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ABSTRACT 
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   Probabilistic graphical models like Bayesian Networks (BNs) are powerful artificial-

intelligence formalisms, with similarities to cognition and higher order reasoning in the 

human brain. These models have been, to great success, applied to several challenging real-

world applications. Use of these formalisms to a greater set of applications is impeded by 

the limitations of the currently used software-based implementations. New emerging-

technology based circuit paradigms which leverage physical equivalence, i.e., operating 

directly on probabilities vs. introducing layers of abstraction, promise orders of magnitude 

increase in performance and efficiency of BN implementations, enabling networks with 

millions of random variables. While majority of applications with small network size (100s 

of nodes) require only single digit precision for accurate results, applications with larger 

size (1000s to millions of nodes) require higher precision computation. We introduce a new 

BN integrated circuit fabric based on mixed-signal magneto-electric circuits which perform 



v 

probabilistic computations based on the principle of approximate computation. Precision 

scaling in this fabric is logarithmic in area vs. linear in prior directions. Results show 33x 

area benefit for a 0.001 precision compared to prior direction, while maintaining three 

orders of magnitude performance benefits vs. 100-core processor implementations. 
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CHAPTER 1 

 

INTRODUCTION 

The domain of artificial intelligence (AI) has seen tremendous growth of late, with 

new mathematical models being proposed and new areas of application being discovered 

frequently. Progress in this domain has been fueled by the steady growth in computational 

capabilities and distributed computing paradigms like GPUs. While this progress is 

projected to continue for several years, the underlying machinery pushing this growth is 

still implemented in software-based approaches over traditional computational 

architectures. The fact remains that the architecture over which these AI models are being 

implemented is largely incompatible to those models at a fundamental level. This 

fundamental incompatibility introduces inefficiency in the implementation of these models 

over software. As AI technology becomes more and more central to society, new 

architectures with fundamental compatibility with the AI models need to be realized to 

expand the scale of applications to which those models can be used. 

1.1 Bayesian Networks 

One of the leading approaches in AI research are Bayesian Networks (BNs). BNs 

are graph theoretical models which work on probabilities to enable reasoning under 

uncertainty. Several studies in neuroscience [3]-[6] suggest that cognition and higher order 

reasoning in the human brain may closely resemble Bayesian inference. The Bayesian 

Model has been successful in explaining several of the brain’s abilities as well as 

shortcomings [3] [5]. The use of BNs has also proven effective in many important real-

world applications [7]-[11] e.g., gene expression, medical diagnosis, text-classification, 
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troubleshooting, macro-finance, etc. The utility of BNs in these application domains is 

currently limited by the size of the networks which can be modeled in software. For some 

applications [7], modelling BNs with size in order of 1000s of variables requires super-

computer level computational power. It is hence evident that software based BN 

implementations lack the efficiency and performance required to scale to larger 

applications. This is because BN implementations in conventional processor architectures 

are limited by several major issues:  

(i) Software solutions involve multiple layers of abstraction to support a non-

deterministic framework like BNs; 

(ii) The Von-Neumann processor architecture inherently separates memory and 

computation introducing bottlenecks in accessing data; and  

(iii) Non-volatility requirements of cognitive applications are challenging to 

fulfill efficiently. 

It is hence evident that a new approach is required to enable applications of BNs at a larger 

scale. 

1.2 Previous Approaches to architecting with Physical Equivalence  

Research in device-level physics has led to the inventions of several emerging 

device technologies with unique properties. These unique properties.  Emerging 

technology [12] based implementations [13] [14] show great promise to achieve unique 

benefits that enable large BNs with potentially thousands to millions of nodes, with orders 

of magnitude efficiency improvements vs. state-of-the-art. For example, by utilizing a new 

style of mixed-signal magneto-electric computation based on physical equivalence at the 
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level of physical signals, which is a departure from traditional von Neumann computing 

paradigm, three orders of magnitude efficiency improvement is projected [14]. Although 

these new fabric architectures could enable large BNs, they do not scale well to higher 

resolutions. This is because, unlike the radix representation used in conventional digital 

designs, their flat linear representation (where a single probability value requires multiple 

physical signals) increases area linearly. For example, adding a digit of precision, i.e., 

increasing precision by tenfold, would increase area similarly by tenfold. This scaling is 

prohibitive for very large-scale BNs where precision would need to increase by several 

digits to support BN inference. 

1.3 Proposed Approach for Scalable BN Architecture at Nanoscale 

In this thesis, we propose a new magneto-electric BN fabric, which, while still 

operating on the principle of physical equivalence, provides an efficient framework of 

scaling computational resolution. The fabric uses non-volatile magneto-electric devices 

called Straintronic-Magnetic Tunneling Junctions (S-MTJs) [12], which operate at low 

powers and have low switching delays of ~1ns.  The work in this thesis involves 

introduction of a new hybrid way of representing probabilities and a new approximate 

circuit style to perform probabilistic computation at higher computational resolution. The 

approximate circuit style is inspired by the principles of approximate computation [15], 

wherein the non-critical components of a computation are omitted to obtain better 

efficiency. The error resilience of BNs toward arithmetic computations performed in 

Bayesian nodes [16],  enable us to use the approximate computation circuit style. Results 

show that the benefits of achieving higher resolution computation far exceed the loss in 
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accuracy incurred due to the use of approximate techniques. The loss in accuracy is also 

less of a factor in the quality of the Bayesian inference [16] [17], since the increased 

precision achieved by scaling enables the implementation of much larger BNs 

incorporating a larger number of random variables which are known to be the primary 

factors of determining accuracy at the application level.  The new fabric has 5x and 33x 

area reduction for computational resolutions of 0.01 and 0.001, respectively, as compared 

with previous emerging-technology paradigms, while it is projected to also maintain at 

least three orders of magnitude performance benefits over implementations on state of the 

art 100-core processors. 

Key contributions of this thesis include: 

(i) A new physically equivalent nanotechnology framework for cognitive 

computing applications. 

(ii) A new hybrid data representation scheme with built-in error resilience for 

encoding probabilities into magneto-electric devices with exponentially 

better resolution scalability compared to previous approaches. 

(iii) A new mixed-signal approximate computation circuit style to realize 

arithmetic operations at higher computational resolutions, enabling BN 

inference operations implemented using novel magneto-electric devices (S-

MTJs). 

(iv) Design of a reconfigurable parallel architecture based on the new scalable 

precision computational circuit style, consisting of distributed Bayesian 

computation cells, which can implement any arbitrary BN. 
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(v) Exhaustive evaluation of the impact of approximate computation circuit 

style on the error in arithmetic operations at higher resolutions. 

(vi) Comparative study of errors propagating in an example million-node BN 

structure between low-precision exact computation and higher-precision 

approximate computation. 

The rest of the thesis is organized as follows: 

- Chapter 2 presents a brief introduction to BN and provides and overview of 

previous attempts toward physically equivalent nanoscale cognitive computing 

architectures.   

- Chapter 3 shall discuss the core framework concepts, namely the S-MTJ device 

characteristics, the information representation scheme and the circuit 

framework for approximate computation. 

- Chapter 4 details the reconfigurable architecture building up on the circuit 

framework which enables mapping of arbitrary BNs into the fabric. 

- Chapter 5 discusses the proposed evaluation methodologies at circuit and 

architecture levels. 
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CHAPTER 2 

BACKGROUND 

2.1 Bayesian Networks overview 

BNs are probabilistic graphical models [1] [2], which capture the domain 

knowledge in a graphical structure. They belong to the set of the modern nature-inspired 

probabilistic graphical models, which have shown great promise in several critical 

applications. In BNs, the knowledge of the qualitative relations is encoded as probabilities, 

which enables these models to provide reasoning under uncertainty. BNs are typically 

structured as Directed Acyclic Graphs (DAGs), with the nodes representing knowledge 

about variables in the system. The edges of the graph are directed links which represent the 

dependencies. A directed link from one node to the other makes the former node the parent 

of the latter. Each node has several variables and each variable can have multiple states. 

For every node, the strength of the dependency of the child node on its parents is encoded 

in the conditional probability table (CPT). 

 
Figure 1 An intuitive example of a BN demonstrating its various elements. 

 

Rain

Wet Grass

Sprinkler

Slip

Node

EdgeS R P(WG|S,R)

T T 0.9

T F 0.7

F T 0.7

F F 0.2

CPT
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 Figure 1 shows an example BN. The directed arrows in the network encode the 

causal dependence between the nodes. For example, the probability of someone slipping 

on the grass is dependent on the grass being wet, which is in turn dependent on the sprinkler 

being on and on whether it rains. 

We shall now briefly discuss the technical terms involved in the inference process 

of a BN. To come up with a Bayesian model of an application, the hypothesis is expressed 

as a set of BN variables. The BN variables are assigned initial probabilities which can either 

be learnt from data or determined from expert knowledge.  BN inference is performed by 

calculating belief (the probability that a hypothesis is true based on observed evidence and 

state of CPT) through the process of belief update. Belief update is performed via the 

process of message propagation (likelihood and priors [1] [2]). Of the several algorithms 

used to perform belief update, we consider Pearl’s Belief Propagation algorithm [1] in this 

work.  

B

C D

λC(B)
λD(B)

λB(A)

A

πD(B)πC(B)

πB(A)

CPT(B|A) =

P(B=1|A=1)    P(B=1|A=2)   P(B=1|A=3)    P(B=1|A=4)

P(B=2|A=1)    P(B=2|A=2)   P(B=2|A=3)    P(B=2|A=4)

P(B=3|A=1)    P(B=3|A=2)   P(B=3|A=3)    P(B=4|A=4)

P(B=4|A=1)    P(B=4|A=2)   P(B=4|A=3)    P(B=4|A=4)

CPT(B|A) 

π(B) = [π1(B)   π2(B)   π3(B)   π4(B)] 

πB(A) = [πB1(A)   πB2(A)   πB3(A)   πB4(A)] 

λC(B) =

λC1(B)

λC2(B)

λC3(B)

λC4(B)

λ(B) =

λ1(B)

λ2(B)

λ3(B)

λ4(B)

λ(B)

π(B)

BEL(B)

BEL(B) = [BEL(B=1)   BEL(B=2)   BEL(B=3)   BEL(B=4)] 
(a) (b)

 
Figure 2. Formalizing BNs. (a) Portion of a typical BN with a node B, its parent node A 

and child nodes C and D; and (b) Various terminologies involved in obtaining inference 

for node B. 
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The Pearl’s Belief Propagation algorithm has several operations to be performed in 

each node – namely, likelihood estimation, prior support and belief update. These 

operations are now briefly discussed. Consider a typical BN node B with a parent node A 

and two children nodes C and D in Figure 2. The belief of the node B is denoted by BEL(B), 

the Likelihood and prior vectors are represented as λ(B) and π(B) respectively. The ⨂ 

operator represents matrix multiplication, and asterisk (*) represents element-wise 

multiplication.  

Likelihood and prior estimation for a node B are performed using messages from 

its child nodes (λC(B), λD(B)) and parent node (πB(A)) as follows:  

 

Eq. (2), upon expansion, has a sum-of-product form. The belief update for the node B is 

done as follows: 

𝑩𝑬𝑳(𝑩) = 𝛼𝝅(𝑩) ∗ 𝝀(𝑩) (3) 

Here, α is a normalization constant to ensure that the result is a probability. Finally, support 

messages to parent node (λB(A)) and child nodes (πC(B), πD(B)) are calculated as follows: 

 

 

 

 

These messages help these nodes to compute their own belief updates. We can observe that 

all the above operations can be implemented by addition and multiplication operations. The 

𝝀(𝑩) = 𝝀𝑪(𝑩) ∗ 𝝀𝑫(𝑩) (1)  

𝝅(𝑿) = 𝝅𝑿(𝑨)⨂ 𝑪𝑷𝑻(𝑩|𝑨) (2)  

𝝀𝑩(𝑨) = 𝑪𝑷𝑻(𝑩|𝑨)⨂𝝀(𝑩), (4) 

𝝅𝑪(𝑩) =  𝛼𝝅(𝑿) ∗ 𝝀𝑫(𝑩), 𝑎𝑛𝑑 

𝝅𝑫(𝑩) =  𝛼𝝅(𝑩) ∗ 𝝀𝑪(𝑩). 

(5) 
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proposed fabric hence encodes probabilities into fundamental circuit elements and 

implements addition, multiplication and add-multiply operations, enabling implementation 

of all the above Bayesian operations for Pearl’s belief propagation algorithm in the fabric. 

2.2 Previous Directions 

The direction of using novel magneto-electric device based fabrics to design 

physically-equivalent architectures for cognitive computing applications is not new. Solid 

foundations were laid previously in this direction by some works. In [13] [14], a magneto-

electric circuit based fabric was proposed, which performed Bayesian inference, by 

encoding probabilities, without any layers of abstractions, into device states using a flat 

representation scheme. Mixed-signal circuit elements performed computations with 

limited computational resolution of 0.1. This limited resolution proved sufficient for 

several real-world applications [17]. Circuit evaluations and behavioral simulations 

estimated area, performance and power-efficiency benefits many orders of magnitude 

greater than inference on state of the art 100 core processors. This speedup and efficiency 

meant that previously infeasible application sizes could now be implemented on this 

framework to yield results in a reasonable timeframe.   

However, higher order error propagation studies performed on those architectures, 

where million-node networks were simulated, showed that the results obtained had errors 

high enough to make them unreliable. It was hence evident that, in million-mode networks, 

to obtain results within the generally-accepted precision of 0.1, the actual computations 

would be needed to be done at higher computational resolutions. The flat information 

representation scheme scaled poorly with computational resolution – for example - while 
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a 0.1 resolution employed 10 devices per variable, a 0.01 resolution would require 100 

devices per variable; translating to a 10x increase in area and power.  It is hence evident 

that a new fabric architecture with better scaling of computational precision would greatly 

increase the scope and utility of these directions in cognitive computing applications. 
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CHAPTER 3 

 

CORE FRAMEWORK CONCEPTS 

The framework builds on the concept of physical equivalence – the probabilities in 

the BN are encoded in an information representation scheme, which is implemented in a 

mixed signal magneto-electric circuit style. Efficient scalability of computational 

resolution is achieved by selective use of approximate computation. The computation 

circuits are designed such that the inaccuracies incurred by using approximate computing 

have a much lower impact than the increase in accuracy due to performing computation at 

a higher resolution. 

3.1 Information Representation Scheme 

Conventionally, information in digital circuits has been represented in a radix 

format. This style performs well in all digital circuits, and provides for an efficient way to 

scale precision. However, when we consider radix representation for mixed-signal 

architectures, which employ analog domain to perform computations, and rely on devices 

that are stochastic switches with much lower reliability than MOS counterparts, the lack of 

error resilience is prohibitive. This is since any single bit error would make an entire 

computation potentially useless. 

An alternative approach, considered in [13] [14], involves a flat information 

representation scheme, which is more suitable for mixed signal architectures. This 

approach assigns the same ‘weight’ to each digit in the representation and the value 

represented is simply the sum of the values in the individual digits. Although this provides 
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error resilience and can perform efficient analog computations, scaling to higher 

computational resolutions is very inefficient. 

We propose a more generalized information representation scheme, which 

combines the scalability of the radix representation and the error resilience of the flat 

representation. This new ‘Flat-Radix’ representation consists of M segments in a radix 

arrangement with n elements each in a flat arrangement as shown in Figure 3. Within a 

single segment, all the flat elements fi contribute equally toward the value of the segment, 

making it error resilient. A segment SJ represents a value equal to the sum of all the flat 

elements fi in the segment. Because of the radix nature of the segments, a segment SJ has a 

value n times the value of segment SJ+1, providing efficient scalability. The probability is 

represented by the segments arranged in a radix format with base n. This new 

representation opens a spectrum of possible representation states with flat representation 

at one end (M=1) and radix representation at the other (n=1). This vast range of possible 

configurations is attractive as the representation scheme could be potentially tailored to 

match the application precision requirement.  

f0 f1 fn-1fi   {0,1}   f0 f1 fn-1
  f0 f1 fn-1

    

Probability

Radix Segment

Flat Element

Computational Resolution =
 

Figure 3. Flat-Radix information representation scheme. Probability is encoded in 

segments which are in a radix arrangement, with each segment containing flat elements. 

The equivalent probability encoding and the computational resolution obtained are also 

listed. 
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Consider an example configuration of the scheme with n=10 and M=2. This 

corresponds to a representation with two segments in a radix representation with each 

containing 10 flat elements. The effective computational resolution of this configuration is 

0.01. Now if we change M to 3, the configuration now has an effective resolution of 0.001. 

This corresponds to an exponential increase in computational resolution with linear 

increase in number of devices. It is important to note however, that some of the 

computations performed are approximate in nature and the increase in computational 

resolution doesn’t directly translate to increased accuracy in computation. This 

phenomenon is discussed in detail in further sections. 

3.2 Technology Overview: Straintronic MTJs 

The work utilizes Straintronic Magnetic Tunnel Junctions (S-MTJs) [12] as the 

underlying physical device for hardware implementation. It is to be noted, though, that the 

information representation scheme discussed earlier can be realized using any other non-

volatile technology. The work also assumes that the devices have two stable states, but the 

proposed scheme works for multistate devices as well as infinite persistence-state devices 

like the memristor. In the case of an ideal infinite persistence-state device, the information 

representation scheme shall collapse into a single element, which can store probability 

values with arbitrary precision. 
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The concept of straintronics, where the bi-stable magnetization of a shape 

anisotropic multiferroic nanomagnet is switched with electrically generated mechanical 

strain, is attractive due to its extreme low energy of switching. A S-MTJ device consists of 

three layers – a “hard” ferromagnetic layer with a fixed magnetization orientation, an 

ultrathin spacer layer, and a "soft" ferromagnetic layer with variable magnetization 

orientation. 

 The device configurations are shown in Figure 4. The S-MTJ has two device 

variants, namely the Volatile and Non-Volatile S-MTJ. In the Volatile S-MTJ, the soft and 

hard layers are naturally aligned into anti-parallel state. A voltage induced strain changes 

the magnetization of the soft layer, changing the resistance of the device. In the Non-

 
Figure 4. Device configurations (recreated with permission from [13]). (a) 

Volatile S-MTJ. Application of a voltage generates a strain in the soft-layer, 

modifying the electrical resistance; (b) Non-Volatile S-MTJ.  Functioning similar 

to Volatile S-MTJ, but has two pairs of electrodes between which the magnetic 

orientation flips.   
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Volatile S-MTJ, the soft layer is constrained to be in two states by using two pairs of 

electrodes. If left in one of these states, the magnetization remains in that orientation 

indefinitely, which makes the device non-volatile. The orientation is switched by applying 

a voltage induced strain on the soft layer. Although the work considers two stable states, 

the number of sable states can be changed by changing the cross-sectional shape of the 

device. 

Figure 5 details the schematic, DC charateristics and the switching delay 

simulations of both the Volatile and Non-Volatile S-MTJs. The hysteresis loop of the Non-

volatile S-MTJs is characteristic of its persistence. The switching delay graphs show that 

both devices are capable of sub-nanosecond switching times with proper applied voltage. 

 
Figure 5. (a) Schematic of Volatile S-MTJ; (b) Simulated DC Characteristics of 

Volatile S-MTJ; (c) Simulated switching delay of Volatile S-MTJ; (d) Schematic 

of a Non-Volatile S-MTJ; (e) Simulated DC Characteristics of Non-Volatile S-

SMTJs; (f) Simulated switching delay of Non-Volatile S-MTJs. (recreated with 

permission from[13]) 
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3.3 Probability Representation based on S-MTJs 

We shall now discuss how the flat-radix information representation scheme is 

implemented using the S-MTJ devices. Each flat element in each of the segment of the 

flat-radix probability representation is encoded in the Non-Volatile S-MTJ. Assuming 

two stable states, this translates to High resistance state encoding 0 and low resistance 

state encoding 1.  

 

This concept is represented diagrammatically in Figure 6. The voltage Vin can 

control the resistance state of the device. A reference voltage Vref is applied to read out the 

resistance state RS_MTJ of the device, resulting in output current Iout.  Building on this 

concept, the segments can be composed of an array of these flat elements. Each element in 

the segment can be provided with the same Vref and their individual resistance states are 

controlled by the individual input voltages. The currents from the flat elements are then 

summed together  the segments can be arranged in a radix format to come up with segment-

 
Figure 6. A flat element represented by a Non-Volatile MTJ. 
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level representations of the probability. These segments arranged in a radix structure 

complete the flat-radix probability representation.  

Figure 7 shows how the flat-radix probability encoding process using the S-MTJ 

devices. The total probability P is interpreted by considering the segments in a radix 

arrangement. The base of this radix structure is based on the number of flat elements in 

each segment. 

Although the representation has radix segments, the computations remain atomic 

to the flat portions, as there is no notion of radices when computing in analog domain. 

Using approximate computing when required, we design circuits that bring together the 

flat computations into a radix representation. The approximate computing techniques 

(discussed in further subsections) have a lower error bound; the inaccuracies in 

computation can never be greater than the computations in a representation with a single 

radix segment (i.e., M=1). This case occurs when all the radix segments except the first one 

have value of 0 and essentially get excluded from the computation. 

 

 
Figure 7. Physically equivalent encoding of probability using the proposed information 

representation scheme into S-MTJ circuits. 
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3.4 Segment-Level Circuit Framework 

The flat-radix representation scheme provides a natural way to encode probabilities 

and in the process, enables unique ways to perform computation. In this architecture, the 

computation operations like addition and multiplication are consequences of circuit design, 

in contrast to traditional computation schemes in which there are complex arithmetic units 

dedicated to perform these computations. The addition operation is performed by the 

simple summation of currents by the Kirchhoff’s current law and the multiplication is 

performed through the application of the Ohm’s law.  The computation circuits start from 

simple adder and multiplier circuits operating on individual flat segments and a hierarchical 

encapsulation of these circuits performs higher order functionality, i.e., the flat-radix 

adders and multipliers.  

The computational elements operating on flat segments are primarily composed of 

two components: 

(i) a composer which converts input data stored in from of resistances of the 

S-MTJs in current domain and performs the computation on the current; 

and  

(ii) a decomposer which converts the computed result back into the format 

which can be stored into the S-MTJs. The composer circuits are discussed 

first and the decomposer will be described later.  

The design of these circuits is based on the arithmetic composer circuits discussed 

in [13][14]. The segment-level composers, to some extent, resemble the flat composers 

mentioned in earlier works. 
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Figure 8 shows a schematic of a segment-level addition composer. Current addition 

can be implemented by using a parallel configuration of individual segment composers. In 

a manner, similar to how the currents in individual segments is summed together, the 

current outputs of the two segments is summed together. The individual current 

summations of the two segments are shorted together to obtain the current addition between 

segments. To convert the output from current domain to voltage domain, a load resistor is 

used. The obtained voltage Vout is hence proportional to the addition of the input two 

segments. This obtained voltage is passed on further to either further segment-level 

composer circuits. For the sake of brevity, the addition segment-level composer is 

henceforth referred to as the addition SLC. 

 
Figure 8. Schematic of a segment-level addition composer. Vout is proportional 

to the sum of input currents. 

 



 

 20 

Figure 9 shows a schematic of the multiplication segment-level composer. In this 

setup, the current output from one of the input segment is converted to voltage domain 

using load resistance as discussed in the addition SLC circuit. This voltage is then fed to a 

voltage adjustment circuit, which is principally an amplifier. This circuit is configured to 

provide a voltage output equal to Vref when it receives a voltage input corresponding to the 

maximum value of the segment, i.e., when all elements in the segment are in state 

corresponding to 1 or logic ‘high’. All other segment configurations have a proportionately 

lower voltage outputs. This amplified (or adjusted) voltage is then applied as the reference 

voltage to the second input segment. This setup results in a final output current which is 

proportional to the product of the two input segments. This current is converted into voltage 

domain by another load resistor. For the sake of brevity, the multiplication segment-level 

composer is abbreviated as multiplication SLC. 

 

 
Figure 9. Schematic of the multiplication segment-level composer. Vout is 

proportional to the product of input segments. 
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Figure 10 shows the schematic of the add-multiply segment-level composer. Each 

product term implemented with a multiplication SLC is arranged in a topology of addition 

SLC. It is a hierarchical combination of the addition and multiplication SLCs. The 

multiplication SLCs are the ‘internal’ composer, i.e., the two multiplications occur in the 

first stage. The outputs of these are then summed together by the ‘external’ addition 

composer. The resulting output is proportional to the sum-of-product of the inputs.  

These segment-level composers form the building blocks of flat-radix composer 

which perform the higher-resolution computations. This follows the convolutional 

hierarchical trend of increasing complexity, while the fundamental computation still occurs 

on probability values. The addition flat-radix composer and the multiplication flat-radix 

composer are hierarchical combination of the addition SLC, multiplication SLC and the 

add-multiply SLC. The add-multiply flat-radix composer, going higher up the level of 

hierarchy, builds on multiplication flat-radix composers and addition flat-radix composers. 

 

 

 
Figure 10. Schematic of the add-multiply segment-level composer, a hierarchical 

combination of the addition and multiplication SLCs which implements a sum-of-products 

operation. 
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To summarize: 

(i) Segment level composer circuits are the fundamental computation units; 

higher order operations are performed by cascaded version of these circuits.  

(ii) Segment-level information is condensed to currents to perform 

computations  

 

Figure 11 shows a schematic of the carry circuit used in flat-radix composers. In 

any radix-based information representation scheme, there is a notion of an order of 

individual segments, and that of carry propagation between them. The flat-radix composers 

are made using a combination of multiple SLCs and the carry circuits communicate the 

carry generated in lower order SLC to higher order SLC. With all the required components 

detailed, we shall now discuss the flat-radix composer circuits.  

 
Figure 11. Carry circuit which detects carry generation in a lower 

order SLC and transfers it to higher order SLC. 
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3.5 Flat-Radix Addition Circuit Design 

Consider two probabilities A and B, represented in the flat-radix scheme as 

follows: 

𝐴 = (
1

𝑛
) 𝑆0

𝐴 + (
1

𝑛2
) 𝑆1

𝐴 + ⋯ + (
1

𝑛𝑀
) 𝑆𝑀−1

𝐴                (6) 

 

 

𝐵 = (
1

𝑛
) 𝑆0

𝐵 + (
1

𝑛2
) 𝑆1

𝐵 + ⋯ + (
1

𝑛𝑀
) 𝑆𝑀−1

𝐵               (7) 

 

 

The addition operation in the new representation scheme is done using the following 

formula: 

(
1

𝑛
) (𝑆0

𝐴 + 𝑆0
𝐵 + 𝑐𝑎𝑟𝑟𝑦1) + (

1

𝑛2
) (𝑆1

𝐴+𝑆1
𝐵 + 𝑐𝑎𝑟𝑟𝑦2) + ⋯

+ (
1

𝑛𝑀
) (𝑆𝑀−1

𝐴 +𝑆𝑀−1
𝐵 )                                                                         (8) 

In implementing the above formula in-circuit, each individual addition term is computed 

in its own segment using the addition SLC, while the carry generated by a segment is 

propagated to the segment one order higher, using the previously described carry circuit. 

𝐴 + 𝐵 = 
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Figure 12 shows the circuit schematic of the addition flat-radix composer. This 

design makes it very efficient to scale to higher resolution just by adding more segments 

to the hybrid representation. This implementation is an exact expression of addition 

formula hence the calculations have no approximation involved. This accuracy is achieved 

because in an addition operation, the causality flows strictly in one direction (lower-order 

to higher-order) in the form of carry; i.e., a lower order term may affect the result of a 

higher order calculation (through carry), but a higher order term cannot affect the result of 

a lower order calculation. For brevity, the flat-radix composers shall henceforth be referred 

to as FRCs. 

3.6 Flat-Radix Approximate Multiplication Circuit Design 

The flat-radix computation scheme utilizes approximate computation techniques in 

the FRC multiplier. Consider the sum-of-segments form of probabilities A and B from 

equations (6) and (7). A multiplication operation between these would be: 

 

 
Figure 12. Addition flat-radix composer, comprising of several addition SLCs and 

carry circuits. 
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((
1

𝑛
) 𝑆0

𝐴 + (
1

𝑛2
) 𝑆1

𝐴 + ⋯ + (
1

𝑛𝑀
) 𝑆𝑀−1

𝐴 ) . ((
1

𝑛
) 𝑆0

𝐵 + (
1

𝑛2
) 𝑆1

𝐵 + ⋯ + (
1

𝑛𝑀
) 𝑆𝑀−1

𝐵 )   (9) 

 Upon expanding equation (9), we end up with a much higher number of terms; in 

this case, a multiplication of two probabilities with m terms each would result in m2 terms. 

The error resilient nature of BNs [17], whose quality of inference is dependent more on the 

graph structure and random variable selection than the accuracy of the arithmetic 

operations, enable us to optimize the design of the multiplier circuit. To optimize the 

circuit, we include only the top m contributing terms of the expansion. The effect of 

performing this optimization on the accuracy of the multiplier circuit is discussed in the 

evaluation chapter. Using this optimization process, we design an approximate 

multiplication formula which maximizes efficiency while attempting to minimize 

approximation error: 

𝐴. 𝐵 = (
1

𝑛
) (𝑆0

𝐴. 𝑆0
𝐵 + 𝑐𝑎𝑟𝑟𝑦1) + (

1

𝑛2) (𝑆0
𝐴. 𝑆1

𝐵 + 𝑆1
𝐴. 𝑆0

𝐵 + 𝑐𝑎𝑟𝑟𝑦2) + ⋯ +

(
1

𝑛2) (𝑆0
𝐴. 𝑆𝑀−1

𝐵 +

 
 

Figure 13. Multiplication FRC made up of one multiplication SLC and several Add-

Multiply SLCs and carry circuits 

 

𝐴. 𝐵 = 
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𝑆𝑀−1
𝐴 . 𝑆0

𝐵)PA.PB=PAH+PAL.PBH+PBL=(PAHPBH)+(PAHPBL+PBHPAL)+(PALPBL

)                                                                                 (10) 

 

Figure 13 shows the circuit diagram implementation of equation (10). This 

formulation is approximate, as it omits the equation terms, which contribute the least to the 

end-result. These terms are the results of partial multiplications of lower order segments. 

The omission of these terms is an optimization, resulting from the application of the 

concept of approximate computing in this case. This approximate multiplier has the worst-

case performance when all the segments except the highest order one are zero. In this worst-

case, the FRC performs equally to a flat representation with an equivalent of a single SLC. 

Exhaustive MATLAB simulations, discussed in evaluation section suggest that 

including additional segment-level computation terms to equation 10 yield no significant 

improvement to the accuracy of the approximate computation scheme. 
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3.7 Flat-Radix Approximate Add-Multiply Circuit Design 

 

Following the trend of hierarchical arrangement to make more complicated circuits, 

the add-multiply FRC is composed of two Multiplication FRCs and a Addition FRC. The 

individual segments from each of the multiplication FRCs corresponding to the same radix 

order are added together by ‘plugging in’ to the input of the FRC adder’s corresponding 

order of radix segment. The equations corresponding to these computations are shown in 

Figure 14.  

These circuits perform two parts of the computation process, viz., taking in digital 

signals and composing them into analog currents, and performing computation on those 

currents to achieve basic probability arithmetic. To complete the architecture, we need 

decomposers to convert the obtained analog result into digital, non-volatile S-MTJ states. 

This is done using the decomposer circuits. 

 
Figure 14. Add-Multiply FRC made from a hierarchical combination of 

Multiplication FRC and Addition FRC 
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3.8 Decomposer Circuit Design 

The final aspect of the circuit-level design of this fabric is the decomposer circuit, 

which converts the computed results back to the flat-radix format at segment level for 

further computations. This circuit is designed for devices with two states. The basic design 

of the segment-level decomposer uses a R-2R ladder circuit commonly used to convert 

continuous voltages in discrete states. The voltage VIN is compared in several steps to Vctl 

using MTJ-based comparators shown in Figure 15, where each comparator from top to 

bottom compares VIN with increasingly smaller fractions of Vctl, which is set to be equal to 

the voltage that corresponds to all the flat elements of a segment being high. Hence, the 

number of comparators, which output ‘high’ will be proportional to the ratio of VIN to Vctl. 

All the segments sans the first can have a maximum value equal to twice the max capacity 

of a single segment. To correctly decompose values greater than Vctl we design a carry-

 
Figure 15. Segment-level Decomposer schematic. 
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based mechanism to switch the comparator voltage levels as shown in Figure 15. The carry 

signal is generated by the carry circuits mentioned earlier. The carry signal, if high, changes 

the comparator voltage levels appropriately. 

To summarize, we have now designed a scalable precision, non-volatile, S-MTJ 

based, flat-radix, mixed-signal computation framework with approximate computing. The 

creation of a reconfigurable BN architecture using this computation framework shall now 

be discussed in the next chapter. 
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CHAPTER 4 

SCALABLE PRECISION MAGNETO-ELECTRIC ARCHITECTURE FOR 

BAYESIAN INFERENCE 

 

In this chapter, we discuss the realization of the Bayesian inference procedure based 

on Pearl’s belief propagation algorithm was described in the chapter 2, using the scalable 

precision magneto-electric computation framework discussed in chapter 3. The proposed 

architecture supports up to 4 random variables per Bayesian node. The architecture will be 

structured as follows: 

(i) 5 Bayesian computation units are designed using FRC composer 

circuits. 

(ii) The Bayesian cell, which is a hierarchical combination of the 5 

Bayesian computation units, is designed, which functions as a 

programmable node in a BN. 

(iii) An FPGA-style programmable switchbox cell is designed to 

perform as the edges of connectivity in a BN. 

(iv) A uniform array of the Bayesian Cells and the switchboxes forms 

the overall architecture. 

These architectural components are now discussed in detail, starting from the bottom-most 

all the way up to the top. 
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4.1 Bayesian Computation Units  

Continuing the path of hierarchical combination of circuits, we design 5 

computation units, each implementing equations (1) -(5), discussed in chapter 2, on the 

probabilities in Flat-Radix representation using combination of several FRCs, discussed 

in chapter 3. 

Consider, for example, the belief update operation in Bayesian inference. It 

comprises of 4 multiplication operations, one for each of the 4 supported random variables 

per node. The computations are performed by Multiplication FRC circuits.  Figure 16 

shows a simplistic overview of the arrangement. Similar computation units are designed 

for all the remaining 4 computation operations required by the Bayesian node using the 

FRC circuits. 

 

 
Figure 16.  One of the 5 computation units of a Bayesian Cell - the ‘Belief 

Update’ computation unit, comprising of 4 Multiplication FRCs 
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4.2 Bayesian Cell and Programmable Switchboxes 

 

Figure 17 shows how all the 5 computation units operate together to function as a 

Bayesian Cell. Briefly, the computations occurring in the Bayesian cell are as follows: 

(i) Likelihood computation is using the diagnostic support from children 

nodes; 

(ii) Priors are computed using prior support from parent node; 

(iii) Computed Likelihood and Priors are used to perform belief update; 

(iv) Computed Likelihood is used to provide diagnostic support to Parent 

node; and  

 
Figure 17. Block diagram view of a Bayesian Cell, a hierarchical combination of the 5 

computation units which perform all the calculations required in a Bayesian node for 

inference. 
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(v) Computed Belief is used to provide prior support to children nodes. 

Each of these operations takes place in each Bayesian cell, while the messages 

required for these computations are passed between nodes through programmable 

switchboxes.  

Figure 18 shows the schematic of a programmable switchbox. The design of this 

switchbox is similar to the ones commonly used in FPGA architectures. The messages 

through the network are sets of probability vectors associated with diagnostic support for 

bottom-up and prior support for top-down messages and the propagation supported is 

through switch-boxes. In our example, if each node supports 4 states, then each of these 

messages contains 4 sets of probability vectors. Thus, each switch-box has to accommodate 

sufficient switch-points to allow transmission of all the elements of probability vector sets 

in parallel. 

 
Figure 18. Schematic of a programmable switchbox 
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4.3 Hierarchical Summary of Overall Architecture 

With all the elements of the architecture described, we shall now provide a top-

down summary to visualize all the architectural elements into a single framework.  

BNs are mapped into the reconfigurable fabric made up of Bayesian Cells as nodes 

and Switchboxes as edges. Switchboxes are FPGA-styled connection mechanisms 

facilitating connectivity between Bayesian Cells. The connections are made possible by 

cross points between the north-south and east-west wires, with programmable switch 

points. Bayesian Cells are made from 5 Bayesian computation units, each performing one 

of the 5 computations essential for the Pearl’s belief propagation algorithm. Figure 19 

shows one such Bayesian computation unit, which is the one performing belief update 

computation. Bayesian computation units are combinations of the flat-radix composer 

circuits. The flat-radix composer circuits are combinations of segment-level composer and 

 
 

 

Figure 19. All the architectural elements summarized into a single framework. 
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decomposer circuits. The belief update computation unit comprises of multiplication FRCs 

as the belief update computation is a multiplication operation. The FRC are hierarchical 

combinations of the SLCs. The multiplication FRC is made up of a combination of 

multiplication SLC and add-multiply SLC. SLC are based on the S-MTJ devices, which 

compose probabilities encoded in resistance states to currents which are then used for 

computation. 

While there are several levels of hierarchy, the computations that occur are still 

directly on probabilities, tied to the physical level. The hierarchy introduces complexity of 

design, without introducing the performance loss which is commonly associated with 

digital systems which have layers of abstraction accompanying the layers of hierarchy. 

Hence, the proposed architecture manages the same level of level of complexity in 

operation (although only for a single application) as the digital, von Neumann counterpart, 

but does that without the overhead associated with adding layers of abstraction.  

 

 

 

 

 

 

 

 

 

 



 

 36 

CHAPTER 5 

EVALUATION 

We shall now discuss the evaluation methodologies used to validate the circuit 

designs of all the elements of the architecture. The MTJ devices central to this 

computational framework are known to exhibit certain switching error. The impact of the 

stochastic nature of the switching of the MTJs on the result of the computations was studied 

in [13]. It is shown that, due to the error resilient nature of the flat representation scheme, 

which is utilized by the flat-radix scheme used in this work within each flat segment, the 

inaccuracies related to errors in the arithmetic operations far exceed the errors due to the 

switching errors due to the MTJs. In both cases the errors are gracefully tolerated, due to 

carefully designed information representation schemes. The chapter is arranged as follows: 

(i) S-MTJ HSPICE Macromodel 

(ii) Segment level circuit simulation in HSPICE 

(iii) Area, power and performance estimation of proposed architecture along 

with comparisons to previous works. 

(iv) Exhaustive error evaluation for FRC circuits 

(v) Higher-level simulation for error propagation comparison between 

previous work and proposed work. 

5.1 S-MTJ HSPICE Macromodel 

To evaluate the proposed circuit framework in HSPICE, we develop HSPICE 

behavioral device macromodel of the S-MTJ. This model was developed in conjunction 

with the VCU group[12].  
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The S-MTJ characteristics are shown in Figure 20. HSPICE offer several 

behavioral constructs to model these characteristics such as voltage/current controlled 

sources. For modelling S-MTJs, voltage controlled resistors (VCRs) are used. Two such 

VCRs were used, one to model switching behavior from low resistance to high resistance 

state, and another for modelling switching behavior from high resistance state to low 

resistance state. Each VCR is connected in series with ideal switches; only one of them is 

active at a time, and the active switch selects the VCR for the given operating condition. 

The decision logic takes the current inputs and previous state of device (stored in flip-flop) 

and determines the new state of the device. To model the switching delay, custom voltage-

 
Figure 20. Simulated DC characteristics for S-MTJ[12]. (a) Resistance vs. input 

voltage showing two stable resistance states and switching threshold voltages; and 

(b) Switching delay vs. input voltage. 
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controlled delay elements were inserted, which comprised of voltage-controlled current 

sources(VCCS) and capacitances.   

Figure 21 shows the S-MTJ device micromodel schematic. The macromodel is used to 

validate the functionality of the computation circuits and to estimate the area, power and 

performance metrics of the proposed architecture. 

5.2 Segment Level Circuit Simulation in HSPICE 

We discuss the functionality of the segment-level composer circuits and validate 

segment-level computation and decomposer circuits.  

 

 
Figure 21. HSPICE behavioral macromodel describing S-MTJ device 

characteristics for circuit simulation. 
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In Figure 22, the linear trend of the voltage which follows the expected probability 

segment value it is meant to represent indicates expected computational behavior of the 

circuits. The simulations validate all possible segment-level input combinations to all the 

circuits. The CMOS support circuitry is designed assuming 45nm technology node. The 

simulations also yield the power, delay and area data which is used to estimate these 

parameters for larger circuits like the Bayesian Cell. These metrics are discussed in the 

next subsection. 

 

 

  

 
Figure 22. Segment-level circuit validation with HSPICE for Addition. 

Multiplication, Add-multiply computation, and decomposer circuits. 
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5.3 Area, Power and Performance 

 

Table 1 shows the area, power and delay values for flat-radix architecture schemes 

with computational resolutions from 0.1 (1 segment) to 0.0001 (4 segments). The results 

suggest up to 30x area and power benefits of this architecture over previous approaches[14] 

for a computational resolution of 0.01. The area and power benefits vs. these approaches 

grow exponentially with resolution. 

In [14], the performance of a physically equivalent magneto-electric Bayesian 

inference system (with a computational resolution of 0.1) was compared with a 100-core 

processor assuming best-case idealized processor performance. This comparison yielded a 

6,000x performance benefit for Bayesian inference over the 100-core processor. For the 

same resolution, assuming a flat organization with one segment, the delay characteristics 

of the circuit framework described in this paper matches that of  [14], and hence similar 

performance relative to 100-core processors is expected.    

Metrics (Worst case) Resolution MUL ADDMUL OPAMPs Decomposers 

Area(µm2) 0.1 5 17 95.4 240 

0.01 21 42 190.8 480 

0.001 39 78 286.2 720 

0.0001 56 112 381.6 960 

Power(µW) 0.1 1.15 2.81 89.32 11.37 

0.01 3.96 7.92 178.64 22.74 

0.001 6.77 13.54 267.96 34.11 

0.0001 9.58 19.16 357.28 45.48 

Delay(ns) 0.1 144 137 100 132.9 

0.01 144 144 100 132.9 

0.001 144 144 100 132.9 

0.0001 144 144 100 132.9 

Table 1. The area, power and delay of FRCs and other circuit components for 

various computational resolutions. 

 



 

 41 

For a precision of 0.001, on the other hand, combining three flat segments into a 

10-3 flat-radix magneto-electric framework (10 MTJs for encoding a probability, in each 

of the three radix segments), this architecture could still maintain a 2,000x benefit while 

the original architecture would have lost most of its performance, power, and area 

advantages. A further 1,000x improvement (i.e., a 0.000001) in precision would require 6 

segments arrangement and would maintain a 1,000x improvement. Any single error in a 

segment would affect that segment by a tenth of a precision. A higher error resiliency may 

combine 100 MTJs in each segment: e.g., a 100-6 encoding would yield an even more 

graceful degradation would an error occur in any segment due to say an MTJ not switching 

correctly, for a 10x additional area impact (and 10x additional precision). The overall 

computational error would depend on the segment position in a radix, but highest error 

would occur when highest segment (in radix order) is affected. This calculation does not 

yet account for any approximate calculations that will be discussed below. 

5.4 Approximation Errors in FRCs 

We shall now observe the accuracy tradeoffs of the flat-radix approach vs. the flat 

scaling implemented in [14] by comparing the accuracy performance. These comparisons 

are done by generating behavioral models of the multiplication composers in MATLAB, 

as exhaustive hardware simulations in HSPICE are infeasible to be done in reasonable time 

and have convergence issues due to large number of devices and input combinations 

involved. These exhaustive simulations considered all possible input combinations in each 

case.  

 



 

 42 

Figure 23 contains two plots that compare the multiplication operation with scaled 

flat[13][14] and flat-radix approaches, with 0.01 and 0.001 resolution respectively. The 

plots were generated by calculating the results for all possible input combinations. From 

the plots, it is evident that the substantial savings in area and power (5x for 0.01 and 30x 

for 0.001) are obtained by the flat-radix approach.  

 
Figure 23. The computational accuracy of Multiplication FRCs with precision 0.01 

(10-2 flat-radix with 20 devices per probability) in (a) and 0.001 (10-3 flat-radix with 

30 devices per probability) in (b) as compared to the accuracy of 0.01 precision flat-

only scheme with 100 devices per probability, and 0.001 flat-only scheme with 1000 

devices per probability, respectively. The regions highlighted in red indicate the 

maximum error of 0.1 due to the approximate nature of the computations. The plot 

displays the outputs for all possible input combinations sorted in ascending order. 

 

 
Computational Resolution No. of devices Mean error Error 

variance 

Max. 

Error 

% Input combinations 

with max error 

0.1(Previous work) 10 0.065 0.006 0.1 10% 

0.01 20 0.027 0.000097 0.1 0.01% 

0.001 30 0.0037 0.000023 0.1 0.00001% 

Table 2. Precision comparison between low resolution accurate computation and 

higher resolution approximate computation. 
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 With a 2x and 3x increase in number of devices, computations at higher 

resolutions, although approximate, yield lower mean errors (~2.4x and ~17x) and orders of 

magnitude lower error variance (~61x and ~260x) as shown in Table II.  The plot also 

shows where the new computation system has the highest error of 0.1 (highlighted in red) 

for precision levels. Although the approximate computation scheme has a worst-case error 

of 0.1, at higher precision levels, the percentage of input combinations that lead to the 

maximum error is very low (0.01% and 0.00001%). MATLAB simulations suggest 

accuracy benefit is obtained by including additional intermediate terms to the computation. 

In case of 10-5 configuration (5 segments with 10 elements each), with effective resolution 

of 0.00001, the mean error without intermediate terms is 0.00039 and the mean error 

without those terms is 0.00037.  

Furthermore, in the context of Bayesian inference, it has been shown that the quality 

of inference of a BN depends primarily on the structure of the graph and the number of 

random variables captured accurately, while the numerical precision required in the 

arithmetic computations plays a secondary role [17]. Although the computation scheme 

described in this paper has a maximum error of 0.1, even for higher resolutions, the 

infrequent occurrence of the high error case is unlikely to affect the outcome of the BN 

inference; also at the application level accuracy is considered as the likelihood of correct 

prediction in a belief across a large input measurement set vs. individual inference. On the 

other hand, the increased precision obtained, along with significantly lower mean error and 

error variance, will allow for much larger BNs to be implemented in this architecture at a 

low area cost.  
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5.5 High-level Error-propagation simulation 

We observe that the approximate nature of computation provides with results 

accurate enough for BN applications at a circuit level, while achieving significant area 

benefits. The error resilience of the proposed fabric needs to be validated over large 

networks, wherein small errors rend to accumulate over several levels.  

To validate high-level error propagation resilience of proposed fabric, we perform 

exhaustive simulations of the fabric by developing a behavioral simulation of the fabric 

using C++, simulating BNs with sizes up to a million random variables.  

This simulation could be performed exhaustively for the flat-only 

architecture[13][14], but as the computational resolution increases the number of possible 

test cases increases super exponentially – it becomes increasingly time consuming to 

perform exhaustive simulations for flat-radix based architecture. Hence to validate error 

propagation for flat-radix based architecture we only consider one case which is the one 

with resolution 0.01 (two segments). 

This simulation is not exhaustive from level 2 onwards because of the exponential 

growth of possible test cases. Instead we randomly sample 106 output combinations from 

the level below to calculate errors. Due to this limitation, the simulation does not capture 

all the corner cases that might lead to errors accumulation in higher levels. Nevertheless, 

the random sampling of input combination makes the simulation closer to actual Bayesian 

networks and hence the results could be expected to reflect the real-world performance to 

a high degree.  The metric used to measure the error accumulation is the percentage of 

cases with error greater than 0.1. This metric is chosen for two reasons. Many of the 

applications in which probabilistic inference is used a factor of ±10% is acceptable[16][17]. 
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The other reason is to inspire a design choice wherein the resolution of the FRCs can be 

selected to be one resolution-scale higher than the required resolution to obtain satisfactory 

results. 

 

Figure 24 demonstrates this design choice. Figure 21(a) shows the error 

accumulation in flat-only composer based framework, and Figure 21(b) shows the worst-

case performance in error accumulation for FRC based framework with resolution just one 

Error accumulation with resolution 0.1 Error accumulation for approximate computation with 

resolution 0.01 

Figure 24. Comparison of simulation results for error accumulation in large 

networks. Both plots denote % of error cases within ±0.1 (considered acceptable in 

majority of applications) with increasing depth or ‘Levels’ of the network; (a) The 

flat-only composers’ low computational resolution (0.1) causes large amount of error 

accumulation at higher levels as indicated in red; (b) Even though it implements 

approximate computation, the worst-case performance of the FRCs with 

computational resolution of 0.01 is significantly better, at just 2x area cost. 
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resolution-scale higher than the flat-only composers. As seen the worst-case error 

accumulation in (b) is better than the best-case error accumulation in (a). The error 

resilience in Bayesian applications allows for a robust inference, even if ~90% of the 

computations performed are accurate and the rest have errors.  The randomized sampling 

performed in the higher levels of the simulation makes sure that the results are 

representative of real-life applications.  

Figure 25 shows the error distribution at level 14 of the simulated binary BN in 

both the lower and higher computational precision cases. The higher precision computation 

results in significantly lower cases (note that the y-axis is logarithmic) than the lower 

resolution case. This provides with a visual representation of how tightly the errors are 

bound due to the higher resolution computation. The approximation involved in the higher 

precision computation is not significant enough for large error buildups, the likes of which 

we observe in the lower precision computation.  

 

 
Figure 25. Error distribution comparison at level 14 of the simulated binary BN 
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CHAPTER 6 

CONCLUSION 

Probabilistic reasoning frameworks enable many important applications like gene 

expression, threat detection, text classification and macroeconomics [7]-[11]. As more 

disciplines of science incorporate probabilistic reasoning into their research process, the 

list of applications which could benefit from BNs is increasing. The fundamental 

incompatibility of these probabilistic frameworks with the conventional computing 

paradigm demands new fabric architecture approaches, which perform probabilistic 

computations much more efficiently. The magneto-electric circuit framework proposed in 

this paper performs high resolution probabilistic computations with high efficiency and 

provides with an easily scalable information representation scheme for analog 

computations with probabilities. The ability to scale efficiently while maintaining error 

resiliency will enable accurate representation of very large BNs with sizes up to a million 

random variables, which could potentially be used in applications like personalized gene-

expression networks for cancer treatments [7], large-scale threat detection in computer 

networks [8], and others currently not feasible in software-only computing paradigms. 
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APPENDIX 

PSEUDO-CODE OF THE BEHAVIORAL SIMULATION IN C++  

 

Pseudo-code of the behavioral simulation performed in C++ to evaluate 

accumulation of errors at higher levels of BN due to low computational resolution. 

 Algorithm to simulate error propagation over large binary tree Bayesian 

Networks: 
Each Bayesian node B has children C, D and parent A. 
The subscript 𝑓 denotes full precision computation while the subscript 𝑙 

denotes limited precision computation. 
level 1 
for all possible combinations of C, D: 
 { 

estimate likelihood 𝜆(𝐵); 
 calculate error 𝑒𝜆(𝐵); 
 increment counter of corresponding error interval; 

perform belief update 𝐵𝐸𝐿(𝐵); 
 calculate error 𝑒𝐵𝐸𝐿(𝐵); 
 increment counter of corresponding error interval; 

provide diagnostic support 𝜆𝐵(𝐴); 
 add output combination to file;  

} 
for level n from 2 to 15: 
{ 
randomly sample 10

6 
output combinations from level(n-1); 

for all sampled combinations: 
 { 
 estimate likelihood 𝜆(𝐵); 
 calculate error 𝑒𝜆(𝐵); 
 increment counter of corresponding error interval; 
 compute prior 𝜋(𝐵); 
 calculate error 𝑒𝜋(𝐵); 
 increment counter of corresponding error interval; 

perform belief update 𝐵𝐸𝐿(𝐵); 
 calculate error 𝑒𝐵𝐸𝐿(𝐵); 
 increment counter of corresponding error interval; 

provide diagnostic support to parent 𝜆𝑋(𝐴); 
 provide predictive support to children  𝜋𝐶(𝐵),  𝜋𝐷(𝐵); 
 add output combination to file; 

} 
} 
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