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ABSTRACT 

SEASONAL IMPACTS OF CLIMATE CHANGE ON FUTURE PEAK RIVER 

DISCHARGE; IN SUPPORT OF THE U.S. NORTHEAST REGIONAL 

HYDROLOGIC MODELING 

 

MAY 2018 

 

CHRISTINA Y. WU, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Dr. Richard N. Palmer 

 

This research uses projected changes in future precipitation to calculate the changes in 

the magnitude, frequency, and timing of streamflow, particularly peak annual flows, in 

the U.S. Northeast through 20 representative watersheds.  Temperature and precipitation 

data on a 3-hourly time step from five climate projection from the North American 

Regional Climate Change Assessment Program (NARCCAP) are downscaled and bias-

corrected using the Spatial Downscaling and Bias Correction (SDBC) method. These data 

are used to force a regional hydrological model (WRF-Hydro) to estimate daily future 

streamflow.  The changes in magnitude at various return intervals of peak flow events are 

determined through the comparison between peak annual flow values during the 

historical period (1968-1999) and during the future period (2038-2070).  The frequencies 

of high daily streamflow in each month are evaluated using a peak-over-threshold (POT) 

analysis of both high precipitation days and high streamflow days to understand the 

correlation (if any) between the two in this particular region.  The results indicate an 

overall average increase of 10%, 15%, and 18 % in the 2-year, 50-year, and 100-year 

return interval magnitude of peak floods in the U.S. Northeast region, respectively.  The 

POT analysis reveals increases in the number of extreme precipitation days during the 

winter months (DJF) which is expected to result in higher peaks in streamflow.  This 

correlation is less apparent during the summer (JJA) months, suggesting a significant role 

of soil moisture and snowpack.  The degree of climate change impacts vary by season, 

lending to differing flow regimes. Shifts in the seasonality of future peak flow events are 

observed in the results and further explain the changes in flood magnitudes and 

frequencies. They suggest similar trends in the inundation processes that directly 

influence soil moisture; consequently exacerbating flood and drought events that require 

new adaptation and mitigation strategies in the region.   
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1 INTRODUCTION 

The continued release of greenhouse gases and their impacts on increases in 

temperature continue to threaten both the built and natural environment.  An 

understanding of the hydrologic cycle and its interactions with the built and natural 

environment is crucial to estimate risk and vulnerabilities.  Hydrologic extremes, such as 

floods, have amounted to millions of dollars in damages to infrastructure including 

culvert washouts and bridge overtopping, as well as the displacement of communities and 

the restriction of access to emergency resources.  In the past, flood risk was determined 

based on historical peak streamflow data at a particular location, and fitted to a 

distribution to extrapolate return intervals of interest.  However, practitioners often 

encounter a paucity of historical data at locations of interest and the duration of that data 

may be limited.   Streamflow data are fundamentally important because they provide the 

best estimate of the true natural system.   Addressing future hydrologic risk in a changing 

climate becomes more challenging, in part due to the question of stationarity, among 

other modeling uncertainties. 

1.1 Infrastructure Vulnerability 

Climate science researchers forecast increases in temperature and extreme 

hydrologic events in the Northeast U.S. and throughout much of the globe [Melillo et al., 

2014a].  Increased levels of flooding, as demonstrated by weather events like Hurricane 

Sandy [Kaufman et al., 2012] suggest the need for more effective mitigation strategies 

and increased investments in our infrastructure.  In the U.S. Northeast, where 

temperatures and precipitation events are expected to increase in both magnitude and 

frequency, infrastructure such as highways, bridges, and culverts - particularly those built 
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in river flood plains - are becoming more vulnerable, as their ability to pass extreme 

flows diminishes [Karmalkar et al., 2017].   

Bridges and culverts are designed based on a defined storm frequency (perhaps 

the 50 or 100-year storm).  Unfortunately, there is often incomplete or no data available 

for specific locations and “rules of thumb” or simple nomographs are used to estimate the 

design flow. Designs based on past experience may prove inadequate, especially since the 

magnitudes of peak flows have shown a positive trend in the Northeastern U.S. as a result 

of the projected increasing intensity of precipitation events  [Demaria et al., 2016].  The 

failure of bridges and culverts due to high flows often impacts transportation services.  

Failures limit access to critical services like hospitals and safe zones during emergencies.  

In addition to transportation considerations, improperly sized bridges and culverts can 

also create barriers for fish passage and other aquatic wildlife.   

1.2 Project Objectives 

This research estimates changes in the peak annual streamflow (PAF), changes in 

seasonality, and peaks-over-thresholds (POT) associated with extreme meteorological 

events in the Northeast U.S. by forcing climate model projections through a regional 

hydrological model and extracting results for a selected number of watersheds.  PAF is 

defined as the maximum annual discharge on a particular stream for each year within a 

time period; these annual values are fitted to a distribution from which probabilities (also 

known as return intervals) are extracted.  Seasonality refers to the day or month of 

occurrence of a particular event, i.e. how the timing of extreme precipitation and 

streamflow events is changing. POT is defined here as the number of days above a 

particular magnitude provided by a historical percentile threshold.  This information can 
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support decision makers and stakeholders in addressing and identifying vulnerable 

infrastructure within the region.  For the U.S. Northeast, a physically-based hydrologic 

model is developed.  The hydrology model is calibrated and verified for a set of selected 

watersheds.  Simulated temperature and precipitation data from five different regional 

climate models are used to force the hydrology model to obtain five different realizations 

of future streamflow conditions.  The return period and value of annual peak flows are 

calculated using a generalized extreme values distribution (GEV) statistical model.  The 

results are assessed for changes from a historical period (1968-1999) to a future period 

(2038-2070) in various metrics including 1) peak annual flow, 2) precipitation and 

streamflow seasonality (i.e. timing), 3) seasonal precipitation and streamflow peaks-over-

threshold (POT), and 4) climate indices such as monthly precipitation accumulation and 

monthly maximum 5-day precipitation.  This adds depth to a traditional return period 

analysis in an attempt to develop wide-ranging and useful understanding of flood for 

stakeholders and decision makers in the region.  

1.3 Literature Review 

In the Northeast U.S. region, climate change projections have identified 

challenges to environmental, social, and economic systems due to the increases in 

extreme events [Horton and Yohe, 2014].  Recent analysis of the latest climate model 

simulations from CMIP5 (Coupled Model Intercomparison Project Phase 5) indicate that 

the U.S. Northeast is projected to experience the fastest warming; reaching an increase of 

3°C when the global average increase reaches 2°C [Karmalkar et al., 2017].  In the first 

half of the 20
th

 century, the region has experienced an average increase of 0.14°F per 

decade, followed by an increase to a rate of 0.5°F per decade in the latter half [Dawson, 
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2013].  Based on the Clausius-Clapeyron relationship, increases in temperature have the 

potential to increase precipitation [Wasko and Sharma, 2017].  An analysis of 

precipitation trends in the region show a significant increase in the quantity of 

precipitation during very heavy events, coupled with an increasing warming trend 

[Horton and Yohe, 2014].  This agrees with other analyses that have shown that increases 

in the number of extreme precipitation events in this region [Parr and Wang, 2014; 

Ivancic and Shaw, 2015].  The projected accelerated warming of the U.S. Northeast 

compared to other U.S. regions is reinforced by the U.S. Northeast experiencing the 

greatest increase of extreme precipitation in the past half-century [Parr and Wang, 2014].   

Increases in the magnitude and frequency of extreme precipitation events have 

encouraged researchers to translate changes in the atmosphere to changes on the Earth’s 

surface, measured by soil moisture and river discharge.  A trend analysis conducted on 

historical mean values in the Connecticut River Basin indicates, in addition to increasing 

precipitation, increases in discharge, runoff ratios, and soil moisture [Parr and Wang, 

2014].  However, a global assessment of the relationship between extreme precipitation 

and streamflow report a lack of evidence in a strong correlation between the two [Wasko 

and Sharma, 2017].  Similarly, an analysis of 390 watersheds across the U.S. further 

supports insignificant trends in high streamflow despite increasing heavy precipitation 

events in the U.S. Northeast [Ivancic and Shaw, 2015].  The disagreement over the 

relationship between extreme precipitation and peak streamflow (almost analogous to the 

differences in the rate of warming that the U.S. Northeast is expected to experience in 

comparison to other regions) may be explained by the very different trends and 

hydrologic regimes of this particular region. 
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Furthermore, it is essential that asset and risk management include assessments of 

possible hydrologic futures that the built environment may experience, especially in the 

wake of aging and inadequate infrastructure [Palmer et al., 2013].  Many state agencies 

and municipalities have begun to form adaptation plans that incorporate climate impact 

studies in long-term planning efforts, where “the key is to link adaptation strategies with 

capital improvement cycles and adjustment of plans to incorporate emerging climate 

projections” [Melillo et al., 2014b].    

The impacts of climate change on society and its resources are modeled on 

various temporal and spatial scales.  For example, future climates are estimated using 

atmosphere-ocean general circulation models (GCMs) that are driven with projections of 

greenhouse gas emissions to produce realizations of changes in meteorological metrics 

such as temperature and precipitation across the globe and over time.  Likewise, impacts 

on water resources and flood infrastructure can be estimated with hydrological models 

that utilize the outputs of GCMs to produce estimates of streamflow, runoff, and soil 

moisture.  However, one challenge in producing accurate and serviceable estimates lies in 

both model selection and their appropriate spatial and temporal scales [Gutmann et al., 

2014].   

1.3.1 Global and Regional Climate Models 

Impact assessments at the regional or watershed scale require finer spatial scales 

than that of those provided by GCMs or other coarse-scale climate models.  On a gridded 

spatial scale, often referred to as distributed, hydrological models can be categorized into 

lumped parameter models, or physically-based models [DeVantier and Feldman, 1993].  

A distributed model uses a regularly spaced grid in which each grid is treated as an 
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independent entity that is resolved within the model.  This often creates the necessity of 

dynamical and statistical downscaling models when the gridded inputs are on a larger 

scale than the hydrological model.   

Statistical downscaling takes a more direct approach by deriving empirical 

relationships between the large-scale and fine-scale variables, thereby bypassing the need 

to solve for mass, energy, and momentum transfers in physically based processes [Jang 

and Kavvas, 2015].  There are numerous procedures used to reproduce a particular 

variable in a simulated meteorological dataset.  A simple statistical downscaling 

technique is the delta-change method that superimposes trends found in the climate 

model to transform a historical time series; therefore the original variability remains 

intact [Wood et al., 2004; Kay et al., 2009].  The disadvantage of this method is the very 

strong assumption of stationarity, where the transformed time series is heavily dependent 

on the order and variability of events in the original historical time series, which may 

have a significant impact on modeled hydrologic processes [Arnell, 2003].  This finding 

echoes the general criticisms of statistical downscaling in that relationships between the 

large-scale and fine-scale product are derived using observed and simulated historical 

data that are then applied to the future period [Tryhorn and Degaetano, 2011].   

Due to the computational demands of dynamical downscaling, statistical 

downscaling is the more widely used approach [Jang and Kavvas, 2015].  Qiao et al. 

2014 compared two sets of outputs from a Variable Infiltration Capacity (VIC) 

hydrological model; one using an RCM dataset provided by the North American 

Regional Climate Change Assessment (NARCCAP), and the other using a CMIP3 GCM 

dataset statistically downscaled using the Bias-Corrected and Spatially Downscaled 
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(BCSD) method.  Their results found that the RCM climate data yielded greater accuracy 

in the VIC outputs due to the dataset’s ability to capture more instances of meso-scale 

driven convective rainfall.  Tryhorn et al. 2011 conducted a similar study in which the 

HadCM3 GCM dataset downscaled using the statistical BCSD method was compared to 

the dynamically downscaled NARCCAP dataset (HadRM3) over the U.S. Northeast.  

Their study focused on the technique’s ability to reproduce extreme precipitation.  They 

found that the dynamically downscaled (HadRM3) dataset overestimated mean and 

extreme precipitation, while the statistically downscaled GCM dataset (HadCM3) only 

produced larger errors with higher return intervals [Tryhorn and Degaetano, 2011].  

These two studies’ respective preference of downscaling method is influenced by their 

ultimate objective; where Qiao et al. 2014’s inclination towards dynamic downscaling 

aims to produce estimates of streamflow, while the preferred statistical downscaling in 

Tryhorn et al. 2011 aims to produce estimates of extreme precipitation.  Therefore, the 

selection of a downscaling method for impact assessments is dependent on location, and 

in this case, the ability to produce accurate streamflow estimates in the U.S. Northeast.   

1.3.2 Modeling Climate Change Impacts on Flooding Events 

Despite the vast array of hydrological models and relevant parameters, studies 

have shown that a single hydrological model, when driven with various climate datasets 

that utilize different downscaling or bias correction techniques, can produce differing 

outcomes [Hwang and Graham, 2014; Qiao et al., 2014].  For example, Hwang et al. 

2014 investigated three different statistical downscaling methods on multiple GCMs for 

their skill in estimating streamflow through a hydrological model in west-central Florida, 

1) a modified BCSD method (BCSD_daily) in which daily values were used instead of 
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the traditional use of monthly values, 2) a spatial-disaggregation and bias-correction 

(SDBC) method in which the steps in the modified BCSD method are reversed, and 3) a 

bias-correction and stochastic analog method (BCSA).  Their results noted an 

overestimation of evapotranspiration due to the spatially smoothed light precipitation 

events produced by the BCSD_daily method, leading to underestimated mean 

streamflow.  The reverse method, or SDBC, also suffers from highly spatially correlated 

precipitation events, but is able to capture the observed temporal standard deviation of 

daily precipitation; leading to an overestimation of high streamflow during the wet 

season, but accurate estimates of daily streamflow [Hwang and Graham, 2014].  This 

illustrates the significance of accurate temporal representations of climate variables and 

indices in modeling extreme hydrological events, where the smoothed temporal 

distributions of climate variables influence estimates of high streamflow.   

Conducting a more standardized analysis, Werner et al. 2016 evaluated seven 

downscaling methods using a collection of climate indices (ClimDEX), and compared the 

3-day and 7-day peak streamflow using VIC in the Peace River Basin in BC, Canada.  To 

compare with the previously mentioned studies, the BCCI downscaling method 

(analogous to the SDBC method) passed a greater number of Pearson’s correlation and 

KS tests overall for both ClimDEX indices and hydrological extremes.  A combination of 

the BCCI method with a bias-corrected constructed analogs (BCCA) method (termed 

BCCAQ) was able to surpass all other downscaling methods tested for reproducing 

extreme hydrological events by removing overly spatially correlated meteorological 

events [Werner and Cannon, 2016].  This Werner et al. 2016 study also identifies select 

ClimDEX indices, including the number of consecutive dry days, total precipitation, and 
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maximum 5-day precipitation, that are characteristic of the downscaling methods that 

produced good representations of the hydrologic extremes.  These select ClimDEX 

indices allude to the significance of soil moisture in estimating peak streamflow. 

According to the Intergovernmental Panel on Climate Change (IPCC), studies 

have been inconsistent their findings of the direction of change in the magnitude and 

frequency of floods across the globe [Mallakpour and Villarini, 2015].  For example, 

Mallakpour et al. 2015 investigated the trends in annual peak discharge in 774 watersheds 

in the central U.S. region, and found no statistically significant trends in most of the 

watersheds.  The 20% of watersheds that did show an increasing trend in flood magnitude 

are located in urban areas, where imperious surfaces do not provide any dampening of 

runoff, are most likely due increases in built-up and impervious areas.  Despite the lack 

of increasing flood magnitude, the frequency of flood events has increased [Mallakpour 

and Villarini, 2015].  Ivancic et al. 2015 examined the relationship between extreme 

precipitation and peak streamflow in 290 watersheds across the U.S.; finding that extreme 

precipitation has a greater correlation with extreme discharge during wet soil conditions 

than during dry soil conditions.  The literature suggests that previous desires to bias 

correct climate simulations of extreme precipitation events to match extreme climate 

observations may have misguided their relationship to extreme flood events, as soil 

moisture is being recognized in having perhaps a greater influence [Small et al., 2006; 

Qiao et al., 2014; Ivancic and Shaw, 2015].  
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2 STUDY AREA & DATA 

2.1 Study Region 

The U.S. Northeast is the region of interest in this thesis covering 15 states 

(Figure 2-1).  Although mostly dominated by forest, this region is home to approximately 

41% of the national population, creating dense urban areas among swaths of agricultural 

and ecologically dense environments [Horton et al., 2014].  This region receives 

approximately 40 inches  per year of precipitation, characterizing it with warm and humid 

summers and cold and wet winters [Horton et al., 2014].  With dense regions of both 

urban and rural areas, runoff attenuation varies at either end of the urban/rural spectrum; 

mostly attributed to impervious surfaces and land types within watersheds.  As described 

in the following sections, the simulated gridded climate data is spatially downscaled and 

bias corrected to be forced through the hydrological model over this entire region.  The 

resulting runoff outputs are input through a Muskingum channel routing scheme written 

in Python in the selected watersheds.  Data analysis is performed in each watershed to 

evaluate the performance of the climate downscaling method, the hydrologic model, and 

projected changes in flood magnitude, seasonality, and frequency. 
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Figure 2-1 Map of Modeled Region 

2.2 Climate Data 

The climate datasets used as gridded observed time-series are provided by Livneh 

et al. 2013, and by the North American Land Data Assimilation System (NLDAS).  Five 

gridded climate model projections are provided by the North American Regional Climate 

Change Assessment Program (NARCCAP); the variables within the datasets include 

forecasted temperature and precipitation and are used to force the hydrologic model.   

The simulated NARCCAP data are the results of atmosphere-ocean general 

circulation models (AOGCMs) forced with the SRES A2 emissions scenario that are then 

forced through a set of regional climate models (RCMs).  This produces gridded 

precipitation and temperature data at a 50 kilometer (km) spatial resolution [NARCCAP, 

2007].  Additional calibration of the RCMs to improve accuracy in representing climate 
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variables over North America involves an initial run with NCEP Reanalysis II data 

[NARCCAP, 2007].  The five NARCCAP datasets used in this research are: 

CGCM3_CRCM, CCSM_CRCM, GFDL_HRM3, CGCM3_RCM3, and GFDL_RCM3; 

where the first term represents the GCM model used and the second represents the RCM 

applied.  Although five climate projection datasets are used, these are combinations of 

three GCMs and three RCMs; in essence, these datasets provide 5 different realizations 

from 3 climate projections. These data span a historical (1968-1999) and future (2038-

2070) time period.  The use of these five simulated datasets as forcing for the 

hydrological model requires a finer spatial resolution than the provided 50 km resolution; 

therefore, the Statistical Downscaling and Bias Correction (SDBC) method is applied to 

downscale the gridded climate projections to a 1/16° scale (i.e. the spatial scale of the 

gridded observations). 

The gridded observational dataset provided by Livneh et al. 2013 is used to guide 

the SDBC method and enables the simulated NARCCAP datasets to be resampled to the 

spatial resolution of such dataset.  This observational dataset includes gridded estimates 

of temperature, precipitation, wind, and radiation.  These were derived using algorithms 

that take advantage of daily temperature and precipitation observations from 20,000 

NOAA Cooperative Observer (COOP) stations and disaggregated to 3-hourly time steps 

[Livneh et al., 2013].  This historical observed dataset spans from 1915 – 2011 and is at a 

1/16° spatial resolution on a 3-hourly time step.  These data are hosted at the University 

of Washington, and is available for download online 

(ftp://ftp.hydro.washington.edu/pub/blivneh/CONUS/).   

ftp://ftp.hydro.washington.edu/pub/blivneh/CONUS/
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The assimilated NLDAS dataset also contains sub-daily units of the modeling 

parameters required for the hydrologic model, including radiation, surface pressure, 

humidity, temperature, and precipitation [Mitchell, 2004].  This dataset provides climate 

data for preliminary hydrologic model runs to ‘ramp-up’ and calibrate the model outputs 

to observed USGS data.  More information on the NLDAS dataset is available in 

Mitchell et al. 2004.   

2.3 River Discharge & Channel Data 

Observations of daily streamflow are obtained from U.S. Geological Survey 

(USGS) gages at each watershed outlet.  These observed streamflow time series include 

the historical period of 1968-1999.  These data are used to compare to initial hydrological 

model simulations of NLDAS data, as well as the GEV distribution of estimated 

streamflow from the five NARCCAP driven simulations.   

The river routing method relies on the National Hydrography Dataset Plus 

(NHDPlus) dataset to provide a network of flowlines within each selected watershed. The 

NHDPlus network is used to geo-locate the stream-lines for which simulations of runoff 

are routed.   

3 METHODS & EXPERIMENTAL DESIGN 

3.1 Spatial Downscaling & Bias Correction of NARCCAP Climate Data 

The spatial downscaling and bias correction (SDBC) procedure is performed on 

the five climate datasets provided by the North American Regional Climate Change 

Assessment Program (NARCCAP) following a similar procedure to Hwang et al. 2014.  

This procedure consists of three basic steps; 1) resample the simulated NARCCAP 
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datasets to the spatial resolution of the observed dataset, 2) bias correct the data via 

quantile mapping, and 3) disaggregate the results from daily to sub-daily.  The initial 

temporal resolution of both datasets are 3-hourly; however, the Livneh et al. 2013 

gridded observational precipitation dataset are provided as daily values equally divided 

into 3-hour time series.  The first step, resampling the simulated datasets to the desired 

spatial resolution, employs the inverse-distance-weighting (IDW) of the four nearest 

NARCCAP simulation points to each gridded observation point for each 3-hour time-

step.  Once the NARCCAP simulation points and observed points represent the same 

location, a direct comparison of monthly CDFs within the calibration time period (1968-

1988) can be made; this process is the bias correction step and is performed on a daily 

time-step.  The factors used in correcting the quantiles within the temperature and 

precipitation CDFs are derived based on total daily precipitation accumulation and mean 

daily temperature during the calibration period (1968-1988).  The results are both 

evaluated in the validation period (1989-1999) and applied to the projection period 

(2038-2070).  Lastly, the bias-corrected simulated daily time-series are disaggregated into 

a 3-hourly time step.  Disaggregation factors are derived from the 3-hourly signal within 

the spatially downscaled and bias-corrected NARCCAP simulated time-series.  The 

factors used in the daily bias correction process (multiplication for precipitation and 

addition for temperature) throughout the daily simulated time-series are again used on the 

3-hourly data.  This preserves the sub-daily signal provided by the NARCCAP datasets.  

The results from the five simulated NARCCAP datasets, after the SDBC method are 

applied, are used to force the hydrologic model.   



 

 15 

3.2 Estimating River Discharge 

3.2.1 WRF-Hydro 

The National Center for Atmospheric Research (NCAR) developed a Weather 

Research and Forecasting hydrological model extension package (WRF-Hydro) to 

improve representations of terrestrial hydrologic processes.  This model is designed to 

provide a link between various earth system models (i.e. atmospheric and terrestrial 

models); however, this research uses it as a stand alone land surface model (LSM).  

Included in WRF-Hydro is the Noah multi-parameterization (Noah-MP) LSM; providing 

a 1-dimensional vertical land surface parameterization using inputs of short and 

longwave radiation, specific humidity, air temperature, surface pressure, near surface 

wind, and preciptation rate, to calculate vertical energy fluxes in the form of heat and 

radiation, moisture, and soil states.  The modular structure of WRF-Hydro allows 

consideration of the physics of surface overland flow and saturated subsurface flow 

(Figure 3-1).  WRF-Hydro utilizes the subsurface lateral flow module to add any 

exfiltration from fully saturated grid cells to Noah-MP outputs of infiltration excess, 

allowing for the overland flow routing module to calculate surface runoff.   Because the 

baseflow module within WRF-Hydro is conceptual rather than physical, this module is 

more used as calibration parameters to the Noah-MP LSM.  Although the WRF-Hydro 

framework provides a channel routing module, this research provides a separate routing 

scheme that operates as a post processor to the surface runoff outptus.  Additional 

information on the WRF-Hydro model is provided in the NCAR WRF-Hydro Technical 

Description and User’s Guide [Gochis et al., 2015].   
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Figure 3-1 Modular Calling Structure of WRF-Hydro (from [Gochis et al., 2015]) 

3.2.2 Calibration of WRF-Hydro 

WRF-Hydro, compared to other hydrology models, is computationally intensive; 

therefore, the number of runs to calibrate the model is limited.  The Statistical Parameter 

Optimization Tool in Python (SPOTPY), developed by Houska et al. 2015, is used to 

calibrate the parameters within the baseflow module of WRF-Hydro.  Senatore et al. 

2015 identified the two most relevant parameters for estimating an hourly hydrograph; 

the infiltration factor (REFKDT) and a coefficient governing deep drainaige that adjusts 

such in the deepest soil layer (SLOPE).  An additional parameter, the saturated soil 

hydraulic conductivity (DKSAT), as suggested by the Noah LMSM User’s Guide for 

calibration, is also employed [Mitchell et al., 2005].   

The Monte Carlo Markov Chain algorithm in SPOTPY is used to calibrate the 

identified calibration parameters.  Previous calibration efforts have optimized parameters 

according to their Nash-Sutcliffe Efficiency (NSE); however, this research also employs 

measures of Kling-Cupta Efficiency (KGE) in an effort to minmize bias [Gupta et al., 
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2009].  This algorithm has been widely used in hydrological modeling as a technique to 

find the global optimum of selected parameters [Houska et al., 2015].  The equations 

used for NSE and KGE are provided in Appendix B. 

3.2.3 Watershed Selection 

To analyze the WRF-Hydro gridded output from the U.S Northeast region, 20 

watersheds are selected to illustrate the spatial distribution of changes in peak annual 

flow (PAF) events in the region, where PAF is defined as the maximum streamflow in a 

given year.  Observational climate data provided by the North American Land Data 

Assimilation System (NLDAS) are used as forcings to the WRF-Hydro model to allow 

calibration and validation measures.  Thereby using these preliminary results to select the 

20 watersheds based on their respective NSE and KGE values when compared to the 

observed USGS unimpeded streamflow gages’ historical record.  The watersheds are 

chosen based on the following metrics: NSE or KGE values above 0.5, or an absolute 

percentage bias below 10% for the 36 years of daily flow values  [D. N. Moriasi et al., 

2007].  

Out of the ~15 Northeast states modeled, watersheds are selected from 10 states; 1 

in CT, 3 in MA, 1 in MD, 3 in ME, 1 in NH, 1 in NJ, 4 in NY, 3 in PA, 2 in VA, and 1 in 

VT (Figure 3-2, Table 3-1).  Their respective drainage areas range from 31.30 km
2
 to 

1790.24 km
2
.   
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Figure 3-2 Locations of Selected Watersheds 
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Table 3-1: Selected Watershed Characteristics 

 

3.2.4 Routing Scheme 

A prominent factor in determining adequate and robust engineering designs for 

bridges and culverts is the magnitude of peak flows.  Estimating peak flows involves the 

estimation of travel time and attenuation of the flood waves; commonly termed this flood 

routing.  For most applications, flows are considered unsteady in open-channels and can 

be solved for using the Saint-Venant Equations developed by Barre de Saint-Venant in 

1848.  This technique accounts for continuity and momentum for one-dimensional flow 

[Heatherman, 2012].  The momentum equation accounts for gravity, pressure variation, 

and friction due to the channel walls.   A full solution that employs all terms of the Saint-

Venant equations is considered a ‘hydraulic’ solution, whereas simplifications are called 

‘hydrologic’ solutions, in which one or more terms in the momentum equations are 

omitted.  Because a hydraulic solution is very computationally intensive, most 

Basin ID Watershed USGS ID State
Drainage 

Area, km2
Latitude Longitude MIN MAX RANGE MEAN STD

5 Oyster River near Durham, NH 01073000 NH 31.3 43.148696 -70.96506 21 117 96 59 20

2 Mount Hope River near Warrenville, CT 01121000 CT 70.25 41.843709 -72.16897 75 383 308 186 50

1 Green River near Colrain, MA 01170100 MA 106.99 42.703417 -72.67065 130 736 607 411 114

23 Green River at Williamstown, MA 01333000 MA 112.16 42.708969 -73.19677 180 1061 881 472 171

30 Jordan Creek near Schnecksville, PA 01451800 PA 135.84 40.661762 -75.62685 103 478 374 202 35

26 Flat Brook near Flatbrookville, NJ 01440000 NJ 167.72 41.106667 -74.95222 96 499 403 272 84

6 Esopus Creek at Allaben, NY 01362200 NY 169.19 42.117034 -74.38015 305 1135 831 672 165

28 Brodhead Creek near Analomink, PA 01440400 PA 175.21 41.084815 -75.21463 176 666 489 422 107

4 Little Androscoggin River near South Paris, ME 01057000 ME 190.92 44.303992 -70.53968 116 733 616 281 93

25 Tye River near Lovingston, VA 02027000 VA 240.77 37.715419 -78.98169 173 1239 1066 549 267

3 West Branch Westfield River at Huntington, MA 01181000 MA 243.5 42.237312 -72.89565 110 608 498 382 96

22 Big Pipe Creek at Bruceville, MD 01639500 MD 267.18 39.612361 -77.23744 103 336 233 196 42

34 S F Roanoke River near Shawsville, VA 02053800 VA 280.72 37.140132 -80.26643 401 1196 795 702 141

32 Bush Kill at Shoemakers, PA 01439500 PA 305.88 41.088151 -75.03768 123 621 498 386 72

36 Ostelic River at Cincinnatus, NY 01510000 NY 382.99 42.541181 -75.89964 311 652 340 484 67

24 East Brook Delaware River at Margaretville, NY 01413500 NY 424.1 42.14481 -74.65349 389 1180 791 664 140

29 Schoharie Creek at Prattsville, NY 01350000 NY 612.51 42.319528 -74.43654 344 1233 889 652 148

35 Piscataquis River near Dover-Foxcroft, ME 01031500 ME 769.05 45.175008 -69.3147 109 798 689 303 107

27 Carrabassett River near North Anson, ME 01047000 ME 909.1 44.8692 -69.9551 94 1291 1197 376 213

33 White River at West Hartford, VT 01144000 VT 1790.24 43.714236 -72.41815 113 1150 1037 447 155

ELEVATION, METERS
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approaches are simplifications of the Saint-Venant equations in which solutions are 

empirical approximations [Heatherman, 2012].   

To minimize overall computational time in this research, the gridded outputs of 

surface runoff from the WRF-Hydro model are routed through channel networks within 

the 20 selected watersheds, rather than through the entire U.S. Northeast domain.  This is 

achieved by independently employing the Muskingum method in each watershed by 

using a Python module written to approximate the Saint-Venant equations. The 

Muskingum method relies on two coefficients that are used to represent the travel time 

and attenuation of flood waves, K, and X, respectively.  This routing approximation 

maintains constant calibration parameters that do not vary with flow.  This method is 

employed in this research through a code written in Python and is provided for reference 

in Appendix B.    

3.3 Watershed-Based Analysis of Results 

3.3.1 Model Performance 

3.3.1.1 Spatial Downscaling & Bias Correction Skill on NARCCAP Data 

The ability of the SDBC method to correct the monthly distributions of daily 

simulated NARCCAP precipitation and temperature data is measured using a simple 

error metric, along with percent bias in precipitation.  Although the final product of this 

method provided 3-hourly data to WRF-Hydro, surface runoff outputs are on a daily time 

step, therefore, the climate downscaling and bias correction is also evaluated using daily 

values.  To minimize computation time, the time series at each gridded point within a 

watershed is aggregated to create a single precipitation and temperature time series on 
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which analyses are performed.  Error values during the calibration (1968-1988) period 

are compared to those of the validation (1989-1999) period to evaluate accuracy in the 

future projection (2038-2070) period.   

3.3.1.2 WRF- Hydro Simulations of Peak Annual Flows 

The peak annual flows (PAF) in the historical (1968-1999) period and the future 

(2038-2070) period are extracted after routing the WRF-Hydro runoff outputs.  For each 

selected watershed, the maximum river discharge is obtained from each year from USGS 

observed streamflow and the six estimated (simulated) river discharges (1 NDLAS 

dataset, 5 NARCCAP datasets).  These PAF are fit to a generalized extreme values 

(GEV) distribution using RStudio.  Once performed, this distribution allows estimation of 

the upper, lower, and median confidence intervals of various annual return intervals 

through statistical bootstrapping.  As a final calibration step, a scaling factor is 

determined from the comparison between the GEV distributions of observed USGS peak 

flows and peak flows simulated using NLDAS data. This provides calibration of the peak 

streamflow outputs from the Muskingum routing scheme.  This scaling factor is applied 

to the GEV distribution of peak flows simulated from the 5 NARCCAP datasets for both 

the historical and future time periods, thereby assuming some stationarity within the 

model.  Model performance is evaluated using goodness-of-fit metrics provided by an R 

package called “HydroGOF” that compares the GEV distribution of simulated historical 

flows to the observed distribution found in the USGS data.  Projected changes in PAF are 

also calculated within each NARCCAP dataset between the historical and future time 

periods, in each watershed. 
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3.3.2 Hydrologic Responses to Climate Change 

3.3.2.1 Peaks over Threshold (POT) 

Because a peak flow analysis uses only a single value each year, an alternative 

analysis is conducted using a peaks-over-threshold (POT) approach [Mallakpour and 

Villarini, 2015].  For both streamflow and precipitation, thresholds are defined as the 

50
th
, 95

th
, 97

th
, and 99

th
 quantiles of monthly CDFs, partitioned into historical or future 

time period.  For example, all daily January values of precipitation in the historical period 

(31 days x 30 years) are used to create a CDF, from which values of selected thresholds 

(quantiles) are extracted.  These quantile values (i.e. predetermined historical 

magnitudes) serve as thresholds, where the number of days exceeding each threshold is 

summed for each month in each year within the period.   

3.3.2.2 Seasonality of Extreme Events 

Investigating the changes in seasonality of peak annual flows (PAF) and peak 

annual precipitation (PAP) provides information on the time of year of such events and 

the relationship between the two.  The day of the year (i.e. Julian day) is extracted from 

PAF and PAP events during the historical and future time periods.  These values are used 

to create 4 CDFs for each watershed; 1) Julian days of PAF in the historical period, 2) 

Julian days of PAP in the historical period, 3) Julian days of PAF in the future period, 

and 4) Julian days of PAP in the future period.  Changes in the relationship between the 

timing of PAF and PAP suggests changes in runoff attenuation, perhaps indicating 

growing urban areas or changes in hydrologic regimes such as decreasing a snowpack.  
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3.3.2.3 Climate Indices 

Supplementing the POT and seasonality analysis, and furthering the investigation 

of the significance of precipitation, select indices from the standard ClimDEX indices are 

quantified in the five downscaled NARCCAP products.  ClimDEX indices were 

developed by the Expert Team on Climate Change Detection and Indices (ETCCDI) 

[Zhang, n.d.]; this software is hosted and maintained by the Climate Research Division of 

Environment Canada.  The selection of ClimDEX indices are based on their potential 

influence on soil moisture in terms of precipitation magnitude and intensity.   

4 RESULTS 

The hydrologic model generates an ensemble of five simulated time series of 

streamflow at the outlet of the 20 selected watersheds; from which projected changes in 

various metrics are calculated.  The preceding steps, including the climate data 

downscaling approach and calibration of the hydrology model, are validated in terms of 

their skill in reproducing events in the observed time series provided by a gridded 

observational dataset (Livneh et al. 2014) and USGS streamflow measurements.  These 

results are presented beginning with model skill during the historical period, followed by 

a summary of the projected changes during the future period.  The projected changes in 

climate and peak annual flows (PAF) during the future period are further investigated 

through a PAF seasonality analysis, a seasonal peaks-over-threshold (POT) analysis, and 

a ClimDEX indices analysis.   

The projected changes in PAF indicate a wide range of increases and decreases in 

the 20 selected watersheds that prove to require additional analysis when exploring their 

underlying causes.  The seasonality analysis of PAF indicates a shift in the month of 
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occurrence that then, coupled with projected changes in precipitation of that particular 

month; more clearly represents the influence of extreme precipitation on high streamflow 

events.  The seasonal POT analysis provides a type of frequency assessment that reveals 

the varying levels of influence of extreme precipitation events, where a heavy 

precipitation event does not always create high streamflow and is rather dependent on 

season.  Additional climate conditions such as precipitation magnitude and intensity are 

further examined using select ClimDEX indices to understand the changing influence of 

heavy precipitation on streamflow in certain seasons.  

4.1 Modeling Performance & Projections  

4.1.1 Skill of SDBC Method 

The downscaled NARCCAP climate data provides temperature and precipitation 

data on a 3-hourly time step to the hydrological model; however, results are analyzed on 

a daily time step.  The observed time series used to ‘train’ the SDBC method spans the 

years 1968-1988, while the remaining years 1989-1999 are used as a validation period.  

Because the data are downscaled on a monthly basis, performance metrics are also 

evaluated at this scale.  The SDBC method uses the calibration period (1968-1988) as 

‘training’ data, so it is not surprising that the downscaled NARCCAP datasets performs 

reasonably well during this period.  Skill is measured as error for daily mean temperature 

and percent bias for daily precipitation accumulation in each month and each watershed.  

For example, daily values in January over the historical period (31 days x 30 years) from 

the 5 NARCCAP datasets are analyzed for error and percent bias.  The following figures 

characterize the results of the SDBC procedure that provide a finer spatial scale (1/16°) 
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outlook at changes in summer and winter temperature and precipitation (Figure 4-1 and 

Figure 4-2). 

 

Figure 4-1 SDBC Results of NARCCAP – Change in Mean Monthly Temperature 

(°C) (Average of 5 NARCCAP SDBC Models) 

Figure 4-2 SDBC Results of NARCCAP – Change in Total Monthly Precipitation 

(%) (Average of 5 NARCCAP SDBC Models) 

 

The error analysis performed on mean daily temperature shows excellent skill in 

reproducing the monthly distribution of observed values during the calibration period 

(Figures 4-3, 4-4).  Downscaling performance decreases during the validation period, 

with the largest errors in the cooler months of the region (Figure 4-3).  The variation in 

error is much larger during the validation period compared to that of the calibration 

period.  This may be due to multi-decadal temporal variations in the temperature signal 
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that the relatively short (20 year) calibration period is unable to capture; however, median 

values of monthly error are generally below 1°C, with the exception of December, when 

error values are greater than 1°C in almost all watersheds (Figure 4-3).  The majority of 

months indicate a slight over-prediction, with the exception of January and Febuary, this 

almost to be expected due to the model projected increases in temperature as a result of 

increased greenhouse gasses.  Although over-prediction of mean daily temperature may 

result in over-prediction of evaporation within the hydrologic model, ensemble-mean 

errors are generally less than 1°C and merely represent a number of possible futures that 

the region may experience.  The biases within each NARCCAP dataset will also be 

contained, as any reported changes in future values are relative to its historical period.  

 

Figure 4-3 Mean Monthly Error in Mean Daily Temperature from the SDBC Method 

during the Calibration and Validation Periods. 

The percent bias (PBIAS) analysis performed on daily precipitation accumulation 

indicates a slightly more varied skill than the mean daily temperature values in both the 

calibration and validation periods.  During the calibration period, the variability in PBIAS 
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seems to be dependent on month, and watershed.  For example, in March, the larger 

watersheds show a significantly larger range of error than other watersheds, however, in 

August, a mid-sized watershed shows the greatest variability (Figure 4-4).  Interestingly, 

the range of error during the calibration period does not always propagate to the 

validation period.  For example, the largest range of error in August (as previously 

mentioned) during the calibration period leads to the largest range of error during the 

validation period; however, the opposite happens in November, where the largest range 

of error during the validation period does not originate from a large range of error in the 

calibration period (Figure 4-4).   

 

Figure 4-4 Mean Percent Bias in Daily Precipitation Accumulation from the SDBC 

Method during the Calibration and Validation Periods. 

 

Errors during the calibration period are relatively small; the majority of 

watersheds have a precipitation error less than 1mm, in comparison to the errors in the 

validation period where values range from at least 1mm to a maximum of 8mm 

(Appendix C).  The month of December shows a significant error in all watersheds in the 
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validation period despite the opposite behavior during the calibration period.  While 

plotted in the order of increasing watershed size along the x-axis, visual inspection 

suggests little to no trend in the performance of the downscaling method.  It is important 

to note that these errors, especially during the validation period, may be comparable to 

the projected changes in mean temperature and daily precipitation from the downscaled 

and bias corrected NARCCAP datasets.  However, not all changes in the projected 

climate are accounted for in the error analysis.  For example, the average change in total 

monthly winter precipitation indicate increases in the selected watersheds (Figure 4-2) 

while errors during the winter months indicate minimal error, underestimation, and 

overestimation in December, January, and February, respectively (Figure 4-4). Although 

performance varies from month to month during the validation period, when further 

aggregated to the seasonal or annual scale, errors are not as high, thus allowing for 

additional analysis on a larger time scale. 

4.1.2 Peak Annual Flows 

4.1.2.1 Simulated Historical Peak Annual Flows 

Peak annual flows are of great interest to stakeholders because of their impacts on 

infrastructure; thus the ability to recreate historical values is important in validating 

values in the future period.  It is important to ensure that the model is calibrated such that 

the physics within the model provide accurate estimates of peak annual flows.  This 

process utilizes observed climate assimilations as inputs to the model, thereby producing 

estimates of streamflows.  These are compared to USGS observed streamflow to estimate 

the accuracy of the physics within the hydrologic model.  The hydrologic model results 
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from forcing NLDAS climate data are fitted to a GEV distribution of peak annual flows 

(PAF) and compared to a fitted GEV distribution of PAF from the USGS time-series.  

These watersheds were selected using preliminary runs of NLDAS data. As expected, the 

majority of the selected watersheds perform well in their goodness-of-fit metrics from 

their respective GEV distributions (Table 4-1).   

Nash-Sutcliffe efficiency (NSE) is a measure of the relative magnitude of residual 

variance of simulated values compared to the variance of observed data, where a value of 

0 indicates that simulated values are as accurate as the mean of observed data.  All 

watersheds show a NSE value above 0, with the majority above 0.5 (Table 4-1).  Kling-

Gupta efficiency (KGE) was developed as an alternative to NSE to address its 

shortcomings when being optimized for hydrological modeling calibration; especially 

due to its tendency to underestimate runoff peaks [Gupta et al., 2009].  Because this 

research is centered on predicting high flows, KGE is preferred due to its ability to 

simultaneously account for bias, correlation, and variability [Gupta et al., 2009].  Almost 

all watersheds report a lower KGE value than their respective NSE values, suggesting 

that the variability in the simulated values is underestimated.  Volumetric efficiency (VE) 

provides another goodness-of-fit metric that has physical significance by, in this case, 

representing the volumetric fraction of water captured by peak annual flows over the 

historical time period [Criss and Winston, 2008].  The watersheds in this research show 

high VE, further validating the hydrological model’s performance at these locations, 

thereby providing some confidence in projected future values (Table 4-1).   

One watershed (Schoharie Creek in Prattsville, NY) reported a low NSE value of 

0.19; a value outside of the watershed NSE selection criteria.  Further analysis of the 
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observed and simulated GEV distributions show that the simulated values are accurate in 

representing the magnitude of stream flows at the lower return intervals (or more 

frequently seen flows), followed by a growing under-prediction of flows at higher return 

intervals (Appendix A).  Despite this, an R2 value of 0.99 for the GEV distributions of 

Schoharie Creek in Prattsville, NY shows that the shape of the observed distribution is 

well maintained in simulated values (Table 4-1).  Interestingly, this watershed also 

reported a higher KGE value, contrary to all other watersheds.  This may be because NSE 

has a high weighting of residuals, while KGE optimally weights bias, variability, and 

correlation; validating the previous visual inspection of the GEV distributions of this 

particular watershed.  GEV distributions of simulated and observed peak annual flows 

(PAF) at all 20 watersheds are in Appendix A. 

Table 4-1 GEV Goodness of Fit Metrics 

 

4.1.2.2 Future Peak Annual Flows 

The simulated historical and future streamflow time-series generated by the 

hydrological modeling process are sampled for their PAF from their respective GEV 

BASIN ID Location KGE NSE R2 RMSE PBIAS % VE

22 BIG PIPE CREEK AT BRUCEVILLE, MD 0.66 0.82 0.99 31.09 -15.6 0.83

28 Brodhead Creek near Analomink, PA 0.74 0.81 0.99 23.06 -18.4 0.81

32 Bush Kill at Shoemakers, PA 0.9 0.99 1 15.33 0 0.95

27 Carrabassett River near North Anson, Maine 0.37 0.53 0.88 77.92 -17.5 0.63

24 EAST BR DELAWARE R AT MARGARETVILLE NY 0.76 0.9 1 11.21 -8.5 0.91

6 ESOPUS CREEK AT ALLABEN NY 0.7 0.87 0.99 13.37 10.1 0.87

26 FLAT BROOK NEAR FLATBROOKVILLE NJ 0.73 0.88 1 28.84 -12.4 0.87

23 GREEN RIVER AT WILLIAMSTOWN, MA 0.91 0.99 1 4.99 -1.6 0.96

1 GREEN RIVER NEAR COLRAIN, MA 0.67 0.82 1 3.83 -16.8 0.81

30 Jordan Creek near Schnecksville, PA 0.7 0.83 0.99 18.64 8 0.9

4 Little Androscoggin River near South Paris, Maine 0.67 0.76 1 7.88 14.8 0.85

2 MOUNT HOPE RIVER NEAR WARRENVILLE, CT. 0.99 1 1 0.45 0.9 0.99

36 OTSELIC RIVER AT CINCINNATUS NY 0.44 0.55 0.99 138 12.5 0.82

5 OYSTER RIVER NEAR DURHAM, NH 0.67 0.85 0.99 9.41 5.6 0.88

35 Piscataquis River near Dover-Foxcroft, Maine 0.53 0.66 0.96 72.41 8.3 0.86

34 S F ROANOKE RIVER NEAR SHAWSVILLE, VA 0.55 0.63 0.96 116.06 -18.9 0.81

29 SCHOHARIE CREEK AT PRATTSVILLE NY 0.4 0.19 0.99 35.8 28.4 0.72

25 TYE RIVER NEAR LOVINGSTON, VA 0.89 0.99 1 10.17 -2.9 0.95

3 WEST BRANCH WESTFIELD RIVER AT HUNTINGTON, MA 0.84 0.95 0.99 4.71 -4.9 0.93

33 WHITE RIVER AT WEST HARTFORD, VT 0.87 0.96 1 57.11 -9.2 0.91
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distribution to calculate percent changes in the future period at 15 different return 

intervals (Table 4-2).  Percent changes are calculated for each of the 5 NARCCAP 

futures and averaged to produce an ensemble-mean.  The region represented by the 

average percent change among the 20 watersheds, show increases at every return interval 

ranging from 10% to 18% (Table 4-2).  

Table 4-2 Regional Average Percent Change in Peak Annual Flows. 

 

These regional trends of increasing PAF are analogous to the increases in the total 

annual precipitation (Appendix C).  This is indicative of the hydrologic model being able 

to translate changes in precipitation to changes in stream flows.  However, the 20 

watersheds within the region do not always agree in terms of the direction of change 

(Figure 4-5).  For example, a few watersheds indicate decreases in the magnitude of PAF 

at all return intervals, while nearby watersheds indicate increases at all return intervals 

(Figure 4-5).  When evaluated on an annual scale, the differences in changes in PAF 

within individual seasons may aggregate to an overall decrease in frequency; however, 

disaggregating to a seasonal analysis provides a slightly finer temporal scale to evaluate 

changes.  This broaches the question of the seasonal characteristics of a precipitation 

event that cause extreme flood events.   

Return Interval, years 2 3 5 7 10 15 25 30 40 50 60 70 80 90 100

Regional Average % Change 

(of 20 Watersheds)
10 10 10 10 10 11 12 13 14 15 15 16 17 17 18
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Figure 4-5 Percent Change in Peak Annual Flow 

4.2 Hydrologic Responses to Climate Change 

4.2.1 Projected Changes in Monthly Precipitation 

Given the ranges of errors in the downscaling and bias correction of the 

NARCCAP simulated precipitation data (Figure 4-3& 4-4), daily values are aggregated to 

the monthly scale and averaged within the historical and future time series at each 

simulation point in each respective basin to eliminate some uncertainty in the direction of 

change.  This aggregation from daily to monthly precipitation values provides a medium 
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to report projected climate impacts in place of the otherwise noisy daily signal or the 

over-smoothed annual signal.   

The total monthly precipitation per year in each time period are averaged, and 

used to calculate percent change in each of the 5 downscaled and bias corrected 

NARCCAP datasets.  The winter (DJF) months in all the investigated watersheds show 

between 8-25% increases at the ensemble-mean (Figure 4-6).  During the dryer seasons 

of fall (SON), watersheds at different latitudes show somewhat different climatology; 

where the smaller southern basins experience increases, while the larger northern basins 

experience decreases in total monthly precipitation (Figure 4-6).  June is similar; 

however, the latter summer months show increases except for a few watersheds.  The 

disagreement in the direction of change at the monthly scale, despite agreements at the 

annual scale and amongst the differing trends in PAF in each watershed, suggests a need 

to investigate the seasonality in the relationship between extreme precipitation and high 

streamflow events (Figure 4-6, Appendix C).  
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Figure 4-6 Monthly Annual Total Precipitation 

4.2.2 Seasonality of Peak Annual Flows 

As a preliminary investigation of the relationship between extreme precipitation 

and extreme flood events, the Julian day of PAF and peak annual precipitation (PAP) are 

calculated for each year of the historical and future periods.  For example, the Julian day 

of each PAF of each year in the historical period is used to create a cumulative density 

plot (CDF); these are developed for both PAF and PAP in the historical and future time 

periods.  This analysis indicates the seasonality in the relationship between maximum 

precipitation and maximum streamflow (Figure 4-7).  Many of the southern watersheds 

indicate an increased probability of PAP occurring in the winter, summer, and spring.  

The majority of PAF events happen in the winter or spring months, despite the tendency 

for PAP events to occur relatively evenly over all seasons (Figure 4-7).  This suggests 

that there are other significant drivers of extreme flows during the spring and summer 

other than large precipitation events.     
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Figure 4-7: CDF of Julian Day of Annual Maximum Flow and Precipitation 

 

As indicated previously, model results indicate that the U.S. Northeast region as a 

whole will see increases in PAF at all return intervals; however, a number of watersheds 

show decreases at all return intervals (Table 4-2, Figure 4-5).  At the 100-year return 

interval, the watersheds showing the greatest percentage of PAF increase (30-85% in 

BASIN 30, 26, 32, 28) can be explained by their shift towards an earlier PAF timing 

toward the winter in the future period; likely due to the shift in peak precipitation events 

(Figures 4-5 & 4-7).  The next grouping watersheds showing increases in PAF (5-30% in 

BASIN 23, 24, 2, 3) also show a spread towards such events occurring earlier in the 

winter and less likely in the spring (Figures 4-5 & 4-7).  Flows during the spring tend to 

be of greater magnitude, particularly in the more northern and snow-dominated 

watersheds.  Because this particular group of watersheds indicates a strong concentration 

of PAF occurring in the spring during the historical period, a shift towards earlier flows 

may be indicative of earlier and less snowmelt.  This theory, counterweighted with the 
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projected increases in winter precipitation, explains the significantly greater percent 

change in PAF in the PA and NJ watersheds, where there is little to no snowpack and a 

shift to more winter PAF.  These watersheds indicate a more direct correlation between 

precipitation and streamflow, especially during the winter due to the lack of a snowpack 

buffer.  The few watersheds indicate opposite trends in changes in PAF between its return 

intervals (i.e. -10% at the 10-year return interval and 10% at the 100-year return interval 

in BASIN 4) are snow-dominated watersheds that also show a greater number of earlier 

winter and spring flood events.  Three watersheds (BASIN 25, 29, and 22) indicate a 

diminishing percent change in PAF from the 10-year to 100-year return interval (Figure 

4-5).   The southern-most watersheds (BASIN 25 and 22) indicate a more correlated 

relationship between extreme precipitation and peak streamflow during the future period.  

This suggests that the buffer between the two (e.g. snowpack or pervious surfaces) has 

diminished; therefore resulting in higher return period streamflow exhibiting less change 

than more frequent streamflow at lower return intervals.      

The shifts in seasonality are directly related to the changes in climate, where 

increases in temperature in conjunction with increases in winter precipitation have led to 

an increased likelihood in peak annual events occurring earlier in the year.  This effect in 

snow-dominated watersheds can promote a greater number of smaller snowmelts 

throughout the winter rather than a large concentrated snowmelt event in the spring.  

However, increases in winter precipitation may also lead to more precipitation falling as 

snow, resulting in greater magnitudes in winter or spring flood events.  This seasonality 

analysis provides an improved sense of the changing processes that cause PAF events.  
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4.2.3 Seasonal Peaks over Threshold 

To further this investigation, a count of peaks-over-threshold (POT) is performed 

on both the precipitation and stream flow time series to examine any changes in the 

frequency of peak annual events.  The thresholds are defined as the 50
th

, 95
th
, 97

th
, and 

99
th
 percentile of historical daily values aggregated by month.  For example, the 95

th
 

percentile flow threshold for January is extracted from a CDF of daily precipitation from 

all Januarys in the historical period (1968-1999). The numbers of daily values that exceed 

each threshold are counted in each month and in each year.  The change in daily values 

greater than each threshold (or POT) is the difference in the average number of POT 

within the historical and future time periods, respectively.  

Figure 4-8 contains boxplots of the change in the number of precipitation and 

streamflow POT from the historical to the future period within each NARCCAP dataset 

at the 50
th
 percentile threshold. The differences between precipitation and streamflow 

changes in POT at the 50
th
 percentile indicate that such events are more correlated in the 

spring months than in the fall, summer, and winter months.  The higher thresholds (95
th
, 

97
th
, and 99

th
 percentiles) show a greater correlation between the two, suggesting that 

days of extreme precipitation may be contributing to days of extreme flows (Appendix 

C).   
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Figure 4-8 Seasonal Precipitation and Streamflow POT (50

th
 Percentile Threshold) 

 

The most apparent changes in the future period are decreases in streamflow POT 

in the fall, spring, and summer streamflow along with significant increases in the winter 

at the 50
th
 percentile threshold.  Despite the minimal change in the number of winter 

precipitation POT, future streamflow projections indicate an increase in winter POT at all 

thresholds (Figure 4-9) perhaps due to an increased in rain on snow events, along with 

earlier and rapid snowpack melt.  When the watersheds are ordered from south to north, 

an increasing trend emerges in the changes in winter POT demonstrating the greater 

effect that increasing winter precipitation and temperatures have on these watersheds.  

Similar trends are not seen in the other seasons at the higher thresholds, suggesting that 

changes in streamflow in the spring, fall, and summer are mostly occurring at median 

values rather than in more extreme streamflow events.  

This POT analysis, in conjunction with the analysis of total monthly precipitation, 

suggests that precipitation in each season provides a different level of influence on 
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streamflow POT.  Because future streamflow POT indicate increases solely in the winter 

months despite the lack of the same trend in winter precipitation POT (Figure 4-9), and 

coupled with the projected increases in winter total monthly precipitation (Figure 4-6), 

suggests that extreme flood events in the future are not caused by increases in the 

magnitude of extreme precipitation.   

 

Figure 4-9 Winter Precipitation and Streamflow POT 

4.2.4 ClimDEX Indices 

The ClimDEX indices are selected for this analysis to explore climate trends.  The 

previous analyses in this research indicate the lack of influence of extreme precipitation 

events on peak seasonal streamflow in most of the selected watersheds, raising the 

question of what seasonal conditions contribute to increases in high streamflow.  The 

indices selected are total monthly precipitation and monthly maximum 5-day 

precipitation (RX5DAY).  
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Changes in total monthly precipitation are presented in previous sections; 

however, the addition of a RX5DAY analysis provides insight to the characteristics of 

changing precipitation events.  The results suggest an increase in monthly precipitation 

accumulations in almost all seasons except the fall despite minimal change in 

precipitation POT as previously noted (Figure 4-6 & 4-8).  RX5DAY indicates increases 

in all selected watersheds for the winter, spring, and the majority of the summer months, 

along with decreases in the majority of the fall months (Figure 4-10).  

Comparisons of changes in RX5DAY and changes in monthly precipitation 

accumulation provide insight to how precipitation events are changing.  For example, the 

winter months (DJF) indicate increases in both total monthly precipitation and RX5DAY, 

suggesting that additional precipitation accumulation will fall as a larger multi-day (i.e. 5-

day) event.  A similar trend is seen in the spring months (MAM); however, the additional 

precipitation falling in March indicates that the precipitation is being delivered over 

multiple events rather than one day events due to the change in total monthly 

accumulation being greater than the change in RX5DAY (Figure 4-10).  The opposite is 

observed in May, where the change in RX5DAY is greater than the change in total 

monthly accumulation, suggesting an increase in the intensity of a multi-day (i.e. 5-day) 

event and perhaps decreases in magnitude of other precipitation events within the month 

(Figure 4-10).  The dryer months of the summer and fall seasons indicate both increase 

and decreases in both metrics.  The fall months are slightly more varied in their results; 

for example, October indicates increases in RX5DAY despite having both increases and 

decreases in total monthly precipitation in the 20 watersheds (Figure 4-10).   
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Figure 4-10: Max 5-Day Precipitation 

 

 

5 DISCUSSION & CONCLUSIONS 

This research provides stakeholders and decision makers in the U.S. Northeast 

region with estimates of changes in the magnitude and frequency of peak streamflow 

events, and changes in select precipitation indices.  A future period (2038-2070) is 

compared to a historical period (1968-1999) in terms of various precipitation and 

streamflow metrics in 20 selected watersheds in the U.S. Northeast.  The years included 

in the future and historical time period are selected based on the available years of the 

NARCCAP datasets.   Five simulated NARCCAP climate datasets are used to model five 

different hydrological futures using WRF-Hydro in each watershed.  As mentioned 

previously, these five datasets originate from three different GCMs which provides a 
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platform to evaluate the effect of different RCMs on a GCM; however, due to the large 

computation effort required, such analysis is limited in this research. 

The climate data spatial downscaling and bias correction (SDBC) efforts are 

validated by quantifying error in mean daily temperature and percent bias (PBIAS) in 

daily precipitation accumulation from the observational dataset (Livneh et al. 2013).  The 

errors in the statistically downscaled temperature and precipitation values indicate better 

performance during the calibration period than the validation period. The performance of 

downscaled daily precipitation when aggregated is similar amongst the 5 NARCCAP 

datasets; however; performance in a particular watershed may vary (Appendix C).  

Winter periods demonstrated the largest precipitation PBIAS during the validation period 

in comparison to the other seasons. The SDBC performance on daily mean temperature 

show similar patterns in that there is little variability in error amongst the 5 NARCCAP 

models in the region overall, excluding the winter months, where errors are more variable 

between the models (Appendix C).  

To reduce computational time in analyzing results, the gridded points within each 

watershed are aggregated to produce a single set of results, rather than a set at each grid 

point.  This watershed aggregation approach applied may lead to overestimates of 

extreme precipitation events due to the exaggeration of its spatial extent [Hwang and 

Graham, 2014]; though, this research does not find a consistent trend between 

precipitation PBIAS and watershed area. However, errors that are greater during the 

validation period may be indicative of nonstationarity, as concluded by Salvi et al. 2016 

where visual inspection suggested nonstationarity in the U.S. Northeast in high 

population areas. Unfortunately, this research cannot confirm whether such errors are due 
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to nonstationarity or model biases due to the use of a relatively short calibration period 

(20 years) that is likely unable to capture multi-decadal variability. 

Projected peak annual flows are validated using USGS streamflow observations at 

the outlet of each selected watershed to test the goodness-of-fit of the GEV distributions 

developed from the WRF-Hydro simulated peak annual flows driven by NLDAS 

reanalysis data. This process ensures that the physically-based hydrologic model 

performs satisfactory in representing physical processes in the twenty selected watersheds 

in terms of their respective NSE and KGE values.  After forcing WRF-Hydro with the 

five NARCCAP datasets, model outputs of future streamflow indicate an increase in peak 

annual flows at all return intervals in the majority of the selected watersheds, excluding a 

number of northern watersheds that may be snow-dominated in which decreases are 

observed due the diminishing accumulation of snowpack.   

Previous literature has indicated that antecedent soil moisture has a larger 

influence than extreme precipitation on extreme flood events based on their finding that a 

99
th
 percentile precipitation event leads to a 99

th
 percentile discharge event 36% of the 

time, and suggests that increases in extreme precipitation may not always lead to increase 

in extreme discharges [Ivancic and Shaw, 2015].  These percentiles are defined for each 

watershed using their entire period of record, and employ a 5-day lag time for the 

watershed outlet to realize a heavy precipitation event.  It is reported that the temporal 

distribution of soil moisture more closely matches that of streamflow, rather than that of 

precipitation [Ivancic and Shaw, 2015].  This result aligns with the POT analysis of 

precipitation and streamflow included in this research since future climate and 

streamflow indicate seasonal differences in the influence of extreme precipitation on 



 

 44 

flood events (Figure 4-8).  For example, spring is generally known as the wettest season, 

thus the frequency of streamflow events is closely correlated with precipitation events of 

the same threshold (Figure 4-8).  The opposite is observed in the summer, generally 

known as a dry season, where decreases in summer precipitation leads to decreases in soil 

moisture, displays decreases in summer streamflow despite minimal change in the 

frequency of precipitation events (Figure 4-8).  This result is further corroborated by a 

study on snow-dominated watersheds in New York State, where 60% of peak annual 

flows are found to be correlated with moderate rainfall and very wet soil conditions 

[Shaw and Riha, 2011].  This relationship between streamflow and soil moisture is 

stronger in the northern watersheds than in the southern watersheds.  

The watersheds in this region also indicate the significance of a changing 

seasonality in projected changes in the magnitude of PAFs.  A number of watersheds 

show an increased correlation in the future period between PAF and peak annual 

precipitation than in the historical period, especially in the southern-most watersheds 

(Figure 4-7).  This may be indicative of the disappearance of snowpack storage or an 

increase in impervious surfaces within the watershed.  Increases in impervious surfaces 

lessen the influence of soil moisture on streamflow, thus providing an explanation for the 

southern watersheds exhibiting a weaker relationship between the two. 

The ClimDEX indices were able to identify that southern watersheds will 

experience a greater magnitude and more intense multi-day precipitation events than the 

northern watersheds.  In general, the more northern watersheds more often exhibit 

decreases or lesser increases in both total monthly precipitation and RX5DAY than the 

southern-most watersheds.  This reflects an increase in precipitation intensity in the 
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southern watersheds.  This observation coincides with that observed in the changes in 

PAF, where the more southern watersheds show greater increases in the magnitude of 

streamflow than the northern watersheds.  In terms of frequency, the winter streamflow 

POT analysis indicates greater increases in the northern watersheds than the southern 

watersheds; however, because the northern watersheds tend to have PAF occurring in the 

spring, this does not translate to increases in the magnitude of PAF at these watersheds. 

As noted by Ivancic and Shaw et al. 2015, increases winter streamflow POT may also be 

indicative of an increase in soil moisture; suggesting that precipitation in the subsequent 

seasons may lead to greater discharges despite a lack of increasing flood frequency in 

such seasons.  Although greater discharges may not be characterized as a flood (or peak 

annual flow) in the winter, the changing seasonality of such events may bring about a 

new set of challenges for managing resources and mitigation strategies.   

6 RECOMMENDATIONS & FUTURE WORK 

Although there may be uncertainties associated with the emissions scenario, the 

selected GCMs, the climate downscaling method, the hydrological model and its 

parameters, and natural internal climate variability, it is argued that the most uncertainty 

originates from the GCM structure [Kay et al., 2009].   Quantifying uncertainty is 

essential in ensuring accurate model results, and provides valuable insight in decision-

making and risk assessments.  Although this research does not attempt an uncertainty 

analysis, the projected changes in precipitation and flood events can still be made use of 

through bottom up decision scaling [Brown et al., 2012].  Once decision-makers and 

stakeholders identify vulnerable states of a system using relevant parameters to a 
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particular climate change problem or plan, such climate information or projected changes 

in extreme events can reveal and prioritize risk mitigation strategies.  

Future work should include quantifying uncertainty in the above-mentioned 

sources to further the understanding of GCM and downscaling uncertainty in the 

Northeast U.S. region [Wilby and Harris, 2006].  Additionally, some regions have 

suggested that the natural variability of the hydrological system may still be larger than 

that brought by climate change [Wilby and Harris, 2006; Kay et al., 2009; Sjerps et al., 

2017].  However, proper partitioning between variability and uncertainty will identify 

regions that are vulnerable to extreme events; whether it is from natural variability, or 

climate change.  In addition to furthering analyses on the model results, it is important to 

translate these changes in climate and streamflow to actionable science appropriate for 

stakeholders and policy making.  One approach to accomplishing this is incorporating 

these projected changes into a systems model, where future conditions can be tested 

against status quo to identify the most vulnerable states of the system to develop 

mitigation strategies.   
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APPENDIX A 

WRF-HYDRO CALIBRTION RESULTS 
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APPENDIX B 

EQUATIONS AND CODES

 

https://cran.r-project.org/web/packages/hydroGOF/hydroGOF.pdf 

 

 
https://cran.r-project.org/web/packages/hydroGOF/hydroGOF.pdf  
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APPENDIX C 

SUPPLEMENTARY RESULTS FIGURES 
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