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Abstract
Rigid bodies collision maps in dimension-two, under a natural set of physical 
requirements, can be classified into two types: the standard specular reflection 
map and a second which we call, after Broomhead and Gutkin, no-slip. This 
leads to the study of no-slip billiards—planar billiard systems in which the 
moving particle is a disc (with rotationally symmetric mass distribution) 
whose translational and rotational velocities can both change after collisions 
with the boundary of the billiard domain.

This paper, which continues the investigation initiated in Cox and Feres 
(2017 Dynamical Systems, Ergodic Theory, and Probability: in Memory of 
Chernov (Providence, RI: American Mathematical Society), is mainly focused 
on the issue of stability of periodic orbits in no-slip planar billiards. We prove 
Lyapunov stability of periodic orbits in polygonal billiards of this kind and, for 
general billiards domains, we obtain curvature thresholds for linear stability 
at commonly occurring period-2 orbits. More specifically, we prove that: (i) 
for billiard domains in the plane having piecewise smooth boundary and at 
least one corner of inner angle less than π, no-slip billiard maps admit elliptic 
period-2 orbits; (ii) polygonal no-slip billiards under this same corner angle 
condition always contain small invariant neighborhoods of the periodic point 
on which, up to smooth conjugacy, orbits of the return map lie on concentric 
circles; in particular the system cannot be ergodic with respect to the canonical 
invariant billiard measure; (iii) the no-slip version of the Sinai billiard must 
contain linearly stable periodic orbits of period 2 and, more generally, we obtain 
a curvature threshold at which the period-2 orbits go from being hyperbolic 
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to being elliptic; (iv) finally, we make a number of observations concerning 
periodic orbits in wedge and triangular billiards. Our linear stability results 
extend those of Wojtkowski for the no-slip Sinai billiard.

Keywords: no-slip billiards, rigid body collisions, orbit stability and chaos
Mathematics Subject Classification numbers: Primary: 37J99, Secondary: 
53Z05

(Some figures may appear in colour only in the online journal)

1. Introduction

Consider a billiard dynamical system consisting of a planar domain, referred to as the billiard 
table, and a small disc with rotationally symmetric mass distribution, the billiard particle, 
that slides and rotates freely between successive collisions with the boundary of the table. 
Upon collision, the particle reflects according to standard mechanics textbook assumptions 
for conservative rigid body impact to be spelled out shortly. It has long been known that the 
linear map giving the angular and center of mass velocities immediately after impact in terms 
of the velocities immediately prior is not uniquely determined; there are exactly two possi-
bilities, each corresponding to a different assumption about the nature of the disc-boundary 
contact. One possibility represents a perfectly slippery contact that does not create any cou-
pling between translational and angular motion. In this case, by following the center of mass 
and ignoring rotation, the system reduces to the ordinary two-dimensional billiard motion of 
a point particle with specular reflection to which most of the literature concerning billiard 
dynamics is dedicated.

The second possibility represents a perfectly non-slippery contact. This corresponds to 
a sort of non-dissipative static friction that allows for linear and angular momentum to be 
partially exchanged at collision. We refer to this type of contact and associated billiards as  
no-slip. They generate a four-dimensional dynamical system (that is to say, the system is 
generated by the iterations of a map on a four-dimensional energy hypersurface of the billiard 
phase space) having a number of very distinct properties that are in sharp contrast with ordi-
nary billiard dynamics in two (or higher) dimensions.

One striking difference has to do with stability of periodic orbits—the main topic of con-
cern of the present paper. A ubiquitous feature of no-slip billiards in dimension-two, which is 
clearly apparent from numerical simulation, is the presence of elliptic islands near periodic 
points. These islands exist amid chaos created, apparently, by the usual mechanisms of dis-
persing and focusing. It is also apparent that this elliptic behavior is very hard to destroy, as the 
no-slip counterpart to the Sinai billiard will illustrate. The picture that emerges in this study 
suggests that finding ergodic examples of no-slip billiards—one of our initial motivations—is 
a challenging problem. We note, in passing, that the no-slip billiard map is not symplectic, 
although it retains some features of symplectic maps. (See section 5 on measure invariance 
and reversibility.) On the other hand, the billiard map does preserve the standard Liouville 
measure and it is time-reversible. The proposed problem of finding ergodic no-slip billiards is 
for this natural invariant measure.

The no-slip interaction is, naturally (given the above mentioned classification, stated for-
mally in proposition 3), used whenever rotational effects become important. For example, in 
[7, 9] the authors apply it to models of transport phenomena in Statistical Mechanics. And 
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in [5], by Garwin, published in the American Journal of Physics in 1969, the author intro-
duces the no-slip condition to explain how a super ball can return to the hand after bouncing 
against the underside of a table (our figure 1 reproduces with less charm figure 1 of his paper). 
However, very little has been done, to the best of our knowledge, to systematically develop 
the dynamics and ergodic theory of no-slip planar billiards. Aside from our [3, 4], we know 
of research by Broomhead and Gutkin [1] showing that no-slip billiard orbits in an infinite 
strip are bounded; and by Wojtkowski [12], characterizing linear stability for a special type of 
period-2 orbit. Here we extend the main result of [1] (on the boundedness of orbits of no-slip 
billiards on an infinite strip) to wedges, from which our stability result for general polygonal 
billiards is derived; and we extend the linear stability result of [12] to more general types of 
periodic orbits.

The following theorems contain the main results of the present paper.

Theorem 1. Let us consider a polygonal billiard domain, not necessarily bounded, having 
at least one corner with inner angle less than π. Then the no-slip billiard map admits periodic 
orbits of period 2. Periodic orbits (of any period), moreover, are Lyapunov stable. That is, 
given an initial state ξ for a period-n orbit and any neighborhood V  of ξ, there exists a small 
enough neighborhood U ⊂ V  of ξ such that orbits of elements in U  remain in V . It follows 
that the canonical billiard measure (also known as the Liouville measure, which is invariant 
under the no-slip billiard map), is never ergodic for such polygonal billiards.

As will be seen, period-2 orbits are very common in, not necessarily polygonal, no-slip bil-
liards, although extending the above theorem in the presence of curvature appears presently to 
be a challenging problem. Nevertheless, we show that (linearly) elliptic periodic orbits exist 
under very general conditions. The next result gives a sufficient condition for that.

Theorem 2. Suppose that the billiard domain of the no-slip billiard system has a piecewise 
smooth boundary with at least one corner with inner angle less than π. Then, arbitrarily near 
such a corner one finds (linearly) elliptic period-2 orbits.

We stress that local (Lyapunov) stability is not shown here unless the boundary curvature 
is zero in a neighborhood of the periodic orbit. It should be recalled in this regard that, dif-
ferent from the dimension-two case in which, by a result of Moser [8], a generic elliptic fixed 
point of an area-preserving map is Lyapunov stable, the same is not true in dimension-four 
even for symplectic maps, as shown in [6]. Our Lyapunov stability result of the above first 
theorem depends on an explicit normal-form construction that works so far in zero curvature. 
It is possible that special features of the no-slip billiard maps together with KAM-type results 
for reversible systems such as proved in [10] can be used to obtain a stronger result, but we 

Figure 1. Rendering of Richard L. Garwin’s illustration in his 1969 paper Kinematics 
of an Ultraelastic Rough Ball, in which he introduces the no-slip condition to model the 
bouncing of a Wham-O Super Ball®.

C Cox et alNonlinearity 31 (2018) 4443



4446

do not resolve this issue here. What we do obtain for the non-flat case are sharp curvature 
threshold values at which the periodic orbits transition from (linearly) hyperbolic to elliptic, 
generalizing the main result of [12]. The above theorem 2 is a consequence of these observa-
tions. (See section 8.)

A few remarks are in order concerning notation and visualization. As we are dealing with 
a four-dimensional system, usefully visualizing the dynamics is less straightforward than it 
is for the familiar (slip) planar billiards. By a natural projection, essential features can be 
described in dimension-three, in what we refer to as the reduced phase space, depicted on 
the left part of figure 2. (This will be explained shortly.) The cylinder’s cross-sectional disc 
at height s is the ‘flattened out’ hemisphere of (outgoing) translational-angular velocities of 
the billiard particle (which are unit vectors in the kinetic energy norm) after colliding with 
the point on the boundary of the billiard table having arc-length parameter value s. In our 
computer illustrations, we have found it often illuminating to present not the (reduced, three-
dimensional) system’s phase portrait but the two-dimensional projections exemplified in fig-
ure 3. On the left part of figure 3 is the trajectory of the center of mass of the moving disc (the 
billiard table is suitably shrunk at the margin by the radius of the particle), and on the right is 

Figure 2. Several definitions from this section are illustrated here. The no-slip billiard 
map acts on three-dimensional vectors v encoding the linear and angular velocities 
of the particle immediately after a collision with ∂B . The positive orthonormal basis 
(e1, e2, e3) of TqM, where e3 is the unit normal vector to ∂M  pointing into M and e2 is 
tangent to ∂B  at q, is called here the product frame at q. The same symbol v is used 
for the vector (v · e1)ε1 + (v · e2)ε2 + (v · e3)ε3 where (ε1, ε2, ε3) is the standard basis 
in R3. The unit disc in the plane spanned by ε1 and ε2 is the velocity phase space. Points 
in it represent the orthogonal projection to Tq(∂M) of post-collision velocities. Here s 
indicates the arc-length parameter of ∂B . The Cartesian product of the velocity phase 
space and the interval range of s is the reduced phase space, indicated here as the solid 
vertical cylinder on the left. Notice that the s-axis on the left maps to the boundary of 
the billiard table on the right-hand side of the figure.

C Cox et alNonlinearity 31 (2018) 4443
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the projection of an orbit from the solid cylinder to its circular base. The latter projection will 
be referred to as a velocity phase portrait. Velocity portraits thus depict not a single slice of 
the cylinder (that is, the three-dimensional reduced phase space) but its entire projection. This 
means that a feature of the orbits revealed in the velocity phase portrait reflects what goes on 
in all slices. (We refer the reader to our [4] for many illustrations of velocity portraits for a 
variety of billiard shapes.)

Concerning notation, a compromise had to be reached between writing linear maps in 
matrix form in a fixed basis, yielding simpler but maybe more opaque notation, or using a 
more conceptual, coordinate-free description that imposes greater typographical burden but 
is much more compact to write. (This is particularly the case in sections 4 and 5.) Readers 
familiar with standard billiard notation such as used in [2] may not approve of our choice to 
lean towards the latter, but we believe the alternative would have made the paper longer and 
more difficult to follow.

The paper is organized as follows. Section 2 introduces the main notations and definitions; 
section 3 gives the general description of period-2 orbits; section 4 expresses the differential 
of the no-slip billiard map in convenient form for use in the succeeding sections; section 5 
proves invariance of the standard (Liouville) billiard measure and derives a useful conse-
quence from time reversibility of the billiard map; section 6, which is the technical core of 
the paper, contains the main stability result for wedge billiards and period-2 orbits and relies 
on the results of all the previous sections; section 7 extends the main result of the previous 
section to periodic orbits of general period and gives a classification of periodic orbits on the 
wedge; section 8 derives curvature conditions for period-2 orbits to be elliptic; section 9 illus-
trates the curvature threshold separating hyperbolic and elliptic behavior for periodic orbits of 
the non-slip version of the Sinai billiard (positive boundary curvature) and, more briefly, for a 
family of domains with negative boundary curvature. The brief final section 10 gives a rough 
conjectural picture of what non-slip billiard dynamics on bounded polygons should look like 
based on numerical experiments.

This paper has been much improved by the many recommendations of an anonymous ref-
eree, to whom the authors wish to express their sincere gratitude.

Figure 3. Illustration of the concept of reduced and velocity phase space. Here the 
system is the no-slip Sinai billiard studied in section 9. On the left we see the projection 
of an orbit segment to the plane of B . In the middle is the same orbit shown in the 
reduced phase space (this is the same cylinder shown on the left-hand side of figure 2) 
and, on the right, is the velocity phase space. The latter is the projection of the orbit 
along the axis of the cylinder.
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2. Definitions and basic facts

Let B ⊂ R2 be a connected region having piecewise smooth boundary, to be referred to as 
the billiard table. Let D denote the disc of radius R in R2 centered at the origin and μ a 
finite measure on D representing mass distribution with total mass m := µ(D) whose cen-
ter of mass coincides with the center of D at 0. We write the moment of inertia of μ as 
I = m(γR)2. For the uniform mass distribution, for example, the parameter γ defined by this 
expression is γ = 1/

√
2, and in general 0 � γ � 1. It is also useful to define β > 0 such that 

γ = tan2(β/2). The quantities

cosβ =
1 − γ2

1 + γ2 , sinβ =
2γ

1 + γ2

will be used throughout the paper.
By a configuration of the billiard particle D we mean the Euclidean transformation that 

rotates D by an angle θ and translates the result by an element in B . It will be convenient to 
introduce the rotation coordinate x := γRθ. It parametrizes a point (also denoted by x) on the 
1-torus T := R/(2πγR). The three-dimensional configuration manifold of the billiard sys-
tem is then M := B × T. Points in M will be written as q = (q̄, x). With our choice of x, the 
kinetic energy of a state (q, v) in the tangent bundle TM is simply 12 m|v|2, where |v| is ordinary 
Euclidean norm in R3.

Figure 2 illustrates the definition of the (e1, e2, e3)-frame. We focus for now on the right-
hand side of that figure. It depicts part of the three-dimensional configuration manifold M and 
its projection to the billiard table B . On each q ∈ ∂M we define e1  =  (0,0,1), e2(q) the unit 
vector tangent to ∂B  at q pointing counterclockwise when viewing B  from above (where 
‘up’ is set by e1) and e3(q) the unit vector perpendicular to Tq(∂M) pointing into M. These 
are unit vectors in the standard Euclidean metric, which is proportional to the Kinetic energy 
metric (the constant of proportionality is the mass m).

The phase space of the billiard system will be defined as

N := N+ := {(q, v) ∈ TR3 : q ∈ ∂M, |v| = 1, v · e3(q) > 0}.

Elements of N are the post-collision velocities and elements of N−:  =  −N are the pre-collision 
velocities. The vector space fiber of N± at q will be denoted N±

q . Thus v ∈ N±
q  if (q, v) ∈ N±. 

The projection of v to Tq̄B is the center of mass velocity and v · e1 is proportional to angular 
velocity.

By a collision map at q ∈ ∂M we mean a linear map Cq : TqM → TqM sending N−
q  into Nq. 

Proposition 3 contains a very special case of the main result of [3], which classifies collision 
maps for collisions of rigid bodies in Rn under the following assumptions: energy, transla-
tion and angular momenta are conserved, the process is time reversible, and impulse forces 
between the bodies can only act at the single point of contact. For billiard systems, where one 
of the bodies (the billiard table) is fixed in place, momentum conservation is typically void as 
the group of Euclidean symmetries of the system may be trivial. The last assumption is very 
strong and, in fact, it generalizes momentum conservation in a sense that is explained in [3].

The following subspaces tangent to ∂M = ∂B × T are needed in the definition of the no-
slip collision map. Let q ∈ ∂M and define

Sq = {a(−γe1 + e2(q)) : a ∈ R} , Cq = {a(e1 + γe2(q)) : a ∈ R} .

Then Sq and Cq are orthogonal subspaces of Tq(∂M).

C Cox et alNonlinearity 31 (2018) 4443
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Proposition 3. Under the assumptions of energy conservation, time reversibility, and that 
impulse forces can only act at the point of contact, the collision map Cq sends e3(q) to its nega-
tive, the restriction of Cq to Sq is the identity, and its restriction to Cq is either plus or minus 
the identity. The plus sign gives the standard specular reflection map, and the minus sign gives 
the no-slip map.

On account of this proposition, the standard (slip) and the no-slip billiard reflections seem 
to have an equal standing as mathematical models of particle collision. As will be noted 
shortly, however, the system corresponding to the no-slip collision is not Hamiltonian. We 
speculate that a Hamiltonian model of Garwin’s superball behavior would require taking into 
account more degrees of freedom than a rigid body can have.

For each boundary configuration q let σq : R3 → TqR3 be the orthogonal map sending the 
standard basis vectors εi of R3 to ei(q). Then Cq is represented in the frame (e1, e2, e3) at any 
q by

C = σ−1
q Cqσq =



− cosβ − sinβ 0
− sinβ cosβ 0

0 0 −1


 . (1)

Definition 4 (The no-slip billiard map). The no-slip billiard map T is the composi-
tion of the free motion between two points q1, q2 in ∂M  and the no-slip collison map Cq2 
at the endpoint. Thus T : N → N  is given by (q̃, ṽ) = T(q, v) = (q + tv, Cq̃v) where 
t := inf{s > 0 : q + sv ∈ N}.

Although the notation T : N → N  suggests that T is defined on all of N, as with ordinary 
billiard maps its domain should exclude a set of singular points. Here we assume that the 
shape of the billiard table B  is such that T makes sense and is smooth for all ξ in some big 
subset of N, say open of full Lebesgue measure. This condition will hold for all the billiard 
domains considered in this paper.

Now let

ξ = (q, v) �→ ξ̃− = (q̃, v) �→ ξ̃ = ξ̃+ = (q̃, Cq̃v).

The first map in this composition is parallel translation of v from q to q̃; it will be denoted by 
Φ. The second map, C, applies the no-slip reflection to the translated vector, still denoted v, 
at q̃. Hence T = C ◦ Φ.

Taking into account the rotation symmetry of the moving disc, we may for most purposes 
ignore the angular coordinate (but not the angular velocity!) and restrict attention to the 
reduced phase space. This is defined as ∂B × {u ∈ R2 : |u| < 1}, where an element u of the 
unit disc represents the velocity vector at q ∈ ∂B  (pointing into the billiard region) given by

σq

(
u1, u2,

√
1 − |u|2

)
= u1e1(q) + u2e2(q) +

√
1 − |u|2e3(q).

By velocity phase space we mean this unit disc. The left-hand side of figure 2 summarizes 
these definitions.

As an example of the reduced and velocity phase spaces we point to figure 3. It shows 
what an orbit segment looks like in these spaces for the no-slip Sinai billiard. The domain B  
for this system is defined as the complement of a disc in the 2-torus. The Sinai billiard will 
be used throughout the paper to illustrate various concepts and results. We refer to [12] for 
further information and motivation. The reader should bear in mind that, when we represent 
billiard orbits as on the left of figure 3 (or, for example, in figure 9), we are only showing 
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the projections on the plane of the billiard table B ; the angle of rotation axis is typically not 
shown. (Figure 6 is an exception.)

The rotation symmetry that justifies passing from the four-dimensional phase space to the 
three-dimensional reduced phase space may be formally expressed by the identity

T(q + λe1, v) = T(q, v) + λe1.

Note that e1 is independent of q and that dTξe1 = e1 for all ξ = (q, v), where dTξ  is the differ-
ential map of T at ξ.

In addition to (e1(q), e2(q), e3(q)) (equivalently, σq) it will be useful to introduce a frame 
consisting of eigenvectors of the collision map Cq. We define

u1(q) = sin(β/2)e1(q)− cos(β/2)e2(q)

u2(q) = cos(β/2)e1(q) + sin(β/2)e2(q)

u3(q) = e3(q).
 

(2)

See figure 4. Then

Cqu1(q) = u1(q), Cqu2(q) = −u2(q), Cqu3(q) = −u3(q).

Yet a third orthonormal frame will later prove useful in our analysis of period-2 orbits. Let 
ξ = (q, v) ∈ N . Then w1(ξ), w2(ξ), w3(ξ) is the orthonormal frame at q such that

w1(ξ) :=
e1(q)− e1(q) · vv
|e1(q)− e1(q) · vv|

, w2(ξ) := v × w1(ξ), w3(ξ) := v.

Notice that w1(ξ) and w2(ξ) span the 2-space perpendicular to v.

Definition 5 (Special orthonormal frames). For any given ξ = (q, v) ∈ N  we refer to

(e1(q), e2(q), e3(q)), (u1(q), u2(q), u3(q)), (w1(ξ), w2(ξ), w3(ξ))

as the product frame, the eigenframe, and the wavefront frame, respectively.

3. Period-2 orbits

Much of the following discussion will be around period-2 orbits. The existence of peri-
odic orbits for no-slip billiards is in general harder to establish than for the standard billiard 

Figure 4. Frame definitions: the q-dependent product frame (ei(q)), the eigenframe 
(ui(q)) for the collision map Cq at a collision configuration q ∈ ∂M; β is the characteristic 
angle of the system (a function of the mass distribution of the disc). The angle ϕ is 
defined by this figure.

C Cox et alNonlinearity 31 (2018) 4443
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systems, despite numerical evidence that these orbits are very common; on the other hand, 
period-2 orbits are often easily obtained, as we indicate in this section.

Let ξ = (q, v) be the initial state of a periodic orbit of period 2, ξ̃ = (q̃, ṽ) = T(ξ), and t the 
time of free flight between collisions. Then,

(q, v) = (q̃ + tCq̃v, Cqṽ) = (q + t(v + Cq̃v), CqCq̃v)

so that Cq̃v = −v and v = CqCq̃v. Because v and u1(q) (respectively, u1(q̃)) are eigenvectors 
for different eigenvalues of the orthogonal map Cq (respectively, Cq̃), v is perpendicular to 
both u1(q) and u1(q̃). It follows from (2) that u1(q) · e1 = u1(q̃) · e1. Thus the projection of e1 
to v⊥ is proportional to u1(q) + u1(q̃). By the definition of the wavefront vector w1(ξ) (and 
the angle φ, see figure 4) we have

w1(ξ) = w1(ξ̃) =
u1(q) + u1(q̃)
|u1(q) + u1(q̃)|

=
u1(q) + u1(q̃)

2
√

1 − cos2(β/2) cos2 φ
.

Now observe that u1(q̃)− u1(q) is perpendicular to u1(q) + u1(q̃). It follows from this remark 
and a glance at figure 4 (to determine the orientation of the vectors) that

w2(ξ) = −w2(ξ̃) =
u1(q̃)− u1(q)
|u1(q̃)− u1(q)|

=
u1(q̃)− u1(q)

2 cos(β/2) cosφ
.

Notice, in particular, that v is a positive multiple of u1(q)× u1(q̃). (See figure 6.) An elemen-
tary calculation starting from this last observation gives v in terms of the product frame:

v =
cos(β/2) sinφ e1 + sin(β/2) [sinφe2(q) + cosφ e3(q)]√

1 − cos2(β/2) cos2 φ
.

A more physical description of the velocity v of a period-2 orbit is shown in figure 5.
Equally elementary computations yield the collision map Cq in the wavefront frame at q, 

for a period-2 state ξ = (q, v). We register this here for later use. To shorten the equations we 
write cβ/2 = cos(β/2) and cφ = cosφ.

Cqw1(ξ) =
(

1 − 2c2
β/2c2

φ

)
w1(ξ)− 2cβ/2cφ

√
1 − c2

β/2c2
φw2(ξ)

Cqw2(ξ) = −2cβ/2cφ
√

1 − c2
β/2c2

φw1(ξ)−
(

1 − 2c2
β/2c2

φ

)
w2(ξ)

Cqw3(ξ) = −w3(ξ).

 

(3)

The following easily obtained inner products will also be needed later.

Figure 5. For a period-2 orbit, the velocity u of the center of mass and the angular 
velocity θ̇ are related by |θ̇| = (mR/I )|u sinφ|, where m is the disc’s mass, I  is its 
moment of inertia, and its radius is R.
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u1(q̃) · u1(q) = 1 − 2 cos2(β/2) cos2 φ

w1(ξ) · u1(q) =
√

1 − cos2(β/2) cos2 φ

w2(ξ) · u1(q) = − cos(β/2) cosφ.

 

(4)

The notation used above is illustrated in figure 6. The configuration manifold M of the 
no-slip Sinai billiard is the complement in T3 of the Cartesian product of the scatterer disc 
and T1. The figure shows two fundamental domains in R3 that project to M and an orbit seg-
ment connecting the points q and q̃ having velocity v at q. As explained above, when v has 
the form shown in figure 6, it generates a period-2 orbit. The projection of this orbit to B  is 
shown on the left-hand side of figure 13. Notice that the vector v is parametrized by the angle 
φ ∈ (−π/2,π/2). Therefore we have in this case a one-parameter family of initial conditions 
giving period-2 orbits, parametrized by φ. Linear stability of the orbits in this one-parameter 
family will be studied in section 9.

4. The differential of the no-slip billiard map

Mostly, in this section, we write 〈u, v〉 instead of u · v for the standard inner product of R3. Let 
q(s) be a smooth curve in ∂M  such that q(0) = q and q′(0) = X ∈ Tq(∂M). Define

ωq(X) :=
d
ds

∣∣∣∣
s=0

σ(q(0))−1σ(q(s)) ∈ so(3)

where so(3) is the space of antisymmetric 3 × 3 matrices (the Lie algebra of the rotation 
group) and σ(q) := σq is the product frame. As the field e1 is constant and ωq(X) is antisym-
metric we have ωq(X)ij = 0 except possibly for (i, j) = (2, 3) and (3, 2). Denoting by DX direc-
tional derivative of vector fields along X at q,

Figure 6. Notation used in this section  is illustrated here with the configuration 
manifold of the no-slip Sinai billiard. (See section 9 and 3.) The shaded half of the 
figure is meant to indicate a fundamental domain in R3 that projects to M in the 3-torus 
and on the right-hand side, without shading, is a translate. The pair (q, v) as shown in 
this figure is the initial state of a period-2 orbit parametrized by the angle ϕ.
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ωq(X)23 = ε2 ·
[

d
ds

∣∣∣∣
s=0

σ(q(0))−1σ(q(s))ε3

]
= 〈e2(q), DXe3〉 = 〈e2(q), X〉

〈
e2(q), De2(q)e3

〉

since De1 e3 = 0. The inner product κ(q) :=
〈
e2(q), De2(q)e3

〉
 is the geodesic curvature of the 

boundary of B  at q̄, where q̄ is the base point of q in ∂B . Thus

ωq(X) = κ(q)〈e2(q), X〉A (5)

where

A =




0 0 0
0 0 1
0 −1 0


 .

Given vector fields µ, ν , it is convenient to define µ� ν  as the map

(q, v) �→ (µ� ν)qv := 〈µq, v〉νq + 〈νq, v〉µq. (6)

Lemma 6. The directional derivative of C along X ∈ Tq(∂M) is

DXC = κ(q) 〈e2(q), X〉Oq

where Oq := σqOσ−1
q , O  is the commutator of A  and C  given by

O := A C − C A = 2 cos(β/2)




0 0 sin(β/2)
0 0 − cos(β/2)

sin(β/2) − cos(β/2) 0




and C  was defined above in (1). Furthermore, Oq = 2 cos(β/2)(u1 � e3)q and

DXC = 2 cos(β/2)κ(q)〈X, e2〉q(u1 � e3)q.

Proof. Notice that 0 = DXI = DX(σ
−1σ) = (DXσ

−1)σ + σ−1DXσ. Thus

DXσ
−1 = −σ−1 (DXσ)σ

−1.

Therefore,

DXC = (DXσ)Cσ−1 + σC DXσ
−1 = σ

[
σ−1DXσ

]
Cσ−1 − σC

[
σ−1DXσ

]
σ−1 = σ[ω(X), C ]σ−1.

The first claimed expression for DXC is now a consequence of equation (5). A simple compu-
tation also gives, for any given v ∈ R3,

Oqv = 2 cos(β/2)(e3 � u1)qv (7)

yielding the second expression for DXC. □ 

It is also convenient to define the following two projections. Let ξ = (q, v) ∈ N±. The 
space TξN± decomposes as a direct sum TξN± = Hξ ⊕ Vξ where

Hξ = Tq(∂M) = {X ∈ R3 : X · e3(q) = 0} and Vξ = v⊥ = {Y ∈ R3 : Y · v = 0}.

We refer to these as the horizontal and vertical subspaces of TξN±. We use the same symbols 
to denote the projections Hξ : R3 → Tq(∂M) and Vξ : R3 → v⊥ defined by
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HξZ := Z − 〈Z, e3(q)〉
〈v, e3(q)〉

v, VξZ := Z − 〈Z, v〉v.

We note that for ξ = (q, v) ∈ N± and Z ∈ R3

〈e2(q), HξZ〉 = 〈Z, e2(q)〉〈v, e3(q)〉 − 〈Z, e3(q)〉〈v, e2(q)〉
〈v, e3(q)〉

=
〈v × e1(q), Z〉
〈v, e3(q)〉

.

Also observe that v × e1 = |v|w2(ξ), where w2 is the second vector in the wavefront frame 
(see definition 5) and v  is the orthogonal projection of v to the plane perpendicular to e1. Thus, 
denoting by φ(ξ) the angle between v  and e3(q) (this is the same φ as in figures 4–6)

〈e2(q), HξZ〉 = 1
cosφ(ξ)

〈w2(ξ), Z〉. (8)

Let q ∈ ∂M, v = v− ∈ N−
q , v+ := Cqv− ∈ N+

q , ξ = ξ− = (q, v−), ξ+ = (q, v+). Define

Λξ := Vξ+Hξ− : v⊥− → v⊥+. (9)

Clearly Λξ is defined on all of R3, not only on v⊥
−

, but we are particularly interested in its 
restriction to the latter subspace.

Let ξ = (q, v) be a point contained in a neighborhood of N where T is defined and differ-
entiable. Set ξ̃ = T(ξ). We wish to describe dTξ : TξN → Tξ̃N. Let ξ(s) = (q(s), v(s)) be a 
differentiable curve in N with ξ(0) = ξ  and define

X := q′(0) ∈ TqN, Y := v′(0) ∈ v⊥.

Then ξ̃(s) = T(ξ(s)) = (q̃(s), ṽ(s)) ∈ N  where q̃(s) = q(s) + t(s)v(s) and ṽ(s) = Cq̃(s)v(s). 
From the equality 〈q̃′(0), e3(q̃)〉 = 0 it follows that

t′(0) = −〈X + tY , e3(q̃)〉
〈v, e3(q̃)〉

.

Consequently, X̃ := q̃′(0) ∈ Tq̃N  and Ỹ := ṽ′(0) ∈ ṽ⊥ satisfy

X̃ = X + tY − 〈X + tY , e3(q̃)〉
〈v, e3(q̃)〉

v = Hξ̃−
(X + tY)

and

Ỹ = Cq̃Y +

[
d
ds

∣∣∣∣
s=0

Cq̃(s)

]
v = Cq̃Y + κ(q̃)〈e2(q̃), X̃〉Oq̃v

where we have used lemma 6. From the same lemma, Oqv = −2 cos(β/2)(ν � u1)q̃v. Thus

X̃ = Hξ̃−
(X + tY)

Ỹ = Cq̃Y − 2 cos(β/2)κ(q̃)
〈

e2(q̃), Hξ̃−
(X + tY)

〉
(ν � u1)q̃v.

 
(10)

As already noted, TξN+ = Tq(∂M)⊕ v⊥. By using the projection Vξ : Tq(∂M) → v⊥ 
introduced earlier we may identify TξN+ with the sum v⊥ ⊕ v⊥. In this way dTξ  is regarded 
as a map from v⊥ ⊕ v⊥ to ṽ⊥ ⊕ ṽ⊥.

Proposition 7. Let T : N → N  be the billiard map, ξ = (q, v) ∈ N  and (q̃, ṽ) = ξ̃ = T(ξ), 
where ̃q = q + tv, and ̃v = Cq̃v. Under the identification of the tangent space TξN  with v⊥ ⊕ v⊥ 
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as indicated just above, we may regard the differential dTξ  as a linear map from v⊥ ⊕ v⊥ 

to ṽ⊥ ⊕ ṽ⊥. Also recall from (8) the definition of Λξ̃ : v⊥ → ṽ⊥. Then dTξ : TξN → Tξ̃N is 
given by

(
X
Y

)
�→

(
Λξ̃(X + tY)

Cq̃Y + 2 cos(β/2)κ(q̃) (e3�u1)q̃v
cosφ(q̃,v) 〈w2(ξ), X + tY〉

)

where cosφ(q̃, v) = 〈v/|v|, e3(q̃)〉 and v  is the orthogonal projection of v to e⊥1 .

Proof. This is a consequence of the preceding remarks and definitions. □ 

Corollary 8. If ξ = (q, v) is periodic of period 2, then Cq̃v = −v, 〈v, u1(q̃)〉 = 0, and the 
map of proposition 7 reduces to

(
X
Y

)
�→

(
X + tY

Cq̃Y + 2 cos(β/2)κ(q̃) cosψ(q̃,v)
cosφ(q̃,v) 〈w2(ξ), X + tY〉 u1(q̃)

)

where cosψ(q̃, v) := 〈v, e3(q̃)〉, cosφ(q̃, v) = 〈v/|v|, e3(q̃)〉.

Proof. Clearly, Cq̃v = −v, whence 〈v, u1(q̃)〉 = 0 and (e3 � u1)q̃v = 〈e3(q̃), v〉u1(q̃). Also 
notice that Λξ̃Z = Z  whenever 〈Z, v〉 = 0. The corollary follows. □ 

5. Measure invariance and time reversibility

It will be seen below that the no-slip billiard map does not preserve the natural symplectic 
form on N, so these systems are not Hamiltonian. Nevertheless, the canonical billiard measure 
derived from the symplectic form (the Liouville measure) is invariant and the system is time 
reversible, so some of the good features of Hamiltonian systems are still present. (It is interest-
ing to note in this regard that in [10, 11] a KAM theory is developed for reversible systems.)

Recall that an invertible map T is said to be reversible if there exists an involution R such 
that

R ◦ T ◦ R = T−1.
In order to see that the no-slip billiard map T is reversible we first define the following 

maps: Φ : (q, v) �→ (q + tv, v), where t is the time of free motion of the trajectory with initial 
state (q, v), so that q, q + tv ∈ ∂M; the collision map C : N → N  given by C(q, v) = (q, Cqv); 
and the flip map J : (q, v) �→ (q,−v) where q ∈ ∂M and v ∈ R3. Recall that T = C ◦ Φ. Now 
set R := J ◦ C = C ◦ J. It is clear (since Cq is an involution by proposition 3) that R2 = I  
and that J ◦ Φ ◦ J = Φ−1. Therefore,

R ◦ T ◦ R = J ◦ C2 ◦ Φ ◦ J ◦ C = J ◦ Φ ◦ J ◦ C = Φ−1 ◦ C = (C ◦ Φ)−1 = T−1.

Notice that if L : V → V  is a reversible isomorphism of a vector space V  with time rever-
sal map R : V → V  (so that R ◦ L ◦ R = L−1) then for any eigenvalue λ of L associated 
to eigenvector u, 1/λ is also an eigenvalue for the eigenvector Ru, as easily checked. These 
elementary observations have the following useful consequence.
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Proposition 9. Let ξ ∈ N  be a periodic point of period k of the no-slip billiard system and 

let λ be an eigenvalue of the differential map dTk
ξ : TξN → TξN  corresponding to eigenvector 

u. Then 1/λ is also an eigenvalue of dTk
ξ  corresponding to eigenvector Ru, where R is the 

composition of the collision map C and the flip map J. Furthermore, e1 (see definition 5) is 
always an eigenvector of dTξ  and all its powers, corresponding to the eigenvalue 1.

We now turn to invariance of the canonical measure. The canonical 1-form θ on N is defined 
by

θξ(U) := v · X

for ξ = (q, v) ∈ N  and U = (X, Y) ∈ TqN ⊕ v⊥ = TξN. Its differential dθ is a symplectic 
form on N ∩ {v ∈ Tq(∂M) : |v| = 1}c and Ω = dθ ∧ dθ  is the canonical volume form on this 
same set. In terms of horizontal and vertical components of vectors in TN, the symplectic form 
is expressed as

dθ(U1, U2) = Y1 · X2 − Y2 · X1

where Ui = (Xi, Yi). An elementary computation shows that the measure on N associated to 
Ω is given by

|Ωξ| = v · ν(q) dA∂M(q) dAN(v) (11)

where ν(q) := e3(q), dA∂M(q) is the area measure on ∂M , and dAN(v) is the area measure on 
the hemisphere Nq = {v ∈ R3 : v · ν(q) > 0}.

Proposition 10. The canonical 4-form Ω on N transforms under the no-slip billiard map 
as T∗Ω = −Ω. In particular, the associated measure |Ω|, shown explicitly in equation 11, is 
invariant under T.

Proof. Let u be a vector field on ∂M  and introduce the one-form θu on N given by

θu
ξ(U) := (v · u(q))(u(q) · X)

for ξ = (q, v) and U = (X, Y). Taking u to be each of the vector fields u1, u2 we obtain the 
1-forms θu1 and θu2. As v = (v · u1)u1 + (v · u2)u2 + (v · ν)ν  and X · ν = 0, we have

θ = θu1 + θu2 .

The no-slip collision map C acts on u = θui  as follows: For U = (X, Y) ∈ Tq(∂M)⊕ v⊥,

(C∗θu)ξ(U) = (Cq(v) · u(q))(u(q) · X) = (v · Cq(u(q)))(u(q) · X)

where C* denotes the pull-back operation on forms. It follows that

C∗θu1 = θu1 , C∗θu2 = −θu2 .

We now compute the differentials dθu for u = u1, u2. Observe that θu = f u(ξ)(π∗u�), where 
f ξ is the function on N defined by f u(ξ) := v · u(q) and π∗u� is the pull-back under the projec-
tion map π : N → ∂M of the 1-form u� on ∂M  given by uβ

q (X) = u(q) · X . Thus

dθu = df u ∧ (π∗u�) + f uπ∗du�.

A simple calculation gives

df u
ξ (X, Y) = v · (DXu) + u(q) · Y .
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The vector field u  =  ui is parallel on ∂M . In fact, its derivative in direction X ∈ Tq(∂M) only 
has component in the normal direction, given by

DXu = κ(q)(X · e2(q))(u(q) · e2(q))ν(q).

Omitting the dependence on q, we have

df u
ξ (X, Y) = κ(q)(X · e2)(u · e2)(v · ν) + u · Y .

Another simple calculation gives

du�q(X1, X2) = (DX1 u) · X2 − (DX2 u) · X1 = 0

so dθu = df u ∧ π∗u�. Explicitly,

dθu(U1, U2) = (u · Y1)(u · X2)− (u · Y2)(u · X1)− κ(q)(v · ν)(u · e1)(u · e2)ω(X1, X2)

where

ω(X1, X2) := (e1 · X1)(e2 · X2)− (e2 · X1)(e1 · X2).

Notice that ω is the area form on ∂M . A convenient way to express dθu is as follows.  
Define the 1-form ũ on N by ũξ(U) = u(q) · Y , where U = (X, Y) ∈ TξN, and the function 
gu(ξ) := −κ(q)(v · ν)(u · e1)(u · e2). These extra bits of notation now allow us to write

dθu
ξ = gu(ξ)(π∗ω) + ũ ∧ (π∗u�).

The main conclusion we wish to derive from these observations is that dθu ∧ dθu = 0. This is 
the case because, as dim(∂M) = 2, we must have ω2 = 0 and ω ∧ u� = 0. Therefore,

Ω := dθ ∧ dθ = (dθu1 + dθu2) ∧ (dθu1 + dθu2) = 2dθu1 ∧ dθu2 .

Finally,

C∗Ω = 2d(C∗θu1) ∧ d(C∗θu2) = −2dθu1 ∧ dθu2 = −Ω.

The forms dθ and Ω are invariant under the geodesic flow and under the map it induces on N. 
As T is the composition of this map and C, the proposition is established. □ 

6. Wedge billiards

One of the main observations of this paper is that a wedge billiard (as in figure 7) always con-
tains, arbitrarily near its corner, period-2 orbits which are Lyapunov stable. This then implies 
the existence of such stable orbits for most polygonal billiards. This is proved in the present 
section.

We set the following conventions for a wedge table with corner angle 2φ. See figure 7. 
(This is the same φ that has appeared before in previous figures.) The boundary planes of 
the configuration manifold are denoted P1 and P2. The orthonormal vectors of the constant 
product frame on plane Pi are e1,i, e2,i, e3,i = νi for i = 1, 2 where
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e1,1 =




0
0
1


 , e2,1 =



cosφ

− sinφ

0


 , e3,1 =



sinφ

cosφ

0


 ,

e1,2 =




0
0
1


 , e2,2 = −



cosφ

sinφ

0


 , e3,2 =




sinφ

− cosφ

0


 .

Let σi : R3 → Tq ⊕ Rνi be the constant orthogonal map such that σiεj = ej,i, where εi, 
i = 1, 2, 3, is our notation for the standard basis vectors in R3. Let

u1,i = sin(β/2)e1,i − cos(β/2)e2,i, u2,i = cos(β/2)e1,i + sin(β/2)e2,i, u3,i = e3,i = νi

be the eigenvectors of the no-slip reflection map associated to the plane Pi and set ζiεj := uj,i. 
For easy reference we record their matrices here:

ζi =



(−1)i cos(β/2) cosφ −(−1)i sin(β/2) cosφ sinφ

cos(β/2) sinφ − sin(β/2) sinφ −(−1)i cosφ

sin(β/2) cos(β/2) 0


 .

The initial velocity v for the period-2 trajectory points in the direction of u1,2 × u1,1 and is 
given by

v =
1√

1 − cos2(β/2) cos2 φ




0
sin(β/2)

cos(β/2) sinφ


 .

This periodic trajectory connects the points q1 ∈ P1 and q2 ∈ P2. Any such pair of points 
can be written as

q1 = a




sin(β/2) cosφ
− sin(β/2) sinφ

b − cos(β/2) sin2 φ


 , q2 = a




sin(β/2) cosφ
sin(β/2) sinφ

b + cos(β/2) sin2 φ




where a, b ∈ R, a  >  0. In what follows we assume without loss of generality that a  =  1 and 
b  =  0. Thus

qi =
(
sin(β/2) cosφ, (−1)i sin(β/2) sinφ, (−1)i cos(β/2) sin2 φ

)t
.

Figure 7. Some notation specific to the wedge billiard table. The Pi are the half-plane 
components of the boundary of the configuration manifold.
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Let S±
i = {v ∈ R3 : |v| = 1,±v · νi > 0}. The collision maps Ci : S−

i → S+
i , i = 1, 2 are 

given by the matrices

Ci = σiCσ−1
i = ζi




1 0 0
0 −1 0
0 0 −1


 ζ−1

i

where C  was defined in equation (1). We now introduce coordinates on Pi × S+
i  as follows. 

Let S2
+ = {z ∈ R3 : |z| = 1, z3 > 0} and define Φi : R2 × S2

+ → Pi × S+
i  by

Φi(x, z) = (qi + ζix, ζiz)

where we regard x ∈ R2 as (x, 0) ∈ R3. This same map may also be written as follows (here 
we use the indices in xi and zi to indicate coordinates of x = (x1, x2) and z = (z1, z2, z3); else-
where in this section such indices indicate different vectors):

Φi(x, z) = (qi + x1u1,i + x2u2,i, z1u1,i + z2u2,i + z3u3,i) .

Clearly, the billiard map is not defined on all of 
⋃

i Pi × S+
i  since those initial veloci-

ties not pointing towards the other plane will escape to infinity, but we are interested in the 
behavior of the map on a neighborhood of the periodic point ξi = (qi, vi), vi = −(−1)iv. The 
question of interest here is whether some open neighborhood of ξi remains invariant under  
the billiard map. It is easily shown that the coordinates of the state ξi (of the period-2 orbit at 

the plane Pi) are Φ−1
i (ξi) = (0, yi) ∈ R2 × S2

+ where

yi =
1√

1 − cos2(β/2) cos2 φ

(
0, (−1)i sinφ, sin(β/2) cosφ

)t
.

Let Ti : Di ⊂ R2 × S2
+ → R2 × S2

+ be the billiard map restricted to Pi × S+
i  expressed in the 

coordinate system defined by Φi . Thus

T1 = Φ−1
2 TΦ1, T2 = Φ−1

1 TΦ2

on their domains Di. We now find the explicit form of Ti. Define ī =
{

1 if i = 2
2 if i = 1

 and 

orthogonal matrices Ai := ζ−1
ī ζi  and S = diag(1,−1,−1), both in SO(3). Also define

α := 2 sinφ
√

1 − cos2(β/2) cos2 φ.

Observe that ζ−1
ī C̄iζi = SAi. It is easily shown that

qi − q̄i = −αvi, vi = ζiyi, Aiyi = −ȳi, SAiyi = ȳi.

In particular, ζ−1
ī (qi − q̄i) = −αyi. Let Q : R3 × S2

+ → R2 be defined by

Q(x, y) := x − x · ε3

y · ε3
y.

Notice that Q(x, y) · ε3 = 0. We now have

Ti : (x, y) �→ (Q (Ai(x − γyi), Aiy), SAiy) . (12)

For easy reference we record
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αyi = 2 sinφ




0
(−1)i sinφ

sin(β/2) cosφ


 , S =




1 0 0
0 −1 0
0 0 −1




and

A2 = At
1 = ζ−1

1 ζ2 =




1 − 2 cos2(β/2) cos2 φ − sinβ cos2 φ cos(β/2) sin(2φ)
− sinβ cos2 φ 1 − 2 sin2(β/2) cos2 φ sin(β/2) sin(2φ)

− cos(β/2) sin(2φ) − sin(β/2) sin(2φ) − cos(2φ)


 .

Using the notation [z]3 := z · ε3 and elementary computations based on the above gives:

Proposition 11. The return map in the coordinate system defined by Φ1 has the form

T2T1(x, y) = (x + [A1(x − αy1)]3V(y), SAt
1SA1y)

where

V(y) =
[y]3At

1SA1y − [At
1SA1y]3y

[A1y]3[At
1SA1y]3

.

This vector satisfies: [V(y)]3 = 0 and V(y1) = 0. In particular, T2T1(x, y1) = (x, y1) whenever 
(x, y1) is in the domain of T2T1.

In order to study this return map in a neighborhood of (x,y1) we use spherical coordinates 
about the axis y1:

y = cosψ y1 + sinψ cosϕ ε̂1 + sinψ sinϕ ε̂2 (13)

where

ε̂1 := ε1, ε̂2 :=
1√

1 − cos2(β/2) cos2 φ
(sin(β/2) cosφ ε2 + sinφ ε3), ε̂3 := y1

form an orthonormal frame. See figure 8. (Notice the typographical distinction between the 
corner angle φ of the wedge domain and the spherical coordinate ϕ.) Let

(X(x,ϕ,ψ), Y(x,ϕ,ψ)) := T2T1(x, cosψ y1 + sinψ cosϕ ε̂1 + sinψ sinϕ ε̂2)

and define

w := w(ϕ) := cosϕ ε̂1 + sinϕ ε̂2.

Thus we may write y = cosψ (y1 + tanψw(ϕ)). Since the rotation S2 := SAt
1SA1 fixes y1, it 

acts on w as S2w(ϕ) = w(ϕ+ θ) for some constant angle θ. It follows that

S2y = cosψ y1 + sinψ w(ϕ+ θ).

The following proposition summarizes these observations and notations.

Proposition 12. For points y ∈ S2
+ in a neighborhood of y1 we adopt spherical coordi-

nates relative to the axis y1 = ε̂3, so that y = cosψ (y1 + tanψ w(ϕ)) where

w := w(ϕ) := cosϕ ε̂1 + sinϕ ε̂2.
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See figure 8. We also use the notations [z]3 := z · ε3, S1 := A−1
1 SA1, and S2 = SA−1

1 SA1. Let 
R := T2T1 be the 2-step return map as defined above, whose domain contains a neighborhood 
of (x, y1) for all x ∈ R2. Then R(x, y1) = (x, y1) for all x and

R(x, y1 + tanψ w(ϕ)) = (X, y1 + tanψ S2w(ϕ)) = (X, tanψ w(ϕ+ θ))

for an angle θ, depending only on the wedge angle 2φ and the characteristic angle β of the 
no-slip reflection, such that

cos θ = (S2ε̂1) · ε̂1 = 1 − 8δ2 + 8δ4

sin θ = (S2ε̂1) · ε̂2 = 4δ(1 − 2δ2)
√

1 − δ2

where δ := cos(β/2) cosφ. Writing (X,Φ,Ψ) = R(x,ϕ,ψ) we have

R :




X = x + tanψ [A1(x−γy1)]3
[y1]3

(I+S1)w− [(I+S1)w]3y1
[y1]3

+tanψ
[w]3S1w−[S1w]3w

[y1]3

1−tanψ

(
[(A1+S1)w]3

[y1]3
−tanψ

[A1w]3[S1w]3
[y1]

2
3

)

Φ = ϕ+ θ

Ψ = ψ

. (14)

Denoting µ1 := ζ−1
1 ε3 ∈ R2, we further have X(x + sµ1,ϕ,ψ) = X(x,ϕ,ψ) + sµ1.

Since ψ remains constant under iterations of the return map R = T2T1, we regard 
ψ as a fixed parameter. We are interested in small values of r := tanψ. Notice that 
[A1z]3 := (A1z) · ε3 = z · (At

1ε3) = µ0 · z, where

Figure 8. The velocity of orbits of the return billiard map T2T1, in the coordinate system 
Φ1, lies in concentric circles with axis y1 = ε̂3. We use spherical coordinates ϕ and ψ 
relative to the axis ε̂3 to represent the velocity y ∈ S2

+. In these coordinates, the return 
map sends w(ϕ) to w(ϕ+ θ), where θ is a function of the wedge angle α = 2ϕ and the 
characteristic angle β of the no-slip reflection.
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µ0 := At
1ε3 =



cos(β/2) sin(2φ)
sin(β/2) sin(2φ)

− cos(2φ)


 .

Write x0 := αy1, so

x0 = 2 sinφ




0
− sinφ

sin(β/2) cosφ


 .

Then the proposition shows that R has the form

R : (x,ϕ) �→ (X = x + µ0 · (x − x0)Vr(ϕ),Φ = ϕ+ θ) (15)

where the vector Vr(ϕ) can be made arbitrarily (uniformly) small by choosing ψ (or r = tanψ) 
sufficiently close to 0. Observe from the explicit form

Vr(ϕ) =
1

[y1]3

r
(
(I + S1)w − [(I+S1)w]3y1

[y1]3

)
+ r2 [w]3S1w−[S1w]3w

[y1]3

1 − r [(A1+S1)w]3
[y1]3

+ r2 [A1w]3[S1w]3
[y1]23

that Vr(ϕ) · ε3 = 0 so that X is indeed in R2.

Proposition 13. The quantity 1 + µ0 · Vr(ϕ) satisfies the coboundary relation

1 + µ0 · Vr(ϕ) =
ρ(ϕ)

ρ(ϕ+ θ)
 (16)

where

ρ(ϕ) = 1 + r
tanφ

sin(β/2)
sinϕ.

In fact, the transformation R on the three-dimensional space R2 × R/(2πZ), obtained by fix-
ing a value of ψ (hence of r = tanψ), leaves invariant the measure

dµ = c
(

1 + r
tanφ

sin(β/2)
sinϕ

)
dA dϕ

where c is a positive constant (only dependent on the fixed parameters β,ψ,φ) and A is the 
standard area measure on R2.

Proof. The canonical invariant measure on R2 × S2
+ has the form y · ε3 dA dAS, where AS is 

the area measure on S2
+. For a fixed value of ψ we obtain an invariant measure on R2 × S1 of 

the form y · ε3 dA dϕ. Using the form of y given by (13), one obtains

y · ε3 =
cosψ cosφ sin(β/2)√
1 − cos2(β/2) cos2 φ

(
1 + r

tanφ

sin(β/2)
sinϕ

)
.

This shows that, up to a multiplicative constant, the invariant measure μ has the indicated 
form. Equation (16) is an easy consequence of the invariance of μ with respect to R. □ 

By using the coordinate system (x̄, ȳ) �→ x̄µ0 + ȳµ1 on R2, the area measure is dA = dx̄ dȳ 
and, as observed at the end of proposition 12, the transformation R maps the fibers of the 
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projection (x̄, ȳ) �→ x̄ to fibers preserving the length measure on fibers. Thus we obtain a 
transformation R̄ on R× S1 preserving the measure dµ̄(x̄,ϕ) = ρ(ϕ) dx̄ dϕ where ρ(ϕ) 
has the stated expression. Using the quotient coordinates x̄ = x · µ0 and φ and writing 
Vr(ϕ) := Vr(ϕ) · µ0 we obtain

R(x̄,φ) =
(
(1 + Vr(ϕ))x̄ − x̄0Vr(ϕ),φ+ θ

)
.

In particular,

X =
ρ(ϕ)

ρ(ϕ+ θ)
x̄ +

(
1 − ρ(ϕ)

ρ(ϕ+ θ)

)
x̄0.

The invariant measure is

dµ̄(x̄,ϕ) = ρ(ϕ)dx̄dϕ

where ρ(ϕ) is the density given in proposition 13. It is now immediate that

R
n
(x̄,ϕ) =

(
ρ(ϕ)

ρ(ϕ+ nθ)
x̄ +

(
1 − ρ(ϕ)

ρ(ϕ+ nθ)

)
x̄0,ϕ+ nθ

)
.

This shows that all the iterates of (x̄,ϕ) remain uniformly close to the initial point for small 
values of ψ. Also notice that (ζ1µ0) · e2,1 = ν2 · e2,1 = sin(2φ) > 0. This means that if x̄ 
remains bounded, the length coordinate along the base of P1 also must be similarly bounded. 
From this we conclude:

Corollary 14. Assume the notation introduced at the beginning of this section. For all 
q ∈ Pi \ (P1 ∩ P2), i = 1, 2, and any neighborhood V  of the period-2 state (q, vi) ∈ S+

i , 
there exists a small enough neighborhood U ⊂ V  of (q, vi) the orbits of whose points remain 
in V .

The following theorem is now immediate.

Theorem 15. Polygonal no-slip billiards having a corner of inner angle less than π cannot 
be ergodic for the canonical invariant measure.

7. Higher order periodic orbits in polygons

The analysis of the previous section is based on the existence of period-2 orbits in wedge-
shaped no-slip billiard tables. Existence of periodic orbits of higher periods presently seems 
difficult to establish analytically, although one such result for wedge domains will be indi-
cated below in this section, which strengthens an observation made in [4]. We first point out 
a generalization of corollary 14 to perturbations of periodic orbits in general polygon-shaped 
domains.

Figure 9 illustrates the type of stability implied by the following theorem 16.

Theorem 16. Periodic orbits in no-slip polygon-shaped billiard domains are Lyapunov 
stable. That is, given an initial state ξ0 = (q0, v0) for a period-n orbit in such a billiard system, 
and for any neighborhood V  of ξ0, there exists a small enough neighborhood U ⊂ V  of ξ the 
orbits of whose elements remain in V .

Proof. The idea is essentially the same as used in the proof of proposition 13 and corollary 
14. We only indicate the outline. By a choice of convenient coordinates around the periodic 
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point, it is possible to show that the nth iterate of the billiard map T, denoted R:  =  Tn, can 
be regarded as a map from an open subset of R2 × S1 into this latter set, having the form 
R(x,ϕ) = (x0 + A(ϕ)(x − x0),ϕ+ θ) for a certain angle θ, where A(ϕ) is a linear trans-
formation independent of x. Rotation invariance implies that R must satisfy the invariance  
property R(x + su,ϕ) = R(x,ϕ) + su for a vector u ∈ R2. From this we define a map R  on 
(a subset of) the quotient R× S1, R2/Ru being identified with R . Furthermore, denoting by 
(x̄,ϕ) the coordinates in this quotient space, invariance of the canonical measure implies in-
variance of a measure μ on this quotient having the form dµ(x̄,ϕ) = ρ(ϕ) dx̄ dϕ. Invariance 
is with respect to the quotient map R(x̄,ϕ) = (x0 + a(ϕ)(x̄ − x̄0),ϕ+ θ) for some function 
a(ϕ). This function must then take the form a(ϕ) = ρ(ϕ)/ρ(ϕ+ θ). Iterates of R  will then 
behave like the corresponding map for the wedge domain, defined prior to theorem 14. □ 

We briefly turn our attention here to the question of existence of periodic orbits of higher 
(necessarily even) periods for wedge shapes. Clearly, a necessary condition for periodicity is 
that the angle θ introduced in proposition 12 (see also figure 8) be rational. For orbits that do 
not eventually escape to infinity, this is also a sufficient condition, as a simple application of 
Poincaré recurrence shows. (See [4].) Moreover, as θ is only a function of δ := cos(β/2) cosφ, 
which is given by (proposition 12)

cos θ = 1 − 8δ2 + 8δ4 (17)

where β is the characteristic angle of the system (a function of the mass distribution on the 
disc) and 2φ is the corner angle of the wedge domain, if a higher order periodic orbit exists for 
a given δ, all bounded orbits have the same period.

Consider now the case of uniform mass distribution, for which cos(β/2) =
√

2/3. Solving 
(17) for cosφ, for θ = 2πp/q , choosing first the negative square root, gives

cosφp,q :=

√
3

2

√
1 −

√
1 + cos(2πp/q)

2
. (18)

Notice that there are no restrictions on the values of p and q. The following proposition is 
a consequence of these remarks.

Figure 9. Theorem 16 states that periodic orbits of polygonal billiards are Lyapunov 
stable. This is illustrated here by a period-10 orbit of a triangular no-slip billiard. The 
right-hand side shows projections to the velocity phase space of several orbits near the 
one of period-10. (The projection of the periodic orbit consists of the 10 centers of the 
family of concentric circles.) One of the neighboring orbits is also shown on the left-
hand side, projected to the plane of the billiard table.
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Theorem 17. For any positive even integer n there exists a wedge domain for which the no-
slip billiard has period-n orbits. More specifically, all bounded orbits of the no-slip billiard 
in a wedge domain with corner angle φp,q satisfying equation 18 are periodic with period 2q.

Solving 17 for cosφ, for θ = 2πp/q , but choosing now the positive square root, gives

cosφp,q :=

√
3

2

√
1 +

√
1 + cos(2πp/q)

2
.

This makes sense so long as 0.392 ≈ arccos(−7/9)/2π � p/q � 0.5, which greatly restricts 
the choices of p and q. A few examples in this case are shown in figure 10.

It is interesting to observe that all orbits of the equilateral triangle are periodic with period 
four or six. (See figure 11 and [4] for the proof.) We do not know of any other no-slip billard 
domain all of whose orbits are periodic.

8. Linear stability in the presence of curvature

We now turn to the problem of characterizing stability of period-2 orbits for no-slip billiard 
domains whose boundary may have non-zero geodesic curvature. Here we only address linear 
rather than local stability. In other words, we limit ourselves to the problem of determining 
when the differential of the billiard map at a period-2 collision state ξ = (q, v) is elliptic or 
hyperbolic, and obtaining sharp thresholds (where it is parabolic). A simple but key observa-
tion is contained in the following lemma.

Lemma 18. Let ξ = (q, v) be periodic with period 2 for the no-slip billiard map and con-

sider the differential T := dT2
ξ : v⊥ ⊕ v⊥ → v⊥ ⊕ v⊥. Then either all the eigenvalues of T  

are real, of the form 1, 1, r, 1/r or, if not all real, they are 1, 1,λ,λ  where |λ| = 1.

Figure 10. From left to right: projections of periodic orbits of periods 4, 10, 14, 18. 
(Bounded orbits in the same wedge domain are all periodic with the same period.) The 
rotation angle θ in each case is 2πp/q where p/q is 1/2, 2/5, 3/7, 4/9, respectively. 
Mass distribution is uniform.

Figure 11. All orbits of an equilateral triangle no-slip billiard system are periodic with 
(not necessarily least) period equal to four or six.
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Proof. This is a consequence of the following observations. First, we know that T∗Ω = −Ω, 
where Ω is the canonical volume form (see section 5). Therefore, the product of the eigen-
values of T  counted with multiplicity is 1. The vector (e1, w1), where e1 is the first vector 
in the product frame and w1 is the first vector in the wavefront frame, is an eigenvector for 
eigenvalue 1 of dTξ  due to rotation symmetry, as already noted. If we regard dTξ  as a self-
map of v⊥ ⊕ v⊥ as in the corollary to proposition 7 then we should use instead the vector 
(w1, w1). (Recall that w1 is collinear with the orthogonal projection of e1 to v⊥.) In addition, 
by reversibility of T, if λ is an eigenvalue of T , then 1/λ also is, and since T  is a real valued 
linear map, the complex conjugates λ and 1/λ are also eigenvalues. As the dimension of the 
linear space is 4, if one of the eigenvalues, λ, is not real, it must be the case that λ = 1/λ and 
we are reduced to the case 1, 1,λ,λ  with λλ = 1. If all eigenvalues are real, and r �= 1 is an 
eigenvalue, then we are reduced to the case 1, 1, r, 1/r. □ 

Corollary 19. The period-2 point ξ is elliptic for T = dT2
ξ  if and only if |Tr(T )− 2| < 2.

To proceed, it is useful to express the differential map of corollary 8 in somewhat different 
form. First observe, in the period-2 case (in which ṽ = −v and v⊥ = ṽ⊥), that

w2(ξ) = −w2(ξ̃) and
cosψ(q̃, v)
cosφ(q̃, v)

=
cosψ(ξ̃)

cosφ(ξ̃)
=

cosψ(ξ)

cosφ(ξ)
.

(See section 3.) Now define the rank-1 operator

Θξ̃(Z) := 2 cos(β/2)
cosψ(ξ̃)

cosφ(ξ̃)

〈
w2(ξ̃), Z

〉
u1(q̃).

Then

dTξ

(
X
Y

)
=

(
I tI

−κ(q̃)Θξ̃ Cq̃ − tκ(q̃)Θξ̃

)(
X
Y

)
. (19)

When κ(q) = κ(q̃) there is a simplification in the criterion for ellipticity, as will 
be seen shortly. With this special case in mind we define the linear map Rξ on v⊥ by 
Rξwi(ξ) = −(−1)iwi(ξ), i = 1, 2. Notice that Ru1(q) = u1(q̃). Then

Rξ̃Cq̃ = CqRξ, Rx̃Θξ̃ = Θξ Rξ.

The same notation Rξ will be used for the map on v⊥ ⊕ v⊥ given by (z1, z2) �→ (Rξz1, Rξz2). 
Then R := Rξ = Rξ̃  since wi(ξ̃) = −(−1)iwi(ξ). It follows that

RdTξR =

(
I tI

−κ(q̃)Θξ Cq − tκ(q̃)Θξ

)
. (20)

In particular, when κ(q) = κ(q̃), we have RdTξR = dTξ̃ and dT2
ξ = (RdTξ)

2. Therefore, rather 
than computing the trace of dT2

ξ , we need only consider the easier to compute trace of RdTξ. 
The result is recorded in the next lemma.

Lemma 20. Let ξ = (q, v) have period 2 and set ξ̃ := T(ξ), C := Cq,Θ := Θq. Then

Tr
(
dT2

ξ

)
= Tr

{
I + (CR)2 − t(κ(q) + κ(q̃)) [Θ + (CR)(ΘR)] + t2κ(q)κ(q̃)(ΘR)2} .

When κ := κ(q̃) = κ(q), we have Tr(RdTξ) = Tr (CR + tκΘ) .
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Proof. These expressions follow easily given the above definitions and notations. □ 

The traces can now be computed using Equations  (3) and (4). The matrices expressing 
C, R,Θ in the wavefront basis of v⊥ are given as follows. For convenience we write

c := cos(β/2), cφ := cosφ, cψ := cosψ, � :=
√

1 − cos2(β/2) cos2 φ,

where φ = φ(ξ) and ψ = ψ(ξ) are defined in corollary 8.

[C]w =

(
1 − 2c2c2

φ −2ccφ�
−2ccφ� −1 + 2c2c2

φ

)
, [R] =

(
1 0
0 −1

)
, [Θ]w = 2c

cψ
cφ

(
0 �

0 −ccφ

)
.

Let d̄  be the distance between the projections of q and q̃ on plane the billiard table, v  the 
projection of v on the same plane and t, as before, the time between consecutive collisions. 
From cosψ = sin(β/2) cosφ/

√
1 − cos2(β) cos2 φ it follows that t cosψ = cosφ d̄.

We then obtain

Tr (RdTξ) = Tr(CR) + tκTr(Θ) = 2
[
1 − 2 cos2(β/2) cos2φ

]
− 2κd̄ cos2(β/2) cosφ (21)

and

Tr
(
dT2

ξ

)
= 4

{[
1 − 2 cos2(β/2) cos2φ

]2

− (κ(q) + κ(q̃)) cos2(β/2) cosφ
[
1 − 2 cos2(β/2) cos2φ

]
d̄

+κ(q)κ(q̃) cos4(β/2) cos2φ d̄2} .
 

(22)

Observe that in the special case in which κ(q) = κ(q̃) we have

Tr
(
dT2

ξ

)
=

{
2
[
1 − 2 cos2(β/2) cos2 φ

]
− 2κ cos2(β/2) cosφ d̄

}2
.

Theorem 21. Suppose that the billiard domain has a piecewise smooth boundary with at 
least one corner having inner angle less than π. Then, arbitrarily close to that corner point, 
the no-slip billiard has (linearly) elliptic period-2 orbits.

Proof. Period-2 orbits exist arbitrarily close to the corners of a piecewise smooth billiard 
domain as figure 12 makes clear. For period-2 orbits near a corner the above expression for 

Tr
(

dT2
ξ

)
 gives for small d̄

0 < Tr
(
dT2

ξ

)
= 4

[
1 − 2 cos2(β/2) cos2 φ

]2
+ O(d̄) < 4.

This implies that
∣∣Tr

(
dT2

ξ

)
− 2

∣∣ < 2

and the theorem follows from corollary 19. □ 

Let us consider the special case of equal curvatures at q and q̃. Define ζ := κd̄ . When 
ζ > 0 (equivalently, the curvature is positive), the critical value of ζ is

ζ0 =
2 − 2 cos2(β/2) cos2 φ

cos2(β/2) cosφ
. (23)

The condition for ellipticity is ζ > ζ0. When ζ < 0, the critical value of ζ is
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ζ0 = −2 cosφ

and the condition for ellipticity is |ζ| < |ζ0|.
Theorem 21 together with numerical experiments strongly suggests that such no-slip bil-

liards will aways admit small invariant open sets and thus cannot be ergodic with respect to 
the canonical billiard measure.

9. Two numerical examples

We now illustrate the curvature cut-off in two numerical examples corresponding to the two 
families of periodic orbits shown in figure 13. On the left-hand side of the figure is the no-slip 
version of the Sinai billiard. (We refer to [12] for more information and motivation about this 
system. That paper explains how it models the motion of two discs in a torus with no-slip con-
tact.) The billiard domain is the complement of a circular scatterer in a two-torus.

We focus attention on a family of horizontal period-2 orbits parametrized by the angle 
φ shown in the figure. As already remarked, the actual configuration manifold is the 3- 
dimensional space M that includes the angle of rotation of the moving disc; for the no-slip 
Sinai billiard, this three-dimensional space, and the same periodic orbit we consider now, 
were already shown in figure 6. (The symbol φ in that figure plays the same role as in the 

Figure 12. For a billiard domain with piecewise smooth boundary, arbitrarily near any 
corner with inner angle less than π there are linearly stable period-2 orbits.

Figure 13. Two families of periodic orbits. On the left: the no-slip Sinai billiard and 
a period-2 orbit whose projection to the plane of the billiard domain hits the circular 
scatterer at an angle φ. On the right: a family of billiard domains with negative boundary 
curvature; the period-2 orbits project to the thick horizontal lines.
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present discussion.) See also figure 9, which may help to interpret the below figure 14. Note 
that such a periodic orbit exists for φ arbitrarily close to π/2. In [12] only the orbit for φ = 0 
was considered.

On the right-hand side of figure 13 is a family of billiard domains whose boundary consists 
in each case of a pair of circular arcs. This family of examples is parametrized by the angle 
of the arcs. Here we only consider the horizontal period-2 orbit through the center of these 
domains. Thus these two classes of systems would correspond to the so-called dispersing and 
the focusing billiards if we were dealing with the ordinary type of collision. In all cases, the 
mass distribution of the moving disc is uniform.

We first examine small perturbations of the periodic orbit in the no-slip Sinai billiard sys-
tem corresponding to φ = 0. The critical radius of the circular scatterer, which can be obtained 
from equation (23), is exactly 1/3. This was already shown in [12].

The top row of figure 14 suggests a transition from chaotic to more regular type of behav-
ior for a radius between 0.32–0.33. So the observed numbers are somewhat smaller than 
the exact value 1/3. We should bear in mind that the periodic points are not isolated, but 
are part of the family parametrized by φ. As φ increases, the critical parameter ζ0 changes 
(for the uniform mass distribution, where cos2(β/2) = 2/3) according to the expression 
ζ0 = (3 − cos2 φ)/ cosφ. Given in terms of the radius of curvature, ζ = (1 − 2R cosφ)/R. 
Solving for the critical R yields R0 = cosφ

3 . Thus for a period-2 trajectory having a small but 
non-zero φ, the critical radius is less than 1/3. It is then to be expected that the experimental 
critical value of R, for orbits closed to that having φ = 0 will give numbers close to but less 
than 1/3. Moreover, as R0 approaches 0 when φ approaches π/2, we obtain the following prop-
osition which, together with experimental evidence indicates that the no-slip Sinai billiard is 
never ergodic no matter how small the value of the scatterer’s radius. This phenomenon is 
further illustrated in figure 15.

Proposition 22. The no-slip Sinai billiard, for any choice of scatterer curvature, will con-

Figure 14. Top row: velocity phase portraits of a single orbit near the periodic orbit of 
the no-slip Sinai billiard corresponding to φ = 0. The radius of the circular scatterer 
is given under each portrait. Bottom row: similarly for an orbit near the periodic one 
given in the right-hand part of figure 13. The numbers are the circular cap angles (so π 
corresponds to the disc domain in figure 13.) Apparent chaotic behavior occurs for an 
angle much greater than π. This is expected since period-2 orbits parallel to the one at 
middle height, but not too far from it, remain linearly stable for larger angle cap values.
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tain (linearly) elliptic periodic trajectories of period 2.

As another example, consider the family of billiard regions bounded by two symmetric arcs 
of circle depicted in figure 13. In this case, the critical transition from hyperbolic to elliptic, 
for the horizontal periodic orbit at middle height shown in the figure, happens for the disc 
domain. This is again shown using equation (23).

Numerically, a transition similar to that observed for the Sinai billiard is seen to occur near 
the horizontal period-2 orbit passing through the center of the billiard domain. The number 
indicated below each velocity phase portrait in the bottom row of figure 14 is the angle of the 
circular arc. Thus, for example, the disc corresponds to angle π while smaller angles give the 
lemon shaped domains. Hence the exact cut-off angle at which the indicated periodic orbit 
becomes elliptic is π. Notice, however, that the experimental value for this angle is greater 
than π. Just as in the Sinai billiard example, we should keep in mind that the periodic orbits 
are not isolated; while ellipticity is destroyed for the middle height orbit, others parallel to it 
may still be elliptic. Here the bias is towards greater values of the angle. In other words, the 
structures we see in the velocity phase portrait are associated to periodic orbits near the one at 
middle height, and for them the cut-off angle of the circular arcs is greater than π.

10. Final remark

Of the results discussed above, the more complete ones apply to polygonal no-slip billiards; 
they imply a strong stability of periodic orbits. For general curvature, we also noted above that 
elliptic behavior is very common and hard to destroy.

A general picture for polygonal billiards emerges from the numerical examples, which 
we cannot yet validate analytically: it appears that all orbits (in an open invariant set of full 
measure) lie in a stable neighborhood of some periodic orbit. In other words, what is shown 
in figure 9 is what all orbits look like in numerical experiments: those that are not periodic 
all seem to lie in an elliptic island of a periodic orbit. On the other hand, in the presence of 

Figure 15. On the left: velocity phase portrait of the no-slip Sinai billiard with scatterer 
radius R  =  0.35. Since this is greater than the transition value R  =  1/3, the period-2 
orbits parametrized by φ are all elliptic. On the right, R  =  0.32 and ellipticity has been 
destroyed for orbits with smaller values of φ. No matter how small R is, elliptic orbits 
always exist for φ sufficiently close to π/2.
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boundary curvature, stable and chaotic dynamics seem to coexist in all examples considered 
so far. In particular, finding an example of ergodic no-slip billiard system (relative to the 
Liouville measure in the reduced three-dimensional phase space) seems to be a challenging 
problem at the moment.
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