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ABSTRACT 

 
SKYNET: A MEMRISTOR-BASED 3D IC FOR ARTIFICIAL NEURAL 

NETWORKS 
 
 

SEPTEMBER 2017 
 
 

SACHIN BHAT, B.E, SIDDAGANAGA INSTITUTE OF TECHNOLOGY 
 

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

 
Directed by: Professor Csaba Andras Moritz 

 
 

Hardware implementations of artificial neural networks (ANNs) have become 

feasible due to the advent of persistent 2-terminal devices such as memristor, phase change 

memory, MTJs, etc. Hybrid memristor crossbar/CMOS systems have been studied 

extensively and demonstrated experimentally. In these circuits, memristors located at each 

cross point in a crossbar are, however, stacked on top of CMOS circuits using back end of 

line processing (BOEL), limiting scaling. Each neuron’s functionality is spread across 

layers of CMOS and memristor crossbar and thus cannot support the required connectivity 

to implement large-scale multi-layered ANNs. 

This work proposes a new fine-grained 3D integrated circuit technology for ANNs 

that is one of the first IC technologies for this purpose. Synaptic weights implemented with 

devices are incorporated in a uniform vertical nanowire template co-locating the memory 

and computation requirements of ANNs within each neuron. Novel 3D routing features are 

used for interconnections in all three dimensions between the devices enabling high 

connectivity without the need for special pins or metal vias. To demonstrate the proof of 
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concept of this fabric, classification of binary images using a perceptron-based feed 

forward neural network is shown. Bottom-up evaluations for the proposed fabric 

considering 3D implementation of fabric components reveal up to 19x density, 1.2x power 

benefits when compared to 16nm hybrid memristor/CMOS technology.       
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CHAPTER 1 

INTRODUCTION 

The field of Artificial Neural Networks (ANNs) has attracted increasing attention 

in recent years. ANNs are preferred computation models for a wide variety of information 

processing applications such as computer vision, pattern recognition, process control, 

signal processing among others which are inefficient when algorithmic approaches of 

conventional rule-based programming are used. ANNs are biologically inspired abstract 

computation models made up of densely interconnected parallel processing units called 

neurons, typically organized in layers. These processing units take several inputs weighted 

by the synaptic weights, which are integrated and mapped to outputs based on a non-linear 

function called the activation function.  

ANNs have a highly parallel architecture, dense connectivity, and distributed 

memory and computation. Hence, implementing neural networks on traditional von-

Neumann-based computers is very inefficient because of their inherent difference in 

architecture. Therefore, several hardware implementations have been proposed with analog 

CMOS [1], digital CMOS [2], and hybrid memristor/CMOS [3] [4], which take advantage 

of their inherent parallelism and perform orders of magnitude faster than their software 

counterparts. Recently, the hybrid memristor crossbar/CMOS systems have received 

widespread attention. Memristors are novel nanoscale devices with multi-state persistent 

memory, which makes them suitable candidates for modeling key features of synaptic 

weights. Analog or digital circuits using CMOS technology address decoding circuits, 

activation function, and other supporting features as part of the neuron functionality. In 
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these implementations, synaptic weights are mapped to a global memristor crossbar array 

integrated on top of CMOS circuits with communication achieved either through area 

distributed interfaces [3] or Through-silicon Vias (TSVs) [5]. A typical implementation of 

a hybrid memristor/CMOS system is shown in Figure 1.  

Conceptually, in ANNs, the synaptic weights and the neurons are co-localized and 

spatially distributed. Synaptic weights grow quadratically with the number of neurons. 

However, the heterogeneity of the coarse-grained stacked hybrid memristor/CMOS 

technology introduces connectivity and scalability bottlenecks, which limit their ability to 

implement neural networks. Furthermore, CMOS logic doesn’t scale as well as the denser 

memristor crossbar arrays and hence, to implement large-scale neural networks, multi-chip 

systems are required which also causes inter-chip communication overhead [6]. The key to 

efficient implementation of ANNs is to restrict the communications to local data transfers. 

As synaptic weights are mapped to a global memristor crossbar array, area distributed 

interface or TSVs are required for communication between the synaptic weights and 

neurons, and decoding circuitry for addressing, which leads to additional performance and 

power overhead [4]. Hence, currently, there is no integrated circuit technology for 

implementing large-scale neural networks.  
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Figure 1: Typical implementation of the hybrid memristor/CMOS systems [3] 
  

To overcome these aforementioned challenges, a new fine-grained 3D ASIC 

technology to implement artificial neural networks for cognitive computing applications, 

SkyNet, is proposed. This technology which builds on uniform vertical nanowire templates 

meets several criteria for  addressing ANN requirements as: (i) it enables dense 3D vertical 

integration of synaptic weights, neurons and interconnect in a fabric-centric mindset; (ii) it 

allows for 3D spatial co-distribution of synaptic weights and neurons across the fabric thus 

mitigating the need for stacked hybrid architecture; and (iii) achieves high local 

connectivity between synaptic weights and neurons  by utilizing novel 3D interconnect and 

routing features. 
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CHAPTER 2 

ARTIFICIAL NEURAL NETWORKS – BACKGROUND 

Artificial neural networks try to model the information processing capabilities of 

nervous systems. They are classified to be one of the major models of computation. ANNs 

are characterized by passively parallel and redundant non-linear processing units called as 

neurons. ANNs are characterized by an activation function and interconnection of these 

neurons defines the functionality of the network.  Figure 2 shows an abstract model of a 

neuron with ‘n’ inputs. The inputs to the neuron can be any real values, with each input 

having a weight associated with it. Strengths or weights associated with the neurons are 

called synaptic weights. The inputs are multiplied with their corresponding synaptic 

weights and integrated at the neuron. The integrated weighted inputs are fed to the 

activation function, which maps it to a real value. Synaptic weights are used to store the 

knowledge acquired by the network and they can be adapted to attain a desired objective. 

ANNs can be made to learn to perform a certain task by adjusting their synaptic weights, 

which can increase or decrease the strength of the signals sent to other neurons. Thus, the 

ANNs can learn to perform without being explicitly programmed. 

As mentioned previously, the functionality of the neural networks is defined by the 

interconnection of neurons. Hence, they can be categorized into various types based on 

interconnections. If the neurons are organized in multiple layers where input from previous 

layers feeds to the next layer without any feedback, the, this type of network is called 

Feedforward neural network. If the output of one layer is fed to the input of its previous 

layer, then these are termed as Recurrent Neural Networks (RNNs). Different types of 

ANNs differ mainly due to their activation function and interconnection of nodes. 
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Figure 2: (A) A general model of a neuron; (B) Feedforward neural network 

2.1 Neuron 

A neuron is the most basic information processing unit that is fundamental to the 

operation of a neural network. It consists of a set of synapses which are characterized by a 

strength of its own. Each input signal is multiplied with a specific synaptic weight attached 

to it. The synapse can have any range that includes positive and negative numbers. It also 

has an additional weight called the bias which can sway the output of the neuron in either 

direction depending on whether it is positive or negative. The sum of the dot products of 

the synaptic weights and the inputs is fed to the activation function which acts as the 

limiting function. It limits the amplitude range of the output signal to some finite value 
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depending dot products. There are different types of activation functions available for use 

such as threshold function, sigmoid function etc. The choice of a particular activation 

function depends on the application. If the output of the activation function of a neuron is 

a binary value, then such a neuron is called a Perceptron. A single perceptron can act as a 

binary classifier which can classify linearly separable patterns. A feedforward multilayer 

perceptron with more than one layer can be used to approximate any continuous function 

according to universal approximation theorem. Hence, neural networks promise a great 

potential for information processing applications if hardware realization can be achieved. 

The figure of an abstract neuron is shown is Figure 3.     

 

Figure 3: An Abstract Neuron 
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CHAPTER 3 

OVERVIEW OF THE SKYNET FABRIC  

3.1 Motivation 

In hybrid memristor/CMOS systems, connectivity between the memristor crossbar 

arrays and underlying CMOS circuits are engineered as an after-thought and is a 

compromise. As ANNs scale in size, number of synapses and connections grow 

quadratically which quickly becomes impractical to wire. SkyNet follows a fabric-centric 

mindset where the active and passive devices, circuit framework, and connectivity are 

carefully engineered together towards a 3D organization. Its manufacturability requirement 

follows the same mindset as other 3D IC fabrics (SkyBridge [7] and Skybridge-3D-CMOS 

[8] [9] [10]). The fabric uses a regular array of uniform pre-doped vertical nanowires as a 

template which is then functionalized with vertical junctionless transistors, memristors, 3D 

routing structures such as bridges, co-axial routing structures, Interlayer-Connection (ILC), 

etc., through material deposition techniques. 

3.2 Core Components  

3.2.1 Vertical Nanowires 

An array of dual-doped regular vertical nanowires are the fundamental building 

blocks of the SkyNet fabric. All the devices and components of the fabric are formed on a 

uniform nanowire template. Forming the vertical nanowires precedes all the manufacturing 

steps. Heavily doped p-type and n-type substrates are vertically stacked and bonded 

together using molecular bonding techniques [11]. A layer of silicon dioxide named as 
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Interlayer Dielectric (ILD) provides the isolation between the n-type and p-type doped 

silicon layers. More layers with different doping profiles can be stacked by performing the 

process iteratively. 

 

Figure 4: Vertical Nanowires 

3.2.2 Memristors 

Memristors or Memristive devices are promising candidates for implementing 

synaptic weights because of their analog memory functionality and persistence. They are 

passive two-terminal devices whose internal resistance depends on the history of the 

applied voltage and current. Upon excitation by a bipolar periodic stimulus, they exhibit a 

pinched hysteresis in the current-voltage domain. Memristive devices typically consist of 

a transition metal oxide layer sandwiched between two electrodes. The resistive switching 

behavior is attributed to the formation and rupture of conductive filaments that aid the 

current flow through the oxide layer. Over the years, memristors with several different 
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oxide materials have been proposed such as titanium dioxide [12] and hafnium dioxide 

[13], to name few.  

The proposed fabric uses titanium dioxide memristive devices for synaptic weight 

implementation. Figure 5 shows the memristor device design. Memristors are distributed 

throughout the fabric along with other fabric components with fine granularity unlike 

stacked architectures in hybrid memristor/CMOS systems. The titanium oxide based 

memristors have an intrinsic rectifying property due to their highly non-linear switching 

dynamics, and hence external select devices such as transistors or diodes are not required 

for their operation [14]. Since the memristors can be deposited with material deposition 

techniques, the manufacturing requirements for them do not depart from that of the other 

SkyNet components. They have similar feature size as fabric components; as small as 

10x10 nm2 has been experimentally demonstrated [13]. Since the silicon nanowires are 

heavily doped, the inner electrode forms an ohmic contact. This kind of structure is like 

the memristors with asymmetric electrodes experimentally demonstrated [15]. 
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3.2.3 Vertical Gate All around Transistors 

Vertical Gate-All-Around (V-GAA) junctionless p-type and n-type transistors are 

the active devices in the proposed fabric. Figure 6 and Figure 7 show the vertical junction-

less transistors in SkyNet. The transistors are used to realize the functionality of the neurons 

and other peripheral circuitry in the fabric. These transistors have uniform doping across 

source, channel, and drain regions. Hence, these junctionless transistors don’t possess 

abrupt junctions which reduces doping complexities. The work function difference 

between the gate electrode and the heavily doped silicon nanowires modulates the electrical 

behavior of these transistors. The work function difference depletes the charge carriers in 

the channel if no gate voltage is applied. However, when an appropriate gate voltage is 

applied, the channel becomes conductive. Since the channel length is dictated by the 

thickness of material deposition instead of lithography accuracy, it allows for scaling the 

channel length beyond the lithography limitations. For the n-type transistors, Titanium 

Nitride is the gate material while Tungsten Nitride is the gate material of choice for p-type 

transistors. Hafnium Dioxide provides the isolation between the gate and the channel. 

Because of their structural simplicity, these transistors can be stacked on the vertical 

nanowires to form 3D neuron circuits thus achieving very high density. These types of 

transistors have been well researched [17] and experimentally demonstrated by our group 

[18]. 
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Figure 5: P-type Junctionless Transistor in SkyNet 
 
 
 
 
 

 
Figure 6: N-type Junctionless Transistor in SkyNet 
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3.2.4 Contacts 

Contacts are required to connect doped silicon nanowires with other components 

of the fabric. Hence, good ohmic contact is necessary. Titanium is the contact electrode 

material for n-doped silicon while nickel is chosen as the contact material for the p-doped 

silicon. The work function difference between the contacts and the silicon must be like 

have a good ohmic contact. Contacts designs are shown in.   

 

 

Figure 7: N-type and P-type Contacts 
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3.2.5 3D Connectivity features in SkyNet 

The functionality of the ANNs depends on the interconnection of the neurons in the 

network. In hybrid memristor/CMOS systems, metal vias are used for connecting CMOS 

neurons with the memristor crossbar arrays. This is sufficient for very small-scale ANNs. 

However, for large-scale ANNs, the wiring requirement explodes with the number of 

synaptic weights. Hence, to efficiently implement ANNs, a good interconnection 

framework is necessary. The proposed fabric supports many kinds of interconnect 

structures to accommodate this connectivity without routing congestions. (i) Bridges are 

metal wires used for horizontal routing of signals between nanowires; (ii) The heavily 

doped nanowires can be used for vertical routing of signals; (iii) Co-axial routing structures 

can be used for vertical routing in addition to the nanowires; and (vi) ILC is for connecting 

n-type and p-type nanowires when implementing circuits with the vertical GAA transistors.  

3.2.5.1 Bridges and Coaxial Routing 

Bridges and Co-axial routing structures are the two kinds of routing structures in 

the SkyNet fabric. Bridges provide connection between the adjacent nanowires while 

coaxial structure offers connectivity in the vertical direction. A single nanowire can 

accommodate multiple bridges at different heights to improve connectivity. The coaxial 

routing structure can at most have two metal layers separated by insulator for isolation. 

This is in addition to the doped silicon nanowire which also provides the vertical 

connectivity. Tungsten is used for routing structures due to its good electric characteristics.   
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Figure 8: Bridges and Coaxial Routing 

3.2.5.2 Interlayer Connection 

The N-type and P-type nanowires are isolated from each other by the interlayer 

dielectric. Hence, a connection is required between the active devices on p-type and n-type 

nanowires. In addition to this, the connection is required to enable the vertical signal 

routing to bypass the interlayer dielectric. Figure 10 shows the structure of interlayer 

connection. The materials are carefully chosen to ensure good ohmic contact between 

them.    
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CHAPTER 4 

PERCEPTRON IN SKYNET 

This chapter shows the complete implementation of a Perceptron using various 

components of SkyNet outlined in the previous chapter. It starts with the hardware 

implementation of perceptron, later discussing about individual components.  

4.1 Hardware Implementation of a Perceptron 

Perceptron is the most basic processing unit of an ANN. There are three important 

factors which requires consideration for developing a hardware solution for the neural 

networks, they are, (i) encoding of signals used in the network; (ii) implementation of 

weights; (iii) the integration and output function (neuron functionality). Figure shows an 

analog implementation model of a perceptron. The inputs to the perceptron is encoded as 

voltages (Vj). For example, if the perceptron is used to identify/classify an image, then the 

brightness of the pixels encoded as voltage values. Memristors are used as synaptic weights 

and a differential amplifier performs as the activation function. There are other alternative 

implementations but analog implementation offers higher implementation density on 

Silicon and requires less power. 
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Figure 9: Analog implementation of the Perceptron 

4.1.1 Synaptic Weights in SkyNet 

Memristors are suitable candidates for the implementation of synaptic weights. 

When the input voltages are applied to the memristors, the currents generated are the dot 

product between the input voltages and the resistances of the memristors according to 

Ohm’s law. The currents can then be summed at a common point which follows according 

to Kirchhoff laws. The voltages corresponding to the summed currents can then be fed to 

a differential amplifier.  

The synaptic weights in a neural network can be positive or negative. Since 

memristors can only represent positive conductances, negative weights cannot be 

implemented with a single memristor. Hence, each weight w is implemented as a 

differential pair of memristor conductances G = G+ - G-. The currents corresponding to 

conductances G+ and G- are summed separately and converted to equivalent voltages 

before being fed to the differential amplifier. Although operational amplifiers in virtual 
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ground mode are typically used for converting currents into voltages, they consume a lot 

of energy and area. For this work, a technique shown in [18] is used; in this, the voltage 

drops across grounded memristors is fed to the differential amplifier, and by choosing 

memristors with appropriate conductances, the inputs to the differential amplifier can be 

swayed one way or the other, to classify a set of linearly separable input patterns.  

Figure 12 shows the implementation of weight with a pair of memristors stacked 

on the nanowire. The memristors with conductances G+ are implemented on the p-type 

nanowires whereas memristors with conductance G- are implemented on the n-type 

nanowires. Since the currents corresponding to conductances G+ and G- are summed 

separately, they are isolated from each other in SkyNet through the interlayer dielectric 

between the p-type and n-type nanowires. This isolation effectively reduces the footprint 

of the memristor array. Since sneak path currents are directly proportional to this footprint, 

this isolation reduces the sneak path currents substantially. The currents from the p-type 

and n-type nanowires can easily be summed using the SkyNet routing structures such as 

bridges and co-axial routing. Although the figure shows a pair of memristors on the dual-

doped nanowire, many pairs of memristors can be stacked to achieve high synaptic weight 

density. In contrast to the hybrid memristor/CMOS systems, the proposed fabric doesn’t 

impose any restrictions on the placement of memristors along with the other fabric 

components, and hence high density and homogeneous distribution of synaptic weights 

and neurons is possible. 
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Figure 10: Synaptic weights implementation in SkyNet 
 

4.1.2 Differential Amplifier 

A differential amplifier is chosen to implement the activation function. If the 

difference between the one input and the other is positive, then it outputs a logic high 

Figure 11: Circuit Implementation of Differential amplifier in 3D  
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otherwise a logic low. It is to be noted that the transfer characteristic of the differential 

amplifier closely resembles that of the sigmoid function. The figure shows the 

implementation of a differential amplifier using vertical p and n-type junctionless 

transistors. The circuit schematic is shown Figure 13. The p-type transistors are used as 

current source loads while the n-type transistors are as input differential transistors. ILC 

connects the p-type and n-type nanowires. The benefits of the 3D integration are obvious 

from the figures. The entire differential amplifier can be realized by using only four 

nanowires as shown in Figure 13. In hybrid memristor/CMOS systems, the neuron 

functionality is implemented in the 2D CMOS layer resulting in a large neuron footprint. 

4.1.3 Read/Write Support Functionality 

The conductances of the memristors must be changed according to the type of 

pattern that is to be classified. Two phases of operation, read phase and write phase need 

to be supported. During the read phase, the conductances of the memristors must be sensed 

without disturbing their state; for memristors with non-linear switching dynamics, this is 

accomplished using V = Vrd. During the write phase, their conductance must be changed. 

A common scheme for this is to apply Vwr on one terminal and -Vwr on the other terminal 

of the memristor. This results in a total voltage drop of 2Vwr across the memristors, 

sufficient since it is greater than the threshold voltage of a memristor.  

Supporting this scheme requires additional circuitry. The Vrd, Vwr and -Vwr signals 

must be multiplexed so that both the read and write schemes can be supported. The circuit 

schematic for such a scheme is shown in Figure 14. Read and write control (VRD-CTRL and 

VWR-CTRL) signals enable and disable the transmission gate-based switches depending on 
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the type of operation. During the read phase, the VRD-CTRL signal enables the switches such 

that the memristors can be read simultaneously. Write operation is sequential, where VWR-

CTRL signals are enabled sequentially depending on the memristor that needs to be written. 

Figure 14 shows the implementation of the read/write circuitry in SkyNet. Co-axial routing 

structures are used to supply the control signals to n and p-type vertical junctionless 

transistors. ILC is used to short the terminals of the p-type and n-type transistors, which 

are connected to the memristors through the bridges. This results in a very compact 

implementation vs. state-of-the-art. 

 

 

4.2 Perceptron in SkyNet 

Figure 15 shows the complete implementation of a perceptron along with the 

read/write support for memristors in SkyNet. V-GAA transistors and memristors are 

distributed throughout the fabric resulting in a compact implementation of a perceptron. 

While p and n-type nanowires sum the currents from the memristors in the vertical 

direction, metal bridges are used for summing the currents from all the nanowires in the 

Figure 12: Read/Write Circuit Support implementation in SkyNet 
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horizontal direction. The voltage drop across the grounded memristors is then fed to the 

differential amplifier for classification. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Perceptron in SkyNet 
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CHAPTER 5 

 EVALUATION METHODOLOGY 

In this chapter evaluation methodology of the SkyNet fabric will be described. The 

device and material level evaluation of the vertical junctionless transistors is described by 

previous works carried in our group [22]. The chapter starts with memristor model 

description. Later, the circuit and layout design methodology is described. The chapter 

ends with the description of the CMOS baseline used.  

5.1 Memristor Model 

As mentioned earlier, titanium oxide memristors are considered for this work. 

Verilog-A VTEAM[20] memristor model compatible with HSPICE was chosen to model 

them. It is a general model for voltage controlled memristors and is used to fit the 

experimental results of titanium dioxide memristors demonstrated [21]. For these devices, 

due to their high non-linear switching dynamics, the memristor conductances can be read 

with Vrd ≈ 0.8V without disturbing the state of the memristors. For all memristors 

considered in this work, Gmax = 100µS and Gmin = 10µS. The synaptic weights can be set 

from – Gmax + Gmin to + Gmax -Gmin because of the differential representation. 

5.2 Circuit and Layout Design 

The TCAD device and process simulation data were used to create behavioral 

models for HSPICE simulation. The schematics of the circuit are designed in physical-

level layout in 3D using the design rules described in. Area footprint is calculated based on 



 

23 

 

the number of nanowires and nanowire pitch. A HSPICE netlist is built to describe the 

layout with all the  

transistor, memristor and interconnection models. The inputs are applied to the netlist for 

functional verification. Due to absence of CAD tools for SkyNet fabric, RC extraction is 

manually done by considering the layout to measure parasitic resistances and capacitances. 

The resistance and capacitance of the interconnect are modeled using Predictive 

Technology Model [23]. 3D layouts that were manually built using the 3D design rules in 

[7].  

Figure 14: SkyNet Fabric Evaluation Methodology 
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5.3 Hybrid Memristor/CMOS Baseline Evaluation 

To serve as the baseline for the SkyNet fabric evaluation results, identical 

benchmarking needs to be done for hybrid CMOS technology. The hybrid 

memristor/CMOS system considered here consists of a layer of memristor crossbar array 

stacked on top 45nm CMOS substrate. The memristor model used for the SkyNet fabric is 

also used here. The schematic and layout for the CMOS circuits are drawn manually using 

the Cadence Virtuoso. The parasitics are extracted using Calibre tool from Mentor 

Graphics. Afterwards, the scaling factors are used to achieve the results in 16nm CMOS 

technology.  
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CHAPTER 6 

EVALUATION AND RESULTS 

For proof of concept of the SkyNet fabric, a single layer perceptron network 

capable of classification of binary images is implemented. In this chapter, the results for 

such an implementation will be shown. Finally, the chapter ends with the discussion of the 

proposed evaluation.  

6.1 Single-layer Perceptron  

A single-layer perceptron is a feedforward neural network, which is capable of 

classification of linearly separable patterns. To validate correct functionality, we 

implement a single-layer perceptron with 3 perceptron, which can classify binary images 

of 3x3 pixels. We completed detailed simulation including a physical layer of such an 

implementation. The functional scheme is shown in Figure 17. It consists of 10 inputs, 32 

synaptic weights, and three output perceptron to classify three different input patterns ‘X’, 

‘T’ and ‘+’. Inputs corresponding to pixels are encoded using voltages V1 to V9. The black 

pixels were encoded with 0V while the white pixels with 0.8V. Since such patterns are 

linearly separable, there exists a set of synaptic weights wi,j which enable successful 

classification. The synaptic weights for such classification were calculated using the 

perceptron learning rule.  
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Figure 15: 3x3 binary image pixels encoded as voltages and single-layer perceptron     
used to classify the image 

 
 

 
Figure 16: Test Patterns used 

 
 
 

Table 1: Benchmarking results for the single-layer perceptron 
 
 Single-layer 
perceptron 

Area 
(um2) 

Power 
(uW) 

Latency 
(ps) 

SkyNet 
 

0.21 5.325 9.49 

Hybrid System 
 

4.59 13.845 17.085 
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Table 1 shows the single-layer perceptron benchmarking results vs. the hybrid 

memristor/CMOS 16nm, which also was completed. The proposed SkyNet design has 21x 

density benefits, 2.6x improvement in latency and 1.8x power efficiency over the hybrid 

stacked version. These density benefits are substantial even at this small ANN. Larger 

designs would benefit increasingly from the connectivity in this fabric vs. state-of-the-art 

hybrid schemes due to the higher routing demand in the stacked CMOS version that has no 

dedicated resources for connecting the neurons between hidden layers in an ANN. 

6.2 Multi-layer Perceptron  

The multi-layer perceptron (MLP) is a feedforward neural network with one or 

more hidden layers between input and output layer of neurons. MLP networks are used for 

non-linearly separable pattern classification. They can approximate any continuous 

function to any given accuracy, provided sufficiently many hidden units are available. 

Supervised learning techniques such as backpropagation is used for training the weights in 

MLP networks. This involves minimizing the mean-squared error between the inputs and 

outputs iteratively using the gradient descent optimization algorithm. The errors are 

calculated iteratively using the chain rule to calculate the gradients layer by layer.  

A MLP network to classify binary images of 4x4 pixels into four different classes 

is implemented. It consists of 18 inputs including with bias inputs, 228 synaptic weights 

(228 pairs of memristors), 10 hidden layer neurons and 4 output layer neurons with sigmoid 

activation function to classify noisy versions of patterns ‘H’, ‘L’, ‘+’ and ‘O’. Inputs 

corresponding to pixels were encoded using voltages V1 to V16. The black pixels were 

encoded with 0V while the white pixels were encoded with 0.8V. Such patterns with noises 
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are not linearly separable and hence, an MLP network with multiple layers is required to 

classify such patterns. The MLP perceptron was trained and weights were computed using 

the backpropagation algorithm in Matlab software running on an external computer. This 

kind of weight importing requires the least amount of on-chip hardware overhead but 

however doesn’t consider the defects of the memristors. The ‘real’ weights were then 

normalized and converted to equivalent memristor conductances in the range of 10uS – 

100uS. Such kind of training is called as ex-situ training.  

 

Figure 17: MLP network for classifying 4x4 binary images 
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Figure 18: 4x4 binary images of various patterns for training the MLP network  

 
 

Table 2: Benchmarking results for the multi-layer perceptron 
 Single-layer 
perceptron 

Area 
(um2) 

Power 
(uW) 

Latency 
(ps) 

SkyNet 
 

1.04 85.6 35.6 

Hybrid System 
 

19.58 106.95 31.9 

 

Table 2 shows the MLP network benchmarking results of SkyNet vs. the hybrid 

memristor/CMOS 16nm. The SkyNet achieves significant improvement in density over the 

hybrid system because of the 3-D stacked implementation and routing structures. The 
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SkyNet consumes less power because of the low power junctionless devices and smaller 

interconnections overhead when compared to the hybrid system. The performance is 

slightly worse than the hybrid system because of the low performance junctionless 

transistors in SkyNet. The intrinsic delay of the transistors because of their structures and 

junctionless operation results in slightly worse performance. The junctionless transistors 

have weaker device driving capability which makes slower when driving large capacitive 

loads. In the MLP network, the transistors in the hidden layer drive the memristors and 

output neurons resulting in slow operation. However, the performance of the SkyNet is still 

orders of magnitude better than the software implementations of the neural networks 

because of fewer layers of abstraction. The area density and power are two most critical 

aspects for any hardware implementation of neural network and SkyNet achieves good 

results in both.   

6.3 Impact of Weight Resolution on Pattern Recognition Accuracy of MLP  

Theoretically, memristors should be able to switch to any resistance between the 

specified high-resistive (HRS) and low-resistive states (LRS). The conductance of the 

memristor can be arbitrarily programmed by controlling the amount of charge flowing or 

flux across the memristor. Practically, memristors can only switch between finite number 

of states. Thus, this system can’t provide the same precision and resolution as that of a 

digital computer. However, it has been shown that for neural networks to converge within 
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a reasonable recognition accuracy, low precision devices are sufficient. In this section, the 

impact of memristor precision on recognition accuracy of the MLP network is studied.   

 

Figure 21 shows the Pattern recognition accuracy results for four different cases. 

Two weight resolutions of 100µS (10kΩ) and 200µS (5kΩ) is considered for this work. A 

resolution of 100µS provides slightly more than 4-bit precision for the ranges of 

conductances considered while a resolution of 200µS provides 5-bit precision. The 

differential weights can only be these values or integer multiples of them. The x-axis of the 

plots represents the patterns fed to the MLP network whereas the y-axis represents the 

neuron output of four output neurons of MLP network. If an output neuron outputs a value 

above 0.4 V, then it signifies the successful classification of the applied input pattern.    In 

Figure 19: Pattern recognition accuracy results for different weight resolutions 
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Figure 21(A), MLP network for the classification of trained input patterns with weights 

having a resolution of 100µS is studied. The plot demonstrates that a 10µ resolution is too 

coarse to be acceptable as the misclassification rate is 10% for the training patterns. Usually 

MLP networks perform better for input patterns that they were trained for. In Figure 21(B), 

classification of trained input patterns with weights having a finer resolution of 200µS is 

plotted. In this case, the MLP network classifies all the patterns without any errors as 

expected.  Then the MLP network is used to classify 40 additional test patterns with one-

bit flipped from the original trained patterns. Since these patterns were not used for 

training, the MLP network tries to classify these patterns based on what it saw during the 

training. Figure 21(C) shows the classification accuracy for 100µS weight resolution. Here, 

the misclassification rate goes to 17.5% (7 patterns wrongly classified out of 40) for the 

resolution of 100µS which is not unacceptable. Figure 21(D) shows the classification 

accuracy for weight resolution of 200µS. However, the for the weight resolution of 200k, 

the misclassification rate is 5% (2 patterns wrongly classified out of 40) which is acceptable 

given that the MLP network is classifying images it hasn’t seen before. This work shows 

that a 5-bit precision is sufficient to classify patterns in a reasonably large neural network. 

If memristors with higher on/off ratio are considered, then an 8-bit precision should be 

possible which can further improve the convergence of the MLP network.         
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CHAPTER 7 

CONCLUSION 

In this dissertation, a new 3D ASIC technology for ANNs, SkyNet, has been 

proposed and evaluated. SkyNet achieves 3D fine vertical integration of various 

components of ANN such as synaptic weights, neurons and interconnects. SkyNet enables 

the co-location of the synaptic weights and the neurons which is essential for any 

implementation of ANN.       

As part of the fabric, various components are introduced, and their use in the 

implementation of ANNs is demonstrated. Dual-doped vertical nanowires are the building 

blocks of the fabric around which various components are deposited with material 

deposition techniques. The core devices of the SkyNet are vertical memristors, vertical 

junctionless p-type and n-type transistors, other components include various 3D routing 

structures such as bridges, contacts, interlayer-layer connection. All these components 

contribute to the realization of various aspects of ANNs such as synaptic weights, neurons 

and interconnections. The fabric allows for co-localization of synaptic weights and 

neurons, which is not possible with the hybrid memristor/CMOS approach. SkyNet is then 

used to implement a Perceptron, one of the first ANNs to be demonstrated. A 

comprehensive evaluation methodology is developed to evaluate the fabric. Single-layer 

and multi-layer perceptron is used for evaluating the fabric.  

When compared to the hybrid memristor/CMOS system, SkyNet shows benefits in 

all aspects including performance, power and area for the ANNs considered. Finally, a 

study to show the impact of weight resolution on the recognition accuracy of the MLP 

network is studied. A comprehensive analysis on all evaluation results is applied to 
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understand the benefits and shortcomings of SkyNet. Bottom-up evaluations for the 

proposed fabric considering 3D implementation of fabric components reveal up to 19x 

density, 1.2x power benefits when compared to 16nm hybrid memristor/CMOS 

technology.    
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