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ABSTRACT 

SEX DIFFERENCES IN RAPID ESTRADIOL SIGNALING IN THE ZEBRA 
FINCH (TAENIOPYGIA GUTTATA) AUDITORY CORTEX 

 
SEPTEMBER 2017 

 
AMANDA A. KRENTZEL, B.S., CENTENARY COLLEGE OF LOUISIANA 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Luke Remage-Healey 

 
 

Although several sex differences have been described in brain structure, function, 

and development, sex as a biological factor is underrepresented in neuroscience studies. 

In the mammalian brain, there are sex differences in the mechanism of rapid estradiol 

actions on neuronal physiology. In the songbird, the brain is a major source of estradiol 

production, and estradiol rapidly modulates auditory responsiveness through dynamic 

changes and an unknown receptor mechanism. I set out to determine if there are sex 

differences in rapid estradiol modulation of auditory cortical activity, as has been shown 

in other systems. I tested this hypothesis through three aims: 1) to determine whether the 

identity of interneurons in the auditory regions of the brain differs between the sexes,2) 

test whether acute, endogenous estradiol production is necessary for auditory 

responsiveness in both sexes and 3) test whether the membrane estrogen receptor GPER1 

is necessary and sufficient to shape auditory-evoked activity in both sexes. I found that 

male and female estrogen-producing and estrogen-sensitive cells did not differ in 

coexpression with interneuron subtype markers in auditory cortical regions. I also 

determined that more regions of the male auditory cortex depend on acute, endogenous 

estrogen production for auditory-induced gene expression than that of females, indicating 
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that males are more sensitive to acute-synthesis of estrogens than females. Finally, I 

found that narrow-spiking (NS) neurons in the caudomedial nidopallium are more 

associated with auditory responses than broad-spiking (BS) neurons in males whereas in 

females these cell types are similar.  GPER1 is necessary for the full auditory 

responsiveness and coding but only in NS neurons of males, indicating an alternative 

receptor mechanism in females. In this dissertation, I describe a mechanism by which 

rapid estrogen modulates auditory responsiveness in males, but females have differences 

in the reliance on brain derived estradiol as well as receptors that mediate estradiol’s 

actions. This dissertation provides a framework to study sex differences using a 

mechanistic approach, and highlights the importance of sex as a biological variable in 

physiological studies even in brain regions with anatomical similarities.  
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CHAPTER I 

SEX DIFFERENCES AND RAPID ESTROGEN SIGNALING: A LOOK AT 

SONGBIRD AUDITION 

Published in Frontiers in Neuroendocrinology 
Authors: Amanda A. Krentzel and Luke Remage-Healey 
Year: 2015 

Abstract 

The actions of estrogens have been associated with brain differentiation and 

sexual dimorphism in a wide range of vertebrates. Here I consider the actions of brain-

derived ‘neuroestrogens’ in the forebrain and the accompanying differences and 

similarities observed between males and females in a variety of species. I summarize 

recent evidence showing that baseline and fluctuating levels of neuroestrogens within 

the auditory forebrain of male and female zebra finches are largely similar, and that 

neuroestrogens enhance auditory representations in both sexes. With a comparative 

perspective I review evidence that non-genomic mechanisms of neuroestrogen actions 

are sexually differentiated, and I propose a working model for nonclassical estrogen 

signaling via the MAPK intracellular signaling cascade in the songbird auditory 

forebrain that is informed by the way sex differences may be compensated. This view 

may lead to a more comprehensive understanding of how sex influences estradiol-

dependent modulation of sensorimotor representations.   

Introduction 

The recent forceful call to balance the study of both sexes in bio- medical 

research (Clayton and Collins, 2014) reflects a resurgent interest in the biological 

understanding of sex differences. Sex differences in brain structure and function have 

been intimately linked to the synthesis and actions of estrogens in the central nervous 



2 

system (CNS). A fundamental role for estrogens in shaping the differentiation of 

forebrain structures in particular is evident across vertebrates. Accumulating evidence 

shows that the nonclassical ‘acute’ actions of estrogens (30 min) are different between 

the sexes and that the underlying mechanisms for acute actions may in fact themselves 

be differentially organized during development. Here, I consider these themes as they 

relate to the role of brain-derived estrogens in the regulation of the songbird brain, with 

a particular focus on sex differences in auditory function. The work synthesized here 

illustrates four broad themes. First, although the songbird brain is potently sensitive to 

the masculinizing effects of estrogens during development, brain estrogen levels (within 

the auditory forebrain) are not detectably different between males and females during 

the critical masculinization window. Second, neuroestrogen fluctuations occur in 

response to socially-relevant stimuli in the auditory forebrain of both males and 

females. Third, the acute, modulatory actions of estrogens    on auditory representations 

in the songbird auditory forebrain are also similar in males and females. These findings 

indicate a broad conservation of mechanism between the sexes for the control of 

auditory representations by neuroestrogens. However, there is still evidence that 

auditory circuitry in the songbird is influenced by sex-specific mechanisms that are 

driven by neuroestrogens. I suggest that when considering the rapid ‘nonclassical’ 

signal transduction pathway(s), sex is likely an important factor that influences how 

cells respond to estrogens, drawing upon work in other model organisms and the 

parallels in songbirds. Taking into account the predominantly peripheral vs. central 

source of estrogens in zebra finches (females vs. males, respectively), acute estrogen 

signaling in the auditory forebrain and the molecular signaling pathways recruited are 
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also likely to reflect mechanisms of compensation for (rather than further derivations of) 

sex differences. Below, I propose a working model for a nonclassical estrogen-

dependent MAPK (mitogen-activated protein kinase) signaling pathway in the songbird 

auditory forebrain and how it can be used to test the mechanisms of compensation. 

Sex differences in estrogen actions in vertebrates 

Sexual differentiation of the brain has been intimately tied to the aromatization 

of androgens and the local actions of estradiol (E2) in neural circuits. Pioneering work 

in rodents established that exposure to pre and post-natal surges of testosterone 

masculinized sexual behavior (Phoenix et al., 1959) through the aromatization of 

testosterone into estradiol (Naftolin and Ryan, 1975). Following this proposed model 

for sexual differentiation, many other neural and behavioral sex differences have been 

attributed to estradiol’s permanent or organizational effects early in development as 

well as the transient or activational role estradiol plays in adulthood. While these 

organizational effects can be explained in part by long-term genomic actions of 

estradiol interacting with nuclear estrogen receptors, a more unified view of sexual 

differentiation proposes that genetic differences attributable to sex chromosome 

complement interact with hormonal and environmental factors to direct masculine vs. 

feminine development (Arnold et al., 2004; McCarthy and Arnold, 2011). Previous 

reviews have considered how organizational effects of testosterone and estradiol direct 

sexual differentiation during critical periods in mammals (Forger and de Vries, 2010; 

McCarthy, 2010) as well as birds and lizards (Balthazart et al., 1996; Ball and Wade, 

2013). Here, I consider how neuroestrogens may shape auditory processing differently 

in male vs. female songbirds, which relies on this foundational framework. 
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As noted by McCarthy and Konkle (2005), while the organizational/activational 

hypothesis has been a useful model to understand sex differences, the simplicity of the 

aromatization story for the reproductive diencephalon of the mammalian brain does not 

always hold true for other non-reproductive regions such as the hippocampus and 

cortex. In particular, observed differences between males and females may not be due to 

sex differences in the traditional, organizational sense, but rather molecular 

compensatory mechanisms of hormone signaling that contribute to sex “sameness”. 

Here, I draw upon this perspective to consider how neuroestrogens are controlled both 

independently and in conjunction with gonadal steroids, and consider how downstream 

estradiol signaling mechanisms can inform our understanding of acute neuromodulation 

in sensory and sensorimotor cortex. This perspective keeps us cognizant of alternative 

molecular strategies between the sexes and how they may arrive at similar 

neurobehavioral endpoints. This conceptual framework for the actions of estrogens can 

be considered part of a larger, growing appreciation for a sub-category of differentiated 

mechanisms that may compensate for sex differences in brain morphology and function 

to achieve similar behavioral ends in males and females (De Vries, 2004; McCarthy et 

al., 2012). Below, I review recent work on sex differences in molecular mechanisms for 

the rapid actions of estradiol signaling and the control of auditory representations in the 

songbird brain. 

Sex differences in acute effects of estrogens on the brain 

Acute effects of estrogens in peripheral tissues have been well documented since 

the experiments of Szego and Davis (1967) on rat uteri. Kelly et al. (1976) first 

documented rapid estrogen effects in the hypothalamus of cycling females, 
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demonstrating that acute estrogenic actions also occur in the brain. The acute effects of 

estradiol have been observed at multiple levels of biological organization, and it is 

therefore difficult to reach consensus for what classifies as an ‘acute’ effect. The initial 

observed acute effects in the brain were noted immediately after estradiol application 

(seconds) to the electrophysiological recording site (Kelly et al., 1976). Changes in 

kinase activity and phosphorylation occur over the time course of several minutes 

(Abraham et al., 2004; Boulware et al., 2005; 2007; Heimovics et al., 2012) and 

behavioral changes have been described in as little as 15 min to an hour (Cross and 

Roselli, 1999; Taziaux et al., 2004; Cornil et al., 2006; Fernandez et al., 2008; Trainor 

et al., 2008; Phan et al., 2012). For the purposes of this essay, I refer to acute events as 

changes in cellular physiology, signal transduction, or genetic expression that occur 

within 60 min, which is shorter than the canonical long-term effects initiated by nuclear 

estrogen receptors that can range from several hours to days after estradiol treatment 

(O'Malley and Means, 1974). It has been hypothesized that acute effects are initiated 

through estrogen interactions with extra-nuclear and/or membrane receptors (Blaustein 

et al., 1992; Milner et al., 2001; Toran-Allerand et al., 2002; Revankar et al., 2005), and 

there is ample evidence to support that membrane receptors can mediate acute effects 

(Filardo et al., 2000; Revankar et al., 2005; Srivastava and Evans, 2013).  Here, I will 

focus on effects that are observable within a maximum time course of one hour and/or 

those that have been explicitly characterized by membrane associated mechanisms. 

 Electrophysiology in rodents 

Estradiol can initiate cellular responses via membrane-associated actions in a 

variety of brain regions (Meitzen and Mermelstein, 2011; Roepke et al., 2011; 



6 

Srivastava et al., 2011; Luine and Frankfurt, 2013), and sex differences have been 

reported since the very beginning of this literature. The initial findings in the 

hypothalamus were shown to fluctuate firing rate depending on the stage of estrus of 

female rats (Kelly et al., 1976), and slices from males and females exhibited different 

firing responses to testosterone and estradiol, depending on hormonal state (Teyler et 

al., 1980). The acute effects of estrogens have been extensively studied in the context of 

long- term potentiation (LTP) in the hippocampus, but few comparisons have been 

made between the sexes (as reviewed by McCarthy and Konkle, 2005). One exception 

is the observation that estradiol- induced LTP is more pronounced in intact females as 

compared to ovariectomized females and intact males (Vierk et al., 2012). However, the 

majority of experiments exploring these questions in vitro test either one sex or a mix of 

tissues without explicit comparisons between the sexes. 

One major issue that has received recent attention is that many studies examine 

only one sex (primarily males), usually for the sake of simplicity. However, adding in 

both sexes to a research design can change the scope of the question as well as gain 

unforeseen insight to how these mechanisms are understood. An example of this is the 

‘instant classic’ work of Huang and Woolley (2012) in which estradiol-dependent 

suppression of inhibitory hippocampal neurons was determined to be sex-specific. In 

this case, the acute effects of estrogens occur through a membrane version of the 

estrogen receptor (ERα) that is associated with a metabotropic glutamate receptor. This 

mechanism is in turn coupled to retrograde signaling of the endocannabinoid 

anandamide to ultimately suppress GABAergic inhibitory currents. After identifying 

this mechanism in slices from female hippocampus, Huang and Woolley then observed 
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that E2 had no effect in gonadally intact or castrated males. Beyond the intriguing 

signaling mechanism for rapid E2 effects, this study is important because it illustrates 

the importance of including both males and females in a study design. If this study had 

focused on either sex exclusively, an important E2-dependent effect on inhibitory 

synapses would have gone unnoticed or the mechanism may have been assumed to be 

ubiquitous for E2-dependent changes in the hippocampus, which is a conclusion often 

drawn in single sex studies. Therefore, the necessity of continuing to focus attention on 

potential sex differences in the acute effects of steroids like estrogens has become ever 

more apparent. 

Intracellular estradiol-dependent effect 

Some rapid intracellular signaling events initiated by estradiol actions at the 

cellular membrane are also sex specific in the hippocampus (Meitzen et al., 2012). 

Specifically, actions at a membrane estrogen receptor have been shown to regulate 

cAMP response element binding protein (CREB) phosphorylation in female but not 

male hippocampus. Interestingly, this sex difference of rapid estradiol signaling is 

organized within the first few days of life. Females exposed to testosterone or estradiol 

only did not develop the estradiol sensitive pCREB expression, indicating 

masculinization; however, females that were given dihydrotestosterone developed the 

female-typical signaling via CREB. This illustrates that conversion of testosterone into 

estradiol is essential for this non-classical hormone action. What is truly remarkable 

about this is work is that it shows that rapid estradiol mechanisms may also be under the 

control of sexually differentiated mechanisms early in development and these actions 

can be permanent. 
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Rapid estradiol signaling has also been reported to affect behaviors that differ 

greatly between males and females such as aggression, copulation, and learning (as 

reviewed by Laredo et al., 2014). While there has been extensive study of how these 

behaviors differ between males and females (Rhen and Crews, 2000; Riebel et al., 2002; 

Adkins-Regan and Leung, 2006; McCarthy et al., 2012), and while these behaviors have 

been linked to rapid estradiol signaling, few studies address how rapid estradiol 

signaling mechanisms might differ between males and females to mediate or modulate 

these behaviors. One example of this is the recent work examining rapid mechanisms 

underlying estradiol-dependent signaling that influences object recognition memory in 

the hippocampus (Fan et al., 2010; Boulware et al., 2013; Fortress et al., 2013; Luine 

and Frankfurt, 2013). Despite the importance of this literature, to date, most of this 

work has been conducted in females and to my knowledge similar relationships in 

males have not yet been tested. Because there are sex differences reported in how males 

and females perform in objection recognition tasks (Frick and Gresack, 2003), it is 

possible that this behavioral difference is in part due to changes in molecular 

mechanisms of estradiol signaling in the hippocampus. This hypothesis has been 

partially supported by differential ERK (extracellular-signaling regulated kinase) 

phosphorylation (a target of membrane estradiol effects) in the ventral hippocampus in 

males and females after fear conditioning (Gresack et al., 2009). Future experiments 

exploring these mechanisms of estradiol-mediated effects through ERK signaling in 

both sexes will give a more thorough picture of how downstream mechanisms maybe be 

utilized in males and females to serve similar or dissimilar behavioral endpoints. 
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Behavior can also change the production of brain-derived estradiol rapidly, 

which could be associated with sex differences in downstream mechanisms. For 

example, one study has reported rapid changes in estradiol content and aromatase 

activity in the hypothalamus that differs between male and female Japanese quail 

depending on behavioral context (Dickens et al., 2014). Specifically, these authors 

examined how exposure to copulation or restraint stress changes rapid E2 content and 

aromatase activity in hypothalamic regions, reporting that males have more aromatase 

activity and estradiol than females in medial preoptic nucleus and bed nucleus of the 

stria terminalis (POM/BNST), and that only males exhibited changes in estradiol 

synthesis following behavioral manipulations whereas females remained unchanged. In 

summary, there are promising avenues for understanding sex differences in how 

estradiol signaling is modulated rapidly within the brain in response to different 

environmental cues or behaviors. Of particular interest is the need to fully resolve the 

relationship between peripheral and brain-derived estrogens and their combined impact 

on rapid neuroestrogen fluctuations and downstream intracellular signaling pathways. 

The zebra finch model system 

Zebra finches have a long history serving as an animal model for vocal learning, 

including behavioral, molecular, neural circuitry, and hormonal perspectives. For 

example, the vocal learning period in songbirds has direct parallels to the sensitive 

period of human language development (Jarvis, 2004). Discoveries about the molecular 

mechanisms essential for song development in the song circuit have led to insights into 

genes involved in human develop- mental language disorders (as reviewed by Enard et 

al., 2002; Wohlgemuth et al., 2014) as well as intriguing homologies with   the language 
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structures of the human brain (Pfenning et al., 2014). Songbirds therefore have 

translational power in comparison to other model organisms that do not exhibit vocal 

learning. Intensive work on the neurobiology of the zebra finch has yielded a detailed 

map of the interconnected network of discrete nuclei involved in auditory function, 

sensorimotor integration and motor patterning of vocal communication signals and 

vocal learning (Brainard and Doupe, 2000; Jarvis, 2004; Bolhuis and Gahr, 2006; 

Mooney, 2009; Hahnloser and Kotowicz, 2010). Steroid hormones have been shown to 

be essential for development and masculinization of the song circuit (Holloway and 

Clayton, 2001) as well as playing an important neuromodulatory role in auditory 

perception and discrimination in adults (Maney and Pinaud, 2011; Pinaud and Tremere, 

2012; Pawlisch and Remage-Healey, 2015). A unique advantage of the zebra finch 

model is that it provides a vocal learner that breeds well in lab settings and exhibits 

pronounced neuronal steroidogenesis, leading to the direct examination of the 

relationship between neuronal steroids and vocal learning (Mello, 2014). Because the 

song-circuit has been well studied, the zebra finch is an ideal model for studying the 

influence of neuronal steroids on sensory and motor aspects of song. In songbird species 

like the zebra finch, song itself is a sexually-dimorphic behavior; only males learn songs 

for use in mate attraction and females learn to discriminate among potential mates via 

their songs (Zann, 1996). This behavioral sex difference led to the discovery of 

profound sex differences in brain regions essential to song production in the songbird 

brain (Nottebohm and Arnold, 1976), which has itself led to the recent exploration of 

the role of steroid production in the brain in directing sexual differentiation in neural 

circuits and behavior. 



11 

 Steroidgenesis in the zebra finch 

Steroidogenesis in the brain has been well-established (Corpechot et al., 1981) 

and is highly conserved in the forebrain of vertebrates such as fish, amphibians, reptiles 

and birds (Callard et al., 1978). Steroidogenesis in the central nervous system has been 

implicated in the sexual dimorphisms found in the zebra finch brain. While early 

elevation in gonadal testosterone that is aromatized into estradiol plays an essential role 

in sexually dimorphic brain development in mammals, this mechanism does not fit 

perfectly with the development of the song circuit in male songbirds. Many motor 

nuclei of the zebra finch song circuit are sexually dimorphic, such that males have large 

nuclei devoted to the output of song and these nuclei are either much smaller or 

nonexistent in females. Estradiol plays a critical role in the masculinization of this 

circuit (Nordeen et al., 1986; Grisham et al., 2002), in particular estradiol made in the 

brain independent of gonadal steroids. 

One proximate explanation for sex differences in the zebra finch is the sex 

differences driven by chromosome complement. Many sex differences in gene 

expression can be attributed to Z-linked genes (Naurin et al., 2011), and there is little 

dosage compensation of sex-linked genes on the Z and W chromosomes (Naurin et al., 

2012), in which males have two copies of Z genes that are readily expressed. The 

steroid synthesis enzyme 17b-hydroxysteroid dehydrogenase (17b-HSD) is located on 

the Z gene, which could provide a partial explanation for how sexual differentiation 

occurs regardless of the presence or absence of the gonads (Itoh et al., 2006; London 

and Clayton, 2010). While there has not been a sex difference described in 

steroidogenic acute regulatory protein (StAR), CYP11A1, 3b-hydroxysteroid 
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dehydrogenase (3b-HSD) (London et al., 2006) and CYP17 (London et al., 2003) 

mRNA levels, there is some indication that activity of steroidogenic enzymes have sex 

differences. At baseline levels, 3b-HSD activity is higher in female zebra finch 

telencephalon than males (Soma et al., 2004). 3b-HSD activity is also rapidly affected 

in a sex-dependent manner. Female-biased baseline activity of 3b-HSD is reversed 

under acute stressors (<10 min) during which males have higher activity than females 

(Soma et al., 2004). Estradiol also rapidly changes 3b-HSD activity to a greater extent 

in females than males (Pradhan et al., 2008). Males and females could thus have 

different strategies to engage steroidogenic responses to environmental cues alongside 

fluctuations of other peripheral or neural steroids. The lack of sex difference in 

steroidogenic enzyme expression but presence in activity could be explained by post-

translational modifications to these enzymes. Despite the post-translational 

modifications (i.e., phosphorylation) that have been established for the aromatase 

enzyme (Foidart et al., 1995; Balthazart et al., 2001b, a) there is a great deal of interest 

now in sorting out how other steroidogenic enzymes such as 3b-HSD are similarly 

modified. 

Estradiol and audition in the zebra finch 

While gross morphological sex differences have not been described in the 

auditory lobule of zebra finches as have been described in the motor circuit, there is 

some evidence that steroid actions may have sex differences in the songbird auditory 

forebrain. In particular, aromatase expression differs in certain regions of the auditory 

lobule. In the caudomedial nidopallium (NCM), adult males have more aromatase ir-

positive fibers as compared to females (Saldanha et al., 2000) and there is more 
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aromatase activity in the male caudal forebrain (Rohmann et al., 2007).  Males also 

have more aromatase pre-synaptic boutons, total synapses, and proportion of synaptic 

aromatase expression in NCM (Peterson et al., 2005). These sex differences have been 

observed in adult animals and not juveniles (Saldanha et al., 2000), and it is unclear 

whether this is organized early in development or whether this difference is sensitive to 

gonadal status. It is also unclear if this difference in expression and activity translates to 

a difference in downstream mechanisms within the NCM (see Sections 4.3 and 5.2.2). 

In addition to a role for local neuroestrogen fluctuations (see Section 4.3), 

gonadal steroid hormones contribute substantially to both neuronal development and 

auditory perception. In adult females, the ovaries produce large quantities of estradiol as 

compared to the male testes (Schlinger and Arnold, 1991, 1992); it is thought that the 

major source of estradiol in adult male zebra finches is the CNS itself (Schlinger and 

Arnold, 1991, 1992). Interestingly, adult male and female serum levels of estradiol do 

not differ (Adkins-Regan et al., 1990), indicating that the differences in brain-derived 

concentrations in males and females maybe compensated by ovarian estradiol 

production, though this has not been explicitly tested. When removing the gonads of 

adult zebra finch males and females, serum levels of estradiol actually increase in both 

males and females, but with males having a much higher mean difference than females 

(Adkins-Regan et al., 1990). One hypothesis to explain these patterns is that there is 

negative feedback from the gonads on alternative sources of steroids, such as the CNS 

(Schlinger and Arnold, 1991, 1992). Other estrogens, such as estrone, could also be 

important in the context of sex differences in production and action, but to my 

knowledge, this has not been directly explored in the zebra finch. 
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Peripheral sources of steroids have impacts on auditory responsiveness in the 

auditory cortex. Exogenous estradiol implants enhance auditory responsiveness of cells 

in the auditory lobule (Maney et al., 2006) and changes in cellular responsiveness to 

song also depend on breeding season in seasonal songbirds (Heimovics et al., 2012). 

Exogenous implants of estradiol also influence auditory responsiveness in subregions of 

the auditory lobule (Sanford et al., 2010). The relationship between gonadal supplies of 

estradiol and local brain supplies of estradiol could be a very intriguing aspect of the 

neuromodulatory role for estradiol in the auditory forebrain (Maney, 2012). 

Neuroestrogens and auditory function 

Experiments directly measuring neuroestrogen concentrations in the brain of 

zebra finches have been bolstered by the validation of in vivo microdialysis that allows 

measurement and manipulation of 17-beta-estradiol in the forebrain (E2; Remage-

Healey et al., 2008). Initial experiments confirmed that local estradiol synthesis within 

NCM is suppressed by local reverse microdialysis of the aromatase inhibitor fadrozole 

(FAD) in adult males, and that baseline and fluctuating concentrations of E2 were 

detectable using commercial ELISAs (confirmed using GC/MS; Remage- Healey et al., 

2008). The NCM has been the target of most of these experiments to date, partially 

because it is a relatively large brain region to target for microdialysis experiments, and 

also because it is particularly enriched with the aromatase enzyme (see above). In light 

of the topic of this review, one intriguing research avenue has become to determine 

whether sex differences exist in the forebrain production of estrogens in vivo, in awake 

freely-behaving zebra finches. 
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The abundance of aromatase fibers and presynaptic terminals in the NCM of 

male zebra finches as compared to females (see references above) has led to the 

prediction that a sex difference in E2 concentrations could be detectable via in vivo 

microdialysis.  The first experimental test of this hypothesis to directly compare 

microdialysate concentrations in males vs. females showed no detectable differences in 

baseline concentrations of E2 in NCM (Fig.  1; Remage-Healey et al., 2012).  

Dialysates from 12 males and 10 females were measured in the same ELISA run to 

minimize the influence of plate-to-plate variability that may mask differences. These 

findings indicated that, within the NCM, E2 levels at baseline (i.e., in the absence of 

social/visual/auditory input from conspecifics) were similar in males and females (Fig. 

1). A second relevant finding in these early studies was that E2 levels differed by 

greater magnitudes between brain regions (i.e., E2 levels were higher within the 

estrogenic NCM than within other regions of the pallium) in both males (Remage-

Healey et al., 2008) and females (Remage-Healey et al., 2012). Therefore, the most 

relevant source of variation in neuro-estradiol levels was not sex but sub- regions within 

the CNS itself. 
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Figure 1: Baseline estradiol content does not differ between adult males and 
females in NCM. 
Estradiol was collected from adult male and female zebra finches through microdialysis 
in NCM and run on a single ELISA plate. E2 content for males: M = 13.95 pg/ml, SEM 
= 1.68 pg/ml (n = 12); and females: M = 12.29 pg/mL, SEM = 3.14 pg/ml (n = 10). p = 
0.65 for unpaired t-test. The data for this figure were originally presented in text form in 
Remage-Healey et al. (2012). 

 
Instead, the presence of sex differences in synaptic aromatase in NCM may be 

associated with rapid fluctuations in neuroestrogens in the NCM that are sex-specific. 

By and large, the responses of NCM neuroestrogens to auditory playback stimuli have 

been similar between males and females (Remage-Healey et al., 2008, 2012). In adult 

males and females, E2 is elevated during the 30 min play- back of conspecific song, and 

is unchanged from baseline in response to similar playback of white noise in both sexes. 

Therefore, E2 levels are elevated in auditory contexts in both males and females, 

perhaps reflecting a basic feature of neuroestrogen modulation of auditory processing 

regardless of sex.  However, one finding from the study by Remage-Healey et al. (2012) 

indicates a degree of sex-specificity in acute neuroestrogen fluctuations. That is, when 

females were presented with visual stimuli of male or female conspecifics alone (via 
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LCD screen inside the microdialysis chamber) NCM E2 levels were unchanged from 

baseline. This was also true when males were presented with visual stimuli of 

conspecific males. However, males presented with conspecific female visual stimuli 

exhibited a significant elevation in NCM E2 levels, even in the absence of any auditory 

playback associated with the video. It is possible that neuroestrogen elevations during 

visual contact with females, prior to engaging in acoustic interactions, enables a sensory 

‘preparedness’ in which NCM neurons are primed for the processing of auditory 

stimuli, such as female calls, conspecific male vocalizations, or self-generated auditory 

feedback stimuli. The potential sex-specific role of neuroestrogens as participants in 

multi-sensory integration in higher-order cortical regions is an intriguing future 

direction of this line of research. 

More recent work has explored the sex-specificity of E2 fluctuations in the NCM 

of juvenile zebra finches. As mentioned above, juvenile songbirds have been the focus 

of a great deal of research attention in the areas of the neurobiology of critical periods, 

behavioral plasticity, and sexual differentiation (Adkins-Regan et al., 1994; Jarvis et al., 

1995; Arnold, 1997; Gong et al., 1999; Brainard and Doupe, 2000; Konishi, 2004; 

Mooney, 2009). The major portion of sexual differentiation in young zebra finches 

occurs during the incubation and post-hatching periods, which has allowed particular 

accessibility to manipulations during critical windows of differentiation and song 

learning. Treatment with E2 in the first two weeks of hatching is a potent manipulation 

that can masculinize female hatchlings via organizational actions, leading to females 

that are able to sing in adulthood (Gurney and Konishi, 1980; Nordeen et al., 1986; 
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Konishi and Akutagawa, 1988; Adkins-Regan et al., 1994; Grisham et al., 2008; 

Thompson et al., 2011). 

Despite the indications that neuroestrogens can masculinize the zebra finch song 

circuit in vitro (Holloway and Clayton, 2001), recent microdialysis studies in juvenile 

zebra finches reveal that E2 levels in the NCM are undifferentiated between males and 

females during the critical masculinization window (Chao et al., 2015). Specifically, 

while E2 levels were statistically indistinguishable between males and females during 

the early sensory (25–35 dph) and sensorimotor (35–60 dph) age ranges, Chao et al. 

(2015) observed a significant elevation in baseline E2 levels within NCM during the 

late juvenile period, prior to sexual maturity (Fig. 2). Therefore, while NCM accounts 

for the predominant source of nearby estrogen synthesis to the song circuit for potential 

masculinization, the local levels of E2 within NCM during parts of the critical 

masculinization period are undifferentiated between males and females (Chao et al., 

2014). It therefore remains to be determined whether local estrogen microenvironments 

within the song pre-motor circuitry (HVC-RA) are differentiated between males and 

females during the masculinization window. However, it appears that baseline E2 levels 

within NCM are elevated in males as compared to females just prior to sexual maturity, 

although the functional implications of this divergence remain unclear. It is possible 

that neuroestrogens are important for the late-stage auditory feedback that is essential 

for song production in males as they reach sexual maturity and their song ‘crystalizes’ 

into its adult form. 
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Figure 2: Estradiol increases with age in male juvenile zebra finches. 
Estradiol was collected from juvenile male (A) and female (B) zebra finches through 
microdialysis and measured using ELISA. Males have a significant linear relationship 
between days post hatch (which is a mean age over multi-day collections) and estradiol 
content as measured within NCM (F(1,23) = 30.718, R2 = 0.57, p < .0001). Females did 
not have a significant relationship between estradiol content and age (F(1,23) = 1.349, R2 
= 0.10, p = .268). Phases of song-development are depicted across age: sensory stage 
from 25 to 35 dph; sensorimotor stage from 30 to 60 dph; and subadult from 60 to 80 
dph. Data in both panels were adapted from Chao et al. (2015). 

 
 
 
 
The relative paucity of sex differences in fluctuating neuroestrogens in NCM has 

raised the question of whether downstream mechanisms of acute estrogen actions within 

NCM (or as they propagate to other brain regions) are also similar between males and 

females. While this hypothesis has not been directly tested to date, there are indications 
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from electrophysiological experiments that estrogens in NCM exert largely similar 

modulatory actions on the firing patterns of NCM neurons in male and female adult 

zebra finches. The first study to examine acute estrogen actions on NCM neurons 

observed that exogenous E2 treatment enhanced the auditory-evoked firing patterns of 

NCM neurons in males and females (Tremere et al., 2009). In this study, the authors 

reported no sex difference for the influence of estradiol, and so results from males and 

females were combined. Subsequent experimental work reported largely similar 

findings with adult males (Remage-Healey et al., 2010) and adult females (Remage-

Healey et al., 2012), in which retrodialysis of E2 into NCM acutely enhanced the 

auditory-evoked firing rates of NCM neurons. The responses of NCM neurons to E2 

treatment were similar in magnitude in the above studies, but it is important to note that 

in neither case were males and females directly compared in a statistical model. In 

general, therefore, the acute neuromodulatory actions of E2 in the NCM appear to be 

similar between adult males and female zebra finches. It remains to be determined 

whether juvenile zebra finches exhibit similar estradiol-dependent enhancement of 

auditory processing in NCM, and whether the molecular and/or receptor mechanism of 

acute neuroestrogen actions in NCM are similar or divergent in males vs. females. 

Similarly, the receptor mediated mechanism is unclear at present. Co-expression of 

estrogen receptors as well as aromatase in forebrain auditory perceptive regions are well 

conserved in vertebrates such as fish (Forlano et al., 2005) and birds (Metzdorf et al., 

1999). Co-expression studies have shown that in NCM that ERβ is expressed in the 

same cells as aromatase (Jeong et al., 2011) where ERα has little to no co-expression 

with aromatase (Metzdorf et al., 1999; Saldanha and Coomaralingam, 2005). Sex 
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differences have not been found for either receptor expression in NCM. Selective 

agonists for both classical receptors have not been able to reproduce the rapid auditory 

evoked effects of E2 (Remage-Healey et al., 2013), suggesting that other mem- brane 

receptors (ex: GPER1 or ER-X) could control this signaling. GPER1 expression is 

sexually dimorphic in zebra finch telencephalon around the critical period of song-

learning; however, this sex differences disappears by adulthood (Acharya and Veney, 

2012). 

Egr-1 signal transduction mechanisms and sex differences 

Another way to probe for molecular mechanisms of rapid estrogen signaling is 

by examining the signal transduction effects that occur within neurons activated by 

stimuli and/or estrogens. Immediate-early genes (IEGs) have been used extensively as a 

tool for exploring neuronal activation patterns, and it has been suggested that they are 

markers for what is known as a genomic action potential (Clayton, 2000). It is thought 

that the genomic action potential is a way for neurons to code for lasting, significant 

events and initiate the process of memory encoding (Clayton, 2000). One such 

immediate early gene is early growth response-1 or Egr-1 (also known as ZENK in 

songbirds). Egr-1 is a particularly interesting protein because of its known role in 

memory through targeting proteins that are essential for synaptic plasticity (Knapska 

and Kaczmarek, 2004). Below, I focus on the relationship between estradiol and Egr-1, 

as a way of mapping a molecular mechanism of signal transduction within the brain and 

how this mechanism may differ between the sexes. Egr-1 has been the primary 

immediate-early gene used in song bird research to probe for changes in neuronal 

activity within the brain. Egr-1 is known to be auditory responsive (Mello et al., 1992; 
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Mello and Clayton, 1994; Jarvis and Nottebohm, 1997), and has been used as an 

anatomical guide for physiological investigations. Characterizing the cellular and 

molecular mechanisms that control Egr-1 expression could therefore provide insight 

into new directions for auditory research. 

A working model for estradiol signaling in NCM is that estradiol acts via 

membrane-bound estrogen receptors to cause changes in the MEK-ERK pathway, 

which ultimately regulates transcription factors that target immediate early genes such 

as Egr-1 (Maney and Pinaud, 2011). Egr-1 is an important transcription factor in 

regulating proteins essential for learning and memory in the hippocampus (Davis et al., 

2003; Knapska and Kaczmarek, 2004; Veyrac et al., 2013). Because of its 

responsiveness in the auditory lobule as well as its implication in memory formation, 

Egr-1 could be a key protein involved in coding for auditory memories in regions such 

as NCM and CMM (caudomedial mesopallium).  Before I turn to Egr-1 associations 

with auditory processing, memory, and non-genomic estradiol signaling in songbirds, I 

will first consider evidence that sex differences occur within this pathway in other 

model systems. 

Sex differences in the signal transduction of ERK, MAPK, and Egr-1 

The link between estradiol and Egr-1 regulation through MAPK- MEK-ERK 

signaling has been well documented in in vitro cell lines. In rat uteri cell culture, higher 

concentration of estradiol application resulted in elevated Egr-1 expression (Suva et al., 

1991). In human carcinogenic cell lines responsive to estrogens, autophosphorylation of 

Raf-1 induced Egr-1 expression (Pratt et al., 1998) and Egr-1’s responsiveness to 

hormone was blocked by MAPKK inhibitors (Chen et al., 2004). In myocardium rat 
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tissue, Egr-1 mRNA and protein is rapidly induced by estradiol through both ERα and 

ERβ, and this effect is regulated through ERK1/2 (de Jager et al., 2001). In glioma cells 

that only express ERβ, E2 increased Egr-1 expression and regulated by phosphorylation 

of Raf-1 and Erk1/2, indicating that the Raf/MEK1/Erk-MAPK pathway involvement in 

signaling to Egr-1 (Kim et al., 2011). While most studies do not report an estrogen 

response element (ERE) consistently on the Egr-1 promoter (Knapska and Kaczmarek, 

2004), it does contain steroid responsive elements (SRE) and cAMP response elements 

(CRE) that have been previously shown to be activated by extranuclear estrogen 

mechanisms and associated with non-classical estrogen receptors (Aronica et al., 1994; 

Dong et al., 1999; Duan et al., 2002). Deletion of the SRE from the Egr-1 promotor 

eliminates the responsiveness to E2 specifically due to Elk-1 binding (Chen et al., 2004) 

further implicating the importance of the MAPK pathway in regulation of Egr-1. 

Regardless of tissue type and species, Egr-1 sensitivity to estradiol through the MAPK 

ERK pathway seems to be conserved. 

Activation of the ERK-MAPK pathway also has sex differences in different 

contexts as well as across species. Male drosophila exhibits a more profound regulation 

of the MAPK pathway in response to neuropharmacological manipulations as compared 

to females (Sharma et al., 2009). Male and female piglets have different 

cerebrovasodilation effects resulting from brain injury when administered inhibitors for 

the ERK-MAPK pathway (Armstead et al., 2011). In male rat hippocampus, there is an 

increase of phosphorylation of both ERK and CREB after contextual fear conditioning 

that corresponds with a sex difference in the retention of the fear response (Kudo et al., 

2004; Gresack et al., 2009). Sex differences inphosphorylation patterns of this pathway 
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also seem to be responsive to changes in gonadal hormones. Barabas et al. (2006) report 

both sex- and region-specific differences in hypothalamic regions of the mouse brain in 

phosphorylation of MAPK after gonadectomy and estrogen treatment. 

One study by Abraham and Herbison (2005) found sex and regional differences 

in the phosphorylation of CREB to estradiol treatment in the mouse brain. CREB is a 

transcription factor that targets and regulates Egr-1 transcription through the CRE 

promotor site (Knapska and Kaczmarek, 2004). While there was not a sex difference in 

the expression of CREB, females had an increase in pCREB following E2 treatment in 

more brain regions than males. Boulware et al. (2005) also found similar effects in 

female hippocampal tissue culture where induction of pCREB after estradiol was 

specifically regulated by the MAPK pathway, but they did not see this effect in the male 

tissue. The same group also showed that this sex difference is due to aromatization of 

testosterone into estradiol early in development and masculinized females resembled 

males in pCREB induction from estradiol (Meitzen et al., 2012; also discussed in 

Section 3.2). Szego et al. (2006) found female pCREB was sensitive to estradiol 

treatment but Grove-Strawser et al. (2010) did not find these effects in males, 

suggesting that a sex difference emerges early on for the response of pCREB to 

estradiol (Meitzen et al., 2012, reviewed by Laredo et al., 2014). 

Egr-1 expression can also be sexually dimorphic depending on brain region, and 

Egr-1 expression is modulated between the sexes based on context (this is further 

discussed in Section 5.2.1 for song birds), and these differences can have direct effects 

on behavior. An example of this is from Stack et al. (2010) in which blocking Egr-1 

expression in the medial prefrontal cortex brought male anxiety levels up to female 
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levels in mice. Together, these studies provide strong evidence that the signaling 

pathway between estradiol and Egr-1 activation is highly sensitive sex at multiple 

levels. This work has largely explored this connection for the purposes of furthering 

basic understanding of memory, anxiety, cancer, and the biology of signal transduction, 

but it also provides a new source of questions to better understand how these pathways 

may or may not have sex differneces in the context of auditory representations in the 

songbird brain. 

Egr-1 and signal transduction in the songbird 

The link between estradiol signaling and Egr-1 regulation is a promising 

mechanism for auditory responsiveness in the telencephalon of the songbird brain. As 

described, the songbird auditory forebrain circuit is not only Egr-1 responsive to 

hearing song but it is also associated with local estradiol synthesis – suggesting an 

opportunity to explore this link in the context of naturalistic sensory experiences. 

Egr-1 is song-inducible 

The sex differences in neuronal activation of Egr-1 expression in the songbird 

auditory lobule are diverse and somewhat conflicting. Importantly, these differences 

seem to depend on the context for the auditory exposure (summarized in Table 1). One 

example is the representation of tutor song in the auditory lobule as measured by Egr-1 

expression and the question of whether NCM and CMM (caudomedial mesopallium) 

might code different aspects of song based on sex and rearing experience. Song tutoring 

has distinct purposes for males and females. During the juvenile period, males learn 

songs from their fathers and produce adult song that is similar to father’s song as adults 

(Brainard and Doupe, 2000; Williams, 2004; Mooney, 2009). While female zebra 
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finches do not sing, exposure to father’s song also seems to be important for auditory 

perception. Females raised without tutor song lack a preference for father’s song and 

lose their preference for higher quality song (Lauay et al., 2004; Riebel, 2000 ). Thus, 

while exposure to song early in development is critical for both males and females, Egr-

1 studies have been some of the first indications that song is represented differently in 

adult auditory brain regions. 

As I have noted, context is crucial for understanding how song is represented by 

Egr-1 between the sexes. Females have been shown to have increased Egr-1 IEG 

induction in CMM to conspecific male courtship song, although no sex difference is 

observed in the NCM (Avey et al., 2005). Females also have more Egr-1 expression to 

long calls (Gobes et al., 2009). However, other studies show that regional-differences or 

lack of differences in response to song presentation based on type of stimuli and rearing 

environment for these two regions. Females who have a preference for father’s song 

also show a corresponding increase in Egr-1 expression in the CMM but not NCM 

(Terpstra et al., 2006). This difference in IEG expression to father’s or tutor’s song is 

not seen in males in the CMM, however there is a correlation in strength of Egr-1 

expression in NCM to strength of song learning (Terpstra et al., 2004). While in tutored 

males and females there is no sex difference in the auditory lobule to responsiveness to 

songs in zebra finches, untutored females show more Egr-1 induction in both the dorsal 

NCM and CMM to all auditory stimuli (social song, untutored song) as compared to 

untutored males (Tomaszycki et al., 2006). In other song birds, such as the canary, 

CMM seems to encode other types of song perception in females. In particular, Egr-1 is 

upregulated in CMM when a female hears “sexy” syllables of male song (Leitner et al., 
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2005). Since females prefer mate’s song that more resembles father’s song, CMM could 

be the source of father’s song memory in female songbirds that also synthesizes this 

mate preference. For females, it matters whether or not songs are familiar   or 

unfamiliar and females tend to prefer mate song to other con- specific songs (Woolley 

and Doupe, 2008). It is also important whether songs are directed (a male singing facing 

the female with visual displays) or undirected (a male singing with no particular 

direction to the female or in a female’s absence). In females, the NCM seems to be 

coding for novelty, since unfamiliar directed song has the highest Egr-1 expression as 

compared to mate directed and mate undirected. However, CMM instead has equally 

high expression of Egr-1 expression to both unfamiliar and mate directed song as 

compared to undirected song (Woolley and Doupe, 2008). Sex differences in region 

specificity and the regulation of Egr-1 expression could be attributed to many factors 

such as attention and storage/retrieval of song memories. It is also important to note that 

many of the stimuli presented here are not identical or even presented under equitable 

conditions, so it is difficult to conclude exactly how CMM and NCM respond to 

auditory stimuli presentations in males vs. females. This could be one of the many 

reasons that sex differences in the zebra finch auditory lobule are unclear, considering 

the variability at which they are reported for Egr-1 studies. Understanding the nature 

and prevalence of sex differences in cell signaling pathways is important in the songbird 

auditory forebrain because of some recent work at the level of extracellular physiology. 

Yoder et al. (2015) report a sex difference for the auditory-evoked firing rates of NCM 

neurons. While both females and males show tutor song representations in NCM, 

females had a diminished response magnitude to novel songs than males, although the 



28 

functional significance of this difference is not yet clear. It has been suggested that 

NCM stores tutor-song memory in males, which has been supported by both Egr-1 and 

electrophysiology studies (Bolhuis et al., 2000; Terpstra et al., 2004; Phan et al., 2006; 

Yoder et al., 2015). The studies discussed above suggest that NCM may play a similar  

role  in  female  song memory along with CMM, but further exploration is needed to 

determine similarities and differences of male and female tutor song memory. The 

above-mentioned song-presentation differences could be due to organizational effects 

early in development or activational effects that depend on breeding status or social 

context. During the sensory period of song learning, females at post-hatch day 30 

increase c-FOS expression in response to song in the auditory lobule, whereas males 

increase Egr-1 expression (Bailey and Wade, 2003) and this difference disappears at 

day 45 (Bailey and Wade, 2005) where both males and females increase Egr-1 

expression equally in response to song. This suggests that during the sensory period 

males and females could be using different mechanisms to code for song-learning. 

Considering the importance estradiol plays in shaping sex differences of the motor 

circuit of the song system, it is possible that estradiol is also a necessary organizational 

steroid during the critical sensory and sensorimotor periods for auditory processing as 

well. While the former studies did not take into account neuroestrogens, examining the 

role that estradiol has on song-inducible Egr-1 expression in the adult could lend 

important insights into the mechanisms occurring in early development. 
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Table 1. Sex differences of Egr-1 expression in zebra finch 

 
The role of estradiol on song-inducible Egr-1 expression 

Estradiol has been shown to influence Egr-1 expression in the auditory lobule in 

response to song playback. Female white-throated sparrows breed seasonally, and in the 

winter months, their ovaries regress and estradiol serum levels reach low-baseline 

levels. This makes them a great model for studying systemic estradiol effects on the 

brain. Maney et al. (2006) implanted these seasonal breeders with E2 and blank control 

capsules to measure how the presence of systemic estrogens affects the Egr-1 response 

to conspecific song. They found overall that E2 birds had a higher Egr-1 expression to 

conspecific song but not to other tones, and that E2 birds had more Egr-1-positive cells 

in response to song than blank birds in auditory regions. Interestingly, the birds that 

heard tone-only had fewer Egr-1 positive cells with E2 treatment compared to the blank 

capsules in NCM and CMM. This indicates that the sensory discrimination of song 

compared to other noises is modulated by estradiol’s actions coupled to the genomic 
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Egr-1 response. In a follow up study, the same group examined E2’s effects on the 

social behavior network and found that E2 implants increased Egr-1 response and 

selectivity to song as compared to blank controls throughout the social behavior 

network. They also found this effect in the hippocampus (Maney et al., 2008), which is 

congruent with mammalian literature on Egr-1-responsive cells and their regulation by 

estradiol. 

Sanford et al. (2010) mapped out the topography of the estradiol-modulated 

genomic response of Egr-1 expression in the female white-throated sparrow. Using 

systemic E2-implants like the above study, they identified seven distinct subregions in 

NCM in this species that are unequally responsive and sensitive to song and estradiol 

treatment. They report that the rostral-medial domains appear to be E2 selective for 

song, and that in the rostral NCM overall, Egr-1 is more responsive to E2 regardless of 

song treatment. 

However, Egr-1 expression and E2 do not always exhibit a synergistic 

regulatory relationship in all areas of the brain or across song-bird species. The 

ventromedial hypothalamus has a decreased Egr-1 activation in estradiol-treated female 

zebra finches (Svec and Wade, 2009). The same group also found that estradiol 

decreased Egr-1 for tutored song compared to untutored song and silence in the NCM 

and CMM. This is somewhat at odds with the sensitivity of these regions to E2 in the 

female white-throated sparrow, although it is important to note that zebra finches are 

opportunistic breeders as compared to seasonally-breeding white-throated sparrows. 

Local administration of E2 into   discrete brain areas is also necessary and sufficient for 

modulating NCM responsiveness and sensitivity to conspecific songs and tones for the 
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Egr-1 genomic response (Tremere et al., 2009) demonstrating that this regulation of 

genomic response may also be locally controlled. 

As mentioned before in other models, the MEK-ERK pathway has also been 

associated with IEG regulation as well as auditory function in the zebra finch. Cheng 

and Clayton (2004) demonstrated the necessity of the MEK-ERK pathway in Egr-1 

regulation specifically in the zebra finch model. Using adult, male zebra finches, there 

was a rapid increase in phosphorylated ERK activation after song exposure and MEK 

inhibitor UO126 decreased song-induced Egr-1 expression. London and Clayton (2008) 

also demonstrated that ERK phosphorylation is essential for early tutor memory 

formation in male juvenile zebra finches. 

Tremere et al. (2012) mapped out the MAPK pathway in the NCM of zebra 

finches after exploring the link between estradiol and Egr-1. The group found that not 

only do auditory signals increase pERK, but this phosphorylation of ERK is dependent 

on local estradiol synthesis through ERβ associating with MEKK1.  This work is 

consistent with studies in mammalian in vivo and cell culture. While this study included 

both sexes overall, no sex comparisons were reported so it still remains unclear how 

male and female zebra finches may differ in this molecular pathway. Whereas this study 

addressed intracellular changes from local manipulations in NCM, studies in other 

songbirds have provided an alternative understanding to the more global hormonal 

effects via intracellular, estradiol-dependent signaling. Heimovics et al. (2012) tested 

the estradiol dependent phosphorylation of ERK and CREB in male song-sparrows and 

found that this activity differs based on season. Overall, E2 decreased pCREB in the 

NCM in the breading season only. This suggests that alternative mechanisms may 
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change how the MEK-ERK pathway regulates Egr-1 expression not only between 

sexes, but according to breeding/seasonal context as well. Recent evidence (Maney et 

al., 2006; 2008) has indicated that systemic levels of estradiol are playing an important 

role in regulating neuronal Egr-1 expression, but that the local vs. systemic relationship 

of estradiol needs to be further explored in the context of song-inducible gene 

expression. While Tremere et al. (2009) (local E2 administration) do not report explicit 

sex comparisons, the work from Maney’s group in white- throated female sparrows 

indicates that at least in females, there needs to be a systemic access to estradiol for the 

Egr-1 response to conspecific song. A direct comparison between males and females, 

with and without a gonadal supply of steroids is now needed. It is possible that the 

relationship between Egr-1 and estradiol may depend on de novo synthesis of estradiol 

in the brain, or it may depend primarily on peripheral access to hormones from the 

gonads, or an interaction between, gonads, sex and brain steroidogenesis (Maney, 2012; 

see Fig.  3). 

While inferences have been made about male and female responsiveness to 

estradiol in the auditory lobule based on single sex studies and/or studies with males 

and females, this question cannot be truly answered without direct sex comparisons in 

the research design. I have recently explored the connection between estradiol and Egr-

1 by directly testing how the regulation of song-inducible Egr-1 expression differs 

between males and females. I have found that inhibition of aromatase through an acute, 

oral administration of fadrozole decreases song-induced Egr-1 expression depending on 

sex and subregions of the auditory lobule (Krentzel and Remage-Healey, 2014), which 

coincides with the exogenous E2 work from Maney et al. (2006) and Sanford et al. 
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(2010). However, I did not find sex or aromatase inhibition effects on phosphorylated 

CREB expression within the same animals (Krentzel and Remage-Healey, 2014). As far 

as I am aware, this is the first study to directly compare how endogenous E2 synthesis 

effects Egr-1 expression in both male and female zebra finches in several subregions of 

the auditory lobule. Considering that I am observing sex differences at a subregional 

level of the auditory lobule, this is likely an indication that differential estradiol 

responsiveness occurs at a local level dependent on aromatase expression, although this 

possibility has yet to be explored. There are also several unaddressed questions relating 

to systemic access to gonadal steroids and the functional role this has on aromatase 

expression in the auditory lobule as well as song-inducible immediate early gene 

expression in the zebra finch. 

Conclusions 

The role of sex in regulating differential sensory processing and responses to 

neuroestrogens is likely not limited to songbirds. Asking specific questions about 

auditory representations in relation to estradiol neuromodulation in the zebra finch 

could also have translational implications. Language development in humans tends to 

be sex biased, where girls outperform boys in verbal skills from early childhood through 

adolescence; however, this gender bias heavily depends on the measure of verbal 

fluency as well as measurements of writing and reading literacy (Halpern et al., 2007). 

There are indications of a small but potentially important female bias of verbal episodic 

memory, which has been implicated as a potential mechanism for this sex difference 

(Herlitz and Rehnman, 2008). Human sex differences in cognitive skills such    as 

language are highly controversial. Biological mechanisms that have been considered are 
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left language lateralization bias for males (Shaywitz et al., 1995) and greater inter-

hemispheric communication in females (Bitan et al., 2010). Gonadal hormones have 

also have been suggested to have a role in language sex biases, and sequence variants of 

the human aromatase gene CYP19A1 have been correlated with language deficits 

(Anthoni et al., 2012). Steroidogenesis has also been described throughout the human 

brain (as reviewed by Stoffel-Wagner, 2003). In particular, the temporal cortex, which 

is responsible for many of the sensory experiences of audition and language, is rich in 

steroidogenic enzyme expression, including aromatase (Yague et al., 2006). Much like 

in the telencephalon of the song bird brain (Saldanha et al., 2000), aromatase is found in 

the terminal fibers of neurons in the temporal cortex of the human brain (Yague et al., 

2006) indicating that estradiol could be important for regulation of auditory processing 

at the level of discrete synapses. Peripheral hormones also seem   to be important 

regulators of language development in humans. Levels of estradiol unbound to steroid 

hormone binding globin (SHBG) are positively correlated to complexity of melody in 

crying of human infants, a precursory indicator to later language development (Wermke 

et al., 2014). While there has not been a sex difference described for neurosteroid 

production enzymes in the human brain, there are differences in peripheral levels of 

estradiol early in infancy (Wermke et al., 2014) which may have impacts on early 

language development through several different molecular mechanisms. Fluctuations of 

hormonal state later in adult life also have impacts on auditory representations, 

specifically in maintaining normal hearing in young and middle aged women (Charitidi 

et al., 2009). Overall, there is a need at the level of basic neuroscience to understand 

how sexually differentiated mechanisms may impact language perception and learning, 
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and the zebra finch provides an advantageous model system of exploring these 

questions as compared to other model organisms. 

Here I have presented a framework to approach questions of estradiol signaling 

and its neuromodulatory impacts on auditory representations in the brain with an 

emphasis focusing on sex.   Sex differences in estradiol signaling, from gonadal steroid 

secretions to local and rapid synthesis in the brain have been observed in several model 

organisms. The downstream, intracellular mechanisms, such as the MAPK-ERK 

pathway, recruited by this hormonal and/or neuromodulatory signaling also may be 

shaped by sexual differentiation. Because of the sensitivity that this system has 

demonstrated to differences in sex and the more recent resurgent interest in balancing 

the sexes in study design, I think that turning attention to questions directly comparing 

males and females will provide a more complete understanding of estradiol signaling 

and its effects on sensory acquisition and processing. 
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Figure 3: A proposed model for estradiol compensation between the sexes on 
auditory representations in estrogen-sensitive neurons. 
A conceptual model depicting compensation of sex differences based on reported 
findings in the NCM of male and female zebra finches. The left side of the chart is the 
summary of male zebra finch studies (blue) and the right side of the chart is the 
summary of female zebra finch studies (red), with the center serving as a summary of 
where both sexes are similar (purple). The top of the chart illustrates the relationship 
between gonadal hormones and neuroestrogens based on aromatase expression and 
activity in the NCM. The center of the chart illustrates how song changes estradiol 
levels. The bottom of the chart summarizes four levels of downstream auditory events, 
specifically membrane events, phosphorylated ERK, phosphorylated CREB, and Egr-1 
expression. These boxes summarize studies that have measured these outcomes in males 
(blue text), females (red text), and both (purple text). Finally, from Egr-1, I propose 
potential functional outcomes of this neuroestrogen signaling pathway in the zebra finch 
based on the synaptic plasticity and learning and memory literature for mammalian 
models. Numbers within the image are the following citations: 1 (Saldanha et al., 2000); 
2 (Rohmann et al., 2007); 3 (Remage-Healey et al., 2012); 4 (Remage-Healey et al., 
2008); 5 (Krentzel and Remage-Healey, unpublished); 6 (Yoder et al., 2014); 7 
(Remage-Healey et al., 2010); 8 (Tremere et al., 2009); 9 (Cheng and Clayton, 2004); 
10 (Tremere et al., 2012); 11 (Heimovics et al., 2012); 12 (Krentzel and Remage-
Healey, 2014); 13 (Maney et al., 2006). Asterisks (*) indicate that this citation was from 
another songbird species. 
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Research hypothesis and specific aims 

In this chapter, I summarized the mechanisms by which estradiol can rapidly 

alter neuronal physiology. I also demonstrate that while there are some sex differences 

described in these mechanisms, especially in mammals, there has been a lack of 

investigation on how rapid estradiol signaling might be different in male and female 

songbirds. In this dissertation, I turn my attention to secondary auditory cortical 

structures of the zebra finch brain, investigating whether different components of rapid 

estradiol signaling (i.e., acute brain synthesis, neuronal cell types, and steroid receptor 

mediation) differ between the sexes. I hypothesize that rapid estrogen signaling in the 

zebra finch forebrain has sex differences in mechanisms for regulating audition. To test 

this hypothesis, I have addressed three specific aims: 

1) Characterize interneuron cell-types within male and female auditory regions 

and their relationship to estrogen-producing cells as well as estrogen-

sensitive cells. 

2) Determine whether acute, endogenous estradiol production affects auditory 

responsiveness of immediate early genes between males and females. 

3) Investigate a role for membrane estrogen receptors in the auditory response 

properties of male and female forebrain neurons. 

These approaches address the hypothesis of sex differences in rapid estradiol 

signaling by testing for differentiation from different levels of the mechanism (ie. cell 

types, steroid production, and receptor mediation). Aim 1 uses the neuroanatomical 

approach to characterize cell types involved in rapid estradiol signaling as GABAergic 

interneurons. Aim 2 tests whether active production of estradiol as birds are hearing 
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song affect intracellular markers for audition involved in key pathways of membrane 

estradiol signaling. Finally, Aim 3 determines whether one estrogen membrane 

receptor, GPER1, is necessary and sufficient to auditory representations within the 

caudomedial nidopallium. All three of these aims consider sex as a biological variable 

to determine how estradiol acts through non-canonical pathways to shape auditory 

processing. 
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CHAPTER II 

AROMATASE AND GPER1 CELLS HAVE SIMILAR EXPRESSION AND 

COEXPRESSION WITH INTERNEURON SUBTYPES ACROSS THE SEXES 

Abstract 

 Songbirds have evolved the specialized capacity to learn complex vocalizations 

are a model for human speech and auditory processing. While production pathways 

have been well characterized, auditory forebrain structures are less understood and 

contain heterogeneity in cell types. Estrogens modulate auditory-evoked neuronal firing 

in regions such as NCM which contain cell types that express aromatase, the estrogen 

synthase, and membrane estrogen receptors such as GPER1, which are proposed to 

mediate rapid changes. GABAergic neurons are known to be auditory as well as 

sexually dimorphic in several brain regions, so I set out to characterize estrogen-

producing (aromatase+) and estrogen-receiving (GPER1+) neurons by colabeling with 

GABAergic markers in several auditory structures. I performed a double-label 

immunofluorescence staining for aromatase and GPER1 with interneuron markers 

calbindin, parvalbumin, and GABAergic marker GAD67. I observed regional 

differences in expression of most markers, and found largely no sex differences, with a 

few exceptions. I also did not observe sex differences in coexpression of aromatase or 

GPER1 with any GABAergic marker. Aromatase did not coexpress with calbindin, 

though there was modest coexpression with parvalbumin. GPER1 did not coexpress 

with either interneuron subtype but had some coexpression with GAD67. Notably, 

GPER1 was expressed in regions of the brain in which somatic aromatase was absent, 

suggesting a role for rapid-estrogen signaling at a network level. Although males and 
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females were similar across these measures, I noted aromatase cells tended to cluster 

with each other, and we found that males had higher proportions of clustering with 

larger cluster sizes than in females. I determined that while males and females are 

similar in expression density of these markers, organization may be different and could 

have functional consequences. Future experiments examining the relationship between 

terminal aromatase expression and GPER1 expression may elucidate these networks 

and connectivity patterns.  

Introduction 

 Songbirds learn complex vocalizations, which is rare in mammals. This has 

made them an ideal animal model to study how the brain learns to produce and respond 

to complex vocalizations akin to human language (Jarvis, 2006; Petkov and Jarvis, 

2012). While the neuroanatomy and cell identities of the song production system have 

been meticulously characterized (Braun et al., 1991; Hara et al., 2012; Zengin-Toktas 

and Woolley, 2017), the auditory regions involved in complex, higher order processing, 

are less well understood. Certain auditory regions such as the caudal medial 

nidopallium (NCM) have been implicated as a locus of tutor memory (Bolhuis and 

Gahr, 2006; London and Clayton, 2008; Bell et al., 2015; Bolhuis and Moorman, 2015; 

Yanagihara and Yazaki-Sugiyama, 2016), responsive to complex song stimuli 

(Remage-Healey et al., 2010; Ikeda et al., 2015), and have been compared to secondary 

auditory cortex and Wernicke’s Area of the human brain (Gobes and Bolhuis, 2007). 

NCM is also rich in expression of aromatase (Saldanha et al., 2000), the enzyme that 

synthesizes estradiol from testosterone. This expression is similar to that found in 

human and monkey temporal cortex (Yague et al., 2006; Yague et al., 2008), a region 
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that contains analogous structure to NCM. Estradiol has a pervasive role in auditory 

function. It increases auditory-evoked activity in the NCM (Remage-Healey et al., 

2010; Remage-Healey et al., 2012), and acute production of estradiol content increases 

when birds hear song (Remage-Healey et al., 2008; Remage-Healey et al., 2010). 

Despite the implications of estradiol as a neuromodulator in auditory functioning, the 

cellular identities of estrogen-producing and estrogen-responsive cells are unknown for 

any auditory system. 

 The auditory forebrain of the zebra finch is largely described as similar between 

males and females, whereas the song-production motor pathways exhibit robust sexual 

dimorphisms in terms of size (Nottebohm and Arnold, 1976; Hamaide et al., 2017) and 

neurochemical cellular identities (Grisham and Arnold, 1994; Cornez et al., 2015). 

These sex differences are, in part, organized by central actions of estradiol early in 

development (Holloway and Clayton, 2001; Wade and Arnold, 2004). Interestingly, the 

auditory forebrain structures contain most of the neuronal aromatase expression in the 

brain (Shen et al., 1995; Saldanha et al., 2000), and there is not a consensus on whether 

estradiol’s function is different between sexes. Aromatase is the rate-limiting step for 

estradiol production, and in the songbird forebrain, aromatase is expressed in somas, 

axons, and terminals (Saldanha et al., 2000), like the temporal cortex of humans (Yague 

et al., 2006). This cellular localization within terminals presumably allows for the fast, 

dynamic production of estradiol to participate in acute, rapid signaling. Aromatase is 

also expressed in the cell bodies of neurons, which can allow for paracrine signaling to 

cells nearby. Both males and females in adulthood express similar quantities of 

aromatase cell number as measured by somatic expression in NCM (Saldanha et al., 
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2000); however, fiber density and aromatase activity in synaptosomes are each higher in 

males (Saldanha et al., 2000; Peterson et al., 2005). Despite this, estradiol production as 

measured by in vivo microdialysis in NCM shows that both sexes have similar baseline 

production of estradiol content (when in silence) (Remage-Healey et al., 2012) and 

when hearing song, both sexes increase estradiol content rapidly (Remage-Healey et al., 

2008; Remage-Healey et al., 2012). There is evidence that aromatase is activity 

dependent in quail (Balthazart et al., 2004; Balthazart et al., 2006; Cornil et al., 2013) 

and zebra finch brain (Freking et al., 1998; Remage-Healey et al., 2011), and in the 

zebra finch, there is regional specificity of the regulatory control of aromatase activity 

(Comito et al., 2015) suggesting that aromatase may be expressed and regulated in 

different cell types depending on region. Whether there are sex differences is unknown.  

 Synaptic aromatase expression and rapid effects observed in physiology suggest 

that estradiol is acting through a membrane estrogen receptor to exert its effects on 

audition. Both males and females increase auditory-evoked activity rapidly in NCM 

when estradiol is infused (Remage-Healey et al., 2010; Remage-Healey et al., 2012) 

suggesting a membrane estrogen receptor as a mechanism. In mammals and birds, ERα 

and ERβ can be inserted into cell membranes, and through associating with 

metabotropic glutamate receptors, can influence intracellular signaling for fast 

modulation (Boulware et al., 2005; Meitzen and Mermelstein, 2011; Meitzen et al., 

2013; Seredynski et al., 2015). Both receptor subtypes are expressed in the songbird 

brain (Jacobs et al., 1996; Metzdorf et al., 1999; Fusani et al., 2000; Jeong et al., 2011; 

Horton et al., 2014), yet a previous study from our lab has shown that agonists specific 

for ERα and ERβ are not sufficient to induce auditory responsiveness as seen with 
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estradiol (Remage-Healey et al., 2013). GPER1 is a g-protein estrogen receptor 

expressed in cell membranes in the brain and body (Srivastava and Evans, 2013). It has 

previously been characterized in the zebra finch brain, and is known to be expressed in 

NCM similarly between males and females in adulthood (Acharya and Veney, 2012). 

However, this is the only other study to date to visualize this receptor type in zebra 

finches.  

 Auditory forebrain cortical structures are largely heterogenous. GABAergic 

cells are abundant in NCM and express immediate early genes when birds hear song 

(Pinaud et al., 2004), suggesting that these cell types are important in auditory 

representations and encoding. Interneurons can be subdivided into a complex array of 

cell-types. In mammals, interneuron subtypes have been shown to mediate important 

auditory functions such as auditory tuning, corollary discharge, and odd-ball tasks 

(Moore and Wehr, 2013; Schneider et al., 2014; Chen et al., 2015). Previous papers 

have shown the expression of both calbindin and parvalbumin in the zebra finch 

forebrain. Calbindin is expressed more in males in the NCM than in females (Pinaud et 

al., 2006), raising the possibility that calbindin can account for sex differences in 

auditory physiology. Parvalbumin has not been compared between the sexes in auditory 

cortical regions but in motor pathways males have higher expression and connectivity 

(Grisham and Arnold, 1994; Cornez et al., 2015). In the human temporal cortex, 

aromatase cells coexpress with both parvalbumin and calbindin (Yague et al., 2006), 

demonstrating a compelling rationale for species comparison with zebra finches. The 

identities of GPER1 neurons have never been characterized in songbirds.  
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 In this study, I characterized estrogen-producing (aromatase) and estrogen-

responsive (GPER1) cell types of the auditory forebrain, particularly focusing on 

whether there are regional and sex differences in coexpression with calbindin and 

parvalbumin. Because I did not find coexpression of GPER1 with either interneuron 

subtype, I also performed a double-label with GAD67, the enzyme that synthesizes 

GABA and is expressed in somas. Overall, I did not detect sex differences in auditory 

regions with respect to aromatase and GPER1 expression, as well as coexpression with 

the GABAergic subtypes, with a few exceptions. However, I did observe that there are 

sex differences in clustering of aromatase cells in ventral NCM, a novel observation in 

the nidopallium.  

Methods 

Animals 

 Subjects were kept in single sexed cages housed in a sex-mixed aviary ideal for 

breeding conditions with food and water available ad libidum. I separated adult zebra 

finches into two studies: study 1 (male n=6, female n=6) and study 2 (male n=7, female 

n=7). Each study is segregated by objective (Study 1 characterizing estrogen-producing 

cells and Study 2 characterizing estrogen-sensitive cells); however, most of the methods 

are the same unless explicitly noted. After collecting animals, I used some of the serial 

sections from the other study to increase the subject number for comparisons. I isolated 

all animals into sound attenuation chambers overnight before exposing them to a song 

playback paradigm ideal for immediate-early gene activation (Mello et al. 1994). I did 

this with intention of future auditory characterizations; however, these results are not 

germane to the current study. 
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 After song exposure, birds were killed by an overdose of isoflurane and then 

perfused transcardially with 0.1M phosphate buffer made in 0.9% saline (PBS) 

followed by 4% paraformaldehyde. After brains were extracted, they were post fixed in 

4% paraformaldehyde for 2 hours and then transferred to 30% sucrose/PBS solution in 

4 ºC for at least 48 hours. Brains were kept in this solution until sectioning. 

Immunofluorescence 

 Brains were sectioned serially (3) in the sagittal plane at 35 µm using a cryostat 

(Leica, Germany). Sections were stored at -20˚C in cryoprotectant until tissue 

processing. When tissue was used for immunostaining, sections were transferred from 

cyroprotectant to 0.1M PB overnight at 4 ºC. All sections were washed in 0.1M PB 

three times and then blocked using a 10% normal goat serum solution made in 0.3% 

PBT (phosphate saline buffer with Triton X) for 2 hours at room temperature. Sections 

were then incubated in primary antibodies as described in Table 2. Incubation lasted 1 

hour at room temperature followed by 48 hours at 4 ºC. Sections were then washed with 

0.1% PBT and incubated in secondary antibodies that were either anti-rabbit, anti-

mouse, and/or anti-chicken [Alexa 488-or Alex 594-conjugated] raised in goat (Thermo 

Fisher Scientific Inc., MA, USA; 1/200 except for GPER1 stained tissue where the 

secondary was a 1/2000 dilution). Sections were then washed again in 0.1% PBT and 

mounted onto gelatin-coated slides with ProLong Diamond Antifade Mounting Medium 

(Thermo Fisher). Specificity for aromatase, parvalbumin, and calbindin antibodies used 

are described in Ikeda et al. 2017. Anti-GPER1 has previously been confirmed with a 

western blot in zebra finch at this concentration (Acharya and Veney, 2012). The 
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GAD67 antibody has not been included in a published article. Personal communication 

with other researchers in the field about lack of success using other GAD antibodies 

allowed me to rule out other options. I selected this antibody because of reports from 

the manufacturer of its success in other avian species. I confirmed through a double-

label pilot with GAD67 and calbindin that this antibody only marks a subset of 

GABAergic neurons (ex: 100% coexpression in cerebellum but minimal coexpression 

in telencephalon; data not shown).  

Table 2. Primary antibodies and concentrations 

Antibody Protein 
description 

Host 
species 

Company 
and catalog 
number 

Dilution Type 

Anti-
aromatase 

enzyme that 
synthesizes 
estradiol 

rabbit Gift from Dr. 
Saldanha 1:2000 polyclonal 

Anti-GPER1 
Membrane bound 
G-protein coupled 
estrogen receptor 

rabbit MBL Intl 
LS-A4268 1:2000 polyclonal 

Anti-
calbindin 

Calcium binding 
protein mouse 

Sigma 
Aldrich 
C9848 

1:2000 monoclonal 

Anti-
parvalbumin 

Calcium binding 
protein, a marker 
for fast-spiking 
interneurons 

mouse Millipore 
MAB1572 1:10,000 monoclonal 

Anti-GAD67 

Enzyme that 
synthesizes 
GABA expressed 
in somas 

chicken Abcam 
ab75712 1:100 polyclonal 

 

Confocal imaging 

 Slides were imaged using a confocal microscope (NΑ1, Nikon, Tokyo, Japan) 

with NIS-Elments imaging software (Ar). Sections with regions of interest were 
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identified at 10x and a 3x3 stitch image would be taken to confirm landmarks to 

correctly identify regions under higher magnification. For lateral sections that contained 

HVC (proper name), HVC shelf and arcopallium, both HVC and/or arcopallium needed 

to be present in the same section (1.7-2.5mm lateral to the midline). Medial sections 

which contained regions of interests such as caudomedial nidopallium (NCM), 

caudomedial mesopallium (CMM), Field L, and hippocampus (HP) (0.2-1mm lateral to 

the midline) were defined by thickness of the hippocampus and complete lack of 

nucleus taeniea (Tn) and the arcopallium. Once regions were identified, images would 

be taken under the 60x oil objective in zstacks of 9-15 µm thick at 1 µm per step. Laser 

strength and gain were adjusted for each section, but kept consistent across regions on 

the same section unless there was a dramatic difference where the objective needed to 

be refocused. I was unable to successfully identify HVC and the shelf in 

GPER1/GAD67 tissues. Aromatase is exclusively expressed in the shelf and not HVC 

(Saldanha et al. 2000, Ikeda et al. 2017), so I was more successful in the identification 

of these regions for this marker. GPER1 appeared to be uniformly dispersed, so it was 

difficult to locate HVC and the shelf, and these regions were not considered for further 

analysis for GPER1. Hippocampus (HP) was collected as a non-auditory region that 

expresses aromatase and GPER1 (Saldanha et al., 2000; Acharya and Veney, 2012). 

CMM was used as a negative control for aromatase expression that is also an auditory 

region. 



48 

Image analysis 

 All images were blinded for cell counting using FIJI software (National 

Institutes of Health, USA). All cell counts were performed with the maximal z-

projection image, while scanning through the z-slices for confirmation. After cell 

counts, all counts were normalized to number of DAPI cells for that image and depicted 

as a percentage of DAPI. For coexpression, both aromatase and GPER1 are depicted as 

percentage of the interneuron subtype label of interest. Cell counts had a CV within 

raters <15%. I noticed that aromatase cells tended to form clusters with each other, so I 

also analyzed clusters of aromatase cells. Clusters were defined as a group of two or 

more cells forming somato-somatic contacts. The number of cells within each cluster 

were counted manually by a using the 60x z-stack images from NCMv, because 

qualitatively, this region appeared to have the most clusters. Aromatase cells in clusters 

were determined to be neurons by a NeuN double stain (Ikeda et al. 2017). I also ran a 

simulation using MATLAB to determine whether clustering of aromatase somas is 

different from what can be expected by random association. I sampled from a normal 

distribution using the mean and SEM from the aromatase cell count for the cluster 

analysis (91.7±7.29). I created random plots of spheres varying by cell number and size 

(also sampling from a normal distribution: average diameter of 50 somas measured was 

9.16±0.29 µm). The plot fit the dimensions of the confocal images, including the 

volume (15µm). I ran 1000 simulations and measured the distance between all the 

spheres per simulation. Points were defined as touching or “a cluster” when their 

distance was shorter than the sum of each sphere’s radius. After 1000 simulations, a 

percentage of spheres found in cluster sizes of 1, 2, 3… etc. were quantified using the 
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union-find algorithm. This simulation quantification mirrors that of the manual 

aromatase cell clustering counts performed on the images.  

 Statistics 

 Two-way between subject ANOVAS were run for all analyses with post-hoc 

Bonferonni analyses for significant region effects. For most analyses, I did not have 

statistical power to detect region*sex interactions. Since the focus of this study was on 

individual sex comparisons, and there were compelling mean differences, I ran 

individual t-tests for each region to compare the sexes and determine if there were 

meaningful effects that would be masked in a larger model. I report significant 

differences as p<.05. For the clustering analysis, since I ran 1000 simulations, I used the 

percentages generated as the population mean for random clustering. I ran one-sample t 

tests for each sex against the population for each cluster size. I also compared males and 

females together in a mixed factor two-way ANOVA for cluster sizes to determine sex 

differences, followed by Tukey’s pairwise comparisons for post-hoc analyses for male 

vs. female comparisons and Bonferroni post-hocs for cluster size comparisons. 

Results 

 I performed region and sex comparisons for all measurements. Somatic 

aromatase expression did not differ by sex overall (F(1,62)=1.72, p=0.19, d=0.30, 

Power 25%). I also did not detect any sex differences in most individual brain regions 

through individual t-tests (p>.05: dNCM, vNCM, aHVCshelf, HP, highest Power=16% 

Figure 4A) with the exception of posterior HVCshelf where females expressed more 

aromatase than males (t(7))=2.89, p=.023, d=2.04, Power=70% Figure 4 right). I 
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observed differences in aromatase expression by region with the HP having the most 

aromatase and CMM having no somatic aromatase expression (F(7,62) = 6.06, p< 

0.0001; post-hoc t-tests: HP vs any region, p < 0.05; CMM vs any region, p<0.01; Ikeda 

et al. 2017). Dorsal and ventral NCM, anterior and posterior HVCshelf, and NCL did 

not differ in expression (p>.05). I compared GPER1 expression for region and sex. I did 

not detect sex differences in GPER1 cell number for any regions (overall: F(1,45)=0.65, 

p=0.42, d=0.21, Power=12%, individual regions sex comparisons p>.05, Figure 4B). 

GPER1 expression also did not differ by the regions I analyzed (F(5,45)=0.91, p=0.48, 

Power=30%, Figure 4 right).  

 

Figure 4: Aromatase and GPER1 expression is similar in males and females except 
posterior HVC shelf. 
Left – percentage of aromatase cells within each quantified brain region. Right – 
percentage of GPER1 cells within each quantified brain region. Females are red bars 
and males are blue bars. p<.05* Left - CMM, F N=6, M N=3; NCMv; HP, F N=6, M 
N=5; NCMv, F N=6, M N=6; NCMd, F N=6, M N=5; NCL F N=3, M N=5; 
HVCshelfa, F N=3, M N=6; HVCshelfp, F N=3, M N=6; HVCshelfv, F N=4, M N=5. 
Right –CMM, F N=4, M N=4; DNCM F N=6, M N=7; FIELD L, F N=4, M N=4; HP F 
N=4, M N=5; NCL, F N=4, M N=4; VNCM, F N=4, M N=4.  
 
 I did not detect a difference in parvalbumin expression by sex (F(1,57)=0.86, 

p=0.36,Power=15%,all regions t-test: p>.05; Figure 5A), but there was a difference by 

region (F(7,57)=2.56, p=.023; Bonferroni post-hoc: HVCshelfa vs. NCL t(57)=3.48, 
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p=0.027; Figure 5A). Calbindin also differed by region (F(7,64)=7.31, p<.001; 

Bonferroni post-hocs: CMM vs. HVCshelfp t(64)=3.79, p=.0095, NCMv vs. all other 

regions except HVCshelfp: p>.05; Figure 5B) and I did not detect a difference by sex 

(F(1,64)=0.065, p=0.80, Power=5.7%, all regions: p>.05; Figure 2C) with the exception 

of a trending difference in NCMv where females expressed more calbindin than males 

(t(14)=1.93, p=0.074, Figure 5C) contradictory to previous sex differences described in 

NCM (Pinaud et al., 2006), and a trending difference in CMM where males had more 

expression than females (t(9)=-2.34, p=0.052; Figure 5C).  
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Figure 5: Interneurons are different by region but not sex. 
A) Percentage of parvalbumin cells quantified for each region. B) Percentage of 
calbindin cells quantified for each region. C) Percentage of GAD67 cells quantified for 
each region. Females are red bars and males are blue bars. p=.074#. Letters above 
regions indicate Bonferroni post-hoc comparisons. A) Parvalbumin: CMM, F N=6, M 
N=4; HP, F N=5, M=4; HVCshelfa, F N=3, M N=5; HVCshelfp, F N=3, M N=5; 
HVCshelfv, F N=3, M N=5; NCL, F N=4, M N=4; NCMd, F N=6, M N=5; NCMv, F 
N=6, M N=5. B) Calbindin: CMM, F N=5, M N=4; HP, F N=6, M=4; HVCshelfa, F 
N=3, M N=4; HVCshelfp, F N=3, M N=4; HVCshelfv, F N=3, M N=4; NCL, F N=4, 
M N=4; NCMd, F N=9, M N=7; NCMv, F N=9, M N=7. C) GAD67: CMM, F N=4, M 
N=4; NCMd, F N=6, M N=7; Field L, F N=4, M N=4; HP, F N=4, M N=5; NCL, F 
N=4, M N=4; NCMv, F N=6, M N=7.  
  

 I also wanted to examine coexpression patterns and determine if there were sex 

differences dependent on region and sex. First, from previous pilot tissue that we 

sampled from Study 1, I did not observe any coexpression of GPER1 with either 

calbindin or parvalbumin in any region (Figure 6). I also did not observe coexpression 

of aromatase with calbindin for either sex (Figure 7). There was however a moderate 
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coexpression pattern with parvalbumin, and this coexpression did not differ by sex 

(F(1,47)=0.75, p=0.39, Figure 8A left). However, there was a significant difference in 

coexpression of aromatase and parvalbumin cells as a percentage of parvalbumin by 

region (F(7,44)=8.25, p<0.001; Bonferroni posthocs: NCMv vs. all other regions p<.05, 

Ikeda et al. 2017; Figure 8B left). 

 

 

Figure 6: GPER1 expresses with GAD67 but not CALB or PV. 
Each image was taken from different regions to represents general lack of expression 
(CALB and PV) or coexpression (GAD67). All images are maximal projection images 
from 15 µm zstacks. White arrows indicate cells containing both GPER1 and GAD67.  

 

Figure 7: Aromatase coexpresses with PV but not CALB. 
Each image was taken from different regions to represents general lack of expression 
(A;CALB) or coexpression (B;PV). All images are maximal projection images from 15 
µm zstacks. White arrows indicate cells containing both aromatase and parvalbumin. 
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 Since I could not detect any coexpression with either interneuron subtype and 

GPER1, I used an antibody against GAD67, the enzyme that synthesizes GABA and is 

preferentially expressed in somas (Erlander et al., 1991; Schwab et al., 2013). This 

antibody does not mark all GABAergic neurons; however, I did see coexpression with 

GPER1 (observations not quantified from pilot tissue), indicating I was marking cells 

that were not calbindin or parvalbumin, therefore a different population (see description 

in Methods).  I performed colabeling study with this marker so that I could address the 

hypothesis of whether GPER1 was sexually dimorphic in its expression of this subtype 

of GABAergic cells. First, I did not observe sex differences in GAD67 expression 

(overall: F(1,45)=0.092, p=0.76, Power=6.0% all regions: p>.05, Figure 5C). I also did 

not detect regional differences in GAD67 expression (F(5,45)=0.97, p=0.45, 

Power=31.2% Figure 5C). There were no sex differences in coexpression of GPER1 

with GAD67 with the exception of CMM which had a trend towards males having 

higher expression (t(6)=-2.41, p=.053 Figure 8A right). I was also not able to detect a 

regional difference in GPER1+GAD67 coexpression as a percentage of DAPI 

(F(5,45)=1.20, p=0.32, Figure 8A right). I detected a regional difference in 

GPER1+GAD67 expressing cells as a % of all GAD67 cells (F(5,45)=1.09, p=0.38, 

Figure 8B right). 
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Figure 8: Males and females are similar in coexpression of aromatase and GPER1 
with GABAergic markers. 
A) Left: Percentage of parvalbumin + aromatase as % of DAPI cells quantified for each 
region. Right: Percentage of GPER1+GAD67 as % of DAPI cells quantified for each 
region. Females are red bars and males are blue bars. B) Left: Percentage of 
parvalbumin + aromatase cells as % of parvalbumin. Right: Percentage of 
GPER1+GAD67 as % of DAPI cells quantified for each region.  A) AROM+PV: 
CMM, F N=6, M N=3; HP, F N=5, M=4; HVCshelfa, F N=3, M N=5; HVCshelfp, F 
N=3, M N=5; HVCshelfv, F N=3, M N=5; NCL, F N=3, M N=3; NCMd, F N=6, M 
N=5; NCMv, F N=6, M N=5.  B) GPER1+GAD67: CMM, F N=4, M N=4; NCMd, F 
N=6, M N=7; Field L, F N=4, M N=4; HP, F N=4, M N=5; NCL, F N=4, M N=4; 
NCMv, F N=6, M N=7.  
  



56 

 Finally, I observed that aromatase cell formed somato-somato clusters 

particularly in the NCM. I decided to determine how large aromatase cluster sizes were 

and how often aromatase cells were found clustered. More descriptions of regional 

differences, neuronal identity, and example images of clusters are described in Ikeda et 

al. (2017). Here, I observed a sex by cluster size interaction in the occurrence of clusters 

in ventral NCM (F(8,72)=3.10, p=.0046). More aromatase cells in females (47.4%) are 

not clustered as opposed to in males (26.4%; Bonferroni pairwise comparison 

t(72)=5.27, p<.001, Figure 9)B, Most aromatase cells are clustered with  at least another 

aromatase cell (females 52.6%, males 73.6%). I wanted to determine the extent to 

which these clustered distributions would be observed by chance and I ran simulations 

to determine how often similar cell-sized spheres would cluster together in silico. I 

found that both males (t(4)=-10.89,p<.001) and females (t(5)=-3.04,p=.029) have a 

lower proportion of cells not clustered than random (males=26.4%, females=47.4%, 

random=72.8%; Figure 9), as well as a higher proportion of clustered cells (males: 

t(4)=11.05, p<.001, females: t(5)=3.13, p=.026, random 26.53%). As illustrated in 

Figure 9A, most males (4/5) had more frequent occurrences of cell clusters as large as 7 

cells in a cluster, which was rare in thesimulation and did not occur often in females. I 

detect a significant main effect of cluster size (F(8,72)=31.39, p<0.00001). The decay of 

percent of aromatase cells found in increasing cluster sizes differed between the sexes.  

For males, aromatase cells found solo (1), with another aromatase cell (2), and in a 

cluster of 3 or 4 did not significantly differ from each other (pairwise Bonferroni 

comparisons: 1vs.2 t(72)=0.44, p>.05, 1vs.3 t(72)=0.59, p>.05, 1vs.4 t(72)=3.72, 

p=0.06). However, cluster sizes of 5 and above were significantly different than non-
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clustered aromatase cells (1vs≥5, p<.05), but not significantly different from each other 

(Figure 9B). For females, non-clustered aromatase cells were significantly different than 

all cluster sizes (pairwise Bonferroni comparisons: 1vs.2 t(72)=3.81, p<.0001, etc., 

Figure 9B) and continued to decay.  One reason males may have more clustering than 

females is if they have a greater cell density within this region. However, I compared 

DAPI measurements from ventral NCM in both studies and found no differences 

between either sex in NCMv (t(21)=-0.71, p=0.48; data not shown).  
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Figure 9: Males and females have different percentages of aromatase cells found in 
clusters. 
A) Percentage of total aromatase+ cells per subject NCMv found in increasing cluster 
sizes. Aromatase cells that are 1 cell are not considered a cluster. Females are red dots 
and males are blue dots. Black dots are representation of the population mean for 1000 
simulations of random. Numbers above each column indicate the number of females 
(red) and males (blue) that exhibit cases of clusters of that size out of 6 females and 5 
males.  B) Bar graphs depicting the mean and standard error of the mean for percentage 
of total aromatase+ cells in males (blue bars) and females (red bars). Asterisks (***) 
p<.001 for M vs. F. Letters indicate Bonferroni posthoc comparisons within sex for 
each cluster size (p<.05). 
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Discussion 

 This is the first study to systematically characterize interneuron cell types of 

estrogen-producing and estrogen-responsive cells of several subregions the auditory 

lobule, and also to compare males and females. In general, males and females were 

similar in expression of somatic aromatase, GPER1, parvalbumin, calbindin, and the 

GAD67+ subtype. Despite overall similarities between the sexes, some sex differences 

emerged. Aromatase expression in posterior HVCshelf was higher in females. 

GPER1+GAD67 positive neurons were trending for higher expression in CMM of 

females, and calbindin+ neurons were also trending higher in female NCMv. There 

were also sex differences in cell clustering of aromatase+ cells in NCMv. Specifically, 

males had fewer non-clustered aromatase cells than females and more incidences of 

larger cluster sizes. Finally, I found that aromatase+ cells across brain regions coexpress 

with parvalbumin but not calbindin. GPER+1 cells never coexpressed with calbindin or 

parvalbumin, but there was modest coexpression with GAD67. These results indicate 

that estrogen-producing cells and estrogen-receiving cells are each made up of a 

population of GABAergic neurons.  

 This study has replicated prior work reported in the literature concerning lack of 

sex differences in aromatase and GPER1 expression. I did not find sex differences in 

somatic aromatase expression in NCM, which was first reported by Saldanha et al. 

(2000). I also found no expression of somatic aromatase in CMM, which has long been 

noted by the field, confirming the consistency and reliability of the protocol (Shen et al., 

1995; Saldanha et al., 2000). I also replicated lack of sex differences in GPER1 

expression in adulthood (Acharya and Veney, 2012). One inconsistency between my 
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study and other is that Pinaud et al. (2006) reported males had more calbindin 

expression across NCM, where I find a similarity in dorsal NCM and a trending 

increase in expression in females in ventral NCM. Pinaud et al. (2006) quantified global 

calbindin expression across the caudal nidopallium; however, I sampled from smaller 

regions of the caudal nidopallium, dividing the region into lateral (NCL) and dorsal and 

ventral medial sections (NCMd and NCMv). Subregions of the nidopallium have 

differences in responsiveness to songs and estradiol exposure (Maney et al., 2006; 

Sanford et al., 2010). Analyzing cell types and cell densities in subregions may indicate 

local differences in microcircuitry.  

 One important observation that I made in this study is that GPER1 is expressed 

in many more auditory regions than aromatase, specifically in CMM and Field L as well 

as HVC (not quantified in this study; Acharya and Veney, 2012), in which aromatase 

expression is notably absent. Although my study does not include a colabeling of 

aromatase and GPER1 in the same sections, future work may determine the densities of 

aromatase and GPER1 cells in auditory subregions, as well as possible coexpression. A 

resultant hypothesis is that aromatase cells, which are mostly dense in secondary 

auditory regions such as NCM and HVCshelf, may be projecting to areas that express 

GPER1, the receptor for estradiol. NCM and HVC have neuromodulatory connections 

exhibited by changes in HVC selectivity to bird’s own songs when E2 is infused into 

NCM (Remage-Healey and Joshi, 2012). The shelf also sends projections into HVC 

(Vates et al., 1996), which may be another source of estradiol influencing HVC 

physiology. NCM and CMM are secondary auditory regions that also have reciprocal 

connections (Vates et al. 1996). Although there is not somatic expression of aromatase 
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in CMM, there may be terminal expression that could influence rapid estradiol signaling 

onto GPER1 expressing neurons in this region. There are some indications that “ghost 

cells” I observed in Study 1 in regions like the arcopallium may reflect terminal 

aromatase expression (Ikeda et al. 2017). Localization of aromatase synapses will need 

to be further explored using tracer and EM studies to determine the network and 

synaptic connections of these regions.  

 Previous reports indicated sex differences in auditory activity of subregions of 

the auditory lobule (Caras et al., 2015; Giret et al., 2015; Yoder et al., 2015) and 

interneuron expression in the motor song circuit (Grisham and Arnold, 1994; Cornez et 

al., 2015). I showed that despite regional heterogeneity in cell types, there are large 

similarities in expression of interneurons and estrogenic cells types across the auditory 

lobule, and between the sexes. This is the first study to do a broad sampling of several 

forebrain regions to compare males and females and examine several neuronal cell 

types. Future work with larger samples sizes will be necessary to rule out any 

undetectable sex differences. I only compared somatic expression of all the markers 

used in this study, using cell count as a dependent measure. There is considerable 

evidence for sex differences in aromatase fiber expression and aromatase activity 

(Saldanha et al., 2000; Peterson et al., 2005), suggesting sex differences in estradiol 

production and synaptic function may be contributing more to differences in physiology 

than cell types. 

 Although I did not observe sex differences in coexpression, this does not rule 

out that there may be sex differences in cell communication between interneurons and 

estrogen-producing and estrogen-responsive cell types. For example, if calbindin is 
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more globally expressed in NCM in males rather than females as reported in Pinaud et 

al. (2006), then there may be more connections with either aromatase-positive or 

GPER1-positive cells that could facilitate physiological differences in how songs are 

represented within the NCM. One finding that we reported in Ikeda et al. 2017 from 

Study 1 is that aromatase cells are found in somato-somatic clusters with other 

aromatase cells. I performed additional sex comparisons and found that males and 

females differ in the proportion of aromatase cells clustering together, suggesting that 

organization of estrogen-producing cell types in the region I analyzed, NCMv, are 

sexually dimorphic and may have functional consequences. The role of somato-somato 

clustering of these cell types is unclear. One proposal is that gap junctions may be 

involved to synchronize communication between cells which has previously been 

described in a neighboring region HVC (Gahr and Garcia-Segura, 1996); however, 

there is a lack of physical evidence currently for NCM – whether it be 

electrophysiology recordings or dye transfers – to conclude this may be functional 

purpose for clustering. Alternatively, vocal learners such as songbirds and parrots have 

large cell densities packed into the telencephalon, which surpasses the mammalian 

cortex outside of primates (Olkowicz et al., 2016). Since birds do not have a neocortex 

that sits on the outer layer of the telencephalon with sulci and gyri to increase surface 

area as in mammals, another strategy must be used to pack in more cells. High cell 

density and packing may explain why clustering occurs; however, it is unclear how this 

would relate to sex differences in cluster as males and females have similar cell 

densities in this region. 
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 Most of the aromatase and GPER1 cells did not coexpress with any of the cell 

type markers, demonstrating that there are large populations of these cells that are still 

uncharacterized. There are other notable markers for interneurons that are important for 

auditory physiology. Other interneuron subtypes such as somatostatin and VIP are 

important cell types for auditory processes in mammalian cortex (Pi et al., 2013; Chen 

et al., 2015; Phillips and Hasenstaub, 2016). These, as well as glutamatergic cell types, 

can further inform the heterogeneity of the auditory lobule and may give insight into 

how rapid estradiol signaling is being regulated by specific cell types. In the human 

temporal cortex, which contains auditory association regions analogous to NCM and 

CMM, most aromatase expressing cells are excitatory pyramidal neurons (Yague et al., 

2006). Studies measuring mRNA have shown that inhibitory neurons consist of about 

half of all auditory neurons (Pinaud et al., 2004) and aromatase cells are 40:60 

inhibitory to excitatory (Jeong et al., 2011). These results have not been validated with 

protein measurements, and the markers do not represent all GABAergic neurons 

markers. 

 A portion of this study was inspired by descriptions of aromatase interneurons 

within the human temporal cortex (Yague et al., 2006). From a species comparison 

standpoint, I find similar coexpression of aromatase with parvalbumin between zebra 

finches and humans; however, the lack of coexpression of calbindin with aromatase in 

zebra finches differs from the coexpression in the human brain. This finding might 

provide some species-specific mechanisms for regulation of neuroestradiol on auditory 

activity. Although there have not been gross anatomical descriptions of GPER1 in the 

human brain, GPER1 is expressed in the primate prefrontal cortex on dendrites 
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(Crimins et al., 2017). Given the robust role of rapid estradiol signaling in auditory 

processing of the zebra finch, which uses complex, learned vocalizations analogous to 

human speech, membrane estrogen receptors such as GPER1 and translocated ERα and 

ERβ should be further explored in context of cortical organization in the human brain as 

well as how these receptors mediate sensory and perception of language. 

 In this study, I have shown that males and females are largely similar in the 

GABAergic cell identities of estrogen-producing and estrogen-responding cells of the 

auditory forebrain, but that the songbird auditory forebrain is regionally distinct by the 

organization of these cell types. Although a large subpopulation of aromatase-positive 

and GPER1-positive cells are still uncharacterized, this work provides anatomical and 

cell density descriptions for future projects to elucidate that relationship of the 

neuroestradiol circuit within the brain.  
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CHAPTER III 

ACUTE ENDOGENOUS ESTRADIOL PRODUCTION IS NECESSARY FOR 

SONG-INDUCED IMMEDIATE-EARLY GENE EXPRESSION WITH 

REGIONAL AND SEX SPECIFIC DIFFERENCES 

Abstract 

Estrogens are synthesized in the brain and can act through non-canonical 

mechanisms to modulate neuronal physiology. An example is auditory responsiveness 

in songbirds, where peripheral hormones or exogenous hormone manipulations alter 

auditory-evoked neuronal activation; however, the significance of endogenous neuronal 

estrogen production is less understood. Both males and females can synthesize estradiol 

(E2) rapidly in the caudal nidopallium (NCM). It is unclear whether the sexes need 

acutely synthesized estradiol for neuronal auditory activity. Here, we examine whether 

endogenous estradiol synthesis is necessary for auditory induced immediate early gene 

expression of Egr-1 in both sexes in several cortical regions known to differentially 

expression aromatase. I also determined if expression of phosphorylated CREB, a 

transcription factor that targets Egr-1, is regulated in parallel, and whether it is auditory 

inducible. I administered a peripheral dose of the aromatase inhibitor fadrozole, and 

measured auditory induced Egr-1 across several auditory brain areas. I found that males 

administered fadrozole decreased Egr-1 expression in more brain regions than females. 

Regions such as CMM which lack aromatase expression were unaffected, highlighting 

the region specificity of pharmacological aromatase inhibition within areas that express 

aromatase. I also found that females have more aromatase expression than do males in 

posterior HVCshelf, which has been previously unreported. In contrast to Egr1, I did 
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not observe any changes in pCREB expression with song presentation or aromatase 

inhibition. These findings are consistent with the hypothesis that endogenous estradiol 

is acutely synthesized during auditory playback and leads to a downstream 

transcriptional response in several subregions of the male brain. Females appear to be 

less effected from this acute inhibition in most regions. I also draw into question the 

role that pCREB plays in the proposed regulation of Egr-1 by estradiol. Finally, I 

propose that HVCshelf may be a region of sexual dimorphism that has been previously 

overlooked, specifically the role for brain-derived estradiol in auditory responsiveness.  

Significance 

In this chapter, I demonstrate the necessity of endogenous estradiol synthesis to 

facilitate auditory responsiveness in several secondary auditory cortical regions. I also 

show a region-specific sex difference where this dependency is stronger in males than it 

is in females. Together, these findings suggest that compensatory estradiol synthesis in 

females may protect auditory responsiveness when acute neural estradiol synthesis is 

blocked. These findings highlight the significance of examining sex differences in 

physiological properties that can compensate for and/or augment sex differences in 

neuroanatomy and behavior.    

Introduction 

Within neuroendocrinology, there has been a focus on transcriptional 

mechanisms of steroid hormone signaling through nuclear receptors that lead to long-

lasting changes to the brain and behavior. However, recent attention has been given to 

non-canonical mechanisms that act through membrane receptors and intracellular 

signaling cascades to change neuronal firing states. What is sometimes overlooked is 
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that these non-canonical mechanisms can also enact long-term changes, specifically 

through activating kinase cascades which target transcriptional mechanisms to change 

protein expression (Micevych et al., 2015). 

Neuromodulatory actions of estradiol have been described in many brain 

regions, such as in the hypothalamus where it controls reproductive behaviors 

(Balthazart et al., 2009; Micevych et al., 2015) and in hippocampal-dependent memory 

and neuronal activity in rodents (Woolley, 2007; Fernandez et al., 2008; Frick, 2013). 

Estradiol infused into the caudal medial nidopallium (NCM) enhances auditory evoked 

activity in both sexes (Remage-Healey et al., 2010b; Remage-Healey et al., 2012), and 

estradiol content rapidly increases when birds hear conspecific song (Remage-Healey et 

al., 2008). Together, this work indicated a neuromodulatory role for estradiol in 

songbird audition, and that endogenous estradiol synthesis is likely shaping auditory 

events.  

One marker for auditory activation and memory is the immediate early gene 

Egr-1 (also known as ZENK in the songbird literature; Mello et al., 1992). There has 

been indirect evidence that estradiol actions on Egr-1 auditory responsiveness isthrough 

non-canonical mechanisms. Long-term implants of estradiol can shift song-induced 

immediate early gene (IEG) expression in zebra finch auditory forebrain (Maney et al., 

2006) in a region dependent manner (Sanford et al., 2010). Injections of E2 directly into 

NCM induce Egr-1 message in the absence of song (Tremere et al., 2009). To date, 

there has not been a study to directly test whether endogenous estradiol synthesis is 

necessary for sensory-induced expression of Egr-1 or other IEGs. There is suggestion 

that chronic fadrozole administration dampens memory formation (Yoder et al., 2012), 
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which may indicate an Egr-1 mechanism of action because of the role this IEG plays in 

memory formation in other systems (Knapska and Kaczmarek, 2004; Moorman et al., 

2011). Evidence suggests Egr-1 is regulated by estradiol via non-canonical mechanisms. 

The MEK-ERK pathway is necessary for song-induced expression in birds (Cheng and 

Clayton, 2004), as well as estradiol induced expression in mammalian in vitro tissues 

(Suva et al., 1991; Pratt et al., 1998; de Jager et al., 2001; Chen et al., 2004). Exogenous 

estradiol also rapidly regulates phosphorylation patterns of proteins such as ERK and 

CREB in the songbird forebrain in response to song (Heimovics et al., 2012). 

Phosphorylated CREB can bind to the promotor of Egr-1 through CRE sites (Knapska 

and Kaczmarek, 2004); however, its role in regulation of auditory-induced Egr-1 is 

unknown in songbirds. 

Gross anatomical comparisons have shown that males and females are similar in 

auditory subregions of the forebrain, although neuroestrogens may have sex differneces. 

Somatic aromatase expression in NCM are the same between the sexes; however, males 

have more aromatase fibers and terminal aromatase activity in this region (Saldanha et 

al., 2000; Peterson et al., 2005) suggesting sex differneces in the role for rapid estradiol 

synthesis. Peripheral estradiol is also similar between males and females (Adkins-Regan 

et al., 1990; Prior et al., 2014) despite the peripheral source from the ovaries in females 

(Schlinger and Arnold, 1992), indicating that alternative sources, such as brain 

aromatase in males, may be involved in compensation. Peripheral steroid hormones can 

be dynamic in other behavioral processing such as stress and aggression (Shors et al., 

2009; Heimovics et al., 2016), but in songbirds, peripheral estradiol levels remain stable 

in acute timeframes when birds hear song, despite concurrent robust changes in 
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estradiol levels within the brain (Remage-Healey et al., 2008). Fecal estrogen content 

indicates there is changes to peripheral estradiol in different contexts of song playback 

(Tchernichovski et al., 1998), but this long-term (several days) detection method does 

not capture acute changes . This indicates that in auditory activity, likely dynamic, 

neuronal synthesis of estrogens are playing the major role in acute neuromodulation of 

auditory activity rather than peripheral sources.  

Downstream targets may reveal sex differences in auditory cellular signaling as 

well (Krentzel and Remage-Healey, 2015; Chapter 4). In mammalian hippocampus, 

rapid E2-induced phosphorylation of CREB only occurs in females but not males 

(Abraham and Herbison, 2005; Boulware et al., 2005; Meitzen et al., 2012). By 

examining expression of both Egr-1 and pCREB, the current study can therefore 

determine if there are sex differences in the response to endogenous estradiol synthesis 

within the intracellular pathway. I can also determine if changes to Egr-1 and pCREB 

expression change together as a result of aromatase inhibition, and if this is similar 

between males and females. 

I set out to test four hypotheses in this study. First, I tested whether acute 

estradiol synthesis is necessary for auditory-induced Egr-1 expression in subregions of 

the zebra finch telencephalon. Second, I tested whether phosphorylation of CREB is 

similarly regulated by acute estradiol synthesis (in parallel with regulation of Egr-1). 

Third, I tested whether phosphorylation of CREB is inducible by song-exposure. 

Finally, I examined the extent to which any of these mechanisms depend on sex as a 

biological factor, predicting that females would be less dependent on acute estradiol 

synthesis due to compensation from peripheral sources.  
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Methods 

 Animals 

Adult (>120days) male (n=20) and female (n=21) zebra finches were raised in a 

breeding aviary (light cycle) with food and water available ad libitum. After fledging, 

birds were moved to single sex cages to mature into adulthood. For all experiments, 

birds were removed from aviary ~12-24 hours before manipulations.  

Stimuli playback 

Study 1: Males (n=8) and females (n=8) were isolated from the colony into 

sound-attenuation chambers. One hour before playback an oral dose (30uL) of either 

saline or the aromatase inhibitor fadrozole (1mg/mL Novartus; n=4/sex by treatment 

group) was administered. This dosing has been successfully used in prior studies to 

reduce aromatase activity and impair estrogen-dependent behaviors (Wade et al., 1994; 

Saldanha et al., 2004; Rensel et al., 2013; Rensel et al., 2015). I waited one hour before 

playback because this is the timeframe for oral fadrozole to begin to have measurable 

changes (Kochak et al., 1990). This is also when the playback speaker was placed in the 

chamber. Stimuli playback consisted of novel triplicate song played for 30 minutes 

(three conspecific songs played back to back (ISI: 5s) for ~15 seconds and then 45 

seconds of silence. Repeated across 30 minutes; ~70dB), which has been validated and 

replicated as the ideal exposure for Egr-1 expression (Mello et al., 1992). This period 

was followed by 30 minutes of silence in the dark to avoid male singing. 

Study 2: Based on the results of Study 1, I wanted to determine if the effects on 

Egr-1 expression of the fadrozole treatment were specific to the synthesis of auditory-

induced Egr-1 expression, rather than a toxic, degradation of Egr-1 expression. Rather 
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than exposing birds to song playback during the timeframe of decreased aromatase 

activity and estradiol production (~1 hour after administration in Study 1; Kochak et al., 

1990),  I followed the same design as study 1 with males and females n=3 per treatment 

and sex; total=12), with the exception that I administered the song playback paradigm 

immediately after fadrozole administration. Song playback occurred before fadrozole 

has reported effects on aromatase activity (see prior citations), and fadrozole would 

only be active after the protein expression of Egr-1 has occurred.  

Study 3: Males (n=9) and females (n=10) were collected by two separate 

experimenters in two separate studies so sex differences were not directly compared. I 

was interested in whether phosphorylation of CREB has different patterns based on 

song presentations. For each study, there were two stimuli groups: no song, 85 seconds 

of song or 15 minutes of song. The stimuli duration choices were selected based on 

previous publications. 85 seconds was chosen because it is the ideal length for pERK, 

an upstream kinase known to be responsive to song in males (Cheng and Clayton, 

2004). 15 minutes was selected because prior work has used this playback design for 

other phosphorylation studies (Heimovics et al., 2012). Song groups consisted of 

triplicate song playback protocol for the duration of time of that group. Since I had a no 

song control, to avoid any song being heard by males through their own singing, all 

subjects were kept in the dark ~2 hours before the experiment began and throughout 

playback. The playback speaker was placed ~ 5 minutes before the start of the playback 

session. For the 15-minute group, triplicate song was played back for the entirety of the 

session and then birds were immediately killed through rapid decapitation. For the 85 

second group, birds sat in silence for 13 minutes and 35 seconds and the song paradigm 
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was played at the end. For the silence group, birds sat in silence for the entirety of the 

15 minutes (Figure 10). 

 

Figure 10: Timelines for song presentation and drug administration of each study. 
Timelines are all organized based on day of experimentation to illustrate both drug 
administration and song condition. Study 1 and 2: Fadrozole (FAD) and saline (SAL) 
administration is indicated by black arrows. Fadrozole administered orally requires 
about an hour to become active to shut down aromatase activity (Kochak et al., 1990). 
Black boxes indicate time periods when triplicate song is played back to the subjects. 
White boxes indicate periods of silence. All timescales are indicated below the boxes. 
 

Hormone assay 

Whole blood was collected from animals at time of sacrifice for Study 1. I 

performed a solid phase extraction on the whole blood and then used EIA (Caymann) to 

measure estradiol. Four out of sixteen sample were compromised during extraction, and 

I was unable to get any detectable levels so these samples were removed from the 

analysis. I did not detect any differences in peripheral estradiol levels regardless of drug 

treatment (F(1,8)=0.56, p=.475) or sex (F(1,8)=.099, p=.72; data not shown) , indicating 

that the 60-min treatment with fadrozole did not significantly shift peripheral estradiol 

levels.  This finding is consistent with prior work (Prior et al., 2014), however due to 

the loss of samples, these measurements are underpowered. (Power is 10%, d=1.06). 
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Immunostaining 

After all stimuli presentations, birds were immediately killed by rapid 

decapitation and their brains were extracted and dropped into a 5% acrolein solution 

made in 0.1M phosphate buffer (PB). Brains sat in fixation overnight at room 

temperature. The following morning, brains were transferred to a 20% sucrose in 0.1M 

phosphate buffer/0.9% saline (PBS) solution at 4 ºC for at least two days. Brains were 

sections using a cryostat (Leica, Germany) at 45µm in serial sections and stored in 

cryoprotectant at -20ºC. For each study, all subjects were processed at once in the same 

free-floating immunostaining run. Sections were washed using 0.1M PB and then 

treated with 0.5% sodium borohydride (NaBH4) in PBS. After 3-5minute washes in 

0.1M PB and 3-15minute washes in 0.1M PB, sections were incubated in 10% normal 

goat serum (S-1000, Vector Labs) made in 0.3% Triton-x/0.1M PBS (PBT) for 1 hour. 

Sections were then incubated with either anti-Egr-1 rabbit polyclonal antibody 

(1:10,000, sc-189, Santa Cruz, antibody used for all Egr-1 staining in zebra finch) or 

anti-pCREB rabbit polyclonal antibody (1:5,000, Ser133, sc-101663, Santa Cruz; same 

epitope as antibody used in sparrow brain Heimovics et al., 2012) made in 0.3% PBT 

for 1 hour at room temperature followed by ~48 hours at 4 ºC. Following washes in 

0.1% PBT, sections were incubated in the secondary antibody biotinylated goat anti-

rabbit (BA-1000, Vector Labs) made in 0.3% PBT at a 1:200 dilution for 1 hour. 

Sections were washed and then incubated in Vector A:B (1:500 dilution; Vectastain 

Elite ABC Kit PK 6100, Vector Labs) solution for 90 minutes followed by washes. For 

development, I used the Vector SG hydrogen peroxide and chromatin (Vector SG 

Peroxidase (HRP Substrate Kit, SK-4700, Vector Labs) kit, dropping one drop of each 
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into the wells and the sections developed for 10 minutes. After mounting, sections were 

dehydrated using a 100%-95%-75% ethanol washes followed by HemeD. Sections were 

coverslipped using permount. I validated the pCREB antibody by first reserving some 

sections before the experiment, following this same process but incubating the primary 

in the respective blocking peptide (Ser133, Cell Signaling Technology). I observed total 

absorption of the antibody and observed no non-specific binding (data not shown).  

For aromatase comparisons, I followed a similar protocol. Animals (males n=6 

and females n=6) were transcardially perfused using 4% paraformaldehyde (PFA) in 

PBS. After perfusion and a post-fixation of 2 hours with 4% PFA, brains were switched 

to a 30% sucrose/saline solution. Brains were sectioned at 35 µm. Changes to the 

immunostaining protocol reflect differences in fixation and using fluorescent secondary 

antibodies. After sectioning and storage in cyroprotectant, sections were washed with 

0.1M PB 3x for 15 minutes each. A specific zebra finch anti-aromatase rabbit antibody 

(supplied by Colin Saldanha; Saldanha et al., 2000) was used at 1:2000 and incubated 

for 1 hour at room temperature and then ~48 hours at 4 ºC. After washing in 0.1% PBT 

3x for 15 minutes, I incubated the sections in secondaries raised in goat for rabbit 

antibodies conjugated to Alexa 488 and 594. Because of using fluorescence, sections 

were mounted with Pro Diamond Anti-Fade with DAPI (Thermofisher). 

 Imaging 

All regions of interest were predetermined because of known aromatase 

expression patterns. I selected the caudal medial nidopallium (NCM) because of its 

aromatase fiber and activity sex difference (Saldanha et al., 2000; Peterson et al., 2005). 

I divided the region into dorsal and ventral subregions. I defined NCM sections by the 
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thickness of the hippocampus and the absence of nucleus taenia (Tn) which contain 

medial sections ~ 0.2-1.0mm from the midline. I selected HVCshelf as another region 

of interested because it is known to express aromatase and is auditory responsive. I 

divided the shelf into anterior and posterior and used the absence of Egr-1 in HVC to 

determine where shelf begins. Sections were selected from ~1.7-2.5mm from the 

midline. For females, HVC location was difficult due to small size. In some subjects 

HVC was not always reliably visible, so I selected sections that appeared similar based 

on other anatomy markers such as thinness of the hippocampus and presence of the 

arcopallium and took images of dorsal caudolateral nidopallium. Because pCREB does 

not have a noticeable distribution difference between HVC and HVCshelf as does Egr-

1, for Study 1, since Egr-1 and pCREB were stained on serial sections of the same 

animal, the Egr-1 immunoreactivty guided the region of interest for HVCshelf for the 

pCREB immunoreactivity in adjacent sections. For Egr-1, I also quantified cells in 

CMM as a auditory region that does not have somatic aromatase expression (Saldanha 

et al., 2000, Chapter 2), therefore, I hypothesized I would not see changes in Egr-1 

expression with fadrozole. For Study 2 and 3, I collected images only from the dorsal 

and ventral NCM.  
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Figure 11: Auditory regions of the zebra finch forebrain. 
A) Schematic of a sagittal section of the zebra finch brain at ~1mm. This is 
representative of sections I targeted for imaging. Boxes represent subregions as follows: 
A] dorsal NCM, B] ventral NCM, C] CMM. B) Schematic of a sagittal section at ~1.7 
mm. Boxes represent representative regions for HVC shelf: A posterior and B anterior. 
Images adapted from ZEBrA zebrafinchatlas.org. 

 

Images were taken at 20x using brightfield microscopy (Zeiss Axio Lab A.1) 

and the Zeiss software ZEN 2012 blue edition. I took 3-4 images per region per animal. 

Images were quantified by an experimenter blinded to treatment condition. The 

experimenter counted cells in the entire image. Since both Egr-1 and pCREB are 

nuclear stains, discrete nuclei were counted manually using Image J. Intercounter 

variability was 10.5% for Egr-1 and 7.6% for pCREB.  

For aromatase fluorescence, detailed methods are described in Chapter 2 as well 

as the full extent of the study and all the regions analyzed. Briefly, I used a confocal 

microscope (NΑ1, Nikon, Tokyo, Japan) with NIS-Elements imaging software (Ar) was 

used to take pictures at 60x with z-slices that ranged from 9-15 µm. These images came 

from regions like the regions outlined in the above studies. I could only unequivocally 

identify HVCshelf reliably in 5 males and 3 females.  Aromatase counts are represented 

as a percentage of DAPI. 
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 Analysis 

I averaged sections from repeated regions of each subject for one representative 

count of that region. As is standard in the Egr-1 literature, I represent the cell counts 

within an area of mm2. All statistics were performed using Origin 2017. I ran two way 

mixed effects ANOVAS for region and sex and region and treatment initially. For sex 

by treatment by region comparisons, due to the low subject number per group and lack 

of power to detect complex interaction of treatment, region, and sex, I used non-

parametric statistics and ran Mann-Whitney U’s fixing the factors region and sex and 

compared treatment groups. I did the same for the pCREB analysis. For Study 3, since 

males and females were collected in two different studies, I did not run them together in 

a statistical model and instead performed a one-way within-subject ANOVA for each 

sex and region.  

Results 

I tested the hypotheses that estradiol synthesis is necessary for auditory-evoked 

IEG induction in an acute timescale. First, I found a decrease in auditory-induced Egr-1 

expression by fadrozole pre-treatment (F(1,14)=7.44, p=0.016) and this change in 

expression depended on brain region (region: F(4,56)=34.17, p<.0001; 

region*treatment: F(4,560)=5.08, p=.0015). I did not detect a main effect of sex 

(F(1,14)=2.73, p=0.12). I lacked power to detect a treatment by sex interaction (23%) 

and sex by treatment by region (12%). The a priori hypothesis was that auditory 

activation would be more reliant on estrogen synthesis in males thanfemales, so I fixed 

the factors sex and region and ran Mann-Whitney U tests for saline vs. fadrozole for 

each region and each sex to determine. For males, Egr-1 expression was significantly 



78 

lower in fadrozole treated animalsin dNCM (U=16, p=0.029; Figure 12&13), anterior 

HVCshelf (U=16, p=0.029; Figure 13), and posterior HVCshelf (U=16, p=0.029; Figure 

13). Ventral NCM (U=10, p=0.69; Figure 13) and CMM were unaffected (U=12, 

p=0.34; Figure 13). For females, Egr-1 expression was only significantly lower for 

fadrozole-treated animals in anterior HVC shelf (U=16, p=0.029; Figure 13) and all 

other regions were unaffected (dNCM U=12, p=0.34 [Figure 13], posterior HVCshelf 

U=10, p=0.69, vNCM U=10, p=0.69, and CMM U=11, p=0.49; Figure 13). Therefore, 

the data show that more regions in males depend on acute estradiol synthesis for Egr-1 

auditory induction than female brain regions. This decrease in induction also is region-

specific in both sexes. 
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Figure 12: Song-induced Egr-1 expression decreases with fadrozole 
administration. 
Representative images from dNCM for each sex and treatment group. Images were 
taken at 20x magnification. Left column is saline treated, right column is fadrozole 
treated, top row are females, and bottom row are males. Scale bar is 50 µm. 
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Figure 13: Summary of aromatase inhibition of song-induced Egr-1 expression. 
Means and standard errors (error bars) for Egr-1 expression per mm2 of tissue. Gray 
bars are saline treated animals and white bars are fadrozole treated animals. 
n=4/sex*treatment. p<.05*. 
 

I next examined expression of pCREB in serial sections from the same 

experiment. There was a significant difference in expression across regions 

(F(3,42)=7,84, p=0.00029; significant Bonferroni posthocs: dNCM vs. pHVCshelf: 

t(42)=5.15, p=0.0040, vNCM vs. pHVCshelf: t(42)=6.39, p=0.00028); however there 

was not a difference overall within sex (F(1,14)=0.25, p=0.62) or a change with 

fadrozole administration (F(1,14)=0.25, p=0.63). I did not observe any differences 

across all four brain regions I quantified for either sex (Males: aHVCshelf U=12, 

p=0.34, pHVCshelf U=7, p=0.89, vNCM U=7, p=0.86, dNCM U=8; Figure 14, p=1.00; 

Females: aHVCshelf U=7, p=0.56, pHVCshelf U=6, p=0.66, vNCM U=10.5, p=0.54, 

dNCM U=9, p=0.89; Figure 14 &15 for all), indicating that phosphorylation of CREB 

is not regulated in the same way as Egr-1 by sex or acute estradiol synthesis. However, I 

did not see sufficient evidence in the literature that 1) pCREB is song inducible or 2) 
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that the timecourse necessary for Egr-1 induction would maintain changes to 

phosphorylation patterns. Therefore I tested in a new experiment whether shorter song-

exposure could prompt induction of pCREB. I saw that pCREB expression did not 

change in either dorsal or ventral NCM for silence, 85 secs, and 15 min song exposures 

(Males: dNCM F(2,4)=0.46, p=0.66, vNCM F(2,4)=0.14, p=0.88; Females: dNCM 

F(2,4)=0.035, p=0.97, vNCM F(2,4)=0.23, p=0.80; Figure 16). Males and females were 

examined in two separate studies so no direct sex comparisons were possible. 

 

Figure 14: Expression of pCREB is unaffected by aromatase inhibition. 
Representative images from dNCM for each sex and treatment group. Images were 
taken at 20x magnification. Left column is saline treated, right column is fadrozole 
treated, top row are females, and bottom row are males. Scale bar is 50 µm. 
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Figure 15: Summary of pCREB expression in the zebra finch forebrain. 
Means and standard errors (error bars) for pCREB expression per mm2 of tissue. Gray 
bars are saline treated animals and white bars are fadrozole treated animals. 
N=4/sex*treatment.

 
Figure 16: pCREB expression does not fluctuate with song playback. 
Summary of pCREB expression for males and females from Study 3. Means and 
standard errors (error bars) for pCREB expression per mm2 of tissue for dorsal and 
ventral NCM. White bars are animals exposed to no song, checkered bars for 85 
seconds, and black bars for 15 minutes. Females: silence (n=3), 85 sec (n=3), 15 min 
(n=4). Males: silence (n=3), 85 sec (n=3), 15 min (n=3).  
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The regulation of Egr-1 induction by fadrozole could be explained by estrogen-

dependent regulation of the active synthesis of the IEG or alternatively a nonspecific 

‘toxic’ protein degradation by the drug fadrozole. To distinguish between these 

possibilities, I administered fadrozole and saline orally immediately prior to song 

playback in a new set of animals. In principle, this treatment timecourse is not 

pharmacokinetically sufficient to suppress brain aromatase activity during the 

subsequent 30-min song exposure, yet song-induced Egr-1 protein during the following 

30 min induction period is very likely to be exposed to the drug. I did not observe a 

difference between saline and fadrozole birds (dNCM: F(1,8)=0.021, p=0.89; vNCM: 

F(1,8)=0.24, p=0.64; Figure 17), indicating that the fadrozole is not sufficient to reverse 

or degrade Egr-1 induction. 

 

Figure 17: Aromatase inhibition after song exposure does not impact Egr-1 
expression. 
Summary of means and standard errors (error bars) for egr-1 expression per mm2 of 
tissue in dorsal NCM (dNCM). Gray bars are saline treated animals and white bars are 
fadrozole treated animals. N=3/sex*treatment. p>.05. 
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Chapter 2 contains all of the subregions of the aromatase somatic aromatase 

expression in the the auditory telencephalon.  I describe here the findings from that 

study that are relevant to the regions I quantified for Egr-1, to test the hypothesis that 

sex differences in regional aromatase expression are contributing to the differences in 

Egr-1 expression with fadrozole administration. Here, I did not find any sex differences 

in expression in any region analyzed with the exception of the pHVCshelf where 

females have more aromatase expression (F(1,8)=8.33, p=.023; Figure 18A). By 

contrast, in aHVCshelf, there was not a sex difference (F(1,8)=1.27, p=.30; Figure 

18A), or in dNCM (F(1,10)=.033, p=.86; Figure 18B) or vNCM (F(1,11)=.005, p=.95; 

Figure 18B). CMM did not have any somatic aromatase expression. Therefore, the same 

region in which we observed sex-specific, rapid suppressive effects of aromatase 

inhibition on Egr-1 induction (pHVCshelf, Fig. 4) I also observed a sex difference in 

expression of aromatase protein itself.  
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Figure 18: Females have more aromatase expression in pHVCshelf than males. 
A) Left: Summary of aromatase expression as a percentage of total cells counted by 
DAPI for aHVCshelf and pHVCshelf. Right: Representative images of cell counts near 
the mean for posterior HVCshelf. B) Left: Summary of aromatase expression as a 
percentage of total cells counted by DAPI for ventral and dorsal NCM (vNCM, dNCM). 
Right: Representative images of cell counts near the mean for dorsal NCM. Males are 
blue bars and females are red bars means and standard errors. Each image is a z-
projection stack image of 15 µm thick. Images have been altered for brightness and 
contrast only for presentation, not analysis. Dorsal NCM images were stained with 
Alexa 488 and quantified as such but shifted to red for consistency in presentation only. 
p<.05*. Scale bar is 50 µm. HVCshelf males n=5, females n=3. NCM males n=6, 
females n=6. 
 

Discussion 

I found that acute estradiol synthesis is necessary for complete auditory 

responsiveness of cells within aromatase rich auditory regions of the zebra finch 

forebrain. This is the first paper to show a direct link between endogenous estradiol 

synthesis and auditory-evoked gene expression in the brain. This is also the first study 

to address this question in both sexes. While prior papers have shown that exogenous 
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E2 application can change auditory-induced Egr-1 expression (Maney et al., 2006; 

Tremere et al., 2009; Sanford et al., 2010) demonstrating sufficiency, to my knowledge 

this is the first published study to test the necessity of endogenous estradiol synthesis on 

auditory-induced Egr-1 expression. This is also the first paper to establish that males 

have more regions of the auditory forebrain that depend on endogenous estradiol 

synthesis than females. Some sex differences have been described relating to brain 

derived estrogens and how they may impact audition (Saldanha et al., 2000; Peterson et 

al., 2005; Rohmann et al., 2007; Chao et al., 2015), but this is the first to report an 

auditory consequence of sex differences likely due to differences in brain-derived 

estradiol production.  

I found that depending on brain region, males and females had differing degrees 

of suppressed auditory-induced Egr-1 expression when pre-treated with an aromatase 

inhibitor. In dNCM, aHVCshelf, and pHVCshelf, males have less Egr-1 expression 

when administered fadrozole as opposed to saline. However, this effect only exists in 

aHVCshelf for females, indicating that in dNCM and pHVCshelf, there is a sex 

difference in dependency of estrogen synthesis on auditory activation. I hypothesized 

that this effect was due to a difference in aromatase expression in these regions, and I 

confirmed this in pHVCshelf by observing a larger somatic aromatase expression in 

female pHVCshelf as compared to that in males. However, for dNCM, I found that 

males and females have similar somatic aromatase expression (Chapter 2) 

whichreplicates prior literature (Saldanha et al., 2000).  

Two non-competing hypotheses may explain why males have a stronger 

decrease of auditory-induced Egr-1 expression when aromatase is acutely inhibited in 
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more brains regions. The first hypothesis is that auditory-induced Egr-1 expression is 

dependent on neural estradiol and differences between males and females are related to 

how this estradiol is synthesized and metabolized locally within brain regions. The 

second hypothesis is that due to ovarian estradiol in females, peripheral estradiol levels 

are maintaining neural responses to songs in females. 

For the first hypothesis, I have several pieces of evidence that the effects I 

observed are due to differences in neuronal sources of estradiol. Because of the region-

specific differences, I observed in decreased Egr-1 expression in fadrozole treated 

groups, these effects may be due to brain-derived aromatase activity. For example, 

regions such as CMM that contain estrogen receptors (see Chapter 2) but no somatic 

aromatase (Saldanha et al., 2000, Chapter 2) did not exhibit altered Egr-1 induction in 

response to fadrozole administration. One surprising region that I did not see an effect 

was ventral NCM which is known to have robust aromatase expression (Chapter 2); 

however, I did not see an effect of aromatase inhibition in either sex on Egr-1 auditory 

evoked expression. Ventral NCM had the lowest Egr-1 expression of the regions 

analyzed, so it is possible I have a floor effect on its overall Egr-1 expression. Given 

that I observed a decrease in auditory induced Egr-1 expression in males administered 

fadrozole, this is consistent with the idea that males are more reliant on acute, neuronal 

synthesis of estradiol than females in dNCM. I found a similar effect in pHVCshelf, 

however, I detected an actual sex difference in somatic aromatase expression where 

females have more aromatase than males in the posterior shelf but not in dNCM. A sex 

differences has been described in terminal activity (Peterson et al., 2005; Rohmann et 

al., 2007) and aromatase fiber expression (Saldanha et al., 2000). This may seem 
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contradictory, however, there is likely a functional difference in somatic vs. terminal 

expression of aromatase. Somatic aromatase may be relevant for paracrine signaling of 

estradiol, where estradiol is being released locally within the brain but not targeted to 

specific synapses. Terminal expression is likely involved in 

neuromodulator/neurotransmitter like functions (Remage-Healey et al., 2010a). Fiber 

expression and terminal activity has not been described in detail in the shelf, so it is 

unclear if there is a similar relationship in this region that may explain this effect. More 

somatic aromatase may be protecting auditory responsiveness in females by an 

accumulation of estradiol still being present within the acute timescale.  

For the second hypothesis, there is sufficient evidence that there is compensation 

in males and females for overall estradiol levels. Males and females do not differ in 

measurable periphereal levels (Adkins-Regan et al., 1990; Prior et al., 2014), despite 

there being a significant amount of estradiol synthesized from female ovaries (Schlinger 

and Arnold, 1991, 1992). There is also evidence that for both sexes there are sources of 

estradiol that are non-gonadal, specifically when zebra finches are gonadectomized 

there is an increase in periphereal estradiol (Adkins-Regan et al., 1990).A major source 

of this E2 is likely the brain as there is detectable and robust production of 

neuroestradiol than can be measured in the periphery (Schlinger and Arnold, 1992). In 

NCM which is dense with aromatase expression, both sexes express somatic aromatase; 

however, males have more aromatase expression on fibers (Saldanha et al., 2000) and 

activity of the enzyme in terminals (Peterson et al., 2005), indicating that rapid estrogen 

signaling may be more abundant in males. However, there has not been a detectable 

difference in estradiol content between the sexes in adulthood when sampling via 
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microdialysis in gonadally intact males and females (Remage-Healey et al., 2012). This 

suggests that despite the alternative sources from either the brain or periphery, males 

and females achieve similar estradiol content that is measurable in discrete regions.    

In this study, there is reasonable evidence to suggest that acute oral fadrozole is 

not significantly decreasing peripheral sources of estradiol for either sex.  I found that 

fadrozole did not alter peripheral estradiol levels in either sex within this 60-90 min 

timeframe. Prior evidence suggests that acute exposure to aromatase inhibitors is not 

sufficient to decrease peripheral estradiol in either zebra finch sex (Prior et al., 2014) 

although in sheep it decreases peripheral estradiol by 2-8 hours (Benoit et al., 1992). 

Likely, peripheral steroids are not rapidly changing to song exposure. Peripheral 

estradiol fluctuations in response to song exposure in females have been measured in 

the feces, and it takes several days to detect changes (Tchernichovski et al., 1998). 

When measuring plasma testosterone and estradiol after song playback, male zebra 

finches do not have changes in the periphery despite changes in steroid content in the 

brain (Remage-Healey et al., 2008). These results suggest that in zebra finches, in the 

timeframe of this study, song is not sufficient to dynamically change peripheral E2, 

though this would need to be more systematically explored. Given this evidence, it is 

possible that gonadal estradiol in females has not been yet metabolized and decreased 

significantly by fadrozole. This provides another mechanism by which the aromatase 

inhibitor suppression of auditory-induced Egr-1 is blunted in females as opposed to 

males.  

Future work will need to determine the role that brain-derived estradiol and 

gonadal-derived estradiol plays in auditory physiology, particularly in females. 
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Experiments directly testing the necessity of ovaries in auditory responsiveness are 

needed to confirm or refute the sufficiency of brain-derived estradiol to maintain 

auditory-induced gene expression. Conversely, targeting specific brain regions, such as 

dNCM or pHVCshelf for aromatase inhibition can determine whether auditory 

responsiveness is maintained as seen in this study.  

Sex differences in estrogen dependent Egr-1 and aromatase expression in the 

shelf may indicate that the shelf is a sexually dimorphic nucleus. There is little known 

about the shelf of HVC other than it is auditory and send projections into HVC and RA 

cup (Vates et al., 1996), which are sexually dimorphic motor nuclei that is critical for 

production of birdsong in males. Since the sex difference is dependent on the anterior-

posterior axis of the shelf, where anterior shelf has a similar response between the sexes 

and the posterior shelf is differential, this may indicate a true sex difference in shelf 

neurochemical functioning or a sex difference in size and shape which affects what 

region was sampled. HVC is smaller in females than in males (Nottebohm and Arnold, 

1976; Hamaide et al., 2017), and shelf is defined by the parameters of this nucleus. 

Although I was careful in the identification of shelf, there is a lack of thorough 

anatomical description of this region, particularly in females. This difference might 

represent portions of the dorsal caudolateral nidopallium (NCL). 

I also reported that pCREB is not song-inducible, nor is it regulated in parallel 

with Egr-1 expression changes in either sex. I proposed that pCREB was a likely 

candidate for a transcription factor that targets Egr-1 and is sensitive to E2 signaling of 

the MEK-ERK pathway. However, unlike the phosphorylation of ERK (Cheng and 

Clayton, 2004), I did not see changes in pCREB expression after short song exposure in 
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dorsal or ventral NCM. Phosphorylation of CREB also has sex specific induction of 

estradiol in the mammalian hippocampus, which made it another enticing candidate for 

testing sex differences of downstream targets of E2. However, I did not observe any sex 

or treatment specific effects in the study. This indicates that pCREB is likely not 

regulated in the same pathway as pERK and Egr-1 in audition, though there are still 

open questions about its sensitivity to acute estradiol application. There are other 

transcription factors that can target the Egr-1 promotor such as Elk-1 which also is a 

target of the MEK-ERK pathway (Chen et al., 2004; Knapska and Kaczmarek, 2004) .  

Although I did not detect changes in pCREB due to auditory or endogenous 

estradiol manipulations, this does not rule out that sex differences in Egr-1 expression 

may be due to sex differences in cell signaling mechanisms. There is a lack of literature 

on receptor types that mediate estrogen signaling in the zebra finch forebrain and 

whether these are similar between the sexes. Phosphorylation of ERK and its role in 

audition has exclusively been characterized in male but not female zebra finches (Cheng 

and Clayton, 2004), as well as the rapid effect of estradiol on pCREB, pTH, and pERK 

in male song sparrows (Heimovics et al., 2012). Although pCREB seemed a potential 

candidate due to the mammalian literature (Abraham and Herbison, 2005), this study 

indicates that the role of pCREB in sexually different signaling is highly unlikely, 

however this does not mean males and females are utilizing the same intracellular 

mechanisms. Many ubiquitous kinase cascades such as MEK-ERK are sensitive to 

perturbations in a sex specific manner (Gresack et al., 2009; Sharma et al., 2009; 

Armstead et al., 2011). Future studies examining downstream pathways of E2 
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regulation of audition will need to seriously consider sex as a biological variable to 

determine how males and females are utilizing E2.  

Although Egr-1 expression is often used as a neuronal activation marker for 

auditory regions in the songbird, Egr-1 is a transcription factor that has been implicated 

in learning and memory (Davis et al., 2003; Knapska and Kaczmarek, 2004; Veyrac et 

al., 2013). Egr-1 targets promotor regions of genes involved in synapse formation and 

maintenance (Knapska and Kaczmarek, 2004; Moorman et al., 2011). Egr-1 knockout 

mice have memory deficits (Han et al., 2014). Within songbirds, Egr-1 has been 

described as a marker for the “genomic action potential” (Clayton, 2000), which is that 

process that neurons use to encode salient stimuli and translate the signal from an action 

potential to changes that occur in gene expression having long term consequences on 

protein expression and neuronal architecture. Secondary auditory regions such as NCM 

have been implicated as a region that stores “tutor memory” or a template for male song 

(Bolhuis and Gahr, 2006; Bolhuis and Moorman, 2015; Yanagihara and Yazaki-

Sugiyama, 2016). Egr-1 may be a mechanism by which these memories are stored. If 

this is the case, the sensitivity of Egr-1 to neural estradiol suggests that estradiol may be 

an important signal in auditory memories and song development.  

This study demonstrates that acute estradiol synthesis is necessary for auditory 

responsiveness in multiple cortical regions of the zebra finch. This is particularly 

evident in males, supporting the hypothesis that males are more reliant on active 

estrogen synthesis than females for auditory responsiveness. Future work is necessary to 

unpack the regional specific regulation of aromatase activity and E2 sensitive signaling 
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pathways within auditory regions of the forebrains comparing the sexes to further 

understand the role estradiol has as a neuromodulator in auditory processing. 
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CHAPTER IV 

A MEMBRANE G-PROTEIN COUPLED ESTROGEN RECEPTOR IS 

NECESSARY BUT NOT SUFFICIENT FOR SEX-DIFFERENCES IN 

SONGBIRD AUDITORY CODING 

 
Abstract 

 Estradiol can act as a neuromodulator in brain regions important for cognition 

and sensory processing. Estradiol can also shape sex differences, but rarely have these 

two concepts been considered simultaneously. In both male and female songbirds, 

estradiol rapidly increases within the auditory forebrain during song exposure and 

enhances local auditory processing.  I tested whether GPER1, a membrane bound 

estrogen receptor, is necessary and sufficient for neuroestrogen regulation of forebrain 

auditory processing in both male and female zebra finches (Taeniopygia guttata). At 

baseline, I observed a robust sex difference in single-neuron responses to songs. 

Specifically, in males only, narrow-spiking neurons (NS) carried more auditory 

information than broad-spiking neurons (BS). Following acute inactivation of GPER1, 

auditory responsiveness and coding were suppressed in male NS, yet unchanged in 

female NS, and also unchanged in BS of both sexes. By contrast, GPER1 activation did 

not mimic previously-established actions of estradiol in either sex. Lastly, the 

expression of GPER1 and its coexpression with the inhibitory neuron marker GAD67 

were similarly abundant in males and females. To my knowledge, this is the first 

description in any organism of: 1) a role for GPER1 in regulating sensory processing, 

and 2) a sex difference in auditory processing of complex vocalizations in a cell-type 

specific manner. These results reveal sex-specificity in rapid estrogen signaling, 
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consistent with neuromodulation that accounts for and/or compensates for brain sex 

differences, in a cell-type specific manner, in brain regions that are anatomically similar 

in males and females. 

 
Significance statement 

In this study, I report a cell-type specific mechanism of auditory processing that 

differs between the sexes, and that is also mediated by a membrane estrogen receptor in 

males. Sex differences in the physiological parameters of neurons in regions that are 

anatomically similar could have important implications for understanding neural 

networks and behavior, and this work in particular indicates sex differences in vivo in 

the modulatory actions of neuroestrogens. Broadly, my study exemplifies that sensory 

regions can be physiologically differentiated for sex-specific encoding of complex 

stimuli, including learned vocalizations.  

Introduction 

Sex differences in neuroanatomy occur throughout the brain in vertebrates. For 

regions that do not differ structurally between males and females, anatomical similarity 

could belie underlying sex differences in physiology and modulation. For example, 

song production is male-specific in many songbirds and associated with robust sex 

differences in the song motor pathway (Nottebohm and Arnold, 1976; Hamaide et al., 

2017), yet the songbird auditory network is considered largely similar in males and 

females (Krentzel and Remage-Healey, 2015; Brenowitz and Remage-Healey, 2016). 

Specifically, the songbird caudomedial nidopallium (NCM; analogous to secondary 

auditory cortex) is not sexually dimorphic, yet some NCM firing states appear divergent 

between males and females (Dagostin et al., 2012; Yoder et al., 2015). It is currently 
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unclear whether and how these differences manifest in the auditory response properties 

of single NCM neurons. In both sexes, NCM is selective for complex song stimuli 

(Terpstra et al., 2006; Tomaszycki et al., 2006; Remage-Healey et al., 2010; Ikeda et al., 

2015), and NCM is hypothesized to be a locus for auditory memory and discrimination 

(Bolhuis and Gahr, 2006; Bell et al., 2015; Bolhuis and Moorman, 2015; Yanagihara 

and Yazaki-Sugiyama, 2016). More broadly, examining sex differences in songbird 

auditory physiology can provide insights into sex differences in hearing, language 

development, and neuroendocrine mechanisms in other species, including humans 

(Charitidi et al., 2009; Wermke et al., 2014; Quast et al., 2016).  

Hormones and genes organize brains into “male-like” and “female-like” states 

(Wade and Arnold, 2004; McCarthy, 2010; Maekawa et al., 2014). Sexually dimorphic 

neural circuits can support differentiated motor behaviors and traits (Breedlove and 

Arnold, 1983), but they can also compensate to maintain similarity between sexes when 

hormonal, genetic, and/or morphologic factors differ (De Vries, 2004). A key hormonal 

mechanism associated with sex differences in vertebrates is the neural production of 

estradiol, which can shape long-term gene expression in the brain in addition to acute 

effects (Krentzel and Remage-Healey, 2015; Micevych et al., 2015). 

In humans and songbirds estrogens are locally produced within the auditory 

cortex, including at synaptic terminals (Naftolin et al., 1996; Saldanha et al., 2000; 

Yague et al., 2006). The abundance of aromatase-positive neurons in NCM is similar in 

male and female zebra finches; notably males have more elevated aromatase expression 

and enzymatic activity within presynaptic terminals (Saldanha et al., 2000; Peterson et 

al., 2005). Still, in both sexes, local NCM estradiol is acutely elevated when hearing 
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conspecific song (Remage-Healey et al., 2008; 2012), and exogenous estradiol increases 

auditory responsiveness (Remage-Healey et al., 2010; 2012). Thus, local increases in 

brain estradiol can rapidly modulate audition – similarly – in both sexes. 

Despite similarities in neuroestrogen production, the receptor mechanism that 

mediates rapid neuroestrogen signaling is unknown, and may be sex-specific. Classical 

nuclear receptor agonists do not mimic rapid estradiol actions in NCM (Remage-Healey 

et al., 2013). Alternatively, the membrane-bound g-protein coupled estrogen receptor 1 

(GPER1) can mediate rapid estrogen signaling in other models (Srivastava and Evans, 

2013) and is expressed in mammalian, avian, and teleost brain (Acharya and Veney, 

2012; Almey et al., 2016; Crimins et al., 2016; Mangiamele et al., 2017). In mammals, 

rapid estrogen signaling is mediated by GPER1 in both the hippocampus (Briz et al., 

2015; Kumar et al., 2015; Waters et al., 2015; Kim et al., 2016), and striatum (Almey et 

al., 2016), and the acute actions of estrogens on hippocampal synaptic transmission are 

sex-specific, and mediated in part by GPER1 (Oberlander and Woolley, 2016).  

For these reasons, I tested two primary hypotheses, that: (1) the response 

properties of NCM differ between males and females, and (2) auditory processing and 

coding are regulated by GPER1 at the level of single neurons in NCM. I report sex 

differences in auditory processing and information coding at the level of single neurons 

that are cell-type specific. I further show that GPER1 is necessary to maintain this sex 

difference, but that activation of GPER1 alone does not mimic the actions of estradiol.  
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Methods 

Animals  

Adult (>120 dph) male and female zebra finches were housed in single sex 

cages in flight aviaries with food and water available ad libidum (14 day/10 night). All 

animals were gonadally intact. Protocols for animal care and use were approved by the 

Institutional Animal Care and Use Committee at the University of Massachusetts. Males 

(n=27) and females (n=27) were collected across four electrophysiological studies that 

had the same within subject design (aCSF, drug, aCSF). To examine potential sex 

differences in firing at pre-drug conditions, results from the first aCSF trial were pooled 

across all four studies (N = 27 males and 27 females each). The three drug treatment 

studies with antagonist G36 (100 µM; males n=5, females n=5) and agonist G1 (low 

dose 100 nM: males n=10, females n=8; high dose 100 µM: males n=5, females n=6) 

include all data from a pre, drug, and post drug trials. These doses were selected based 

on the specificity of binding to the GPER1 receptor (Dennis et al., 2011). Additional 

animals (males n=7, females n=6) were added from trial 1 aCSF only recordings for a 

larger comparison across studies. A separate set of males (n=7) and females (n=6) were 

collected from the same aviaries for the immunofluorescence study. 

Surgery 

I used protocols adapted from previously published methods (Remage-Healey et 

al., 2010; 2012; Remage-Healey and Joshi, 2012; Ikeda et al., 2015; Pawlisch and 

Remage-Healey, 2015). Animals underwent stereotaxic surgery to affix head posts and 

draw markings on the skull for NCM coordinates. Animals were removed from the 

larger aviary just before surgery, and were isolated from food for ~20 minutes to 
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prevent aspiration during anesthesia. Based on weight, 35-45µL of equithesin was 

injected into the pectoralis muscle. Approximately twenty minutes following injection, 

birds were affixed to a stereotax at a 50º head angle. 

A local lidocaine injection (10-20µL, 2% in ethanol; Sigma-Aldrich) was 

subcutaneously administered under the scalp and the skull was exposed. The bifurcation 

of the midsagittal sinus (‘zero point’) was identified by cutting a small window into the 

upper leaflet of skull. From here, hatched marks were made in the upper leaflet of skull 

over the NCM coordinates (rostral 0.8mm; lateral 0.8mm) from the zero point on both 

left and right hemispheres. A small hole was also made in the upper skull leaflet above 

the cerebellum and a silver wire was inserted for grounding during physiology 

recordings and secured using cyanoacrylate. The scalp was resealed using cyanoacrylate 

and dental cement secured the head post. Birds recovered from anesthesia within 4 

hours and were placed in an isolation chamber housed with at least one other bird for 1-

2 days until recording.  

Electrophysiology & Retrodialysis 

I performed anaesthetized in vivo, single electrode electrophysiology on the 

subjects with a retrodialysis probe implanted in NCM. Previous studies testing 

neuromodulation of auditory neurons in songbirds have used this method in order to 

achieve long-term (2-3 hrs), stable recording sites alongside acute vehicle, drug, and 

washout administration with retrodialysis (Remage-Healey et al., 2010; 2012; Ikeda et 

al., 2015; Pawlisch and Remage-Healey, 2015). Prior to recordings each subject was 

administered 20% urethane over the course of 2-2.5 hours in at least three doses at 30µL 

each. Total volume of anesthesia ranged from 90-120µL depending on the size of the 
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bird. Birds were then secured by the head post to a custom stereotax (Herb Adams 

Engineering) at a fixed 50º angle. Each subject was kept on a heating pad to maintain 

body temperature (DC Neurocraft). All experiments took place inside a sound 

attenuation booth (Industrial Acoustics) on an air table (TMC). 

The lower skull leaflet and dura were dissected away from the marked exposure. 

The left NCM was always exposed first and most subjects had recordings from the left 

hemisphere (50/54 recordings). If recordings were unsuccessful in the left hemisphere, 

then the right hemisphere was exposed (4/54 recordings). Right hemisphere recordings 

were not systematically different from left hemisphere recordings for auditory 

responsiveness and were therefore pooled in the analyses. A pre-filled microdialysis 

probe (CMA 7 with 1 mm membrane; Microdialysis Probe, CMA Microdialysis) was 

inserted caudal to the hatched markings and descended ~1.5mm ventral into NCM. The 

flow rate of aCSF was 2 uL/min. After 30 minutes of delay from implantation, a single 

carbon fiber electrode (Carbostar-1, Kation Scientific) was descended immediately 

caudal (~200-500µm) to the probe to search for auditory sites. Sites were selected 

between ~0.8-1.5mm ventral from the surface. An auditory site was selected by online 

confirmation that peri-stimulus time histograms (PSTHs) displayed a positive auditory 

response to auditory playback stimuli. All recordings were amplified, bandpass filtered 

(300 –5000 Hz; A-M Systems), and digitized at 20 kHz (Micro 1401, Spike 2 software; 

Cambridge Electronic Design). Prior to recordings, song files for auditory playback 

were normalized to ~70dB.  
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Once the site was selected, trial 1 of the experiments began. Trial 1 consisted of 

30 minutes of retrodiaylsis of aCSF followed by 15 minutes of continuous retrodialysis 

of aCSF with concurrent playback of song stimuli. Stimuli were three separate male 

conspecific songs selected from recordings of birds from the colony at least 3 years 

prior (i.e., outside of age ranges for the subjects), and a white noise sound file, totaling 

four sound files. Each sound file was played back for 20 repetitions pseudorandomly at 

an inter-stimulus interval of 10±2 sec, totaling ~15 minutes of stimuli exposure. After 

the end of Trial 1, the aCSF was switched for the drug trial (100µM of G36 (Azano 

Scientific); 100 µM or 100 nM of G1 (Azano Scientific; Stock made in DMSO then 

diluted to concentrations in aCSF for a final DMSO concentration of maximum 0.5%). 

Trial 2 followed the same time course and playback. Trial 3 consisted of a washout with 

aCSF for the same time course. Following Trial 3 washout, recording sites were 

lesioned (10 µA for 10 s) for confirmation of electrode placement. 

Histology  

Birds were decapitated immediately following the lesion. Brains were extracted 

and stored in 20% sucrose/10% formalin solution in 4 ºC. After fixation, brains were 

frozen in OCT and stored at -80 ºC until sectioning. I sectioned at 45 µm using a 

cryostat (Leica CM 3050S) and mounted onto Fisher superfrost slides. I performed a 

nissl stain using 0.25% thionin and slides were then dehydrated through a series of 

ethanol washes followed by Heme D and coverslipped using permount (Fisher 

Scientific). Sections were visualized under a bright field microscope (Zeiss Axio 

Lab.A1) to confirm probe site implantation into NCM. Lesion sites were more difficult 

to confirm in all cases due to the lack of gliosis. However, all recording sites were 
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confirmed on-line to exhibit highly phasic, bursting response properties that are 

characteristic of NCM neurons, and all probes were histologically confirmed to be 

within NCM.  

Auditory responsiveness  

Recordings were processed in Spike2 (version 7.04) software. First pass analysis 

consisted of measuring auditory responsiveness in multiunit recordings. Thresholds 

were set at least 2-fold above the noise band for rastering multiunit activity. Single units 

were isolated by sorting spikes based on waveform shape in Spike2 with the same 

thresholding (n=116). A PCA analysis confirmed isolated units and I obtained 2-3 units 

from each subject (Fig. 19). All single units included in the analysis had an interspike 

interval >1ms. Single units were not selected based on amplitude or whether they were 

consistently responsive to auditory stimuli. Rather, I performed an unbiased 

categorization solely on the PCA to isolate the most distinct waveforms (Fig. 19A, 

right). I ran paired t-tests for each unit between spontaneous and stimulus-evoked firing 

frequencies across all stimulus presentations to determine whether units were 

statistically responsive (p < 0.05) to auditory stimuli for any of the treatment trials. One 

unit in the G1 low dose study did not meet this criterion and was removed from the 

analyses.  

For rasterized multiunit and single unit spike trains, several parameters were 

measured. Peristimulus histograms were aligned with each sound stimulus, measuring 2 

seconds preceding the stimulus for spontaneous activity and the 2 seconds after stimulus 

onset for stimulus-evoked activity. Firing frequency (Hz) was measured for both 
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multiunit and single unit firing during spontaneous and stimulus-evoked periods. 

Auditory responsiveness is represented by the zscore: 

𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 =
𝑀𝑀𝑧𝑧𝑀𝑀𝑀𝑀(𝑆𝑆) −𝑀𝑀𝑧𝑧𝑀𝑀𝑀𝑀(𝐵𝐵)

�𝑉𝑉𝑀𝑀𝑧𝑧(𝑆𝑆) + 𝑉𝑉𝑀𝑀𝑧𝑧(𝐵𝐵) − 2(𝐶𝐶𝑧𝑧𝐶𝐶(𝑆𝑆,𝐵𝐵))
 

where Mean(S) is the mean number of spikes during the stimulus presentation, Mean(B) 

is the mean number of spikes during spontaneous firing period, Var(S) is the variance of 

the stimulus-evoked activity period, Var(B) is the variance of the spontaneous activity 

and Cov(S,B) is their covariance. I was principally interested in neuromodulation of 

song-evoked responses rather than differential representation of individual song 

subtypes. The descriptive means did not demonstrate systematic differences among the 

three conspecific song types, so I averaged firing frequency and zscores per unit across 

the three conspecific songs presented for each unit. White noise response had a lower 

firing frequency and zscore so it was not included in the average. 

 Response latency for each unit was computed as described by Ono et al. (2016). 

Briefly, for each stimulus (20 trials each) 5 ms-binned peristimulus time histograms 

were generated and smoothed with a 5-point boxcar filter. The mean and standard 

deviation of the spontaneous firing rate of 100 ms preceding the stimulus onset were 

computed. The latency to fire was defined as the midpoint of the first bin from 0 to 400 

ms after stimulus onset when the firing rate exceeded the mean + 3 times the standard 

deviation of the spontaneous period. If the response did not exceed the threshold within 

the first 400 ms of stimulus presentation, latency was not calculated for that stimulus; 

this contingency only occurred in 3 units. For conspecific songs, latency was measured 

relative to the onset of the first non-introductory note. For each cell, the latencies to fire 

for each stimulus were averaged (Fig. 19C left).  
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Auditory coding  

I used a custom pattern classifier coded in Python based on a similar classifier 

originally described by Caras et al. (2015) to determine how auditory-evoked events 

predict stimuli discrimination in the population of neurons. For each single unit, the 

classifier pseudorandomly selected one response to each stimulus to serve as templates. 

The remaining recordings (19 trials per stimulus = 76) were compared to the 4 

templates and categorized based on two types of similarity measures: count and timing. 

This procedure was repeated 1000 times and a mean accuracy score was generated for 

each stimulus. Spike count accuracy was calculated by using as the number of spikes 

within the 2 seconds of song presentation. The stimulus type of the template that 

yielded the most similar number of spikes to the trial in each comparison was 

considered the predicted stimulus. Ties were resolved pseudorandomly. Spike timing 

accuracy was determined in a similar manner, but the binary signals were convolved 

with Gaussian filters before comparison. I systematically varied the standard deviation 

(σ) of the filter for each cell to determine the optimal integration window, (values used: 

1, 2, 4, 8, 16, 32, 64, 128 and 256 ms). The filter that yielded the highest accuracy was 

selected for each cell (Figure 19A; all cells had a sigma of 16 ms, with the exception of 

4 cells that had a sigma of either 1 or 2 ms). Templates and trials were compared using 

the Rcorr method (Schreiber et al. 2003, Caras et al. 2015): 

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑧𝑧𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡  ∙  𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

|𝑧𝑧𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡|  × |𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|
 

 



105 

Where 𝑧𝑧 represents the vectors of the trial and the template responses after filtering, 

which are dot-multiplied then divided by the product of their lengths. This calculation 

returns a value between 0 and 1, which represent a range from total dissimilarity to total 

similarity, respectively. The stimulus type of the template that provided the highest 

Rcorr(trial, template) value was considered the predicted stimulus for the trial in analysis.  

A confusion matrix was generated for each unit that illustrates the percentage of 

accuracy for each predicted and observed song type. All timing and count accuracy data 

presented here are an average of the correctly assigned percentages across all sound 

types (CON1, CON2, CON3, WN) to represent an overall accuracy score. Excluding 

responses to WN from the overall accuracy score did not result in changes to the effects 

reported below, so all classifier data presented below include responses to WN.  

After generating the confusion matrices, the accuracies of each unit were statistically 

tested by employing a trial shuffling approach (modified from Caras et al. 2015). 

Briefly, responses were shuffled and randomly assigned to stimuli. The classifier ran 

1000 times using the random responses as input (timing classifiers were run 1000 times 

for each σ value mentioned above). Finally, the distribution of original accuracies was 

compared with the distribution of the random accuracies. Because samples sizes were 

large (1000 x 1000), I opted to use the Cohen’s d as an indicator of effect size, 𝑑𝑑 =

 𝑋𝑋
�𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−𝑋𝑋�𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑜𝑜𝑢𝑢𝑢𝑢

𝜎𝜎𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑢𝑢𝑢𝑢
, where 𝑋𝑋� denotes the means of the distributions and 𝜎𝜎𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑝𝑝 is the 

pooled standard deviation. Accuracies were considered significantly greater than 

random when Cohen’s d was greater than 0.2, which is indicative of a small significant 

positive effect size (Cohen, 1988). Similar to Caras et al. (2015) single units were 

categorized as either timing, count, bicoding or neither, based on the effect size 
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threshold (i.e., if a unit was significant for both timing and count it was categorized as a 

‘bicoding’ cell, if a unit was significant for neither timing nor count it was categorized 

as a ‘neither’ cell). 

Spike width 

I measured spike quarter width duration for each single unit (averaged across all 

firing incidents of the first trial) which is the duration of the waveform at 25% of the 

highest absolute peak value. Quarter width duration of the first largest peak (SQW; both 

positive and negative deflection) was the most reliable measurement for the diversity of 

waveform shapes (Figure 19A), and has been validated in zebra finch HVC to assign 

‘broad’ units as projection neurons and ‘narrow’ units as interneurons (Rauske et al., 

2003; Mooney and Prather, 2005; Day et al., 2013). The resultant distribution of SQW 

was bimodal with a dip at approximately 0.50 ms (Figure 19B). However, recent work, 

especially in NCM, has also used spike peak to peak duration to classify cell types, so I 

therefore performed peak-to-peak measurements as well. Although a consensus about 

NCM categorizations is still emerging, two characteristics have been generally 

consistent with broad vs. narrow categories in recent studies: broad cells consistently 

have a lower firing frequency and a higher latency to fire after stimulus onset 

(Schneider and Woolley, 2013; Ono et al., 2016; Mouterde et al., 2017). When I 

examined the cells using the peak to peak classification with a cutoff between broad and 

narrow at 0.4ms duration, I observed that “broad” peak-to-peak units could be classified 

either with a canonical action potential shape (two clear high and low peaks) or with a 

unipolar peak. Unipolar “broad” cells had longer durations than previous cutoffs (Ono 

et al., 2016), and the peak-to-peak classification scheme did not concomitantly 



107 

segregate based on latency or firing rates. By contrast, dividing the population of 

recorded cells using SQW with a 0.5 ms cut off clearly also distinguished waveform 

latency (F(1,109)=6.59, p=0.012, Figure 19C left) and spontaneous firing frequency 

(F(1,112)=5.95, p=0.016; data not shown) where broad neurons had a higher latency to 

fire and higher spontaneous firing frequency. Stimulus-evoked firing frequency was not 

different between cell types(F(1,112)=0.079, p=0.78, Figure 19C right). Because of the 

consistency of categorizing based on shape and the consistent physiological parameters 

of latency and firing frequency between both types of classification (peak to peak vs. 

quarter width), I proceeded with SQW for broad vs. narrow unit classification. Prior 

work has presented these classifications as putative projection neurons (broad) and 

putative interneurons (narrow). The latency data support this hypothesis, but the firing 

frequency results do not. Moreover, the direction of the spontaneous firing difference is 

not consistent with previous observations (broad>narrow) and stimulus-evoked firing 

was similar between broad and narrow neurons. I therefore restrict the interpretation of 

broad vs. narrow units as distinct neuronal subtypes but do not make inferences about 

their putative identities as excitatory vs. inhibitory neurons.  
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Figure 19: Characteristics of broad and narrow cells. 
A) Left. Waveform averages for two example units from the same recording site. The 
purple unit is a narrow cell and the red unit is a broad cell. The center line indicates the 
mean waveform, while the shaded area represents the standard deviation for all 
incidences of that shape in the recording. Right. An example of a PCA for the red and 
purple cells of that recording.  B) Histogram of quarter spike width durations (ms). Dip 
in histogram at 0.5 ms was used as indicator of cutoff between narrow and broad unit 
classification.  C) Latency (ms) to fire after first syllable (left) and stimulus-evoked 
firing frequency are depicted as means and SEM. Gray bars are for broad units and 
white are narrow units. Samples sizes for each group are depicted for each bar. p<0.05* 
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Immunofluoresence  

I isolated males (n=7) and females (n=7) from single sexed aviaries for ~12-24 

hours before sacrifice. I exposed birds to song before sacrifice for another study not 

relevant to these analyses. I perfused animals with ice-cold saline, then 4% 

paraformaldehyde, followed by an overnight fix in PFA, and sinking in 30% sucrose in 

0.1M phosphate buffer. I sectioned the brains at 35 µm into cyroprotectant solution. I 

was interested in double-labeling for GPER1 and markers for inhibitory neurons. Pilot 

studies indicated there was no co-expression of GPER1 in any brain regions with 

specific interneuron markers (parvalbumin [PV, 1:10,000, Millipore, AB_2174013] and 

calbindin [CB; 1:2000, Sigma, AB_476894]; data not shown). We therefore used a 

polyclonal antibody against GAD67, the enzyme that synthesizes GABA and which is 

expressed in cell bodies of rat and humans (Erlander et al., 1991; Schwab et al., 2013) 

and the two analogs GAD65 and GAD67 are found across vertebrates (Bosma et al., 

1999). I determined from the manufacturer and  control experiments that this antibody 

only marks a subpopulation of GABAergic cells (i.e., coexpressed with CB neurons in 

the cerebellum but not the telencephalon), so this marker is not representative of all 

GABAergic cells, but rather a subtype. Sections were transferred from cyroprotectant 

and went through a series of 0.1M phosphate buffer washes. Sections were blocked with 

10% normal goat serum for 2 hours and then incubated in anti-GPER1 raised in rabbit 

(MBL International, AB_591551) at 1:2000 dilution which has previously been 

validated in zebra finches (Acharya and Veney, 2012) and anti-GAD67 raised in 

chicken (Abcam, RRID: AB_1310248) at 1:100 for 48 hours at 4 ºC. Sections were then 

washed in a 0.1% triton-x phosphate buffer (PBT), followed by an incubation in 1:200 
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goat anti-rabbit Alexa 488 secondary (Life Technologies, RRID: AB_2576217) and 

1:200 goat anti-chicken Alexa 594 (Life Technologies, AB_142803). After a final wash 

in 0.1% PBT, sections were mounted on slides with Prolong Diamond with DAPI 

mounting media (Invitrogen). Images were taken of NCM using a Nikon A1SP confocal 

microscope at 10x and 60x. Figure 21 depicts 15 µm zstacks as a projection image at 

60x to illustrate antibody staining of GPER1 and relative expression level within the 

regions that were recorded from using electrophysiology. All GPER1+ and GAD67+ 

cell counts in 60x z-stack images of the dorsal and ventral NCM were scored by an 

experimenter blinded to treatment conditions, and all quantified counts are normalized 

to DAPI. 

Data Analysis  

All statistical analyses were performed using IBM SPSS Statistics 22 and Origin 

2017. For sex comparisons across all studies during trial 1 aCSF, between-subject 

ANOVAs were performed and sex-by-cell type comparisons and student’s t test for sex 

comparisons of multiunit dependent measures. For neuromodulation studies (G36 and 

G1), a three-way mixed factors ANOVA was performed initially for each study. I had 

power to detect this three-way interaction for auditory responsiveness in the G36 study, 

so I performed two-way ANOVAS for trial by cell-type fixing the factor sex for all 

analyses to determine cell-type specific effects within each sex. I was underpowered in 

other incidences to detect the three-way interaction; however, for other dependent 

measures in the G36 study (timing accuracy, count accuracy, firing rate) I performed 

the same two-way ANOVAS and detected significant two-way interactions. In the two-

way ANOVAS, when a significant interaction for cell-type and interaction was 
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detected, I performed one-way ANOVAS fixing the factor cell type to test whether each 

cell type was significantly altered by drug administration. If a significant treatment 

effect was detected in the one-way analysis, I then performed Tukey’s HSD post-hoc 

analyses on the within-subject groups (pre vs. drug). For categorization of cells as 

bicoding, timing, count or neither, a chi-squared analysis was performed on all cells 

based on sex or spike width categorization. Anatomical comparisons were performed by 

mixed-effects two-way ANOVAS.  Significance is reported as p<0.05.  

Results 

NCM has both sex and cell type differences in firing frequency and auditory 

responses 

We first examined firing parameters in NCM for potential sex differences under 

aCSF (i.e., non-drug) conditions.  In the analysis of multiunit data, I found males and 

females had similar spontaneous firing rates (male 11.49±1.44 and female 9.37±1.21; 

t(52)=1.13, p=0.27), stimulus evoked firing rates (male 26.05 ±3.03 and female 

21.33±2.4; t(52)=1.22, p=0.23), auditory responsiveness (zscore; male 0.40±0.043 and 

female 0.46±0.053; t(52)=-0.68; p=0.50), timing accuracy (male 0.75±0.033 and female 

0.66±0.03; t(51)=1.83, p=.073), and count accuracy (male 0.44±.022 and female 

0.41±0.023; t(51)=0.74, p=0.46; data not shown). In contrast, when I examined data 

from the population of isolated single NCM units, sex differences emerged (Figures, 

19C and Figure 20).  

For single units in NCM, neurons in females had an overall higher firing 

frequency than did males (F(1,112)=5.88, p=0.017; Figure 20A). For stimulus-evoked 

firing NCM neurons in females also had a higher firing frequency (F(1,112)=6.6; 
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p=0.01; Figure 20A) and a trend for spontaneous firing (F(1,112)=3.34; p=0.07; Figure 

20A). Despite differences in firing frequency, both sexes were similar in overall 

normalized auditory responsiveness (zscore; F(1,112)=1.86; p=0.18; data not shown). I 

next evaluated the cell-type dependent auditory response properties in males and 

females. NS cells had a higher auditory responsiveness than BS (F(1,112)=7.16, 

p=0.009, data not shown), and there was a trending interaction between sex and cell 

type for zscore (F(1,112)=2.84; p=0.09) although with low statistical power (0.39). 

Therefore, I evaluated the cell-type dependent auditory response properties in individual 

tests fixing the factor sex to determine if the cell type main effect was driven by one 

sex. This analysis revealed that NS cells in males were more responsive than BS cells 

(t(55)=-3.58; p=0.001) but also that NS and BS cells in females were similarly 

responsive (t(57)=-0.63; p=0.53; Figure 20B). Therefore, NCM neurons differed 

between males and females in terms of firing rates as well as the auditory response 

properties of NS vs. BS neurons.  

Males and females did not differ in how accurately NCM neurons represent 

individual stimuli via rate-based coding (count) (F(1,112)=0.18; p=0.67) and there was 

trend for timing coding (timing) F(1,112)=3.47, p=0.065) with females having slightly 

higher accuracy scores (i.e., compare females to males in Fig. 20D). For both count and 

timing accuracy, narrow cells were more accurate than broad cells in both sexes (count: 

F(1,112)=22.66, p<0.001; timing: F(1,112)=38.25; p<0.001; Figure 20D&E). Timing 

accuracy was higher than count accuracy (F(1,112)=99.3, p<0.001;) for both sexes and 

cell types.  
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Cells were categorized into four groups based on the results of the trial shuffling 

analysis (see Methods section): bicoding (both timing and count), timing, count, and 

neither, similar to Caras et al., (2015). Cells that code for stimulus types using timing 

accuracy (timing and bicoding cells) made up 87.1% of all cells collected. Timing-only 

cells were 21.6% of the population and count-only cells were 4.3%. Bicoding cells were 

the majority of cells with 65.5%. Remarkably, males and females did not significantly 

differ in the proportion of stimulus coding types (χ2=6.02; p=0.11; Figure 20C). 

Combining both sexes, NS cells significantly differed in the proportion of cell types 

(χ2=17.08; p=0.001; Figure 20C). This effect was likely driven by the proportion of 

bicoding cells which constituted 87.2% of all NS cells, but 50.7% of all BS cells. In 

summary, NCM cells for both sexes preferentially used timing as opposed to count 

information coding, meaning that the timing of individual action potentials during the 

auditory stimulus provided more consistent and reliable coding for that stimulus type as 

compared to a purely rate-based code (count). NS cells in particular utilized both kinds 

of information (bicoding) in greater proportion than did BS cells. 
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Figure 20: The firing rates of NCM neurons differ between males and females, and 
the coding properties of NCM neurons differ by cell type classification. 
All panels depict bar graphs representing means and SEM for the average of all three 
conspecific song types and white noise. A) Stimulus-evoked firing frequency (song) is 
higher than baseline firing frequency (no song) for both sexes. Female cells (n=59) have 
a higher firing frequency than male cells (n=57) for both spontaneous and stimulus-
evoked conditions. B) Male narrow single units (n=25) have a higher normalized 
auditory responsiveness (zscore) than broad units (n=32). Female broad (n=37) and 
narrow units (n=22) have similar auditory responsiveness. C) Percentage of cells that 
are categorized as four coding types: bicoding (purple), count (red), timing (blue), and 
neither (white) separated by sex (top) or cell type (bottom). Males and females have a 
similar distribution of coding types, but broad vs. narrow units have significantly 
different distribution of coding types (χ2=17.08; p=0.001). Specifically, narrow cells 
have more bicoding cells (87%) than broad cells (51%). D and E) Means and standard 
errors for the average timing accuracy (D) and count accuracy (E) of the correctly 
assigned sound types. Broad cells (grey) have lower count and timing accuracy than 
narrow cells (white) for both males and females. Confusion matrices above each bar 
depict a representative cell of the mean for that group. O: observed, P: predicted, 1: 
conspecific song 1, 2: conspecific song 2, 3: conspecific song 3, W; white noise. Colors 
on confusion matrix are a heat map of accuracy from 0-100%. Gray dotted line 
represents chance level decoding accuracy (25%). p=0.07#, p<0.05*, p<0.01**.    
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GPER1 is necessary for auditory responsiveness and coding, in a sex- and cell 

type- specific manner   

GPER1 expression occurs in NCM (Acharya and Veney, 2012), and 

conventional nuclear estrogen receptor agonists do not mimic the rapid actions of 

estrogens on NCM auditory processing (Remage-Healey et al., 2013). I confirmed the 

expression of GPER1 in dorsal and ventral NCM using immunofluorescence (Figure 

21).  

 

Figure 21: Representative images of GPER1 expression in dorsal and ventral 
NCM. 
GPER1 is expressed in regions that are targeted for recording. Left panel: 10x 
magnification 3x3 stitch of medial section of forebrain (sagittal plane). Boxes indicate 
regions from which subsequent images were taken. Middle and right panels: Each 
image was taken at 60x magnification within respective NCM regions. Images are z-
stack maximum projections with 15µm thickness. 

 

I then tested the extent to which GPER1 activation is necessary for sex 

differences in auditory responsiveness and coding by administering G36, a GPER1 

antagonist, via retrodialysis coupled to extracellular recordings in adult males and 

females. For auditory responsiveness in males, I detected a significant effect of 

treatment (F(2,20)=7.32, p=0.004) and a treatment by cell type interaction 
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(F(2,20)=10.59, p=0.001; Figure 22A left). NS cells in males showed a G36-dependent 

decrease in auditory responsiveness (F(2,8)=23.28; p<0.001; pre vs. G36 t(8)=6.74, 

p=.0036, Figure 22A left), but BS cells were unaffected (F(2,12)=0.471, p=0.64; Figure 

22A left). In females, I did not detect a significant effect of treatment (F(2,20)=0.003, 

p=0.997: Figure 22A right) or treatment by cell type interaction (F(2,20)=1.25, p=0.31; 

Figure 22A right). During the pre-aCSF condition, NS cells had a higher zscore than BS 

cells in males (t(8.353)=-2.743, p=0.024) but not in females (t(10)=-0.755, p=0.468), re-

confirming the sex difference reported in the overall analyses above.  

I next sought to determine whether the GPER1-dependent decrease in auditory-

responsiveness could be explained by changes in firing frequency in both the 

spontaneous period and stimulus-evoked period. I found a significant interaction 

between firing frequency and sex (F(1,40)=9.48, p=0.006) and a trend for firing 

frequency and cell type interaction (F(1,40)=3.31, p=0.08). I fixed the factor for sex and 

examined how cell types within sexes exhibited changes in firing rate with drug 

administration for spontaneous and stimulus-evoked firing frequencies. GPER1 

inactivation decreased spontaneous and stimulus-evoked firing in male NS cells 

(stimulus-evoked main effect: F(2,8)=9.78, p=0.0071, pre vs. G36 t(8)=4.93, p=0.020, 

Figure 22A left inset and; spontaneous main effect: F(2,8)=5.76, p=0.028, pairwise pre 

vs. G36 t(8)=4.01, p=0.052 Figure 22A left inset). All other comparisons were not 

significant (male BS spontaneous: F(2,12)=1.36, p=0.29; male BS stimulus-evoked: 

F(2,12)=1.27, p=0.32, Figure 22A left inset; female BS spontaneous: F(2,14)=0.87, 

p=0.44; female BS stimulus-evoked: F(2,14)=0.44, p=0.65; female NS spontaneous: 
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(F(2,6)=0.44, p=0.66; female NS stimulus-evoked: F(2,6)=0.19, p=0.83, Figure 22A 

right inset).  

I then reasoned that GPER1 inactivation should also change the coding 

properties of NCM single units respective of sex. Accordingly, I found that, in males, 

both count and timing accuracy showed a significant effect of G36 treatment (count: 

F(2,18)=18.68, p<0.001; timing: F(2,18)=13.73, p<0.001) and a significant cell type by 

treatment interaction (count: F(2,18)=18.31, p<0.001, Fig. 22C left; timing: 

F(2,18)=13.0, p<0.001, Figure 22B left). NS neurons in males exhibited a G36-

dependent decrease in both count and timing accuracy (count: F(2,6)=15.20; p=0.0045, 

pre vs. G36t(6)=6.18, p=0.011, Figure 22C; timing: F(2,6)=10.83, p=0.010, pre vs. 

G36t(6)=4.82, p=0.033, Figure 22B left) during GPER1 inactivation, however there was 

not a detectable effect in BS cells (count: F(2,12)=0.26, p=0.78, Figure 22C right; 

timing: F(2,12)=1.11, p=0.36 Figure 22B right). In females, there was an overall 

treatment effect for count and timing accuracy (count: F(2,20)=3.89, p=0.037, timing: 

F(2,20)=5.21, p=0.015) but not a cell type by treatment interaction (count: 

F(2,20)=0.95, p=0.40; timing: F(2,20)=2.41, p=0.33). Moreover, when examining 

pairwise comparisons for each trial for all female cells, I did not detect an effect of G36 

application (count: pre vs. g36 t(20)=1.09, p=0.53, Figure 22C right, timing: pre vs. g36 

t(20)=1.30, p=0.63, Figure 22B right). 

In summary, during inactivation of GPER1 I observed a rapid and robust 

decrease in firing frequency, zscore, and coding accuracy specifically in NS NCM cells 

in males. Together, these results are consistent with the hypothesis that acute membrane 
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estrogen receptor signaling is key to auditory responsiveness and coding in a specific 

population of narrow-spiking neurons in the NCM of males.  
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Figure 22: Auditory responsiveness and coding are suppressed during GPER1 
inactivation in narrow cells in the NCM of males only. 
A) Left: Male auditory responsiveness (zscore) with broad cells (grey, n=7) and narrow 
cells (white, n=5). Inset: Firing frequency (Hz) of single units for males for acsf and 
G36 trials. Dashed lines are spontaneous activity (no song) and solid lines are stimulus-
evoked activity (songs). Grey lines are broad cells and black lines are narrow cells. 
There is not a significant difference in firing frequency between the pre-aCSF and G36 
for broad cells (ns) but there is a significant difference for narrow cells in stimulus-
evoked firing(*).  Right: Female auditory responsiveness (zscore) with broad cells 
(grey, n=8) and narrow cells (white, n=4). Inset: Firing frequency (Hz) of single units 
for females for aCSF and G36 trials. Dashed lines are spontaneous activity (no song) 
and solid lines are stimulus-evoked activity (songs). Grey lines are broad cells and black 
lines are narrow cells.  B & C) Bar graphs for timing accuracy (B) and count accuracy 
(C) for broad (grey) and narrow (white) units in males (left) and females (right). 
Confusion matrices are representative examples of the means of the narrow single units 
only. Colors on confusion matrix are a heat map of accuracy from 0-100%.  O: 
observed, P: predicted, 1: conspecific song 1, 2: conspecific song 2, 3: conspecific song 
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3, W; white noise.  Male broad (n=7), male narrow (n=5), female broad (n=8), and 
female narrow (n=4) Bar graphs depict means and standard errors.  Gray dotted line 
represents chance level decoding accuracy (25%). p<0.05*, p<0.01**, p<0.001***.   
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GPER1 activation is not sufficient to enhance auditory responsiveness or coding 

accuracy of NCM neurons 

To test whether GPER1 activation is sufficient to enhance auditory 

responsiveness in NCM, akin to native estradiol (e.g., (Remage-Healey et al., 2010; 

2011), I tested two doses of the selective GPER1 agonist G1 (100 nM and 100 µM 

referred to as low and high dose respectively, below). The high dose did not alter single 

unit auditory responsiveness (F(2,36)=1.31, p=0.28, Figure 23A), count accuracy 

(F(2,38)=0.006, p=0.99; data not shown), or timing accuracy (F(2,38)=1.61, p=0.21; 

data not shown). Additionally, there were no significant interactions for sex by 

treatment (zscore: F(2,38)=1.98, p=0.15; count: F(2,38)=2.00, p=0.15; timing: 

F(2,38)=0.004, p=0.60) or cell type by treatment (zscore: F(2,38)=0.47, p=0.63; count: 

F(2,38)=0.091, p=0.91; timing: F(2,38)=0.64, p=0.53) for the high dose. Notably, at 

high doses (>10 µM), G1 can have nonselective binding and weak antagonism (Dennis 

et al., 2011) which may mask GPER1-specific effects. Therefore, I selected a lower 

dose of G1 (100nM) in a new set of experiments to test GPER1 sufficiency. However, 

similar to the high-dose, I again observed that the low dose did not alter auditory 

responsiveness (F(2,66)=3.14, p=0.05; pre vs. G1 low t(66)=0.44, p=0.95, Fig. 23B), 

count accuracy (F(2,66)=0.839, p=0.44; Fig. 24B), or timing accuracy (F(2,66)=1.98, 

p=0.15 Fig. 24A). There was also no significant sex by treatment interaction for the low 

dose (zscore: F(2,66)=2.42, p=0.09; count: F(2,66)=2.08, p=0.13, timing: F(2,66)=1.53, 

p=0.23). Cell type by treatment interactions in zscore (F(2,66)=2.70, p=0.075) and 

count accuracy (F(2,66)=0.18, p=0.83) were also not significant; however, there was a 

significant interaction in timing accuracy (F(2,66)=5.22, p=0.007). BS cells were 
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unaffected by G1 (F(2,32)=0.70, p=0.50), but there was a significant treatment effect in 

NS cells (F(2,36)=5.14, p=0.011) in which G1 caused a significant decrease in timing 

accuracy from trial 1 acsf (t(36)=4.53, p=0.0078; data not shown). When I fixed the 

analysis by the factor sex, I did not observe significant effects of G1 (males: 

F(2,22)=2.45, p=0.11, Figure 24A left; females: F(2,12)=3.28, p=0.07, Figure 24A 

right). The effect size for this G1 treatment was moderate (d=0.62) in contrast to the 

substantial effect size of G36 observed for male NS cells (d=1.19). In summary, 

although I observed that GPER1 is key for both auditory-responsiveness and coding 

stimulus information in narrow-spiking neurons in male NCM, the experiments with G1 

indicated that GPER1 activation alone is not sufficient to mimic the rapid effects of 

estradiol on NCM neurons in either sex. 
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Figure 23: No changes in auditory responsiveness with GPER1 activation. 
A) Individual single units depicted across the three treatment trials for the high dose of 
G1 (100µM) for both males (left) and females (right). Individual data are depicted 
because of the low number of male narrow cells (n=2) Insets: Descriptive bar graphs of 
means and standard errors for visual comparison to other figures. B) Means and 
standard errors for the low dose of G1 (100 nM) for males (left) and females (right) All 
bar graphs depict means and SEM of conspecific song auditory responsiveness. Broad 
cells are depicted by grey bars and narrow cells by white bars. High dose: male broad 
(n=8), male narrow (n=2), female broad (n=8), female narrow (n=5). Low dose: male 
broad (n=9), male narrow (n=12), female broad (n=11), female narrow (n=9).  
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Figure 24: No changes in auditory coding accuracy with GPER1 activation. 
All bar graphs depict means and SEM for the average accuracy across all correctly 
assigned sound types for both broad (grey) and narrow (white) units. Confusion 
matrices are representative examples of the means of the narrow single units only. 
Colors on confusion matrix are a heat map of accuracy from 0-100%. O: observed, P: 
predicted, 1: conspecific song 1, 2: conspecific song 2, 3: conspecific song 3, W; white 
noise.  Data are from the lower dose of G1 (100 nM) experiment and the higher dose 
has the same relationship. A) G1 application decreased timing accuracy averaged across 
both sexes but not for each individual sex. B) Count accuracy was not affected for either 
sex or cell type by G1 application. Low dose: male broad (n=9), male narrow (n=12), 
female broad (n=11), female narrow (n=9). Gray dotted line represents chance level 
decoding accuracy (25%).  
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GPER1 is expressed in inhibitory neurons in NCM but the expression is not 

sexually dimorphic  

 Since I observed a sex specific effect of GPER1 inactivation on auditory 

responsiveness and coding accuracy, I hypothesized that this could be due to differences 

in GPER1 expression between male and female NCM. Because G36 specifically 

modulated NS cells in males and prior work has putatively identified NS cells as 

inhibitory interneurons, I performed co-labeling immunofluorescence for GPER1 and 

the putative GABAergic neuronal marker, GAD67. First, I observed that ventral NCM 

had higher expression of GPER1 and GAD67 than dorsal NCM (GPER1: F(1,10)= 

9.32, p=0.012, GAD67: F(1,10)=5.18, p=0.046). Second, I observed that approximately 

20% of GAD67-positive cells in NCM were also positive for GPER1, consistent with 

the hypothesis that estrogens act in part to shape inhibition in NCM (Fig. 25) and that 

coexpression of GPER1 and GAD67 was similar between regions ventral and dorsal 

NCM (F(1,10)=0.32, p=0.59). Third, I also found that in both dorsal and ventral NCM, 

GPER1 expression and GAD67 expression were not different between the sexes 

(DNCM: GPER1 F(1,12)=0.11, p=0.75; GAD67: F(1,12)=2.91, p=0.12, VNCM: 

GPER1 F(1,11)=0.21, p=0.66; GAD67: F(1,11)=0.19, p=0.68). Lastly, I also did not 

find sex differences in GPER1-GAD67 co-labeled cells (DNCM: F(1,12)=0.14, p=0.71; 

VNCM: F(1,11)=1.19, p=0.30). Together these results indicate that GPER1 protein 

expression alone cannot explain sex differences observed in auditory physiology in 

NCM. (Figure 25).  
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Figure 25: GPER1 expression and colocalization in GABAergic neurons are each 
not sexually dimorphic. 
A) Representative images of dorsal NCM for labeling of GPER1 (green) and GAD67 
(magenta). Each image was taken at 60x magnification within respective regions. 
Images are z-stack maximal projections with 15µm thickness. White triangles point to 
examples of a cell that express both GPER1 and GAD67. White arrows point to 
examples of a single label. B) Means and SEM error bars for GPER1-positive neurons 
(left) and GAD67-positive neurons (right) as a percentage of DAPI. C) Means and SEM 
error bars for GPER1/GAD67-positive neurons as a percentage of GAD67 cells. Red 
bars are females (DNCM n=6; VNCM n=6) and blue bars are males (DNCM n=7, 
VNCM n=6). p<0.05*. 
 

 
 

Discussion 

I observed several novel sex differences in neurophysiological parameters in the 

songbird auditory forebrain. First, female single units identified from extracellular 

recordings had a higher firing frequency. Second, male single unit auditory 

responsiveness was elevated in narrow-spiking (NS) as compared to broad-spiking (BS) 

cells. I also found that GPER1 was critical for NCM song responses and coding, 

depending on sex and cell type. GPER1 inactivation caused decreases in auditory 

responsiveness and coding accuracy in male NS cells, however it was not effective in 
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either cell type in females. Furthermore, when responses to stimuli were 

computationally decoded, spike timing and count classification accuracies were higher 

in NS than BS in NCM.  

The findings indicate that brain regions that are similar in morphology and 

cytoarchitecture between males and females can exhibit marked sex differences in the 

physiology of single neurons. Prior work on the songbird NCM and caudomedial 

mesopallium (CMM) reported sex differences in auditory-evoked immediate early gene 

expression (Avey et al., 2005; Tomaszycki et al., 2006; Gobes et al., 2009) and 

multiunit response magnitude (Yoder et al., 2015). Other regions of the songbird 

auditory network also exhibit sex differences in single-neuron call responses and tone 

amplitude coding (Caras et al., 2015; Giret et al., 2015). This work builds on this 

foundation to show that separate classes of NCM neurons (NS and BS) can carry 

information about conspecific songs in a sex-specific way.  

Male zebra finches sing learned vocalizations during courtship, and females do 

not ordinarily sing (Zann, 1996). Therefore, this report of sex differences in song 

responsiveness and coding in NCM could reflect the divergent role(s) for song in 

auditory salience, valence, and life history in males vs. females. Outside of the auditory 

system, sex differences in the single-unit representation of sensory stimuli have been 

most clearly delineated for sex-specific pheromonal responses in reptiles (Huang et al., 

2006) and rodents (Bergan et al., 2014). Interestingly, these differences may also be 

associated with estrogen-dependent signaling mechanisms, such as shown here (Bergan 

et al., 2014; Bergan, 2015) .  
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I used a pattern classifier similar to Caras et al. (2015) to determine how NCM 

units discriminate among conspecific songs and whether this differed between the sexes 

and cell types. Despite sex-differences in neuronal firing profiles, pattern classifier 

coding was similarly accurate for recordings from male and female NCM. The analysis 

also indicated that NCM cells, in general, were more temporally consistent when 

responding to the same conspecific song. When characterizing cells as count, timing, or 

bicoding, there was a strong bias toward cells that exhibited timing accuracy 

significantly above chance, and not count accuracy alone. This was consistent with 

Caras et al. (2015) who found that in Field L, a primary auditory region, and CMM, a 

secondary auditory region, a greater proportion of neurons were categorized as timing 

or bicoding for tones presented at different amplitudes. I now report cell-type specific 

differences in auditory coding of individual songs in NCM, and that this feature is not 

different between males and females.  

Prior studies of BS and NS in songbird auditory cortex have focused exclusively 

on males. BS cells contribute to background-invariant coding of vocalizations 

(Schneider and Woolley, 2013), selectivity to songs after tutoring (Yanagihara and 

Yazaki-Sugiyama, 2016), and sensitivity to song sequence (Ono et al., 2016). This 

study in both sexes showed that BS and NS neurons differentially responded to auditory 

stimuli in two specific ways. First, NS cells responded to conspecific song more 

strongly in males only. Second, NS cells exhibited higher timing and rate coding 

accuracy, indicating that NS are better at distinguishing among stimuli. Previous 

findings showed that BS neurons in NCM had greater selectivity for specific song types 

after tutoring (Yanagihara and Yazaki-Sugiyama, 2016). Taken together, BS neurons 
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may be selective for specific songs, while NS neurons have greater coding accuracy and 

favor a bicoding computational mode. Although NS cells are putatively inhibitory 

interneurons, this assignment has not been validated in NCM (e.g., narrow, fast spiking 

cells can be excitatory neurons in primate cortex (Vigneswaran et al., 2011)). NCM is 

also thought to be a source of auditory memory (Bolhuis and Gahr, 2006; Bolhuis and 

Moorman, 2015; Yanagihara and Yazaki-Sugiyama, 2016), so the cell-type specific 

coding of conspecific songs in NCM can now be explored to understand the neural basis 

of perception and individual recognition. 

 This study is the first to demonstrate a role for GPER1 in sensory processing. I 

found that blocking GPER1 signaling led to decreases in firing rate, auditory 

responsiveness, timing accuracy and count accuracy in male NS neurons, revealing that 

for this sex and cell type, GPER1 is critical for auditory activation and coding of 

stimuli. Sex-specific mechanisms of rapid estradiol signaling have been described in the 

mammalian hippocampus (Meitzen et al., 2012; Vierk et al., 2012). Similar to the 

modulation of NCM by neuroestrogens (Remage-Healey et al., 2010; Remage-Healey et 

al., 2012; Remage-Healey and Joshi, 2012), neuroestrogens also alter hippocampal 

memory formation and consolidation (Boulware et al., 2013; Kramar et al., 2013; Frick 

et al., 2015; Kim et al., 2016; Tuscher et al., 2016) ). Despite similarities between the 

sexes in expression of GPER1 and aromatase (Tabatadze et al., 2014; Waters et al., 

2015), there are noted sex differences in physiological responses to estrogen in the 

hippocampus (Huang and Woolley, 2012; Tabatadze et al., 2015; Oberlander and 

Woolley, 2016). This study now shows that GPER1 actions are also important for 

sensory processing and are sex-specific in the avian brain.  
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Although our findings implicate GPER1 in auditory processing, the signaling 

mechanism may be independent of the previously-established role of estradiol (E2) in 

the songbird forebrain.  The agonist for GPER1, G1, did not mimic the overall 

enhancement of auditory processing by E2 in either sex (Remage-Healey et al., 2010; 

2012). One resultant hypothesis is that E2 acts through multiple membrane estrogen 

receptors concurrently, since classical nuclear estrogen receptor agonists do not enhance 

auditory responsiveness in males (Remage-Healey et al., 2013). Future work should 

consider concurrent activation of multiple estrogen receptor subtypes for auditory 

processing in NCM. There is evidence for a multi-estrogen receptor mechanism in 

synaptic hippocampal neurotransmission (Kumar et al., 2015), and while GPER1 and 

E2 can enhance hippocampal-dependent object recognition, estradiol depends on MEK-

ERK signaling while GPER1 depends on the JNK pathway (Kim et al., 2016) indicating 

that there are non-estradiol actions of GPER1 activation.  

Prior work in songbirds has also identified other sex specific differences in 

auditory coding that may be mediated by estrogens. Previous findings in Field L and 

CMM demonstrated that bicoding cells in females are sensitive to breeding season 

(when peripheral estrogen levels are high) where both timing accuracy and temporal 

resolution increased compared to the non-breeding season. This effect of season does 

not occur in males (Caras et al., 2015). I find that GPER1 inhibition decreased auditory 

responsiveness and coding for both timing and count classification accuracy, but only in 

males. While the previous study infers that these effects are mediated via hormonal 

actions, our study suggests a receptor mechanism that is directly affecting coding in the 

auditory forebrain in a sex-specific way.  
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The electrophysiology results led to the hypothesis that a sex difference in 

GPER1 receptor expression occurs in subregions of NCM. I found that GPER1-positive 

cell number was similar between males and females, and I established that 

approximately 20% of GAD67-positive cells in NCM are also positive for GPER1, 

consistent with the hypothesis that estrogens act in part to shape inhibition in NCM 

(Fig. 25). However, I did not observe sex differences in the number of cells 

coexpressing GPER1 and GAD67, and there was a lack of coexpression with 

interneuron markers parvalbumin or calbindin. Other inhibitory interneuron subtypes 

such as somastatin and VIP, which are important auditory cell types in mammalian 

cortex (Pi et al., 2013; Chen et al., 2015; Phillips and Hasenstaub, 2016), could be 

further explored to account for the sex differences observed here. In addition, local 

network connections between GPER1-positive cells and other NCM cell subtypes now 

become an active area of interest in this work.  

The temporal cortex of humans can produce estradiol locally, including at 

synaptic terminals (Yague et al., 2006) much like the zebra finch NCM (Saldanha et al., 

2000; Peterson et al., 2005). Although there has not been an anatomical description of 

GPER1 in the human brain, GPER1 has been shown to be expressed in primate cortex 

associated with synaptic densities (Crimins et al., 2016). The findings suggest that sex is 

a fundamental factor when examining mechanisms of audition, and that it is worthwhile 

to explore neuroestrogen signaling and GPER1 in particular within the primate auditory 

cortex, especially when considering sex as a biological factor. In context of life history 

and reproductive strategies for the sex and species of interest, brain areas that process 
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sensory information should be further explored for sex differences in mechanisms, and 

in particular considering neuromodulatory mechanisms of estrogens. 
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CHAPTER V 

DISCUSSION 

 
In this dissertation, I addressed whether rapid estrogen signaling in the zebra 

finch auditory forebrain is sexually differentiated. To address this hypothesis, I tested 

three major questions: 1) whether interneuron subtypes of estrogen-producing and 

estrogen-responsive neurons differ by region and sex, 2) whether acute endogenous 

estradiol production is necessary for auditory responsiveness in both sexes, and 3) 

whether the membrane estrogen receptor, GPER1, is necessary and sufficient for full 

auditory responsiveness in both sexes. I concluded from the results that males depend 

more on active endogenous estradiol synthesis as well as GPER1 activation to encode 

neuronal responsiveness to songs. These sex differences in auditory responsiveness 

exist despite similarities in neurochemical identities of aromatase and GPER1 cell types 

I characterized. I propose that males and females utilize different mechanisms for 

auditory responsiveness, and I outline several future pursuits to determine how 

estrogens are influencing audition through these potential mechanisms. In this 

discussion, I outline how sex differences in rapid estrogen signaling of the auditory 

lobule may impact auditory coding of several brain regions. I also discuss how 

differences in auditory activity via inhibition of estradiol production may be evidence of 

compensatory mechanisms between the sexes. These compensatory mechanisms may be 

differences in neural production, membrane receptors, or intracellular signaling 

cascades that differ between males and females. Together, these mechanisms are likely 

shaped by the heterogeneity found in auditory subregions like NCM, and these cell-type 

specific differences may be properties of auditory microcircuits. Finally, I make an 
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argument for sex as a biological variable and how understanding differences in 

mechanisms can inform translational studies in primates including humans.  

Sex differences in sensory encoding 

Sex differences in sensory systems have been described in insects (Rideout and 

Goodwin, 2008), amphibians (Shen et al., 2011; Hall et al., 2016), reptiles (Huang et al., 

2006; Sampedro et al., 2008), and mammals (McFadden et al., 2006; Bakker et al., 

2010; Wang et al., 2010; Washington and Kanwal, 2012; Bessinis et al., 2013; Bergan 

et al., 2014) including humans (Cowan et al., 2000; Beech and Beauvois, 2006; 

Vanneste et al., 2012; Liu et al., 2013; Wisniewski et al., 2014). Depending on the 

sexual strategies of a species, sex differences are necessary for reproductive fitness, 

mate selection, and parental roles. Over 90% of birds are monogamous (Black, 1996), 

and for songbirds, complex, learned vocalizations (songs) are used for mate selection 

(Grant and Grant, 1997; Verzijden et al., 2012), defense of territory (Goodwin and 

Podos, 2014), mimcry (Goodale and Kotagama, 2006; Flower et al., 2014), and tutoring 

of juveniles for future song development (Roberts et al., 2012; Chen et al., 2016). For 

these reasons, birds such as the zebra finch, in which males sing and females do not, are 

powerful models of studying sex differences in neuroanatomy and underlying 

physiology of auditory responses. 

For the anatomy and estrogen production studies (Chapter 2 and 3), I used 

histology as a broad approach to examine multiple auditory forebrain regions such as: 

caudomedial nidopallium (NCM), caudomedial mesopallium (CMM), Field L, and 

HVC (proper name) shelf.  There are some known functional differences between these 

regions. Field L is analogous to mammalian primary auditory cortex (A1) because it is 
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tonotopic and receives inputs directly from the thalamus (Kelley and Nottebohm, 1979; 

Vates et al., 1996). NCM, CMM, and HVC shelf are all considered analogous to 

secondary auditory cortex and association areas like Wernicke’s area (Gobes and 

Bolhuis, 2007; Bolhuis et al., 2010). These regions receive inputs from Field L, and 

have activity-dependent changes to higher-order cognitive processing of sounds such as 

context of song. NCM and CMM have some unique distinctions in responsiveness to 

song types. CMM has stronger representation of familiar sounds such as mate’s call in 

female zebra finches (Giret et al., 2015) and mate song in both sexes of parrots (Eda-

Fujiwara et al., 2016). It also responds stronger to directed songs (males singing to a 

female rather than alone) in females (Woolley and Doupe, 2008). NCM has a stronger 

response to unfamiliar or novel songs as measured by immediate early genes (Woolley 

and Doupe, 2008), but when measuring auditory-evoked activity of extracellular 

recordings in this area, NCM is non-selective (Remage-Healey and Joshi, 2012). Using 

a pattern classifier, I demonstrated that there are temporal properties of NCM firing that 

are specific to individual conspecific songs as measured by timing accuracy. While 

narrow-spiking (NS) neurons were more accurate than broad-spiking (BS) neurons, 

males and females were similar in accuracy and accuracy cell types (bicoding, timing, 

etc). This work indicates that NCM likely has a role in discrimination of individual 

conspecific songs that is encoded within single neurons, especially NS putative 

interneurons. This finding will need to be followed by cell-specific targeting (such as 

optogenetics) to test whether this cell type is involved in behavioral song 

discrimination.  
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Sex differences in auditory responsiveness to song have been described across 

these forebrain regions. Some studies have found differences in immediate-early gene 

(Egr-1) expression depending on familiarity with the song (Terpstra et al., 2004; 2006) 

and whether birds had been exposed to song during development (Tomaszycki et al., 

2006). When using electrophysiology, a sex difference has been described in the 

response magnitude of multiunit recordings in the NCM to novel, conspecific song 

(Yoder et al., 2015). Previous publications have reported sex differences in auditory-

evoked activity to tones in Field L and CMM (Caras et al., 2015) and calls in Field L 

and caudolateral mesopallium (CLM; Giret et al. 2015) of single units. In this 

dissertation, I provide neurophysiological evidence for sex differences from single units 

responding to complex vocalizations (songs) in NCM, demonstrating that there are 

fundamental differences across parameters such as a higher firing frequency of single 

units in females, and differences in zscore for NS and BS neurons in males, suggesting 

alternative network connectivity and mechanisms for coding auditory signals between 

the sexes. NCM may have sex differences in connectivity or cell types that were not 

tested in the studies that could contribute to these differences in physiology. 

I found a novel sex difference in aromatase expression and estradiol-mediated 

auditory responsiveness in the posterior HVC shelf. Females had more aromatase and 

were less affected by fadrozole administration in the posterior HVC shelf as compared 

to males. This is the first description of a sex difference in HVC shelf. Little is known 

about the shelf and its involvement in audition. The shelf projects to the sexually 

dimorphic sensorimotor nucleus, HVC, which is necessary for successful song 

production in males (Nottebohm et al., 1976) and is significantly smaller in females of 
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songbird species who lack song-production abilities (Nottebohm and Arnold, 1976; 

Williams, 1985; Hamaide et al., 2017). This work indicates that further study of the 

shelf and estrogenic actions in auditory responsiveness and behavior of neurons is worth 

exploring. More importantly, sex should be carefully considered when analyzing 

anatomy and mechanism in this region.   

When examining multiple auditory regions, I stained for Egr-1 as a marker for 

neuronal activity and induced the expression by exposing birds to song.  Egr-1 has other 

functional roles in cells, specifically in neurons where it targets genes that are involved 

in the maintenance and regulation of synapses (Davis et al., 2003; Knapska and 

Kaczmarek, 2004; Veyrac et al., 2013). Egr-1 is thought to be an important transcription 

factor for cellular memory (Moorman et al., 2011) and Egr-1 knockout mice have 

memory deficits (Han et al., 2014). In the context of birdsong, Clayton (2000) describes 

Egr-1 as the “genomic action potential”, hypothesizing that this transcription factor 

plays a role in laying down long-lasting “memories” for auditory experiences that are 

critical such as in juvenile development where males are in the process of learning a 

tutor’s song. This study suggests that in adulthood, acute estrogen production is 

necessary for this response, although its function on adult memories is unclear. 

Juveniles also can synthesize estradiol in these regions (Chao et al., 2015), and there 

may be a role for estradiol in consolidation of long-term memories of tutor song, 

especially for males. It has been proposed that NCM is the storage region for tutor song 

memory, with evidence supported by lesions (Gobes and Bolhuis, 2007), neural 

habituation (Chew et al., 1995; 1996), and selectivity after tutoring (Yanagihara and 

Yazaki-Sugiyama, 2016). Females also may need early exposure to song to form 
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preferences for high-quality song (Lauay et al., 2005), but the role that song memory 

has in females is mostly unexplored. Future work in juveniles comparing the sexes will 

need to determine how the sexes are forming these memories, whether they utilize 

similar brain regions, and whether estradiol and Egr-1 are involved in memory 

formation. 

Neuroestrogens and steroid production in the brain: compensation hypothesis 

The brain’s abilities to synthesize and produce steroids has been well established 

across vertebrates, and aromatase expression and estradiol content is more abundant in 

brain regions outside of the hypothalamus in non-mammals (Callard et al., 1978). 

1978). The zebra finch has been a model to study neuroestrogen production, primarily 

because of the high estradiol content in regions such as NCM (Saldanha et al., 2000) as 

well as the brain’s ability to upregulate aromatase expression in injured glial cells 

(Mehos et al., 2016). Both males and females have the capacity to synthesize estrogens 

in the brain; however, there are some indications that there might be activity dependent 

differences in estradiol synthesis.  

I confirmed that endogenous estradiol was necessary for full auditory 

responsiveness of neurons in the auditory forebrain of several subregions. Prior work 

has shown that estradiol rapidly increases overall content when birds hear song 

(Remage-Healey et al., 2008; 2012) and that estradiol application onto auditory neurons 

enhances auditory responsiveness (Remage-Healey et al., 2010; 2012). There has also 

been evidence that auditory-induced Egr-1 is sensitive to exogenous estradiol through 

estradiol implants (Maney et al., 2006) and that this auditory-induced expression is 

different regionally (Sanford et al., 2010). This dissertation adds to this literature, 
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connecting for the first time that estradiol synthesized during song-exposure is 

promoting the auditory-induction of Egr-1 expression in neurons of several secondary 

auditory regions. 

In chapter 3, I found that more auditory regions in males are dependent on acute 

endogenous estradiol production than females. I examined several auditory regions and 

the regions that exhibited this sex difference were dorsal NCM and posterior HVC 

shelf. In both sexes, anterior HVC shelf had a reduction in auditory-induced Egr-1 for 

fadrozole treated subjects. I quantified somatic aromatase expression in these regions, 

and found that males and females were similar except for posterior HVC shelf, which 

had the biggest sex differences between male and female fadrozole-treated animals. 

Overall, these results revealed that somatic aromatase expression cannot explain all the 

sex differences I observed. One hypothesis is that differential expression of aromatase 

in terminals vs. soma may explain these sex differences since somatic aromatase 

activity may have a different function than terminal expression. Terminal expression is 

likely regulated by fast, neuron dependent activity (Remage-Healey et al., 2011). While 

activity dependent regulation is also true for somatic expression (aromatase activity in 

microsomes; Comito et al., 2016), since estradiol is a steroid that can freely pass 

through membrane, dense somatic expression may bathe the local region in estradiol 

content. It is unknown how estradiol is being degraded centrally. These results 

replicated prior work that showed that adult males and females had similar aromatase 

expression in the NCM (Chapter 2; Saldanha et al., 2000). However, males had more 

fiber expression (Saldanha et al., 2000) and more aromatase activity in synaptosomes 

than females in this region (Peterson et al., 2005). Dorsal NCM is a region where I saw 
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a significant decrease in auditory-induced Egr-1 with fadrozole in males but not 

females. Higher fiber expression and terminal aromatase activity in NCM of males may 

represent a higher dependency of active estradiol synthesis during auditory stimuli 

presentations, explaining the sex difference in fadrozole-treated animals in NCM. To 

date, fiber expression of aromatase cells in HVC shelf alone has not been quantified, so 

it is unclear whether males and females differ in axonal/terminal expression or activity 

of this region. Rohmann et al. (2007) report more male aromatase activity in tissue from 

posterior telencephalon that contains the shelf, but this fraction also contains other 

aromatase rich regions such as NCM. Since females had more somatic expression of 

aromatase, this may indicate that E2 content in this region in females could have a 

higher baseline making them less dependent on active E2 synthesis. To test this 

hypothesis, direct measurements of the shelf and other aromatase expressing regions (ie. 

NCM) would need to be compared in males and females using a similar paradigm of 

fadrozole administration as described in Chapter 3.  

The results reported in this dissertation reveal that there are convincing sex 

differences in how endogenous estradiol production influences auditory physiology, 

especially in previously underreported regions like the HVCshelf. There is evidence that 

separate regions of the zebra finch brain (hypothalamus, hippocampus, and 

nidopallium) have different activity-dependent (ATP, Ca2+, Mg2+, etc.) regulation of 

aromatase activity (Comito et al., 2015). I detected region-dependent differences in 

aromatase cell identity (ie. Parvalbumin+, Chapter 2), and there may be differences in 

regulation of the enzyme based on cell type or subregion.  In general, somatic aromatase 

expression and cell identity is similar between the sexes, but this does not indicate that 
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differences in activity and expression in other parts other parts of neurons (i.e. 

terminals) may reflect sex differences in auditory activation of neurons. Sex differences 

in regulation of neuronal aromatase activity should be further explored in auditory 

subregions. 

I observed somatic clustering of aromatase cells throughout auditory subregions, 

and performed a thorough analysis of cluster size within NCMv. There was a stark sex 

difference, where females had more aromatase cells that were unclustered, and males 

had more aromatase cells found in clusters and more cases of large cluster sizes (5+ 

aromatase cells found in a cluster). I performed a random simulation of likelihood of 

aromatase cells touching given the spatial dimension of our images and found both 

males and females were significantly different than chance in cluster size distribution 

(Chapter 2). Although I did not detect any sex differences in NCMv in Egr-1 

expression, I think this is likely due to a floor effect since I detected the least number of 

Egr-1+ nuclei, and despite having aromatase expression, I did not see an effect of 

fadrozole treatment (Chapter 3). Although clustering was not quantified in regions 

where I detected a decrease in Egr-1 expression, I observed clustering in other 

subregions (NCMd, HVCshelf). I hypothesize that cell clustering may be a form of 

synchronizing communication, whether it be through gap-junctions (unconfirmed) or 

synaptic communication. Since males have more clustering of aromatase cells, it is 

possible that they could coordinate activity-dependent aromatase regulation more so 

than females. This may be an explanation of why more regions in males had a stronger 

decrease in auditory-induced Egr-1. If aromatase cell activity is coordinated through 

clustering, then it is possible that estradiol production could be coordinated as well.  
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Future work will need to determine the function of somatic clusters, such as filling 

aromatase cells found in clusters with gap-junction permeable dyes. 

Another hypothesis that may explain these results is that adult females have 

compensation from estradiol synthesized in the ovaries.  I did not detect differences in 

estradiol content from whole trunk blood between the aromatase inhibitor treated birds 

and the control group, indicating that the drug treatment was not sufficient to decrease 

global peripheral supplies, which was intended. This is consistent with previous work 

where acute peripheral administration of fadrozole is not sufficient to drive down E2 

content in blood (Prior et al., 2014). This means that females likely have estradiol from 

their ovaries circulating. Measurements of brain-derived estradiol (which may be a mix 

of neuronal and peripheral estradiol) in adulthood showed that males and females had 

similar estradiol content as measured by microdialysis (Remage-Healey et al., 2012) 

and both increased estradiol production when hearing song (Remage-Healey et al., 

2008; 2012), although the magnitude of song-induced increases have never been 

compared in the same study. The lack of sex differences in E2 content in adulthood 

contrasts with younger animals where at baseline (no song exposure) males had higher 

estradiol content during the subadult period (60-80dph) (Chao et al., 2015) which is a 

period before sexual maturity (90 dph). This is the only period a detectable sex 

difference in estradiol either in the periphery or centrally has been detected in the zebra 

finch. This difference may indicate a change in activity or expression of neuronal 

aromatase at this timeframe, but this has not been examined as this age.  

The sex difference of E2 detected in subadulthood also might reflect 

compensation of peripheral estrogens (i.e. from the ovaries) in females that could be 
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occurring by the time females reach adulthood. Adult females have large detectable 

estrogens that can be measured from the ovary and telencephalon (Schlinger and 

Arnold, 1991, 1992); however, how these sources interact is unknown. Interestingly, 

males and females do not have detectably different concentrations of estradiol in the 

blood during development (up to day 50) or adulthood (Adkins-Regan et al., 1990). 

When adult zebra finches are gonadectomized, estradiol measured from blood 

dramatically increased in both sexes but more so in males (Adkins-Regan et al., 1990). 

This finding indicates a capacity for males to produce more estrogens from the only 

other source of detectable estrogen content known, the brain (Schlinger and Arnold, 

1991, 1992), illustrating a lower capacity for females to produce estrogens in the 

absence of their gonads as opposed to males from the brain. This gonadectomy effect 

does not occur in young juveniles (12-19dph; Adkins-Regan et al., 1990). To date there 

has not been any paper to report peripheral estrogen levels during 60-80dph of zebra 

finches, which is when this detectable sex difference in neural estradiol was reported 

(Chao et al., 2015). Since this period is just before birds reach sexual maturity, this may 

be a period of increasing gonadal hormones, reflecting a difference in sub adulthood. 

One hypothesis is that when birds reach adulthood, compensatory mechanisms become 

activated, leveling E2 levels in males and females. Some evidence related to gonad size 

and primary follicle development in females may indicate that there are differences in 

hormone production from the gonads during this period. Male testis growth is 

logarithmic, reaching maturity between 59-70 dph, where female ovarian growth is 

linear, with captive females not producing their largest follicle until 100dph and ovary 

weight not reaching maximal adulthood mass until 250dph (Zann, 1996).  
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However, given that I did detect a significant decrease in the anterior HVC shelf 

in fadrozole-treated females, and there were modest but not significant decreases of 

Egr-1 in regions such as dorsal NCM, I think that it is unlikely that there is a full 

protection of the auditory response from the peripheral estradiol alone. If this were the 

case, it is likely that there would not be regional differences; however other factors may 

be at play. The mechanism by which estradiol is metabolized is still unknown in the 

brain. There may be region dependent metabolism, or receptor sensitivity that is 

saturated under control conditions, but when there is less estradiol being produced, what 

little is around in females may have region dependent expressions and sensitivities. One 

way to test whether peripheral estradiol contributes to central content in females is to 

gonadectomize females to remove ovarian sources of estradiol and compare 

responsiveness to males.  

Membrane estrogen receptors 

With the discovery of rapid estrogen signaling (Szego and Davis, 1967), 

membrane estrogen receptors were characterized as being mediators of rapid changes in 

cellular responses. The classic estrogen receptors (ERα and ERβ) have DNA binding 

segments to act as transcription factors; however, post translational modifications such 

as palmitoylation (Meitzen et al., 2013) can insert these proteins into the membrane 

where they associate with metabotropic glutamate receptors (mGluRs; Meitzen and 

Mermelstein, 2011).  Other membrane bound receptors were discovered, including g-

protein estrogen receptor 1 (Revankar et al., 2005), which is a g-protein coupled 

receptor can also modulate fast-action changes in neurons via E2 binding.  
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The zebra finch auditory forebrain has been showed to express all three types of 

receptors (Metzdorf et al., 1999; Fusani et al., 2000; Saldanha and Coomaralingam, 

2005; Jeong et al., 2011; Acharya and Veney, 2012; Horton et al., 2014). It is unclear 

whether ERα and ERβ expression is only nuclear or in the cytoplasm and membrane 

because most studies to date have characterized mRNA only (see previous citations), 

with the exception of one that reports ERα protein expression in the nucleus (Saldanha 

and Coomaralingam, 2005). There is evidence in the quail brain for rapid estradiol 

actions mediated via ERβ and mGluRs (Seredynski et al., 2015); however, there has not 

been definitive evidence for this mechanism in zebra finch auditory regions. GPER1 

protein is found throughout the posterior portions of the forebrain, and its expression in 

adulthood is similar between males and females (Acharya and Veney, 2012). I 

replicated this finding described in Chapter 2, where I found no detectable differences 

between males in females in GPER1 cell number in any auditory region analyzed.  

There has been extensive evidence that estrogens can have actions on auditory 

responsiveness (Maney et al., 2006; Remage-Healey et al., 2010; 2012; Remage-Healey 

and Joshi, 2012); however, a mechanism has not been described until now. I addressed 

whether GPER1 is necessary and sufficient for auditory-responsiveness in the NCM, 

specifically. Rather than measuring IEGs, I performed a more dynamic approach 

recording extracellularly from neurons in the NCM and used microdialysis to 

administer drugs in a within-subject paradigm to determine how GPER1 affects 

neuromodulation of single units in males and females. I found that in males only, 

inactivating the GPER1 receptor decreased auditory-responsiveness of NS neurons. I 

also showed that both timing and count accuracy decreased in these cells, indicating that 
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not only is responsiveness affected, but auditory coding as well. This is likely attributed 

to the decrease in firing frequency in male NS neurons. I did not detect any changes for 

either cell type in females with GPER1 inactivation, indicating that males and females 

may be using different membrane estrogen receptors to mediate auditory-evoked firing.  

When I administered G1 agonist, I did not detect any changes to auditory 

responsiveness or accuracy for either sex or cell type, except for a small decrease in 

timing accuracy in male narrow units, contrary to my predictions. I used two doses of 

G1 to assure that this lack of effect was not dose dependent, and did not find sufficient 

enhancement of auditory-evoked firing for either sex or cell types. I conclude that while 

GPER1 is necessary for responsiveness in narrow cells of males, G1 is not sufficient to 

enhance auditory responsiveness as has been previously reported with estradiol 

administration (Remage-Healey et al., 2010; 2012). Prior work from our lab has used 

ERα and ERβ agonists in males in the NCM under a similar paradigm, and did not find 

sufficiency in the auditory response (Remage-Healey et al., 2013). One explanation for 

a lack of sufficiency of known receptors is E2 could be binding to multiple receptors, 

and there needs to be concurrent activation of more than just one receptor to enhance 

auditory responsiveness. This hypothesis could be tested by infusing a cocktail of 

estrogen receptor agonists and measuring changes to auditory-evoked firing. Previous 

work in the mammalian hippocampus has shown multi-estrogen receptor mechanism for 

synaptic transmission (Kumar et al., 2015). There are some gaps in the literature 

concerning how ERα and ERβ agonist might influence female auditory responsiveness 

of NCM neurons, since only males were investigated (Remage-Healey et al., 2013).  

Work from Oberlander and Woolley (2016) showed that there are sex and receptor 
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specific differences in E2 potentiation of hippocampal neurons. This study illustrated 

that males and females differ in which of the three receptor types mediate pre-and-post 

synaptic E2 events. A similar process may also be occurring in the zebra finch NCM as 

well, and a more thorough analysis of specific agonists and antagonists for all receptor 

types must first be used to have a complete picture of how E2-enhancement of auditory-

firing is occurring in this species and brain region. 

Sex-specific intracellular signaling cascades 

Membrane estrogen receptors can alter cellular process like neuron firing and 

gene transcription through signal transduction pathways such as the MEK-ERK and 

JNK pathways. Within songbird audition, there is compelling evidence that auditory 

responsiveness is mediated by the MEK-ERK pathway, as reviewed in Chapter 1 

(Krentzel and Remage-Healey, 2015). Briefly, prior work has shown that MEK 

phosphorylation of ERK is required for auditory-inducible Egr-1 expression within 

NCM (Cheng and Clayton, 2004) and that E2 can alter Egr-1 expression (Maney et al., 

2006). Estradiol is capable of increasing expression of Egr-1 within mammalian tissues 

(Suva et al., 1991; Pratt et al., 1998), and this is mediated via the MEK-ERK signaling 

pathway (de Jager et al., 2001; Chen et al., 2004; Kim et al., 2011). Within the brains of 

songbirds, an acute injection of estradiol alters phosphorylation patterns of several 

proteins (Heimovics et al., 2012), demonstrating compelling but not direct evidence for 

estradiol modulation of auditory-induced Egr-1 induction.  

I found that acute, endogenous inhibition of estradiol production decreased 

auditory-induced Egr-1 expression, but more so in subregions of males as opposed to 

females. This is the first paper testing whether endogenous estradiol is necessary for 
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Egr-1 expression, and also the first paper to describe a sex difference in auditory-

induced Egr-1 dependence on estradiol synthesis in songbirds. There could be several 

factors contributing to the sex difference I found. Earlier, it was discussed how 

compensation for other sources of estradiol production may be at play (Section: 

Neuroestrogens). Intracellular signaling pathways also may contribute to this sex 

difference. The necessity of pERK in Egr-1 induction was only tested in male animals 

(Cheng and Clayton, 2004). Female animals could utilize alternative pathways that may 

be promoting Egr-1 expression in the absence of acute estradiol synthesis. Some 

mammalian literature indicates sex differences in E2-mediated intracellular signaling 

pathways of various brain regions (reviewed in Chapter 1, Krentzel and Remage-

Healey, 2015). There is a notable gap in the songbird literature concerning signaling 

pathways for female auditory processes, and future work will need to include both 

males and females for comparison. 

Coinciding with measurements of Egr-1, I also measured pCREB, a 

transcription factor of Egr-1 (Knapska and Kaczmarek, 2004; Moorman et al., 2011), to 

determine if inhibition of endogenous estradiol synthesis also altered phosphorylation 

patterns of the proposed MEK-ERK pathway, as CREB can be targeted for 

phosphorylation by this pathway. I hypothesized that I would see a decrease in 

phosphorylation of this transcription factor in similar directions as Egr-1 if indeed it 

was also sensitive to estradiol signaling. I also hypothesized that there would be sex 

differences in fadrozole treated animals, since in mammalian hippocampus, there is sex 

specific activation of pCREB when cells are administered estradiol (Boulware et al., 

2005; Grove-Strawser et al., 2010; Meitzen et al., 2012). In chapter 3, I did not detect 
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changes in pCREB expression affected by aromatase inhibition or sex differences in 

expression patterns. There could be a few explanations for not detecting estradiol 

effects. I could have missed the timeframe to detect this response, or there are 

differences in overall CREB expression that are masking the effects that are 

undetectable with the anti-pCREB antibody. There are several other candidates to 

regulate Egr-1 expression via estradiol signaling, such as Elk-1 which is targeted by 

similar kinase pathways (Chen et al. 2004). 

To address timeframe, I tested whether pCREB was song-inducible, based on 

the paper by Cheng and Clayton (2004) that found that pERK expression increased 

within a shorter timeframe and for more acute song exposure. I tested birds in silence, 

exposed to 85 seconds of triplicate song, and 15 minutes of triplicate song. In either sex, 

I did not detect any changes to pCREB expression in the NCM for any stimuli duration. 

I determined that unlike pERK, pCREB is not song-inducible. There are some 

limitations to this study. First, unlike Cheng and Clayton (2004) I was using 

immunohistochemistry and cell counting rather than western blot for protein 

quantification to determine expression patterns. I chose this method for parallelism with 

serial sections of Egr-1 expression and pCREB from the aromatase inhibition study. 

Chang and Clayton performed a more global measure by sampling from the entire 

auditory lobule (which contains many regions). With immunohistochemistry, I targeted 

specific subregions of the auditory lobule. The changes in auditory-induced 

phosphorylation may be represented throughout the auditory lobule in overall protein 

content, rather than a change in immunoreactive cell number in specific subregions. To 

determine whether pCREB is definitively not regulated similar to pERK by song 
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playback, I would need to replicate Chang and Clayton’s methods to rule out global 

changes in overall protein content.  

Intracellular signaling mechanisms may also explain why I only found that 

GPER1 inactivation decreased auditory-evoked neuron firing but activation was not 

sufficient to enhance it as shown with estradiol (Remage-Healey et al., 2010; 2012). 

One hypothesis is that GPER1 activity may not always reflect estradiol activity. 

Although other endogenous ligands have not been found to activate the GPER1 

receptor, there are cases of E2 and GPER1 acting through separate pathways to exert 

their cellular actions. In the mammalian hippocampus, both estradiol and GPER1 

enhance memory consolidation (Briz et al., 2015; Kumar et al., 2015; Waters et al., 

2015; Kim et al., 2016); however, while estradiol acts through ERK signaling, GPER1 

activation instead initiates phosphorylation of the JNK pathway (Kim et al., 2016). This 

indicates that while measuring behavior, estradiol and GPER1 activation may have 

similar endpoints, GPER1 could be acting independently of estradiol. To test specificity 

of the GPER1 receptor in auditory firing, I would need to administer the antagonist and 

see if it blocks the enhancement effect of estradiol. Future experiments using western 

blots for pERK could determine if E2 and a GPER1 agonist can increase the 

phosphorylation of this known auditory pathway. Finally, I only found GPER1 specific 

effects in narrow cells of males. GPER1 inactivation or activation had no effects in 

females, even though estradiol enhancement of auditory-evoked firing occurs in both 

sexes (Remage-Healey et al., 2010; 2012). If GPER1 is acting through independent 

mechanisms of estradiol, the sex difference I report may be a clue into these 
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independent actions, especially since both males and females equally express GPER1 

receptor at similar densities in NCM (Chapter 2).  

Cell type specificity in auditory cortical regions 

Many of the sex differences I report are dependent on cell types or regional 

differences within the auditory forebrain. Specifically, I found sex differences in cell 

types when neurons are defined on physiological parameters (ie. action potential width; 

Chapter 4), but not neurochemical markers. I also detected region-specific sex 

differences of aromatase inhibition on auditory-induced Egr-1 expression. In chapter 2, 

I characterized estrogen-producing (aromatase-positive) and estrogen-responsive 

(GPER1-positive) cell types in the auditory lobule, with a specific focus on 

coexpression with markers for GABAergic cell types comparing males and females. I 

did not detect any sex differences in either aromatase or GPER1 cell density or 

coexpression patterns of these cells with any of the GABAergic markers I tested. These 

neuorochemical markers for estrogen-producing (aromatase) and estrogen-receiving 

(GPER1) cells had differential expression based on regions within the auditory lobule 

(Chapter 2).  Given that I have shown physiological sex differences of how cell types 

are representing songs, responsiveness to GPER1 inactivation, and dependency on acute 

estradiol production, this anatomy similarity reveals that the sex differences I have 

reported are likely not due to differences in overall expression of the cell types I 

examined. These sex differences instead could be explained by intracellular signaling, 

other cell types, or larger network properties of cellular communication.  

I did detect several regional differences with aromatase, GPER1, calbindin, and 

parvalbumin. Many of the regions I analyzed have been previously unreported for these 
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markers, and this study informs the field on the expected densities of these cell types 

and where they can be found. A notable regional difference was the expression pattern 

of GPER1 as compared to aromatase. I find aromatase primarily in auditory regions of 

the brain, such as NCM and HVCshelf. Exceptions to this are CMM and Field L, which 

are absent of somatic aromatase expression. However, GPER1 is expressed in both 

regions. GPER1 has previously been reported in regions that are involved in motor 

production of song such as HVC and the arcopallium which contains RA (both nuclei 

are sexually dimorphic in size; Acharya and Veney, 2012). I confirmed this through 

visual observation of these regions; however, I did not quantify the density of 

expression since this was outside the scope of this study. I did however quantify the 

expression of GPER1 in auditory region Field L and CMM. Considering that I do not 

find somatic aromatase expression in these regions, estradiol signaling can come from 

two sources: 1) peripheral estradiol or 2) terminal aromatase. Electron microscopy 

studies would be ideal to determine if aromatase if expressed in terminals that synapse 

with GPER1 expressing dendrites and somas in these regions. Alternatively, tracing 

studies can also be performed to determine if these regions receive aromatase 

expressing projections from the auditory regions like NCM and HVC shelf. Most 

regions of the auditory lobule have reciprocal connections with each other (Vates et al., 

1996), however, the identities of these projections are largely unknown. Given the 

results I report in chapter 2, where CMM did not have considerable changes to auditory-

induced Egr-1 expression when given fadrozole, I think it is unlikely that terminal 

aromatase activity is participating in a significant way to CMM auditory physiology. E2 

in CMM does not alter auditory properties of CMM or upstream HVC selectivity 
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(Remage-Healey and Joshi, 2012), indicating that CMM has limited capacity of rapid 

estradiol synthesis or responses, although there is some evidence for changes with 

season hormones (Caras et al., 2015). 

My findings of GPER1 expression are largely consistent with a previous 

characterization of GPER1 message and protein in the zebra finch forebrain (Acharya 

and Veney, 2012). In chapter 2, I attempted to characterize GPER1 neurons by 

examining coexpression with interneuron subtypes parvalbumin and calbindin, yet I 

could not find coexpression in any region. When I turned to GAD67, which is a more 

general marker for GABAergic neurons (although notably this antibody was not tagging 

all GABAergic cells), I found modest coexpression. Generally, this study has ruled out 

many potential candidates of what types of cells express GPER1. For aromatase, I 

found modest expression with parvalbumin in some subregions and no coexpression 

with calbindin in any subregion. There are other interneuron subtypes that have been 

characterized in the mammalian cortex that have functional significance in encoding 

different auditory phenomenon such as somatostatin and VIP (Pi et al., 2013; Chen et 

al., 2015; Phillips and Hasenstaub, 2016). I chose these markers specifically because of 

the coexpression seen with aromatase in the human temporal cortex (Yague et al., 

2006), which is analogous to some of the areas I analyzed; however, further exploration 

into other interneuron markers may reveal sex differences in GPER1 expression. While 

I focused on interneurons because of the specificity of GPER1 effects I found in NS 

neurons of males (putative inhibitory neurons), excitatory cell types may reveal 

underlying sex differences in the neuroanatomy of auditory forebrain regions. 



154 

In general, cell types were an important predictor for sex differences in auditory 

responsiveness, encoding, and response to neuromodulation when I defined cells based 

on physiological parameters such as action potential shape and action potential width 

(Chapter 4). For the recordings, I found a clear delineation of the neurons, where broad-

spiking (BS) cells (>0.5ms) had a more unipolar, long peak shape and narrow-spiking 

(NS) cells (<0.5ms) maintained the more canonical action potential shape with a clear 

peak and a trough. Both cell types were auditory-responsive, and I detected sex 

differences in zscore of these cell types, where male NS neurons had higher auditory 

responsiveness than BS cells, but females cell types were similarly responsive at the 

level of male NS neurons.  

BS cells and NS cells (defined by action potential width) are putatively 

excitatory projection neurons and interneurons, respectively (Atencio and Schreiner, 

2008), although the reliability width for identification can depend on neuron size and 

distance (Henze et al., 2000; Gonzalez-Burgos et al., 2005; Gold et al., 2006). I have 

some competing evidence of whether these identifications fit with previous literature. 

One measure, latency to fire after stimulus, was found to be higher in BS neurons of 

NCM (Ono et al., 2016). I used the first high-amplitude note of all the songs I presented 

to the animals, and measured the latency for that cell to fire after the onset of that note. 

BS cells had a significantly higher latency than NS cells, supporting the hypothesis that 

these are excitatory projection neurons. However, previous work in NCM has identified 

that broad cells had a lower firing frequency than narrow cells (Schneider and Woolley, 

2013; Ono et al., 2016; Yanagihara and Yazaki-Sugiyama, 2016). It is thought that 

narrow cells are fast-spiking interneurons; but from my work, narrow cells were 
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consistently lower in firing frequency than broad cells for spontaneous firing rate, and 

NS and BS cells did not differ in stimulus-evoked firing rate. None of the previous 

papers used females in their recordings, and I found the largest difference in 

spontaneous firing in cells recorded from females. I also have a smaller cell number 

than previous groups, as I was using single electrode recordings rather than 

multielectrode arrays. The difference in mean spontaneous firing rate is quite small in 

other papers (NCM-NS, 3.85 ± 3.36 Hz, NCM-Bs1.95 ± 2.06 Hz, Ono et al. 2016), so 

it is possible that for males, if I collected more neurons then I might have been able to 

detect this difference.  There are other examples of inconsistencies in firing rate 

predicting excitatory/inhibitory cell identity. In rhesus macaque cortical neurons, fast-

spiking cells (higher firing frequency) have also been found to be excitatory 

(Vigneswaran et al., 2011). Future work will need to determine the exact identity of NS 

and BS cells within NCM, and I propose that sex is an important factor when clarifying 

these identities given the magnitude difference I described between males and females 

in spontaneous firing rate and the sex differences in auditory responsiveness. 

I also determined that NS neurons, for both sexes, had higher classifier accuracy 

for discriminating between novel, conspecific songs. This is the first report of cell 

specific differences in accuracy coding for conspecific songs, although previous reports 

have found that this is true for tones (Caras et al., 2015) and calls (Giret et al., 2015) in 

Field L and CMM. I also found that NCM neurons overall have more consistent 

temporal firing (timing accuracy) to distinguish between the song types than firing 

frequency (count accuracy). For NS neurons, most of the cells were significant than 

chance for both timing accuracy and count accuracy, which I labeled as bicoding cells 
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(87%, Chapter 4). This is consistent with Caras et al. (2015) which reported that activity 

of Field L/CMM neurons in response to different amplitudes for tones, were more 

biased towards timing accuracy than count accuracy and also identified bicoding 

neurons. Field L and CMM both send projections to NCM (Vates et al., 1996). This 

consistency may reflect an inherent property of auditory neurons in the forebrain or 

results from projections from Field L/CMM.  

I also determined that NS cells of NCM in males were sensitive to GPER1 

inactivation. Application of the antagonist, G36, decreased NS neuron firing rate, 

auditory responsiveness (zscore), timing accuracy, and counting accuracy. I propose 

two main hypotheses that may contribute to this sex by cell type difference. One is that 

GPER1 maybe differentially expressed on inhibitory interneurons. I ruled out some 

candidates that could explain this (parvalbumin, calbindin, and the subtype marked by 

the anti-GAD67 antibody), however, this did not encompass the entirety of inhibitory 

cell types. Since I was infusing the antagonist into the brain, there was no cell specific 

modulation occurring in the preparation. The sex by cell type difference I found in 

GPER1 inactivation, may be a result of local network connections within NCM, where 

neighboring cells that were not recorded had changes in their firing properties that 

passed down and selectively changed NS neurons in males. This connectivity may be 

absent in females or uninfluenced by GPER1. Schneider and Woolley (2013) propose a 

feedforward inhibition model for auditory encoding in NCM, where both BS and NS 

neurons receive projections from Field L, but NS (presuming these are inhibitory) can 

synapse onto BS neurons as a brake mechanism. In thiselectrophysiology study, I 

observed that males had a decrease in firing frequency with GPER1 inactivation. 



157 

GPER1 may be serving a role in maintaining firing rate and auditory coding of NS cells 

either through expression on these cell types or excitatory neurons that synapse onto NS 

neurons.  
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Figure 26: Auditory processing and rapid estrogen modulation of auditory 
neurons have sex differences in the zebra finch brain. 
Mechanistic models for how estrogen is modulating auditory responsiveness in the 
brain for both sexes. Male is the left panel represented by the blue Mars symbol (♂), 
and female is the right panel represented by the red Venus symbol (♀). Sagittal views of 
zebra finch brain have representative auditory brain regions of interest color coded 
(purple=CMM, blues=HVCshelf, oranges=NCM, gray=HVC). Darker colors are 
representing region with a significant difference during fadrozole treatment from 
Chapter 3. These are also marked by an asterisks (*). Testes and ovaries are depicted 
outside of the brain with either testosterone (T) or estradiol (E2) entering the brain via 
the periphery. Each box represents a view of a hypothetical synapse. Terminals are 
color coded as black for aromatase-positive and white for aromatase-negative. Within 
the cell membrane, proposed receptor types that could be mediating audition are 
depicted. Question marks (?) represent gaps in the literature. Black arrows are depicting 
downstream pathways. Within the nucleus, upregulation of Egr-1 is depicted by an 
unknown transcription factor. Egr-1 is expressed and acts as a transcription factor on the 
synapsin genes. These synapsins can then be increased or decreased depending on the 
role Egr-1 has as a regulator. Synapsins are involved in memory formation and 
plasticity in the brain. Finally, each post-synaptic cell has a waveform that depicts the 
NS and BS cell types I found in extracellular recordings (Chapter 4), as well as a spike 
train to depict sex differences in overall firing frequency of auditory neurons. Together, 
the figure depicts that males have more brain regions that have significant deficits in 
auditory responsiveness with inhibition of aromatase. This may be due to more dynamic 
synthesis via abundant aromatase expressing fibers. GPER1 is also included in the male 
model as a receptor that is key in audition; which kinase pathway it is acting through is 
unknown. ERα and ERβ are included in both the male and female model with question 
marks because of the proposed hypothesis of multiple ERs enhancing audition and the 
unknown nature of how either plays a role. GPER1 is excluded from the female model 
by a red X because of the lack of effects observed in Chapter 3. Intracellular signaling 
pathways are also excluded because these have not been investigated in females. 
Finally, both NS and BS cell types are included in the female model because of the 
similar auditory responsiveness (zscore) of both cell types for females, and the higher 
firing frequency female cells are depicted by the spike train. For the male model, only 
NS cell type is depicted because of NS cells having higher auditory responsiveness than 
BS in males, as well as a lack of an effect of GPER1 in BS cells in males, where 
GPER1 inactivation have robust effects in male NS cells. Brain outlines made by Dan 
Vahaba. 
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Translational implications 

Vocal learning has evolved independently in birds (songbirds, parrots, and 

hummingbirds) and mammals (humans, bats, elephants, whales and dolphins). Many 

comparisons have been made between the neuroanatomical structure and function of 

songbird auditory and motor production pathways and human equivalents (Jarvis, 2006; 

Bolhuis et al., 2010; Petkov and Jarvis, 2012). In this dissertation, I primarily focused 

on structures analogous to secondary auditory cortex and Wernicke’s area of the human 

temporal cortex. Aromatase has been described in the human cerebral cortex from 

fetuses (Montelli et al., 2012) and adults (Yague et al., 2006), The human temporal 

cortex contains aromatase in neurons of all cortical layers (I-VI). This expression exists 

in somas, fibers, and terminal boutons (Yague et al., 2006). Although most of the 

aromatase neurons were pyramidal, there was some coexpression with parvalbumin and 

calbindin interneurons. I also found expression of aromatase with parvalbumin (~15% 

in NCMv) but no coexpression with calbindin, indicating species similarities and 

differences between songbirds and humans in aromatase cell types. To date there has 

not been any sex comparisons of aromatase protein expression in the human brain; 

however, PET imaging gives some insights into the location of large aromatase 

densities. Using radioactive vorozole (an inhibitor of aromatase), the highest signal is in 

the brain of human males, and in the ovulating ovary and brain of human females 

(Biegon et al., 2015). Given the specific sex differences I find in auditory induced Egr-1 

expression after fadrozole treatment as well as sex differences in aromatase clustering, 

exploring how aromatase is expressed differently between males and females of the 

human brain is worth pursuing. 
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Although it is unclear the role that rapid estrogen signaling plays in human 

audition and language processing, it is known that the human brain is capable of 

widespread steroidgenesis (Stoffel-Wagner, 2003) and human hearing and speech 

development is sensitive to changes in hormones. Hormone replacement therapy has 

been found to be useful in offsetting the degradation of hearing in aging (Charitidi et al., 

2009). Unbound, bioactive estradiol in infancy correlates with predictors of later 

language development (Wermke et al., 2014; Quast et al., 2016). Testosterone 

administered in adulthood (which can be converted into estradiol) also has associations 

with strengthening the functional connectivity between Wernicke’s and Broca’s area 

(Hahn et al., 2016). Membrane estrogen receptor expression has not been characterized 

in the human brain although it has in other tissues (Srivastava and Evans, 2013); 

however, GPER1 expression is described in primate cortex of rhesus macaques 

(Crimins et al., 2017). The human brain likely has the capabilities of rapid estradiol 

modulation of auditory-related events in cortical neurons; however, this will need to be 

further studied. 

Although single unit recordings of human cortex are rare, there has been one 

study that examined cells from the primary auditory cortex (A1) of two subjects (Ossmy 

et al., 2015). Using similar pattern classification methods that I described in Chapter 4, 

Ossmy et al. (2015) found that A1 single units have unique spike patterns for individual 

words. I found that in zebra finch auditory neurons of NCM, there are cell type 

differences in auditory accuracy of conspecific song and GPER1 inactivation decreased 

accuracy encoding of songs in males specifically. GPER1 may play a similar role in 
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auditory encoding of learned vocalizations in the human cortex as well, although further 

exploration will need to characterize the cytoarchitecture in the human temporal cortex. 

Sex as a biological factor in neuroscience 

This dissertation provides an example of the importance of studying sex as a 

biological variable within basic science. There are still biases within neuroscience and 

biology where either males are exclusively studied or sex is not reported (Beery and 

Zucker, 2011). I demonstrate that in sensory regions of the brain, where both males and 

females have similar gross neuroanatomy and cellular identities, there are sex 

differences in the mechanisms by which auditory activity is regulated via rapid estradiol 

signaling. I also have demonstrated that despite an anatomical similarity, auditory-

evoked activity can be sex dependent on physiological parameters to characterize cells 

(ie. Action potential width). These findings broadly demonstrate the importance of 

using electrophysiological techniques and measuring activity-dependent proteins to 

determine whether sex differences exist.  

This dissertation also provides a framework to address sex differences from a 

mechanistic perspective.  By determining the mechanism by which endogenous 

estrogens are impacting auditory processing and using sex as a biological variable 

within these questions, I determined critical similarities and differences in males and 

females. These have generated several hypotheses, challenging the understanding of 

how auditory physiology is maintained in the adult brain and the estrogen receptors that 

mediate this neuromodulation.  

The NIH has recently called on basic science researchers to include males and 

females in all studies unless explicitly justified otherwise (Clayton and Collins, 2014). I 
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argue that when considering songbirds as a model for complex auditory processing that 

resembles human processing of language, both males and females need to be 

considered. There is a large bias within the songbird field that favors male zebra finches 

over females because males exclusively sing, and females do not. However, both males 

and females need to hear and discriminate songs, and arguably females are an excellent 

auditory model because zebra finch song is used exclusively in courtship to which the 

females are selective. I provide evidence for sex differences not only in cell type 

responsiveness to song, but also mechanisms by which estradiol is changing song 

responsiveness in the brain. When considering how brain-derived estrogens and rapid 

estrogen signaling mechanisms may impact human interpretation of sounds and higher 

order language processing, the evidence provided here gives a strong argument to 

consider sex as a biological variable. This dissertation is an example of how considering 

sex within basic science research may inform future studies and hypotheses in 

translational models – in particular sensory perception and encoding. 

More broadly, this dissertation also argues that gross anatomical investigations 

are not sufficient to deem males and females “similar” in terms of neuronal mechanisms 

and function. Despite not detecting sex differences in cell identity of estrogen-

producing and estrogen-receiving cell populations (Chapter 2); when perturbing these 

cell types via inhibitors (Chapters 3&4), I demonstrated robust decreases in auditory 

responsiveness in males as opposed to females. While there have been robust sex 

differences in anatomical descriptions of the human brain (Ritchie et al., 2017), there is 

controversy over the significance of these anatomical differences. I propose that ruling 

out sex difference from anatomy alone is ignoring mechanism, such as 
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neuromodulation, that may underlie neuronal communication. Importantly, sex 

differences in mechanism does not always reflect a sex difference in behavior. Some 

sex differences are developed to constrain males and females to be more like each other 

in behavior, and the brain needs to utilize differentiated mechanisms as a response to 

sex differences in genes or hormones (De Vries, 2004). Analyzing sex related to brain 

regions that do not have explicit sex differences in behavior may still be a valuable 

pursuit for understanding the underlying biology. 

I encourage other researchers to consider sex when investigating activity 

dependent processes in sensory regions of cortical or cortical-like structures in their 

model species. Although sensory regions are not traditionally considered “reproductive 

centers” as nuclei in the hypothalamus which control sex behavior, the interactions 

males and females have within reproductive contexts depend on several sensory 

regions: whether it is olfaction in rodents, audition and vision in birds, or 

somatosensation across animals.  

Conclusions 

As more is understood concerning the neuromodulatory actions of molecules 

like estradiol that influence neuronal firing and signal transduction in different brain 

areas, sex is a critical factor when disentangling the mechanisms facilitating these 

processes. While much work has encapsulated rapid actions in reproduction regions 

such as the hypothalamus and memory areas like the hippocampus, this dissertation 

shows how sexually-differentiated mechanisms are impacting sensory encoding of 

complex signals such as learned vocalizations. It appears that local microcircuitry and 

cell-specific mechanisms are important in the contribution to auditory responsiveness, 
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and that males and females may be differentiated in how these network and cell types 

connect to represent complex sensory information.   
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