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ABSTRACT 
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INTERSECTIONS 

 
DECEMBER 2017 
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Directed by: Professor Eleni Christofa 

 
Increasing travel demand, and challenges associated with high percentages of left-

turning vehicles, have encouraged the introduction of significant infrastructure 

advancements. Certain alternative intersection designs, such as continuous flow 

intersections, median U-turns, and jughandles, eliminate the traditional protected left-

erations 

of these intersection types have been studied to varying degrees, their safety and 

emissions-related impacts are not well-understood. 

This project develops a series of microsimulation models for two continuous flow 

intersections (CFI) located in Missouri and Colorado, and uses the Surrogate Safety 

Assessment Model (SSAM) to determine the impact of those designs on the location and 

type of conflicts compared to conventional signalized intersections. Additionally, an 

emissions model, CMEM, was used in the analysis of the Colorado study site to 

determine whether CFIs have the potential to reduce emissions compared to conventional 

signalized intersections.  

As hypothesized, the number of total conflicts did decrease upon installation of a 

CFI for both study sites, despite lane-change conflicts experiencing an insignificant 
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increase at the Loveland, CO study site. While too small of a sample size to provide a 

definite validation of SSAM, these results show SSAM can accurately predict the types 

of conflicts likely to occur as well as indicate a reduction in total vehicle conflicts when a 

conventional signalized intersection is converted into a CFI.  

Emission rates per mile at the CFI were lower than those at a conventional 

signalized intersection, most likely due to fewer total stops and lower delay times for 

users. The CMEM analysis was repeated for four other volume scenarios, varying left-

turn demand. Under all scenarios, the CFI performed better than the conventional 

signalized intersection. This improvement increased as volume increased, showing that 

the environmental performance of a CFI is less sensitive to demand than a conventional 

signalized intersection.  

This project set forth to quantify sustainability benefits to the installation of a CFI 

for practitioners. Ultimately, this research can aid transportation decision-makers by 

providing quantitative evidence that CFIs can improve the safety impacts for vehicle 

users and environmental impacts for the general population in both rural and urban 

applications. 
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CHAPTER 1: INTRODUCTION 

Conventional signalized intersections have been in existence since the early 

 driving on the right side of the road, approaching 

the intersection, and either turning left, right or continuing through. However, as the 

vehicle miles traveled (VMT) increases, so does congestion that occurs at the 

chokepoints of the transportation network: intersections. The left-turn movement is 

particularly susceptible to this, as left-turning vehicles must stop and wait at the 

intersection before finding a gap in oncoming traffic, when permissive, or must be given 

their own signal phase. The addition of a signal phase either requires a longer cycle 

length, or shorter green times for through movements, increasing total delay for users. 

Innovative traffic engineers over the past five decades have been seeking a remedy for 

this problem, and one common solution is alternative intersection designs that relocate or 

divert the left turning movement. This can be accomplished in many ways, but the goal is 

always the same: increase the operational efficiency and safety of the intersection.  

The most widely implemented alternative intersection design is the roundabout. 

popularity 

rapidly across the country. A form of a traffic circle, it eliminates the signal, allows 

vehicles to enter the intersection when a sufficient gap exists in the circulating traffic, and 

treats all turning movements identically. Thus, left turning vehicles have no more impact 

than through moving or right turning vehicles. However, a significant amount of research 

has already been dedicated to roundabouts, and they will not be discussed in this project. 

This project will instead focus on the continuous flow intersection (CFI), which 

was developed in 1991 by Francisco Mier and has since been implemented in a number 
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of sites across the country [1]. While only approximately 25 CFIs have been implemented 

across the United States to date, they exist in many different locations across the country. 

The state of Utah has been a proponent of them, converting at least 11 conventional 

intersections to CFIs since 2007 [2]. CFIs also exist in Maryland, Missouri, and 

Colorado, among other states, and are currently being planned or constructed in Virginia, 

Texas, and Florida. 

PROBLEM STATEMENT 

While innovative intersection designs like the CFI are often championed by 

designers as viable and sustainable alternatives to signalized intersections, there is a lack 

of quantitative data to support those claims. Past studies have indicated that CFIs 

generally provide better operational performance than conventional signalized 

intersections, but other sustainability impacts of alternative intersection designs have not 

been studied.  

This is especially true as it relates to the safety and environmental impacts of 

CFIs. For a technology to be sustainable, it must be sustainable in three aspects: 

economic, social, and environmental. Thus, knowing the environmental impacts (e.g., 

amount of greenhouse gases produced or impacts on human health) is essential to begin 

determining if CFIs are sustainable. The safety impacts of the conversion of a 

conventional signalized intersection to a CFI also affect sustainability. According to an 

NHTSA report from 2010, the economic cost of crashes in the United States for that year 

alone totaled approximately $240 billion [3]. When factoring in the quality of life, the 

total societal costs exceeded $800 billion for 2010 alone [3]. Any reductions in these 

costs contributes to transportation infrastructure sustainability improvements. Without 
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quantifying the safety and environmental improvements, however, the true magnitude of 

the sustainability improvements cannot be shown.  

SCOPE OF RESEARCH 

The objective of this research is the following two components: 1) safety 

assessment, and 2) emissions estimation at CFIs. 

RESEARCH GOALS 

The overall goal of this research is to better quantify the potential benefits of 

continuous flow intersections in two main aspects: safety and environmental. The 

following goals were determined to properly address these research needs: 

 Determine whether continuous flow intersections are safer than 

conventional signalized intersections for the same traffic conditions using 

surrogate safety measures through microsimulation and validating with 

real-world crash data. 

 Determine if continuous flow intersections produce lower emission levels 

than conventional signalized intersections for the same traffic conditions 

through microsimulation. 

The goals listed above are further detailed in Chapter 3.  
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CHAPTER 2: LITERATURE REVIEW 

BACKGROUND ON CONTINUOUS FLOW INTERSECTIONS 

The operations of various alternative intersection designs have been lately 

documented at length by the Federal Highway Administration (FHWA) [2]. The 

following section summarizes relevant publications and discuss the main advantages and 

disadvantages of installing a CFI.  

Continuous flow intersections (CFI) are also commonly referred to as displaced 

left turn (DLT) intersections or crossover displaced left (XDL) intersections. These 

intersections relocate the left-turn movement of an approach to the other side of the 

opposing flow at an upstream crossover intersection, as seen in Figure 2.1 on the 

following page. This relocation allows through movements and left-turn movements to 

proceed through the main intersection at the same time and eliminates the conflict 

between the left-turn crossing and the opposing through movement. Consequently, the 

number of phases at a CFI are reduced as phases for left-turn movements do not need to 

be protected. Green time allocated to left-turning movements at conventional signalized 

intersections can instead be allocated to through or pedestrian movements.  

CFIs can have many different geometric configurations. When two major roads 

intersect, it is possible to have displaced left turn lanes for all four approaches. However, 

if the left-turning volume of a road is not as a high as the major road, a partial CFI can be 

installed. A partial CFI has displaced left-turn lanes for only the major approaches and 

conventional left turn lanes for the minor approaches. Few four-leg CFIs exist in the 

United States, so the intersections studied in this project are partial CFIs. Figure 1 depicts 
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a typical partial CFI. The red arrows depict eastbound traffic, and the blue arrows depict 

westbound traffic. Once the eastbound and westbound left-turning vehicles have crossed 

over during the north/southbound through phases, the east/westbound left-turn and 

through moving vehicles can all use the main intersection at the same time. Other 

common geometric variations are the presence or absence of channelized right turn lanes 

or pedestrian refuge islands. Channelized right turns require additional right of way to be 

constructed, but eliminate conflicts between right-turn movements and the displaced left 

turning vehicles.  

Figure 2.1: Partial CFI with Displaced Lefts on a Major Street 

The signal timing for a CFI requires careful design to ensure vehicles do not have 

to stop more than once. Upstream crossover intersections can be controlled separately 

from the main intersection, or a single controller can be used for the whole intersection. 

The general pattern for phasing is as follows: the major crossover movement is given the 

green indication at the same time minor street movements are given the green indication. 
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Then, as crossover vehicles approach the main intersection, the major through and left 

movements are given the green indication [2]. To best serve these vehicles, the length of 

the crossover left turn bay should be long enough so that the time it takes vehicles to 

travel the length of the bay equals the time it takes for the signal phase to switch from the 

minor street to the major street. Too short of a bay will result in vehicles stopping both at 

the crossover intersection and the main intersection, and too long of a bay will result in a 

travel time too long that could lead crossover vehicles being forced to stop at both 

intersections as well [4]. 

While in theory CFIs are safer than conventional intersections since they remove 

the left turning conflicts, there is little empirical evidence to support this hypothesis.  This 

is because there are currently only 25 CFIs in the United States, and all but three of these 

have been constructed in the last ten years. As a result, much of the prior literature on the 

safety of CFIs has yet to be validated with field data. One commonly cited point about 

the safety benefits of CFIs is the reduction of conflict points [2]. Even though the number 

of conflict points by itself does not necessarily indicate a level of safety, comparing the 

number of conflict points of two intersections can give an idea as to the safety benefits of 

one intersection design relative to another. When a partial CFI is installed, the number of 

conflict points is reduced from the 32 of a conventional signalized intersection to 30. 

These two eliminated conflict points are crossing conflicts, which are more dangerous 

than merging or diverging conflicts that are often associated with lane-change maneuvers.  

Driver unfamiliarity could present some safety challenges when a new CFI is 

constructed. However, a study performed by Dowling College indicated that 

approximately 80 percent of first time users gave positive feedback about the geometric 
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design [2]. That figure increased to approximately 100 percent after participants used it 

for a week. Adequate markings and signage can help unfamiliar drivers and reduce the 

potential for unsafe driving behavior or movements.  

The FHWA provides a table summarizing both the advantages and disadvantages 

of CFIs. That table is duplicated below to give a picture of the potential benefits of 

installing a CFI. 

Table 2.1: Summary of CFI Benefits and Disbenefits (Source: [5]) 

Characteristics Potential Benefits Potential Disbenefits 

Safety Left-turns removed from 
main intersection 

None identified 

Operations More green for through 
movements 

More stops and delay for left turns 

Multimodal No conflicts during 
pedestrian crossing 

Two-stage pedestrian crossing 

Layout may not be immediately 
apparent, especially for visually 
impaired pedestrians 

Physical Smaller footprint than 
interchange alternative 

Right-of-way needed 

Larger footprint than conventional 
intersection 

Access management 

Socioeconomic Air quality Construction cost 

Access management 

Enforcement, 
Education, and 
Maintenance 

None identified Public information campaign may be 
needed 

 

While the operational benefits to CFIs are well documented, questions remain 

about their safety performance, especially with regard to multimodal users. Additionally, 
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no studies have examined the environmental impacts of CFIs, which could potentially be 

reduced for through moving vehicles but increased for left turning vehicles compared to 

traditional signalized intersections.   

OPERATIONS ANALYSIS 

Continuous flow intersections have previously been modeled in microsimulation. 

Past studies have been devoted to the operations of those intersections, and whether  they 

succeeded in more efficiently moving vehicles than conventional signalized intersections.  

Jagannathan and Bared used VISSIM to simulate three cases of CFIs (referred to 

as XDLs) [6]. Cases A and B were dual CFIs while Case C was a T-leg CFI with only the 

major road having a displaced left turn. The authors used the number of stops and 

intersection delay as parameters for evaluation. Their findings indicated that the CFI 

would outperform a conventional signalized intersection in all demand scenarios. 

However, the degree to which delay and queues were reduced were dependent on the 

volume of traffic at the intersection. The reduction in stops due to the CFI over a 

conventional intersection ranged from 15% to 30% for undersaturated traffic conditions 

and 85% to 95% for saturated traffic conditions. 

A 2013 study by Autey et al. looked at four different alternative intersection 

designs, two of which were the median U-turn (MUT) and CFI (referred to as XDL) [7]. 

Using VISSIM to model generic intersections with varying traffic volumes, the authors 

compared delay results for the four types of intersections. Most significantly, they found 

that each alternative design outperformed a conventional signalized intersection, 

regardless of demand. They also found that the MUT was not as reliable when demand 
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increased, especially when the percentage of left-turning traffic increased, but that the 

CFI was able to handle large traffic demand without failing. 

Reid and Hummer (2001) compared seven different unconventional designs 

(including the CFI, jughandle, and MUT) to a conventional intersection [8]. Unlike Autey 

et al., Reid and Hummer used travel time as a performance measure in evaluating each 

design. Seven conventional intersections were modeled in CORSIM and modified to 

reflect the ideal geometries of the seven alternative intersection designs. The results 

showed that, as in other studies, at least one alternative intersection design always 

outperformed a conventional signalized intersection. Significant for future emissions 

work, the authors found that the MUT design produced the most miles driven at each 

intersection, which could be an indicator of increased emissions production. It is also 

interesting to note that the authors found that the jughandle was always outperformed by 

a conventional intersection in average travel time [8]. This might be outweighed by other 

benefits, but by the performance measure chosen by Reid and Hummer alone, the 

jughandle was found to be inferior to a conventional signalized intersection.  

SAFETY ANALYSIS 

The most common method of analyzing roadway safety is by comparing current 

crash levels with historical records. This allows for a statistical analysis of real-world 

data that present an accurate picture of the roadway conditions. Once a section of 

roadway experiences more crashes than it has historically seen or is expected to see, 

remediation techniques are employed by transportation agencies to combat the problem. 

This is helpful for analyzing locations that have been in place for a while, as there is 

usually sufficient historical data to observe statistically significant changes. 
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However, for newer sections of roadway or proposed improvements, for many 

years there was no way to assess the safety performance. This prompted researchers 

under an FHWA grant to develop the Surrogate Safety Assessment Model (SSAM) [9]. 

SSAM is a software program which uses codified parameters to evaluate the presence of 

traffic conflicts given simulated vehicle trajectories. The model uses the surrogate safety 

measure of traffic conflicts in place of actual crash frequency to quantify the safety 

performance of a roadway. 

e locations in an intersection where two 

situation in which two or more road users approach each other in time and space to such 

an extent that there is risk of coll [10]. 

Traffic conflicts do not necessarily indicate that a crash occurs, as in most circumstances 

drivers alter their behavior. For example, a driver approaching a queue at a red light will 

almost always slow down to avoid a rear-end collision, even though depending on speed 

and acceleration that could be defined as a traffic conflict by an observer. SSAM 

improves on the subjectivity that a human observer would bring to a real-world 

observation by using several surrogate measures of safety to define a conflict. These 

surrogate measures include minimum time-to-collision (TTC) and minimum post-

encroachment (PET). To analyze a roadway in SSAM, the roadway must be modeled in a 

microsimulation software. Trajectory (.trj)  files can be exported from microsimulation 

software to SSAM and analyzed for traffic conflicts.  

SSAM was validated by researchers in three main respects: theoretical validation, 

field validation, and sensitivity analysis for various intersection designs. In the theoretical 
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validation, researchers were primarily concerned with the relative accuracy of the model 

in assessing 11 pairs of intersection designs. These designs included 6 conventional 

signalized intersections, one diamond intersection, one median U-turn, and three 

roundabouts.  In each pair, design A was presumed by intuition to be the safer design 

while design B was presumed to be the less safe design. Conventional crash prediction 

models based on approach volumes and geometric factors were used to compare design A 

to design B. Then, Gettman et al. compared the same two designs in SSAM to see if 

SSAM made the same predictions as the conventional crash prediction models. The 

results of the theoretical validation indicated, however, that often design A had more 

conflicts than design B, while design B had higher severity conflicts than design A [11]. 

And while some of the predictions from surrogate measures matched those of the 

conventional crash prediction models, other cases yielded inconclusive or 

counterintuitive results. Researchers suggested that more work should be done to 

investigate the implications of surrogate safety measures, as to which design is 

objectively safer.  

Unlike the theoretical validation, the field validation was conducted to ensure the 

absolute accuracy of SSAM [11]. Eighty-three locations were chosen for simulation and 

the results of the SSAM analysis were compared to historical crash data obtained from 

insurance claims. This validation demonstrated that the conflict data from SSAM 

correlated well with the historical crash data for all crash types, except for left-turn right 

angle crashes (defined as crossing conflicts) which were underrepresented in SSAM. A 

relationship between conflicts and crashes was calibrated with data from the study and is 

given in the equation below. 11  
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  (1)   

 

The sensitivity analysis involved an SSAM analysis of a subset of five out of the 

previous 83 locations modeled in four separate microsimulation software. Each of the 

five study intersections were conventional signalized intersections, with different signal 

timing plans and geometries. The trajectory files from an analysis of each location in 

VISSIM, AIMSUN, Paramics, and TEXAS were analyzed in SSAM and the results 

compared with each other. Researchers found SSAM to be useful in revealing anomalies 

in simulation software and noted that their work has prompted software updates from 

TEXAS and VISSIM as of 2008 to account for these errors [11]. 

Although there are no publications detailing the use of SSAM in CFIs, SSAM has 

been used to evaluate other intersection designs, most notably conventional signalized 

intersections and roundabouts. Shahdah et al. (2014) used SSAM in developing a model 

to obtain crash modification factors (CMFs) in urban intersections [12]. Their work 

focused on how the relationship between observed crash data and simulated conflict data 

could be used in the development of CMFs for the conversion of permitted left-turns to 

protected left-turns. These CMFs were compared with a traditional crash-based empirical 

Bayses before and after study. This work was expanded by Shahdah et al. (2015), where 

researchers confirmed the findings of Shahdah et al. (2014) with more study sites [13]. 

They concluded that the relationship between observed crashes and simulated conflicts 

was significant, and that the relationship grew stronger as the threshold for conflicts was 

increased (i.e. TTC lowered). Roach et al. (2016) used VISSIM and SSAM to evaluate 

both a single roundabout and double roundabout and compared the results to field 

observations of conflicts [14]. The results of this research showed that SSAM verified the 
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reduction of conflicts that would occur due to the conversion of conventional 

intersections to roundabouts. This research also concluded that SSAM can be valid for 

estimating conflicts at roundabouts if the demand is high enough to produce conflicts. If 

the demand is low such that no or few conflicts would be present, SSAM was found to be 

unsuitable for highlighting troublesome locations.  

EMMISIONS ANALYSIS 

For this project, the focus of emissions analysis was on microsimulation studies. 

Other methods of emissions analyses exist, such as analytical models and real-world 

measurements. For analyzing a rare and unconventional intersection type, though, it was 

determined that the best analysis tool was to use an emissions model in conjunction with 

a microsimulation software. The most common emissions modeling software used in the 

literature is CMEM, the Comprehensive Modal Emissions Model [15]. The model itself 

was developed by researchers at the University of California, Riverside in partnership 

with researchers from the University of Michigan and Lawrence Berkeley National 

Laboratory. While also including a model for heavy-duty vehicles (HDVs), the original 

model was designed for light-duty vehicles (LDVs). Unlike other software which is often 

based on speed-

physical power-demand modal modeling approach based on a parameterized analytical 

[15]. In other words, emissions are modeled 

directly on the physical characteristics and operating behaviors of vehicles. This can be 

done on a microscopic basis given individual vehicle second by second profiles, or on a 

macroscopic basis given average fleet characteristics. The model is comprehensive in that 
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it has been developed for a number of light and heavy-duty vehicles, in various ages and 

states of repair. 

Other emissions models include MOVES and VT-Micro. MOVES was developed 

by the EPA to use statistically based vehicle specific power (VSP) to calculate emissions, 

rather than the analytical modeling of physical processes performed by CMEM. VT-

Micro is a microscopic emissions model like CMEM; however, instead of using a power-

demand model, VT-

[16]. 

Stathopoulos and Noland (2003) used CMEM in conjunction with VISSIM to 

evaluate the emissions benefits of two traffic-flow improvement scenarios [17]. The first 

scenario was the addition of a lane to a frequent bottleneck merge location; the second 

was a traffic signal coordination project. The goal of this research was to determine 

whether short-term and long-term environmental benefits could be achieved. While in the 

short-term, researchers found a reduction in emissions, this was unable to be sustained in 

the long-term with the introduction of new demand for both scenarios. 

Song et al. (2012) illustrated the drawbacks of using MOVES in conjunction with 

a microsimulation analysis to provide definitive estimates of real-world emissions 

conditions [18].  Their work indicated that the default VSP distributions of VISSIM 

tended to differ significantly from real-world VSP distributions at times, notably higher 

and lower power ends of the spectrum. This was especially noticeable at lower vehicle 

speeds, where the percent error for estimated emissions was even higher than for other 

speeds. This meant that using MOVES and VISSIM to compare alternative treatments 
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was unreliable, as any differences in speed caused by changes to the roadway would 

result in errors in emissions estimation.   

Park and Rakha (2010) used VT-Micro to examine the environmental impacts of 

installing a CFI. Using data provided by Utah DOT, Park and Rakha developed 

microsimulation models for no-build and build scenarios for a CFI in West Valley City, 

UT. The output from the microsimulation models was used in VT-Micro to compare 

emission productions for both scenarios. The authors found that emission improvements 

were produced in the range of 0% to 10 % by constructing a CFI in place of a 

conventional signalized intersection [19]. This study only looked at one intersection, 

however, and the authors recognized the need to evaluate other CFI locations and at 

varying demand levels.  

SUMMARY OF LITERATURE REVIEW 

The papers detailing operations performance all used microsimulation models to 

determine the best conditions under which to use each intersection type. CFIs were found 

to generally perform better than conventional signalized intersections in terms of overall 

delay and stops, even though that overall benefit sometimes came at the expense of left-

turning vehicles. 

While the safety benefits of CFIs have been discussed in theory, CFIs have only 

recently been implemented in the United States. Therefore, before and after crash data is 

only now becoming available. Additionally, surrogate safety measures like conflicts have 

not been used to demonstrate the safety benefits of CFIs, despite being used for other 

intersection types. 
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Finally, despite the environmental benefits of alternative intersections being 

touted by researchers, only one study could be found that attempted to quantify the 

emission improvements associated with CFIs. Other studies used emissions models and 

microsimulation to assess other roadway improvement scenarios, but found mixed results 

when assessing any long-term benefits associated with the improvements. Additionally, 

research showed that inaccuracies in some of these emissions models yielded unsuitable 

results for quantifying emissions performance at an intersection. 
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CHAPTER 3: STUDY DESISGN 

The study design is composed of the research objectives and research tasks. 

RESEARCH OBJECTIVES 

Defining research objectives was essential to execute the purpose of this research. 

Each objective is discussed more at length in this chapter, but the four basic objectives 

are as follows: 

1. Validate the accuracy of SSAM in estimating type and location of crashes at 

CFIs using real-world crash data. 

2. Compare the safety of CFIs to the safety at signalized intersections using 

microsimulation. 

3. Compare emissions associated with CFI operations to those associated with 

operations of signalized intersections. 

4. Assess any potential safety and environmental benefits of CFIs at varying 

demand levels.  

The following subsections detail the above objectives. 

Research Objective 1 

 Validate the accuracy of SSAM in estimating type, number, location, and number 

of crashes at CFIs using real-world crash data. 

As stated in the literature review, little research has been performed investigating 

the validity of SSAM in assessing safety at CFIs. By comparing the predicted crashes 



18 

from a surrogate safety analysis to the actual crash data we can validate the use of SSAM 

for intersection types not previously validated by its creators.  Exact crash location data is 

not available; however, crash location relative to approach legs, numbers, and types can 

be compared. This can be done for one of the two study intersections. 

Research Objective 2 

 Compare the safety of CFIs to the safety at signalized intersections using 

microsimulation. 

Most studies that investigate the safety of alternative intersection types use a 

before/after crash analysis. While useful for a single intersection, it does not necessary 

reveal much about the intersection type in general. By performing a surrogate safety 

analysis and comparing the results from different intersection types, the safety benefits of 

CFI relative to a conventional signalized intersection can be understood.  

Research Objective 3 

 Compare the emissions associated with CFIs to those associated with signalized 

intersections. 

While the environmental impacts of other intersection types (such as conventional 

signalized intersections and roundabouts) have been studied, little quantitative research 

exists for the three intersection types studied in this paper. Theoretically, these 

intersection types would reduce total emissions produced, as average number of stops and 

delay are reduced. However,  to verify this hypothesis, the levels of CO2, CO, NOx, and 

HC at the alternative intersections will be compared to the levels at a conventional 
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signalized intersection. This will be completed using microsimulation software along 

with the CMEM emissions modeling software.  

Research Objective 4 

 Assess any potential safety and environmental benefits at varying demand levels. 

In order to provide a recommendation to practitioners regarding the installation of 

a CFI, any potential safety and environmental benefits should exist not only at current 

demand levels, but in off-peak hours and unexpected demand increases. SSAM and 

CMEM analyses will be repeated at five different demand scenarios for both the 

conventional signalized intersection and CFI.  

RESEARCH TASKS 

In order to complete the above research objectives, the following series of tasks 

has been created. 

Task 1: Literature Review 

The first task was to complete a literature review of the subject matter related to 

the research objectives. This yielded previous studies on operations, safety, and emissions 

at alternative intersection designs. Additionally, it explored models for estimating 

emissions from microsimulation models.  

Task 2: Selection of Test Sites and Data Collection 

The two sites to be used as case studies were selected. These are the intersections 

of Summit Rd. and MO-30 in Fenton, MO (Site A), and of Eisenhower Blvd. and 

Madison Ave. in Loveland, CO (Site B).  
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Site A was selected because of its rural setting. The major road MO-30 has a 

speed limit of 60 miles per hour, and intersects with Summit Road, which has a speed 

limit of 35 miles per hour. Access is restricted on MO-30 to motor vehicles, meaning no 

multimodal transportation is allowed at the intersection. There are no bicycle or 

pedestrian treatments. Therefore, Site A is suitable for examining the rural applications of 

CFIs. Figure 3.1 below contains a satellite image of the first study site.  

Figure 3.1: CFI at Summit Road and MO-30, Fenton, MO (Source: [20]) 

On the other hand, Site B was chosen for its location in a more urban setting. 

Commercial businesses line both intersecting roads, and therefore the speed limit of both 

roads is only 35 miles per hour. Figure 3.2 below contains a satellite image of the second 

test site. 

Summit Rd. 

MO-30 
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Figure 3.2: CFI at Madison Ave. and Eisenhower Blvd., Loveland, CO (Source: 

[20]) 

Data for Site A was obtained by the Missouri DOT. Signal timings, traffic 

volumes, and turning counts were obtained along with SYNCHRO files used in the initial 

development of the intersection. Data for Site B was obtained by the City of Loveland, 

CO. This includes signal timings for the main intersection as well as those for two 

adjacent intersections so the effects of platooning can be captured. Additionally, crash 

data, traffic volumes, and turning counts were obtained for the intersection.  

Task 3: Development of Microsimulation Models  

Microsimulation models for a conventional signalized intersection and a CFI were 

developed for both Fenton, MO and Loveland, CO. Provided traffic volumes and turning 

movement counts were used. Provided signal timings were used whenever available, 

Eisenhower Blvd. 

Madison Ave. 
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otherwise signal timings were optimized in SYNCHRO with the goal of minimizing total 

delay and stops.  

Task 4: SSAM Analysis  

Trajectory (.trj) files were obtained for each simulation run in VISSIM. These 

were imported into SSAM and analyzed to determine vehicle conflicts. Conflicts were 

color-coded by conflict type. A background layer was added to the analysis so that the 

conflicts could be mapped over the original satellite image, helping to determine the most 

problematic locations.  

Task 5: Comparison of Field and Simulation Safety Data  

Potential conflicts from the surrogate safety analysis were obtained, and 

compared with real-world crash data. This is due to the cooperation of the City of 

Loveland, CO in sharing crash data from the test site since the CFI was constructed. This 

analysis was used to confirm that SSAM is capable of accurately predicting conflict type 

and troublesome locations. 

Task 6: Emissions Analysis through Simulation  

After the microsimulation models were calibrated and validated, vehicle 

emissions (including HC, NOX, CO, and CO2) were estimated using CMEM. CMEM 

requires second-by-second vehicle speed trajectories, as well as vehicle fleet 

characteristics. To account for stochasticity, multiple simulation runs were conducted and 

emission results averaged. These results were obtained for both conventional signalized 

intersections and CFIs and were compared to determine if alternative designs do in fact 

reduce emissions.  
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Task 7: Sensitivity Analysis of Safety and Emissions 

To determine whether CFIs have a true advantage over conventional signalized 

intersections, both intersections were simulated in VISSIM for varying levels of demand. 

Vehicle trajectories for these additional simulations were analyzed using SSAM and 

CMEM to determine the conflict and emissions at higher and lower volume levels than 

the existing field conditions.  

Task 8: Documentation of Findings  

The research detailed above was document was 

submitted to the College of Engineering of the University of Massachusetts Amherst. The 

was followed in the 

completion of this project.   

RESEARCH CONTRIBUTIONS 

In total, this research has four major contributions: 

 SSAM validation for a CFI in terms of conflict type and location. 

 Assessment of CFI safety performance compared with conventional signalized 

intersections. 

 Evaluation of the environmental performance of CFIs compared with equivalent 

conventional signalized intersections.  

 Determining whether the safety and emissions benefit of CFIs are sensitive to 

varying levels of travel demand. 

  



24 

CHAPTER 4: SAFETY ASSESSMENT THROUGH MICROSIMULATION OF 

CFIs 

METHODOLOGY

The methodology consists of a before and after conflict study in a 

microsimulation environment using two selected study sites. The conflict analysis is 

performed using VISSIM and SSAM. The results from the SSAM before and after 

analysis are compared with each other for both study sites to determine if safety 

improvements occurred after the installation of a CFI. The results from the before and 

after studies for the Loveland, CO study site are also compared with crash data collected 

from the field to determine the accuracy of SSAM in estimating CFI conflicts. 

Study Sites 

Two sites were selected for this study: 1) the intersection of Summit Rd and MO-

30 in Fenton, MO and 2) the intersection of Eisenhower Rd. and Madison St. in 

Loveland, CO. Both intersections are currently partial CFIs that have been converted 

from conventional fully actuated intersections. Two study sites were chosen to obtain a 

larger sample size and to demonstrate the differences in CFI application. The Loveland, 

CO CFI is in a higher density commercial neighborhood, with traffic moving at a speed 

limit of 35 miles per hour on the major road. The displaced left turns are located on the 

minor road, which sees a high percentage of vehicles turning left onto the major road. 

The Fenton, MO CFI is in a more rural setting, with MO-30 having a speed limit of 60 

miles per hour. The displaced left turns are located on the major road to improve the 

throughput of MO-30. Both study intersections have channelized right turn lanes on 
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approaches that do not have displaced left turns. These intersections are depicted in 

Figure 4.1.  

Figure 4.1: Study Sites: a) CFI at Summit Rd and MO-30 in Fenton, MO, and b) 
CFI at Eisenhower Blvd and Madison Ave in Loveland, CO (Source:[20]) 

 

In order to accurately capture the effects of platooning on an urban corridor for 

the Loveland, CO CFI, the nearby cross street intersections of Redwood Dr and Boise 

Ave with Eisenhower Blvd were modeled in VISSIM. Data for the Loveland, CO study 

site was obtained from the City of Loveland Public Works Department. For this study, 

the evening peak hour of 5PM-6PM was simulated. Peak hourly volumes and turning 

movement counts were provided from 2012 traffic studies of the three specified 

intersections. These were scaled to 2015 levels using AADTs provided for each year 

from the Colorado Department of Transportation (DOT) Traffic Data Management 

website [21]. Current signal timings for each intersection were provided by the city 

engineer as of 2016 and used for the after conditions. Signal timings for all three 

intersections along the Eisenhower Blvd corridor were optimized in SYNCHRO for the 

before conditions by minimizing delays. Toavoid excessive queues, the optimized cycle 

length was specified to be between 40 and 150 seconds. Coordinated cycle lengths of 120 

seconds for Madison Ave and Boise Ave and 60 seconds for Redwood Dr. were 

b) a) 
Madison Ave. 

Eisenhower Blvd. 
Summit Rd. 

MO-30 



26 

determined to be optimal. The degree of saturation was calculated for the study 

intersection for both before and after conditions. An initial degree of saturation of 0.81 

was reduced to 0.62 after CFI construction. Crash data was also provided for the 

intersection for a ten-year period from 2006 to 2016, which represented both before and 

after the construction of the CFI in 2010.  

Data for the Fenton, MO study site was obtained through a records request from 

the Missouri DOT. Due to the lack of intersections in close proximity to the study 

intersection, no additional intersections were simulated for this location. Evening peak 

hour volume and turning movement counts from 2012, as well as a 2012 signal timing 

plan, were taken from a SYNCHRO file of the CFI provided by the Missouri DOT and 

used for the after conditions. The cycle length of the CFI was 90 seconds. A signal timing 

for the conventional signalized intersection was not provided, so the intersection was 

built and signal timings were optimized in SYNCHRO using the old geometry and 

phasing sequence but 2012 volumes. The cycle length was optimized to be 150 seconds. 

The intersection degree of saturation was reduced from 1.04 to 0.59 after the CFI 

construction. Lane groups and phasing diagrams for both before and after conditions for 

the study intersections are presented in Figure 4.2 on the following page. 

 



27 

  

 

Figure 4.2: Lane Groups and Phasing Schemes for a) Fenton, MO Conventional 
Intersection, b) Fenton, MO CFI, c) Loveland, CO Conventional Intersection, and 

d) Loveland, CO CFI 

 

Microsimulation Modeling 

The data discussed above was used to model the before and after conditions for 

both study sites in VISSIM 9. VISSIM is a microsimulation software developed by PTV 

that uses behavior modeling to create time step trajectories individual vehicles [22]. 

Driver behavior is modeled with separate functions of car following and lane-change 

behaviors. This software was chosen for its flexibility in creating uncommon geometries 

and its ability to create trajectory files that can be exported to SSAM. The physical 

geometry of the current intersections was modeled by tracing the networks from the 

integrated Bing Maps feature of VISSIM. The physical geometries of the before 

conditions were modeled by tracing scaled images of the old intersections from Google 

Earth. Speed limits, lane widths, turning movements, conflict areas, and right-turn on 
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reds were all input to match existing conditions. Reduced speed decision zones were 

included to simulate the slowing down of vehicles due to turning movements. All other 

parameters were left as the default values for the initial models before calibration. In 

total, five models were created in VISSIM. Before and after models using current 

volumes were created for the Fenton, MO study site to allow for an SSAM comparison of 

the before and after intersection designs. Two before and one after models were created 

for the Loveland, CO study site. One before model used the current volumes, so that the 

SSAM results of before and after intersection geometry and signal timing could be 

compared. The other before model used volumes from 2008, so that the SSAM results 

could be compared to the provided crash data from just before the CFI was installed. A 

total of ten runs were performed for each model with random seeding. Each run had a 

simulation period of 3600 seconds and a warm up period of 300 seconds. Table 1 below 

contains a list of the microsimulation models developed for this study, and includes the 

different volume years and signal timings used. 

Table 4.1: List of Microsimulation Models Developed 

VISSIM Model Volume Year Signal Timings 

I)  MO Conventional Intersection 2012 2012  SYNCHRO Optimized 

II) MO CFI 2012 2015 - Provided 

III) CO Conventional Intersection 2009 2009  SYNCHRO Optimized 

IV) CO Conventional Intersection 2015 2009  SYNCHRO Optimized 

V)  CO CFI 2015 2015 - Provided 

 

Upon visual inspection, several unwanted phenomena were observed to occur in 

the VISSIM models, including simulated crashes between vehicles. These resulted from 

either insufficient gaps for safe turning movements, abrupt lane changes, or the failure to 
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follow priority rules and conflict behaviors. Chapter 4 of the SSAM Validation Report by 

FHWA provides guidance in solving these problems, which was followed in this study 

[9]. When queuing was observed in the left and right hand turn lanes, trailing vehicles 

would pass through the rear of the last queued vehicle while changing lanes. To 

overcome this, the option to keep minimum lateral distance from vehicles was selected 

from the driving behaviors window in VISSIM. This can reduce capacity, but is 

necessary to avoid this unusual lane-changing behavior. Additionally, it was observed 

that vehicles at the beginning of green intervals would not wait for slow moving turning 

vehicles to clear the intersection before accelerating. This generated a number of 

collisions that increased the number of simulated conflicts, resulting in crashes, which 

would most likely be avoided in real life. Per the suggestion of Gettman et al. [9], priority 

rules were created for those through movements that dictated they wait until all turning 

vehicles have cleared the intersection before moving. Even still, conflicts existed as the 

minimum gap acceptance was too small, so the default VISSIM value of 3.0 seconds was 

increased to 5.0 seconds. This resulted in safe driving behavior observed from vehicles 

beginning their movements. It was noticed, however, that simulated crashes still occurred 

at times, especially on the high volume roads like Eisenhower Blvd. or MO-30. These 

crashes were excluded from the final SSAM analysis, at the recommendation of Gettman 

et al. [9].  

After making the above adjustments, calibration checks were performed on the 

model. According to the Traffic Analysis Toolbox Volume III: Guidelines for Applying 

Microsimulation Software [23], calibration of microsimulation models can be performed 

according to the following calibration acceptance targets which were created by the 
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Wisconsin DOT. Individual link flows with between 700 veh/h and 2700 veh/h must be 

within 15% of the observed conditions in at least 85 percent of cases, and links with 

flows less than 700 veh/h must be within 100 veh/h for at least 85 percent of cases. These 

criteria fit the given hourly flows in the 5 microsimulation models created, and the 85 

percent criteria was met for all 10 runs. In addition, the sum of all link flows in the 

simulated networks was within 5 percent of all link inputs and visual inspection 

confirmed that congestion occurred in expected places. Therefore, no changing of other 

default VISSIM parameters was required and no additional calibration was necessary. 

Safety Assessment Through SSAM 

Trajectory (.trj) files were produced in the VISSIM evaluation and imported into 

SSAM version 3. These trajectory files were obtained for each of the five models. A total 

of ten simulation runs were performed with random seeds for each model. Thus, in total, 

50 SSAM evaluations were performed. A SSAM evaluation includes reading the 

trajectory file, estimating the number, type, and location of conflicts present in each 

simulation run, and producing a summary table of those conflicts. Conflicts were mapped 

onto the intersection, providing information on the most troublesome locations. For this 

study, the conflict parameters were set to the SSAM default values of 1.5 seconds or less 

for maximum time-to-collision (TTC) and 5 seconds or less for maximum post-

encroachment time (PET). As stated above, minimum TTC and PET were each set to 

0.01 seconds so as to not include crashes that occurred in VISSIM due to faulty 

simulation logic, i.e. vehicles not observing the physical geometries of other vehicles. 

Conflict types in SSAM are defined by the angle of incidence between two vehicle paths. 

These thresholds are defined by SSAM, but can be changed by users. For this study, the 



31 

values were left at their default thresholds: less than 30° for a rear-end conflict, between 

30° and 80° for a lane-change conflict, and greater than 80° for a crossing conflict.  

ANALYSIS AND RESULTS 

The results are presented by study site. Average number for each type of conflict 

is displayed in Tables 1 and 2 for the Loveland, CO and Fenton, MO study sites 

respectively for both before and after conditions. Unpaired t-tests were performed for 

each conflict type for the before and after conditions, and the results are also included in 

these tables. The level of significance chosen for the t-tests is 0.01.  

Fenton, MO Study Site 

The results from the SSAM evaluation demonstrate a reduction in total conflicts 

after the conversion of the conventional signalized intersection to a CFI. The before 

conditions yielded a mean of 156 conflicts/hr, while the current conditions yielded a 

mean of 144.7 conflicts/hr. This reduction was not statistically significant; however, it is 

notable that the standard deviation of conflicts/hr was much greater in the before than the 

after conditions. This suggests that there is more variability and unpredictability in the 

number of conflicts at a conventional signalized intersection than a continuous flow 

intersection. This reduction was mostly due to the near-elimination of crossing conflicts, 

from 15 conflicts/hr to 2.1 conflicts/hr, and the reduction of lane-change conflicts from 

39.0 conflicts/hr to 17.4 conflicts/hr. Rear-end conflicts on the other hand, experienced a 

slight increase, from 103 conflicts/hr to 125.2 conflicts/hr. These, as well as results from 

significance tests, can be seen in Table 4.2. 
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Table 4.2: SSAM Conflicts Summary for Fenton, MO Intersection 

Type Before After t-value P-value 
Lane-Change 39.0 17.4 3.934 0.00234 
Rear-End 103.0 125.2 -3.030 0.00843 
Crossing 15.0 2.1 8.712 2.88E-06 
Total 156.0 144.7 0.931 0.36903 

 

Figure 4.3 depicts the location of conflicts for the before and Figure 4.4 depicts 

the after conditions. Crossing conflicts are depicted in red, lane-change conflicts in blue, 

and rear-end conflicts in yellow. Each image below contains the conflicts from four runs, 

to show the consistency between the different SSAM runs.  

Figure 4.3: Conflict Map for the Before Condition of the Fenton, MO Study Site 
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Figure 4.4: Conflict Map for the After Condition of the Fenton, MO Study Site 

 

Loveland, CO Study Site SSAM Analysis 

As with the Fenton, MO study site, the SSAM evaluation of the Loveland, CO 

site revealed an overall reduction in total conflicts after the installation of a CFI. Using 

2012 volumes, the before conditions yielded a mean of 94.5 conflicts/hr while the CFI 

yielded a mean of 77.9 conflicts/hr. This reduction is due to a reduction in rear-end 

conflicts, from 79.5 conflicts/hr to 62.3 conflicts/hr. Lane-change conflicts did increase 

slightly, from 14.9 conflicts/hr before to 15.5 conflicts/hr after. This increase is not 

statistically significant, however, and is most likely due to the close proximity of the 

three intersections in the test site. The overall reduction in conflicts and the reduction in 

rear-end conflicts are significant. These results, as well as results from the t-tests, can be 

seen in Table 4.3.  
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Table 4.3: SSAM Conflicts Summary for Loveland, CO Intersection 

Type Before After t-value P-value 
Lane-Change 14.9 15.5 -0.389 0.353 
Rear-End 79.5 62.3 2.655 0.0131 
Crossing 0.1 0.1 0.0 0.500 
Total 94.5 77.9 2.545 0.0157 

 
Figure 4.4 below depicts the location of conflicts for both before and after 

conditions. Crossing conflicts are depicted in red, lane-change conflicts in blue, and rear-

end conflicts in yellow. Each image below contains the conflicts from four runs, to show 

the consistency between the different SSAM runs.  

Figure 4.5: Conflict Map for the Before Condition of the Loveland, CO Study Site 
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Figure 4.6: Conflict Map for the After Condition of the Loveland, CO Study Site 

 

Loveland, CO Study Site Field Data 

For the Loveland, CO study site, field crash data was obtained for a ten-year 

period from 2006-2016. Table 4.4 below presents a summary of the crash data for the 

Loveland, CO study site for the before and after conditions specifically for years 2009 

and 2015. The year 2009 was the last full year of data available before the intersection 

was converted to a CFI in 2010. 2015 was chosen to correspond to the volume data used, 

and to account for an adjustment period while residents became familiar with the new 

geometry. Crash data for 2011, the year immediately following the construction of the 

CFI, was also included. This can be used to determine whether there is an adjustment 

period where drivers are unfamiliar with how to navigate the intersection. Recall that the 

northbound and southbound approaches had the displaced left turn lanes. 
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Table 4.4: Summary of Safety Analysis for the Loveland, CO Study Site 

Crash 
Number 

Type of Crash Location of Crash 

Rear-
End 

Crossing Lane-
Change 

Other WB 
Approach 

EB 
Approach 

NB 
Approach 

SB 
Approach 

Main 
Intersection 

2009 13 4 1 1 6 0 3 4 6 

2011 7 21 1 0 3 4 0 2 20 

2015 11 2 1 2 3 6 2 2 3 

 

As observed in Table 4.4, 68 percent of the 2009 crashes were rear-end. Also 

significant from the expanded crash data is that 75 percent of crossing conflicts were 

related to the left turn movements, and 6 of the 19 total crashes occurred at the main 

intersection. 2011 saw an increase in crashes, especially with regards to crossing 

movements. Inspection of the data reveals that 19 of the 21 crossing conflicts were 

caused by vehicles turning left. 17 of those vehicles were turning left from Eisenhower 

onto Madison, which do not receive the displaced left turn. This was most likely the 

result of two factors. First, the eastbound and westbound left-turn movements after CFI 

construction were initially protected-permissive during the through movement phase. 

Second, the presence of the displaced left turn lane upon completing their left turn 

movement might have confused these users, leading them to hesitate longer in the main 

intersection. The combination of these two factors resulting in an increase in crashes 

caused the City of Loveland to change the eastbound and westbound left-turn movement 

to protected only, which is how the intersection was modeled for this study. Of the total 

19 left-turn crashes, only two were caused by vehicles turning left from Madison onto 

Eisenhower, and those could have been a result of unfamiliarity with the new 

intersection. By 2015, no crashes were caused by vehicles turning left on any approach. 

This is to be expected over time, as the CFI removes the north and southbound left turn 
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movements from the main intersection and drivers become familiar with the new 

geometric configuration. Additional rear-end crashes might be expected at the crossover 

intersection, but due to the lack of specificity of the available crash data, it is unknown 

whether the four northbound and southbound rear-end crashes occurred due to the left 

movement or the through movement. Also, only 3 out of the 16 total crashes took place at 

the main intersection. This is a rate of 19 percent, compared to 32 percent for the before 

conditions, i.e., conventional signalized intersection.  

Comparing these results to the SSAM analysis reveals several key trends. For the 

before conditions, 16 percent of the conflicts were lane-change, 84 percent were rear-end, 

and 0 percent were crossing conflicts. No crossing conflicts were observed in VISSIM, 

while the percentage of crossing crashes was 21 percent. However, the percentage of 

lane-change conflicts is significantly overrepresented in SSAM (16 percent vs. 5 

percent). The after conditions revealed similar trends. 20 percent of the simulated 

conflicts were lane-change, 80 percent rear-end, and 0 percent were crossing conflicts. A 

value of 84 percent rear-end simulated conflicts observed for the before conditions is an 

error of 23.5 percent compared with the 67 percent rear-end crashes observed in the field. 

Lane-change conflicts were overrepresented with a 200 percent error by microsimulation. 

Therefore, while SSAM confirmed the overall reduction in conflicts and the high 

percentage of rear-end conflicts, it was unable to accurately predict crossing or lane-

change conflicts. This illustrates a weakness in microsimulation safety analysis. 

Note that while the SSAM results indicate a much higher number of conflicts than 

the crashes that were observed, this is because SSAM reports all potential conflicts while 

the field data consists of actual crashes for a whole year. The given crash data does not 



38 

include near-misses, or conflicts avoided due to driver maneuvering or intervention. For 

this reason, conflict types and locations were compared to the crash types and locations, 

presented as percentages of the total numbers. 
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CHAPTER 5: EMISSIONS EVALUATION OF CFIs 

METHODOLOGY

The previously developed microsimulation models were again used in evaluating 

the emissions produced at continuous flow intersections. A before and after study was 

conducted with a conventional signalized intersection as the before condition and a 

continuous flow intersection used as the after condition. Only the Loveland, CO site was 

studied due to uncertainty in the accuracy of the results at the Fenton, MO study site after 

some errors were discovered in CMEM. The same volume and turning percentages were 

used in the before and after conditions for a meaningful comparison. Signal timings were 

not reoptimized to maximize fuel efficiency or minimize emission rates. Rather, the 

signal timings used in Chapter 4 were again used in this task. 

The emissions modeling software CMEM was used to estimate tailpipe emission 

rates for hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NOx), and carbon 

dioxide (CO2), as well as fuel consumption, using trajectories obtained through 

microsimulation. CMEM requires three input files: a vehicle activity file, vehicle 

definition file, and vehicle control file.  

Second by second vehicle trajectories, including simulation time, vehicle ID, 

speed, acceleration, and routing decision, were output from VISSIM. This data was 

formatted to create the vehicle activity file by removing the routing decision data, which 

would be used later to filter out the left-turning vehicles. The vehicle definition file 

specifies a CMEM vehicle category for each unique vehicle ID. A consistent vehicle fleet 

comprising of eight vehicle categories was used in each of the evaluations. These 
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categories were chosen based on the work of Stevanovic et al. (2009), who mapped the 

vehicle types from the US Environmental Protection Agency (EPA) MOBILE 6.2 

database onto the CMEM vehicle categories [24]. This database contains vehicle age 

distributions for the US vehicle fleet. Stevanovic et al. (2009) correlated US vehicle age 

distributions to CMEM vehicle categories in order to create a representative vehicle fleet. 

This research was crucial, as CMEM vehicle categories are based on vehicle mileage and 

power characteristics, which different than the more readily available vehicle age 

distribution data. The output of this work was a representative vehicle fleet with eight 

CMEM categories and their corresponding percentages of the total fleet.  

The final CMEM vehicle fleet used by Stevanovic et al. (2009) comprised of two 

old vehicle categories (which are Tier 0, or non-Tier 1 certified), four Tier 1 vehicle 

categories, and two Tier 2 vehicle categories. The Tier 1 vehicles are separated into two 

categories based on the mileage of the vehicle (either less than or greater than 50,000 

miles driven), and two more categories based on whether the vehicle has a low or high 

power-to-weight ratio. Tier 0 vehicles were assumed to all have mileage greater than 

50,000 miles since they are more than 25 years old at the time of this project. Therefore, 

Tier 0 vehicles were only differentiated by power-to-weight ratio. These eight vehicle 

categories were randomly assigned to each of the simulated vehicle IDs from the VISSIM 

output using the percentages in Table 5.1. It should be noted that this distribution is not 

specific to either Colorado or Missouri, but is based on national vehicle distributions. 
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Table 5.1: CMEM Vehicle Categories Used 

Vehicle Description CMEM No. Percent of Fleet 

3-way catalyst, FI, >50k miles low 4 0.13 

3-way catalyst, FI, >50k miles high 5 0.13 

Tier 1 >50k, low ratio 8 0.20 

Tier 1 >50k, high ratio 9 0.20 

Tier 1 <50k, low ratio 10 0.09 

Tier 1 <50k, high ratio 11 0.09 

ULEV 51 0.08 

PZEV 52 0.08 

FI = Fuel injected 

 

The vehicle control file specifies vehicle parameters such as vehicle mass, torque, 

max power, efficiency, and other emission generation rates for each vehicle category. 

Default CMEM parameters were used for each of the chosen vehicle categories. Once the 

input files corresponding to each VISSIM mode output were created, the command line 

interface of CMEM was used to run the program and generate emission rates. CMEM 

output files include second by second tailpipe emission data, as well as a summary of 

emissions and distance traveled for each unique vehicle ID. The emissions and distance 

files for the before and after scenarios of each study site were formatted for use in a 

database. Using SQL Server, the CMEM emissions and distance output were then linked 

by vehicle ID and the emission rates multiplied by distance traveled to obtain total 

emissions produced for each simulation run. Total emissions for each pollutant were 

divided by the total distance traveled by all vehicles to obtain a weighted average of 

emissions produced per mile.  
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Once emission rates for the vehicle fleet were calculated, the results were filtered 

to only include vehicles utilizing the displaced left turn lanes. In this step, the before and 

after Loveland, CO models were analyzed a second time, this time only including 

northbound and southbound vehicles turning left. This comparison would indicate 

whether or not improved intersection environmental performance as a whole was coming 

at the expense of the left-turning vehicles. 

ANALYSIS AND RESULTS 

Emission rates for the entire vehicle fleet for all ten simulation runs for the before 

and after conditions are presented first in Table 5.2. These are followed by Figures 5.1-

5.3, which compare the average emission rates of significant pollutants for before and 

after conditions. Error bars in these figures depict the 99% confidence interval. 

Additionally, these figures also compare emission rates for the vehicle fleet with the 

average emission production for the left-turn vehicles using the newly configured 

displaced left-turn lanes. The level of significance chosen for all statistical significance 

tests was the 99% confidence level. 

Loveland, CO Study Site 

The Loveland, CO study site experienced a reduction in emissions in all 

categories after the conversion of a conventional signalized intersection to a CFI. NOx 

had the greatest reduction at 7.90%, while CO2 had the least reduction at 6.32%. 

Additionally, fuel economy increased by 6.75% after the conversion. These changes were 

all statistically significant, having P-values approaching zero at the 99% confidence level. 

Reductions in emission rates for all types can most likely be attributed to the better 
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operational performance of the CFI. Average delay was reduced from 34.5 seconds per 

vehicle to 26.9 seconds per vehicle, and the average number of stops was reduced from 

0.77 to 0.63. Less time spent waiting and fewer stopping and starting movements both 

contributed to the reduction in emission rates.  

Left-turning vehicles, on the other hand, experienced higher NOx and CO2 rates 

and lower fuel economy than the total vehicle averages. In addition to higher emission 

rates for left-turning vehicles than the total vehicle averages, left-turning vehicles 

experienced an increase in emission rates from the before to the after condition. This 

increase was 7.10% for HC, 1.78% for CO, 12.8% for NOx, and 12.3% for CO2. A 

10.5% reduction in fuel economy was also observed for left-turning vehicles in the after 

condition.  These changes from the before to after condition were all significant at a 

confidence level of 99%. This indicates that while intersection emissions performance as 

a whole improves upon converting a conventional signalized intersection to a CFI, this 

benefit comes at the expense of higher emissions for left-turn users. Left-turn users are 

subject to additional delays waiting to use the crossover intersection and, in case of 

intersection capacity failure, might be forced to stop twice  once at the crossover 

intersection and once at the main intersection. These extra delays and stops for left-turn 

users would not only make their emission rates higher than those of other movements, but 

might also explain the increase after the conversion of a conventional signalized 

intersection. The following chapter addresses whether that cost to left-turn users 

outweighs the intersection benefit under varying vehicle demands.  
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Table 5.2: Average Emission Rates at the Loveland, CO Study Site for All Vehicles 

 Before Condition After Condition 

  
HC 

(g/mi) 
CO 

(g/mi) 
NOx 

(g/mi) 
CO2 

(g/mi) 
Fuel 

(mi/gal) 
HC 

(g/mi) 
CO 

(g/mi) 
NOx 

(g/mi) 
CO2 

(g/mi) 
Fuel 

(mi/gal) 

Run 1 0.228 16.3 0.522 429 18.4 0.212 15.0 0.465 398 19.9 

Run 2 0.222 15.6 0.503 432 18.4 0.213 14.8 0.480 408 19.5 

Run 3 0.232 16.3 0.518 437 18.1 0.216 15.5 0.482 410 19.3 

Run 4 0.226 15.9 0.513 428 18.5 0.211 15.0 0.473 407 19.5 

Run 5 0.228 16.6 0.507 426 18.5 0.218 15.3 0.483 405 19.6 

Run 6 0.229 16.2 0.520 427 18.5 0.214 15.2 0.479 402 19.7 

Run 7 0.227 15.9 0.515 434 18.3 0.207 14.8 0.471 398 19.9 

Run 8 0.223 15.9 0.512 432 18.4 0.212 15.0 0.465 405 19.6 

Run 9 0.227 16.1 0.520 433 18.3 0.207 14.7 0.464 399 19.9 

Run 10 0.228 16.1 0.514 428 18.5 0.212 15.3 0.476 402 19.7 

Average 0.227 16.1 0.514 431 18.4 0.212 15.1 0.474 403 19.6 

Std. Dev. 0.00270 0.259 0.00569 3.24 0.126 0.00329 0.238 0.00687 3.98 0.192 
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Figure 5.1: NOx Emission Rates  Loveland, CO 

 

Figure 5.2: CO2 Emission Rates  Loveland, CO 
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Figure 5.3: Fuel Economy  Loveland, CO  
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conversion. Observation of the microsimulation tends to suggest these vehicles are 

stopping and starting more frequently and waiting longer than the other movements that 

are using the intersection. This is exacerbated after conversion to a CFI, where left-

turning vehicles must wait for a longer time before given the opportunity to use the 

crossover intersection to proceed left.  

Questions remain over whether this benefit can be sustained throughout varying 

traffic demand, or whether increased emission rates for left-turn users will eventually 

outweigh improvements to through movements. Chapter 6 will investigate this through a 

sensitivity analysis of the Loveland, CO study site under varying demand.  
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CHAPTER 6: EVALUATION OF CFI PERFORMANCE UNDER VARYING 

DEMAND 

METHODOLOGY

While safety and emission benefits were observed by converting a conventional 

signalized intersection to a CFI in two cases, initial simulations were conducted only 

using the base volume condition. In the pursuit of more significant conclusions and 

recommendations, simulations were conducted on the same intersections with varying 

left-turn demand. Signal timings were kept the same as under the base condition. While 

this would not show the true range of benefits the CFI could attain, it would show 

whether a CFI could withstand unexpected demand better than a conventional signalized 

intersection, thus better emulating real-world scenarios. The geometry of the previously 

developed microsimulation models was again used for both the Loveland, CO and 

Fenton, MO study sites. The displaced left-turn lane volumes were varied in both 

scenarios, in other words, the northbound and southbound left-turning volumes for each 

study site. These volumes were varied by ± 50% and ±75%. Tables 6.1 and 6.2 show the 

volumes and turning percentages used for the Fenton, MO and Loveland, CO study sites, 

respectively.   
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Table 6.1: VISSIM Varying Volume Inputs for Fenton, MO 

Southbound MO-30 

% Change RT THRU LT Total 

-75% 295 1900 55 2250 

-50% 295 1900 110 2305 

0% 295 1900 220 2415 

+50% 295 1900 330 2525 

+75% 295 1900 385 2580 

Northbound MO-30 

% Change RT THRU LT Total 

-75% 230 1245 39 1514 

-50% 230 1245 78 1553 

0% 230 1245 155 1630 

+50% 230 1245 233 1708 

+75% 230 1245 271 1746 
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Table 6.2: VISSIM Varying Volume Inputs for Loveland, CO 

Southbound Madison Blvd. 

% Change RT THRU LT Total 

-75% 73 201 81 355 

-50% 73 201 162 436 

0% 73 201 324 597 

+50% 73 201 486 759 

+75% 73 201 567 840 

Northbound Madison Blvd. 

% Change RT THRU LT Total 

-75% 112 204 22 337 

-50% 112 204 43 359 

0% 112 204 86 402 

+50% 112 204 129 445 

+75% 112 204 151 466 

 

A before and after study was conducted with a conventional signalized 

intersection as the before condition, and the continuous flow intersection used as the after 

condition for both the Fenton, MO and Loveland, CO study sites. The same signal 

timings used in Chapter 4 were again used in this task. 

ANALYSIS AND RESULTS 

The results are separated by the type of analysis performed  safety or emissions. 

The SSAM comparative analysis contains before and after conflict rates for all five 

volume scenarios for both study sites. The CMEM comparative analysis contains before 
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and after emission rates for all five volume scenarios for the Loveland, CO study site. 

The emissions analysis of the Fenton, MO study site was not included due to 

inconsistencies with the software model. All significance tests were performed to the 

99% confidence interval.  

SSAM Comparative Analysis  Fenton, MO 

To track the changing trend in conflict types as volume increased, conflict types 

as a percent of the total conflicts were calculated. These are presented in Table 6.3. 

Crossing conflicts accounted for a negligible portion of the total conflicts for the Fenton, 

MO study site. Rear-end conflicts accounted for the majority of conflicts in both the 

conventional intersection and the CFI. However, in low-volume scenarios, the percentage 

of rear-end conflicts increased after conversion to a CFI. This reversed under high-

volume conditions, where the percentage of rear-end conflicts decreased and that of lane-

change conflicts increased after conversion to a CFI. In both the conventional signalized 

intersection and the CFI, however, the percentage of rear-end conflicts tends to increase 

with volume and the percentage of lane-change conflicts decrease with volume. This 

could be explained by an increase in average stops as demand increases, which would 

create the potential for more rear-end conflicts. In addition, as more vehicles populate the 

roadway, there are fewer opportunities and gaps for vehicles to change lanes. Therefore, 

the conflicts seem more likely to be rear-end than lane-change conflicts. The combination 

of these two phenomena could explain the trend towards rear-end conflicts as demand 

increases.  
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Table 6.3: Conflict Type Percentages for Fenton, MO 

% Change Type Crossing Rear-End Lane-Change 

-75% Conventional 0.00% 79.9% 20.1% 

 CFI 0.05% 83.0% 16.9% 

-50% Conventional 0.00% 81.9% 18.1% 

 CFI 0.05% 84.7% 15.2% 

0% Conventional 0.00% 82.4% 17.6% 

 CFI 0.00% 84.1% 15.9% 

+50% Conventional 0.03% 91.9% 8.06% 

 CFI 0.00% 90.1% 9.9% 

+75% Conventional 0.01% 93.4% 6.63% 

 CFI 0.00% 91.8% 8.25% 

 

Figures 6.1 through 6.4 contain the mean value of conflicts per hour over 10 

simulation runs for the Fenton, MO study site. Error bars in these figures depict the 99% 

confidence interval.  As seen in Figure 6.1, for the -75% and -50% volume scenarios, the 

CFI condition presented slightly more total conflicts per hour. This increase from the 

before to the after condition was statistically significant at the 99% confidence level. 

Figures 6.2 through 6.4 depict a similar increase in conflicts per hour for crossing, rear-

end, and lane-change conflicts respectively in both the -75% and -50% volume scenarios. 

However, this increase was only significant for rear-end conflicts and not lane-change or 

crossing conflicts. For every other volume scenario, the conventional intersection 

presented more conflicts per hour for all conflict types. This reduction in the base volume 

scenario from the before to the after condition in total conflict types was not significant, 
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as described in Chapter 4. The reduction was significant for all conflict types (total, 

crossing, rear-end, and lane-change) for the remaining two volume scenarios (+50% and 

+75%).  

Figure 6.1: Total Conflicts per Hour  Fenton, MO  
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Figure 6.2: Crossing Conflicts per Hour  Fenton, MO  

 

Figure 6.3: Rear-End Conflicts per Hour  Fenton, MO  
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Figure 6.4: Lane-Change Conflicts per Hour  Fenton, MO  
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Table 6.4: Conflict Type Percentages for Loveland, CO 

% Change Type Crossing Rear-End Lane-Change 

-75% Conventional 0.15% 75.18% 24.67% 

 CFI 0.00% 73.21% 26.79% 

-50% Conventional 0.00% 80.69% 19.31% 

 CFI 0.00% 75.42% 24.58% 

0% Conventional 0.11% 84.13% 15.77% 

 CFI 0.13% 79.97% 19.90% 

+50% Conventional 0.00% 87.33% 12.67% 

 CFI 0.31% 79.54% 20.15% 

+75% Conventional 0.00% 91.70% 8.30% 

 CFI 0.09% 79.26% 20.65% 

 

Figures 6.5 through 6.8 contain conflicts per hour for total, crossing, rear-end, and 

lane change conflicts respectively for the Loveland, CO study site. Error bars in these 

figures depict the 99% confidence interval.  Figure 6.5 depicts total conflicts per hour 

under varying volume conditions. A reduction in total conflicts ranging from 9.80% to 

74.4% was observed for every volume scenario, and those reductions were statistically 

significant at the 99% confidence level. Figure 6.7 depicts rear-end conflicts per hour 

under varying volume conditions. Statistically significant changes in conflict rates from 

the before to the after condition were not observed until the base volume scenario, where 

the number of rear-end conflicts was reduced from 79.4 to 62.3 conflicts/hr. Statistically 

significant reductions in rear end conflict rates of 63.8% and 77.9% from the before to 

the after condition occurred in the +50% and +75% volume conditions, respectively. 
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Figure 6.8 depicts lane-change conflicts per hour under varying volume conditions. Here, 

statistically significant changes from the before to the after condition were not observed 

until the +50% and +75% volume conditions, where reductions in lane-change conflicts 

were observed. While a reduction of 5.99% and increases of 14.8% and 4.03% in lane-

change conflicts from the before to the after condition were observed in the -75%, -50%, 

and base volume conditions respectively, these changes were not statistically significant.  

 In general, the CFI performed better than the conventional signalized intersection 

as volume increased. The conventional intersection saw percent increases in conflicts of 

up to 190% from the base condition to the +50% volume scenario, and percent increases 

of up to 90% from the +50% to +75% volume scenario. This is in contrast to percent 

increases up to 18.7% from the base condition to the +50% volume scenario, and percent 

increases up to 24.6% from the +50% to +75% volume scenario for the CFI.  
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Figure 6.5 Total Conflicts per Hour  Loveland, CO  

 

Figure 6.6: Crossing Conflicts per Hour  Loveland, CO 
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Figure 6.7: Rear-End Conflicts per Hour  Loveland, CO 

 

Figure 6.8: Lane-Change Conflicts per Hour  Loveland, CO 
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CMEM Comparative Analysis 

Figures 6.9 through 6.13 contain the emission rate results for all 5 volume 

scenarios (-75%, -50%, 0%, +50%, and +75%) for the Loveland, CO study site. Error 

bars in these figures depict the 99% confidence interval.  Figure 6.9 contains emission 

rates for HC under varying demand. Statistically significant reductions for all demand 

levels, ranging from 5.38% to 10.6%, were observed at the 99% confidence level. Figure 

6.10 contains emission rates for CO under varying demand. Statistically significant 

reductions for all demand levels, ranging from 5.52% to 7.34%, were observed at the 

99% confidence level. Figure 6.11 contains emission rates for NOx under varying 

demand. Statistically significant reductions for all demand levels, ranging from 5.68% to 

12.6%, were observed at the 99% confidence level. Figure 6.12 contains emission rates 

for CO2 under varying demand. Statistically significant reductions for all demand levels, 

ranging from 3.32 % to 20.5%, were observed at the 99% confidence level. Figure 6.13 

contains fuel economy rates in miles per gallon under varying demand. Statistically 

significant increases for all demand levels, ranging from 3.58 % to 24.8%, were observed 

at the 99% confidence level. 

 Each of these figures also depicts benefits for the CFI when compared to a 

conventional signalized intersection that is less susceptible to change as volume 

increases. For HC, the total change in emission rates from the -75% volume case to the 

+75% volume case was 8.14% for a conventional signalized intersection compared to 

only 2.22% for a CFI. The difference in total change in emission rates for CO was 

smaller, at 3.19% for a conventional signalized intersection compared to 1.39%. 

However, a greater disparity in total change was observed in NOx, CO2, and fuel 
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economy  11.0% for the conventional intersection with 2.84% for the CFI, 28.5% for the 

conventional intersection compared with 5.58% for the CFI, and -21.2% for the 

conventional intersection compared with -5.07% for the CFI, respectively.  

Figure 6.9: HC Emission Rates  Loveland, CO  
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Figure 6.10: CO Emission Rates  Loveland, CO  

 

Figure 6.11: NOx Emission Rates  Loveland, CO  
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Figure 6.12: CO2 Emission Rates  Loveland, CO  

 

Figure 6.13: Fuel Economy  Loveland, CO  
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Several observations can be made from these figures. First, the CFI consistently 

performs better than the conventional signalized intersection. This is true for each 

emission category and volume scenario. Second, the conventional intersection is much 

more sensitive to volume changes than the CFI. The percent change from before to after 

conditions increases as volume increases. Therefore, in the long-term, CFIs tend to 

maintain their environmental advantage over conventional signalized intersections. 
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CHAPTER 7: RESEARCH CONTRIBUTIONS AND RECOMMENDATIONS 

In chapter 3 of this project, four research contributions were outlined: 

 SSAM validation for a CFI in terms of conflict type and location. 

 Assessment of CFI safety performance compared with a conventional signalized 

intersection. 

 Evaluation of the environmental performance of a CFI compared with a 

conventional signalized intersection.  

 Determination of safety and emissions benefits of CFIs are sensitive to varying 

levels of travel demand. 

This chapter will discuss how well these contributions were achieved and will 

provide recommendations for future studies to improve this research.  

RESEARCH CONTRIBUTION 1

 SSAM analysis and validation for a CFI in terms of conflict type and location.  

Simulated conflicts were compared to actual crash data for the Loveland, CO 

study site. This revealed that SSAM tends to overestimate lane-change conflicts and 

underestimate crossing conflicts as percentages of total conflicts. Additionally, many of 

the real-world crashes involved single-vehicles and a roadside object. These types of 

conflicts were not observed in VISSIM, revealing a weakness of microsimulation safety 

analysis. SSAM did accurately predict that the majority of conflicts would occur on the 

approaches that had not been converted to a CFI, particularly rear-end conflicts. With 

more field data, a similar comparison could be done for other study sites to further 

validate for CFIs. Also, more accurate crash data could lead to a more accurate SSAM 
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predictions of conflict types and locations. With only basic location information of 

vehicle crashes, it is difficult to assess the accuracy of SSAM. Therefore, SSAM is 

recommended as a comparison tool between two alternatives and not as an evaluation 

tool of real-world conditions without more comprehensive field data. 

 RESEARCH CONTRIBUTION 2

 Assessment of CFI safety performance compared with a conventional signalized 

intersection. 

Two study sites were evaluated for this research task  Fenton, MO and Loveland, 

CO. The number of expected conflicts per hour for both study sites was assessed using 

SSAM. Results showed that conventional signalized intersections tended to have more 

total conflicts than CFIs, but that conversion to a CFI could increase rear-end conflicts. 

This is most likely caused by an increase in average stops experienced by left-turning 

vehicles.  

Practitioners could use this knowledge when designing and preparing for the 

unveiling of new CFIs. Certain treatments could be used to aid motorists in using the 

intersection safely, such as a reduction in speed limits approaching the intersection. Other 

treatments could include extending the yellow clearance interval and all red interval to 

eliminate the dilemma zone for users, hopefully in turn reducing the number of rear-end 

conflicts. More advanced signage could be used to alert drivers to the correct lane to use, 

especially those using the displaced left-turn lane to avoid rapid lane-changing 

maneuvers that could produce lane-change conflicts.  
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Further research could repeat this method by running vast numbers of simulation 

runs to increase the confidence level in the results to the 99.9% level, as well as compare 

these study sites to other CFIs across the country which have been or are currently being 

installed. These two study sites were both partial CFIs, as those are most common for 

intersections of major and minor roads. However, Utah has experimented with full CFIs 

that have displaced left-turns on each approach. Further work could study those 

intersections to determine if there is an additional safety benefit to converting all four 

legs to a CFI. Future investigations could also evaluate the effect of certain design 

features, such as speed, queue bay length, and merge lane length have on conflict rates.  

RESEARCH CONTRIBUTION 3

 Evaluation of the environmental performance of a CFI compared with an 

equivalent conventional signalized intersection.  

The microsimulation models developed for the above safety analyses were also 

used to evaluate emissions performance of CFIs. Before and after studies were conducted 

for the Loveland, CO study site, using CMEM for emissions analysis. This revealed that 

CFIs had generally lower emission rates than conventional signalized intersections. This 

reduction was up to 12.8% under base conditions, depending on the type of pollutant. 

Overall intersection environmental performance did come at the expense of higher 

emissions for left-turn vehicles using the displaced left-turn lanes. This indicates that 

depending on the intersection geometry, it is possible that emission rates for some 

vehicles will increase despite overall intersection emission rate reductions.  
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These results should reinforce that designing proper signal timings for CFIs is 

difficult, in terms of both operational (e.g., minimize delay and stops) and environmental 

(e.g., CO2 rates) or efficiency (e.g., fuel consumption) performance. Even more so than a 

conventional signalized intersection, signal timings should be designed and updated 

properly so left-turning vehicles only have to stop once and there is no wasted time. 

However, these results should also encourage practitioners to implement CFIs given their 

environmental benefits and could reduce human health impacts in densely populated 

areas.  

Future research could investigate the factors contributing to the increases in 

emission rates for left-turn vehicles, and on ways to minimize those increases. Some of 

these improvements could be related to the design of the CFI: for example, left-turn 

queue bay length, speed, or the distance of the crossover intersection from the main 

intersection. Other factors to be investigated could be adjusting the signal timings, 

accounting for pedestrian demand, or the presence of heavy-duty vehicles.   

RESEARCH CONTRIBUTION 4

 Determining whether the safety and emissions benefits of CFIs are sensitive to 

varying levels of travel demand. 

Microsimulation scenarios were repeated under different volume scenarios. Left-

turning volumes were varied by -75%, -50%, 0%, +50%, and +75% of their original 

values. The SSAM and CMEM analyses described earlier were repeated for each volume 

scenario.  
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The SSAM results were mixed under low volume scenarios, but at the base 

condition and high volume scenarios the CFI experienced fewer conflicts per hour. The 

Fenton, MO study site saw total conflict reductions from the before to after condition of 

up to 3.88%, 37.2%, and 41.4% for the base, +50%, and +75% volume scenarios 

respectively. The Loveland, CO study site recorded total conflict reductions from the 

before to the after condition of 17.6%, 60.3%, and 74.4% for the same three volume 

scenarios. Greater reductions in conflicts as well as lower conflict magnitudes for the 

Loveland, CO study site might be due to lower speeds of the intersecting roads compared 

with the Fenton, MO study site. In addition, lower traffic volumes were present at 

Loveland, CO than at Fenton, MO. As volume increased, the benefit from installing a 

CFI tended to increase and greater reductions in conflicts were observed. If this trend 

were to continue, it would signify that a CFI has significant long-term safety benefits 

over a conventional signalized intersection. 

The CMEM analysis revealed that the Loveland, CO CFI performed consistently 

better than the conventional signalized intersection at every volume scenario. 

Additionally, the CFI was less sensitive to demand increases, experiencing increases in 

emission rates at a much slower rate than a conventional signalized intersection. This 

indicates that although a CFI decreases overall emission rates at the expense of left-

turning vehicles, the disbenefit to left-turning vehicles was not found to outweigh the 

benefit to the intersection as whole, even at high left-turn volumes.  

Future work could verify this with even more volume scenarios (i.e. +100% or 

150%) and could focus on finding the breakeven point (if one exists) where the 

disbenefits to left-turning vehicles overshadow total intersection benefit. Other work 
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could investigate more study sites with different geometric configurations (i.e. full CFI 

vs. partial CFI, the presence of channelized right turn lanes, etc.) to determine which 

factors in design can allow a CFI to reach its maximum safety and environmental 

potential under a variety of traffic demands. 
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