
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

October 2017

MAGNETO-ELECTRIC APPROXIMATE COMPUTATIONAL MAGNETO-ELECTRIC APPROXIMATE COMPUTATIONAL

FRAMEWORK FOR BAYESIAN INFERENCE FRAMEWORK FOR BAYESIAN INFERENCE

Sourabh Kulkarni
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

 Part of the Computational Engineering Commons, Electrical and Computer Engineering Commons,

and the Hardware Systems Commons

Recommended Citation Recommended Citation
Kulkarni, Sourabh, "MAGNETO-ELECTRIC APPROXIMATE COMPUTATIONAL FRAMEWORK FOR BAYESIAN
INFERENCE" (2017). Masters Theses. 558.
https://scholarworks.umass.edu/masters_theses_2/558

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/masters_theses_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F558&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F558&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F558&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F558&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/558?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F558&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

MAGNETO-ELECTRIC APPROXIMATE COMPUTATIONAL FRAMEWORK

FOR BAYESIAN INFERENCE

A Dissertation Presented

by

SOURABH S. KULKARNI

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2017

Department of Electrical and Computer Engineering

© Copyright by Sourabh S. Kulkarni 2017

All Rights Reserved

MAGNETO-ELECTRIC APPROXIMATE COMPUTATIONAL FRAMEWORK

FOR BAYESIAN INFERENCE

A Dissertation Presented

by

SOURABH S. KULKARNI

Approved as to style and content by:

Csaba Andras Moritz, Chair

Zlatan Aksamija, Member

Daniel Holcomb, Member

Christopher V. Hollot, Department Chair

Electrical and Computer Engineering

iv

ABSTRACT

MAGNETO-ELECTRIC APPROXIMATE COMPUTATIONAL FRAMEWORK

FOR BAYESIAN INFERENCE

SEPTEMBER 2017

SOURABH S. KULKARNI,

 B.TECH., SHIVAJI UNIVERSITY, INDIA

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Csaba Andras Moritz

 Probabilistic graphical models like Bayesian Networks (BNs) are powerful artificial-

intelligence formalisms, with similarities to cognition and higher order reasoning in the

human brain. These models have been, to great success, applied to several challenging real-

world applications. Use of these formalisms to a greater set of applications is impeded by

the limitations of the currently used software-based implementations. New emerging-

technology based circuit paradigms which leverage physical equivalence, i.e., operating

directly on probabilities vs. introducing layers of abstraction, promise orders of magnitude

increase in performance and efficiency of BN implementations, enabling networks with

millions of random variables. While majority of applications with small network size (100s

of nodes) require only single digit precision for accurate results, applications with larger

size (1000s to millions of nodes) require higher precision computation. We introduce a new

BN integrated circuit fabric based on mixed-signal magneto-electric circuits which perform

v

probabilistic computations based on the principle of approximate computation. Precision

scaling in this fabric is logarithmic in area vs. linear in prior directions. Results show 33x

area benefit for a 0.001 precision compared to prior direction, while maintaining three

orders of magnitude performance benefits vs. 100-core processor implementations.

vi

TABLE OF CONTENTS

 Page

ABSTRACT .. iv

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

1. INTRODUCTION..1

1.1 Bayesian Networks ..1

1.2 Previous Approaches to architecting with Physical Equivalence2

1.3 Proposed Approach for Scalable BN Architecture at Nanoscale3
2. BACKGROUND ..6

2.1 Bayesian Networks overview ..6
2.2 Previous Directions ..9

3. CORE FRAMEWORK CONCEPTS ..11

3.1 Information Representation Scheme ..11

3.2 Technology Overview: Straintronic MTJs...13

3.3 Probability Representation based on S-MTJs ..16
3.4 Segment-Level Circuit Framework..18
3.5 Flat-Radix Addition Circuit Design ...23

3.6 Flat-Radix Approximate Multiplication Circuit Design24
3.7 Flat-Radix Approximate Add-Multiply Circuit Design27

3.8 Decomposer Circuit Design ...28
4. SCALABLE PRECISION MAGNETO-ELECTRIC ARCHITECTURE

FOR BAYESIAN INFERENCE ...30

4.1 Bayesian Computation Units ...31

4.2 Bayesian Cell and Programmable Switchboxes ..32

4.3 Hierarchical Summary of Overall Architecture ...34

5. EVALUATION ..36

5.1 S-MTJ HSPICE Macromodel ..36
5.2 Segment Level Circuit Simulation in HSPICE ..38
5.3 Area, Power and Performance ...40

5.4 Approximation Errors in FRCs ..41
5.5 High-level Error-propagation simulation ...44

6. CONCLUSION ..47

vii

APPENDIX: PSEUDO-CODE OF THE BEHAVIORAL SIMULATION IN

C++…. ...48

BIBLIOGRAPHY ..49

viii

LIST OF TABLES

Table Page

1. The area, power and delay of FRCs and other circuit components for various

computational resolutions…………………………………………………………...…..40

2. Precision comparison between low resolution accurate computation and higher

resolution approximate computation……………………………………………………42

ix

LIST OF FIGURES

Figure Page

1. An intuitive example of a BN demonstrating its various elements.6

2. Formalizing BNs. (a) Portion of a typical BN with a node B, its parent node A and child

nodes C and D; and (b) Various terminologies involved in obtaining inference for node

B……………………………………………………………………………………………7

3. Flat-Radix information representation scheme. Probability is encoded in segments which

are in a radix arrangement, with each segment containing flat elements. The equivalent

probability encoding and the computational resolution obtained are also listed.12

4. Device configurations (recreated with permission from [13]). (a) Volatile S-MTJ.

Application of a voltage generates a strain in the soft-layer, modifying the electrical

resistance; (b) Non-Volatile S-MTJ. Functioning similar to Volatile S-MTJ,but has

two pairs of electrodes between which the magnetic orientation flips.14

5.(a) Schematic of Volatile S-MTJ; (b) Simulated DC Characteristics of Volatile S-MTJ;

(c) Simulated switching delay of Volatile S-MTJ; (d) Schematic of a Non-Volatile S-

MTJ; (e) Simulated DC Characteristics of Non-Volatile S-SMTJs; (f) Simulated

switching delay of Non-Volatile S-MTJs. (recreated with permission from[13])15

6. A flat element represented by a Non-Volatile MTJ. ..16

7. Physically equivalent encoding of probability using the proposed information

representation scheme into S-MTJ circuits. ..17

8. Schematic of a segment-level addition composer. Vout is proportional to the sum of input

currents. ...19

9. Schematic of the multiplication segment-level composer. Vout is proportional to the

product of input segments. ..20

10. Schematic of the add-multiply segment-level composer, a hierarchical combination of

the addition and multiplication SLCs which implements a sum-of-products operation.21

11. Carry circuit which detects carry generation in a lower order SLC and transfers it to

higher order SLC. ..22

12. Addition flat-radix composer, comprising of several addition SLCs and carry circuits. ..24

13. Multiplication FRC made up of one multiplication SLC and several Add-Multiply

SLCs and carry circuits ...25

x

14. Add-Multiply FRC made from a hierarchical combination of Multiplication FRC and

Addition FRC ..27

15. Segment-level Decomposer schematic. ...28

16. One of the 5 computation units of a Bayesian Cell - the ‘Belief Update’ computation

unit, comprising of 4 Multiplication FRCs ...31

17. Block diagram view of a Bayesian Cell, a hierarchical combination of the 5

computation units which perform all the calculations required in a Bayesian node for

inference. ...32

18. Schematic of a programmable switchbox ..33

19. All the architectural elements summarized into a single framework.34

20. Simulated DC characteristics for S-MTJ[12]. (a) Resistance vs. input voltage showing

two stable resistance states and switching threshold voltages; and (b) Switching delay

vs. input voltage. ...37

21. HSPICE behavioral macromodel describing S-MTJ device characteristics for circuit

simulation. ...38

22. Segment-level circuit validation with HSPICE for Addition. Multiplication, Add-

multiply computation, and decomposer circuits. ..39

23. The computational accuracy of Multiplication FRCs with precision 0.01 (10-2 flat-

radix with 20 devices per probability) in (a) and 0.001 (10-3 flat-radix with 30 devices

per probability) in (b) as compared to the accuracy of 0.01 precision flat-only scheme

with 100 devices per probability, and 0.001 flat-only scheme with 1000 devices per

probability, respectively. The regions highlighted in red indicate the maximum error of

0.1 due to the approximate nature of the computations. The plot displays the outputs

for all possible input combinations sorted in ascending order. ...42

24. Comparison of simulation results for error accumulation in large networks. Both plots

denote % of error cases within ±0.1 (considered acceptable in majority of applications)

with increasing depth or ‘Levels’ of the network; (a) The flat-only composers’ low

computational resolution (0.1) causes large amount of error accumulation at higher

levels as indicated in red; (b) Even though it implements approximate computation, the

worst-case performance of the FRCs with computational resolution of 0.01 is

significantly better, at just 2x area cost. ..45

25. Error distribution comparison at level 14 of the simulated binary BN46

 1

CHAPTER 1

INTRODUCTION

The domain of artificial intelligence (AI) has seen tremendous growth of late, with

new mathematical models being proposed and new areas of application being discovered

frequently. Progress in this domain has been fueled by the steady growth in computational

capabilities and distributed computing paradigms like GPUs. While this progress is

projected to continue for several years, the underlying machinery pushing this growth is

still implemented in software-based approaches over traditional computational

architectures. The fact remains that the architecture over which these AI models are being

implemented is largely incompatible to those models at a fundamental level. This

fundamental incompatibility introduces inefficiency in the implementation of these models

over software. As AI technology becomes more and more central to society, new

architectures with fundamental compatibility with the AI models need to be realized to

expand the scale of applications to which those models can be used.

1.1 Bayesian Networks

One of the leading approaches in AI research are Bayesian Networks (BNs). BNs

are graph theoretical models which work on probabilities to enable reasoning under

uncertainty. Several studies in neuroscience [3]-[6] suggest that cognition and higher order

reasoning in the human brain may closely resemble Bayesian inference. The Bayesian

Model has been successful in explaining several of the brain’s abilities as well as

shortcomings [3] [5]. The use of BNs has also proven effective in many important real-

world applications [7]-[11] e.g., gene expression, medical diagnosis, text-classification,

 2

troubleshooting, macro-finance, etc. The utility of BNs in these application domains is

currently limited by the size of the networks which can be modeled in software. For some

applications [7], modelling BNs with size in order of 1000s of variables requires super-

computer level computational power. It is hence evident that software based BN

implementations lack the efficiency and performance required to scale to larger

applications. This is because BN implementations in conventional processor architectures

are limited by several major issues:

(i) Software solutions involve multiple layers of abstraction to support a non-

deterministic framework like BNs;

(ii) The Von-Neumann processor architecture inherently separates memory and

computation introducing bottlenecks in accessing data; and

(iii) Non-volatility requirements of cognitive applications are challenging to

fulfill efficiently.

It is hence evident that a new approach is required to enable applications of BNs at a larger

scale.

1.2 Previous Approaches to architecting with Physical Equivalence

Research in device-level physics has led to the inventions of several emerging

device technologies with unique properties. These unique properties. Emerging

technology [12] based implementations [13] [14] show great promise to achieve unique

benefits that enable large BNs with potentially thousands to millions of nodes, with orders

of magnitude efficiency improvements vs. state-of-the-art. For example, by utilizing a new

style of mixed-signal magneto-electric computation based on physical equivalence at the

 3

level of physical signals, which is a departure from traditional von Neumann computing

paradigm, three orders of magnitude efficiency improvement is projected [14]. Although

these new fabric architectures could enable large BNs, they do not scale well to higher

resolutions. This is because, unlike the radix representation used in conventional digital

designs, their flat linear representation (where a single probability value requires multiple

physical signals) increases area linearly. For example, adding a digit of precision, i.e.,

increasing precision by tenfold, would increase area similarly by tenfold. This scaling is

prohibitive for very large-scale BNs where precision would need to increase by several

digits to support BN inference.

1.3 Proposed Approach for Scalable BN Architecture at Nanoscale

In this thesis, we propose a new magneto-electric BN fabric, which, while still

operating on the principle of physical equivalence, provides an efficient framework of

scaling computational resolution. The fabric uses non-volatile magneto-electric devices

called Straintronic-Magnetic Tunneling Junctions (S-MTJs) [12], which operate at low

powers and have low switching delays of ~1ns. The work in this thesis involves

introduction of a new hybrid way of representing probabilities and a new approximate

circuit style to perform probabilistic computation at higher computational resolution. The

approximate circuit style is inspired by the principles of approximate computation [15],

wherein the non-critical components of a computation are omitted to obtain better

efficiency. The error resilience of BNs toward arithmetic computations performed in

Bayesian nodes [16], enable us to use the approximate computation circuit style. Results

show that the benefits of achieving higher resolution computation far exceed the loss in

 4

accuracy incurred due to the use of approximate techniques. The loss in accuracy is also

less of a factor in the quality of the Bayesian inference [16] [17], since the increased

precision achieved by scaling enables the implementation of much larger BNs

incorporating a larger number of random variables which are known to be the primary

factors of determining accuracy at the application level. The new fabric has 5x and 33x

area reduction for computational resolutions of 0.01 and 0.001, respectively, as compared

with previous emerging-technology paradigms, while it is projected to also maintain at

least three orders of magnitude performance benefits over implementations on state of the

art 100-core processors.

Key contributions of this thesis include:

(i) A new physically equivalent nanotechnology framework for cognitive

computing applications.

(ii) A new hybrid data representation scheme with built-in error resilience for

encoding probabilities into magneto-electric devices with exponentially

better resolution scalability compared to previous approaches.

(iii) A new mixed-signal approximate computation circuit style to realize

arithmetic operations at higher computational resolutions, enabling BN

inference operations implemented using novel magneto-electric devices (S-

MTJs).

(iv) Design of a reconfigurable parallel architecture based on the new scalable

precision computational circuit style, consisting of distributed Bayesian

computation cells, which can implement any arbitrary BN.

 5

(v) Exhaustive evaluation of the impact of approximate computation circuit

style on the error in arithmetic operations at higher resolutions.

(vi) Comparative study of errors propagating in an example million-node BN

structure between low-precision exact computation and higher-precision

approximate computation.

The rest of the thesis is organized as follows:

- Chapter 2 presents a brief introduction to BN and provides and overview of

previous attempts toward physically equivalent nanoscale cognitive computing

architectures.

- Chapter 3 shall discuss the core framework concepts, namely the S-MTJ device

characteristics, the information representation scheme and the circuit

framework for approximate computation.

- Chapter 4 details the reconfigurable architecture building up on the circuit

framework which enables mapping of arbitrary BNs into the fabric.

- Chapter 5 discusses the proposed evaluation methodologies at circuit and

architecture levels.

 6

CHAPTER 2

BACKGROUND

2.1 Bayesian Networks overview

BNs are probabilistic graphical models [1] [2], which capture the domain

knowledge in a graphical structure. They belong to the set of the modern nature-inspired

probabilistic graphical models, which have shown great promise in several critical

applications. In BNs, the knowledge of the qualitative relations is encoded as probabilities,

which enables these models to provide reasoning under uncertainty. BNs are typically

structured as Directed Acyclic Graphs (DAGs), with the nodes representing knowledge

about variables in the system. The edges of the graph are directed links which represent the

dependencies. A directed link from one node to the other makes the former node the parent

of the latter. Each node has several variables and each variable can have multiple states.

For every node, the strength of the dependency of the child node on its parents is encoded

in the conditional probability table (CPT).

Figure 1 An intuitive example of a BN demonstrating its various elements.

Rain

Wet Grass

Sprinkler

Slip

Node

EdgeS R P(WG|S,R)

T T 0.9

T F 0.7

F T 0.7

F F 0.2

CPT

 7

 Figure 1 shows an example BN. The directed arrows in the network encode the

causal dependence between the nodes. For example, the probability of someone slipping

on the grass is dependent on the grass being wet, which is in turn dependent on the sprinkler

being on and on whether it rains.

We shall now briefly discuss the technical terms involved in the inference process

of a BN. To come up with a Bayesian model of an application, the hypothesis is expressed

as a set of BN variables. The BN variables are assigned initial probabilities which can either

be learnt from data or determined from expert knowledge. BN inference is performed by

calculating belief (the probability that a hypothesis is true based on observed evidence and

state of CPT) through the process of belief update. Belief update is performed via the

process of message propagation (likelihood and priors [1] [2]). Of the several algorithms

used to perform belief update, we consider Pearl’s Belief Propagation algorithm [1] in this

work.

B

C D

λC(B)
λD(B)

λB(A)

A

πD(B)πC(B)

πB(A)

CPT(B|A) =

P(B=1|A=1) P(B=1|A=2) P(B=1|A=3) P(B=1|A=4)

P(B=2|A=1) P(B=2|A=2) P(B=2|A=3) P(B=2|A=4)

P(B=3|A=1) P(B=3|A=2) P(B=3|A=3) P(B=4|A=4)

P(B=4|A=1) P(B=4|A=2) P(B=4|A=3) P(B=4|A=4)

CPT(B|A)

π(B) = [π1(B) π2(B) π3(B) π4(B)]

πB(A) = [πB1(A) πB2(A) πB3(A) πB4(A)]

λC(B) =

λC1(B)

λC2(B)

λC3(B)

λC4(B)

λ(B) =

λ1(B)

λ2(B)

λ3(B)

λ4(B)

λ(B)

π(B)

BEL(B)

BEL(B) = [BEL(B=1) BEL(B=2) BEL(B=3) BEL(B=4)]
(a) (b)

Figure 2. Formalizing BNs. (a) Portion of a typical BN with a node B, its parent node A

and child nodes C and D; and (b) Various terminologies involved in obtaining inference

for node B.

 8

The Pearl’s Belief Propagation algorithm has several operations to be performed in

each node – namely, likelihood estimation, prior support and belief update. These

operations are now briefly discussed. Consider a typical BN node B with a parent node A

and two children nodes C and D in Figure 2. The belief of the node B is denoted by BEL(B),

the Likelihood and prior vectors are represented as λ(B) and π(B) respectively. The ⨂

operator represents matrix multiplication, and asterisk (*) represents element-wise

multiplication.

Likelihood and prior estimation for a node B are performed using messages from

its child nodes (λC(B), λD(B)) and parent node (πB(A)) as follows:

Eq. (2), upon expansion, has a sum-of-product form. The belief update for the node B is

done as follows:

𝑩𝑬𝑳(𝑩) = 𝛼𝝅(𝑩) ∗ 𝝀(𝑩) (3)

Here, α is a normalization constant to ensure that the result is a probability. Finally, support

messages to parent node (λB(A)) and child nodes (πC(B), πD(B)) are calculated as follows:

These messages help these nodes to compute their own belief updates. We can observe that

all the above operations can be implemented by addition and multiplication operations. The

𝝀(𝑩) = 𝝀𝑪(𝑩) ∗ 𝝀𝑫(𝑩) (1)

𝝅(𝑿) = 𝝅𝑿(𝑨)⨂ 𝑪𝑷𝑻(𝑩|𝑨) (2)

𝝀𝑩(𝑨) = 𝑪𝑷𝑻(𝑩|𝑨)⨂𝝀(𝑩), (4)

𝝅𝑪(𝑩) = 𝛼𝝅(𝑿) ∗ 𝝀𝑫(𝑩), 𝑎𝑛𝑑

𝝅𝑫(𝑩) = 𝛼𝝅(𝑩) ∗ 𝝀𝑪(𝑩).

(5)

 9

proposed fabric hence encodes probabilities into fundamental circuit elements and

implements addition, multiplication and add-multiply operations, enabling implementation

of all the above Bayesian operations for Pearl’s belief propagation algorithm in the fabric.

2.2 Previous Directions

The direction of using novel magneto-electric device based fabrics to design

physically-equivalent architectures for cognitive computing applications is not new. Solid

foundations were laid previously in this direction by some works. In [13] [14], a magneto-

electric circuit based fabric was proposed, which performed Bayesian inference, by

encoding probabilities, without any layers of abstractions, into device states using a flat

representation scheme. Mixed-signal circuit elements performed computations with

limited computational resolution of 0.1. This limited resolution proved sufficient for

several real-world applications [17]. Circuit evaluations and behavioral simulations

estimated area, performance and power-efficiency benefits many orders of magnitude

greater than inference on state of the art 100 core processors. This speedup and efficiency

meant that previously infeasible application sizes could now be implemented on this

framework to yield results in a reasonable timeframe.

However, higher order error propagation studies performed on those architectures,

where million-node networks were simulated, showed that the results obtained had errors

high enough to make them unreliable. It was hence evident that, in million-mode networks,

to obtain results within the generally-accepted precision of 0.1, the actual computations

would be needed to be done at higher computational resolutions. The flat information

representation scheme scaled poorly with computational resolution – for example - while

 10

a 0.1 resolution employed 10 devices per variable, a 0.01 resolution would require 100

devices per variable; translating to a 10x increase in area and power. It is hence evident

that a new fabric architecture with better scaling of computational precision would greatly

increase the scope and utility of these directions in cognitive computing applications.

 11

CHAPTER 3

CORE FRAMEWORK CONCEPTS

The framework builds on the concept of physical equivalence – the probabilities in

the BN are encoded in an information representation scheme, which is implemented in a

mixed signal magneto-electric circuit style. Efficient scalability of computational

resolution is achieved by selective use of approximate computation. The computation

circuits are designed such that the inaccuracies incurred by using approximate computing

have a much lower impact than the increase in accuracy due to performing computation at

a higher resolution.

3.1 Information Representation Scheme

Conventionally, information in digital circuits has been represented in a radix

format. This style performs well in all digital circuits, and provides for an efficient way to

scale precision. However, when we consider radix representation for mixed-signal

architectures, which employ analog domain to perform computations, and rely on devices

that are stochastic switches with much lower reliability than MOS counterparts, the lack of

error resilience is prohibitive. This is since any single bit error would make an entire

computation potentially useless.

An alternative approach, considered in [13] [14], involves a flat information

representation scheme, which is more suitable for mixed signal architectures. This

approach assigns the same ‘weight’ to each digit in the representation and the value

represented is simply the sum of the values in the individual digits. Although this provides

 12

error resilience and can perform efficient analog computations, scaling to higher

computational resolutions is very inefficient.

We propose a more generalized information representation scheme, which

combines the scalability of the radix representation and the error resilience of the flat

representation. This new ‘Flat-Radix’ representation consists of M segments in a radix

arrangement with n elements each in a flat arrangement as shown in Figure 3. Within a

single segment, all the flat elements fi contribute equally toward the value of the segment,

making it error resilient. A segment SJ represents a value equal to the sum of all the flat

elements fi in the segment. Because of the radix nature of the segments, a segment SJ has a

value n times the value of segment SJ+1, providing efficient scalability. The probability is

represented by the segments arranged in a radix format with base n. This new

representation opens a spectrum of possible representation states with flat representation

at one end (M=1) and radix representation at the other (n=1). This vast range of possible

configurations is attractive as the representation scheme could be potentially tailored to

match the application precision requirement.

f0 f1 fn-1fi {0,1} f0 f1 fn-1
 f0 f1 fn-1

Probability

Radix Segment

Flat Element

Computational Resolution =

Figure 3. Flat-Radix information representation scheme. Probability is encoded in

segments which are in a radix arrangement, with each segment containing flat elements.

The equivalent probability encoding and the computational resolution obtained are also

listed.

 13

Consider an example configuration of the scheme with n=10 and M=2. This

corresponds to a representation with two segments in a radix representation with each

containing 10 flat elements. The effective computational resolution of this configuration is

0.01. Now if we change M to 3, the configuration now has an effective resolution of 0.001.

This corresponds to an exponential increase in computational resolution with linear

increase in number of devices. It is important to note however, that some of the

computations performed are approximate in nature and the increase in computational

resolution doesn’t directly translate to increased accuracy in computation. This

phenomenon is discussed in detail in further sections.

3.2 Technology Overview: Straintronic MTJs

The work utilizes Straintronic Magnetic Tunnel Junctions (S-MTJs) [12] as the

underlying physical device for hardware implementation. It is to be noted, though, that the

information representation scheme discussed earlier can be realized using any other non-

volatile technology. The work also assumes that the devices have two stable states, but the

proposed scheme works for multistate devices as well as infinite persistence-state devices

like the memristor. In the case of an ideal infinite persistence-state device, the information

representation scheme shall collapse into a single element, which can store probability

values with arbitrary precision.

 14

The concept of straintronics, where the bi-stable magnetization of a shape

anisotropic multiferroic nanomagnet is switched with electrically generated mechanical

strain, is attractive due to its extreme low energy of switching. A S-MTJ device consists of

three layers – a “hard” ferromagnetic layer with a fixed magnetization orientation, an

ultrathin spacer layer, and a "soft" ferromagnetic layer with variable magnetization

orientation.

 The device configurations are shown in Figure 4. The S-MTJ has two device

variants, namely the Volatile and Non-Volatile S-MTJ. In the Volatile S-MTJ, the soft and

hard layers are naturally aligned into anti-parallel state. A voltage induced strain changes

the magnetization of the soft layer, changing the resistance of the device. In the Non-

Figure 4. Device configurations (recreated with permission from [13]). (a)

Volatile S-MTJ. Application of a voltage generates a strain in the soft-layer,

modifying the electrical resistance; (b) Non-Volatile S-MTJ. Functioning similar

to Volatile S-MTJ, but has two pairs of electrodes between which the magnetic

orientation flips.

 15

Volatile S-MTJ, the soft layer is constrained to be in two states by using two pairs of

electrodes. If left in one of these states, the magnetization remains in that orientation

indefinitely, which makes the device non-volatile. The orientation is switched by applying

a voltage induced strain on the soft layer. Although the work considers two stable states,

the number of sable states can be changed by changing the cross-sectional shape of the

device.

Figure 5 details the schematic, DC charateristics and the switching delay

simulations of both the Volatile and Non-Volatile S-MTJs. The hysteresis loop of the Non-

volatile S-MTJs is characteristic of its persistence. The switching delay graphs show that

both devices are capable of sub-nanosecond switching times with proper applied voltage.

Figure 5. (a) Schematic of Volatile S-MTJ; (b) Simulated DC Characteristics of

Volatile S-MTJ; (c) Simulated switching delay of Volatile S-MTJ; (d) Schematic

of a Non-Volatile S-MTJ; (e) Simulated DC Characteristics of Non-Volatile S-

SMTJs; (f) Simulated switching delay of Non-Volatile S-MTJs. (recreated with

permission from[13])

 16

3.3 Probability Representation based on S-MTJs

We shall now discuss how the flat-radix information representation scheme is

implemented using the S-MTJ devices. Each flat element in each of the segment of the

flat-radix probability representation is encoded in the Non-Volatile S-MTJ. Assuming

two stable states, this translates to High resistance state encoding 0 and low resistance

state encoding 1.

This concept is represented diagrammatically in Figure 6. The voltage Vin can

control the resistance state of the device. A reference voltage Vref is applied to read out the

resistance state RS_MTJ of the device, resulting in output current Iout. Building on this

concept, the segments can be composed of an array of these flat elements. Each element in

the segment can be provided with the same Vref and their individual resistance states are

controlled by the individual input voltages. The currents from the flat elements are then

summed together the segments can be arranged in a radix format to come up with segment-

Figure 6. A flat element represented by a Non-Volatile MTJ.

 17

level representations of the probability. These segments arranged in a radix structure

complete the flat-radix probability representation.

Figure 7 shows how the flat-radix probability encoding process using the S-MTJ

devices. The total probability P is interpreted by considering the segments in a radix

arrangement. The base of this radix structure is based on the number of flat elements in

each segment.

Although the representation has radix segments, the computations remain atomic

to the flat portions, as there is no notion of radices when computing in analog domain.

Using approximate computing when required, we design circuits that bring together the

flat computations into a radix representation. The approximate computing techniques

(discussed in further subsections) have a lower error bound; the inaccuracies in

computation can never be greater than the computations in a representation with a single

radix segment (i.e., M=1). This case occurs when all the radix segments except the first one

have value of 0 and essentially get excluded from the computation.

Figure 7. Physically equivalent encoding of probability using the proposed information

representation scheme into S-MTJ circuits.

 18

3.4 Segment-Level Circuit Framework

The flat-radix representation scheme provides a natural way to encode probabilities

and in the process, enables unique ways to perform computation. In this architecture, the

computation operations like addition and multiplication are consequences of circuit design,

in contrast to traditional computation schemes in which there are complex arithmetic units

dedicated to perform these computations. The addition operation is performed by the

simple summation of currents by the Kirchhoff’s current law and the multiplication is

performed through the application of the Ohm’s law. The computation circuits start from

simple adder and multiplier circuits operating on individual flat segments and a hierarchical

encapsulation of these circuits performs higher order functionality, i.e., the flat-radix

adders and multipliers.

The computational elements operating on flat segments are primarily composed of

two components:

(i) a composer which converts input data stored in from of resistances of the

S-MTJs in current domain and performs the computation on the current;

and

(ii) a decomposer which converts the computed result back into the format

which can be stored into the S-MTJs. The composer circuits are discussed

first and the decomposer will be described later.

The design of these circuits is based on the arithmetic composer circuits discussed

in [13][14]. The segment-level composers, to some extent, resemble the flat composers

mentioned in earlier works.

 19

Figure 8 shows a schematic of a segment-level addition composer. Current addition

can be implemented by using a parallel configuration of individual segment composers. In

a manner, similar to how the currents in individual segments is summed together, the

current outputs of the two segments is summed together. The individual current

summations of the two segments are shorted together to obtain the current addition between

segments. To convert the output from current domain to voltage domain, a load resistor is

used. The obtained voltage Vout is hence proportional to the addition of the input two

segments. This obtained voltage is passed on further to either further segment-level

composer circuits. For the sake of brevity, the addition segment-level composer is

henceforth referred to as the addition SLC.

Figure 8. Schematic of a segment-level addition composer. Vout is proportional

to the sum of input currents.

 20

Figure 9 shows a schematic of the multiplication segment-level composer. In this

setup, the current output from one of the input segment is converted to voltage domain

using load resistance as discussed in the addition SLC circuit. This voltage is then fed to a

voltage adjustment circuit, which is principally an amplifier. This circuit is configured to

provide a voltage output equal to Vref when it receives a voltage input corresponding to the

maximum value of the segment, i.e., when all elements in the segment are in state

corresponding to 1 or logic ‘high’. All other segment configurations have a proportionately

lower voltage outputs. This amplified (or adjusted) voltage is then applied as the reference

voltage to the second input segment. This setup results in a final output current which is

proportional to the product of the two input segments. This current is converted into voltage

domain by another load resistor. For the sake of brevity, the multiplication segment-level

composer is abbreviated as multiplication SLC.

Figure 9. Schematic of the multiplication segment-level composer. Vout is

proportional to the product of input segments.

 21

Figure 10 shows the schematic of the add-multiply segment-level composer. Each

product term implemented with a multiplication SLC is arranged in a topology of addition

SLC. It is a hierarchical combination of the addition and multiplication SLCs. The

multiplication SLCs are the ‘internal’ composer, i.e., the two multiplications occur in the

first stage. The outputs of these are then summed together by the ‘external’ addition

composer. The resulting output is proportional to the sum-of-product of the inputs.

These segment-level composers form the building blocks of flat-radix composer

which perform the higher-resolution computations. This follows the convolutional

hierarchical trend of increasing complexity, while the fundamental computation still occurs

on probability values. The addition flat-radix composer and the multiplication flat-radix

composer are hierarchical combination of the addition SLC, multiplication SLC and the

add-multiply SLC. The add-multiply flat-radix composer, going higher up the level of

hierarchy, builds on multiplication flat-radix composers and addition flat-radix composers.

Figure 10. Schematic of the add-multiply segment-level composer, a hierarchical

combination of the addition and multiplication SLCs which implements a sum-of-products

operation.

 22

To summarize:

(i) Segment level composer circuits are the fundamental computation units;

higher order operations are performed by cascaded version of these circuits.

(ii) Segment-level information is condensed to currents to perform

computations

Figure 11 shows a schematic of the carry circuit used in flat-radix composers. In

any radix-based information representation scheme, there is a notion of an order of

individual segments, and that of carry propagation between them. The flat-radix composers

are made using a combination of multiple SLCs and the carry circuits communicate the

carry generated in lower order SLC to higher order SLC. With all the required components

detailed, we shall now discuss the flat-radix composer circuits.

Figure 11. Carry circuit which detects carry generation in a lower

order SLC and transfers it to higher order SLC.

 23

3.5 Flat-Radix Addition Circuit Design

Consider two probabilities A and B, represented in the flat-radix scheme as

follows:

𝐴 = (
1

𝑛
) 𝑆0

𝐴 + (
1

𝑛2
) 𝑆1

𝐴 + ⋯ + (
1

𝑛𝑀
) 𝑆𝑀−1

𝐴 (6)

𝐵 = (
1

𝑛
) 𝑆0

𝐵 + (
1

𝑛2
) 𝑆1

𝐵 + ⋯ + (
1

𝑛𝑀
) 𝑆𝑀−1

𝐵 (7)

The addition operation in the new representation scheme is done using the following

formula:

(
1

𝑛
) (𝑆0

𝐴 + 𝑆0
𝐵 + 𝑐𝑎𝑟𝑟𝑦1) + (

1

𝑛2
) (𝑆1

𝐴+𝑆1
𝐵 + 𝑐𝑎𝑟𝑟𝑦2) + ⋯

+ (
1

𝑛𝑀
) (𝑆𝑀−1

𝐴 +𝑆𝑀−1
𝐵) (8)

In implementing the above formula in-circuit, each individual addition term is computed

in its own segment using the addition SLC, while the carry generated by a segment is

propagated to the segment one order higher, using the previously described carry circuit.

𝐴 + 𝐵 =

 24

Figure 12 shows the circuit schematic of the addition flat-radix composer. This

design makes it very efficient to scale to higher resolution just by adding more segments

to the hybrid representation. This implementation is an exact expression of addition

formula hence the calculations have no approximation involved. This accuracy is achieved

because in an addition operation, the causality flows strictly in one direction (lower-order

to higher-order) in the form of carry; i.e., a lower order term may affect the result of a

higher order calculation (through carry), but a higher order term cannot affect the result of

a lower order calculation. For brevity, the flat-radix composers shall henceforth be referred

to as FRCs.

3.6 Flat-Radix Approximate Multiplication Circuit Design

The flat-radix computation scheme utilizes approximate computation techniques in

the FRC multiplier. Consider the sum-of-segments form of probabilities A and B from

equations (6) and (7). A multiplication operation between these would be:

Figure 12. Addition flat-radix composer, comprising of several addition SLCs and

carry circuits.

 25

((
1

𝑛
) 𝑆0

𝐴 + (
1

𝑛2
) 𝑆1

𝐴 + ⋯ + (
1

𝑛𝑀
) 𝑆𝑀−1

𝐴) . ((
1

𝑛
) 𝑆0

𝐵 + (
1

𝑛2
) 𝑆1

𝐵 + ⋯ + (
1

𝑛𝑀
) 𝑆𝑀−1

𝐵) (9)

 Upon expanding equation (9), we end up with a much higher number of terms; in

this case, a multiplication of two probabilities with m terms each would result in m2 terms.

The error resilient nature of BNs [17], whose quality of inference is dependent more on the

graph structure and random variable selection than the accuracy of the arithmetic

operations, enable us to optimize the design of the multiplier circuit. To optimize the

circuit, we include only the top m contributing terms of the expansion. The effect of

performing this optimization on the accuracy of the multiplier circuit is discussed in the

evaluation chapter. Using this optimization process, we design an approximate

multiplication formula which maximizes efficiency while attempting to minimize

approximation error:

𝐴. 𝐵 = (
1

𝑛
) (𝑆0

𝐴. 𝑆0
𝐵 + 𝑐𝑎𝑟𝑟𝑦1) + (

1

𝑛2) (𝑆0
𝐴. 𝑆1

𝐵 + 𝑆1
𝐴. 𝑆0

𝐵 + 𝑐𝑎𝑟𝑟𝑦2) + ⋯ +

(
1

𝑛2) (𝑆0
𝐴. 𝑆𝑀−1

𝐵 +

Figure 13. Multiplication FRC made up of one multiplication SLC and several Add-

Multiply SLCs and carry circuits

𝐴. 𝐵 =

 26

𝑆𝑀−1
𝐴 . 𝑆0

𝐵)PA.PB=PAH+PAL.PBH+PBL=(PAHPBH)+(PAHPBL+PBHPAL)+(PALPBL

) (10)

Figure 13 shows the circuit diagram implementation of equation (10). This

formulation is approximate, as it omits the equation terms, which contribute the least to the

end-result. These terms are the results of partial multiplications of lower order segments.

The omission of these terms is an optimization, resulting from the application of the

concept of approximate computing in this case. This approximate multiplier has the worst-

case performance when all the segments except the highest order one are zero. In this worst-

case, the FRC performs equally to a flat representation with an equivalent of a single SLC.

Exhaustive MATLAB simulations, discussed in evaluation section suggest that

including additional segment-level computation terms to equation 10 yield no significant

improvement to the accuracy of the approximate computation scheme.

 27

3.7 Flat-Radix Approximate Add-Multiply Circuit Design

Following the trend of hierarchical arrangement to make more complicated circuits,

the add-multiply FRC is composed of two Multiplication FRCs and a Addition FRC. The

individual segments from each of the multiplication FRCs corresponding to the same radix

order are added together by ‘plugging in’ to the input of the FRC adder’s corresponding

order of radix segment. The equations corresponding to these computations are shown in

Figure 14.

These circuits perform two parts of the computation process, viz., taking in digital

signals and composing them into analog currents, and performing computation on those

currents to achieve basic probability arithmetic. To complete the architecture, we need

decomposers to convert the obtained analog result into digital, non-volatile S-MTJ states.

This is done using the decomposer circuits.

Figure 14. Add-Multiply FRC made from a hierarchical combination of

Multiplication FRC and Addition FRC

 28

3.8 Decomposer Circuit Design

The final aspect of the circuit-level design of this fabric is the decomposer circuit,

which converts the computed results back to the flat-radix format at segment level for

further computations. This circuit is designed for devices with two states. The basic design

of the segment-level decomposer uses a R-2R ladder circuit commonly used to convert

continuous voltages in discrete states. The voltage VIN is compared in several steps to Vctl

using MTJ-based comparators shown in Figure 15, where each comparator from top to

bottom compares VIN with increasingly smaller fractions of Vctl, which is set to be equal to

the voltage that corresponds to all the flat elements of a segment being high. Hence, the

number of comparators, which output ‘high’ will be proportional to the ratio of VIN to Vctl.

All the segments sans the first can have a maximum value equal to twice the max capacity

of a single segment. To correctly decompose values greater than Vctl we design a carry-

Figure 15. Segment-level Decomposer schematic.

 29

based mechanism to switch the comparator voltage levels as shown in Figure 15. The carry

signal is generated by the carry circuits mentioned earlier. The carry signal, if high, changes

the comparator voltage levels appropriately.

To summarize, we have now designed a scalable precision, non-volatile, S-MTJ

based, flat-radix, mixed-signal computation framework with approximate computing. The

creation of a reconfigurable BN architecture using this computation framework shall now

be discussed in the next chapter.

 30

CHAPTER 4

SCALABLE PRECISION MAGNETO-ELECTRIC ARCHITECTURE FOR

BAYESIAN INFERENCE

In this chapter, we discuss the realization of the Bayesian inference procedure based

on Pearl’s belief propagation algorithm was described in the chapter 2, using the scalable

precision magneto-electric computation framework discussed in chapter 3. The proposed

architecture supports up to 4 random variables per Bayesian node. The architecture will be

structured as follows:

(i) 5 Bayesian computation units are designed using FRC composer

circuits.

(ii) The Bayesian cell, which is a hierarchical combination of the 5

Bayesian computation units, is designed, which functions as a

programmable node in a BN.

(iii) An FPGA-style programmable switchbox cell is designed to

perform as the edges of connectivity in a BN.

(iv) A uniform array of the Bayesian Cells and the switchboxes forms

the overall architecture.

These architectural components are now discussed in detail, starting from the bottom-most

all the way up to the top.

 31

4.1 Bayesian Computation Units

Continuing the path of hierarchical combination of circuits, we design 5

computation units, each implementing equations (1) -(5), discussed in chapter 2, on the

probabilities in Flat-Radix representation using combination of several FRCs, discussed

in chapter 3.

Consider, for example, the belief update operation in Bayesian inference. It

comprises of 4 multiplication operations, one for each of the 4 supported random variables

per node. The computations are performed by Multiplication FRC circuits. Figure 16

shows a simplistic overview of the arrangement. Similar computation units are designed

for all the remaining 4 computation operations required by the Bayesian node using the

FRC circuits.

Figure 16. One of the 5 computation units of a Bayesian Cell - the ‘Belief

Update’ computation unit, comprising of 4 Multiplication FRCs

 32

4.2 Bayesian Cell and Programmable Switchboxes

Figure 17 shows how all the 5 computation units operate together to function as a

Bayesian Cell. Briefly, the computations occurring in the Bayesian cell are as follows:

(i) Likelihood computation is using the diagnostic support from children

nodes;

(ii) Priors are computed using prior support from parent node;

(iii) Computed Likelihood and Priors are used to perform belief update;

(iv) Computed Likelihood is used to provide diagnostic support to Parent

node; and

Figure 17. Block diagram view of a Bayesian Cell, a hierarchical combination of the 5

computation units which perform all the calculations required in a Bayesian node for

inference.

 33

(v) Computed Belief is used to provide prior support to children nodes.

Each of these operations takes place in each Bayesian cell, while the messages

required for these computations are passed between nodes through programmable

switchboxes.

Figure 18 shows the schematic of a programmable switchbox. The design of this

switchbox is similar to the ones commonly used in FPGA architectures. The messages

through the network are sets of probability vectors associated with diagnostic support for

bottom-up and prior support for top-down messages and the propagation supported is

through switch-boxes. In our example, if each node supports 4 states, then each of these

messages contains 4 sets of probability vectors. Thus, each switch-box has to accommodate

sufficient switch-points to allow transmission of all the elements of probability vector sets

in parallel.

Figure 18. Schematic of a programmable switchbox

 34

4.3 Hierarchical Summary of Overall Architecture

With all the elements of the architecture described, we shall now provide a top-

down summary to visualize all the architectural elements into a single framework.

BNs are mapped into the reconfigurable fabric made up of Bayesian Cells as nodes

and Switchboxes as edges. Switchboxes are FPGA-styled connection mechanisms

facilitating connectivity between Bayesian Cells. The connections are made possible by

cross points between the north-south and east-west wires, with programmable switch

points. Bayesian Cells are made from 5 Bayesian computation units, each performing one

of the 5 computations essential for the Pearl’s belief propagation algorithm. Figure 19

shows one such Bayesian computation unit, which is the one performing belief update

computation. Bayesian computation units are combinations of the flat-radix composer

circuits. The flat-radix composer circuits are combinations of segment-level composer and

Figure 19. All the architectural elements summarized into a single framework.

BN mapped into
reconfigurable fabric
of BCs and SBs

Programmable

Switchbox

Bayesian cell
Bayesian computation units

FRC Circuits

SLC Circuits

 35

decomposer circuits. The belief update computation unit comprises of multiplication FRCs

as the belief update computation is a multiplication operation. The FRC are hierarchical

combinations of the SLCs. The multiplication FRC is made up of a combination of

multiplication SLC and add-multiply SLC. SLC are based on the S-MTJ devices, which

compose probabilities encoded in resistance states to currents which are then used for

computation.

While there are several levels of hierarchy, the computations that occur are still

directly on probabilities, tied to the physical level. The hierarchy introduces complexity of

design, without introducing the performance loss which is commonly associated with

digital systems which have layers of abstraction accompanying the layers of hierarchy.

Hence, the proposed architecture manages the same level of level of complexity in

operation (although only for a single application) as the digital, von Neumann counterpart,

but does that without the overhead associated with adding layers of abstraction.

 36

CHAPTER 5

EVALUATION

We shall now discuss the evaluation methodologies used to validate the circuit

designs of all the elements of the architecture. The MTJ devices central to this

computational framework are known to exhibit certain switching error. The impact of the

stochastic nature of the switching of the MTJs on the result of the computations was studied

in [13]. It is shown that, due to the error resilient nature of the flat representation scheme,

which is utilized by the flat-radix scheme used in this work within each flat segment, the

inaccuracies related to errors in the arithmetic operations far exceed the errors due to the

switching errors due to the MTJs. In both cases the errors are gracefully tolerated, due to

carefully designed information representation schemes. The chapter is arranged as follows:

(i) S-MTJ HSPICE Macromodel

(ii) Segment level circuit simulation in HSPICE

(iii) Area, power and performance estimation of proposed architecture along

with comparisons to previous works.

(iv) Exhaustive error evaluation for FRC circuits

(v) Higher-level simulation for error propagation comparison between

previous work and proposed work.

5.1 S-MTJ HSPICE Macromodel

To evaluate the proposed circuit framework in HSPICE, we develop HSPICE

behavioral device macromodel of the S-MTJ. This model was developed in conjunction

with the VCU group[12].

 37

The S-MTJ characteristics are shown in Figure 20. HSPICE offer several

behavioral constructs to model these characteristics such as voltage/current controlled

sources. For modelling S-MTJs, voltage controlled resistors (VCRs) are used. Two such

VCRs were used, one to model switching behavior from low resistance to high resistance

state, and another for modelling switching behavior from high resistance state to low

resistance state. Each VCR is connected in series with ideal switches; only one of them is

active at a time, and the active switch selects the VCR for the given operating condition.

The decision logic takes the current inputs and previous state of device (stored in flip-flop)

and determines the new state of the device. To model the switching delay, custom voltage-

Figure 20. Simulated DC characteristics for S-MTJ[12]. (a) Resistance vs. input

voltage showing two stable resistance states and switching threshold voltages; and

(b) Switching delay vs. input voltage.

 38

controlled delay elements were inserted, which comprised of voltage-controlled current

sources(VCCS) and capacitances.

Figure 21 shows the S-MTJ device micromodel schematic. The macromodel is used to

validate the functionality of the computation circuits and to estimate the area, power and

performance metrics of the proposed architecture.

5.2 Segment Level Circuit Simulation in HSPICE

We discuss the functionality of the segment-level composer circuits and validate

segment-level computation and decomposer circuits.

Figure 21. HSPICE behavioral macromodel describing S-MTJ device

characteristics for circuit simulation.

 39

In Figure 22, the linear trend of the voltage which follows the expected probability

segment value it is meant to represent indicates expected computational behavior of the

circuits. The simulations validate all possible segment-level input combinations to all the

circuits. The CMOS support circuitry is designed assuming 45nm technology node. The

simulations also yield the power, delay and area data which is used to estimate these

parameters for larger circuits like the Bayesian Cell. These metrics are discussed in the

next subsection.

Figure 22. Segment-level circuit validation with HSPICE for Addition.

Multiplication, Add-multiply computation, and decomposer circuits.

Simulated Output Characteristics – Addition SLC

Output Probability segment

Simulated Output Characteristics – Multiplication SLC

Output Probability segment

O
u

tp
u

t
V

o
lt

ag
e

(V
)

O
u

tp
u

t V
o
lt
a
g

e
 (

V
)

Output probability segment

Simulated Output Characteristics Add-Multiply SLC

Input Voltage (V)

O
u
tp

u
t
(S

e
g
m

e
n
t)

Simulated Output Characteristics – Decomposer

 40

5.3 Area, Power and Performance

Table 1 shows the area, power and delay values for flat-radix architecture schemes

with computational resolutions from 0.1 (1 segment) to 0.0001 (4 segments). The results

suggest up to 30x area and power benefits of this architecture over previous approaches[14]

for a computational resolution of 0.01. The area and power benefits vs. these approaches

grow exponentially with resolution.

In [14], the performance of a physically equivalent magneto-electric Bayesian

inference system (with a computational resolution of 0.1) was compared with a 100-core

processor assuming best-case idealized processor performance. This comparison yielded a

6,000x performance benefit for Bayesian inference over the 100-core processor. For the

same resolution, assuming a flat organization with one segment, the delay characteristics

of the circuit framework described in this paper matches that of [14], and hence similar

performance relative to 100-core processors is expected.

Metrics (Worst case) Resolution MUL ADDMUL OPAMPs Decomposers

Area(µm2) 0.1 5 17 95.4 240

0.01 21 42 190.8 480

0.001 39 78 286.2 720

0.0001 56 112 381.6 960

Power(µW) 0.1 1.15 2.81 89.32 11.37

0.01 3.96 7.92 178.64 22.74

0.001 6.77 13.54 267.96 34.11

0.0001 9.58 19.16 357.28 45.48

Delay(ns) 0.1 144 137 100 132.9

0.01 144 144 100 132.9

0.001 144 144 100 132.9

0.0001 144 144 100 132.9

Table 1. The area, power and delay of FRCs and other circuit components for

various computational resolutions.

 41

For a precision of 0.001, on the other hand, combining three flat segments into a

10-3 flat-radix magneto-electric framework (10 MTJs for encoding a probability, in each

of the three radix segments), this architecture could still maintain a 2,000x benefit while

the original architecture would have lost most of its performance, power, and area

advantages. A further 1,000x improvement (i.e., a 0.000001) in precision would require 6

segments arrangement and would maintain a 1,000x improvement. Any single error in a

segment would affect that segment by a tenth of a precision. A higher error resiliency may

combine 100 MTJs in each segment: e.g., a 100-6 encoding would yield an even more

graceful degradation would an error occur in any segment due to say an MTJ not switching

correctly, for a 10x additional area impact (and 10x additional precision). The overall

computational error would depend on the segment position in a radix, but highest error

would occur when highest segment (in radix order) is affected. This calculation does not

yet account for any approximate calculations that will be discussed below.

5.4 Approximation Errors in FRCs

We shall now observe the accuracy tradeoffs of the flat-radix approach vs. the flat

scaling implemented in [14] by comparing the accuracy performance. These comparisons

are done by generating behavioral models of the multiplication composers in MATLAB,

as exhaustive hardware simulations in HSPICE are infeasible to be done in reasonable time

and have convergence issues due to large number of devices and input combinations

involved. These exhaustive simulations considered all possible input combinations in each

case.

 42

Figure 23 contains two plots that compare the multiplication operation with scaled

flat[13][14] and flat-radix approaches, with 0.01 and 0.001 resolution respectively. The

plots were generated by calculating the results for all possible input combinations. From

the plots, it is evident that the substantial savings in area and power (5x for 0.01 and 30x

for 0.001) are obtained by the flat-radix approach.

Figure 23. The computational accuracy of Multiplication FRCs with precision 0.01

(10-2 flat-radix with 20 devices per probability) in (a) and 0.001 (10-3 flat-radix with

30 devices per probability) in (b) as compared to the accuracy of 0.01 precision flat-

only scheme with 100 devices per probability, and 0.001 flat-only scheme with 1000

devices per probability, respectively. The regions highlighted in red indicate the

maximum error of 0.1 due to the approximate nature of the computations. The plot

displays the outputs for all possible input combinations sorted in ascending order.

Computational Resolution No. of devices Mean error Error

variance

Max.

Error

% Input combinations

with max error

0.1(Previous work) 10 0.065 0.006 0.1 10%

0.01 20 0.027 0.000097 0.1 0.01%

0.001 30 0.0037 0.000023 0.1 0.00001%

Table 2. Precision comparison between low resolution accurate computation and

higher resolution approximate computation.

 43

 With a 2x and 3x increase in number of devices, computations at higher

resolutions, although approximate, yield lower mean errors (~2.4x and ~17x) and orders of

magnitude lower error variance (~61x and ~260x) as shown in Table II. The plot also

shows where the new computation system has the highest error of 0.1 (highlighted in red)

for precision levels. Although the approximate computation scheme has a worst-case error

of 0.1, at higher precision levels, the percentage of input combinations that lead to the

maximum error is very low (0.01% and 0.00001%). MATLAB simulations suggest

accuracy benefit is obtained by including additional intermediate terms to the computation.

In case of 10-5 configuration (5 segments with 10 elements each), with effective resolution

of 0.00001, the mean error without intermediate terms is 0.00039 and the mean error

without those terms is 0.00037.

Furthermore, in the context of Bayesian inference, it has been shown that the quality

of inference of a BN depends primarily on the structure of the graph and the number of

random variables captured accurately, while the numerical precision required in the

arithmetic computations plays a secondary role [17]. Although the computation scheme

described in this paper has a maximum error of 0.1, even for higher resolutions, the

infrequent occurrence of the high error case is unlikely to affect the outcome of the BN

inference; also at the application level accuracy is considered as the likelihood of correct

prediction in a belief across a large input measurement set vs. individual inference. On the

other hand, the increased precision obtained, along with significantly lower mean error and

error variance, will allow for much larger BNs to be implemented in this architecture at a

low area cost.

 44

5.5 High-level Error-propagation simulation

We observe that the approximate nature of computation provides with results

accurate enough for BN applications at a circuit level, while achieving significant area

benefits. The error resilience of the proposed fabric needs to be validated over large

networks, wherein small errors rend to accumulate over several levels.

To validate high-level error propagation resilience of proposed fabric, we perform

exhaustive simulations of the fabric by developing a behavioral simulation of the fabric

using C++, simulating BNs with sizes up to a million random variables.

This simulation could be performed exhaustively for the flat-only

architecture[13][14], but as the computational resolution increases the number of possible

test cases increases super exponentially – it becomes increasingly time consuming to

perform exhaustive simulations for flat-radix based architecture. Hence to validate error

propagation for flat-radix based architecture we only consider one case which is the one

with resolution 0.01 (two segments).

This simulation is not exhaustive from level 2 onwards because of the exponential

growth of possible test cases. Instead we randomly sample 106 output combinations from

the level below to calculate errors. Due to this limitation, the simulation does not capture

all the corner cases that might lead to errors accumulation in higher levels. Nevertheless,

the random sampling of input combination makes the simulation closer to actual Bayesian

networks and hence the results could be expected to reflect the real-world performance to

a high degree. The metric used to measure the error accumulation is the percentage of

cases with error greater than 0.1. This metric is chosen for two reasons. Many of the

applications in which probabilistic inference is used a factor of ±10% is acceptable[16][17].

 45

The other reason is to inspire a design choice wherein the resolution of the FRCs can be

selected to be one resolution-scale higher than the required resolution to obtain satisfactory

results.

Figure 24 demonstrates this design choice. Figure 21(a) shows the error

accumulation in flat-only composer based framework, and Figure 21(b) shows the worst-

case performance in error accumulation for FRC based framework with resolution just one

Error accumulation with resolution 0.1 Error accumulation for approximate computation with

resolution 0.01

Figure 24. Comparison of simulation results for error accumulation in large

networks. Both plots denote % of error cases within ±0.1 (considered acceptable in

majority of applications) with increasing depth or ‘Levels’ of the network; (a) The

flat-only composers’ low computational resolution (0.1) causes large amount of error

accumulation at higher levels as indicated in red; (b) Even though it implements

approximate computation, the worst-case performance of the FRCs with

computational resolution of 0.01 is significantly better, at just 2x area cost.

 46

resolution-scale higher than the flat-only composers. As seen the worst-case error

accumulation in (b) is better than the best-case error accumulation in (a). The error

resilience in Bayesian applications allows for a robust inference, even if ~90% of the

computations performed are accurate and the rest have errors. The randomized sampling

performed in the higher levels of the simulation makes sure that the results are

representative of real-life applications.

Figure 25 shows the error distribution at level 14 of the simulated binary BN in

both the lower and higher computational precision cases. The higher precision computation

results in significantly lower cases (note that the y-axis is logarithmic) than the lower

resolution case. This provides with a visual representation of how tightly the errors are

bound due to the higher resolution computation. The approximation involved in the higher

precision computation is not significant enough for large error buildups, the likes of which

we observe in the lower precision computation.

Figure 25. Error distribution comparison at level 14 of the simulated binary BN

 47

CHAPTER 6

CONCLUSION

Probabilistic reasoning frameworks enable many important applications like gene

expression, threat detection, text classification and macroeconomics [7]-[11]. As more

disciplines of science incorporate probabilistic reasoning into their research process, the

list of applications which could benefit from BNs is increasing. The fundamental

incompatibility of these probabilistic frameworks with the conventional computing

paradigm demands new fabric architecture approaches, which perform probabilistic

computations much more efficiently. The magneto-electric circuit framework proposed in

this paper performs high resolution probabilistic computations with high efficiency and

provides with an easily scalable information representation scheme for analog

computations with probabilities. The ability to scale efficiently while maintaining error

resiliency will enable accurate representation of very large BNs with sizes up to a million

random variables, which could potentially be used in applications like personalized gene-

expression networks for cancer treatments [7], large-scale threat detection in computer

networks [8], and others currently not feasible in software-only computing paradigms.

 48

APPENDIX

PSEUDO-CODE OF THE BEHAVIORAL SIMULATION IN C++

Pseudo-code of the behavioral simulation performed in C++ to evaluate

accumulation of errors at higher levels of BN due to low computational resolution.

 Algorithm to simulate error propagation over large binary tree Bayesian

Networks:
Each Bayesian node B has children C, D and parent A.
The subscript 𝑓 denotes full precision computation while the subscript 𝑙

denotes limited precision computation.
level 1
for all possible combinations of C, D:
 {

estimate likelihood 𝜆(𝐵);
 calculate error 𝑒𝜆(𝐵);
 increment counter of corresponding error interval;

perform belief update 𝐵𝐸𝐿(𝐵);
 calculate error 𝑒𝐵𝐸𝐿(𝐵);
 increment counter of corresponding error interval;

provide diagnostic support 𝜆𝐵(𝐴);
 add output combination to file;

}
for level n from 2 to 15:
{
randomly sample 10

6
output combinations from level(n-1);

for all sampled combinations:
 {
 estimate likelihood 𝜆(𝐵);
 calculate error 𝑒𝜆(𝐵);
 increment counter of corresponding error interval;
 compute prior 𝜋(𝐵);
 calculate error 𝑒𝜋(𝐵);
 increment counter of corresponding error interval;

perform belief update 𝐵𝐸𝐿(𝐵);
 calculate error 𝑒𝐵𝐸𝐿(𝐵);
 increment counter of corresponding error interval;

provide diagnostic support to parent 𝜆𝑋(𝐴);
 provide predictive support to children 𝜋𝐶(𝐵), 𝜋𝐷(𝐵);
 add output combination to file;

}
}

 49

BIBLIOGRAPHY

[1] J. Pearl, Probabilistic reasoning in intelligent systems: Networks of plausible inference,

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1988.

[2] A. Darwiche, Modeling and reasoning with Bayesian networks, Cambridge University

Press, 2009.

[3] D. C. Knill and A. Pouget, “The Bayesian brain: The role of uncertainty in neural

coding and computation,” Trends Neurosci., vol. 27, no. 12, pp. 712–719, 2004.

[4] E. Téglás, E. Vul, V. Girotto, M. Gonzalez, J. B. Tenenbaum, and L. L. Bonatti, “Pure

reasoning in 12-month-old infants as probabilistic inference.,” Science (80-.)., vol.

332, no. 6033, pp. 1054–9, 2011.

[5] D. De Ridder, S. Vanneste, and W. Freeman, “The Bayesian brain: Phantom percepts

resolve sensory uncertainty,” Neurosci. Biobehav. Rev., vol. 44, pp. 4–15, 2014.

[6] K. Friston, “The free-energy principle: a unified brain theory?,” Nat. Rev. Neurosci.,

vol. 11, no. 2, pp. 127–138, 2010.

[7] C. Su, A. Andrew, M. R. Karagas, and M. E. Borsuk, “Using Bayesian networks to

discover relations between genes, environment, and disease,” BioData Mining, vol.6,

no. 6, 2013.

[8] Valdes and K. Skinner, “Adaptive, model-based monitoring for cyber attack detection,”

in Recent Advances in Intrusion Detection (RAID), pp. 80–92, 2000.

[9] G.J. Brostow, R. Cipolla, "Unsupervised bayesian detection of independent motion in

crowds," IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, vol.1, pp.594-601, 17-22 June 2006.

 50

[10] P. Lucas, "Bayesian networks in medicine: A model-based approach to medical

decision making," in Proceedings of the EUNITE workshop on intelligent systems in

patient care, 2001.

[11] M. A. Hooker, “Macroeconomic factors and emerging market equity returns: a

Bayesian model selection approach” Emerging Markets Review, Elsevier, 2004.

[12] A. K. Biswas, S. Bandyopadhyay and J. Atulasimha, “Energy-efficient

magnetoelastic non-volatile memory,” Appl. Phys. Lett., 104, 232403, 2014

[13] S. Khasanvis, M. Li, M. Rahman, M. Salehi-Fashami, A. K. Biswas, J.

Atulasimha, S. Bandyopadhyay, and C. A. Moritz. "Self-similar magneto-electric

nanocircuit technology for probabilistic inference engines." IEEE Transactions on

Nanotechnology, vol. 14, no. 6, pp980-991. 2015.

[14] S. Khasanvis, M. Li, M. Rahman, A. K. Biswas, M. Salehi-Fashami, J.

Atulasimha, ... & C. A Moritz, “Architecting for Causal Intelligence at Nanoscale”.

IEEE Computer, vol.48, no.12, pp54-64, 2015.

[15] Han, Jie, and Michael Orshansky. "Approximate computing: An emerging

paradigm for energy-efficient design." 2013 18th IEEE European Test Symposium

(ETS). IEEE, 2013.

[16] A. Onisko, and M. J. Druzdzela, “Impact of precision of Bayesian network

parameters on accuracy of medical diagnostic systems,”Artificial Intelligence in

Medicine, Elsevier, vol. 57, no. 3, pp. 197 – 206, 2013.

[17] S. Tschiatschek, and F. Pernkopf, "On Bayesian Network classifiers with reduced

precision parameters," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 37, no. 4, pp.774-785, 2015.

 51

[18] J. A. Currivan, Y. Jang, M. D. Mascaro, M. A. Baldo, and C. A. Ross, “Low

energy magnetic domain wall logic in short, narrow, ferromagnetic wires,” IEEE

Magn. Lett., vol. 3, 2012

[19] M. Sharad, D. Fan, K. Aitken, and K. Roy, “Energy efficient non-Boolean

computing with spin neurons and resistive memory,” IEEE Trans. Nanotechnol., vol.

13, no. 1, pp. 23–34, Jan. 2014.

	MAGNETO-ELECTRIC APPROXIMATE COMPUTATIONAL FRAMEWORK FOR BAYESIAN INFERENCE
	Recommended Citation

	tmp.1507579922.pdf.a06Py

