c) twist angles of filaments at a distance r from the bundle’s center.
(d) Reconstructed surfaces (using the method detailed in Appendix C) for select values of n, showing how curvature becomes focused
near the central defect for higher n.

FIG. 6. Confirmation of the linear stability prediction of γc from
Fig. 2 compared to the upper (γ�) and lower (γfitc ) bound estimates
for all values of n ¼ 0–6. Inset: Best-fit line from Eq. (20) for the
n ¼ 3 data from Fig. 4.
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structures. Figure 5(b) shows the elastic contribution to the
total energy for large values of the fil-vK number, which
shows that Eelas from relatively high-n states (e.g., n ¼ 6)
tends to decrease faster with γ than lower-n structures.
Extrapolating this to even larger values of γ suggests that
for sufficiently flexible filaments, highly wrinkled bundles
(n → ∞) could become the lowest-energy shape equilibria
(even lower than the uniform twist state) in the γ → ∞
limit, where the cost of filament bending is negligible in
comparison to the elastic cost.
Recalling the analogous case of crystalline membranes,

Seung and Nelson argued that in the asymptotically flexible
limit of γs → ∞, the far-field elastic stress of a fivefold
disclination can be completely screened. This stress focus-
ing is achieved by a nearly isometric conical shape that
concentrates Gaussian curvature to the disclination position
[6]. For the torsionally wrinkled bundles, the tilt pattern
that concentrates Keff to the bundle center is not the
uniformly twisted one, but one where filaments tilt rapidly
from the ẑ direction within the core of the bundle and
adopt a constant θ in the outer bulk of the cross section.
Figure 5(c) shows the twist angle θ as a function of a
filament’s radial distance from the centerline. While this tilt
pattern is possible within a given cross section of the
bundle, it requires deviations from the constant helical
pitch and introduces shear deformations that grow along the
bundle length. Nevertheless, we observe that for large γ
bundle shapes tend towards a similar “curvature focu-
sing” geometry, made possible by the torsional wrinkles.
Figure 4(d) shows triangulated surfaces with intervertex
distances equal to the interfilament distances in the discrete
filament model midway between the alternating wrinkles.
These surfaces show the progressive focusing of curvature
towards the central defect as the number of wrinkles
increases with γ, similar to crystalline membranes (see
Appendix C for how to calculate the Gaussian curvature). If
true, such a feature would be important for stabilizing
nontrivial geometries in crystalline columnar materials.

B. Sevenfold disclinations

In this section, we analyze the shape transitions of
bundles with centered sevenfold disclinations. Unlike the
torsional wrinkles of fivefold defects, our discrete-filament
simulations show that sevenfold defects lead to buckled
shapes that significantly break axisymmetry, in a manner
unlike the splay-undulation ansatz analyzed in Sec. II B.
Nevertheless, despite the different optimal tilt pattern,
discrete-filament simulations do reveal that sevenfold
defects favor shapes that break the lengthwise symmetry
of interfilament strains, and, as required, only above a
critical γ. However, the tilt pattern is such that area dilation
and, therefore, costly in-plane strains are minimized.
Given the complexity of the optimal buckled shapes, we

first focus on the limit of infinitely rigid filaments (γ → 0)
with a finite length L. Bundles of Nf ¼ 106 filaments

(R ≈ 5Δ0), of different lengths, are shown in Figs. 7(a) and
7(b), with L ¼ R and L ¼ 2R, respectively, showing a
deformation pattern with two generic features. Most
obvious is the tilt of the bundle’s centerline with respect
to the z axis. Superimposed on this near-uniform tilt is a
more subtle pattern of tilt variation within the bundle’s
cross section. This pattern is more easily illustrated via the
projections of filament tilt in a plane perpendicular to the
bundle centerline, as shown in Figs. 7(c) and 7(d). The
“double-vortex” pattern viewed in this perspective reveals
the surprising emergence of twist driven by sevenfold
defects, far from the radial splay pattern assumed on the
grounds of axisymmetry. This pattern, which we call the
counter twist tilt pattern, is composed of two double-
twisting domains of opposite handedness.
To show that this tilt pattern effectively screens the defect-

induced stresses, we analyze the distribution of equivalent
Gaussian curvature Keff using the discrete-filament analysis
from Appendix C. Figures 7(c) and 7(d) show that regions of
Keff < 0 are predominantly focused at the central sevenfold
disclination. One can understand how this countertwist tilt
pattern is themetric equivalent to negativeGaussian curvature
through the schematic Figs. 7(e) and 7(f). Here, we highlight
distinct interfilament paths (colored) in the cross section. In
this metric analogy, we are interested in the accumulated
distance of closest approach between neighbors spanned
along the path, rather than the path length in the planar cross-
sectional cut. This distance is dependent on, and can only be
shortened by, filaments tilting into the direction of their
separation. In Fig. 7(e), the circumferential (blue) path
encompasses the sevenfold disclination, and is relatively
unperturbed by filament tilt. However, the radial (yellow)
path along the midline separating the distinct double-twist
domains is effectively shorted by tilting. Hence, this tilt
pattern allows the bundle to shorten distances along (certain)
radial directions while keeping the circumferential distance
the same relative to a planar geometry, a hallmark of negative
curvature geometries. An equivalent negatively curved sur-
face, shown in Fig. 7(f), shows the same filament tangents and
distances of closest approach between them, but now lengths
are adjusted by out-of-plane surface curvature rather than in-
plane filament tilt. Both patterns are effective at relaxing the
compressive hoop stresses generated by sevenfold defects, by
expanding the circumference while keep radially separated
filaments close to their preferred separation distance.
For this rigid filament case, we note that the tilt pattern

is highly sensitive to length. For example, in Figs. 7(c)
and 7(d) the tilt variation andKeff decrease significantly from
the L ¼ R case to L ¼ 2R. To understand the length
dependence, we analyze this pattern using two quantities:
the first measures the tilt of the centerline hθi, or the mean
angle of filaments with respect to the z axis, and the second
measures the prominence of the double-vortex tilt pattern
seen in Figs. 7(c) and 7(d), hδθi, defined as themean tilt angle
of filaments away from the centerline. From these parameters
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we can estimate how the sevenfold bundle energy varies with
hθi and hδθi, as well as L and R. (For a derivation of the
comparison between our continuum elastic and discrete
bead-spring models, see Appendix A.) We begin with a
simple ansatz for countertwist,

t⊥ ≃ hθix̂þ δθ

��
1

4
−
y2

R2

�
x̂þ xy

R2
ŷ

�
; ð21Þ

which has two double-twist patterns centered on x ¼ 0 and
y ¼ �R=2, and a mean orientation of hθix̂. Assuming that
hθi ≫ δθ, we may use Eq. (1) (and Appendix C) to compute
the effective negative curvature of the pattern, giving
Keff ≈ −3hθiδθ=R2. Hence, the negative curvature geometry
relaxes the elastic energy over the bulk of the bundle by an
amount δErelax ≈ −YVjsjhθiδθ, where Y ≈ ϵl−1

0 . However,
generating this tilt pattern requires two additional costs in
rigid filament bundles. First, the tilt variation leads to in-
plane strains (dilation and shear) that grow along the bundle
length as uij ≈ δθz=R. This cost leads to an elastic penalty
that grows rapidly with length δEelas ≈ YVðδθÞ2ðL=RÞ2.
Finally, the mean tilt of the bundle axis introduces a
stretching cost at the ends of the bundle through the
tangential “slip” of neighbor filaments. For small tilts, the
lengths of the “slipping” regions are lslip ≈ Δ0hθi [45], over
which the interfilament distance is stretched by an amount
Δ − Δ0 ≈ Δ0hθi2, leading to an elastic cost for tilt at the
bundle ends of δEends ≈ YR2Δ0hθi5.
Combining these energetic terms and minimizing with

respect to mean tilt and tilt variation, we find

hθi∼
�
L
R

�
−1=3

�
R
Δ0

�
1=3

; δθ∼
�
L
R

�
−7=3

�
R
Δ0

�
1=3

: ð22Þ

While this scaling suggests that both angles vanish as
L → ∞, δθ (i.e., the double-vortex tilt pattern) is expected
to decrease far more rapidly with bundle length. Figure 8(b)
indeed shows this decrease with L=R, and is in further
agreement with the weaker power-law dependence on

FIG. 7. Visualizations of infinitely rigid (γ ¼ 0) filaments
with R=Δ0 ¼ 5 and (a) L=R ¼ 1 and (b) L=R ¼ 2. Panels (c)
and (d) show cross-sectional cuts through the bundles,
with filaments colored by their local equivalent Gaussian
curvature from Eq. (C1). The arrows point in the direction
of tilt of each filament away from the average filament
orientation. (e) Cross-sectional slice of L=R ¼ 0.4 bundle,
showing a negative Gaussian curvaturelike tilt pattern. The
colored lines represent the distance of closest contact between
neighboring filaments. The blue circumferential and red radial
paths are relatively unaffected by tilt, while the yellow radial
path is shortened due to filaments tilting. (f) Filaments
mapped to an equivalent surface with identical colored paths,
but with distances now shortened by curvature rather than
filament tilt.

FIG. 8. Plots of (a) the mean tilt angle, and (b) the mean tilt
angle deviation, versus bundle aspect ratio L=R. Dotted lines
show the power laws predicted from Eq. (22), which follows the
limit R=Δ0 ≫ 1. Inset plots show the same data plotted versus
the dimensionless combinations given in Eq. (22). Note that the
double-asymptotic limit of L=R ≫ R=Δ0 ≫ 1 underlies Eq. (22),
highlighted by the yellow data points in these insets.
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R=Δ0. Figure 8(a) shows that the mean tilt value hθi falls
with both L=R and R=Δ0, in numerical agreement with the
power law of Eq. (22) in the asymptotic regime
L=R ≫ R=Δ0 ≫ 1. This scaling suggest that such tilt
patterns for shorter bundles of rigid filaments better screen
defect stresses than longer ones.
We turn now to the case of finite flexibility (i.e., γ ≠ 0)

and map out the γ dependence of the sevenfold disclination
buckling transition with the discrete filament bundle model.
Results are found in a manner similar to the case of fivefold
bundles, but with γ increased in a stepwise manner between
energy minimizations in order to investigate the buckling

transition. Final results are shown in Fig. 9(a) for a bundle
with Nf ¼ 428 (R ≈ 10Δ0) and three different aspect ratios
L=R, where we measure the degree of shape buckling by
hδθi, the mean variation of filament tangents with respect to
the centerline.
For short bundles, we find a gradual increase of hδθi with

γ, consistent with the intuitive notion that filament flexibility
simply reduces the cost of the countertwist tilt pattern
previously shown to be favorable for γ → 0. As bundle
length increases to the large aspect ratio limit, L=R ≫ 1, we
find that this gradual increase sharpens. For small γ, con-
sistent with the scaling above, hδθi tends to zero with

FIG. 9. Wrinkling instability for bundles with centered sevenfold disclinations. (a) The mean angle with respect to the bundle’s
centerline hδθi versus γ, for various aspect ratios L=R. (b) Example structures for L=R ¼ 17.6, with each structure, labeled I–V, marked
above in (a). Vertices near the ends are removed to highlight the bulk patterns. Structure II also has a representation coloring filaments by
the total equivalent Gaussian curvature at each cross section along the z axis, calculated from Eq. (C1). (c) Select cross-sectional slices
along the L=R ¼ 17.6 bundle labeled II. Individual filaments are colored by their local Gaussian curvature Keff .
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increasing L=R. However, we find that the large-γ buckling
persists and tends toward anL-independent behavior asL=R
increases. These trends are consistent with the emergence of
a finite buckling threshold as L → ∞, as predicted by the
linear stability of the axisymmetric model in Sec. II B. The
behavior of the critical fil-vK number for this emergent
double-vortex instability is schematically illustrated in the
inset of Fig. 2(b). Compared to the rotationally symmetric
constrained ansatz from the continuum elasticity stability
analysis, this tilt pattern is extrapolated at theL → ∞ limit to
occur at a lower γc ≈ 1500 and kR ≈ 3. As discussed, this
finite-γ threshold for buckling by sevenfold defects can be
attributed to the elastic costs of breaking lengthwise sym-
metry of interfilament spacing, a necessary consequence of
the Keff < 0 tilt pattern.
Figure 9(a) shows the tendency with increased L=R

towards something like a second-order transition occurring
around γ ≈ 2000. This value is notably an order of
magnitude smaller than the threshold predicted by the
continuum theory [from Fig. 2(b)]. In large part, we expect
this discrepancy in the buckling threshold is due to the fact
that sevenfold bundles adopt shapes that are far from the
axisymmetric ansatz of radial splay, and presumably, relax
elastic costs far more efficiently. The specific pattern of
buckling is comparable to the countertwist tilt pattern
exhibited by finite-L rigid filament bundles shown in
Fig. 7. Additionally, we find that for large L, complex
patterns are (at least for intermediate γ) consistent with a
varying pattern of local countertwist along the bundle’s
length, where the span of one countertwist zone is much
smaller that L. We can expect that the length of these
countertwist zones h is set by a balance between inter- and
intrafilament elasticity. We then balance over a vertical
length h the interfilament elastic cost,∼YðδθÞ2ðh=RÞ2, with
the bending cost, ∼Kðδθ=hÞ2, to find an optimal size at
h� ∼ γ1=4R ¼ ffiffiffiffiffiffiffiffi

λbR
p

. This length is notably the same
characteristic scale of optimal splay undulations. Beyond
this length scale, the buildup of in-plane strains must be
relaxed by a boundary layer that allows filament directions
to reorient (e.g., through a reversal of the countertwist tilt
pattern).
The full 3D structures for various values of γ can be seen

in Fig. 9(b), while Fig. 9(c) shows maps of cross-sectional
mean Gaussian curvature Keff at distinct heights. For
intermediate γ, the midsection of the bundle appears to
alternate in the handedness of the double vortex, seen in
Fig. 9(c). Although the exact tilt pattern is not as simple as
the ideal case found in Fig. 7(c), it clearly is not the splay
ansatz proposed in Fig. 1(d), and can be interpreted as a
nonsymmetric double-vortex pattern. However, as γ is
increased still further, the buckled structures lose their
alternating double-vortex character and instead become
more disorganized, possibly an indication that larger effects
of interfilament “friction” at high curvatures in our model
prevent full equilibration. Nevertheless, we note that these

“crumpled” shapes continue to show increasing negative
effective curvature for larger γ, as well as a further
decreasing distance between adjacent “crumples,” consis-
tent with the expected decrease in the span of countertwist
domains h ∼ γ−1=4. All in all, these shapes are far from the
proposed radial undulations in Sec. II B, a detail that we
discuss in the next section.

IV. DISCUSSION

In the classical theories of disclinations, dating back to
the geometric constructions of Volterra [46] up to modern
elastic theory treatments [47,48], positive versus negative
disclinations are symmetric with respect to their energetic
costs in linear elastic theory. This asymmetry is only
weakly broken in the 2D crystals, due to the unequal costs
of conical versus saddlelike bending, and leads to few
percent shift of the critical FvK number for buckling [6].
Alternatively, disclination-driven buckling in columnar
structures appears to be in a distinct class, where the
geometric packing constraints select one of the two signs of
defects as particularly low energy, as shown schematically
in the single defect self-energy plotted in Fig. 10. Fivefold
defects drive torsional buckling of bundles of any diameter
and filament stiffness (i.e., any nonzero γ), while for
L → ∞, sevenfold defects only drive shape transitions
above a threshold bundle diameter (threshold γ). Simply
put, this implies that positive disclinations should always
be more abundant than negative disclinations in columnar
or filamentous bundles. Here, we discuss the geometric
origins of this asymmetry between defect signs, as well as

FIG. 10. (a) Self-energy of a single defect versus the disclina-
tion charge and FvK number, showing only a minor asymmetry in
the threshold γs for buckling. (b) Self-energy of a single defect
versus the disclination charge and fil-vK number.
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the susceptibility to defect-induced instabilities for various
material systems.
Simulated elastic energy ground states for sevenfold

defects reveal a surprising symmetry-breaking feature,
where buckling breaks both the lengthwise and axial
symmetry of the initially parallel bundle (e.g., Fig. 7).
What is perhaps most surprising is the emergence of the
common tilt pattern of local double twist, in response to
both positive- and negative-charged disclinations. Double
twist is a cylindrically symmetric pattern of filament tilt, in
which filament orientations twist around a central axis.
A single double-twist domain has the tilt pattern t⊥ ≃Ωrϕ̂
and a metric equivalent curvature Keff ¼ 3Ω2, which is
consistent with the ability of this structure to screen positive
disclination stresses. Why then should sevenfold defects
also drive the formation of double-twisted tilt patterns if
they desire negative equivalent curvature?
The answer to this question derives from the interplay

between the geometry of 2D tilt patterns in a given cross
section and the lengthwise variation of interfilament dis-
tances in the bundle. To illustrate this, we define the strain
variation, vij ≡ ∂zuij, to measure changes in intercolumn
strain along the bundle. From Eq. (3), we have

vij ≃
1

2
½∂itj þ ∂jti − κðtinj þ nitjÞ�; ð23Þ

where ∂zt ≃ κn, with κ and n being the respective local
curvature and normal of a filament’s Frenet-Serret frame.
This tensor shows that certain tilt patterns in a 2D cross
section require the buildup of elastic strains up- or down-
stream from the section when vij ≠ 0. Furthermore, it can
be shown that uniform double twist is, in fact, the only
nonparallel tilt pattern which does not require lengthwise
variations of interfilament distances [40]. Because double
twist has strictly antisymmetric in-plane gradients (i.e.,
∂itj ¼ ϵijΩ), it is easily verified that all components of vij
vanish for a single, uniform-Ω domain. Again, the lack of
lengthwise strain variation for uniform double twist is
linked to the absence of a threshold fil-vK for torsional
buckling in fivefold defective bundles.
For the case of sevenfold defective bundles, it is now

easy to see why the axisymmetric radially splay ansatz is
not preferred. Although it does generate a favorable local
distribution of Keff < 0, this tilt pattern unfavorably
requires vii ≃ ∇⊥ · t⊥ ≠ 0 everywhere in the cross section.
Therefore, this axisymmetric geometry is presumably a
poor compromise between the preference for negative Keff
and minimal elastic strain variation along the bundle.
Alternatively, the countertwist observed in Sec. III B,
composed of two oppositely rotating double-twisted
domains, focuses a region of highly negative curvature
between the opposing domains (near to the disclination
position), while simultaneously a minimal lengthwise
strain buildup along the bundle cross section is main-
tained. This is illustrated in Fig. 11, which shows the map

of double twist and splay density (vii) for a 2D cross
section of a simulated sevenfold defective bundle of rigid
filaments found in Sec. III B. Unlike radial splay, the
countertwist tilt pattern effectively expels splay from most
of the bundle’s cross section, while generating a sufficient
measure of Keff < 0 [Fig. 7(c)] near the bundle’s center to
screen the in-plane stresses generated by the sevenfold
defect.
The above arguments suggest that the unique geometry

of double twist makes this tilt pattern a potentially
inexpensive “building block” for more complex 3D
buckled cohesive bundles, well beyond the seemingly ideal
centered fivefold defects. The generic emergence of double
twist can further be illustrated by the shape equilibria of
bundles possessing off-centered fivefold disclinations,
shown in Fig. 12. Here, we see that as the defect position
rd increases away from the bundle center, the centerline of
the bundle buckles helically with a curvature that increases
with γ. The equilibrium curvature of the centerline κc
depends nonmonotonically on rd. Superficially, this buck-
ling pattern would seem to imply a qualitatively different
responses of nonaxisymmetry defect distributions. On the
contrary, these “writhing” bundle equilibria are in fact
themselves regions of a uniform double-twist domain, but
with the center of rotation located away from the bundle
center and eventually outside of the bundle’s cross section.
This behavior is likely the result of nonlinear (large-tilt)
corrections to the metric geometry of uniform double twist
described previously [31]. Here, Keff is concentrated at the
center of rotation and tapers to an effectively flat geometry
for large radial distances from this axis (compared to helical
pitch). Thus, the shifting center of double-twist rotation is
likely driven by the polarized stress distribution created by
off-center defects. The bundles ultimately straighten for
larger rd due to the elastic screening of defect stress by the
free boundary [30,36].

FIG. 11. Cross-sectional projections of infinitely rigid filaments
in a sevenfold defective bundle exhibiting the double-vortex
tilt pattern. R=Δ0 ¼ 7 and L=R ¼ 1.2. (a) The double twist,
∂xty − ∂ytx, showing coordinated left- (blue) and right-handed
(red) domains. (b) The splay density of the strain variation vii
showing a pattern orthogonal to the double twist, where filament
tilt causes a concentration of filaments on the left (blue) and
depletion on the right (red).
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Next, we consider the relevance of defect-induced shape
buckling in cohesive filament bundles realized for a range
of physical systems. In particular, we estimate the range of
accessible fil-vK numbers based on measured or predicted
values of their resistance to bending, their elasticity of
interfilament cohesion, and their observed values of
bundle radius R. The buckling behavior to defects is
critically sensitive to γ ≡ ðR=λbÞ2, which is the ratio of
bundle size relative to the material-dependent length scale,
λb ¼

ffiffiffiffiffiffiffiffiffiffi
K=Y

p
, itself a measure of the ratio of intrafilament

to interfilament elasticity. The bend elastic cost can be
estimated simply from the bending stiffness of filaments B,
and their diameters d, as K ≈ B=d2. Far less well charac-
terized is the elasticity of interfilament cohesion, which, in
turn, controls the elasticity of the 2D filament array.
Following Refs. [49,50], we estimate Y by assuming that
the elastic stiffness of interfilament cohesion (strictly
speaking, the curvature of the interfilament binding poten-
tial) can be estimated as ϵ=σ2, where ϵ is the cohesive
energy per unit length between neighbor filaments, and σ is
a length scale characterizing the cohesive range. Neglecting
numerical prefactors accounting for lattice geometry, this
estimate then gives Y ≈ ϵ=σ2.

In Table I, we compare values of γ for vastly different
classes of cohesive bundles: carbon nanotubes, biological
filaments (DNA and microtubules), and polymeric micro-
fibers assembled by surface (or capillary) interactions.
Significantly, we find that the materials can reach a γ that
spans up to 15 orders of magnitude, up to γ ∼ 106. In
general, this suggests that almost all cohesive filament
bundle assemblies are susceptible to buckling by fivefold
disclinations, but in general, most conditions fall below the
range where they are perturbed by sevenfold disclinations
(i.e., γ ≳ 2000). For example, nanotube bundles that con-
densed from solutions [51] grow to relative narrow widths
(∼100 nm) and reach only γ∼10−6–10−5. Alternatively,
much larger (∼5 μm) “yarns” generated by spinning from
nanotube “forests” extend far into the large fil-vK range,
potentially exceeding the critical γ for the sevenfold
disclination-induced shape buckling shown in Fig. 9.
Microtubule bundles formed by polyvalent counterion

condensation have been observed to exhibit long-
wavelength undulations, interpreted as 3D writhing con-
figurations [54], not unlike the helical buckling of
off-center defect patterns of Fig. 12. For these systems
there is also some evidence of “irregular” packing in the 2D

FIG. 12. (a) Visualizations of R=Δ0 ¼ 10 bundles containing fivefold disclinations displaced off center at a distance rd, and with
γ ¼ 1580. Cross-sectional views show the equivalent Gaussian curvature Keff . (b) The mean curvature of the centerline of a bundle κc as
a function of the defect’s position.

TABLE I. Estimated values of fil-vK for cohesive filament bundles of different materials. Microtubule bundle parameters have been
estimated considering interactions that range from relatively weak and long-range depletion [52,53] to shorter-range and stronger
binding due to polyvalent counterion binding [54,55]. Here, cohesion between polymer microfiber arrays is modeled by capillary
bridging [56,57].

Filament type
Filament

diameter, d
Bundle
radius, R

Bending
stiffness, B

Cohesion
(per length), ϵ

Cohesive
range, σ fil-vK, γ

Carbon nanotubes
[22,51,58,59]

1.2:2.7 nm 4:500 nm 0.2:25 keV nm 5∶10 eV=nm 0.3: 0.5 nm 10−6∶104

DNA [60–64] 2 nm 10:30 nm ∼58kBT nm 0.1∶2.5kBT=nm 1:3 nm 0.001:1
Microtubules [52–55,65] 0.025 μm 0.05∶1 μm ∼5200kBT μm 10∶200kBT=μm 0.5:10 nm 10−8∶0.1
Microfibers/posts [56,57] 0.2∶100 μm 2∶200 μm 8 × 10−6∶5 × 105 nJ μm 10−5∶10−2 nJ=μm 0.1∶100 μm 10−9∶106
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cross section, though at present there has been no attempt to
quantify defect distributions in these experiments. It has
been proposed that a nonequilibrium process of cohesive
condensation of filament bundles may often lead to the
trapping of topological defects into the cross-sectional
order [66], which may have consequences on their structure
and assembly. From the values of interaction and mechan-
ics of microtubules, in particular, for relatively brittle
binding by polyvalent counterion bridging, we modestly
estimate that γ ∼ 0.1. This small allowance for flexibility
may drive a detectable degree of helical buckling in the
presence of positive disclinations, as suggested by the
low-γ range of Fig. 5.
Finally, we conclude with a simple estimate for macro-

scopic and elastic filaments, held together by cohesive
surface contact (i.e., the range of attractions is small
compared to the filament diameter). In this case, both
filament bending stiffness, B ≈ Efd4, and interfilament
contact stiffness, Y ≈ Ef, are proportional to the elastic
modulus, Ef, of the filaments. Hence, their ratio is expected
to be independent of Ef, and therefore roughly λb ≈ d.

Because R ≈ dN1=2
f in this strong cohesive contact regime,

we expect that the fil-vK becomes independent of material
parameters and simply dependent on the number of
filaments within the cross section, γ ≈ Nf.

V. CONCLUSION

We determine the disclination-induced buckling insta-
bilities for cohesive filament bundles, and resolve their
dependence on the size and mechanics of the assemblies.
These results point to the ratio of intrafilament to interfila-
ment elastic stiffness as the key material-dependent quan-
tity that regulates the emergent shapes of defective bundles.
Compared to flexible membranes, the equilibrium shapes
of bundles exhibit a far greater nontrivial dependence on
the types of defects. This results from the interplay between
the local metric geometry of 2D bundle cross sections and
the lengthwise variations of filament spacing within the
bundle. We find that bundles are vastly more susceptible to
shape deformation by fivefold defects (positive disclina-
tions) than sevenfold defects. While bundles possessing
other cross-sectional symmetries (e.g., fourfold) may
require anisotropic elastic costs as well as distinct topo-
logical charges of defects, we expect this basic conclusion
to hold independent of lattice symmetry, as the geometric
principles underlying metric coupling to tilt and uniform
longitudinal spacing are generic.
The principles we develop in this study suggest new

strategies for engineering the 3D shapes of bundles through
their controlled 2D packing. We envision various synthetic
strategies that may be exploited to template columnar or
filamentous assemblies with controlled topological defects
in their cross-sectional order. This feat would be much
in the same spirit of kirigami engineering of pointlike

disclinations used to engineer the 3D (and self-folding)
shapes of sheets. This could be achieved, for example, by
(i) the capillary cohesion of nanofabricated 2D arrays of
high aspect ratio flexible pillars [56], (ii) the controlled
defect formation in columnar assemblies grown epitaxially
from a lithographically templated surface [67,68], and
(iii) so-called DNA-origami techniques to engineer double
stranded DNA bundles [69] with programmed 2D cross
sections, containing intentionally placed disclinations and
dislocations. For example, as shown in Fig. 12, controlling
the placement of a fivefold defect leads to spontaneously
writhing and twisting 3D configurations, dramatically
reshaping the responses of the assembly to a range of
stimuli (e.g., mechanical, electronic, photonic, etc.). In
systems where the cohesion between filaments and their
elastic stiffness may be externally tunable (say, in temper-
ature- or field-responsive materials), we envision that the
3D shapes of such bundles could be adjustable, driven to
wind and unwind responsively.
To a first approximation it can be anticipated that

multiple elementary disclinations of the same charge lead
to effects equivalent to single higher charged defects,
namely, added drive for positive- or negative-curvature
bundle textures. However, given the highly nonlinear
dependence of buckling to disclination type, the response
to even a single edge dislocation, i.e., a 5–7 “dipole,” is
likely to be far more complex for bundles than for their
geometrical analogs of 2D membranes [6]. Previous work
provides some insight into how dislocations drive certain
tilt patterns [70]. First, dislocations have an extra degree
of motion over disclinations, namely their orientation. In
much the same way fivefold disclinations are expected to
be more prevalent in filament bundles, dislocations are
expected to be oriented such that the fivefold end is
turned towards the center of twist (corresponding to the
removal of a partial row extending radially to the
boundary). This generates stresses that can be relaxed
by positive curvature tilt patterns (e.g., twist).
Furthermore, the strength of the tilt-dislocation stress
coupling is strongly position dependent, with a prefer-
ence for radially aligned dislocations situated at R=

ffiffiffi
3

p
from the bundle center. Alternatively, misoriented dis-
locations (e.g., with the negative disclination end closer
to the center) cannot be relaxed by twist, and may instead
lead to nonaxisymmetric and longitudinally asymmetric
deformations modes. Lastly, unlike disclinations, whose
strength is quantized in multiples of π=3, the net strength
of dislocations to drive shape instabilities depends on the
ratio of Burger’s vector (a microscopic dimension propor-
tional to lattice spacing) to bundle size, b=R. Therefore,
we would anticipate that the drive to buckle the bundle
into a 3D shape may be more sensitively controlled by the
collective effects (number, orientation, and locations) of
multiple dislocations arranged in a bundle as compared to
one or a few isolated dislocations.
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While such experimental directions remain to be
explored, the principles governing the response to elemen-
tary five- and sevenfold disclinations lay the ground work
for engineering custom-made defect configurations in 2D
filament arrays, which could be used to “program” speci-
fied 3D shapes of bundles. However, beyond the isolated
disclinations discussed here, the geometric and mechanical
principles that govern the collective responses to multi-
defect patterns remain open.
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APPENDIX A: CONTINUUM AND DISCRETE
MODEL PARAMETERS

Here, we describe the correspondence between param-
eters of the discrete filament model of Sec. III and the
elastic moduli of the continuum theory of columnar
bundles presented in Sec. II. We begin with the squared
curvature of the ith filament with tangent TiðsÞ,

κ2 ¼
�∂Ti

∂s
�

2

≃
ðTi;nþ1 − Ti;nÞ2

l2
n

; ðA1Þ

where limln→0 is the continuum limit. We can convert from
the discrete model of bending energy in Eq. (17) to the
continuum model in Eq. (5) by summing over all “bending
bonds” on filament i,

EðiÞ
b ¼ B

2

Z
L

0

dsκ2ðsÞ ≃ B
ln

XNv−1

n¼1

ð1 − Ti;n · Ti;nþ1Þ; ðA2Þ

and then summing over all filaments, yielding the total
bending energy

XNf

i¼1

EðiÞ
b ≃

K
2

Z
dVκ2ðxÞ; ðA3Þ

where
R
dA ≃

PNf

i¼1 ρ
−1
0 , and ρ0 ¼ Δ−2

0 =
ffiffiffi
3

p
is the stress-

free areal density of filaments, giving

K ¼ 2Bffiffiffi
3

p
Δ0

: ðA4Þ

For the discrete model of the interfilament elasticity,
from Eq. (18) we have the elastic energy of the nth layer,

EðnÞ
elas ¼

ϵ

2

XNf

i¼1

X
hiji

ðΔij − Δ0Þ2; ðA5Þ

where Δ0 is the preferred local spacing between filaments.
Structurally, the bundle model is essentially Nv stacks
of the hexagonal bead-spring model of Ref. [6], with a
geometrically nonlinear coupling between local tilt and
lattice strain. Thus, summing over these layers we have

XNv

n¼1

EðnÞ
elas ≃

ffiffiffi
3

p
ϵ

4l0

Z
L

0

dz
Z

dAðu2kk þ 2u2ijÞ; ðA6Þ

from which we have the elastic constants,

λ ¼ μ ¼
ffiffiffi
3

p
ϵ

4l0

; ðA7Þ

corresponding to the 2D Young’s modulus,

Y ¼ 4ϵffiffiffi
3

p
l0

; ðA8Þ

and the 2D Poisson ratio ν ¼ 1=3.
From these the fil-vK number may be estimated from the

discrete model parameters as

γ ¼ YR2

K
≃
2ϵR2Δ2

0

Bl0

: ðA9Þ

APPENDIX B: CONTINUUM ELASTICITY
STABILITY ANALYSIS

We analyze the stability of lengthwise periodic and
axisymmetric deformation patterns of bundles of radius
R, with a centered disclination of charge s. To determine
the equations of equilibrium, we begin with an initial
displacement field uðxÞ, subject to a small perturbation
δuðxÞ, and consider the variation of the energy, δE ¼
E½uðxÞ þ δuðxÞ� − E½uðxÞ�. Solving for the equations of
equilibrium, we arrive at

∂jσij − ∂zðtjσijÞ − K∂3
zti ¼ 0 ðforce balanceÞ; ðB1Þ

dSiσij ¼ 0 ðstress-free sidesÞ; ðB2Þ
tjσij þ K∂2

zti ¼ 0 ðstress-free endsÞ; ðB3Þ
K∂zt ¼ 0 ðtorque-free endsÞ: ðB4Þ

We determine the conditions for the solutions to
the stability equations outlined in Eqs. (B1)–(B4) by
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considering solutions that are weakly perturbed from the
parallel state, and of the form

uðxÞ¼u0ðxÞþϵu1ðxÞþϵ2u2ðxÞþϵ3u3ðxÞþ���; ðB5Þ

where ϵ is the amplitude of the deformation, taken to be
arbitrarily small near the point of linear instability (i.e., the
supercritical bifurcation point), and un represents theOðϵnÞ
deformation modes. For linear stability, it is sufficient to
analyze only the lowest order in ϵ, though if we want to
solve for the dependence on the ϵ distance from the
instability, we need to solve to order ϵ3.
Considering only the order ϵ1 term, and decomposing the

displacement into radial and azimuthal components,

u1ðxÞ ¼ ρðxÞr̂þ τðxÞϕ̂: ðB6Þ
Note that the functions of τðxÞ and ρðxÞ should not to be
confused with the dimensionless constants τ0 and ρ0 that
parameterize the amplitude of the twist and splay ansatz in
Sec. II B. Applying this form to Eq. (B1) and assuming
only axisymmetric patterns of deformation, we find the
force balance along the r̂ direction,

ðλþ 2μÞ∂½r−1∂rðrρÞ� − σ0rr∂2
zρ − K∂4

zρ ¼ 0; ðB7Þ
and along the ϕ̂ direction,

μ∂½r−1∂rðrτÞ� − σ0rr∂2
zτ − K∂4

zτ ¼ 0: ðB8Þ
The boundary conditions on the sides of the bundle are
simply σ1rr ¼ σ1rϕ ¼ 0, or specifically,

λρðRÞ=R ¼ ðλþ 2μÞ∂rρðRÞ ¼ 0; ðB9Þ
∂rτðRÞ − τðRÞ=R ¼ 0: ðB10Þ

And finally, we have the boundary conditions for the
derivatives of the displacements at the ends of the bundles,
but we will neglect these by assuming that solutions are
periodic, and of the form

ρðxÞ ¼ δurðrÞ cosðkzÞ; τðxÞ ¼ δuϕ cosðkzÞ: ðB11Þ
To compare to a finite length bundle, we might consider

wavelengths that are commensurate with the bundle
length, k ¼ 2πn=L, though to be clear, these purely
sinusoidal deformations will not allow us to match the
free-end boundary conditions from Eqs. (B3) and (B4).
Presumably, a boundary layer is required to match the
purely periodic solutions we consider to the free-end
calculations. Therefore, we work under the assumption
that the length scale of this boundary layer will vanish
proportional to

ffiffiffiffiffiffiffiffiffiffi
K=Y

p
, and, hence, can be ignored for large

aspect ratio bundles (L=R ≫ 1) and large bundle fil-vK
number (γ ≫ 1).
To proceed, we rewrite the equations in dimensionless

variables, by measuring all lengths in units of bundle width

R and stresses in units of Y. Doing this, and recalling the
definition of the 2D Poisson ratio, ν ¼ λ=ðλþ 2μÞ, we
rewrite Eqs. (B7) and (B8) in the form of Eq. (12) with the
effective “potentials”

VrðrÞ ¼ −
sðkRÞ2ð1 − ν2Þ

8π
lnðr=RÞ; ðB12Þ

VϕðrÞ ¼ −
sðkRÞ2ð1þ νÞ

4π
½lnðr=RÞ þ 1�; ðB13Þ

and eigenvalues

ϵr ¼
ð1 − ν2ÞðkRÞ4

2γ
; ðB14Þ

ϵϕ ¼ ð1þ νÞðkRÞ4
γ

: ðB15Þ

In this way, we have recast the linear stability calculation
in terms of an eigenvalue problem, with the boundary
conditions

νδurðRÞ þ ∂rδurðRÞ ¼ 0; ðB16Þ

∂rδuϕð1Þ − δuϕð1Þ=R ¼ 0: ðB17Þ

For the linear stability calculation, we are interested in the
ground-state solution, i.e., the smallest values of ϵr or ϵϕ
that are consistent with our boundary conditions. This will
correspond to the first instability—the lowest value of γ—at
which a given periodic mode k becomes unstable. In the
main text and Fig. 2, we solve these equations for the
most unstable wave number k, given centered fivefold
(s ¼ þ2π=6) and sevenfold (s ¼ −2π=6) disclinations.

APPENDIX C: DISCRETE APPROXIMATION OF
EQUIVALENT GAUSSIAN CURVATURE

For an arbitrary discrete surface composed of vertices,
edges, and triangular faces, the Gaussian curvature can be
defined in terms of the deficit of internal angle at a single
vertex as

KG ¼ 3

�
2π −

Xf
α¼1

ψα

�
=A; ðC1Þ

where ψα is the internal vertex angle for face α, A is the
summed area of all the faces attributed to the vertex, and f
is the number of triangular faces adjoining the vertex
[71,72]. We can generate an equivalent mesh for a bundle
by finding the points by intersection of all filaments with
a plane, here chosen to be the z plane, followed by a
Delaunay triangulation. While this mesh is itself flat, with
zero Gaussian curvature, the relevant distance between
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filaments is the distance of closest contact, which is
generally out of plane (i.e., similar to Δn;ij, but defined
within a cross-sectional plane rather than at vertex n).
Explicitly, if the in-plane spacing between two filaments, i
and j, is Δ ¼ xj − xi, then the out-of-plane distance of
closest contact from filament i to filament j is defined as

Δ⊥ ¼ Δ − tjðΔ · tjÞ: ðC2Þ

Therefore, by computing the corrected side length, jΔ⊥j of
a given triangle, we calculate the internal angles ψα. From
this we compute the effective Gaussian curvature Keff at
given filament (and at a given z) by summing the internal
angles in Eq. (C1) for the local triangular neighbor array. In
essence, this method works by distorting the dimensions of
every triangle based on the relevant distances of closest
contact, then stitching them back together in a manner that
preserves the original network topology, but requiring out-
of-plane orientations. The total effective curvature of the
surface Ktotal

eff is simply the sum of the equivalent Gaussian
curvature of each individual filament at that z plane.
Although it is possible to always calculate the equivalent

Gaussian curvature for a given pattern of filament tilt, it is
not always possible to find an example of the equivalent
surface that is embeddable in R3, or one that is strictly
unique, possessing the same metric data [73]. The recon-
structed surfaces in Fig. 5(d) were found by energetically
relaxing the positions of a bead-spring model of vertices,
with a spring constant ks and a spring rest length of Δ⊥
(which is unique for each vertex). Energy minimization was
performed on an initially axisymmetric conical surface,
and proceeded until the total energy of all the springs fell
below 0.001ks.
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