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ABSTRACT 

DECISION ANALYTICAL METHODS FOR ROBUST WATER 
INFRASTRUCTURE PLANNING UNDER DEEP UNCERTAINTY 

 
SEPTEMBER 2017 

 
MEHMET ÜMIT TANER, B.A., YILDIZ TECHNICAL UNIVERSITY 

 
M.A., BOGAZICI UNIVERSITY 

 
PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
DIRECTED BY: PROFESSOR CASEY BROWN 

 

Deep uncertainties resulting from climate change, demographic pressures, and rapidly 

evolving socioeconomic conditions are challenging the way that water planners design and 

operate large-scale infrastructure systems. Conventionally, water infrastructures have been 

developed using stationary methods, assuming that the underlying uncertainties can be 

derived from historical data or experience. However, these methods are less useful under 

deeply uncertain climate and socioeconomic conditions, in which the future can be 

substantially different from the past and cannot be expressed by well-defined probability 

distributions. The recognition of deep uncertainties in long-term water resources planning 

has led to the development of “decision-analytical” frameworks that do not require 

predictions or prior probabilistic inference about the future. Instead, these approaches seek 

for alternatives that perform well across a broad range of conditions (robust) and can adapt 

to changing conditions (flexible).  This dissertation aims to develop three new decision-

analytical frameworks that build upon the previous work. The first study presents a 

generalized framework for water infrastructure design under climate change using regret-

based robustness criterion and compares the findings to more conventional, predict-then-act 

based analyses of infrastructure design. The method is demonstrated for the design of a run-
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of-the-river hydropower system in Malawi. The second study further develops the 

framework by considering multiple climatic, demographic, and socioeconomic uncertainties 

in the context of a water supply design project in the Coastal Kenya. This improved 

framework incorporates a Bayesian belief network to blend multiple sources of subjective 

information from model projections and expert opinions elicited from stakeholder 

workshops. The third framework develops a decision-analytical approach for flexible river 

basin planning under climate change and applies to the problem of long-term water supply 

and irrigation planning in the Niger River Basin. The framework makes use of a stochastic 

programming model to search for optimal planning pathways under a wide range of 

scenarios that represent both natural climate variability and climate changes. In this process, 

the framework explores uncertain beliefs associated with the probability weights assigned to 

each scenario and identifies “belief dominant” pathways that are insensitive to underlying 

probabilistic assumptions and are more promising based on climate projections.     
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CHAPTER 1 
 

 INTRODUCTION 

Long-term decisions in water resources planning are one of the most compelling and 

wicked policy problems due to their broad and in many cases unforeseen implications for 

societies subject to many factors including climate variability, population growth, value 

tradeoffs, environmental regulations and technology (Rittel and Webber 1973; Priscoli 1998; 

Loucks et al. 2005). Water resources planning decisions, especially those related to 

infrastructure design and planning are irreversible and may produce unintended 

consequences, and in many cases, the long-term consequences of such decisions are highly 

uncertain if not entirely unknown. 

Uncertainty from future climate change will add another layer of complexity to water 

resources planning, and will likely increase the magnitude and multiplicity of risks faced by 

water system planners (Fankhauser et al. 1999a; Arnell and Gosling 2013; Vorosmarty et al. 

2014). The developing world will face a greater challenge under a changing climate regime 

due to their general geographical settings, their heavy dependence on climate sensitive socio-

economic sectors as well as their overall lack of adaptive capacity (Mendelsohn and Williams 

2006; Millner and Dietz 2011; Bhave et al. 2016). Given this greater and urgent need in water 

resources development, this dissertation focuses on the challenge how to better design and 

plan water infrastructure systems in the developing regions of the world. By taking an 

analytical and engineering-based perspective, the dissertation will focus on three different 

types of studies that are hydropower development in Malawi (Chapter 2), domestic water 

supply development in the Coastal Kenya (Chapter 3), and integrated planning of new water 

supply and irrigation infrastructures in the Niger River Basin (Chapter 4).  
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Development of an effective, long-term water strategy necessitates an adequate 

understanding of the level and the nature of the underlying uncertainties. The level of 

uncertainty ranges from statistical uncertainty, in which we can express uncertainty through 

known probability density functions to total ignorance that describes conditions where we 

do not even know that we do not know (Rotmans et al. 2003). Many types of problems 

compelling problems experienced today in water planning, including climate change are 

associated with deeply uncertain conditions, where it is not possible to define the underlying 

probability distributions of the future conditions and their consequences with precision 

(Lempert et al. 2004).  

As water resources planners become more aware of a rapidly changing world and the 

limitations in conventional, stationarity-based planning to tackle the new challenges (Milly et 

al. 2008a), they become more interested in new, improved approaches for decision-making. 

Over the past few decades, the dominant paradigm been the so-called predict-then-act 

approaches that focus on climate model projections for predicting what may happen in the 

future.  However, climate model projections are inherently uncertain due to unknowable, 

subjectively defined scenarios future greenhouse gas emissions (Stainforth et al. 2007b), 

inadequate sampling of initial conditions and natural variability. (Deser et al. 2012), and 

model inadequacies due to ill-defined earth-climate system processes (New and Hulme 

2000). 

Realizing the shortcomings of predict-then-act approaches, a number of decision-

analytical approaches have emerged over recent years. These approaches shift the emphasis 

from climate science to local level decision-making (Brown et al., 2011; Walker et al. 2013; 

Wise et al. 2014; Herman et al. 2015), and aimed to seek decisions that are robust (insensitive 

to future conditions), resilient (able to recover quickly from failures), or flexible (able to 
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adapt to new circumstances). Most widely applied methods include (many-objective) robust 

decision making (RDM) (Lempert et al. 2006; Kasprzyk et al. 2013), info-gap theory (IGT) 

(Ben-Haim 2006), dynamic adaptive policy pathways (DAPP) (Haasnoot et al. 2013) and 

decision scaling (Brown et al. 2012). In comparison to the predict-then-act planning 

approaches, decision-analytical methods avoid making probabilistic assumptions about the 

future and rather aim to reduce the vulnerabilities in the system, by increasing the system’s 

ability to perform adequately or acceptability under uncertainty, to adapt to changing 

conditions, or to recover quickly from undesired states or failures. Additional sources of 

information such as climate and demographic projections, paleodata or expert judgments can 

also be integrated to these analyses to provide insight on the likelihood of future changes to 

estimate risk (Brown et al. 2012).  

The primary purpose of this dissertation is to improve the decision-analytical 

planning methods to water resources planning in a number of directions. The second 

chapter of this work addresses the challenge of how to identify robust, low-regret 

hydropower project designs under climate uncertainty. In this context, the work provides a 

comparison between the robust-based analysis and an implementation of more conventional, 

GCM-based predict-then-act approach regarding the representation of natural climate 

variability and the sampling of future climate changes, which are not explored so far. Also, 

the study also illustrates the use of three commonly used decision criteria for making 

decisions under uncertainty, namely i) planning for the most-likely outcome, ii) planning 

based on the expected outcome, and iii) planning for ensuring a low-regret across a wide 

range of conditions.    

The third chapter of the dissertation expands on the second by considering multiple 

demographic and socioeconomic uncertainties in addition to climate change, and by 
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developing a new approach to improve the use of imprecise probabilistic information in 

robustness-based planning. Among the previous decision-analytical frameworks, there is no 

generalized method for blending in probabilistic information from diverse knowledge 

domains such as hydrology, water quality, and social sciences.  This methodological gap is 

addressed by integrating decision scaling and Bayesian networks, a highly flexible 

probabilistic framework that can blend in multiple types and sources of information 

including stakeholder elicitations, expert judgments, and model projections. In this work, the 

Bayesian networks are used to propagate a posterior joint probability distribution of system 

vulnerabilities.  This represents a novel application of Bayesian networks to the issue 

planning under deep uncertainty and environmental risk assessment. Also, the analysis also 

shows how the probabilistic inference obtained from Bayesian networks can be used further 

to identify ex-post scenarios regarding risk. This is done by coupling the results with a data-

mining algorithm (Patient Rule Induction Method) to identify few, lower dimensional ex-

post scenarios based on the identified range of risks. The proposed approach is 

demonstrated for a water supply project in the Coastal Kenya.   

In the last chapter of this dissertation, decision-scaling concepts are further 

developed for multi-stage water infrastructure planning to assess the timing, sizing, and 

sequencing of multiple projects. The proposed framework uses a multistage stochastic 

programming model to search for optimal planning pathways under a range of stochastically 

generated transient climate scenarios. In doing this, a new sequential decision-making 

framework is developed that reduces the dependency on the assumptions made about the 

probability distribution of the scenarios. This is done by systematically varying the 

probabilities assigned to the scenarios, and resolving the stochastic optimization model 

under each case. This repeated optimization analysis results to a large set of optimal planning 
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pathways over a broad range of conditions. Finally, a post-optimization analysis is carried 

out to find one or few prosing development pathways to identify robust outcomes that are 

less sensitive to the underlying climate scenarios and probabilistic assumptions. GCM 

projections are also incorporated at this phase, to inform the decision-making process on the 

solution pathways that are associated with ‘more likely’ futures. The presented approach is 

illustrated for the planning of new dam and hydro-agricultural expansion projects in the 

Niger River Basin over a 45-year planning period from 2020 to 2065. 

The primary contribution of this dissertation is to present new tools and 

methodologies for water resources decision-making under a deep uncertainty world, through 

means of exploring new, improved ways to use of imprecise probabilistic information in risk 

management, and by better assessment of the value of flexibility in large-scale infrastructure 

planning problems.     
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CHAPTER 2 
 

 ROBUSTNESS-BASED EVALUATION OF HYDROPOWER 

INFRASTRUCTURE DESIGN UNDER CLIMATE CHANGE 

2.1. Abstract 

The conventional tools of decision-making in water resources infrastructure planning 

have been developed for problems with well-characterized uncertainties and are ill-suited for 

problems involving climate nonstationarity. In the past 20 years, a predict-then-act-based 

approach to the incorporation of climate nonstationarity has been widely adopted in which 

the outputs of bias-corrected climate model projections are used to evaluate planning 

options. However, the ambiguous nature of results has often proved unsatisfying to decision 

makers. This paper presents the use of a bottom-up, decision scaling framework for the 

evaluation of water resources infrastructure design alternatives regarding their robustness to 

climate change and the expected value of performance. The analysis begins with an 

assessment of the vulnerability of the alternative designs under a wide domain of 

systematically-generated plausible future climates and utilizes downscaled climate projections 

ex-post to inform likelihoods within a risk-based evaluation. The outcomes under different 

project designs are compared by way of a set of decision criteria, including the performance 

under the most likely future, the expected value of performance across all evaluated futures 

and robustness. The method is demonstrated for the design of a hydropower system in sub-

Saharan Africa and is compared to the results that would be found using a GCM-based, 

scenario-led analysis. The results indicate that recommendations from the decision scaling 

analysis can be substantially different from the scenario-led approach, alleviate common 
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shortcomings related to the use of climate projections in water resources planning, and 

produce recommendations that are more robust to future climate uncertainty.     

2.2.  Introduction 

Investments in water infrastructure typically involve trade-offs between large capital 

costs and difficult-to-quantify delayed benefits ranked by current societal values, all subject 

to large uncertainties regarding future climatic, demographic, technological, and 

socioeconomic conditions (Fankhauser et al. 1999b; Pahl-Wostl 2007b; Jeuland 2010; 

Furlong et al. 2016). The design process for new water projects can be lengthy and highly 

complex, as such projects may often cause societal and environmental impacts, both positive 

and negative, that go well beyond the lifetime of the investment (Bednarek 2001; Hallegatte 

2009; Hall et al. 2015). And though the complexities and uncertainties inherent in the design 

of new water infrastructure often warrant lengthy cautious discussion that delays investment, 

the world’s poor living in conditions of high climate variability (e.g., in sub-Saharan Africa) 

suffer through the delays (Brown and Lall 2006; Hall and Murphy 2012; Strzepek et al. 2013; 

Groves et al. 2015). The primary purpose of this work is to improve the process of water 

infrastructure planning such that cost-effective, sustainable design alternatives can be more 

confidently identified and implemented considering climate variability and change. 

The conventional modeling paradigms in water systems planning have assumed 

stationarity in long-term natural processes and estimated decision-relevant climate or 

hydrological statistics, for example, annual mean flow or 100-year flood from historical data 

(Hirsch 2011; Jeuland and Whittington 2014). This statistical information allowed planners 

to define generally few number of possible future states with known occurrence 

probabilities, and subsequently identify optimal or near-optimal project designs through 
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expected utility maximization (Maas et al. 1962; Loucks et al. 1981; Wurbs 1993; McInerney 

et al. 2012). However, recent evidence of climate change, including unprecedented changes 

in the precipitation patterns, and the frequency and intensity of storms, the timing and 

magnitude of surface runoffs has raised questions regarding whether water system planners 

shall continue to use stationarity-based methods, when making long-term, costly investment 

decisions (Milly et al. 2008b, 2015; IPCC 2013a; Arnell and Lloyd-Hughes 2014; 

Koutsoyiannis 2014). There is now a general agreement that climate-related uncertainties in 

water planning are deep due to unknowable trajectories of future greenhouse gas emissions 

(O’Neill et al. 2014), natural variability dominating at decision-relevant time scales (Deser et 

al. 2012; Enserink et al. 2013), and our understanding of the how the biophysical systems 

would respond to climate change, particularly at finer scales needed for decision-making 

(Hawkins and Sutton 2011; Forster et al. 2013; Hall 2014).  

Over the past few decades, growing concerns on the use of conventional planning 

methods have resulted in interest in new, risk-based planning approaches for better 

consideration of climate uncertainty in decision-making (Lempert et al. 2004; Brekke et al. 

2009; Hall and Borgomeo 2013; Kwakkel et al. 2016). As an initial response, many water 

system planners have focused on climate information from the coupled Atmosphere-Ocean 

General Circulation Models (AOGCMs, hereafter GCMs) to understand and assess the 

possible range of outcomes under climate change. This predict-then-act approach typically 

begins with selecting a subset of scenarios describing the state of future global development 

and demographic conditions, such as the Intergovernmental Panel on Climate Change 

(IPCC)’s “representative concentration pathways” (RCPs) (Moss et al. 2010). The selected 

set of scenarios is then evaluated through a subset of GCMs to assess the global climate 

response to greenhouse gas concentrations and then downscaled to a finer temporal and 
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spatial resolution needed by the decision-makers. The downscaled climate projections are 

then evaluated through linked simulation models, e.g., hydrology, water quality, and reservoir 

operations to assess the outcomes of climate change. As a result, the findings of the predict-

then-act analyses rely heavily on the probability distribution of climate or hydrologic 

variables that are affected by the subjective assumptions and the source of information 

defining the scenarios and modeling procedures (Dessai and Sluijs 2007; Dessai and Hulme 

2009). 

Decision-centric frameworks attempt to address the shortcomings of predict-then-

act approach by shifting the emphasis from climate science modeling to climate vulnerability 

at the local level (Walker et al. 2013; Singh et al. 2014; Wise et al. 2014; Herman et al. 2015). 

These approaches use exploratory modeling to examine a broad range of outcomes under 

future climate uncertainty, then identify decision alternatives or management actions to 

reduce vulnerability to climate change. Vulnerability reduction can be expressed in various 

ways, for example by increasing the system’s ability to perform adequately or acceptability 

under uncertainty (robustness), to adapt to changing conditions (flexibility), or to recover 

quickly from undesired states or failures (resiliency). Decision-centric frameworks typically 

apply structured sensitivity analyses to identify critical outcomes across a broad range 

possible futures, and commonly aim to cover extreme or surprise futures often described as 

‘black swans’ (Taleb 2007). The decision rules employed in decision-centric frameworks are 

typically non-probabilistic and show a departure from the conventional, expected utility 

based decision rules to accommodate for greater risk-aversion. For example, they rank 

choices based on the worst possible outcome, maximin (Wald 1950), a weighted score from 

the worst and best possible outcomes, optimism-pessimism (Hurwicz 1951), or based on 

acceptable performance on a specified performance benchmark, satisficing (Simon 1955). The 
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most prominent decision-centric frameworks are Robust Decision Making (Groves and 

Lempert 2007; Lempert and Collins 2007; Bryant and Lempert 2010), vulnerability-based or 

scenario-neutral planning (Prudhomme et al. 2010; Nazemi et al. 2013; Nazemi and Wheater 

2014), Info-Gap Decision Theory (Ben-Haim 2006; Korteling et al. 2013), and decision 

scaling (Brown et al. 2011b; Whateley et al. 2014). 

It is common in both decision-centric frameworks and predict-then-act analyses that 

the scenarios defining the domain of plausible future climates are derived from GCM-based 

climate change projections. However, this ex ante use of climate projections presents 

potentially biased inputs, which potentially bias the evaluation of design or planning 

alternatives. The use of an ensemble of projections reveals the performance of designs for 

the futures those models happen to produce, which is not an unbiased representation of 

possible climate change (Stainforth et al. 2007a; Weigel et al. 2010; Knutti et al. 2013), 

notwithstanding bias correction techniques, which map projections to historical conditions 

but do not address biases in projections of the future or sampling bias in the selection of 

GCMs used. The emission or concentration scenarios used in climate models incorporate 

numerous assumptions and subjective choices about how the future would unfold that 

cannot be verified. For example, all RCP scenarios from the IPCC’s 5th Assessment Report 

assume a large reduction in the atmospheric aerosol emissions by the end of the 21st 

Century, which is argued to be too narrow (Stouffer et al. 2017). Also, many GCMs share 

basic structural assumptions, numerical schemes, and data sources, and consequently 

respond quite similarly to related models (Weigel et al. 2010; Knutti et al. 2013) leading to 

biases when viewed as independent realizations of possible future climate (Steinschneider et 

al. 2015a). They perform poorly in simulating interannual variability in precipitation (Brown 

and Wilby, 2012; Rocheta and Sugiyanto 2014), the frequency and intensity of extreme 
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events (Sillmann et al. 2013; Crétat et al. 2014), especially at fine scales relevant for the water 

system planners (Schiermeier 2007). The choice of downscaling method (Pielke 2012) and 

methodological challenges related to model calibration, e.g., model overfitting (Rougier and 

Goldstein 2014) introduces additional concerns in the use of GCM projections in decision-

making. Consequently, careful consideration is warranted in the sampling of future climate 

conditions in scenarios used for infrastructure design, whether using a decision-analytical or 

climate-science based approach. 

If GCM projections are not to be used as possible futures, how can this uncertain 

but potentially useful information be incorporated into climate risk analysis? An alternative is 

to use GCM projections ex post, i.e., after a broad range of future climate changes are 

explored for making posterior inference about the future. The ex post use of climate science 

information in water systems planning is presented by decision scaling (DS) applications 

(Moody and Brown 2013; Whateley et al. 2014; Steinschneider et al. 2015b; Culley et al. 

2016). In DS, a climate stress test is first applied to reveal vulnerable outcomes across a broad 

range of climate uncertainties using climate/weather simulator and stochastic simulation 

analyses. The results of the stress test identify sensitivity to climate change, rather than 

sensitivity to the climate change projections and their associated and often untested biases 

that happen to be available from the current generation of GCM runs. Summary statistics 

from GCM projections, such as long-term trends in mean conditions are then considered to 

make a subjective judgment on whether identified problematic outcomes are likely to occur 

in the future. Finally, the system robustness is quantified by decision rules by considering 

both vulnerabilities as well as the probabilistic information derived from climate projections.  

This manuscript demonstrates the first application of the DS framework to the 

design of water facilities, specifically related to hydroelectricity. In doing this, we present a 
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detailed comparison of the proposed framework to a conventional top-down analysis on two 

key aspects: the use of climate information in the decision analysis process and the choice of 

the decision rule for the preference ranking of the design alternatives respectively. For the 

former aspect, we compare and discuss using GCM projections at the initial phase of the 

process to describe the possible states of the world (which we refer to as the ex ante use) 

versus later in the process following the vulnerability analysis for making a probabilistic 

inference (which we refer to the ex post use). In the latter case, we compare infrastructure 

design preference under robustness criterion to more conventional criteria based on 

expected value of performance and performance under the expected future. Although 

numerous studies discuss the use of climate information from a methodological point of 

view (Dessai and Hulme 2004, 2007; Prudhomme et al. 2010), and the choice of decision 

rule in decision-making processes (Lempert and McKay 2011; Budescu et al. 2014; Giuliani 

and Castelletti 2016), we are not aware of any studies that evaluate both aspects together and 

demonstrate the practical implications quantitatively.  

This manuscript is organized as follows: Section 2 introduces the adapted DS 

framework for water infrastructure design; Section 3 provides a comparative analysis of the 

proposed framework for a hydropower design case study in Lower Fufu River in Malawi; 

Section 4 provides a further discussion of the key findings, limitations, and conclusions.   

2.3.  Methods 

The proposed framework consists of three main stages: [1] a stakeholder-led project 

screening of the essential processes and components of the analysis, [2] a climate stress test 

for exploring system performance under different design alternatives and plausible futures, 
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and finally [3] an ex post analysis for comparing and ranking the alternatives using alternative 

climate futures and innovative decision rules (Figure 2.1). 

 
Figure 2.1 The proposed decision scaling framework for water infrastructure design under 
climate uncertainty. The rectangles and the parallelograms mark major model processes and 
information inputs respectively. 

 

The first step of the process is the stakeholder-driven decision framing to describe 

the essential features of the analysis, including the design alternatives d to be evaluated 

through the process; the performance metrics M for expressing the performance of the 

alternatives, and the system model(s) 𝑦𝑦𝑀𝑀 = 𝑓𝑓(𝑑𝑑, 𝑥𝑥) to relate design alternatives 𝑑𝑑 to the 

consequences 𝑦𝑦𝑀𝑀 contingent on the climate conditions x. Prior to the analysis, a set of 

discrete design alternatives can be specified jointly with the stakeholders, e.g., associated 
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local organizations, project partners, funding agencies. It is also possible to specify the 

options through a computational search based on Monte Carlo methods (Korteling et al. 

2013) or evolutionary algorithms (Kasprzyk et al. 2013; Reed et al. 2013). The system 

models(s) are built based on the principal hydroclimatic, economic and operational 

processes, and the relevant temporal-spatial scales of the infrastructure design problem. As 

mentioned, although the framework presented here focuses on climate uncertainties, the 

same approach can be extended to include non-climatic factors, including uncertainties 

associated with price, population, or water demand change, although achieving unbiased 

sampling of those uncertainties has yet to be explored. 

The second step is the climate stress test, a procedure to systematically explore how 

the infrastructure design may perform across a wide range of plausible future climate 

conditions, including changes in mean climate as well as climate variability. Typically, climate 

change studies use time-series of projections from GCMs to evaluate future performance. 

However, GCM projections do not systematically explore plausible climate changes, 

especially variability changes. They offer a glimpse based on what the projection happens to 

produce. The results indicate the performance relative to the projection that happens to be 

used. Finally, climate change projections are contingent on the emissions scenario used, 

downscaling and bias correction used, and a host of other subjective choices that obfuscate 

the final results of the analysis. In contrast, the climate stress test is specifically designed to 

systematically evaluate response to alternative climate futures that are represented unbiasedly 

and precisely. Climate stress test is implemented by first systematically sampling new 

realizations of the past climate using a stochastic weather generator (Steinschneider and 

Brown 2013). In this process, the weather generator is conditioned on the s historical climate 

statistics such as its mean and variance to produce an unbiased sample. The weather 
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generation process yields 𝑛𝑛 realizations 𝑥𝑥𝑖𝑖: 𝑖𝑖 = 1 …𝑛𝑛 each consisting of a set of time-series 

of climate variables at the desired temporal scale and spatial resolution. Long-term changes 

in the climate system, such as trends or shifts in mean temperature and/or precipitation 

conditions are represented through 𝑚𝑚 delta factors 𝑐𝑐𝑗𝑗: 𝑗𝑗 = 1 …𝑚𝑚. The variability realizations 

and the delta factors are then combined, resulting in a matrix of 𝑛𝑛 𝑥𝑥 𝑚𝑚 climate traces 𝑋𝑋 =

 {𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑖𝑖 ∙ 𝑐𝑐𝑗𝑗 : 𝑡𝑡 =  1 … ,𝑛𝑛 𝑥𝑥 𝑚𝑚}, where (∙) is the operator used for modifying a given 

climate variable time-series. The system model 𝑦𝑦𝑀𝑀 = 𝑓𝑓(𝑑𝑑, 𝑥𝑥) is then simulated for each 

climate trace 𝑥𝑥 ∈ 𝑋𝑋 and design alternative 𝑑𝑑 ∈ 𝐷𝐷 to evaluate the consequences under each 

case. The climate stress test thereby explores performance across systematically generated 

samples of climate variability and change, going beyond a conventional scenario-led analysis, 

in which the vulnerabilities are only estimated for the climate changes and variability that 

happen to be sampled by the available climate projections.  

The final step is the ex post analysis of alternatives to identify one or few low-risk 

options for the project of interest. First, the risk associated with each option is quantified by 

weighting the set of consequences {𝑦𝑦𝑀𝑀(𝑑𝑑, 𝑥𝑥)}  based on available sources of climate 

information CI, such as including historical trends, paleoclimate data, GCM projections or 

expert views. The conditional probability weights assigned to future climate states 𝑃𝑃(𝑥𝑥|𝐶𝐶𝐶𝐶) 

𝑥𝑥 ∈ 𝑋𝑋 can be obtained from the most credible information or decision-relevant statistics 

extracted from the information source. For example, in recognition that the climate model 

projections are most credible at reproducing mean climate conditions (versus higher order 

moments, i.e., variability and extremes) at broader spatial scales (versus a single grid cell), 

only long term mean precipitation and temperature are used from the climate model outputs. 

Extracted climate information can be treated within a formal probabilistic framework to set 
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the conditional probability weights of the conditions evaluated in the stress test (Moody and 

Brown 2013). Finally, the quantified risks are summarized by a choice of robustness criteria, 

including stakeholder-defined robustness index (Whateley et al. 2014), satisficing metrics 

(Lempert and Collins 2007) or conditional-value-at-risk (Webby et al. 2007). The choice of 

decision criteria in robustness-based performance assessments allows creating a spectrum of 

attitudes reflecting the decision-maker’s behavior, from full optimism, e.g., maximax, to 

extreme pessimism, e.g., minimax regret (Giuliani and Castelletti 2016). 

2.4.  Case study: hydropower plant design  

The case study used to demonstrate the approach is the design and analysis of a 

hydropower facility currently in the planning phase. The results of the analysis are compared 

to the results of a scenario-led evaluation of the same project. The implications of the use of 

climate information and alternative decision criteria are discussed for both methods.  

2.4.1.  Project description 

The planned investment in northern Malawi combines water resources from the 

North Rumphi and South Rukuru rivers for generating hydropower through a run-of-the-

river plant (Figure 2.2). The required flow is diverted via two equally sized intake weirs and 

underground supply tunnels. The design problem consists of the choice of an economically 

viable hydropower facility size among the twelve prespecified design alternatives from 84 to 

148 MW, which were defined by the project stakeholders before the analysis. The present 

value life cycle costs of these twelve options increase linearly from $223 to $342 million with 

increasing plant size. The design variable of the analysis is the combined maximum flow 
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allowed through the supply tunnels (design flow) that range from 29 to 51 m3/s, depending 

on the selected hydropower plant size (Table 2.1).  

 
Figure 2.2 An illustration of the planned hydropower development project. The arrows 
indicate the direction of the diverted streamflow for hydropower generation. 
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Table 2.1 Design alternatives for the proposed hydropower facility. Design flow indicates the 
combined maximum flow allowed through the supply tunnels. The project cost shows the 
summation of the project capital costs and the estimated operations and maintenance costs 
over the project lifetime 

 

Design capacity 
(MW) 

Design flow 
(m3/s) 

Project cost 
(M USD) 

84 29 223.0 
90 31 231.0 
96 33 238.8 
102 35 246.4 
107 37 253.9 
113 39 261.2 
119 41 268.4 
125 43 275.4 
131 45 282.3 
137 47 289.1 
142 49 295.8 
148 51 302.4 

 
 

The climate of northern Malawi is mild tropical with Austral rainy summers from 

December to April, and very dry winters from July to October. The primary driver for 

precipitation is the migration of the Inter-Tropical Convergence Zone (ITCZ) that separates 

the southeast trade winds and the north-east monsoon of the Indian Ocean (Jury and 

Mwafulirwa 2002). The historical climate conditions of the study region were evaluated for 

the period 1974-2008 using the combined reanalysis with observation data from the 

Terrestrial Hydrology Research Group at Princeton University (Sheffield et al. 2006). 

According to the available data, precipitation ranges from 700 to 1350 mm/yr, with a mean 

of 1001 mm/yr. The marked variability in the annual precipitation can be attributed to large-

scale teleconnection effects, such as El Niño–Southern Oscillation (ENSO) and the 

stratospheric Quasi-Biennial Oscillation (QBO) (Nicholson 2000). Historical mean 
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temperature over the same period shows a linear increase of about 0.9 ˚C, with a mean of 

20.6 ˚C.  

2.4.2. Modeling of system performance 

The hydropower generation from the run-of-the-river facility is simulated using an 

application of Water Evaluation and Modeling System (WEAP), a decision support tool for 

integrated water resources management. For this particular case study, the WEAP model was 

developed by Cervigni et al. (2015).The WEAP schematic of the study area includes two 

source nodes that simulate monthly surface flow from time-series of rainfall (mm) and 

temperature (°C); and two withdrawal nodes that divert simulated flow to the hydropower 

plant. Since the planned hydropower facility does not dam the river to create a reservoir, the 

hydropower output is approximated as a linear function of combined diverted flow (m3/s) 

with a fixed hydraulic head of 336 m and a plant efficiency factor of 88 % based on the 

project feasibility study (Norconsult 1996).  

The economic performance of the project is assessed by the Levelized Cost of 

Energy (LCE) based on the stakeholder preference. The LCE metric gives the price at which 

the electricity must be sold to break even financially over the lifetime of the project in $ per 

GWh:   

𝐿𝐿𝐶𝐶𝐿𝐿(𝑑𝑑, 𝑥𝑥) = 𝐶𝐶(𝑑𝑑) ∗ ��𝑃𝑃𝑡𝑡(𝑑𝑑, 𝑥𝑥)
𝑇𝑇

𝑡𝑡=1

∗ (1 + 𝑟𝑟)−𝑡𝑡�

−1

  

Equation 2.1 

where C is the present value cost of the project under design 𝑑𝑑 ($), Pt (𝑑𝑑, 𝑥𝑥) is simulated 

hydropower output in year t (GWh) under design 𝑑𝑑 and climate condition 𝑥𝑥, T is the project 
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lifetime (35 years), and r is the economic discount rate (set to be 5%, based on stakeholder 

preference).  

2.4.3. Assessing Design Alternatives under Climate Uncertainty  

The twelve designs are subjected to a climate stress test to explore the performance 

of each under a large domain of future climate conditions. The input data for the climate 

stress test is obtained through the procedure described in Section 2, by first generating a set 

of new climate variability realizations, and then applying a set of change factors to the 

climate realizations to reflect gradual climate changes.  

The new climate realizations are generated by a first-order wavelet autoregressive 

model (WARM) (Kwon et al. 2007; Steinschneider and Brown 2013). For this process, the 

historical precipitation record (from 1974 to 2008) for the two upstream catchments are 

area-averaged and aggregated to annual values. Next, ten annual, thirty-five-year precipitation 

realizations are sampled from the WARM, with approximate means and standard deviations 

of 1001 mm and 150 mm respectively, and with power spectrum similar to the observed 

record. The generated annual precipitation realizations are then disaggregated to multi-site 

monthly time-series using a K-Nearest Neighbors (KNN) resampling scheme (Lall and 

Sharma 1996). The outcome of the weather generation process is a relatively unbiased 

sample of the observed climate record with matching mean, standard deviation, and low-

frequency variability. Next, delta factors are applied to the climate realizations to simulate 

long-term trends in the precipitation and temperature. For temperature, six additive factors 

applied from -1 to 4°C, with increments of 1°C. For precipitation, thirteen multiplicative 

factors are applied ranging from 0.4 to 1.6 with increments of 0.1. These climate change 

factors increase linearly by starting from zero-change at year one and ending at the specified 
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level (e.g., 3°C). The choice of delta factors is made to span a broad range of climate changes 

for the study area, exceeding the range of projected temperature increases (up to 2.5ºC) and 

precipitation changes (up to 30%) in 2060’s relative to 20th Century means (Cervigni et al. 

2015).  

By applying all possible combinations of change factors over the ten realizations, a 

total of 780 climate traces is obtained. The climate stress test is then executed for each 

design alternative by simulating the WEAP model of the system under each climate trace to 

obtain monthly hydropower outputs. LCE metric is calculated for each simulation run 

(Equation 2.1), and then are transformed to regret to identify the design(s) that would give a 

relatively low level of regret over the range of climate conditions assessed: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑀𝑀(𝑑𝑑, 𝑥𝑥) = |𝐿𝐿𝐶𝐶𝐿𝐿(𝑑𝑑∗, 𝑥𝑥) − 𝐿𝐿𝐶𝐶𝐿𝐿(𝑑𝑑, 𝑥𝑥)|  

Equation 2.2 

where the regret 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑀𝑀(𝑑𝑑, 𝑥𝑥) is the absolute difference between the Levelized cost of 

design 𝑑𝑑 in some future condition 𝑥𝑥, 𝐿𝐿𝐶𝐶𝐿𝐿(𝑑𝑑, 𝑥𝑥), and the levelized cost of the best-

performing design, 𝑑𝑑∗, under the same future condition, 𝐿𝐿𝐶𝐶𝐿𝐿(𝑑𝑑∗, 𝑥𝑥). Note that the 

presented approach of comparing the design alternatives, i.e., by assessing the range of low 

regret outcomes in each option, does not make use of climate information. In order to aid 

the decision-making process, downscaled GCM projections are used to set the likelihood of 

future climate conditions (see the following section). 

2.4.4. Robustness Analysis of the Alternatives 

In the final phase, the twelve alternatives are evaluated regarding their ability to 

perform acceptably under the future climate conditions evaluated. This is done by calculating 
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the robustness of each alternative from the set of LCE regret values calculated through the 

climate stress test (Section 2.3.3). Climate science information is incorporated at this phase 

to assign relative weights to alternative futures.    

The robustness of the options is expressed using a modified version of the 

Robustness Index (RI) (Whateley et al. 2014). The first step of RI calculation is parsing the 

stress test results into regions of acceptable and unacceptable outcomes concerning a pre-

defined performance threshold 𝐶𝐶𝑇𝑇: 

 𝛬𝛬(𝑑𝑑, 𝑥𝑥) =  �1,   𝑖𝑖𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑀𝑀 (𝑑𝑑, 𝑥𝑥)  ≤ 𝐶𝐶𝑇𝑇

0,   𝑖𝑖𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑀𝑀 (𝑑𝑑, 𝑥𝑥) > 𝐶𝐶𝑇𝑇
�                                                                

Equation 2.3 

where, 𝐶𝐶𝑇𝑇 is the performance threshold that is set to a LCE regret of 200 $/GWh, and 

Λ(𝑑𝑑, 𝑥𝑥) is a binary variable that takes a value of one when the computed regret value is less 

than or equal to the threshold value and zero when the regret is higher than the threshold. 

The threshold value is set based on the stakeholder opinion among a range of alternatives. 

Next, a RI value is computed from the weighted sum of the binary variable 

Λ(𝑑𝑑, 𝑥𝑥) conditional on the climate information 𝐶𝐶𝐶𝐶: 

𝑅𝑅𝐶𝐶𝑑𝑑∗ = 𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑎𝑎𝑥𝑥
𝑑𝑑

[�𝛬𝛬(𝑑𝑑, 𝑥𝑥) .𝑃𝑃(𝑥𝑥|𝐶𝐶𝐶𝐶)]
𝑥𝑥

 

Equation 2.4                          

where, 𝑃𝑃(𝑥𝑥|𝐶𝐶𝐶𝐶) is the relative weight assigned to each climate state 𝑥𝑥 conditional on the 

climate information. For this study, the climate information is obtained from the World 

Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) 

multi-model ensemble (Taylor et al. 2012). The ensemble has a total twenty GCM models 
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that consists of twenty model runs forced with the historical conditions (the atmospheric 

composition of the 20th century), and a total of fifty-four model runs forced with the IPCC’s 

representative concentration pathways (RCPs) 4.5 and 8.5 respectively (IPCC, 2013). The 

GCM outputs from all model runs are statistically downscaled to a monthly temporal 

resolution and a 0.5º spatial resolution according to the Bias Correction Spatial 

Disaggregation (BCSD) method (Cervigni et al. 2015). 

Using the CMIP5 ensemble, the relative weights assigned to the climate states are 

obtained in four steps. First, the vector of mean annual precipitation and temperature 

changes are calculated from all future climate projections. Second, the computed mean 

changes from twenty GCMs are then reduced to eight data points to account for the 

potential sampling biases due to the structural similarities in GCMs (Knutti et al. (2013). In 

doing this, we treated all model runs equally, and by simple averaging within each model 

group. Third, the computed eight data points are used to define a probability distribution 

function (PDF) for the domain of climate changes. In this work, we used a bivariate Cauchy 

distribution: 

𝑟𝑟(𝑥𝑥,𝑦𝑦) =  
1

2𝜋𝜋
 [𝛾𝛾 ((𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2 + 𝛾𝛾2)−1.5] 

Equation 2.5                                                          

where, 𝑥𝑥𝑜𝑜 and 𝑦𝑦𝑜𝑜 are the location parameters that are set to the mean temperature and 

precipitation value of the eight data points; and 𝛾𝛾 is the scale parameter that is set to the 

covariance matrix obtained from the eight data points. The reason for using a heavy-tailed 

Cauchy distribution over a more common Gaussian (Whateley et al. 2014) is assign higher 

relative weights to extreme changes for greater risk-averseness. Finally, we the contingent 

normalized probability weights of the 78-plausible mean temperature and precipitation 
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changes are obtained (Equation 2.5). The RI calculation is repeated for each climate 

variability realization and then averaged over with an assumption that each variability 

realization is equally likely to occur.  

In addition to the RI criterion, we also show design preference under two more 

commonly applied decision rules for comparison. The first additional criterion is the design 

choice based on the most likely (ML) future state:  

𝑀𝑀𝐿𝐿𝑑𝑑 =  𝐿𝐿𝐶𝐶𝐿𝐿(𝑑𝑑, 𝑥𝑥):𝑚𝑚𝑎𝑎𝑥𝑥
𝑋𝑋

𝑃𝑃(𝑥𝑥|𝐶𝐶𝐶𝐶) 
                                         Equation 2.6 

where, 𝑚𝑚𝑎𝑎𝑥𝑥
𝑋𝑋

𝑃𝑃(𝑥𝑥|𝐶𝐶𝐶𝐶) is the ‘most likely’ climate future conditional on the imperfect climate 

information; 𝐿𝐿𝐶𝐶𝐿𝐿(𝑑𝑑, 𝑥𝑥) is the LCE value under that most-likely climate state. The latter 

criterion of EV is the weighted sum of the computed LCE values contingent on relative 

probability weights obtained from the climate information CI: 

𝐿𝐿𝐸𝐸𝑑𝑑 = ∑ 𝐿𝐿𝐶𝐶𝐿𝐿(𝑑𝑑, 𝑥𝑥) 𝑃𝑃(𝑥𝑥|𝐶𝐶𝐶𝐶)] 𝑥𝑥                 

Equation 2.7 

2.4.5. Design Evaluation Based on Scenario-led Analysis 

The twelve design alternatives are also evaluated under the historical climate 

conditions, and by way of a conventional top-down, GCM-based analysis to demonstrate 

differences on the proposed framework. In this case, climate information is used ex ante to 

describe the domain of climate scenarios and the evaluation process is carried out based on 

the results obtained from those scenarios.  

For the analysis under historical climate, the WEAP system model is simulated under 

a single forcing scenario representing the historical climate of the 1974-2008 period. For the 
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latter case of GCM-based analysis, the model is forced with all downscaled GCM outputs 

over the 2016-2050 period. In both cases, the simulated hydropower output and the present 

value costs are used to calculate the LCE (Equation 2.1). The results are then summarized 

using the same decision criteria of RI, ML, and EV respectively. For the RI and EV criteria, 

it is assumed that each GCM-based climate scenario is independent and equally likely to 

occur. For the ML criterion, the most likely climate scenario is determined based on the 

empirical density of the projected climate changes in the multi-model ensemble.  

2.5. Results and Discussion 

2.5.1. Design Preferences under Decision Scaling (DS) Application 

The LCE values obtained from the stress test range from 18,400 to 32,800 $/GWh 

for the smallest design (29 m3/s) and from 17,000 to 37,000 $/GWh for the largest design 

(51 m3/s), respectively. We note that the order of magnitude of differences among the LCE 

values may be relatively small for real-world decisions; however, the results illustrate the 

application of the evaluation process despite the small magnitude of the economic values. 

The differences in results become more noticeable in regret terms, as the computed regret 

for the smallest and largest design sizes are up to 1,400 and 4,300 $/GWh, respectively.  

Figure 2.3 shows the regret for each alternative under evaluated climate changes. The 

relatively sharp changes over the y-axis (precipitation change) indicate that the results are 

more sensitive to precipitation than to temperature. Among the twelve alternatives, the 

smallest (29 m3/s) results in a regret of less than 200 $/GWh, and therefore performs 

acceptably when the mean annual precipitation is less than the historical mean. However, for 

the smallest option, the regret increases to 1500$/GWh under wetter futures. In contrast, 
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larger options, i.e., 45 m3/s or greater, are vulnerable to drier futures, with a maximum regret 

of 2,000 $/GWh or greater. As no single option dominates, and the choice varies whether 

the future would be drier or wetter, climate likelihood information is useful at this stage for 

making a judgment on the relative risks presented.   

  
Figure 2.3 Computed LCE regret across the domain of climate changes in USD/GWh. 
Panels a through k show the results for the indicated design flow in m3/s. The cells shaded 
with white color mark the climate conditions that result in a low (acceptable) level of regret. 
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Figure 2.4 shows the scatter plot of annual mean climate changes from the CMIP5 

ensemble of GCM output. The multi-model ensemble shows a large range of outcomes for 

both the direction and the magnitude of change in mean annual precipitation (-30% to 

+20%) and a relatively small range of outcomes in the magnitude of increases in mean 

annual temperature (1˚C to 2.2 ˚C) relative to the historical averages.  

 
Figure 2.4 Projected mean changes in annual temperature (˚C) and precipitation (%) in the 
seventy-four GCM runs relative to the historical period 1974-2008. GCMs sharing similar 
model code are shown in the same color. Shapes represent a model response to different 
climate forcing scenarios. The intersection of the vertical and horizontal line marks the value 
of mean observed temperature (20.6 ˚C) and precipitation (1001 mm). 
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The results from the vulnerability analysis (Figure 2.3) and the climate information 

derived from the CMIP5 ensemble (Figure 2.4) can be combined to for the risk analysis of 

alternatives. Figure 2.5 depicts the climate conditions under which each design is the no-

regret choice or the best performing alternative. In Figure 2.5, eight data points representing 

the mean climate changes from each GCM group (see Figure 2.4) are superimposed to 

provide a graphical indication of the GCM-based likelihood of evaluated climate changes. It 

is seen that most designs are optimal for a narrow band of plausible climate changes, while 

the smallest and largest design flows, 29 and 51 m3/s respectively, outperform the others 

over a relatively larger domain of climate changes. However, these represent extreme climate 

changes that are less likely to occur according to the mean changes from the model groups. 

As Figure 2.5 shows, most model groups indicate little change in mean precipitation and a 

temperature increase between 1 and 2 ºC, although there is one warmer-and-wetter and one 

dryer.  
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Figure 2.5 No-regret domains of the designs under the evaluated range of climate changes. 
Each color region marks a design’s zero-regret performance domain regarding LCE. The 
intersection of the vertical and horizontal line marks historical mean temperature and 
precipitation (1974 – 2008 period). The circles mark projected means from 11 GCM groups 
in the CMIP5 ensemble for the period of 2016-2050. The contours indicate the levels (1x10-

3, 3x10-3, 5x10-3, 7x10-3 and 9x10-3 respectively) of the bivariate Cauchy distribution derived 
from the GCM data. 

 
The computed decision criteria applied to the design question reveals a single best 

design of each evaluation criteria. For the ML criterion, the 35 m3/s design gives the lowest 

LCE, with a value of 23,400 $/GWh under the most likely conditions of a mean temperature 

increase of 2 ºC and historical precipitation means (no-change). Figure 2.6 shows the results 

under the EV and RI criteria for each climate realization, as well as for the conditions 

averaged over their means. The EV criterion indicates design 35 m3/s as the best choice. 

Note that the role of variability, however, as the design preferences vary from the 33 to 37 
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m3/s based on the choice of climate realization (Figure 2.6-a). The RI criterion also indicates 

design 35 m3/s as the best choice, with results ranging from 31 to 39 m3/s over the ten 

individual variability realizations (Figure 2.6-b). 

 
Figure 2.6 a) Variation in EV criterion, in US/GWh. b) Variation in RI criterion. The gray 
lines show the variation of results across the ten stochastic climate variability realizations. 
The blue lines show the mean results averaged over the individual variability realizations. 
The gray and blue circles mark the preferred design choices for each condition.  

 

2.5.2. Comparison to results under scenario-led analysis  

The simulated LCE values under the historical climate period (1974-2008) across the 

twelve alternatives show 39 m3/s as the optimal design option. Under the scenario-led 

analysis, the LCE metric ranges from 19,300 to 31,500 $/GWh for the smallest size (29 

m3/s), and from 18,400 to 35,400 $/GWh for the largest size (51 m3/s). The design 

preference is found to be highly dependent on the choice of criterion, as the choices were 39 

m3/s for the ML, 31 m3/s for the EV, and 29 m3/s for the RI respectively.  

Table 2.2 summarizes the preferred choices under the past climate, and the scenario-

led and decision-scaling analyses on the three decision criteria applied. Considering the RI 
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criterion, the best alternatives are identified as the 39 m3/s for the historical climate, 29 m3/s 

for the scenario-led analysis, and 35 m3/s for the decision-scaling analysis respectively. To 

illustrate the differences between these three optimal choices, we focus on their relative 

performances under future climate. Figure 2.7 depicts the regret from the options of 29, 35, 

and 39 m3/s versus the potential future mean streamflow based on 780 stochastic climate 

traces used in the stress test analysis. If the mean streamflow were to decline in the future, 

the historical choice performs very poorly, while the two alternatives that accommodate 

climate change perform better. Therefore, it remains helpful to bring in a representation of 

the information from both climate projections as well as the historical mean value to assess 

alternative designs. Shown as pdfs of climate change in parallel coordinates (lower panel), the 

35 m3/s (based on DS) and 39 m3/s (based on historical conditions) perform better over the 

conditions indicated to be probable by the available climate evidence.  

Table 2.2 The summary of findings from each decision criteria under the historical climate 
conditions, and based on the scenario-led and the decision scaling analyses. The values in 
bold show the final preference in each case. 

Decision criteria  Historical        
climate  

Scenario-led analysis Decision scaling analysis 

ML 39 m3/s  37 m3/s  35 m3/s  
EV - 31 m3/s  35 m3/s  
RI - 29 m3/s  35 m3/s  
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Figure 2.7 - LCE regret (in $/GWh) versus mean flow at the upstream the project site (m3/s) 
for the best performing designs under the historical climate, and under future climate with 
the scenario-led and decision-scaling approaches. The region shaded in light red shows the 
unacceptable performance when regret is above 200 $/GWh. The lower panel shows the 
historical mean, and the density distribution of mean streamflow from the GCM runs with 
the RCP 4.5 and 8.5 forcings respectively.   

2.5.3. Implications of ex ante and ex post uses of GCM projections on the design 
preference 

The differences in the results of the two methods presented (Table 2.2) can be 

explained by the underlying methodological choices, and mainly by how climate uncertainty 

is sampled in each case. The DS approach provides a fuller and more systematic exploration 

of the climate change uncertainties through a stress test, in this case, with a full factorial 

design consisting of six additive factors of mean temperature increases up to 4°C and 

thirteen multiplicative factors of mean precipitation changes from -40% to 40%. In contrast, 

the scenario-led approach explores system sensitivity to the downscaled range of CMIP5 

projections, consisting of twenty GCM models and two RCP scenarios. These GCM 
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projections represent a relatively narrow range of climate changes (e.g., for precipitation 

from about -30% to 20%) and a clustered sample set of mean climate changes based on the 

underlying assumptions such as the forcing scenarios used, the downscaling method or the 

structural similarities among the climate models. The clustering of model estimates in the 

given multi-model ensemble (e.g., the clustering of mean annual precipitation around the 

historical mean of 1000 mm/year in Figure 4) imposed an ex ante probability distribution 

over the evaluated range of uncertainties. The preference for relatively smaller project design 

capacities in the scenario-led analysis can be attributed to this implicit probability 

distribution, with a higher density on the lower range of potential precipitation changes.  

Second, the DS and scenario-led analyses represent historical climate variability 

differently. In DS, historical climate variability is represented by ten stochastic realizations 

from a wavelet auto-regressive model. The statistical properties of these ten realizations 

match well with the historical record. For example, the differences in standard deviation are 

less than 3%, and the correlation between the power spectra of each realization and the 

historical data ranges from 0.5 to 0.7 (Figure 2.8). In contrast, the GCM time-series used in 

the scenario-led analysis are biased in the representation of historical climate variability. The 

downscaled GCM runs overestimate the historical standard deviation by 14%, on average, 

with particular runs deviating from the true standard deviation by -20% to +63%. The 

downscaled GCM runs perform particularly poorly with regard to precipitation persistence. 

Half of the models carry a negative correlation with the observed power spectrum (with 

values ranging from -0.6 to 0.7) (Figure 2.9).  

In addition to the biases associated with the historical GCM runs, the sensitivity of 

results to climate variability could not be observed in the scenario-led approach, as no GCM 

model had more than a few realizations of the possible future climate under the given 
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concentration forcing assumption. Moreover, no data were available to indicate the degree to 

which the inherent climate noise influenced the downscaled GCM runs, or if the design 

preferences from the scenario-led analysis would change in a repeated analysis with different 

climate time series obtained from the same GCM projections and concentration scenarios. 

We are aware that the sampling of climate variability can be improved by making use of 

GCM data from large perturbed physics experiments such as the UKCIP scenarios (Murphy 

et al. 2007), but such were not available for this study. 

 
Figure 2.8 Power correlations between the observed precipitation (1974-2008) and the 
precipitation realizations generated by WARM. In each panel, the blue line shows the linear 
regression line and the gray ribbon represents the 95% confidence interval of the regression. 



 

35 
 

 
Figure 2.9 Power correlations between the observed annual precipitation of the 1974-2008 
period (x-axis) and the historical GCM runs (y-axis). In each panel, the blue line shows the 
linear regression line, and the gray ribbon shows the 95% confidence interval of the 
regression line. Colors indicate GCM family scheme. 

2.5.4. Implications of decision criteria on the design preference 

Faced with a deeply uncertain climate, the water systems planning community has 

commonly agreed that long-term, costly investment decisions would do well to emphasize 

robustness, the ability of the system to perform satisfactorily across a broad range of futures. 
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This marks a departure from the conventional decision theory, by which analysts commonly 

prescribe uncertainties ex ante, commonly through a single, well-defined PDF, and then 

model the system using a “most likely” future, or run the model for a number of scenarios 

and make a recommendation to decision makers based on the single expected value of 

outcomes. The limitations of conventional criteria in contrast to robustness-based based 

approaches have been discussed in detail, particularly on results sensitivity to underlying 

probabilities (McInerney et al. 2012; Walker et al. 2013; Heal and Millner 2014) and 

underestimation of risks from low-probability-high-impact events (Weitzman 2009). 

However, the implications of their use in planning problems in comparison to robustness-

based criterion have not been demonstrated. To address this point, we have shown a 

comparative analysis for a hydropower design problem.  

The preferences under the decision criteria of RI, ML, and EV (Table 2.2) show high 

sensitivity to underlying experimental design, in this case, how the domain of future changes 

is defined and weighted. In the scenario-led case, the RI criterion results in the most 

‘conservative’ choice of 29 m3/s (i.e., the alternative with the lowest capital cost) to maintain 

a low regret regarding economic efficiency across all projected climate changes. However, 

under the decision-scaling analysis, both RI and the conventional criteria of ML and EV 

resulted in the same mid-sized design choice (35 m3/s). This result is not necessarily 

generalizable, but is indicative in its demonstration for this case.  

2.5.5.  Limitations of the analysis presented 

The case study explored the future vulnerabilities across a broad domain of climate 

states considering both natural variability and long-term climate change. We represented 

future climate changes through simple change factors applied to annual mean temperature 
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and precipitation. However, the changes in extremes (e.g., future monthly maximum 

precipitation) or in intra-annual variability (e.g., seasonality of precipitation) remains as an 

important concern in long-term planning (IPCC 2013b) and could also be explored. For this 

purpose, Steinschneider and Brown (2013) describe a quantile mapping method to alter 

frequency distributions of precipitation time-series (e.g., monsoon arrival time and duration) 

that could be integrated into the presented framework.  

We represent climate information for the area of interest based on a set of fifty-four 

downscaled GCM projections. Although the multi-model GCM ensembles are standard 

inputs to many top-down climate risk assessment studies, it is possible to improve the 

sampling of uncertainty in model projections using more rigorous approaches. For example, 

Borgomeo et al. (2014) present a risk-based approach to water systems planning, where they 

define the probability distribution of future climate states using a large perturbed physics 

ensemble (PPE). In their work, Borgomeo et al. (2014) couple data from UKCP09 PPE with 

a transient stochastic weather generator for better sampling of natural climate variability and 

model parameterization. Various other decision-centric analyses show similar ways of using 

GCM projections using large model experiments and stochastic sampling or downscaling 

algorithms (Groves et al. 2008; Lopez et al. 2009; Bussi et al. 2016; Turner et al. 2016). 

However, these more rigorous frameworks still lack proper treatment of uncertainties due to 

model structures or underlying emission scenarios. 

Another important point related to the use of climate information in decision-

making is the approach to account for the sampling bias due to the similarities among the 

climate models. In this work, we address the bias due to model similarity using a single 

representative value (the mean) from each GCM family based on the model genealogy 

scheme given by Knutti et al. (2013). We are aware that this is a coarse approximation of the 
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probabilistic information that can be extracted from a multi-model climate projections 

ensemble. More sophisticated methods can be used to maintain model diversity without 

replication, for example through a performance-based weighting scheme (Haughton et al. 

2015), k-means clustering (Cannon 2015), or by assessing the correlations in the error 

structure of the model projections (Bishop and Abramowitz 2013; Evans et al. 2013). 

2.6. Conclusions  

This paper has applied DS concepts to the design of the turbine capacity for a run of 

the river hydropower facility. Previous applications of DS have been risk assessment 

applications: assessments of the impact of possible climate changes on a water resources 

system.  Here, the approach is used for risk management, to identify a specific design under 

climate change. Design outcomes were explored under multiple dimensions of climate 

uncertainty, on natural climate variability, long-term climate change, and climate projections. 

Design alternatives were compared and ranked by way of a formal decision analysis 

procedure, using optimality and robustness-based decision criteria. In this framework, 

subjective information regarding the future, such as climate projections, was applied ex post 

(following the process of stress test analysis) and indirectly (to set the conditional likelihoods 

of the stress test outcomes). The approach was compared to a conventional scenario-led 

framework through a hydropower project design study, and the decision outcomes under 

both frameworks were discussed.  

The framework provides a systematic procedure to incorporate the effects of natural 

climate variability, through a stochastic weather generator conditioned on the historical 

climate record. In contrast, scenario-led analyses provide limited means to explore these kind 

of climate variability effects, for example through the use of perturbed physic ensembles 
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(Lopez et al. 2009; Fung et al. 2013), or by the use of stochastic downscaling methods 

(Groves et al. 2008; Fatichi et al. 2014). We note that the uncertainty effects of natural 

climate variability are likely to outweigh the uncertainty effects of global climate change in 

the next couple of decades (Deser et al. 2012; Ledbetter et al. 2012; Fatichi et al. 2014); 

hence need to properly be addressed in the frameworks of infrastructure planning and 

design.  

Given the biases and structural problems in GCM projections, an important issue for 

the decision-makers is to what extent they should trust these model results, and how to use 

these (often conflicting) model outputs in their analysis frameworks. Through the ex post 

application of appropriate information from GCM projections (e.g., long-term changes in 

mean climate conditions), the analyst can explicitly set the statistical properties of the valuable 

information, for instance, the choice of probability distribution used to fit the climate 

statistics. In contrast, the ex-ante use of information in the scenario-led framework provides 

no flexibility, as the analysis is entirely dependent on the time-series data from the GCMs. 

An important implication of this ex ante use of GCM projections is the bias due to the 

empirical distribution of the parameters, e.g., the repeated sampling of certain projected 

conditions due to model similarities.     

Under deep uncertainty regarding future climate conditions, irreversible and costly 

infrastructure planning decisions need to be made with risk-aversion. However, the level of 

acceptable risk, and the trade-offs between performance and robustness are highly subjective 

and dependent on the decision maker's (stakeholder’s) perspective. Examples of the 

ramifications of such risk aversion perspectives (ML, EV, RI) have been quantitatively 

demonstrated here. The influence of the decision criterion applied was found to be higher 

under the scenario-led analysis in comparison to decision scaling.  
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CHAPTER 3 
 

 LINKING BELIEF INFORMATION TO ROBUSTNESS-BASED PLANNING: 

BAYESIAN NETWORKS DECISION SCALING (BNDS) 

3.1. Abstract 

The widespread recognition of a highly uncertain future due to the changes in 

climate, socioeconomic conditions, demographics and technology has resulted in an 

increased interest in risk-averse robustness-based frameworks for the long-term water 

planning. The common characteristic of these robustness-based frameworks is that they do 

not rely on a narrow range of impacts and vulnerabilities identified by model projections, but 

rather attempt to reduce vulnerabilities across a wide range of plausible future conditions. 

Decision scaling is an example of robustness-based frameworks that uses stochastic 

simulators to sample climate uncertainty by generating a wide range of futures with specified 

variability and mean statistics and then identifying and evaluating vulnerabilities with respect 

to stakeholder-defined performance thresholds. Climate projections are then used to in a 

quasi-Bayesian approach to identify the posterior likelihood of the vulnerabilities. This work 

presents an improved framework, in which a Bayesian network is used to explore multiple 

demographic and socioeconomic factors in addition to climate change uncertainties within 

the robustness-based framework. The proposed framework incorporates varied information 

types including expert judgments, demographic projections and subjective opinions elicited 

from stakeholder workshops to obtain a posterior joint probability distribution of system 

vulnerabilities. The Bayesian network framework provides the basis for representing the 

joint probabilistic behavior of uncertain factors, while the robustness framing is retained 

through the distinctive ex-post identification of vulnerability scenarios and application of 
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probabilities as sensitivity factors to aid decision making. The proposed framework, which 

we call as Bayesian Networks Decision Scaling (BNDS) is demonstrated for design of a new 

water supply system in the Coastal Province of Kenya. 

3.2. Introduction 

Long-term planning of water resources systems has become increasingly complex 

over recent years, facing compounding, deep uncertainties from climate variability and 

change, as well as from nonclimate factors including population growth, urbanization, living 

standards, and societal preferences (Hansman et al. 2006; Kwakkel and Walker 2010; 

Giordano 2012; Jeuland and Whittington 2014; Hall et al. 2015; Young and Hall 2015; 

Furlong et al. 2016). Realizing this complexity, a growing body of researchers have begun 

questioning whether the traditional techniques for the appraisal of water infrastructure 

projects, such as cost benefit analysis, cost efficiency analysis, multi-criteria assessment, are 

still adequate to meet the goals of the decision-makers (Fankhauser et al. 1999a; Lempert 

2002; Ranger et al. 2013; Dittrich et al. 2016; Furlong et al. 2016). A fundamental input to 

these planning techniques is the prior assumptions on how the future may unfold over the 

course of the planning period, expressed as by way of probability distributions or a most-

likely estimate of the future world (Hallegatte 2009; Jeuland and Whittington 2014; Hall et al. 

2015; Maier et al. 2016). These assumptions about the future are then used within an 

expected utility framework to rank multiple planning options with respect to one or more 

objectives (Keeney et al. 1982; Dittrich et al. 2016; Furlong et al. 2016). Anthropogenic 

climate change complicates this process by altering many climate statistics, including rainfall 

patterns, frequency of storms, duration of heat waves and others (Strzepek et al. 2010; 

Shongwe et al. 2011; IPCC 2013a; Kunkel et al. 2013), and thereby reduces our ability to 
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identify one or few most-likely futures for decision analysis. This necessitates new, improved 

analytical approaches for planning under deep uncertainty, i.e., conditions where the possible 

range of future conditions or the prior probabilities of those conditions are highly subjective 

if not unknown (Lempert 2003; Walker et al. 2013). 

A number of analytical frameworks have emerged over the past few decades to deal 

with deeply uncertain conditions, including (many-objective) robust decision making (RDM) 

(Lempert et al. 2006; Kasprzyk et al. 2013), info-gap theory (IGT) (Ben-Haim 2006), 

dynamic adaptive policy pathways (DAPP) (Haasnoot et al. 2013) and decision scaling 

(Brown et al. 2012). A distinguishing feature of these new frameworks is that they envision 

future through many possible states of the world (SOWs), without focusing on whether they 

are likely to occur (Maier et al. 2016). These frameworks then use simulation or optimization 

models to seek for planning alternatives that are robust, i.e. can function effectively over a 

wide range of possible SOWs (Herman et al. 2015). The way that robustness is 

operationalized changes from one framework to another, for example, in RDM and decision 

scaling, it is the ability to achieve low regret  or satisfactory performance (Lempert and 

Collins 2007; Whateley et al. 2014); in IGT, it the distance from an expected future state 

before the system fails to perform adequately (Ben-Haim 2006); and in DAPP, it is a 

measure of flexibility to adapt to changing conditions over time (Haasnoot et al. 2013; 

Walker et al. 2013). However, independent of the framework being applied, a good 

representation of the uncertainty space through the SOWs is essential, to reveal the true 

range of vulnerabilities that may be faced in the future, including those associated with 

surprise conditions or so-called “Black Swans” (Taleb 2007).  

An ongoing debate in the field of planning under deep uncertainty is how to make 

the best use of highly uncertain but potentially useful sources of information about the 



 

44 
 

future. Examples to these include downscaled Global Circulation Model (GCM) projections 

of future climate change, extrapolated trends from observed environmental conditions, 

expert elicitations or stakeholder opinions about future living standards and many others, 

which we will simply refer as "belief information" in this paper. There is now a large 

consensus on that belief information shall not be seen as "predictive scenario machines" to 

describe the plausible range of futures (Walker et al. 2013; Wise et al. 2014; Herman et al. 

2015; Dittrich et al. 2016). Such use, often referred as “top-down” only spans a very narrow 

and potentially biased fraction of the true range of possible futures (Lempert 2003; Weaver 

et al. 2013), and results in a cascading pyramid of epistemic (knowledge-related) and/or 

stochastic uncertainties from one modeling step to another (Giorgi 2005; Wilby and Dessai 

2010). An alternative to the top-down use of belief information is to employ them after the 

vulnerability analysis to assess the occurrence likelihood of future conditions. Decision 

scaling (Brown et al. 2012) demonstrates how climate information (e.g., GCM projections) 

can be used in this way. In brief, decision scaling uses stochastic weather generators to 

obtain a broad range of SOWs representing both natural climate variability and future 

climate change. Outcomes of those SOWs are then explored through simulation models in 

an attempt to reveal vulnerabilities or conditions that may lead to poor or unacceptable 

results. Climate information is incorporated after this phase, to assess whether those 

problematic climate conditions identified are likely to occur, and to rank the level of concern 

or priority for each vulnerability. This approach of linking climate information to 

robustness-based performance have been demonstrated over an increasing number of 

studies (Moody and Brown 2013; Turner et al. 2014; Steinschneider et al. 2015b). However, 

to date, incorporation of multiple beliefs, including climate and nonclimate information has 
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not been investigated. Our goal in this work is to develop a generalized probabilistic 

framework for improving the use of belief information in robustness-based planning.  

Using multiple beliefs in the form of probabilistic information results in additional 

challenges over the baseline robustness-based planning framework. First, many types of 

social, economic, and environmental factors relevant for water planning decisions are not 

isolated, but rather conditionally dependent (Pahl-Wostl 2007a; Döll et al. 2014). Examples 

include climate or price elasticity of household water demand (Franczyk and Chang 2009; 

Schleich and Hillenbrand 2009), and effects of climate variability on regional economic 

development (Hurd et al. 2004; Brown et al. 2011a; Olmstead 2014), and climate change 

effects on land-use patterns (Syvitski 2003; Vörösmarty et al. 2003). To account for the co-

dependencies, the beliefs about the probability distributions of those variables need to be 

expressed in conditional forms. However, this is difficult since the belief information about 

the variables are associated with different knowledge domains (such as hydrology, ecology, 

economics, public policy or others), and are available in many different forms (such as 

model-driven time-series data, point-estimate projections, qualitative survey results, or 

simply expert judgments). Thereby, establishing conditional probability distributions or 

blending those belief information to obtain a joint probability distribution of future 

conditions may be very difficult without a formal framework. 

To address these points, we incorporate Bayesian network concepts to robustness-

based planning. Bayesian networks (BNs), or Bayesian Belief Networks is a statistical 

modeling approach used for knowledge representation and reasoning across many fields 

from environmental science to medical research (Pearl 1988; Newton 2010; Aguilera et al. 

2011). BNs provide a graphical network representation of a system of variables, in which the 

degree of belief on each variable is represented by conditional probability distributions. This 
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belief information is propagated based on the network structure for obtaining a posterior 

joint probability distribution of the system (Jensen and Nielsen 2007). From a water planning 

perspective, the use of BNs provides several well-established advantages. First, BNs are very 

flexible regarding data requirements and processing, allowing them to combine knowledge of 

different accuracies and sources in highly complex and multidisciplinary problems (Getoor et 

al. 2004). They can provide a transparent, participatory modeling interface, where 

information from multiple stakeholders or experts can be incorporated in the form of 

subjective beliefs or elicitations, and easily revised when needed (Kumar et al. 2008; Newton 

2010; Kjaerulff and Anders 2013). They can handle situations where underlying data is 

missing or too sparse, through learning algorithms that iteratively provide maximum 

likelihood estimates of the parameters given the data and model structure (Uusitalo 2007). 

Finally, they can be easily incorporated to traditional decision analysis frameworks such as 

cost-benefit analysis (Lee et al. 2009; Åström et al. 2014), or used within dynamic contexts 

for making probabilistic inference over multiple time stages (Yet et al. 2016).   

The use of BNs in water planning problems has a relatively long history and is still 

developing (Dawsey et al. 2006; Chan et al. 2010; Aguilera et al. 2011; Aller and Waller 

2011). Kuikka and Varis (1997) shows one of the first applications of this kind by using 

expert knowledge to assess climate change effects on watershed level planning. Others used 

BNs for planning urban infrastructures (Noi and Nitivattananon 2015), irrigation systems 

(Batchelor and Cain 1999; Henriksen and Barlebo 2008), environmental flow allocations 

(Pollino et al. 2007; Stewart-Koster et al. 2010; Chan et al. 2012) or sea level rise adaptation 

(Catenacci et al. 2013) and flood risk reduction (Noi and Nitivattananon 2015). Some studies 

discuss the integration of BNs with other decision-analysis tools and modeling techniques in 

water planning or similar fields. Castelletti and Soncini-Sessa (2007) states that BNs can be 
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used to model an entire water resources system, or a specific component (e.g., hydrology, 

reservoir operations, water quality). They conclude that BNs can be particularly useful when 

there is no theory to support quantitative model formulations, in contrast to mechanistic 

models that quantify well-established theories about internal system processes. In this 

context, BNs have been integrated to rainfall-runoff (Dyer et al. 2014), groundwater 

(Martínez-Santos et al. 2010; Molina 2013), and water quality models (Mesbah et al. 2009). 

Aside from the coupling of BNs with mechanistic models, several studies show the use of 

BNs within decision support systems. Bertone et al. (2015) developed a risk assessment tool 

for managing the effects of extreme weather events, in which they use a BN to estimate the 

probability of meeting water quality targets, and a system dynamics model to assess the 

effectiveness of policy responses. Kocabas and (Dragicevic 2013) used a BN to obtain 

decision rules related to land-use management choices of individuals, which are then used in 

an agent-based modeling framework to simulate land-use dynamics. However, none of the 

past studies use BNs as part of a robust decision-making framework, in which, they are only 

used to provide probabilistic information about the future vulnerabilities.    

Our framework, which we refer as "Bayesian Networks Decision Scaling" (BNDS) 

decouples the processes of vulnerability assessment from subjective inference. In our 

approach, we begin by generating a wide range of futures SOWs using efficient sampling 

techniques. Next, we reveal the vulnerability space over those SOWs to stakeholder-defined 

performance criteria through mechanistic system models. After this phase, we use a BN 

model for making probabilistic inference about the vulnerabilities identified through the use 

of multiple belief information. The outcome from the BN model is the posterior joint 

probability distribution function of future outcomes, which is then used for calculating and 

comparing the robustness of different planning alternatives. Uncertainty and disagreement 
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about future beliefs are addressed by the separation of vulnerability exploration, allowing the 

use of multiple and conflicting beliefs as a sensitivity factor. The remainder of this paper is 

structured accordingly. In Section 2, we provide a brief background on fundamental BN 

concepts. In Section 3, we describe the proposed framework in detail, with a focus on the 

linkages between vulnerability analysis and BN-based probabilistic inference. In Section 4, 

we illustrate the framework over a water supply design study in Mombasa, Kenya. Section 5 

contains the results and the discussion of the case study application. Section 6 presents the 

conclusions.  

3.3. Bayesian Networks 

Stated simply, a BN is a multivariate statistical model that consists of a graphical 

network structure and a set of probability distributions corresponding to that structure 

(Figure 3.1). The graphical component of BNs, referred as a directed acyclic graph, is 

composed of nodes representing variables and arrows representing the direction of 

probabilistic relationships among those variables. The network structure is often defined 

based on the causal interpretation of the variables, although causality is not a strict 

requirement. BNs may consist of categorical (e.g., low, medium, high), Boolean (yes or no), 

discrete, continuous or mixed variables, with associated probability distributions simply 

referred as node probability tables (NPTs). A node is called as a child if it has an in-going 

arrow, and as a parent, if it has an outgoing arrow. The root nodes, which do not have any 

parents, are associated with marginal probability distributions that represent prior knowledge 

on those variables. All non-root nodes are associated with conditional probability 

distributions, specifying the probability of a variable taking a value given the values of its 

parent nodes. 
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 A fundamental feature of BNs is the conditional independence or the absence of a 

connecting arrow between any two nodes. Conditional independence simplifies the modeling 

process by allowing NPTs to be generated "locally" that is by only considering the 

immediate parent nodes of the node being quantified (Kjaerulff and Anders 2013). Based on 

this property, the joint probability distribution of a BN with n discrete random variables 𝐸𝐸 =

{𝑋𝑋1, … ,𝑋𝑋𝑁𝑁}, can be expressed using the chain rule as the product of local probability 

distributions:  

𝑃𝑃(𝐸𝐸) = �𝑃𝑃(𝑥𝑥𝑖𝑖| 𝑝𝑝𝑎𝑎(𝑋𝑋𝑖𝑖))
𝑛𝑛

𝑖𝑖

 

Equation 3.1 

where 𝑝𝑝𝑎𝑎(𝑋𝑋𝑖𝑖) defines the parent nodes of 𝑋𝑋𝑖𝑖; and 𝑃𝑃(𝑥𝑥𝑖𝑖| 𝑝𝑝𝑎𝑎(𝑋𝑋𝑖𝑖) is the conditional 

probability of 𝑋𝑋𝑖𝑖 given the values of its parent nodes. Once the network structure is 

generated, belief updating can be performed using Bayes rule (3.2), by obtaining the 

posterior probabilities of the nodes in the network when values of one or more nodes are 

observed and entered as evidence:  

𝑃𝑃(𝑋𝑋|𝑟𝑟)  ∝ 𝑃𝑃(𝑟𝑟|𝑋𝑋)𝑃𝑃(𝑋𝑋) 
              Equation 3.2                                                                                               

where, 𝑃𝑃(𝑋𝑋) is the prior knowledge about the variable X, 𝑃𝑃(𝑟𝑟|𝑋𝑋) is the likelihood 

information on 𝑋𝑋 given the evidence 𝑟𝑟, and 𝑃𝑃(𝑋𝑋|𝑟𝑟) is the posterior probability distribution. 

In 3.2, 𝑟𝑟 may represent hard evidence specifying a definite finding of the uncertain variable, 

or soft evidence specifying a new probability distribution of the random variable. In the case 

of hard evidence, belief updating may be implemented by instantiation of the variable 𝑋𝑋 to 
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its finding 𝑥𝑥𝑖𝑖 , so that 𝑃𝑃(𝑋𝑋 = 𝑥𝑥𝑖𝑖)  = 1, whereas, in the latter case of soft evidence, the prior 

probability distribution of X can be directly replaced by the new soft evidence, 𝑅𝑅(𝑋𝑋). Belief 

updating with soft evidence is more relevant in the context of long-term water planning, as 

information about the future conditions never indicates a certainty, but rather (optimistically) 

a better belief about how the future conditions may unfold.  

 
Figure 3.1 Conceptual representation of a Bayesian network with five nodes 

3.4. Bayesian Networks Decision Scaling (BNDS)  

The proposed framework consists of three phases: problem definition, vulnerability 

analysis, and bottom-up inference respectively (Figure 3.2). The process begins with a typical 

stakeholder-driven process to define the main planning problem, including the planning 

objectives and problem statement, decision alternatives, performance measures and criteria, 

and major uncertainties. Since this is the first step in most analytical planning frameworks, 
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readers can refer to other sources for details (Castelletti and Soncini-Sessa 2006; Black et al. 

2014). The second phase of vulnerability analysis uses simulation-based mechanistic models 

to reveal the domain of conditions that result in poor or unacceptable performance under 

each decision alternative. In the third phase of bottom-up inference, a BN is used to evaluate 

the occurrence likelihoods of the vulnerabilities identified. Finally, the revealed 

vulnerabilities and their occurrence likelihoods are summarized for each decision alternative 

for a risk-based robustness analysis. On Figure 3.2, of particular note is the integration of the 

second and third phases through a BN model, defined over the same pre-generated set of 

SOWs. The components and steps in the second and third phases are discussed in more 

detail below, while an application of the entire framework is presented for the case study in 

Section 3.4. 

 
Figure 3.2 Conceptual flow chart of Bayesian Networks Decision Scaling (BNDS) 
representing the three main phases. On the flow chart, rectangles show main processes, 
squashed rectangles show various models, and parallelograms represent information inputs.     
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3.4.1. Vulnerability analysis 

Vulnerability analysis begins with the process of generating a sufficiently large size of 

SOWs for providing a good coverage of conditions that may occur, given by the set  Ω = 

{𝜃𝜃1, … , 𝜃𝜃𝑛𝑛}. In this process, a SOW is a particular realization of 𝑚𝑚 factors {𝑋𝑋1,.., 𝑋𝑋𝑚𝑚} that 

represent key uncertainties related to the planning problem. These factors can be determined 

through stakeholder workshops and may include first-order or higher-order statistics of 

climate variables such as mean, variance, skewness, etc., and natural climate variability, life 

span of the civil works, construction delays, operating and maintenance costs, the economic 

value of the services provided by the infrastructure or similar. The domain of SOWs is 

generated by stochastic sampling algorithms based on the nature of the uncertain factor - 

whether if it represents a scalar or a time-series data, such as historical climate variability 

(Figure 3.2). The samples of scalar variables are generated by Latin Hypercube Sampling 

(LHS), an efficient stratified Monte Carlo algorithm for higher dimensional data (McKay et 

al. 1979). Briefly, LHS is applied by first discretizing each factor into n equal intervals, and 

then randomly selecting an interval from each factor without replacement. Samples of 

historical variability are generated by a stochastic weather generator that generates new 

random climate sequences while preserving observed climate statistics such as mean, 

variance or low-frequency variability (Steinschneider and Brown 2013). 

The outcomes under each planning alternative 𝑑𝑑𝑘𝑘 and future state 𝜃𝜃𝑖𝑖 are then 

explored using mechanistic simulation models (such as hydrology, water system operations, 

ecosystem, etc.), resulting in output {𝑦𝑦𝑖𝑖,𝑘𝑘,𝜃𝜃𝑖𝑖} (Figure 3.2). Simulated performance can be 

then expressed regarding stakeholder-based vulnerabilities by transforming 𝑦𝑦𝑖𝑖,𝑘𝑘 into a binary 

variable for distinguishing acceptable (satisfactory) and not acceptable (failing) performances 

(Whateley et al. 2014). This process, also called as a multidimensional stress test, aims to find 
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the factors that the system is most sensitive to and reveal the range of conditions associated 

with poor or failing performances. At this stage, note that no probabilistic inference is made 

on the vulnerabilities, i.e., whether those underlying conditions are likely or not likely to 

occur.  

3.4.2. Bottom-up inference 

The purpose of this phase is to place a posterior PDF over the vulnerability space to 

identify and prioritize underlying conditions that are more likely to occur than others. This 

posterior PDF, 𝑃𝑃(𝑌𝑌) is obtained from a BN model describing the knowledge domain of 

planning problem (Figure 3.2). The BN model includes 𝑚𝑚 random nodes representing all 

climate and non-climate variables used in the vulnerability analysis (𝑋𝑋1,.., 𝑋𝑋𝑚𝑚}. Also, each of 

these nodes is discretized into n intervals consistent with the LHS scheme (Section 3.1). This 

consistency allows BN model to propagate a posterior probability value for every SOW, i.e., 

𝑃𝑃(𝜃𝜃𝑖𝑖)  =  𝑃𝑃(𝑋𝑋1,𝑖𝑖,.., 𝑋𝑋𝑚𝑚,𝑖𝑖), 𝑖𝑖 = 1, …𝑛𝑛. Note that the relationship between a future state 𝜃𝜃𝑖𝑖 

and its outcome contingent on a planning alternative 𝑑𝑑𝑘𝑘, 𝑓𝑓(𝑦𝑦𝑖𝑖,𝑘𝑘, 𝜃𝜃𝑖𝑖) is obtained from the 

integrated mechanistic models, P(𝑦𝑦𝑖𝑖,𝑘𝑘) = P(𝜃𝜃𝑖𝑖). Thereby, the joint probability distribution 

𝑃𝑃(𝑌𝑌) obtained from the BN can be directly linked to the vulnerability space.  

One of the main challenges in BN development is populating the NPT of each 

variable. Possible sources of information to generate NPTs typically include empirical 

evidence or data, outputs of empirical or mechanistic models, expert knowledge or 

stakeholder consultations (Aller and Waller 2011). In the context of water planning, many 

examples are demonstrating how NPTs can be generated from observed data and expert 

knowledge (Batchelor and Cain 1999), from stakeholder workshops or one on one 

interviews (Borsuk et al. 2001; Richards et al. 2013). When multiple belief information about 
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a single variable exists, this information can be combined through linear information pools 

(O’Hagan et al. 2006). Learning algorithms can also be used to encode data or expertise into 

NPTs for problems with complex node-link networks such as NoisyOR (Fenton et al. 2006) 

or Expectation Maximization (Uusitalo 2007). For this work, we use a relatively simple, two-

step approach for NPT generation. First, for each variable, we define a truncated Gaussian 

distribution,  𝑃𝑃(𝑋𝑋𝑖𝑖) ~ 𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑀𝑀(𝜇𝜇,  𝜎𝜎2, 𝑎𝑎, 𝑏𝑏), in which the parameters mean 𝜇𝜇, standard 

deviation  𝜎𝜎2, and the lower/upper bounds 𝑎𝑎, 𝑏𝑏 are obtained or extracted from belief 

information. This distribution is then used to obtain the normalized probability weights for 

each of the n discrete variable intervals. For the non-root nodes, we define selected 

parameters conditional on their parent node values, e.g., 𝑃𝑃(𝑋𝑋𝑗𝑗) ~ 𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑀𝑀(𝜇𝜇 =

 𝑓𝑓(𝑝𝑝𝑎𝑎(𝑋𝑋𝑗𝑗),  𝜎𝜎2 = 𝑟𝑟(𝑝𝑝𝑎𝑎(𝑋𝑋𝑗𝑗)),𝑎𝑎 , 𝑏𝑏). 

Using BN, the bottom-up inference is made by propagating the joint probability 

weight of each future state 𝑃𝑃(𝜃𝜃𝑖𝑖), 𝑖𝑖 = 1, …𝑛𝑛 by the chain rule (Equation 3.1). Note that the 

process described here does not sample future states or vulnerabilities, but only seeks how 

plausible those vulnerable conditions are. Thereby, it does not raise the risk of overlooking 

vulnerabilities that were believed, a priori, to be unlikely. The results from bottom-up 

inference only play a role in defining the risks, which is traditionally defined as the product 

of an outcome and its occurrence likelihood. This type of use of BNs is different than the 

common use of BNs, where BNs are used to describe the entire set of relationships in the 

system. One side benefit of our approach is that the BN model, in this case, does not require 

rigorous model validation since it does not attempt to replace results given by mechanistic 

models.   
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3.5. Application of the BNDS framework 

3.5.1. Description of study  

This work focuses on the engineering design of the Mwache Dam located in 

Mombasa located about 22 km away from Mombasa in the Coastal Province of Kenya 

(Figure 3.3). Upon completion, the Mwache Dam is expected to provide an additional supply 

of about 80 Mm3 per year to the region, of which 80% will be used for augmenting 

Mombasa’s domestic supply. The remaining supply will be used to support irrigated 

agriculture in Kwale County and maintaining ecosystem health downstream of the reservoir. 

Estimated water deficits in the greater Mombasa region correspond to as high as 60% of the 

total demand of 130 Mm3 per year, which is expected to increase with socioeconomic 

growth (Tahal 2013). The Mwache River is the only stream feeding into the proposed dam, 

with a catchment area of about 2,250 square kilometers.   

       
Figure 3.3 Coastal Kenya and the site of the proposed Mwache Dam 
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The analysis consists of assessing the robustness of four design capacity alternatives, 

with gross volumes of 80, 100, 120, and 140 Mm3. Estimated present value costs of those 

alternatives are 75, 89, 100, and 109 M USD respectively (Groves et al., 2015). Before the 

analysis, a project inception workshop was performed in August 2015, to define the main 

features of the study, including the planning objectives, performance metrics, and key 

uncertainties are defined during the project inception workshop. The inception workshop 

brought together a diverse group of stakeholders from the Water Resources Management 

Authority, Coastal Water Services Board, Coastal County representatives, and local academic 

institutions. Based on this workshop, the target population for the reservoir is limited to 

Mombasa's Mvita, Kauni, and Changwamwe districts, with an estimated demand level of 

about 38 Mm3 per year in 2015, which is expected to increase to 65-105 Mm3 in the year 

2035. Water infrastructure performance is expressed based on the metrics of volumetric 

reliability and NPV of the project. Volumetric reliability metric is defined as the volume of 

water supplied divided by the total target demand over the analysis period (Hashimoto et al. 

1982). The latter metric of NPV is obtained from the sum of discounted benefits from the 

project minus the capital investments costs. For the evaluation, the project lifetime is 

assumed to be 50 years.  

The key climate and nonclimate uncertainties for the project were determined during 

the project inception workshop. These include natural variability of the climate, gradual 

changes in mean annual temperature (°C) and precipitation (%) due to climate change, 

specific sediment yield* (m3 per km2 - year), annual water demand for municipal and 

                                                 
* Amount of sediment deposited in the reservoir normalized by the upstream area 
contributing sediment. 
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industrial use (Mm3 per year), the price charged for municipal and industrial water use (USD 

per m3), and the annual discount rate (%) respectively (Table 3.1).   

Table 3.1 Key uncertainties of the robustness assessment of the Mwache Dam 

Uncertain factor Short name Range 

Natural climate variability  Nvar New climate sequences conditioned on the 
observed meteorological data (1950-1999) 

Change in long-term mean 
temperature ∆Temp 

No change to 5°C increase over the 
historical mean value (27 °C) 

Change in long-term mean 
precipitation ∆Precip 

50% decrease to 50% increase over the 
historical mean value (845 mm) 

Annual demand for 
municipal and industrial use Demand 60 to 100 Mm3 per year 

Specific sediment yield SSY 150 to 600 m3 per km2- year  

Price charged for municipal 
and industrial water use Price 0.6 to 2.0 USD per m3 

Annual discount rate  DRate 2 to 10% 

3.5.2. Data 

Historical monthly climate data, including precipitation and maximum, minimum 

and mean temperatures were gathered from the Princeton University Terrestrial Hydrology 

Research Group’s gridded meteorological data set from 1950 to 1999 (Sheffield et al. 2006). 

Based on this data, observed annual rainfall showed a marked variability between 1950 and 

1999, ranging from 400 to 1600 mm, with a value of 845 mm on average. Rainfall patterns 

also show the effects of monsoon's, with ‘long-rains' from March to May and ‘short rains' 

from October to December that together correspond to about 70% of the annual rainfall. 

This variability in the observed rainfall can be attributed to the influence of the Inter-

Tropical Convergence Zone (ITCZ) (Vetter et al. 2015).  
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Historical monthly stream flow data for the Mwache River was gathered from an 

existing monitoring study, which was available for near the proposed dam site and for a 

relatively short period of 1978-1990 (Tahal 2013). Observed streamflow during this period 

ranged from 5.4 to 18 Mm3 per month with an average value of 10.4 Mm3. Climate change 

projections over the region of the project site were obtained from the from the World 

Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) 

ensemble (Taylor et al. 2012). Land-cover information and associated specific sediment rates 

for the Mwache Dam’s catchment was obtained from the Sediment management strategy 

study conducted by CES (2014). Volumetric water charges set by Kenya’s Coastal Water 

Services Board are obtained from The Kenya Gazette (2012). 

3.5.3. Vulnerability analysis of the proposed Mwache water supply  

The analysis began with generating 𝑛𝑛 = 1,000 SOWs spanning the range of 

uncertainty over the six key uncertainties (Table 3.1). The samples of natural climate 

variability were obtained from a stochastic weather generator of first order wavelet 

autoregressive model type (Steinschneider and Brown 2013). Using the weather generator, 

𝑛𝑛 = 1,000 50-year monthly mean precipitation and monthly minimum, mean, and 

maximum temperature sequences are generated that match historical mean, variance, low-

frequency precipitation variability of the observed historical period (1950-1999). Samples of 

the other factors besides natural variability was generated using LHS. To eliminate any 

potential correlations among the sampled factors, the sample matrix was reordered by the 

Huntington and Lyrintzist (1998) algorithm. Next, sampled natural variability realizations 

and mean climate changes were combined to obtain 𝑛𝑛 transient climate trajectories. This is 

done by reflecting in each temperature change factor over the associated natural variability 
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sequence as an additive factor that starts from 0°C and linearly increases to the specified 

value (e.g., 3°C) at the end of the simulation period. Similarly, each precipitation change 

value was reflected in the associated natural sequence as a multiplicative factor that starts 

from 100% and linearly increases (or decreases) to the specified value in the final period. 

Overall, the process results in 1,000 unique SOWs describing a wide range of climate and 

socio-economic conditions. 

Vulnerability analysis is then conducted by simulating water system operations under 

each SOW. Monthly streamflow response and reservoir operations for each design 

alternative were simulated through a coupled hydrology – water system operations model 

developed in R (See Appendix A). The outputs from the coupled simulation model were 

then summarized by the stakeholder-defined metrics of volumetric reliability and NPV 

respectively. Due to the relatively small magnitude of difference in results, calculated NPV 

values were transformed to regret. Regret is calculated as the difference in outcome between 

the best possible decision under a given state 𝑇𝑇𝑃𝑃𝐸𝐸(𝑑𝑑∗,𝜃𝜃𝑖𝑖) and the decision that was 

made 𝑇𝑇𝑃𝑃𝐸𝐸(𝑑𝑑,𝜃𝜃𝑖𝑖): 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡(𝑑𝑑,𝜃𝜃𝑖𝑖) =  𝑇𝑇𝑃𝑃𝐸𝐸(𝑑𝑑∗, 𝜃𝜃𝑖𝑖) −  𝑇𝑇𝑃𝑃𝐸𝐸(𝑑𝑑,𝜃𝜃𝑖𝑖) 

Equation 3.3 

Next, most important factors to each metric are determined through a global 

sensitivity analysis. For this purpose, we used the Partial Rank Correlation Coefficient 

(PRCC), which quantifies the monotonic interactions between the model response and an 

input factor, after discounting the effects of all other input factors (Marino et al. 2008).  

Finally, we transformed system performances into binary variables that express 

stakeholder-defined vulnerabilities. This is done by classifying the results either as acceptable 
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or unacceptable based on performance targets specified by the project stakeholders. For 

volumetric reliability, the acceptable level is greater than equal to 95% based on stakeholder 

preference. Therefore the system performance is accepted to be satisfactory over this 

threshold and insufficient or not acceptable below this threshold. Regarding NPV, an 

outcome is defined to be acceptable when the computed regret is less than or equal to 10 M 

USD, and not acceptable when greater. 

3.5.4. Bottom-up inference through BN model 

At this phase, we incorporate belief information about the future climate and 

nonclimate conditions to find the occurrence likelihoods of the vulnerabilities identified in 

Section 4.3. For this purpose, we developed a BN model and then used this model for 

propagating a posterior joint probability distribution.   

The BN of the Mwache water supply planning problem consists of eight random 

nodes (Figure 3.4-b). The root nodes of the BN, which are natural climate variability (NVar), 

mean climate changes (MeanCC), target population level (Pop), economic development level 

(Dev), price charged for municipal water use (Price), and economic discount rate (DRate) are 

the main entry points for belief information. The BN includes two intermediate nodes of 

specific sediment yield (SSY) and per capita municipal water demand (PCD) that are 

represented by conditional probability distributions. 

Within the BN (Figure 3.4), all random nodes except for population and economic 

development are discretized into 𝑛𝑛 equal intervals in agreement with the LHS scheme 

applied in vulnerability analysis (Section 3.4.3). Population node is represented by three 

discrete levels, corresponding to values of 1.6 M (low), 2 M (medium), and 3 M (high), that 

span the range of population projections by Coastal Kenya's Water Resources Management 
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Authority in the year 2035 (CES 2014). The economic development node (Dev) also has 

three categorical levels (low, medium, and high) to indicate a qualitative belief on future 

socio-economic growth over the course of project lifetime.  

The NPTs for the intermediate nodes (SSY and PCD) are defined through truncated 

Gaussian distributions, in which the parameters µ and σ² are expressed as functions of their 

parental combinations. The probability distribution of SSY is assumed to be conditional on 

future economic development through land-use practices based on previous studies 

conducted by CES (2014). Based on the historical studies carried out at catchment level, it is 

assumed that a higher economic development will result in more urbanization, which in turn 

will increase SSY at the upstream of the project site (see Appendix B). The conditional 

relationship 𝑃𝑃(𝑆𝑆𝑆𝑆𝑌𝑌|𝐷𝐷𝑟𝑟𝐷𝐷) is given by: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑀𝑀(𝜇𝜇, 𝜎𝜎2 = 𝜇𝜇/3,𝑎𝑎 =  200, 𝑏𝑏 = 600)                                                                            

Equation 3.4 

where 𝜇𝜇 gets the values of 275, 325, and 35 m3 per km2 – year under low, medium, 

and high economic development respectively. In a similar way, the probability distribution of 

PCD is defined to be conditionally on three factors: economic development, the price 

charged for municipal water use, and mean annual temperature. For the Coastal Kenya 

region, it is assumed a higher per capita demand is more likely under higher economic 

development. Besides, increasing mean annual temperatures is assumed to increase per 

capita water demand, whereas increasing water pricing will decrease. The conditional 

distribution 𝑃𝑃(𝑃𝑃𝐶𝐶𝐷𝐷|𝐷𝐷𝑟𝑟𝐷𝐷, MeanCC,𝑃𝑃𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟) is given by: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑀𝑀(𝜇𝜇 = 𝑓𝑓(𝐷𝐷𝑟𝑟𝐷𝐷,𝑀𝑀𝑟𝑟𝑎𝑎𝑛𝑛𝐶𝐶𝐶𝐶,𝑃𝑃𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟),𝜎𝜎2 = 𝜇𝜇/4,𝑎𝑎 = 85, 𝑏𝑏 = 150)                             
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Equation 3.5 

where, 𝑓𝑓(𝐷𝐷𝑟𝑟𝐷𝐷, MeanCC,𝑃𝑃𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟) is a function that gives the mean of the distribution.  

 
Figure 3.4 Illustration of the models used in the robustness analysis of the Mwache system: 
a) water resources simulation models used for vulnerability assessment; b) Bayesian network 
used for probabilistic inference. On Figure a (on the left), rectangles, rounded rectangles, 
and diamonds represent decision variables, mechanistic modeling processes and output 
performance (utility) respectively. On Figure b (on the right), solid circles represent chance 
nodes with probability distribution tables. Dashed circles represent deterministic nodes 

 
Using the BN model, the bottom-up inference is conducted by updating the prior 

probabilities of the root nodes with belief information, and then calculating the joint 

probability distribution of the network over 𝑛𝑛 = 1000 SOWs. For the natural climate 

variability node, a uniform discrete probability distribution is used since each climate 

variability realization is a new random sequence of the historical data.  
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The probability distribution of mean climate changes is set based on climate statistics 

from downscaled multi-model GCM projections. For this process, we used the data from 

the CMIP5 multi-model ensemble from a total of 65 model runs and calculated mean 

climate changes between the future period of 2020-2070 and the historical period of 1950-

200. Computed mean changes were then fitted to a bivariate normal distribution:   

𝑃𝑃(𝑀𝑀𝑟𝑟𝑎𝑎𝑛𝑛𝐶𝐶𝐶𝐶) ~𝑓𝑓(∆𝑇𝑇𝑟𝑟𝑚𝑚𝑝𝑝,∆𝑃𝑃𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑝𝑝)  =  
1

(2𝜋𝜋)𝑘𝑘/2|𝛴𝛴|1/2 𝑟𝑟𝑥𝑥𝑝𝑝[−
1
2

(𝑋𝑋 − 𝜇𝜇)𝑇𝑇𝛴𝛴−1(𝑋𝑋 − 𝜇𝜇)] 

Equation 3.6 

where, 𝜇𝜇 is the means, and Σ is the covariance matrix of the mean annual 

temperature (°C) and precipitation changes (%) respectively (Figure 3.5). The belief 

information on economic development, population, discount rate, and price were set based 

on stakeholder opinion and best expert judgment. For development (Figure 3.5-b),t and 

population (Figure 3.5-c) the highest probability weights were given to medium levels, 

whereas for discount rate (Figure 3.5-d) and price of water (Figure 3.5-e), most likely values 

are set to be as 2% and 1.3 m3 per USD respectively.  

Using the BN, the posterior joint probability weight of each SOW is calculated from 

the chain rule and then normalized so that their sum equals to 1. This process is repeated for 

each engineering-design alternative to obtaining the probability mass function of the 

vulnerabilities under each case. 
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Figure 3.5 Prior probability distributions used for representing belief information in the BN 
model: a) mean climate changes, b) development, c) population, d) Discount rate, e) Price.  
On Figure a, the contour lines show levels of equal probability weights obtained by fitting 
CMIP5 data-points (shown by black dots) to a multivariate Gaussian distribution. The 
intersection of the dashed lines shows the mean value of the distribution.   

3.5.5. Risk-based evaluation of the design alternatives 

Finally, the posterior probability weights obtained from the BN model is used for a 

risk-based preference ranking of the alternatives. This is done by first weighing the binary 

performances with its associated probability weight, and then summing the outcomes to find 

the overall robustness score. The resulting robustness score has a scale from 0 to 1, in which 

1 represents the ideal case with no failure risk, whereas a score of 0 maximum risk.  
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3.6. Results and Discussion 

3.6.1. Performance sensitivity to uncertain factors 

Figure 3.6 shows the relative importance of the uncertain factors based on the 

computed Partial Rank Correlation Coefficient (PRCC) values. Both reliability (Figure 3.6 -a) 

and NPV (Figure 3.6-b) are sensitive to only a fraction of the input factors. For reliability, 

the most important factors are precipitation change (> |0.85|) and demand level (> |0.6|), 

and to a lesser extent sediment flux rate (> |0.10|). In the case of NPV (Figure 3.6 -b), price 

and discount rate (both >| 0.95|) appears as the most important factors followed by 

precipitation (> |0.25|). The variation in the sensitivity analysis results on design capacity is 

negligible; all designs exhibit the sensitivity to the same factors and in the same fraction.  The 

only exception for this is the sensitivity of reliability concerning demand level, for which 

estimated PRCC values ranged from 0.6 to 0.76, with greater sensitivity under smaller design 

capacities, i.e., 80 or 100 Mm3 (Figure 3.6-a).  

 
Figure 3.6 Global sensitivity analyses for the metrics of a) Reliability (%), b) Net Present 
Value (NPV) (%) respectively. Results indicate absolute values of the computed Partial Rank 
Correlation Coefficients (PRCC).  
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3.6.2. Preference with respect to vulnerabilities 

The next step is to use multivariate visual analytics to explore the causes of 

vulnerable conditions. Common data patterns in the multivariate input data were revealed 

using Sankey (alluvial) diagrams. This was done by dividing the uncertainty range of each 

variable into few meaningful categories, and then binning the results from n = 1,000 data 

points accordingly. The binned results were then visualized through a set of alluvia, in which 

the thickness indicates the number of data points in each alluvium.  Figure 3.7 shows the 

Sankey diagram depicts the relationship between reliability and the input variables of annual 

mean precipitation change, annual demand, and specific sediment yield for the selected 

design capacities of 80 Mm3 (a) and 140 Mm3 (b) respectively.  

For the design alternative of 80 Mm3 (Figure 3.7-a), it is seen that about 48% of all 

runs resulted in a reliability value of less than 95%, in which most of these runs are 

associated with low precipitation conditions (35%).  Also, two major alluvium containing 

almost half of all failure runs (17%) are related to low precipitation (50 to 90%) and high 

demand level (80 to 100 Mm3 /year) (Figure 3.7-a).  

For the design capacity of 140 Mm3 (Figure 3.7-b), unacceptable reliability outcomes 

represent 31% of all cases, of which 28% is associated with lower than normal future 

precipitation.  Figure 3.7-b showed that a vast fraction of the failures is associated with lower 

than normal precipitation conditions (25%) and to a lesser extent with high demand 

conditions (21%) (Figure 3.7-b).   
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Figure 3.7 Sankey diagrams depicting vulnerabilities concerning the reliability metric for the 
design capacities of (a) 80 Mm3, and b) 140 Mm3 respectively. The results are shown by 
alluvia spanning across all the axes and indicated bins. Alluvia in red and blue represent 
outcomes that fail to meet the desired reliability threshold (95%). Alluvia thickness increase 
with the number of observations in each category. Values indicated on the left of the plots 
depicts the fraction of failing data points in each alluvium over all data points.  

 
Figure 3.8 depicts vulnerability trade-offs concerning the reliability and NPV-regret 

metrics. On Figure 3.8, it is seen that the smaller alternatives (80 and 100 Mm3) result in no 

or low NPV-regret over a large fraction of futures, meanwhile exhibiting relatively very high 

regret values (>100 M.USD) over a small number of futures. For the larger design sizes of 

120 and 140 Mm3, the NPV-regret values are more clustered within the 5-25 M.USD range. 

The relationship between reliability and design capacity size is more monotonic, as larger 
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alternatives always outperform the smaller (Figure 3.8). Figure 3.8-b summarizes the 

vulnerability of the design options with respect to the critical performance thresholds set for 

each metric. The summary figure shows that the preference ranking is from the smallest to 

largest (80 Mm3 to 140 Mm3) with respect to NPV-regret, whereas largest to smallest for 

reliability.  

Note that the results considered in this section assess vulnerability over a wide range 

of SOWs generated through stochastic sampling, including conditions that are extremely less 

likely to happen. Thereby the occurrence likelihoods of the impacts need to be also 

considered to explore the plausible risks which will be discussed in the following section.   
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Figure 3.8 Vulnerability analysis of design alternatives: a) Individual results under each design 
alternative with respect to NPV-regret (x-axes) and reliability (y-axes), b) Summary statistics 
indicating the percentage of not acceptable outcomes under each metric. On Figure a, 
arrows indicate the direction of preference for each metric. The star symbol indicates the 
ideal solution. The shaded regions represent not acceptable conditions (e.g., when 
performance criteria are not met).  
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3.6.3. Design preferences with respect to risks 

The results in this section consider future risks of alternative by weighting the 

identified range of vulnerabilities with the associated joint occurrence likelihoods obtained 

from the BN model. Figure 9 shows a variation of Sankey diagrams (Figure 7), in which time 

the thickness of each alluvium is scaled based on the underlying cumulative density of the 

data points. When occurrence likelihoods are considered, the relative importance of 

unacceptable futures is slightly less for the design size of 80 Mm3 (Figure 9-a), and 

substantially less for 140 Mm3 (Figure 9 -b). Note that in Figure 9, the low precipitation bin 

(50-90%) that is associated with most the failure outcomes has a very small value of marginal 

probability, reflecting the effects of GCM-driven belief information about the future climate.   
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Figure 3.9 Sankey diagrams depicting the weighted vulnerabilities with respect to the 
reliability metric for the design capacities of (a) 80 Mm3, and b) 140 Mm3 respectively. The 
results are shown by alluvia spanning across all the axes and indicated bins. Alluvia in red 
and blue colors represent outcomes that fail to meet the desired reliability threshold (95%). 
Alluvia thickness increase with the cumulative likelihood of the data points. Values indicated 
on the left of the plots depicts the cumulative probability of each alluvium. 

 

Finally, Figure 3.10 depicts the robustness trade-offs among the four engineering 

design alternatives under two distinct probabilistic assumptions: a) under uniform weighting, 

i.e., without the BN-based posterior distribution assigned to SOWs reflecting available 

information and b) weighting based on the posterior joint likelihoods obtained from the BN 

model. This represents a comparison of alternative beliefs about future conditions, one 

noninformative and one using available information and expert opinion. Under both 
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weighting schemes, robustness with respect to reliability increases with increasing storage 

capacity, with the most robust option being 140 Mm3 with a robustness values 0.7 under 

uniform weighting (Figure 3.10-left panel), and 0.92 under posterior weighting (Figure 3.10-

right panel). In contrast, smaller design alternatives are preferable with respect to the 

robustness of NPV-regret, with the smallest design size (80 Mm3) giving an RS value of 0.8 

under uniform weighting (Figure 3.10-left panel), and 0.55 (Figure 3.10-right panel) 

respectively. This implies that the weighting scheme did not affect the preference ranking, 

however, changed the scaling. Under uniform weighting, NPV-regret range substantially 

wider (0.2 – 0.8), compared to the robustness values under posterior weighting (0.4 to 0.6).  

Overall, as two decision-criteria points the two extreme design choices (i.e., 140 Mm3 

with respect to reliability, and 80 Mm3 with respect to NPV-regret), the final judgment can 

be made based on the trade-offs curves on Figure 3.10, depending on the relative 

importance of each criterion. However, based on Figure 3.10, one can argue the larger 

design alternatives (120 or 140 Mm3) are more favorable under the posterior scheme due to 

the “flatness” of the trade-off curve. That is, with only a marginal loss in economic 

robustness (about 0.1 units), reliability robustness can be increased up to 0.3 units. 

 
Figure 3.10 Robustness of the design alternatives under uniform likelihood (left), and under 
posterior probabilities calculated from the BN-model model (right) 
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3.6.4. Design preferences under climate uncertainty 

To evaluate the robustness of the alternatives further, an additional analysis was 

conducted by only taking into account climate uncertainties, i.e., natural climate variability 

and mean annual temperature and precipitation changes. To do this, all non-climate factors 

were set to their most likely estimates, in which the price is 1.3 USD per m3, annual demand 

level is 80 Mm3, and the discount rate is 2%, and specific sediment yield is 325 m3 per km2 - 

year respectively. For the climate variables, the same 𝑛𝑛 =  1000 samples were preserved. 

The robustness of the alternatives were then calculated under the uniform and BN-weighted 

case, using the same performance metrics and the same method described in Section 4. 

Figure 3.11 showed the trade-offs under the case of uniform probabilities (a) and 

BN-weighted case (b) when only climate uncertainties were taken into account. The results 

indicate that the smallest design alternative is no longer the most robust choice with respect 

to NPV-regret metric in comparison to the case under full uncertainty analysis (Figure 10). 

Another finding is that the weighting scheme applied to the results does not affect the 

preference ranking, as 100 and 120 Mm3 design capacities appear to be the most robust 

choices with respect to the NPV-regret and reliability metrics respectively (Figure 11). 

However, it is seen that robustness with respect to reliability is higher in the BN-weighted 

case (about from 0.70 to 0.95) in comparison to uniform weighting (0.55 to 0.70), which is 

similar to the findings on Figure 3.10. 
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Figure 3.11 Robustness of the design alternatives under uniform likelihood (left), and under 
posterior probabilities calculated from the BN-model model (right) when only climate 
uncertainties are considered. 

3.6.5. Identifying ex-post scenarios through data-mining 

This section demonstrates the use of the Patient Rule Induction Method (PRIM), a 

data-mining algorithm as a complementary scenario analysis tool to the BNDS framework 

described earlier. Stated simply, PRIM seeks for data clusters within the uncertainty space 

that result in undesirable values (failures) for the response variable (Friedman and Fisher 

1999). These data clusters, which are typically characterized by only a small number of 

uncertain factors, are used define “policy-relevant” scenarios to communicate vulnerabilities 

to decision makers (Groves and Lempert 2007; Bryant and Lempert 2010). The clusters 

identified by the PRIM are generally described by three major features: i) coverage, the 

percentage of failure cases contained within scenario, ii) density, the proportion of cases 

within the scenarios that result in a failure; and iii) interpretability, indicating how easily 

decision-makers can understand the information from the scenario (Bryant and Lempert 

2010). Currently, PRIM is a commonly used scenario discovery tool in RDM, along with 

other rule induction methods such as Classification and Regression Trees (Hamarat et al. 

2013). 
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In this work, we use a modified version of the PRIM algorithm to make use of the 

probabilistic information provided by the Bayesian networks, and more precisely to seek for 

“high risk” regions, rather than the conventional case of “high failure” regions. The 

motivation for this approach is that most decisions-makers dealing with long-term problems 

are interested in thinking regarding risks (the product of vulnerability and its occurrence 

likelihood), rather than only regarding vulnerabilities. Since the BN approach introduced 

earlier in this chapter intends to propagate a joint PDF of the vulnerabilities, a risk-based ex-

post scenario analysis can be easily integrated into the framework. Below we give a brief 

description of the PRIM, along with the proposed modification. 

3.6.5.1 PRIM method  

This section provides a brief overview of the PRIM methodology from a 

vulnerability analysis perspective, and more in-depth discussion can be found in other 

sources (Lempert et al. 2008; Bryant and Lempert 2010; Polonik and Wang 2010). Suppose 

that we have a simulation model 𝑦𝑦 =  𝑓𝑓(𝑥𝑥) that defines an outcome variable 𝑌𝑌 over an m-

dimensional input variables space 𝑥𝑥𝑗𝑗 ,  𝑗𝑗 = 1, … ,𝑚𝑚, where each variable is defined within the 

specified lower and upper bounds 𝑙𝑙𝑏𝑏𝑗𝑗 ≤  𝑥𝑥𝑗𝑗 ≤ 𝑢𝑢𝑏𝑏𝑗𝑗 . Also suppose that 𝑌𝑌 is a binary variable 

and gets a value of 0 when the outcome is satisfactory or acceptable and 1 when it is not 

acceptable, with respect to a performance criteria 𝑌𝑌𝑇𝑇: 

𝑦𝑦 =  �
0,   𝑦𝑦 =  𝑓𝑓(𝑥𝑥)  >  𝑌𝑌𝑇𝑇 
1,   𝑦𝑦 =  𝑓𝑓(𝑥𝑥)  ≤  𝑌𝑌𝑇𝑇 

� 

Equation 3.7 
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Our goal is to search for one or few lower dimensional boxes 𝐵𝐵 within the 

uncertainty space that provide a good of explanation of the vulnerabilities 𝑥𝑥|𝑓𝑓(𝑥𝑥)  ≤  𝑌𝑌𝑇𝑇, 

with a high a relatively high mean (𝑦𝑦�): 

𝑦𝑦�  =  
∑ 𝑦𝑦𝑖𝑖|𝑓𝑓(𝑥𝑥)  ≤  𝑌𝑌𝑇𝑇  𝑥𝑥𝑖𝑖∈𝐵𝐵

∑ 1𝑥𝑥𝑖𝑖∈𝐵𝐵
  

Equation 3.8 

For this purpose, we can define a candidate box 𝐵𝐵𝑖𝑖 over by the intersection of input 

variable values: 

𝐵𝐵𝑖𝑖  =  �   𝑙𝑙𝑏𝑏𝑘𝑘
𝑘𝑘∈𝐿𝐿

≤ 𝑥𝑥𝑘𝑘  < 𝑢𝑢𝑏𝑏𝑘𝑘 

Equation 3.9 

where L represents a subset of input variables that define the dimensions of 𝐵𝐵𝑖𝑖. The 

search process is implemented in two iterative steps, a top-down refinement (peeling) and 

bottom-up recursion (pasting) respectively. The top-down refinement or peeling begins with 

the box 𝐵𝐵 that covers the entire uncertainty space. At each step, a small sub-box b∗ is 

removed from the current box, in a way to obtain the highest mean within the remaining 

box B −  b∗. The peeling process is controlled by the 𝛼𝛼 (patience) and β0 (support) 

parameters respectively. The former defines how much data will be peeled off at each step, 

with smaller values demanding greater computational time or “patience”. The support 

parameter β defines the minimum number of cases to be included within the box, so that the 

peeling process stops when this value is reached.  The bottom-up recursion (pasting) is to 

ensure that peeling process results in the best possible scenario. Since the peeling procedure 
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is applied without the knowledge of later peels, a readjustment on the final box may be 

necessary to find the best solution. At the stage of pasting, the size of the final box 

recursively until no further improvement is possible. Once the first box is chosen with the 

sequential process of peeling and pasting, the process can be iterated for finding other boxes 

or scenarios that explain vulnerable outcomes as desired. This is done by removing all the 

data points inside the first box (or prior boxes), and restarting the sequential process of 

peeling and pasting.   

Three basic diagnostic features can be applied to PRIM-defined scenarios for further 

decision-relevant information. These features are coverage, density, and interpretability 

respectively. Coverage (also known as precision or positive predictive value) measures how 

completely the scenarios defined by box captures vulnerabilities. With binary output, 

coverage is simply the ratio of the total number of vulnerable cases in the Box to the total 

number of vulnerabilities: 

𝐶𝐶𝐶𝐶𝐷𝐷𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟 =  
∑ 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖∈𝐵𝐵 | 𝑓𝑓(𝑥𝑥) ≤  𝑌𝑌𝑇𝑇

∑ 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖∈𝛺𝛺 | 𝑓𝑓(𝑥𝑥)  ≤ 𝑌𝑌𝑇𝑇
  

Equation 3.10 

Density measures the purity of the scenarios as is also called “precision” or “positive 

predictive value”. With binary output, density is the fraction of cases within the box that are 

vulnerable relative to the total number of cases within the box, which is represented by (3.8).  

The final feature, interpretability measures the ease of understanding and interpreting 

the results from a prim-generated box from a decision-making perspective. Interpretability is 

commonly expressed by the number of scenarios or boxes generated, and the maximum 

number of restricted dimensions by any box. Lempert et al. (2008) suggest that a scenario set 
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shall include about three or four boxes, each having no more than two or three restricted 

dimensions.  

3.6.5.2 Modified PRIM method 

For the purpose of identifying risk-based ex-post scenarios, we made several changes 

to the original PRIM algorithm shown previously. We start by assuming that the joint 

probability density function (PDF) of possible outcomes 𝜌𝜌(𝑥𝑥) is estimated through experts 

or by other modeling approaches such as Bayesian Networks. The original objective of the 

PRIM implicitly assumes that each outcome is equally likely (3.8). In the new formulation, 

this equation is modified as: 

𝑦𝑦�  =  �
𝜌𝜌(𝑥𝑥𝑖𝑖) {𝑦𝑦𝑖𝑖|𝑓𝑓(𝑥𝑥)  ≤  𝑌𝑌𝑇𝑇}

∑ 𝜌𝜌(𝑥𝑥𝑖𝑖)𝑥𝑥𝑖𝑖∈𝐵𝐵
  

𝑥𝑥𝑖𝑖∈𝐵𝐵

  

Equation 3.11 

In Equation 3.11, incorporation of the 𝜌𝜌(𝑥𝑥) ensures that the search algorithm seeks 

for high density regions by placing a greater weight on cases that are more plausible than 

others. The stopping criteria (𝛽𝛽), which originally sets the minimum number of cases to be 

included in any given box is also modified to represent the minimum cumulative probability 

of the cases.  

To take into account of the non-uniform occurrence likelihood of the outcomes, the 

diagnostic features of coverage (Equation 3.10) and density (Equation 3.8) are redefined as 

weighted coverage and weighted density. In this new case, weighted coverage represents the 

cumulative occurrence probability of the vulnerable cases in the box to the total occurrence 

probability of vulnerabilities:  
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𝑊𝑊𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑡𝑡𝑟𝑟𝑑𝑑 𝑐𝑐𝐶𝐶𝐷𝐷𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟 =
∑ 𝜌𝜌(𝑥𝑥𝑖𝑖){𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖∈𝐵𝐵 | 𝑓𝑓(𝑥𝑥)  ≤  𝑌𝑌𝑇𝑇}
∑ 𝜌𝜌(𝑥𝑥𝑖𝑖){𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖∈𝛺𝛺 | 𝑓𝑓(𝑥𝑥) ≤  𝑌𝑌𝑇𝑇}

  

Equation 3.12 

Weighted density, on the other hand, is equal to the ratio of the total occurrence 

probability of vulnerable cases within the box to the total occurrence probability of all cases 

within the box as represented in Equation 3.12.  

3.6.5.3 Illustration of the PRIM results over the case study 

Figure 3.12 shows two clusters of scenarios identified from the case study analysis 

presented. The figure shows failure outcomes regarding reliability, where a computed 

reliability value of less than 95% is accepted as a failure (not acceptable) outcome. For 

simplicity, both scenarios indicate the same variables of precipitation change (%) and annual 

demand level (Mm3 /year). The first scenario, which indicates a high vulnerability region is 

given by the precipitation changes from - 48% to -23% and the demand level from 78 to 100 

Mm3 /year. Scenario 1 covers about 66% of the identified risks and has a weighted density 

of 19%. The second scenario, on the other hand, seeks high-risk regions and defined by the 

precipitation changes from - 23% to 5% and the demand level from 85 to 100 Mm3 /year. 

The scenario 2 on the other hand has a weighted coverage of 70%, and a weighted density of 

87%. Overall, it is seen that the Scenarios 1 and 2 (Table 3.2) provide complementary 

information and their relevance depends on how much confidence is given placed on the 

probabilistic information. If one has high confidence on the joint PDF, scenario 2 becomes 

highly relevant as it captures a large fraction of the risks within the entire uncertainty space 

(%70) (Figure 3.12). 
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Figure 3.12 Scenarios identified through the conventional and modified PRIM methods. The 
data points indicated by the red color mark vulnerable scenarios (with a reliability value of 
less 95%). The size and the color of the data points represent the occurrence likelihood of 
each data-point, which are estimated from the Bayesian network model.   

 

Table 3.2 Features of the scenarios obtained by conventional and modified PRIM 

Scenario 1 - indicates high vulnerability 

Dimensions: 
Precip:    52% - 77% 
Demand: 78-100 Mm3 

Features: 
Weighted coverage:  66 %  
Weighted density:     19 % 

Scenario 2 – indicates high risk 

Dimensions: 
Precip:    77% - 105% 
Demand: 85-100 Mm3 

Features: 
Coverage:  70 %  
Density:    87 % 
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3.7. Conclusions 

This paper demonstrates an improved decision-analytical framework for making 

informed decisions in water systems planning under long-term climate and demographic 

uncertainty by explicitly considering subjective information or beliefs about the future states 

of the world. The framework integrates a bottom-up, robustness-based risk assessment 

approach called decision scaling with Bayesian network modeling, a popular tool for 

visualizing and propagating probabilistic information in complex systems. The coupled 

framework allows an explicit representation of conditional dependencies among various 

types of uncertainties and provides an estimation of the joint probability distribution of 

problematic conditions that were identified through an exhaustive vulnerability analysis. The 

framework follows the principles of bottom-up risk assessment by initially focusing on the 

exploration of stakeholder-defined system vulnerabilities. Probabilistic inference through 

subjective information or beliefs about the future world - in the form of model projections 

and forecasts, stakeholder opinions or historical data – only at the final stage of the analysis 

to assign likelihood weights to identified problematic conditions. Scenarios are then defined 

to provide the greatest coverage regarding plausible risks in the system. 

The framework enhances the existing robustness-based decision-making approach in 

water systems planning in several different directions. First, the probabilistic network 

approach used allows stakeholder beliefs and local information to be quantified and 

incorporated into the risk assessment process and strengthens the “bottom-up” nature of the 

analysis. Stakeholder participation is not only limited to the first phase of project 

characterization, e.g., the definition of performance thresholds, but also at the final phase of 

risk analysis and scenario definition. Second, the framework allows blending of multiple 

sources of information in a transparent, coherent probabilistic framework that can be easily 
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communicated to the stakeholders and public. The framework allows analysis to evaluate the 

robustness of the alternatives by considering occurrence probability of the alternative futures 

in an “explicit” way. The presented framework can also be coupled with data-mining 

algorithms to define risk-based scenarios, such as Patient Rule Induction Method (PRIM) as 

shown in the case study.  
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CHAPTER 4 
 

 WATER INFRASTRUCTURE PLANNING BY MULTI-STAGE STOCHASTIC 

OPTIMIZATION WITH IMPRECISE PROBABILITIES 

4.1. Abstract 

Hydro-climatic nonstationarity due to climate change poses formidable challenges 

for making water infrastructure planning decisions in river basin systems. While decisions 

that are flexible or adaptive hold intuitive appeal, identifying sequences of well-performing 

decisions or planning trajectories requires rigorous quantitative analysis that addresses 

uncertainties directly while making the best use of scientific information on the expected 

evolution of future climate. Multi-stage optimization offers a potentially effective and 

efficient technique for dealing with this challenge; however, the necessity of assigning 

probabilities to future climate scenarios is an obstacle to implementation, given that methods 

to reliably assign probabilities to future climate states are nonexistent. In this work, we 

present a sequential decision-making framework that reduces the dependency on 

probabilistic assumptions, and rather evaluates probabilistic information after multi-stage 

optimization to aid selection amongst competing for alternatives. The framework represents 

natural climate variability and gradual changes in long-term climate through a scenario tree. 

A multi-stage optimization model is then solved repeatedly, by systematically varying 

scenario tree probabilities to capture a broad range of uncertainties. The iterative process 

yields a vector of planning trajectories that are optimal under associated scenario 

representation and probabilistic assumptions. In the final phase, the vector of optimal 

pathways is evaluated to identify the solutions that are least sensitive to the scenario 

probabilities and are more promising based on climate model projections. The proposed 
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framework is illustrated for the planning of new dam and hydro-agricultural expansion 

projects in the Niger River Basin in West Africa over a 45-year planning period from 2020 to 

2065. 

4.2. Introduction 

Planners of large-scale, integrated water infrastructure systems deal with the problem 

of specifying the locations, design parameters, and scheduling (sequencing) of many types of 

facilities, for example, reservoirs, irrigation systems, pumping stations, hydropower turbines 

or treatment plants that will be in use over timescales up to fifty years or even longer 

(Loucks et al. 2005; Matrosov et al. 2013; Beh et al. 2014, 2015a; Jeuland and Whittington 

2014). Planning over such long-time horizons poses a formidable challenge due to a myriad 

of uncertainties surrounding the decision-making process including future hydroclimatic 

conditions, population growth, changing socioeconomic standards or political interests 

(Molle et al. 2010; Haasnoot et al. 2013; Yang et al. 2016). Traditionally, decision-makers 

tackle with this problem by identifying a single, static ‘optimal’ plan considering historical or 

narrowly defined conditions through formal optimization methods, for example, linear 

programming (Lund and Israel 1995; Randall et al. 1997) or dynamic programming (Butcher 

et al. 1969; Becker and Yeh 1974; Braga et al. 1985). However, such a static optimal plan is 

likely to yield a poor or failing performance under conditions other than that is deemed 

‘most-likely (Ben-Haim 2006; Haasnoot et al. 2013; Maier et al. 2016). The risks from 

choosing a static optimal plan are even larger under deeply uncertain conditions, such as 

those associated with climate change, where planners have no credible, commonly agreed 

information about the probability distribution of the outcomes (Lempert 2003; Lempert and 

Collins 2007). 
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To better cope with a deeply uncertain future, it is suggested that the planners shall 

seek for robustness, the ability to perform well or satisfactorily over a broad range of 

plausible futures (Dessai and Hulme 2007; Lempert and Groves 2010; Walker et al. 2013; 

Herman et al. 2015). Most analytical approaches that seek for robust plans, for example, 

Robust Decision Making (Lempert 2003), decision scaling (Brown et al. 2011b), and Info-

Gap theory (Ben-Haim 2006) focus on anticipatory adaptation, i.e., the actions that take 

place before the uncertainties over a predefined planning horizon are realized. However, in 

the actual practice, decision-makers are more interested in identifying flexible plans that can 

dynamically adapt to new conditions as the future unfolds (Haasnoot et al. 2012). This 

flexibility also referred as “dynamic robustness” allow adaptation to be anticipatory, 

concurrently (simultaneously with the observed changes) and in a reactive way (after 

observing the effects of change) (Walker et al. 2013). From a slightly different perspective, 

one can also classify flexible decisions into “here-and-now” actions that need to be 

implemented immediately to respond to current needs and challenges and those that are not 

urgent, and “prepare-and-monitor” actions that can be postponed until a certain predefined 

performance threshold (e.g., low reliability) or critical tipping point (e.g., sea level rise) is 

exceeded or triggered (Haasnoot et al. 2013; Barnett et al. 2014; Kirshen et al. 2014).  

A number of planning frameworks focus on dynamically robust decisions under 

climate change, including Real Options Analysis (ROA) (Dixit and Pindyck 1994) and 

Dynamic Adaptation Policy Pathways (DAPP) (Haasnoot et al. 2013). ROA, originating 

from financial analysis, emphasizes the value of flexibility by considering the options of 

delaying, abandoning, expanding or switching decisions in response to unfolding 

uncertainties over multiple time stages (Neufville 2003). Such diverse sets of options allow 

decision makers to respond in a way to limit the downside of making a wrong decision and 
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capture the upside of new information and opportunities (Buurman and Babovic 2016). 

Gersonius et al. (2013) assessed real options for selection and timing of modifications in 

urban drainage infrastructure for enhancing resilience to climate change. More recently, 

Woodward et al. (2014) developed an optimization-based real options framework to assess 

flood risk management strategies for the Thames estuary, in London. A second way to 

conceptualize adaptation over time is through “critical tipping points” in which the system is 

no longer adequate, and modification is necessary (Haasnoot et al. 2011). DAPP combines 

the tipping points approach with the metaphors of route maps to evaluate the timing of 

scenario-dependent adaptation actions through a set of signposts specifying key information 

that should be tracked to determine if the critical tipping points are violated. The outcomes 

of DAPP are typically visualized regarding pathways or route maps over multiple stages to 

show a scenario-based representation no-regret actions, lock-ins, and the timing of actions 

(Haasnoot et al. 2012).  Haasnoot et al. (2013) illustrated the DAPP framework for managing 

flood risks and freshwater supply planning in the Rhine Delta. 

Developing dynamically robust infrastructure plans under climate change based on 

ROA, DAPP or any other method face at least two major analytical challenges: i) quantifying 

and representing the plausible range of climate uncertainties over time-scales relevant for the 

decision-making, and ii) developing an analytical procedure to evaluate a large array of 

adaptation options over the represented range of uncertainty (i.e., deciding when, where, and 

how to implement actions). The first challenge can be addressed by conceptualizing the 

future through multiple scenarios of transient, internally consistent storyline of future events 

(Schwartz 1996; Mahmoud et al. 2009; Maier et al. 2016). Within the body of climate change 

adaptation literature, long-term scenarios are commonly derived from the outputs of Global 

Circulation Models (GCM). This involves choosing a set of Global Circulation Model 
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(GCM) projections for the period of interest, and in some cases applying downscaling and 

bias-correction to those projections to obtain scenarios of regional or local climate changes. 

For example, Vicuna et al. (2010) developed a dynamic programming model for the adaptive 

management of water resources in California, where they represented climate uncertainty 

through eleven GCM runs under the two greenhouse gas emission scenarios from the 

IPCC’s “Fourth Assessment Report” (the higher A2 and lower B1). Ray et al. (2012) 

developed a multi-stage water resources decision model for Amman, Jordan through a 

scenario-tree that depicts the gradual evolution of climate change at the years 2035, 2065, 

and 2085 based on eleven GCMs and three emission scenarios (B1, A1B, and A2). More 

recently, Haguma et al. (2014) developed a dynamic programming model similar to the work 

presented by Vicuna et al. (2010), considering thirteen GCMs and A1B, A2, and B1 emission 

scenarios. The problem with developing climate scenarios based on GCM projections is that 

they provide an incomplete and potentially biased sample of climate uncertainties due to 

inherent uncertainties related to climate forcings (Stainforth et al. 2005), model initial 

conditions (Deser et al. 2012), or the structural and computational limitations of climate 

models (New and Hulme 2000; Knutti 2008). As a result, the use of GCM-based climate 

scenarios in actual decision-making processes is limited (Brown and Wilby 2012; Dittrich et 

al. 2016). Alternatively, climate scenarios can be developed directly based on the vulnerability 

analyses of the system of interest (Brown and Wilby 2012). This approach makes use of 

weather generators and Monte Carlo sampling techniques for a fuller and more systematic 

sampling of future climate uncertainties, especially those associated with vulnerable or 

undesirable outcomes without being restricted by the assumptions of GCM projections 

(Steinschneider and Brown 2013). Examples of the use of “vulnerability-based” climate 

scenarios have become common in robustness-based water resources planning (Prudhomme 
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et al. 2010; Moody and Brown 2012; Singh et al. 2014; Whateley et al. 2014). However, their 

use in dynamic adaptation planning problems are very limited, majorly restricted to the 

application of simple sensitivity factors to the historical climate or streamflow records 

(Jeuland and Whittington 2014). 

The second challenge arising from the need to assess multiple adaptation options 

over space and time analytically can be addressed through Monte Carlo analyses (Jeuland and 

Whittington 2014) or more efficiently by methods of  ‘optimization under uncertainty’ 

(Sahinidis 2004). Multi-stage stochastic Programming with recourse (SP) is frequently used 

to assess the ‘real options’ in water resources planning, including flood risk management 

(Woodward et al. 2014), drought mitigation (Cai et al. 2015) or capacity expansion (Kang 

and Lansey 2014; Creaco et al. 2015). Stated simply, SP divides the planning horizon into 

multiple decision stages and then searches for a time-based solution by explicitly considering 

multiple future trajectories represented in the form of a scenario tree. The scenario tree 

structure reflects the evolution of random variables, e.g., mean temperature and precipitation 

changes in each stage through a set of joint probability mass functions (PMFs) (Birge and 

Francois 2011). An SP model can be also formulated as a robust optimization model (RO) 

by incorporating additional risk terms to model formulation, for example by minimizing 

expected cost and the cost variation over scenarios simultaneously (Markowitz 1952), or by 

considering variability in the objective and constraints (David et al. 1997; Mulvey et al. 2008; 

Ray et al. 2014). 

When applying SP to planning under climate change, the requirement to assign ex 

ante probabilities to the scenarios at different decision-stages pose an important challenge. As 

noted earlier, determining the occurrence likelihoods of possible climate futures is not 

possible under a deeply uncertain climate due to a number of reducible and irreducible 
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uncertainties and thus results in a methodological problem. Past studies circumvent this issue 

by applying Laplace Principle of Insufficient Reason and treating all climate scenarios as 

equally plausible (Ray et al. 2012; Gersonius et al. 2013; Cai et al. 2015). The problem with 

assigning a single uniform probability distribution is that the solutions obtained from such 

analyses would be contingent upon the underlying probabilistic assumptions applied, and 

therefore do not inform the decision-makers about imprecise nature of probabilities (e.g., if 

the results would vary substantially under different prior assumptions). Recently, Kwakkel et 

al. (2015) present a multi-objective evolutionary optimization model to support the 

development of dynamic adaptation plans through DAPP that does not require prior 

probability assignment. In their work, they first develop a set of independent scenarios and 

then seek for a solution that simultaneously minimizes the median outcome across all 

scenarios as well as the dispersion around the median outcome. However, this type of a 

formulation requires all scenarios to be treated as independent, rather than a set of gradually 

evolving plausible futures from a common time origin. As a result, the outcomes do not 

provide a rich, detailed representation of decisions pathways representing nonanticipativity, 

but only a solution that heavily relies on the scenario with the median outcome.  

In this work, we present a novel analytical framework to support multi-stage 

adaptation planning by combining the certain key principles of vulnerability-based climate 

risk assessment with SP. Our approach provides several key improvements over existing 

multi-stage adaptation planning frameworks regarding sampling climate uncertainties and 

identifying most promising decision pathways. First, we present an innovative scenario-tree 

generation procedure to systematically sample natural climate variability and gradual climate 

changes without depending on the highly uncertain outputs of GCM projections. Second, 

rather than making a prior preference on the likelihood of scenarios, we reapply stochastic 
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optimization considering a wide range of systematically generated probability distributions. 

From this repeated analysis, we produce an extensive inventory of decision pathways 

contingent upon the underlying assumptions. Finally, we post-process the resulting inventory 

of optimal portfolios in an attempt to identify dominating solutions that are frequently 

found in the database of scenarios. In this step, we also make use of GCM projects to extract 

additional information for the final preference ranking of the planning portfolios. This way, 

we only use GCM information at the final phase of the study, to weight the domain results.  

We demonstrate the method for the case of long-term water infrastructure planning in the 

Niger River Basin over a 45-year planning period.   

Rest of this paper is organized as follows. The following section gives a brief 

overview of the bottom-up adaptation planning framework and introduces its steps. Section 

4 presents the Niger River Basin application. It begins with a summary of main hydro-

climatic and socioeconomic features in the context of long-term adaptation planning and 

then describes the specific modeling processes and the assumptions in each one. Section 5 

reports the case study results. In section 6, we discuss the findings in a broader context and 

present the conclusions. 

4.3. Proposed framework for adaptation planning under climate change 

The purpose of this study is to develop a vulnerability-based, tractable framework 

for assessing multi-stage water infrastructure planning decisions. From this point and 

onward, these sequential planning decisions will be referred simply as “development 

pathways.” 

The proposed framework (Figure 1) consists of four major steps: [1] development of 

the modeling framework, [2] definition of the scenario space, [3] generation of planning 
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pathways, and finally, [4] identification of belief dominant pathways. Below, we provide a 

brief overview of each step shown in Figure 1, while reserving the detailed description of 

each step to the case study application (Section 5). 

4.3.1. Step 1: Develop the modeling framework  

The first step begins with a screening and model development process to describe 

the major features of the analysis including economic, social, and environmental objectives 

and constraints, the planning horizon and decision stages, and adaptation decisions to be 

evaluated, ideally through a stakeholder-driven process. The specified objectives are merged 

into a single one, in most cases expressed in monetary terms such as minimizing the 

economic cost of the water supply system (Becker and Yeh 1974; Chung et al. 2009) or 

maximizing net economic benefits of water operations and allocations for different uses 

(Draper et al. 2003). Alternatively, a ‘multi-objective’ model formulation can be used to 

explore possible non-dominated solutions or so-called ‘Pareto frontiers’ concerning the 

different objectives (see Beh et al. 2014, 2015b).  

Next, the planning horizon of the water resources planning problem is subdivided 

into 𝑇𝑇 subsequent periods. Long-term changes in the climate conditions is assumed to occur 

gradually, beginning from the time of origin and branching out further at each period. The 

gradual evolution of uncertainty over T subsequent periods can be represented through a set 

of scenarios 𝑠𝑠 ∈ 𝑆𝑆 in the form of a scenario tree (see Step 2). A multi-stage SP model is then 

defined to explore sequential infrastructure decisions over this scenario space. The basic 

notation of a SP is introduced below with a more detailed description on Appendix C. The 

deterministic equivalent of the scenario-based SP model is defined as: 

𝑚𝑚𝑖𝑖𝑛𝑛𝐿𝐿[𝐹𝐹(𝑥𝑥1,𝑥𝑥2𝑠𝑠, … , 𝑥𝑥𝑇𝑇𝑠𝑠,𝜔𝜔)]   
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𝑠𝑠. 𝑡𝑡.   𝑟𝑟𝑙𝑙(𝑥𝑥1, 𝑥𝑥2𝑠𝑠 , … , 𝑥𝑥𝑇𝑇𝑠𝑠,𝜔𝜔) ≤ 0       𝑙𝑙 ∈ 𝐿𝐿,   𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇                                 

Equation 4.1                                                                                  

where 𝜔𝜔 = {𝜔𝜔1, . . . ,𝜔𝜔𝑇𝑇} is a stochastic process considered over 𝑇𝑇 decision stages; 

𝑥𝑥1 is the decisions-made at the initial point in time, 𝑥𝑥2𝑠𝑠 through 𝑥𝑥𝑇𝑇𝑠𝑠 are scenario-dependent 

decisions made at stages 2 to 𝑇𝑇; g𝑙𝑙(. ) is the 𝑙𝑙th constraint of the problem defined over the 

set 𝑙𝑙 ∈ 𝐿𝐿. A unique feature of the SP model (4.1) is the nonanticipativity of the recourse 

decisions, which result from the fact that the decisions made at any point in time only 

depend on the past observations of the stochastic process (Birge and Francois 2011).  

4.3.2. Step 2: Define the scenario space  

The second step of the framework is the generation of the scenario space to 

represent the uncertainty in future climate conditions. The approach proposed here differs 

from the existing methods that use GCM projections to develop climate change scenario 

trees (Ray et al. 2012; Cai et al. 2015). Instead, it combines a relatively small set of carefully 

selected natural climate realizations with climate change factors defined over each decision 

period 𝑡𝑡 = 1 …𝑇𝑇 to provide a rich representation of the possible ways that the climate 

system may unfold over course of the planning horizon.  

In step [2.1], a large set of natural variability realizations are generated from a 

stochastic weather generator with statistical properties, e.g., mean, variance, and spatial-

temporal correlations similar to the historical record. Repeated sampling of internal climate 

variability is critical to explore vulnerability to certain conditions, for example, particular 

sequences of wet or dry conditions. Also, natural variability will continue to be the primary 

source of uncertainty in water resources systems, at least for the over the next couple of 
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decades (Barsugli et al. 2012; Deser et al. 2012). However, using a large number of climate 

realizations is computationally expensive when exploring the effects of both natural 

variability and climate change, and a preprocessing might be necessary to reduce the size of 

sample size (Whateley et al. 2016). In step [2.2], a screening-level optimization model is used 

to select k realizations that represent the initial set of realizations.  

The final step of the scenario generation process is to incorporate uncertainties from 

long-term climate changes. In step [2.3], a climate change scenario tree is constructed that 

yields a total of 𝑆𝑆 scenarios providing a joint representation of gradual precipitation and 

temperature changes over 𝑇𝑇 stages. This is done by specifying a range of change factors in a 

sequentially from stage 1 to stage 𝑇𝑇, in a way that covers a broad range of changes that go 

beyond the level of changes projected by climate models. The climate change scenario tree is 

then combined with 𝑘𝑘 climate variability realizations obtained in step [2.2], resulting an 

ensemble of 𝑆𝑆 𝑥𝑥 𝑘𝑘 transient climate scenarios.  

4.3.3. Step 3: Obtain an inventory of belief dominated pathways  

The purpose of the third step is to get a large inventory of development trajectories 

under uncertainty. Due to the need to evaluate decisions across a multi-dimensional 

uncertainty space, i.e., from climate change, natural variability, and imprecise probabilistic 

assumptions, this step is the most computationally expensive part of the analysis.  

In step [3.1], 𝑖𝑖 bivariate PMFs are generated to set the probability weights of mean 

temperature and precipitation changes evaluated in the stochastic program. The purpose is 

to explicitly take into account the imprecise, and highly uncertain nature of probabilistic 

assumptions about the likelihood of future climate conditions and explore the effects of 

different beliefs about the future without being limited to climate science information. These 
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would include extremely wet to extremely dry and warm futures as well as more moderate 

and plausible climate changes. In step [3.2], the multi-stage stochastic optimization is 

repeated solved over each combination of 𝑖𝑖 (PMFs) and 𝑘𝑘 climate realizations to generate a 

large inventory of optimal development pathways.    

4.3.4. Step 4: Obtain an inventory of flexible plans  

The fourth step is a post-optimization analysis of the results to find one or few 

prosing development pathways that are most frequently found in the repeated optimization 

process in step [3]. The purpose of this post-optimization analysis is to identify robust 

outcomes that are insensitive (or less sensitive) to underlying climate scenarios and 

probabilistic assumptions. Note that here, we use “robustness” to refer to an optimal 

solution’s appearance frequency within the inventory of solutions (in this case, over the 

combinations of 𝑖𝑖 probabilistic beliefs and k natural variability realizations). This is slightly 

different than the formal meaning of “robust optimization”, which offers a variety of models 

and algorithms to avoid worst-case outcomes or large risk from uncertain model parameters   

(David et al. 1997; Mulvey et al. 2008).  

In the final step of the analysis, additional sources of information about future 

climate change such as climate model projections, paleodata or expert judgments can also be 

incorporated to rank and evaluate the results obtained under a broad range of ‘beliefs.' For 

example, if an analyst would assign a higher subjective weight to solutions obtained from 

more plausible beliefs according to the results of climate models. Previous decision scaling 

studies present such ex post uses of climate information to assign weights to stochastically 

sampled climate scenario domains (Brown et al. 2012; Moody and Brown 2012; Whateley et 

al. 2014) but not to beliefs that are expressed by probability distributions.   
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 Overall, the proposed framework inherits a number of useful concepts from two 

previously developed frameworks, namely DAPP (Haasnoot et al. 2013) and decision scaling 

(Brown 2011). We apply the visual analytics described as route or subway maps in DAPP to 

conceptualize river basin development pathways as dynamic plans that can adapt to new 

conditions or learn from previous experiences. Second, we employ a number of procedures 

that are commonly referred as vulnerability-based for distinguishing from more information-

oriented predict-then-act analyses. First, the scenario generation technique in this work (step 

[2]) does not use climate projections but rather directly samples climate variability and mean 

climate changes. Second, the repeated optimization analysis (step [3]) aims to circumvent the 

necessity of assigning ex-ante probability weights to the scenarios before optimization. By 

varying the probability weights in a systematic way, we deemphasize on the role of scenario 

probabilities. This repeated optimization process over the probability space (step [3.1]) is 

compared to a “climate stress test” described in decision scaling (Brown et al. 2012). In 

decision scaling, the climate stress test explores system performance across a wide range of 

climate scenarios. In this work, we explore the probability domain associated with the 

scenarios rather than varying scenarios.  
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Figure 4.1 The proposed framework for multi-stage water infrastructure planning under 
climate change  
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4.4. Case study: Multi-stage infrastructure planning in the Niger River Basin 

4.4.1. Background  

The Niger River is the third longest river in Africa after the Nile and Congo, with a 

length of 4,200 km (Figure 4.2). It rises in the mountains of Guinea and Sierra Leone before 

flowing northeast towards the network of wetlands known as Inland Delta in Mali, then 

flows to the southeast and merges with the Benue River, and finally discharges to the 

Atlantic Ocean in Nigeria. The Niger River Basin (NRB) covers an area of about 2.27 km2 

which is shared among Benin, Burkina Faso, Cameroon, Chad, Côte d’Ivoire, Guinea, Mali, 

Niger, and Nigeria, which are also members of the Niger Basin Authority (NBA). 

The NRB faces a number of complex socioeconomic and environmental issues 

including extreme poverty, vulnerability to droughts, and high child mortality due to water-

borne diseases, which can be attributed to the poor state of built water and sanitation 

infrastructure (Ogilvie et al. 2010; Namara et al. 2011). As opposed to the state of the 

current conditions, there is a great opportunity for water resources development, with 

estimated irrigation and hydropower potentials of nearly 2.5 million hectares and 6,000-

gigawatt hours respectively (Andersen et al. 2005; Lienou 2013). In 2002, the NBA declared 

a 20-year Sustainable Development Action (SDAP) worth 8 billion US dollars that includes 

the rehabilitation of existing water supply and hydropower sites, the construction of four 

new dams - Fomi, Diaraguale, Taoussa, Kandadji (Figure 4.2), expansion of the existing 

irrigated agriculture schemes across the eleven irrigation development zones of the NRB 

(Figure 4.3). Also new infrastructure investments, the plan includes a number of policy 

measures to support fisheries, livestock farming, and ecotourism, and to protect vulnerable 
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ecosystems including the Inland Delta in Mali, which is one the largest wetlands in Africa 

(NBA 2008).   

 
Figure 4.2 The geography of the Niger River Basin, along with the four new dam projects 
(Fomi, Diaraguala, Taussa, and Kandadji).   

 

 
Figure 4.3 The geographic location of the eleven irrigation development zones in the Niger 
River Basin. 
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4.4.2. Historical climate variability and climate change 

The climate regime in the NRB shows a high spatial and temporal variability due to 

the geographical setting. The primary force driving the regional climate system is the 

convergence of trade winds in the north and south of the equator, known as the Inter-

Tropical Convergence Zone (ITCZ) (Sultan and Janicot 2003; Sultan et al. 2003; Nicholson 

2009). The seasonal movement of the ITCZ tends to follow the sun’s annual migration, 

advancing into the northern hemisphere in boreal summer and retreating into the southern 

hemisphere in austral summer (Wilby 2008). In relation to the ITCZ, the basin has a rainy 

summer season from May to October, and a dry winter from November to April, except for 

Nigeria, which receives rainfall over four seasons (Andersen et al. 2005). Average climate 

conditions across the basin vary substantially based on the latitude and season. For example, 

annual average rainfall is only 300 millimeters in the arid regions of the Sahel zone and is 

more than 2,000 millimeters in the tropical areas of Guinea (Grijsen et al. 2013).  

Annual rainfall over the West Africa shows high year-to-year variability, which has 

been studied extensively (Le Barbe et al. 2002; Davidson et al. 2003; Brooks 2004; Giannini 

et al. 2008; Conway et al. 2009; Janicot et al. 2011; Tarhule et al. 2012). Over the past 

century, basin-wide mean annual precipitation was recorded to be above the long-term 

means from 1915 through the late 1930s, and from 1950s through the end of the 1960s, 

after which it was persistently below the long-term mean (Figure 4.4). The La Grande 

Se´cheresse, the great drought in the early 1980’s, was an unprecedented catastrophe for the 

region that resulted in devastating famines (Zwarts et al. 2005; Sissoko et al. 2011). 

Beginning with the 1990’s, annual rainfall has recovered and approached the century-long 

mean (L’Hote et al. 2003; Ozer et al. 2003; Held et al. 2005). Near mean conditions in terms 

annual rainfall continued past 1990’s, with a relatively dry period for the years 2000 to 2003, 
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and an extremely high rainfall in 2010, and abnormally dry conditions in 2011 (Lebel and Ali 

2009; Fontaine et al. 2011). This substantial interannual variability observed over the recent 

years is noted to be highest in the past forty years (Nicholson 2013). The complex dynamics 

of climate variability in West Africa is still a subject of ongoing research that is attributed to 

changing human activity and land-use conditions (Charney 1975) as well as anomalies in the 

sea surface temperature (SST) patterns in the Atlantic, Pacific, and Indian Oceans associated 

with El Niño–Southern Oscillation (Held et al. 2005; Biasutti and Giannini 2006; Janicot et 

al. 2011). 

 
Figure 4.4 Rainfall anomalies in the Niger River Basin (Source: NOAA NCDC Global 
Historical Climatology Network Data) 

 

Anthropogenic climate change may exacerbate the natural variability in West African 

climate (Wilby 2008; Roudier et al. 2014), resulting in new vulnerabilities, for example, from 

the acceleration of desertification (Oyebande and Odunuga 2010) and reductions in crop 

yields (Sissoko et al. 2011). However, there are large disagreements among the climate model 

projections regarding the direction and magnitude of potential climate change over the 21st 

Century. Figure 4.5 shows the range of projected changes in the mid-2060’s and the 
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historical conditions (1950-2000 period) from the IPCC’s latest Fifth Assessment Report. 

The underlying data on Figure 4.5 represents a large ensemble of climate model runs (110 in 

total) obtained from 23 GCMs, each forced by four Representative Concentration Pathways 

(RCP) scenarios (RCPs 2.6, 4.5, 6.0, and 8.5 respectively). Projected increases in the annual 

temperature range from about 1 to 5ºC concerning the historical period of 1950-2000 

(Figure 4.5). However, there is no clear trend in the direction of precipitation change, as 

model projections range from a 10% decrease in a 25% increase for the same period (Figure 

4.5). 

The regional effects of climate change over West Africa are investigated in more 

detail through a number of studies using Regional Climate Models (RCMs) (Patricola and 

Cook 2010; Mariotti et al. 2011; Laprise et al. 2013; Dosio and Panitz 2016; Obada et al. 

2017). Paeth et al. (2011) suggest a general drying trend over most of the West Africa in the 

first half of the 21st Century based on the results from multiple RCMs. Similarly, Sylla et al. 

(2016) evaluated the results from the CMIP5, CORDEX, and HIRES multi-model 

ensembles and concluded a shift toward more semi-arid and arid conditions. A majority of 

the past studies underline the sensitivity of the results to numerous assumptions made, for 

example, selection of GCMs or an application of a particular downscaling approach. 

Fontaine et al. (2011) note that the discrepancies in the projected precipitations among the 

GCMs can be partially attributed to their ability to simulate convective rainfall. Dosio and 

Panitz (2016) found that the use of RCMs can alter the sign of rainfall change of the driving 

GCM in West Africa, particularly regarding mean precipitation changes and extreme-events.  
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Figure 4.5 Mean climate changes from the IPCC’s CMIP5 ensemble for the Niger River 
Basin for RCPs 2.6, 4.5, 6.0 and 8.5 respectively. The data shows the changes in the 2050-
2080 future period relative to the historical period of 1950 - 2000. The models that share 
similar code are shown with the same color. 

 
Overall, the scale of observed climate variability over the past century (Figure 4.4), 

and unclear, conflicting signals on the direction and magnitude of future climate change 

from the most recent GCM projections (Figure 4.5) mark a deeply uncertain future for West 

Africa. The presence of deep uncertainties necessitates a vulnerability-based planning 

approach by taking into account multiple, diverse range of plausible climate futures that goes 

beyond historical variability and projected a range of changes.  
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4.4.3. Data sources 

This work makes use of a variety of hydroclimate and socioeconomic data sources 

from several previous studies. Data related to the physical basin and the water resources 

system, including the catchment locations, evaporative losses, the agricultural, industrial and 

municipal demand sites, the existing and planned reservoirs, the hydropower generation 

turbines and the minimum flow targets are obtained from the MIKEBASIN model of the 

Niger Basin (BRLi and DHI 2007a) and the WEAP of the Niger Basin (Schlef 2014). Data 

used for the calibration of seasonal water balance in the Inland Delta in Mali, including 

monthly inflows, evaporative losses, and inundated areas and water volume are obtained 

from the Niger RIBASIM model (Passchier et al. 2005) and the work of Zwarts et al. (2005). 

Data related to the use and allocation of water resources throughout the basin, and data used 

for estimating economic benefits and costs for agriculture, hydropower production, fisheries, 

and infrastructure and the capital cost estimates of infrastructure investments are obtained 

from BRLi and DHI (2007b). Historical climate data, including precipitation, maximum, 

minimum, and mean temperatures were gathered from the Princeton University Terrestrial 

Hydrology Group’s gridded meteorological data set (Sheffield et al. 2006). Historical 

streamflow data across the NRB was gathered from Hydrological Cycle Observation System 

for West and Central Africa (AOCHYCOS 2015).  

4.4.4. Application of the framework to the Niger River Basin 

4.4.4.1 Development of the modeling framework   

Application of the framework to the Niger River Basin begins with developing a 

large-scale river basin optimization model. The purpose of the model is to evaluate the 

sizing, timing, and sequencing of large-scale water infrastructure projects identified in the 
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Sustainable Development Action Plan (see section 4.2.1). These include construction of the 

Fomi, Diaraguala, Taussa, and Kandadji dams along the Niger River and its tributaries and 

the expansions in the irrigated agriculture infrastructure across the eleven agricultural 

development zones of the Niger Basin. The analysis covers a 45-year period, corresponding 

to the period from 2020 to 2065. The new infrastructure decisions are re-evaluated 

periodically, at years 2020, 2035, and 2050 respectively, whereas seasonal decisions related to 

reservoir releases and allocation of water are implemented every season (Figure 4.6). The 

problem is formulated as a stochastic mixed-integer programming (SMIP) model and 

implemented using the General Algebraic Modeling System (GAMS) (Brooke et al. 1988).  

 
Figure 4.6 A conceptual representation of the sequential planning problem involving three 
decision stages (years 2020, 2035, and 250), and three subsequent observation periods.    

 
The optimization model consists a set of mathematical equations to calculate: i) 

conservation of mass balance along the Niger River and its tributaries, as well as for the 

existing and new reservoirs, ii) investment decisions on the new water supply and irrigated 

agriculture infrastructures, iii) allocation of water resources to the domestic, irrigation, 

hydropower, fisheries and environmental sustainability sectors, and iv) net economic benefits 

from water use and allocation over the planning period.  The model runs at a seasonal time 

step with a wet season from May to September and a dry season November to April. 
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Operational decisions related to the resources system including releases from the reservoirs, 

hydropower production, and crop production is simulated on a seasonal basis. Long-term 

climate uncertainty associated with natural variability and mean climate changes are 

represented by a multi-layered scenario tree (see Section 4.2). 

The schematic of the NRB system is represented by a node-link network consisting 

of 155 nodes 𝑛𝑛 representing various types of entities. These entities are subdivided into 

forty-nine hydrological catchments nodes 𝑛𝑛𝑠𝑠, twelve natural or artificial lakes nodes 𝑟𝑟 , 

eleven irrigation diversion nodes 𝑛𝑛𝑖𝑖, and nineteen domestic diversion 𝑛𝑛𝑠𝑠, and thirty 

minimum environmental flow nodes 𝑛𝑛𝑟𝑟𝑐𝑐𝐶𝐶 (Figure 4.7). 

 
Figure 4.7 The schematic of the NRB water resources system. The green, red, and orange 
indicate the hydrological catchment (ns), domestic withdrawals (nd), and the irrigation nodes 
(ni) respectively. The triangles in blue, gray, and black colors represent the existing and 
planned reservoirs and the natural lakes (wetlands) respectively.   
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The seasonal time-series of basin runoff at 49 catchments are calculated using a 

series of simple, lumped parameter hydrology models (Thomas 1981). The runoff provided 

by the catchment nodes are then routed through the river basin network and allocated 

among various uses including municipal and industrial, irrigation, hydropower, fisheries and 

environmental sustainability.  

The objective function 𝑍𝑍 of the model is to maximize the expected net present value 

(NPV) of the water resources system under climate uncertainty: 

𝑚𝑚𝑎𝑎𝑥𝑥 𝑍𝑍 =�𝑝𝑝𝑣𝑣 �−�𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑣𝑣
𝑛𝑛𝑛𝑛

−�𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑛𝑛𝑖𝑖𝑣𝑣

𝑛𝑛𝑖𝑖

 − � ��𝑃𝑃𝐿𝐿𝐶𝐶𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜
𝑣𝑣

𝑚𝑚𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜𝑣𝑣

+   ��𝐵𝐵𝐶𝐶𝑅𝑅𝑅𝑅𝑦𝑦,𝑛𝑛𝑖𝑖
𝑣𝑣  + ���𝐵𝐵𝐵𝐵𝑃𝑃𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛

𝑑𝑑

𝑚𝑚𝑦𝑦𝑛𝑛𝑛𝑛
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Equation 4.2 

where 𝐷𝐷 is the vertex index used in the scenario-tree representation of the 

problem, 𝑝𝑝𝑣𝑣 is the probability weight associated with vertex 𝐷𝐷; y and 𝑚𝑚 are time indices 

representing the year and the month; 𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 are the present value costs of new dams 

and hydro-agricultural infrastructure; 𝐵𝐵𝐶𝐶𝑅𝑅𝑅𝑅, 𝐵𝐵𝐵𝐵𝑃𝑃 and 𝐵𝐵𝐹𝐹𝑆𝑆𝐵𝐵 are discounted economic 

benefits from irrigated agriculture, hydropower generation, and commercial fisheries 

respectively; and 𝑃𝑃𝐿𝐿𝐶𝐶𝑇𝑇 is the penalty term for not being able to maintain environmental 

flow targets. The optimization model also includes a series of constraints that defines the 

conservation of mass along the river, and the bounds for the municipal and industrial and 

agricultural water use, hydropower production as well as a series of nonanticipativity 

constraints to describe the scenario-tree structure.  
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A detailed description of the model formulations is given in Appendix C, and here 

we provide a brief description of each term included in the objective function (Equation 

4.2). The cost of new dams 𝐶𝐶𝐶𝐶 is defined for three capacity alternatives, i.e., small, medium, 

and large sizes (Table 4.1). The cost of new hydro-agricultural infrastructure 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 is 

calculated based on new perimeter extension and new perimeter creation in each agricultural 

zone, which are constrained by given the predefined physical limits. Irrigation benefits 𝐵𝐵𝐶𝐶𝑅𝑅𝑅𝑅 

is obtained based on crop selection and calculated crop yields under the given land 

constraints. Hydropower generation benefits 𝐵𝐵𝐵𝐵𝑃𝑃 is approximated from a series of linear 

regression equations that defines seasonal hydropower production based on releases through 

the turbines and lake levels. Finally, environmental flow penalties 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 are calculated by 

penalizing the negative deviations from the seasonal minimum flow targets at the predefined 

minimum flow check-points.  

Table 4.1 Capacity alternatives for the Fomi, Diaraguala, Taussa, and Kandadji Dams (in 
Mm3). The associated present value capital costs are given in the parentheses. 

Dam project Size: small  Size: medium Size: large 

Fomi 5560 ($530 M) 6160 ($570 M) 6760 ($610 M) 

Diaraguala 2400 ($250 M) 2700 ($280 M) 3000 ($310 M) 

Taussa 2800 ($680 M) 3100 ($710 M) 3400 ($740 M) 

Kandadji 1400 ($740 M) 1600 ($780 M) 1800 ($820 M) 
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Table 4.2 The upper constraints for development across the eleven irrigation zones  

Irrig. 
zone 

Current 
Irrigable 
Perimeter 
(Mm2) 

Max. 
Perimeter 
Expansion  
(Mm2) 

Max. New 
Perimeter 2020  
(Mm2) 

Max. New 
Perimeter 2035 
(Mm2) 

Max. New 
Perimeter 2050 
(Mm2) 

DZ 1 147 71 283 707.5 707.5 

DZ 2 1162 2280 253 633.5 633.5 

DZ 3 44 236 944 2360.5 2360.5 

DZ 4 208 35 139 346.5 346.5 

DZ 5 541 334 1334 3335.5 3335.5 

DZ 6 35 18 71 178.5 178.5 

DZ 7 462 304 1217 3042 3042 

DZ 8 214 323 2905 7262.5 7262.5 

DZ 9 129 360 1442 3605 3605 

DZ 10 50 156 1403 3508 3508 

DZ 11 56 74 670 1674 1674 

TOTAL 3047 4191 10661 26653 26653 

4.4.4.2 Defining the scenario space 

4.4.4.2.1. Generating climate variability realizations 

The scenario generation process begins with sampling one hundred new stochastic 

realizations of the historical climate conditions (1955-2000 period) that consist of basin-

wide, monthly time series of climate variables. The new climate realizations are obtained 

from a weather generator that couples a wavelet autoregressive model with a K-nearest-

neighbors algorithm (Steinschneider and Brown 2013). The weather generator produces 

monthly time-series of total precipitation (mm) and minimum and maximum temperature 

(ºC) for the 49 sub-catchments within the river basin, while preserving: i) the spatial and 

temporal correlations among multiple sites and multiple climate variables, and ii) selected 

statistical properties of the historical, area-averaged annual precipitation, which are a mean of 

about 910 mm, a standard deviation of about 95 mm, and a low-frequency variability of 
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about 20-years. The climate traces produced by the weather generator show a good match to 

the historical data, with a periodicity of about 20 years (Figure 4.8-a), an annual mean of 

about 908 mm (Figure 4.8-b), and a standard deviation of about 90 mm (Figure 4.8-c).  

 
Figure 4.8 Comparison of annual precipitation realizations obtained from the weather 
generator and the historical data (1955-2000): a) Power spectra of annual precipitation 
realizations b) Boxplot of mean annual precipitation realizations, c) Boxplot of the standard 
deviation of annual precipitation realizations. In Figure a, the red line marks the confidence 
level at 0.90. In all figures, the blue color marks the indicated statistics of historical climate.  

4.4.4.2.2. Identifying a small subset of representative climate realizations 

The second step in the scenario development process is to identify a small subset of 

“representative” historical climate realizations within the initial set of hundred. The SMIP 

formulation used in this study is computationally demanding, and it is necessary to identify a 

small set of realizations that can represent the performance variation within the initial set.  

This is done through a simplified optimization model and finding the maximum 

NPV achievable under each climate realization. The simplified optimization model evaluates 
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optimal decisions under perfect information, i.e., under known climate conditions over the 

course of the forty-five year planning period. The vector of NPV values computed from the 

hundred climate realizations ranges from about $95 B to $118 B, indicating that the system 

performance is sensitive to natural variability, even in the absence of climate change. Based 

on the outcomes, five representative climate traces are selected that correspond to the 5th, 

25th, 50th, 75th, and 95th percentiles of the initial NPV distribution from the hundred historical 

realizations.   

4.4.4.2.3. Constructing the climate change scenario tree  

The third step is the development of a scenario tree to represent the gradual changes 

in mean temperature and precipitation over four stages (at years 2020, 2035, 2050, and 2065 

respectively) and three consecutive intervals (at periods 2020-2035, 2035-2050, and 2050-

2065 respectively). The climate change scenario tree is constructed in three sub steps: 

1. Develop a scenario tree of gradual temperature changes:  Gradual changes in mean 

temperature is represented by a binomial scenario tree (Figure 4.9-a). At every stage, 

temperature change scenarios transition either into a lower level 𝐷𝐷𝑇𝑇𝑙𝑙𝑜𝑜𝑙𝑙 or into an 

upper level 𝐷𝐷𝑇𝑇𝑢𝑢𝑢𝑢, with associated transitioning probabilities of p(𝐷𝐷𝑇𝑇𝑙𝑙𝑜𝑜𝑙𝑙) and 

𝑝𝑝(𝐷𝐷𝑇𝑇𝑢𝑢𝑢𝑢) respectively. The sequential branching process over three stages results in a 

total of eight scenarios spanning a range of final increases from 1 to 7ºC.  

2. Develop a scenario tree of gradual precipitation changes: Gradual changes in mean 

precipitation is implemented by a trinomial tree (Figure 4.5). At every state scenarios 

branch into one of three options described by the lower 𝐷𝐷𝑃𝑃𝑙𝑙𝑜𝑜𝑙𝑙, mid 𝐷𝐷𝑃𝑃𝑚𝑚𝑖𝑖𝑑𝑑 , and 

upper 𝐷𝐷𝑃𝑃𝑢𝑢𝑢𝑢 levels with the probabilities of 𝑝𝑝(𝐷𝐷𝑃𝑃𝑙𝑙𝑜𝑜𝑙𝑙), 𝑝𝑝(𝐷𝐷𝑃𝑃𝑚𝑚𝑖𝑖𝑑𝑑), and 𝑝𝑝�𝐷𝐷𝑃𝑃𝑢𝑢𝑢𝑢� 

respectively. The trinomial scenario tree consists of a total of twenty-seven scenarios, 

spanning a range of relative changes from -45% to +45%.  
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3. Construct a joint scenario tree of precipitation and temperature changes: In the final 

step, the temperature and precipitation scenario trees (Figure 4.9 and Figure 4.10) are 

combined into a joint scenario tree of climate changes. This is done by enumerating 

all possible bivariate combinations at each stage. For example, scenarios at the first 

stage branch out into six possible paths described by each unique combination of 

possible temperature changes (0.5 and 1.5 ºC) and precipitation changes (-15%, 0%, 

and 15%). Each of those six scenarios further branches out into six pathways at the 

second stage and resulting in a total of 36 = 216 climate change scenarios in the 

final stage (Table 4.3). Assuming that the precipitation and temperature variables are 

independent, the joint transition probabilities 𝑝𝑝�𝐷𝐷𝑇𝑇𝑖𝑖 ,𝐷𝐷𝑃𝑃𝑗𝑗� can be expressed as:                        

  

𝑝𝑝�𝐷𝐷𝑇𝑇𝑖𝑖 ,𝐷𝐷𝑃𝑃𝑗𝑗� =  
 𝑝𝑝(𝐷𝐷𝑇𝑇𝑖𝑖) .  𝑝𝑝�𝐷𝐷𝑇𝑇𝑗𝑗�

∑ ∑  𝑝𝑝(𝐷𝐷𝑇𝑇𝑖𝑖)𝑗𝑗 𝑝𝑝�𝐷𝐷𝑇𝑇𝑗𝑗�𝑖𝑖
 

Equation 4.3 

 
Figure 4.9 The binomial scenario tree representing future temperature changes. Each path 
shows the evolution of one possible scenario over the subsequent periods of 2020-2035, 
2035-2049, and 2050-2065 respectively. Indices DTl and DTu represent scenario 
transitionings into lower and upper levels at each stage.   
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Figure 4.10 The trinomial scenario tree representing future precipitation changes. Each path 
shows the evolution of one possible scenario over the subsequent periods of 2020-2035, 
2035-2049, and 2050-2065 respectively. Indices DPl , DPm, and DPu represent scenario 
transitionings into lower, mid, and upper levels at each stage.   
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Table 4.3 Uncertainty range at each stage of the climate change scenario tree   

Discrete time stages 
represented 

Number of unique 
scenarios 

Range of temperature 
change uncertainty 

Range of precipitation 
change uncertainty 

Stage 1 (year 2020) 1 - - 

Stage 2 (year 2035) 6 0.5 – 1.5°C ±15% 

Stage 3 (year 2050) 36 1 - 4°C ±30% 

Stage 4 (year 2065) 216 1 - 7°C ±45% 

 
 

Overall, the scenario tree generation method presented here aims to provide a fuller 

evaluation of plausible climate changes over the forty-five year planning period. The 

proposed method provides at least two major advantages over the GCM-based scenarios-

tree generation techniques (Ray et al. 2012; Cai et al. 2015) that are illustrated in Figure 4.11. 

First, the prosed procedure takes into account a broader range of uncertainty without being 

restricted to the results derived from GCM projections, especially from the mid-21st Century 

and onwards where the uncertainty in climate projections are expected to be the most. 

Second, the climate change factors used to define the scenario paths provides a uniform 

exploration of the uncertainty space, i.e., with a 1ºC step in the second and third stages, and  

a 1.5 ºC step in the fourth stage for temperature changes and with a %15 step for 

precipitation over the entire period (Figure 4.11). In contrast, if the scenario tree is 

developed based on GCM projections, the resulting scenarios would be clustered in certain 

areas of the climate uncertainty space (Figure 4.11). Given the fact that such clustering 

effects are likely to be dependent on many uncertainty factors, such as emission scenarios, 

initial model conditions or structural model similarities, this would be an important source of 

bias.   
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Figure 4.11 Representation of climate change uncertainty within the climate change scenarios 
at stage 2 (year 2035), stage 3 (year 2050), and stage 4 (year 2065) respectively. The circles in 
red color represent combined temperature and precipitation change factors applied at each 
stage. The circles in black color show associated mean temperature and precipitation changes 
from the GCM projections. 

4.4.4.2.4. Obtaining transient climate scenarios  

The last step of the scenario generation process is to obtain a set of forty-five-year 

transient climate scenarios reflecting both natural climate variability and long-term climate 

changes. This is done by dividing each of the five natural climate realizations into three equal 
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intervals (representing the periods of 2020-2035, 2035-2050, and 2050-2066 respectively). A 

total of 216 climate changes scenarios (Table 4.3) are then imposed over each of the natural 

variability realizations through additive or multiplicative change factors. For example, a 1.5ºC 

increase in the year 2035 is reflected in the first planning period (2020-2035) by a set of 

additive factors from 0 ºC (in the year 2020) to 1.5 ºC (in the year 2035). Similarly, a 15% 

increase in precipitation is reflected in the first planning period through a set of 

multiplicative factors from 0% (in the year 2020) to 15% (in the year 2035). The process 

results in a total of 1080 scenarios (216 climate change x 5 different climate scenarios 

organized through five climate scenario trees. 

4.4.4.3 Generating belief dominated planning pathways    

In the third step, a multi-stage SP model is repeatedly used to generate multiple 

flexible planning trajectories by taking into account the uncertainty associated with 

occurrence likelihoods of the plausible climate changes (Section 4.2.4.5) and the uncertainty 

arising from natural climate variability (Section 4.2.4.3).   

The uncertainty resulting from the occurrence likelihoods of plausible climate 

changes is explored by varying the scenario tree transitioning probabilities (Figures 4.9 and  

4.10). In doing this, four PMFs are specified for temperature changes to describe the 

probabilities of transitioning into a lower or an upper scenario 𝑝𝑝(𝐷𝐷𝑇𝑇𝑙𝑙𝑜𝑜𝑙𝑙) and 𝑝𝑝(𝐷𝐷𝑇𝑇𝑢𝑢𝑢𝑢). 

These four PMFs represent a range of beliefs about the future temperature changes referred 

as “mildly warm”,  “moderately warm”, “very warm”, and “extremely warm” futures (Figure 

4.12 -a). For example, the probability of transitioning to a lower temperature change 

p(𝐷𝐷𝑇𝑇𝑙𝑙𝑜𝑜𝑙𝑙) is set to 0.8 under the “mildly warm” belief, and 0.2 under the “extremely warm” 

belief. Similarly, five PMFs are specified for precipitation changes to set the probabilities of 
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transitioning to a lower, medium, and an upper scenario, i.e., 𝑝𝑝(𝐷𝐷𝑃𝑃𝑙𝑙𝑜𝑜𝑙𝑙),  𝑝𝑝(𝐷𝐷𝑃𝑃𝑚𝑚𝑖𝑖𝑑𝑑), and 

𝑝𝑝�𝐷𝐷𝑃𝑃𝑢𝑢𝑢𝑢�. These five PMFs describing alternative beliefs about future precipitation change 

are called as “very dry”, “dry”, “normal”, “wet”, “very wet” futures (Figure 4.12 –b). Under 

a “very dry” belief, a high value of 0.6 is assigned to p(𝐷𝐷𝑃𝑃𝑙𝑙𝑜𝑜𝑙𝑙). On the other extreme of a 

“very wet” belief, p(𝐷𝐷𝑃𝑃𝑙𝑙𝑜𝑜𝑙𝑙) is set to 0.1. These two sets of PMFs are then combined to 

obtain twenty bivariate PMFs of temperature and precipitation changes. In addition, one 

other bivariate PMF is specified as a “non-informative” belief to assign equal weights to all 

transition probabilities for temperature and precipitation changes.  

 
Figure 4.12 Belief functions defining the probability weights assigned for scenario transition 
levels a) temperature changes, b) precipitation changes.  
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Finally, the inventory of belief dominated planning trajectories is obtained by 

executing the SP model 130 times (from the combinations of 26 climate change beliefs and 

five natural variability realizations), resulting in a total of 28,080 belief dominated planning 

pathways.  

4.4.4.4 Identifying robust development pathways using climate information 

In the final phase of the analysis, the inventory of 28,080 belief dominated planning 

pathways obtained from the SP model are post-processed to identify one or few frequently 

found solutions. GCM projections are also incorporated at this phase, to inform the 

decision-making process on the solution pathways that are associated with ‘more likely’ 

futures. This was done by first calculating the mean basin discharge under each GCM 

projection, and then fitting the results to a Gaussian PDF. The specified PDF of mean 

discharges from the GCM projections is then used to weight the set of 28,080 solutions 

based on the mean discharge value associated with each solution.   

4.5. Results 

4.5.1. Variation in economic outputs under climate variability and change   

Table 4.4 summarizes key findings from the set of 22,680 optimal planning 

trajectories obtained by solving the stochastic optimization repeatedly over 21 bivariate 

PMFs of temperature and precipitation changes and five climate variability realizations. 

Across this large inventory of solutions, the mean basin discharge varied from 80 to 396 km3 

per year, with an average of 196 km3 per year. In contrast, mean basin discharge is 205 km3 

per year under the historic climate, and ranges from 187 to 220 km3 per year across different 

natural climate variability realizations (i.e., without climate change effects).  
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 The total NPV from the water resources system is found to be highly sensitive to 

climate conditions, ranging from about $27 Billion to $73 Billion. Natural climate variability 

itself also results in a considerable variation in NPV up to 20%. Irrigation and hydropower 

are the two largest sectors contributing to the NPV, ranging from 21 to $40 Billion, and 

from 20 to $27 Billion respectively (Table 4.4). The results of the stochastic analysis with 

under uniform probability weights yield very close results to the average values obtained 

from the 130 stochastic solutions, with almost equal NPV values of about $50 Billion. It is 

also important to note that that the costs of new infrastructure developments, especially the 

costs associated with the four new dams is about an order of magnitude less than the 

benefits from irrigation and hydropower (i.e., about 1 to $7 Billion) (Table 4.4). 

Table 4.4 Summary of results across the optimization runs. Under the climate change 
analysis, “stoc. uniform” indicates the results under the uniform temperature and 
precipitation change PMFs. “Stoc. mean” and “Stoc. range” show the results across all 
evaluated PMFs. Under the historical climate analysis, “Hist. climate” represents results 
under historical climate time-series. “Var mean” and “Var range” represents the results 
across the five natural climate variability realizations. 

Results Mean Q 
(km3/yr) 

NPV   
($1B) 

Irrig 
benefits 
($1B) 

HP  
benefits 
($1B) 

Dam 
costs 
($1B) 

Irrig infra 
costs 
($1B) 

Ecoflow 
penalty 
($1B) 

Climate change analysis 

Stoc. uniform 195 50.5 32 26 3.1 2 0.3 

Stoc. mean 196 50.3 33 27 3 2.1 0.4 

Stoc. range 173 – 218 27 - 73 7.6 – 13 6.8 - 9.1 1.1 - 6.7 0.7 - 3.2 0.2-0.6 

Historical climate analysis 

Hist. climate 205 53 35 25 9.8 3.2 > 0.1 

Nat. var mean 202 52 31 25 9.1 3 > 0.1 

Nat. var range 187 - 220 50-61 42 - 48 27 - 36 8.3 - 10 1.8 - 3.5 0 - 0.1 
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4.5.2. Alternative water infrastructure planning trajectories     

Figure 4.13 depicts the optimal dam development pathways obtained from the 

stochastic analysis. An interesting outcome of the analysis is that there are only eleven 

unique solutions across the database of 22,680 solutions. Among these optimal pathways, all 

of them suggests that the Taoussa Dam shall be postponed until 2035 or until 2050 (Figure 

4.13). Another important conclusion is that all optimal pathways except for one indicate that 

The Fomi shall be implemented, with the largest capacity option of 6760 Mm3. Besides these 

two solid findings, results strongly reflect underlying assumptions on climate scenarios, and 

the probabilistic beliefs about climate change.   
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Figure 4.13 The optimal planning trajectories derived from the repeated stochastic 
optimization analysis. In the figure, x-axis shows the decision stages at the years 2020, 2035 
and 2050 respectively. Y-axis marks the cumulative new storage capacity at each decision 
stage. The shapes indicate the number of new dam projects at each decision point. The color 
scheme indicates how often a solution trajectory is obtained (darker colors indicate a higher 
frequency). 

 

Given that the solutions are derived from a broad range of climate uncertainties, one 

useful analysis on the results is to rank the pathways based on the appearance frequency 

within the entire solution database. Table 4.5 shows that first planning pathway, with one 

large dam (Fomi) and two small dams (Diaraguala and Kandadji), represents about 70% of 

all solutions. The second solution, which suggests a smaller capacity Fomi Dam is the 

second most frequent pathway, with a coverage of 10%. At this point, one can also make use 

of climate information to place a larger value on solutions associated with more plausible 

futures. In this work, we incorporated GCM information by first calculating mean basin 

discharge from each of the 110 GCM projections and then fitted the results to a Gaussian 

PDF. Next, we weighted each climate scenario based on their distance to the GCM-derived 

Gaussian distribution, and then computed a “climate-informed dominance” based on the 

weighted results. Column 7 on Table 4.5 shows that GCM-informed dominance is similar to 

the scenario neutral case, especially for the first the pathways.  
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Table 4.5 The features of the optimal water planning trajectories derived from repeated 
stochastic optimization analysis. Columns 2-5 shows the suggest capacity and the 
implementation year Column 6 shows the coverage of the solution within the entire 
database. Column 7 shows the weighted coverage based on GCM projections.  

  

Fomi Dam Diaraguala  Taoussa  Kandadji Dominanc
e (%) 

Climate-
informed 
Dominanc
e (%) 

1 Large (2020) Large (2020) - Small (2020) 68.9 67.2 

2 
Medium 
(2020) Small (2020) - Small (2020) 10.2 12.8 

3 Large (2020) Small (2020) - Small (2020) 9.6 2.0 
4 Large (2020) Small (2020) - Small (2035) 6.8 10.1 
5 Large (2020) Large (2020) - Small (2035) 2.1 2.8 

6 Large (2020) 
Medium 
(2020) Small (2035) Small (2020) 0.9 1.6 

7 Large (2020) Small (2020) - Small (2035) 0.9 2.8 

8 Large (2020) 
Medium  
(2020) 

Medium 
(2035) Small (2020) 0.5 0.3 

9 Large (2020) 
Medium 
(2020) Small (2035) Small (2020) 0.1 0.0 

10 Large (2020) 
Medium 
(2020) Small (2035) Small (2020) 0.1 0.3 

11 Large (2020) Small (2020)   Small (2035) 0.0 0.0 
 

The results depicted in Figure 4.13 and Table 4.5 can be further analyzed by 

revealing the climate conditions associated with most prominent planning pathways. We first 

parsed the range of mean basin discharges from the analysis (ranging from about 100 to 380 

km3 per yr) to bins with interval sizes of 20 km3 per year and then identified most 

frequently found trajectory within each bin. Next, we visualized the results along with the 

probabilistic information derived from the GCM projections (Figure 4.14). 

Figure 4.14 shows that that the two solutions previously depicted in Table 4.5 are 

superior to all others. Results show that the first planning trajectory is the most frequently 

found solution when the mean basin runoff is less than 140 km3 per year, which is very 

plausible based on the current generation of climate model projections. As a result, the 
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planning trajectory suggesting to implement the Fomi and Kandadji Dams in Large size, and 

Diaraguala in small size is identified as the most robust solution.  

 
Figure 4.14 The final set of candidate planning trajectories identified through the analysis. In 
the figure, each color region indicates the mean run-off interval, where the indicated 
planning trajectory is the frequently found solution. The PDF on the left of the figure 
indicates the simulated runoff range from the GCM projections. The solid line is the mean 
of the GCM data. The gray ribbon indicates the natural variability range.  

4.5.3. Value of stochastic analysis 

In the final part of the study, we evaluated the added value gained by using a 

stochastic model based on the value of stochastic solution VSS (Birge and Francois 2011). In 

the analyses involving stochastic optimization, VSS shows the expected value of including 

uncertainty by quantifying the expected difference in cost for a decision based on stochastic 

analysis and one that ignores uncertainty. The VSS measure is calculated from the difference 

between the stochastic analysis, referred as the recourse problem solution (RP) and the 

expected value problem EEV: 
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𝐸𝐸𝑆𝑆𝑆𝑆 = 𝑅𝑅𝑃𝑃 − 𝐿𝐿𝐿𝐿𝐸𝐸 

Equation 4.4                                                               

The parameter EEV measures how the mean value solution performs, allowing the 

second stage decisions and onwards to be chosen optimally as a function of using the EV 

solution and stochasticity (Birge and Louveaux 1997). EEV is calculated in three steps: i) 

solve the related average scenario problem, ii) fixing the first stage decisions for each 

scenario in the SP based on the average scenario solution, and iii) resolving the SP. We 

applied the three step procedure under the uniform scenario probabilities case for each 

climate variability trace obtained a range of VSS values ranging from $11 Million to $236 

Million, and giving a value of $ 95 Million on average.  

Figure 4.15 shows how VSS values change across the twenty probability distributions 

explored in the analysis (i.e., from each combination of the four temperature changes PMFs 

and the five precipitation change PMFs). The results, which are averaged over the five 

natural variability realizations show that the stochastic the stochastic solution provides the 

least added value under wet and mild futures, and the greatest benefits under moderately dry 

and warm conditions (Figure 4.15).  
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Figure 4.15 Variation in the value of the stochastic solution (VSS) measured under different 
probabilistic assumptions. Each value on the x-axis shows a PMF associated with the mean 
temperature changes described as normal, mildly warm, moderately warm, and very warm. 
Similarly, each value on the y-axis represents a PMF ranging from very dry, dry, normal, wet, 
and very wet climate futures.  

 

The relatively low VSS value obtained in the analysis (i.e., less than 1% of the 

objective function value) can be attributed to a number of factors. First, the VSS calculation 

technique mainly focuses on the improvements in the first stage solution and therefore 

indicates a lower bound of the real VSS. Since the problem evaluated in this work make use 

of transient scenarios (i.e., scenarios that gradually evolve), the divergence among the climate 

conditions in the first period of the analysis is relatively small. A second factor contributing 

to low VSS values is the physical bounds defined for the irrigation development problem. 
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Results show that most scenarios, except for the very dry futures can provide make use of 

full irrigation area available.  

4.6. Discussion and Conclusions 

This work presented an analytical framework to support basin-level sequential water 

systems planning under climate uncertainty. The primary motivation for this framework is to 

apply the principles of bottom-up, robustness-based climate risk management to large-scale 

river basin planning problems that involve multiple sources of temporal and spatial 

complexities. To achieve this, the framework employs a multi-stage stochastic optimization 

approach with a number of key innovations over their existing use in water planning. First, 

the framework develops a scenario-tree generation technique that combines stochastically 

sampled climate realizations with transient temperature and precipitation change factors to 

provide a wide range of climate conditions without relying on climate models. Second, we 

address the challenge of assigning probability weights to scenarios in multi-stage 

optimization, which potentially limits their use in problems involving long-term climate 

changes. To circumvent the issue of assigning ex-ante probability weights, we systematically 

explore a wide range probabilistic distributions without making any prior preference. We 

then apply multi-stage stochastic optimization repeatedly over the domain of generated 

scenario trees and probability distributions in an attempt to obtain a diverse ensemble of 

optimal planning trajectories conditioned on the underlying assumptions. Within this large 

ensemble of solutions, we then identify a small subset of optimal sequences that are robust 

(insensitive) to underlying climate scenarios and probability weights and therefore are 

preferable under a deeply uncertain climate. At the final step, we make use of GCM 

projections for the final preference set of robust planning trajectories.  
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The framework is applied to the Niger River Basin to assess the sizing, timing, and 

sequencing of a number of water infrastructure projects considering long-term economic 

benefits over a period of forty-five years, on a seasonal basis, considering three decision 

stages corresponding to the years 2020, 2035, and 2050 respectively. As part of the 

application, a diverse portfolio of optimal planning trajectories was developed considering 

the sizing, timing, and sequencing of four large dams. The results are compared to those 

obtained from a more conventional deterministic optimization and found to be substantially 

different.  

While our approach provides certain advantages over existing optimization or 

Monte-Carlo based frameworks, there are a number of caveats that can limit its application 

to real-world planning problems. First, the current scenario-generation procedure is designed 

to address climate change and does not consider the uncertainties associated with 

population, demand changes, or societal preferences which can also be significant over 

longer time scales. In the context of long-term sequential water infrastructure planning, 

several recent studies have explored multiple sources of uncertainties simultaneously 

(Jeuland and Whittington 2014; Beh et al. 2015b).  

A second limitation is a computational burden related to repeated application of 

basin-scale multi-stage optimization (Mortazavi et al. 2012). For large-scale problems, as the 

Niger River Basin application introduced in this work, the use of detailed process-based 

models can be very prohibitive. In this work, we employed linear optimization model that 

runs at a seasonal step, to reduce the overall computational demand, however, at the expense 

of realism. One alternative is to replace process-based detailed modeling processes with 

statistical meta-models based on machine learning (Cai et al. 2015) or artificial neural 

networks (Beh et al. 2017). 
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CHAPTER 5 
 

 CONCLUSIONS 

The primary goal of this dissertation was to develop new, improved analytical 

methods to aid the planning of water infrastructure systems under a deeply uncertain future. 

In this context, the dissertation aimed to address three open research challenges faced in the 

contemporary practice of water systems planning. The first challenge is about how to design 

long-lived, costly water infrastructure systems under a deeply uncertain climate, and how to 

make the best use of GCM projections in the decision-making processes of such 

infrastructure (Chapter 2). The second challenge is how to quantify multiple, compounding 

sources of climate, socioeconomic, and demographic uncertainties in robustness-based water 

infrastructure planning by concurrently considering stakeholder beliefs and model outputs 

(Chapter 3). Finally, the third challenge is related to adaptive water planning at the basin-

level. It deals with the question of how to plan and schedule multiple water infrastructure 

investments in the best way considering climate change uncertainty (Chapter 4).  

The first study presented in Chapter 2 applied decision scaling concepts to the design 

of the turbine capacity for a run of the river hydropower facility. This study differs from the 

previous applications of decision scaling, which have been used to assess the impact of 

possible climate changes on a water resources system. Also, the work provided the first in 

depth comparison of the decision scaling method to a more conventional GCM-driven, top-

down analysis of water infrastructure systems. The comparative analysis demonstrated the 

potential benefits of the proposed approach in three key areas: i) a fuller and more 

systematic exploration of the plausible climate changes, ii) better accounting for the potential 

effects of natural (inherent) uncertainty, and iii) a more reasonable and flexible use of 

external climate information in the decision analysis processes. 
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The work on Chapter 3 demonstrated an improved decision-analytical framework 

for making informed decisions in water systems planning under long-term climate and 

demographic uncertainty by explicitly considering subjective information or beliefs about the 

future states of the world. The framework integrates a bottom-up, robustness-based risk 

assessment approach called decision scaling with Bayesian network modeling, a popular tool 

for visualizing and propagating probabilistic information in complex systems. The coupled 

framework allows an explicit representation of conditional dependencies among various 

types of uncertainties and provides an estimation of the joint probability distribution of 

problematic conditions that were identified through an exhaustive vulnerability analysis. The 

proposed approach is expanding the existing method in several key directions. First, the 

probabilistic network approach allowed stakeholder beliefs and local information to be 

quantified and incorporated into the risk assessment process. The presented framework also 

allowed blending of multiple sources of information in a transparent, coherent probabilistic 

framework that can be easily communicated to the stakeholders and public. The results from 

the BNDS framework is also coupled with a data-mining algorithm, PRIM to obtain high-

risk scenarios.  

Chapter 4 presented an analytical framework to support basin-level sequential water 

systems planning under climate uncertainty. The primary motivation for this framework was 

to apply the principles of bottom-up, robustness-based climate risk management to large-

scale river basin planning problems that involve multiple sources of temporal and spatial 

complexities. To achieve this, a multi-stage stochastic optimization method is developed 

with a number of key innovations over their existing use in water planning. First, the 

framework incorporated a new scenario-tree generation technique that combined 

stochastically sampled climate realizations with transient temperature and precipitation 
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change factors without relying on climate models. Second, since no prior assumption was 

made on the probability weights of climate change scenarios, a broad range of probability 

distributions were systematically explored within a multistage stochastic optimization 

framework. The analysis yielded a diverse ensemble of optimal planning trajectories 

conditioned on the underlying probabilistic assumptions. Finally, a small subset of 

infrastructure development pathways was identified that were found to be insensitive to the 

underlying climate scenarios and probability weights. Overall, the sequential water 

infrastructure planning framework presented in Chapter 4 shows an innovative way to use 

stochastic optimization under imprecise probabilistic information.  

This dissertation demonstrated how subjective, inherently uncertain belief 

information could be integrated to robustness-based water resources planning for different 

types of problems. However, the value of the methods presented in this work is still unclear, 

and more work is needed to assess them. One shall also keep in mind that the methods 

presented in this work provide engineering-based, analytical solutions that are intended to 

aid decision-making processes. When designing complex water infrastructure systems, 

planners shall also consider the societal, political, and environmental concerns side with 

engineering solutions.    
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APPENDIX A  
 

DESCRIPTION OF THE COUPLED HYDROLOGY AND WATER 

RESOURCES SYSTEM MODEL OF THE MWACHE SYSTEM 

This section describes the details of the coupled water resources simulation model 

used for the analysis in Chapter 3. Monthly run-off from the Mwache River and reservoir 

operations are simulated using a coupled model application implemented in R. Basin 

hydrology are simulated via a two-compartment, parsimonious, lumped parameter watershed 

model (Thomas 1981; Martinez and Gupta 2010). The hydrology component of the coupled 

model application accepts monthly precipitation and potential evapotranspiration as inputs 

and generates monthly streamflow as output. Simulated streamflow is then fed to the 

reservoir simulation component, which calculates monthly storage volumes and the releases 

to the downstream users based on the principles of mass conservation and specified model 

parameters.  

The entire drainage area at the upstream of the Mwache Dam (about 2275 km2) is 

modeled as a single catchment due to the availability of only one streamflow gauge in the 

region (station 3MA03). The runoff response of the Mwache river is calibrated over a 10-

year period from 1980 to 1990 against the observed streamflow record, using the Princeton 

University Terrestrial Hydrology Research Group’s gridded meteorological data set 

(Sheffield et al. 2006). The predictive performance of the hydrologic model is evaluated 

using the Nash–Sutcliffe model efficiency (NSE) coefficient:  

𝑇𝑇𝑆𝑆𝐿𝐿 = 1 −  
∑ (𝑄𝑄0𝑡𝑡 − 𝑄𝑄𝑚𝑚𝑡𝑡 )2𝑇𝑇
𝑡𝑡=1

∑ (𝑄𝑄0𝑡𝑡 − 𝑄𝑄𝑜𝑜����)2𝑇𝑇
𝑡𝑡=1

  

Equation A.1 
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where, Q0
t  is the observed discharge at period t; Qm

t  is modeled discharge at period t; 

Qo���� Is the mean observed discharge over the simulation period T. NSE values range from -∞ 

to 1, in which a value of 1 corresponds to a perfect match of the modeled discharge to the 

observed data. The computed NSE value over the calibration period was found to be 0.43, 

which is decided to be as acceptable given the spatial and temporal limitations in the 

hydroclimate data (Figure A.1). 

 
Figure A.1 Hydrologic calibration results for the Mwache River from June-1980 to May-
1990. The top figure shows monthly rainfall (in Mm3 per month). The bottom figure shows 
the observed vs. simulated streamflow (in Mm3 per month). 

  

The reservoir component of the simulation model is set considering all available 

information in the detailed design report of the Mwache Dam (CES 2014). For the scope of 

the analysis, two downstream water uses are considered that are the total municipal demand 
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from the target districts of Mombasa, and environmental flow requirements at the 

downstream of the Mwache Dam respectively. Monthly releases from the reservoir are 

calculated with the assumption that the priority is to meet the proposed environmental 

release targets by WRMA, and then meet the domestic demand target for the given month as 

much as possible. Adopted environmental release targets are defined based on the historical 

flow exceeded 95% percent of the times (i.e., Q95 value), which is in the order of 8 Mm3 per 

year (Table A.1). Planned irrigation demand from Mwache Dam is low priority and was not 

included in this analysis. 

Table A.1 Monthly Q95 values and the adopted environmental release targets for the 
Mwache Dam 

Month Q95 value 
(Mm3) 

Adopted flow 
target (Mm3) 

Jun 1.06 0.82 
Jul 0.94 0.76 
Aug 0.69 0.55 
Sep 0.00 0.00 
Oct 0.00 0.00 

Nov 0.50 0.40 

Dec 1.56 1.26 
Jan 1.05 0.83 
Feb 0.00 0.00 
Mar 0.00 0.00 
Apr 2.18 1.69 
May 1.85 1.49 

 
 

Mass balance in the reservoir ensures that at any given period t, the total inflow Qt is 

equal to the sum of total outflow Rt, the net change in storage ∆St, and the losses Lt:  

𝑄𝑄𝑡𝑡 =  𝑅𝑅𝑡𝑡 +  ∆𝑆𝑆𝑡𝑡 +  𝐿𝐿𝑡𝑡   
                                                                                                                Equation A.2 
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Reservoir storage volume in period 𝑡𝑡, St is constrained by the reservoir storage 

capacity K and the dead storage volume Sd. For simplicity, Sd is set to be 20 Mm3 and 

assumed to be independent of K. The gradual reduction in the maximum active storage 

capacity is also considered due to the sediment accumulation in the reservoir. The sediment 

accumulation is estimated based on the trapping efficiency formula (Vörösmarty et al., 2003):  

𝑇𝑇𝐿𝐿 = 1 − ( 0.05 / 𝜏𝜏𝑛𝑛0.5)                                                                                                           

Equation A.3 

where 𝑇𝑇𝐿𝐿 is the annual sediment trapping efficiency (%) and 𝜏𝜏𝑛𝑛 is the mean water 

residence time in the reservoir given by the ratio of storage capacity to mean annual flow 

(years-1). Based on the observed historical streamflow over the 1976-1990 period, the 

sediment trapping efficiency of the Mwache Dam is about 95% across the four design 

alternatives. Over the same period, annual sediment flux to the Mwache Dam is estimated to 

be 0.615 Mm3 by the project consultant (CES 2014). Based on these estimates, annual 

sediment load trapped in the Mwache Dam is about 0.62 Mm3 (Table A.2). 

Table A.2 Annual sediment accumulation estimates under the storage design capacity 
estimates of 80, 100, 120, and 140 Mm3 respectively. 

Design storage 
capacity (Mm3)  

Residence 
time (yr-1) 

Sediment trap 
efficiency (%) 

Sediment accumulation  
(Mm3 /year) 

80 0.75 94.2 0.612 

100 0.93 94.8 0.616 

120 1.12 95.2 0.619 

140 1.30 95.6 0.621 
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System performance was assessed by the metrics of water supply reliability and the 

NPV. The former metric, reliability indicates the proportion of months that the reservoir can 

meet the target demand (Hashimoto et al. 1982): 

𝑅𝑅𝑡𝑡  =  𝑇𝑇𝑠𝑠/𝑇𝑇                                                                                                                               

Equation A.4 

where 𝑅𝑅𝑡𝑡 is the reliability of the system, 𝑇𝑇𝑠𝑠 is the number of months with no delivery 

deficit, and 𝑇𝑇 is the total number of months over the planning period. NPV is defined as the 

total present value of benefits minus the present value cost of the project: 

𝑇𝑇𝑃𝑃𝐸𝐸 =  �
(𝐷𝐷(𝑑𝑑, 𝑠𝑠) ∗ 𝑝𝑝𝑙𝑙

(1 + 𝑟𝑟)𝑡𝑡

𝑇𝑇

𝑡𝑡=1

 −  𝐶𝐶𝑑𝑑  

Equation A.5 

where 𝑑𝑑 is the design alternative considered, 𝑠𝑠 is the state of the world, 𝐶𝐶𝑑𝑑  is the 

capital cost of the reservoir (million USD), 𝐷𝐷(𝑑𝑑, 𝑠𝑠) is the annual water delivery to the 

Mombasa city (Mm3); 𝑝𝑝𝑙𝑙is the unit price charged for municipal water use (USD per m3), T is 

the length of the project planning horizon (50 years), t is the serial year index from 1 to 

T=50, and r is the economic discount rate (%).   
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APPENDIX B   
 

 ADDITIONAL INFORMATION ON THE BAYESIAN NETWORK MODEL 

OF THE MWACHE SYSTEM 

Conditional probability distributions for the specific sediment yield  

The probability distribution of specific sediment yield (SSY) is assumed to be 

conditional on local land-use patterns and practices. Major land-use types at the upstream of 

the Mwache Dam location includes closed evergreen lowland forest, closed deciduous forest, 

deciduous woodland, closed grassland, open grassland with sparse shrubs, cropland, and 

habitation and roads respectively (CES 2014). The erosion class and specific sediment yield 

(SSY) associated with each land-use type are estimated previously by CES (2014), based on 

the guidelines provided by the Practice Manual for Water Supply Services in Kenya (Table 

B.1). According to Table B.1, urban areas (Habitat and roads) and agricultural croplands are 

associated with the highest sediment yields (1500 m3 per km2-year), whereas forest areas are 

associated with the lowest (500 m3 per km2-year).  

Table B.1 Specific sediment yields for different land use types in the Mwache catchment 

Land-use type Area 
(km2) 

Erosion class Specific Sediment Yield, 
SSY (m3/ km2-year)  

Closed evergreen forest 45 Low 500 
Closed deciduous forest 435 Low 500 
Deciduous woodland 403 Low 500 
Closed grassland 1055 Medium 1000 
Open grassland  2.25 Medium 1000 
Habitats and roads 113 High 1500 
Crop lands 225.00 High 1500 

 
Based on Table B.1, average SSY within the Mwache dam’s catchment area is about 

820 m3 per km2 – year, which results in an annual sediment loading of 2 Mm3. Since this 
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loading rate is relatively high and would substantially reduce the effective lifetime of the 

reservoir, two upstream check-dams are planned to be constructed. These check-dams are 

expected to provide an overall sediment trapping efficiency %68 percent (CES 2014), which 

would reduce the SSY to Mwache Dam to about 265 m3 per km2 – year and the 

corresponding annual sediment loading to 0.65 Mm3. 

For the BN model, it is assumed that the reduced annual sedimentation loading 

(after considering the reductions due to check dams) will follow a truncated normal 

distribution, in which the parameters of mean and standard deviation will be conditional on 

economic development. Higher economic development is likely to result in greater urban 

and agricultural development within the region, which will also increase soil erosion and 

sediment loading according to Table B.1. The probability density distributions of SSY under 

low, medium and high development levels are illustrated in Figure B.1. 

 
Figure B.1- Adopted probability density distributions of SSY under low, medium, and high 
economic development.  
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Conditional probability distribution for Per capita water demand 

Per capita municipal water demand (PCD) in the Mombasa and the surrounding 

areas is assumed to be dependent on three factors: regional economic development, the price 

of unit water set by the Mombasa municipality, and the mean annual temperature increase 

due to long-term climate change. Historical water demand levels in the Mombasa city and 

the other towns within Coastal Kenya region is obtained from the Coastal Kenya’s Water 

Supply Master Plan (Tahal, 2013). Based on Tahal (2013), region-wide per capita water 

demand ranges from 50 to 250 l per capita per day depending on the income level (Table 

B.2).  

Table B.2 Per capita water demand concerning low, medium, and high-income levels and the 
income distribution for the three target districts of Mwache water supply  

Income  
level 

Municipal 
Demand 
(l/p-d) 

Distribution of income classes over the target population 

Mvita Kisauni Changamwe combined 

Low  50 35% 46% 46% 44% 
Medium  150 60% 48% 48% 50% 
High  250 5% 6% 6% 6% 

 

Table B.2 shows the positive relationship between the household income level and 

the municipal water demand. Assuming that the current socioeconomic trends in the Coastal 

Kenya will continue over the next several decades, the municipal water is also expected to 

increase further. We also considered two other potential factors that may affect future water 

demand levels: increasing air temperature and the unit price of water defined by the 

municipality. Considering these three the conditional probability distribution of per capita 

demand, i.e., 𝑃𝑃(𝑃𝑃𝐶𝐶𝐷𝐷|𝐷𝐷𝑟𝑟𝐷𝐷,∆𝑇𝑇𝑟𝑟𝑚𝑚𝑝𝑝,𝑃𝑃𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟) is given by: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑀𝑀(𝜇𝜇 = ℎ(𝐷𝐷𝑟𝑟𝐷𝐷,∆𝑇𝑇𝑟𝑟𝑚𝑚𝑝𝑝,𝑃𝑃𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟),𝜎𝜎2 = 𝜇𝜇 /3,𝑎𝑎 = 85, 𝑏𝑏 = 150)            ∀𝑖𝑖,𝑘𝑘 
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Equation B.1 

where, ℎ is the transfer function defining the mean of the Gaussian PDF. The 

transfer function ℎ is defined as:  

ℎ(𝐷𝐷𝑟𝑟𝐷𝐷,∆𝑇𝑇𝑟𝑟𝑚𝑚𝑝𝑝,𝑃𝑃𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟)  =  𝑃𝑃𝐶𝐶𝐷𝐷𝑑𝑑𝑛𝑛𝑣𝑣  ∗  10 ∆𝑇𝑇𝑟𝑟𝑚𝑚𝑝𝑝𝑁𝑁𝑁𝑁𝑁𝑁𝑀𝑀   −  10 𝑃𝑃𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟𝑁𝑁𝑁𝑁𝑁𝑁𝑀𝑀 

Equation B.2 

where 𝑃𝑃𝐶𝐶𝐷𝐷𝑑𝑑𝑛𝑛𝑣𝑣 is equal to 85, 100, and 15 at the low, medium and high development 

levels and ∆𝑇𝑇𝑟𝑟𝑚𝑚𝑝𝑝𝑁𝑁𝑁𝑁𝑁𝑁𝑀𝑀 and 𝑃𝑃𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟𝑁𝑁𝑁𝑁𝑁𝑁𝑀𝑀 define values of mean temperature changes and the 

unit price of water normalized over the 0-1 interval. Figure B.2 shows examples of 

conditional PDFs of per capita demand based on the relationships shown on Equations B.1 

and B.2. 
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Figure B.2 The conditional likelihood of PCD based on unit price of water, temperature 
increases due to climate change, and socio-economic development.  
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APPENDIX C   
 

 DESCRIPTION OF STOCHASTIC MIXED-INTEGER PROGRAMMING 

MODEL OF THE NIGER RIVER BASIN  

Multistage stochastic programming method 

Stochastic programming (SP) (Dantzig 1955) is an extension to deterministic 

optimization to capture the dynamic uncertainties in a given problem. The purpose of an SP 

model is to find a sequence of decisions that is feasible across all possible instances of the 

random variables, and that maximizes the expectation of some objective function dependent 

on the decisions and random variables (Defourny et al. 2012).  SP models can be formulated 

in two or more stages, where each stage represents the time-periods that the decisions are 

made. The simplest formulation is a two-stage recourse model, in which the decision maker 

takes some initial action 𝑥𝑥1 under uncertainty. A recourse action, 𝑥𝑥2 is then made in the 

second stage after the uncertainty is resolved. Hence, the actions taken in the second-stage 

actions aim to compensate for any bad effects of the first-stage decisions. The 2-stage SP 

formulation can be extended to a 𝑇𝑇-stage problem, in which the decisions taken at discrete 

time-periods 𝑥𝑥 = {𝑥𝑥1,…, 𝑥𝑥𝑇𝑇𝑓𝑓} alternative with the observations of stochastic events 

 𝜔𝜔 = {𝜔𝜔1,…, 𝜔𝜔𝑇𝑇𝑓𝑓}, i.e., 𝑥𝑥1,𝜔𝜔1,…, 𝑥𝑥𝑇𝑇𝑓𝑓−1, 𝜔𝜔𝑇𝑇𝑓𝑓−1𝑥𝑥𝑇𝑇𝑓𝑓 , 𝜔𝜔𝑇𝑇𝑓𝑓 .  

An essential requirement of multistage SP models is the “nonanticipativity” (or 

implementability) constraints to impose that the decisions made at any stage t only depend 

on previous events up to that stage, i.e., 𝑥𝑥𝑇𝑇(𝜔𝜔1, … 𝜔𝜔𝑇𝑇𝑓𝑓−1). Based on this principle, a SP 

model can be formulated as: 
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𝑚𝑚𝑖𝑖𝑛𝑛
𝑥𝑥(∙)

 𝑍𝑍 =𝑓𝑓1(𝑥𝑥1) + 𝐿𝐿 �𝑓𝑓2(𝑥𝑥2,𝜔𝜔2) + 𝐿𝐿 �𝑓𝑓3(𝑥𝑥3,𝜔𝜔3) + 𝐿𝐿 �… + 𝐿𝐿[𝑓𝑓𝑇𝑇𝑓𝑓 �𝑥𝑥𝑇𝑇𝑓𝑓 ,𝜔𝜔𝑇𝑇𝑓𝑓����                           

𝑠𝑠. 𝑡𝑡.               

𝐴𝐴1𝑥𝑥1 = 𝑏𝑏1
 𝐵𝐵2𝑥𝑥1 + 𝐴𝐴2𝑥𝑥2 = 𝑏𝑏2

    𝐵𝐵3𝑥𝑥2 + 𝐴𝐴3𝑥𝑥3 = 𝑏𝑏3
⋱ ⋮

 𝐵𝐵𝑇𝑇𝑓𝑓𝑥𝑥𝑇𝑇𝑓𝑓−1 + 𝐴𝐴𝑇𝑇𝑓𝑓𝑥𝑥𝑇𝑇𝑓𝑓 = 𝑏𝑏𝑇𝑇𝑓𝑓

  

                      0 ≤  𝑥𝑥𝑡𝑡 𝑓𝑓𝐶𝐶𝑟𝑟 𝑡𝑡 = 1, …𝑇𝑇𝑓𝑓               

Equation C.1                                                                         

where 𝑓𝑓(𝑥𝑥𝑡𝑡(𝜔𝜔𝑡𝑡)) is the expected value of the objective function at stage t; 𝐴𝐴 and 𝐵𝐵 

are the technology and transition matrices, and 𝑏𝑏1,… 𝑏𝑏𝑇𝑇  are the right hand side coefficients 

(Birge and Francois 2011). Note that the problem formulation (2) relies on a specific 

representation of uncertain events,  𝜔𝜔1, … ,  𝜔𝜔𝑇𝑇−1 in association with the decision stages.  

A common way to express uncertainty in SP is to use a scenario-tree formulation, in 

which a scenario is defined as one possible realization of the random events from to the first 

stage to the final 𝑇𝑇𝑓𝑓 (Dupacová et al. 2000). On Figure 15, the branching process in a 

scenario tree begins with the root vertex, in which the decisions are made in the absence of 

information, and terminates at the leaf vertices. Each vertex represents possible states of the 

future at given decision stages and have a conditional probability weight 𝑝𝑝(𝐷𝐷𝑖𝑖).  A scenario is 

expressed by the set of vertices on its path 𝑠𝑠𝑗𝑗 = {𝐷𝐷𝑠𝑠𝑗𝑗
1,…, 𝐷𝐷𝑠𝑠𝑗𝑗

𝑇𝑇𝑓𝑓}. Thus, the probability of a 

scenario 𝑝𝑝(𝑠𝑠𝑗𝑗) is equal to the product of the conditional probabilities of all vertices that are 

in its path 𝑝𝑝(𝑠𝑠𝑖𝑖)  =  ∏ 𝑝𝑝 �𝐷𝐷𝑠𝑠𝑗𝑗
𝑡𝑡� .𝑇𝑇𝑓𝑓

𝑡𝑡=1   

Using a vertex-based notation, the objective function of the stochastic model is 

reformulated as a deterministic equivalent problem:  
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𝑚𝑚𝑖𝑖𝑛𝑛
𝑥𝑥(∙)

 𝑍𝑍 =�𝑝𝑝(𝐷𝐷𝑖𝑖).  𝐹𝐹(𝑥𝑥𝑣𝑣𝑖𝑖 ,𝜔𝜔)

𝑉𝑉𝑓𝑓

𝑖𝑖=1

 

Equation C.2                                                                       

where, 𝐹𝐹(𝑥𝑥𝑣𝑣𝑖𝑖 ,𝜔𝜔) is the objective function value for the vertex 𝐷𝐷𝑖𝑖 = 1, … ,𝐸𝐸𝑓𝑓. Note 

that the nonanticipativity constraints are implicit in given notation, since we directly solve 

the optimization model over the set of vertices.  

 
Figure C.1 Illustration of a generalized scenario tree. Each point in the scenario tree 𝐷𝐷𝑖𝑖 is a 
vertex, with a probability weight of 𝑝𝑝(𝐷𝐷𝑖𝑖). The highlighted path represents one possible 
scenario 𝑠𝑠𝑗𝑗 . 

Formulation of the Niger River Basin model   

The NRB optimization model is formulated as a multi-stage stochastic mixed-integer 

program (SMIP). The purpose of the model is to find an optimal sequence of infrastructure 

planning decisions for maximizing NPV of the system considering long-term climate 

uncertainty. There are three infrastructure decision stages at years 2020, 2035, and 2050, and 

three subsequent observation periods from 2020 to 2034, from 2035 to 2049, and from 2050 

to 2064 respectively. The model runs at a seasonal time-step, with a wet season from May to 

November and a dry season from December to April respectively.   
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There are five major socioeconomic sectors in the optimization model: energy 

(hydropower), irrigation, fishing, municipal and industrial water use, and environmental 

flows. Figure 16 shows a conceptual diagram of the model indicating the linkages between 

the natural and the water resources systems.   

 
Figure C.2 Conceptual representation of the Niger River Basin long-term planning model. 
Arrows show major linkages between model components 
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The schematic of the Niger River Basin system 

The Niger Basin water resources system is represented by a node-link network, in 

which nodes 𝑛𝑛 represent various entities in the system (e.g., reservoirs, diversions) and the 

links set the connections among those entities (Mckinney et al. 1999; Rosegrant et al. 2000). 

The system consists of a total of 160 nodes including: 

• 49 source nodes (𝑛𝑛𝑠𝑠 ∈ 𝑛𝑛) representing the approximate locations of the sub-basins that 

provide monthly basin-runoff to the water resources system,  

• 67 river nodes (𝑛𝑛𝑛𝑛 ∈ 𝑛𝑛) representing the water diversions and the river conjunctions,  

• 12 reservoir nodes (𝑛𝑛𝑟𝑟 ∈ 𝑛𝑛) representing the locations of the existing and potential 

reservoirs, 

• 2 wetland nodes (𝑛𝑛𝑛𝑛 ∈ 𝑛𝑛) representing prominent wetlands,  

• 11 irrigation nodes (𝑛𝑛𝑟𝑟 ∈ 𝑛𝑛) representing the irrigation diversions aggregated at the level of 

development zones, and   

• 19 domestic nodes (𝑛𝑛𝑟𝑟 ∈ 𝑛𝑛) represent the municipal and industrial water diversions 

aggregated based on spatial proximity.   

• 28 environmental flow nodes (𝑛𝑛𝑟𝑟 ∈ 𝑛𝑛) representing the locations of minimum environmental 

flow targets.   

Generation of basin runoff 

For the scope of this work, basin runoff from the forty-nine catchments in the NRB 

is generated using a simple, physically-based, lumped-parameter ‘abcd’ hydrology model 

(Thomas 1981). Simulated runoff from each of the 49 sub-catchments is calibrated using the 

run-off data from the Niger Mike Basin model (BRLi and DHI 2007a) over a 60-year 

historical period (1948-20008). The goodness-of-fit of the developed abcd models are 
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summarized using the NSE measure (A.1). The results from the hydrological model 

calibration results are shown in Table C.1. 

Table C.1 Results obtained from the hydrological calibration process  

Catchment 
ID 

Catchment 
latitude 

Catchment 
area (km2) 

Nash-Sutcliffe 
Efficiency 
(NSE) 

C05_11 11.25 15048.26 0.757 
C06 10 15713.61 0.604 
C07 9.5 12518.4 0.776 
C08_09 10 5504.82 0.814 
C10_59 9.5 19440.17 0.785 
C12 11 21601.69 0.807 
C13 11 5725.14 0.66 
C14_17 6.13 10333.55 0.638 
C15_57 10.5 34584.76 0.676 
C16 12.25 19823.25 0.812 
C19 12 34747.23 0.75 
C53 14.5 26496.17 0.72 
C21 15.5 136109 0.698 
C23 16 81756 0.83 
C24 15 42444 0.816 
C25 15 12980 0.791 
C26_28_29 13 38868 0.753 
C27 14 5582 0.749 
C30 12.5 9649 0.712 
C31 13 34340 0.163 
C32 11.5 9648 0.751 
C33 12 34117 0.719 
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Table C.1 (Continued) 

Catchment 
ID 

Catchment 
latitude 

Catchment 
area (km2) 

Nash-Sutcliffe 
Efficiency 
(NSE) 

C34 11 13410 0.738 
C40 13 33790 0.284 
C62 12.5 3200 0.756 
C63 13 15870 0.616 
C64 12 4800 0.775 
C65 12.5 43910 0.719 
C66 10.5 791 0.669 
C82 10.5 21080 0.797 
C84 10 2.50E+04 0.719 
C86_87 10.5 17950 0.687 
C88 10.25 6380 0.558 
C89 10.5 15800 0.782 
C90 12.25 2380 0.38 
C75 8 1640 0.721 
C78_79 7.5 46626 0.731 
C80 8 147640 0.719 
C83 8.75 30650 0.795 

 

Objective function of the optimization model 

The objective of the model is to maximize long-term net economic benefits from 

water use and allocation given by the summation of discounted annual benefits from 

irrigated agriculture, hydropower production and fishing minus the cost of new water 

infrastructure investments and the penalties from environmental flow deficits:  
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𝑚𝑚𝑎𝑎𝑥𝑥 𝑍𝑍 =�𝑝𝑝𝑣𝑣 �−�𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑣𝑣
𝑛𝑛𝑛𝑛

−�𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑛𝑛𝑖𝑖𝑣𝑣

𝑛𝑛𝑖𝑖

 − � ��𝑃𝑃𝐿𝐿𝐶𝐶𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜
𝑣𝑣

𝑚𝑚𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜𝑣𝑣

+ ��𝐵𝐵𝐶𝐶𝑅𝑅𝑅𝑅𝑦𝑦,𝑛𝑛𝑖𝑖
𝑣𝑣  + ���𝐵𝐵𝐵𝐵𝑃𝑃𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛

𝑣𝑣

𝑚𝑚𝑦𝑦𝑛𝑛𝑛𝑛

 
𝑦𝑦𝑛𝑛𝑖𝑖 

+ ���𝐵𝐵𝐹𝐹𝑆𝑆𝐵𝐵𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣

𝑚𝑚𝑦𝑦𝑛𝑛𝑛𝑛

� 

Equation C.3 

where, 𝐷𝐷 is a vertex in the scenario-tree representation of the problem, 𝑝𝑝𝑣𝑣 is the 

probability weight of vertex 𝐷𝐷; y and 𝑚𝑚 are sets indicating the year and the season; 𝑛𝑛𝑟𝑟, 𝑛𝑛𝑖𝑖, 

and 𝑛𝑛𝑟𝑟𝑐𝑐𝐶𝐶 are river nodes corresponding to reservoirs, irrigation zones, and minimum flow 

sites; 𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 are the present value costs of new dams and hydro-agricultural 

infrastructure (in $1M); 𝐵𝐵𝐶𝐶𝑅𝑅𝑅𝑅, 𝐵𝐵𝐵𝐵𝑃𝑃 and 𝐵𝐵𝐹𝐹𝑆𝑆𝐵𝐵 are discounted economic benefits from 

irrigated agriculture, hydropower generation, and fishing (in $1M); and 𝑃𝑃𝐿𝐿𝐶𝐶𝑇𝑇 is a penalizing 

term for not meeting the minimum flow requirements (in units of $1M). 

The following sections introduce the equations used to formulate the constraints of 

the models. A list of all sets, decision variables, and parameters in the formulations is given 

on the Tables C.11, C.12 and C.13 respectively.  

Formulations used for the new infrastructure decisions 

This work assesses two types of new water infrastructure decisions: i) construction of 

new dams along the Niger River and its tributaries for providing water supply and 

hydropower, ii) expanding the capacity of the irrigation infrastructure schemes at the eleven 

irrigation development zones of the NRB.    
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The decisions related to new dam projects are modeled using two sets of binary 

variables: 𝑋𝑋1 and 𝑋𝑋2. The former variable, 𝑋𝑋1 indicates the timing and the capacity of the 

new dam project (4), whereas 𝑋𝑋2 reports whether a dam is already in place (5): 

𝑋𝑋1𝑣𝑣𝑛𝑛𝑛𝑛,𝑎𝑎 =  �1,     𝑖𝑖𝑓𝑓 𝑎𝑎 𝑑𝑑𝑎𝑎𝑚𝑚 𝑝𝑝𝑟𝑟𝐶𝐶𝑗𝑗𝑟𝑟𝑐𝑐𝑡𝑡 𝑑𝑑𝑟𝑟𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝐶𝐶𝑛𝑛 𝑖𝑖𝑠𝑠 𝑚𝑚𝑎𝑎𝑑𝑑𝑟𝑟
0,                                                      𝐶𝐶𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑛𝑛𝑖𝑖𝑠𝑠𝑟𝑟� 

Equation C.4 

𝑋𝑋2𝑣𝑣𝑛𝑛𝑛𝑛    =  �1,     𝑖𝑖𝑓𝑓 𝑎𝑎 𝑑𝑑𝑎𝑎𝑚𝑚 𝑖𝑖𝑠𝑠 𝑖𝑖𝑛𝑛 𝑝𝑝𝑙𝑙𝑎𝑎𝑐𝑐𝑟𝑟
0,                         𝐶𝐶𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑛𝑛𝑖𝑖𝑠𝑠𝑟𝑟� 

Equation C.5 

where, 𝑎𝑎 specifies the capacity alternatives for each dam project. Table C.2 shows the 

three options (small, medium, and large sizes) defined for the Fomi, Diaraguala, Taussa, and 

Kandadji Dams along with their estimated capital costs.  

Table C.2 Specified design capacity alternatives for the Fomi, Diaraguala, Taussa, and 
Kandadji Dams (in Million m3). The associated present value capital costs are given in 
parentheses. 

Name Small size Medium size Large size 

Fomi 
5560  
($300M) 

6160  
($384 M USD) 

6760  
($520M) 

Diaraguala 
2400  
($150M) 

2700  
($189 M USD) 

3000  
($265M) 

Taussa 
2800  
($165M) 

3100  
($209 M USD) 

3400  
($300M) 

Kandadji 
1400  
($115M) 

1600  
($146 M USD) 

1800  
($210M) 

 

A new dam can only be built in one vertex within a single scenario in order to ensure 

the nonanticipativity over the planning horizon:  
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�  
𝑣𝑣∈ 𝑚𝑚𝑎𝑎𝑢𝑢_𝑠𝑠𝑣𝑣(𝑠𝑠𝑖𝑖,𝑣𝑣)

�𝑋𝑋1𝑣𝑣𝑛𝑛𝑛𝑛,𝑎𝑎
𝑎𝑎

 ≤  1 

Equation C.6 

where, 𝑚𝑚𝑎𝑎𝑝𝑝_𝑠𝑠𝐷𝐷(𝑠𝑠𝑖𝑖, 𝐷𝐷) is a mapping set to define the collection of vertices in any 

given scenario 𝑠𝑠𝑖𝑖. For all existing dams, 𝑋𝑋1 is set to zero since no further modification, e.g., 

capacity expansion is allowed. The binary variable 𝑋𝑋2 is 1 for all existing variables, or when a 

new dam investment decision was made in the parent vertex: 

𝑋𝑋2𝑣𝑣𝑛𝑛𝑛𝑛 = 𝑋𝑋2𝑢𝑢𝑎𝑎𝑛𝑛𝑛𝑛 + �𝑋𝑋1𝑣𝑣𝑛𝑛𝑛𝑛,𝑎𝑎
𝑎𝑎

 

Equation C.7 

where, the set 𝑝𝑝𝑎𝑎 indicates the parent vertex of 𝐷𝐷. The parent-child relationships 

among the scenario-tree vertices are defined through the mapping set 𝑚𝑚𝑎𝑎𝑝𝑝_𝑎𝑎𝑛𝑛𝑐𝑐(𝐷𝐷,𝑝𝑝𝑎𝑎). 

Equation C.8 states that X1 and X2 cannot take a value of 1 at the same time, since there is a 

lag between the time a new dam decision is made and the time that dam is in place and 

operational:    

𝑋𝑋2𝑣𝑣𝑛𝑛𝑛𝑛 + �𝑋𝑋1𝑣𝑣𝑛𝑛𝑛𝑛,𝑎𝑎
𝑎𝑎

 ≤ 1 

Equation C.8 

The storage capacity of a new dam 𝐶𝐶𝑇𝑇𝐿𝐿𝑊𝑊 (in Mm3) is given by: 

𝐶𝐶𝑇𝑇𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛
𝑣𝑣 = �𝑘𝑘_𝑎𝑎𝑙𝑙𝑡𝑡𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛,𝑎𝑎 ∗ 

𝑎𝑎

𝑋𝑋1𝑣𝑣𝑛𝑛𝑛𝑛,𝑎𝑎 

Equation C.9 
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where, 𝑘𝑘_𝑎𝑎𝑙𝑙𝑡𝑡𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛,𝑎𝑎 is the prespecified alternatives defined over the set 𝑎𝑎 ∈ 𝐴𝐴. 

Equation (10) sets the present value cost of a new dam investment 𝐶𝐶𝐶𝐶 (in $1M): 

𝐶𝐶𝐶𝐶𝑣𝑣
𝑛𝑛𝑛𝑛 = �(𝑘𝑘_𝑐𝑐𝐶𝐶𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛,𝑎𝑎 ∗ 

𝑎𝑎

𝑋𝑋1𝑣𝑣𝑛𝑛𝑛𝑛,𝑎𝑎)   ∗  𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐𝑓𝑓𝑣𝑣 

Equation C.10 

where, 𝑘𝑘_𝑐𝑐𝐶𝐶𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛,𝑎𝑎 is the cost associated with the selected design capacity and 𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐𝑓𝑓𝑣𝑣 

is the discount factor associated with the vertex 𝐷𝐷. The reservoir storage capacity in place 

and operational at any vertex 𝐷𝐷𝑖𝑖 is obtained from the summation of existing capacity 𝐶𝐶𝑛𝑛𝑛𝑛
𝑢𝑢𝑎𝑎 

and new capacity 𝐶𝐶𝑇𝑇𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛
𝑢𝑢𝑎𝑎 in the parent vertex 𝑝𝑝𝑎𝑎: 

𝐶𝐶𝑑𝑑,𝑛𝑛𝑛𝑛 = � 𝐶𝐶𝑛𝑛𝑛𝑛
𝑢𝑢𝑎𝑎  + 

 𝑎𝑎𝑛𝑛𝑛𝑛_𝑚𝑚𝑎𝑎𝑢𝑢(𝑣𝑣𝑖𝑖,𝑢𝑢𝑎𝑎)

𝐶𝐶𝑇𝑇𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛
𝑢𝑢𝑎𝑎 

Equation C.11 

Irrigation infrastructure decisions are modeled using continuous decisions variables. 

In each development zone, new irrigation infrastructure provides an additional irrigable land 

area for crop production. Based on the data provided by BRLi and DHI (2007), we consider 

two cases: i) expansion of the existing irrigated perimeter, represented by 𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐿𝐿𝑋𝑋𝑃𝑃 (Mm2), 

and ii) creation of new irrigation perimeter, represented by 𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝑇𝑇𝐿𝐿𝑊𝑊 (Mm2). The 

variables 𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐿𝐿𝑋𝑋𝑃𝑃 and 𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝑇𝑇𝐿𝐿𝑊𝑊 are constrained by the specified physical limits at each 

vertex 𝐷𝐷 (Table C.3): 

𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐿𝐿𝑋𝑋𝑃𝑃𝑛𝑛𝑖𝑖𝑣𝑣  ≤  𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑥𝑥𝑝𝑝_𝑚𝑚𝑎𝑎𝑥𝑥 𝑛𝑛𝑖𝑖𝑣𝑣  

  Equation C.12 
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𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝑇𝑇𝐿𝐿𝑊𝑊𝑛𝑛𝑖𝑖
𝑣𝑣  ≤  𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟𝑛𝑛_𝑚𝑚𝑎𝑎𝑥𝑥 𝑛𝑛𝑖𝑖𝑣𝑣       

Equation C.13 

A third decision variable defines the total land area available for irrigated agriculture 

𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐷𝐷𝐿𝐿𝐸𝐸(Mm2). The developed land area at any given vertex 𝐷𝐷𝑖𝑖 , 𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐷𝐷𝐿𝐿𝐸𝐸𝑛𝑛𝑖𝑖𝑣𝑣  is the 

summation of the existing land area and the new development at its parent vertex:  

𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐷𝐷𝐿𝐿𝐸𝐸𝑛𝑛𝑖𝑖𝑣𝑣 = 𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐷𝐷𝐿𝐿𝐸𝐸𝑛𝑛𝑖𝑖
𝑢𝑢𝑎𝑎 +   𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐿𝐿𝑋𝑋𝑃𝑃𝑛𝑛𝑖𝑖

𝑢𝑢𝑎𝑎 +  𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝑇𝑇𝐿𝐿𝑊𝑊𝑛𝑛𝑖𝑖
𝑢𝑢𝑎𝑎 

Equation C.14 

Table C.3 Currently irrigable perimeter and potential expansions across eleven irrigation 
development zones in the NRB 

Irrigation 
zone 

 Currently 
 irrigable 
 perimeter 
 (Mm2) 

 Maximum 
 perimeter 
 expansion  
 (Mm2) 

 Maximum 
new 
perimeter 
2020  
(Mm2) 

 Maximum 
new 
perimeter 
2035  
(Mm2) 

Maximum 
new 
perimeter 
2050  
(Mm2) 

DZ 1 147 71 283 1,415 1,415 
DZ 2 1,162 2,280 253 1,267 1,267 
DZ 3 44 236 944 4,721 4,721 
DZ 4 208 35 139 693 693 
DZ 5 541 334 1,334 6,671 6,671 
DZ 6 35 18 71 357 357 
DZ 7 462 304 1,217 6,084 6,084 
DZ 8 214 323 2,905 14,525 14,525 
DZ 9 129 360 1,442 7,210 7,210 

DZ 10 50 156 1,403 7,016 7,016 
DZ 11 56 74 670 3,348 3,348 
TOTAL 3,047 4,191 10,661 53,306 53,306 

 

The total cost of new irrigation developments 𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 (in $1M) in is calculated from 

the summation of present value costs of the investments. Based on BRLi and DHI (2007), it 
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is assumed that the unit costs of expanding the existing irrigated perimeter and creation of 

new perimeter are 0.5 $1M per Mm2 and 1.2 $1M per Mm2 respectively:  

𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑛𝑛𝑖𝑖𝑣𝑣 =  0.5 ∗  𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐿𝐿𝑋𝑋𝑃𝑃𝑛𝑛𝑖𝑖𝑣𝑣 + 1.2 ∗  𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝑇𝑇𝐿𝐿𝑊𝑊𝑛𝑛𝑖𝑖
𝑣𝑣  

Equation C.15 

Conservation of mass balance 

Conservation of water balance across the river basin system is maintained by an 

accounting of all inflows, releases, and storages. At any given river node n, year 𝑦𝑦, and season 

𝑚𝑚, the releases 𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇 is equal to the summation of all inflows from the upstream nodes 

𝑄𝑄𝐶𝐶𝑇𝑇 minus the summation of the irrigation diversions 𝐷𝐷𝐶𝐶𝐸𝐸𝐶𝐶𝑅𝑅𝑅𝑅 and the municipal and 

industrial diversions 𝐷𝐷𝐶𝐶𝐸𝐸𝑀𝑀𝐶𝐶: 

𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛
𝑣𝑣  = � 𝑄𝑄𝐶𝐶𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛1

𝑣𝑣  
𝑛𝑛1 ∈ 𝑖𝑖𝑛𝑛

− � 𝐷𝐷𝐶𝐶𝐸𝐸𝐶𝐶𝑅𝑅𝑅𝑅𝑦𝑦,𝑚𝑚,𝑛𝑛𝑖𝑖
𝑣𝑣  

𝑛𝑛𝑖𝑖 ∈𝑜𝑜𝑢𝑢𝑡𝑡

− � 𝐷𝐷𝐶𝐶𝐸𝐸𝑀𝑀𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑑𝑑
𝑣𝑣

𝑛𝑛𝑑𝑑 ∈𝑜𝑜𝑢𝑢𝑡𝑡

 

Equation C.16 

where, for a given node 𝑛𝑛, 𝑛𝑛1 specifies the upstream node (𝑛𝑛1 ∈ 𝑖𝑖𝑛𝑛); 𝑛𝑛𝑖𝑖, 𝑛𝑛𝑑𝑑 

specify diversions for irrigation uses (𝑛𝑛𝑖𝑖 ∈ 𝐶𝐶𝑢𝑢𝑡𝑡) and the municipal uses (𝑛𝑛𝑑𝑑 ∈ 𝐶𝐶𝑢𝑢𝑡𝑡) 

respectively.  

For reservoirs and natural lakes, the mass conservation equation (C.16) is modified 

to impose additional constraints:  

𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣  = 𝑄𝑄𝐶𝐶𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛

𝑣𝑣  + 𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣  − 𝑆𝑆𝑇𝑇𝑅𝑅𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛

𝑣𝑣  − 𝑇𝑇𝐿𝐿𝐸𝐸𝐴𝐴𝑃𝑃𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣  

Equation C.17 
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where, 𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶 and 𝑆𝑆𝑇𝑇𝑅𝑅 are storage volumes at the beginning and at the end of the 

given period (in Mm2), NEVAP is the net evaporative loss from the reservoir surface during a 

given period (in Mm2). The equation defining the initial storage volume 𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶 take three 

cases: 

𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣 =  �

𝑆𝑆𝑇𝑇𝑅𝑅𝑦𝑦𝑓𝑓,𝑚𝑚𝑓𝑓,𝑛𝑛𝑛𝑛
𝑢𝑢𝑎𝑎 + 0.8 ∗  𝐶𝐶𝑇𝑇𝐿𝐿𝑊𝑊𝑛𝑛𝑛𝑛

𝑢𝑢𝑎𝑎  ,                 𝑖𝑖𝑓𝑓 𝑦𝑦 = 1,𝑚𝑚 = 1
𝑆𝑆𝑇𝑇𝑅𝑅𝑦𝑦𝑓𝑓−1,1,𝑛𝑛𝑛𝑛

𝑣𝑣   ,                                                 𝑖𝑖𝑓𝑓   𝑦𝑦 > 1,𝑚𝑚 = 1
𝑆𝑆𝑇𝑇𝑅𝑅𝑦𝑦,𝑚𝑚−1,𝑛𝑛𝑛𝑛

𝑣𝑣                                                                    𝑖𝑖𝑓𝑓 𝑚𝑚 > 1
� 

Equation C.18 

where, 𝑦𝑦𝑓𝑓 and 𝑚𝑚𝑓𝑓 are the final year and season. On equation (18), a special case is 

the first condition (y = 1 and m =1). In this case, STRINI takes its value from the final 

period of its parent vertex 𝑝𝑝𝑎𝑎. If a new investment decision is made at the parent node, 

STRINI is set to 80 percent of the storage volume 𝐶𝐶𝑇𝑇𝐿𝐿𝑊𝑊. Reservoir storage volume 𝑆𝑆𝑇𝑇𝑅𝑅 is 

constrained by the physical capacity 𝐶𝐶 and the inactive storage volume 𝑘𝑘_𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑: 

𝐶𝐶_𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑𝑛𝑛𝑛𝑛 ∗ 𝑋𝑋2𝑛𝑛𝑛𝑛𝑣𝑣   ≤  𝑆𝑆𝑇𝑇𝑅𝑅𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑢𝑢𝑎𝑎

 
≤ 𝐶𝐶𝑑𝑑,𝑛𝑛𝑛𝑛   

Equation C.19 

Net evaporative losses 𝑇𝑇𝐿𝐿𝐸𝐸𝐴𝐴𝑃𝑃  is calculated from the average lake surface area, 

𝑅𝑅𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴 (Mm2) and a pre-calculated adjusted seasonal average evaporation rate 

𝑛𝑛𝑟𝑟𝐷𝐷𝑎𝑎𝑝𝑝𝑟𝑟_𝑎𝑎𝑑𝑑𝑗𝑗𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣  (m): 

𝑇𝑇𝐿𝐿𝐸𝐸𝐴𝐴𝑃𝑃𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣 = 𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛

𝑣𝑣 ,∗ 𝑛𝑛𝑟𝑟𝐷𝐷𝑎𝑎𝑝𝑝𝑟𝑟_𝑎𝑎𝑑𝑑𝑗𝑗𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣   

Equation C.20 



 

155 
 

On Equation C.20, adjust net evaporation rate 𝑛𝑛𝑟𝑟𝐷𝐷𝑎𝑎𝑝𝑝𝑟𝑟_adj modifies the baseline net 

evaporation rates based on Hargreaves equation Lu et al. (2005). This provides a rough 

estimate of the effects of long-term temperature changes on lake evaporation.  

Average lake surface area 𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴 is a linear function of the average storage volume 

in the given period, with intercepts 𝑎𝑎𝐷𝐷_𝑐𝑐0𝑚𝑚,𝑛𝑛𝑛𝑛 and slopes 𝑎𝑎𝐷𝐷_𝑐𝑐1𝑚𝑚,𝑛𝑛𝑛𝑛 defined for each 

reservoir and each season: 

𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝑑𝑑,𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛  = 𝑎𝑎𝐷𝐷_𝑐𝑐0𝑚𝑚,𝑛𝑛𝑛𝑛 ∗ 𝑋𝑋2𝑑𝑑,𝑛𝑛𝑛𝑛  + 𝑎𝑎𝐷𝐷_𝑐𝑐0𝑚𝑚,𝑛𝑛𝑛𝑛 ∗  
𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛

𝑑𝑑  +    𝑆𝑆𝑇𝑇𝑅𝑅𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑑𝑑

2
 

Equation C.21 

The seasonal water balance in the Inland Delta, Mali is represented through a 

separate set of equations due to its prominence on the overall water budget of the NRB. The 

Inland Delta is one of the largest wetland systems in the entire African continent that 

extends downstream from KeMacina on the Niger River and Douna on the Bani River, to 

the station Dire in the north. The total surface area of the Inland Delta is about 73 000 km2, 

of which about 40,000 km2 was designated as a Ramsar site in 2004 by Mali (Mahé et al. 

2009). On average, the Niger River loses about 40% percent of its flow in the Inland Delta 

due to evaporation, varying from 24 to 48% based on the year (Mahé et al. 2009). 

In this work, our goal is to provide a reasonable estimate of the seasonal evaporative 

water losses from the wetland area as well as the inflows and outflows from the wetlands 

using simple, linear equations. More detailed analyses of the Inland Delta’s physical 

hydrology and the wetland dynamics is presented by (Kuper et al. 2003; Passchier et al. 2005; 

Zwarts et al. 2005; Dadson et al. 2010). The wetland system in the Inland Delta Region is 

represented by two lakes, i.e., a south lake (DELTAS) and a north lake (DELTAN) 
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respectively. In this representation, the Niger flow enters to the wetland system from the 

south lake after it converges with Bani River, then routed to the north lake and exits.  

In any period, intermediate lake volumes are calculated based on the previous 

season's storage 𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶, current inflow from the upstream node 𝑄𝑄𝐶𝐶𝑇𝑇, and the current net 

evaporative losses 𝑇𝑇𝐿𝐿𝐸𝐸𝐴𝐴𝑃𝑃:  

𝑆𝑆𝑇𝑇𝑅𝑅_𝐶𝐶𝑇𝑇𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣  = 𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙

𝑣𝑣  + 𝑄𝑄𝐶𝐶𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣  − 𝑇𝑇𝐿𝐿𝐸𝐸𝐴𝐴𝑃𝑃𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙

𝑣𝑣  

Equation C.22 

where, the set 𝑛𝑛𝑛𝑛 represents t DELTAS and DELTAN respectively. 𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴 is 

expressed as a linear function of the inflow and previous months’ storage volume: 

𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣  = 𝑎𝑎𝐷𝐷_𝑐𝑐0𝑚𝑚,𝑛𝑛𝑙𝑙 ∗  𝑄𝑄𝐶𝐶𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙

𝑣𝑣  +  𝑎𝑎𝐷𝐷_𝑐𝑐0𝑚𝑚,𝑛𝑛𝑙𝑙 ∗ 𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣  

Equation C.23 

The outflows from the wetlands are calculated in two steps. First, an initial outflow 

𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶 is calculated as a linear function of inflow 𝑄𝑄𝐶𝐶𝑇𝑇 and previous season’s storage 

𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶: 

𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣  = 𝑑𝑑𝑟𝑟𝑙𝑙𝑡𝑡𝑎𝑎𝑑𝑑_𝑐𝑐0𝑚𝑚,𝑛𝑛𝑙𝑙 ∗  𝑄𝑄𝐶𝐶𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙

𝑣𝑣  +  𝑑𝑑𝑟𝑟𝑙𝑙𝑡𝑡𝑎𝑎𝑑𝑑_𝑐𝑐1𝑚𝑚,𝑛𝑛𝑙𝑙 ∗ 𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣  

Equation C.24 

The relationship between 𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶 and 𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶 is defined as follows using an 

additional set of binary variables 𝑋𝑋3: 

𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣  ≤  𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙

𝑣𝑣 + �1 − 𝑋𝑋3𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣 � ∗ 𝑀𝑀  

Equation C.25 
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𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣  ≥  𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙

𝑣𝑣 − 𝑋𝑋3𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣 ∗ 𝑀𝑀  

Equation C.26 

where, 𝑀𝑀 is a very large number (in this case 500,000) used for the integer 

formulation. Finally, the actual outflow from the lakes 𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇 is computed through a series 

of constraints to ensure that mass balance laws are not violated.  

Equations C.27 through C.30 represents linearized approximations of the mass-

balance in the wetlands𝑛𝑛𝑑𝑑, which are specified based on the MikeBasin model the NRB 

system (BRLi and DHI, 2007): 

𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣  ≥  𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙

𝑣𝑣 −  ( 1 −  𝑋𝑋3𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣 ) ∗ 𝑀𝑀 

Equation C.27 

𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣  ≤  𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙

𝑣𝑣  

Equation C.28 

𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣  ≥  𝑆𝑆𝑇𝑇𝑅𝑅𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙

𝑣𝑣 −  𝑋𝑋3𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣 ∗ 𝑀𝑀  

 
Equation C.29 

𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙
𝑣𝑣  ≤  𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙

𝑣𝑣  

Equation C.30 

Benefits from hydropower 

Economic benefits from hydropower production is approximated using a set of 

linear equations defined for each site 𝑛𝑛𝑟𝑟 and season 𝑚𝑚: 

𝐵𝐵𝑃𝑃𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣  = ℎ𝑝𝑝𝑛𝑛0𝑛𝑛𝑛𝑛,𝑚𝑚 ∗ 𝑅𝑅𝐵𝐵𝑃𝑃𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛

𝑣𝑣  +   ℎ𝑝𝑝𝑛𝑛1𝑛𝑛𝑛𝑛,𝑚𝑚  ∗  𝑆𝑆𝑇𝑇𝑅𝑅𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣  
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Equation C.31 

where, 𝐵𝐵𝑃𝑃 is the hydropower output (in MW),  𝑅𝑅𝐵𝐵𝑃𝑃 is release through the turbines 

(Mm2); and ℎ𝑝𝑝_𝑐𝑐0 and ℎ𝑝𝑝_𝑐𝑐1 are coefficients defined for each reservoir and season obtained 

by linear regression. 𝐵𝐵𝑃𝑃 variable is constrained by maximum plant capacity ℎ𝑝𝑝_𝑚𝑚𝑎𝑎𝑥𝑥, and 

𝑅𝑅𝐵𝐵𝑃𝑃 cannot exceed total releases to downstream 𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇: 

𝑅𝑅𝐵𝐵𝑃𝑃𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣  ≤  𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑙𝑙

𝑣𝑣  

Equation C.32 

𝐵𝐵𝑃𝑃𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣  ≤  𝐵𝐵𝑃𝑃_𝑚𝑚𝑎𝑎𝑥𝑥𝑛𝑛𝑛𝑛  ∗      𝑋𝑋2𝑣𝑣𝑛𝑛𝑛𝑛 

Equation C.33 

Based on the approximated hydropower production, discounted annual benefits 

from hydropower production 𝐵𝐵𝐵𝐵𝑃𝑃 ($1M) is: 

 𝐵𝐵𝐵𝐵𝑃𝑃𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣  = 𝐵𝐵𝑃𝑃𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛

𝑣𝑣  ∗  3.6 ∗ ℎ𝑝𝑝_𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟  * 𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐𝑓𝑓𝑣𝑣𝑦𝑦 

Equation C.34 

where, ℎ𝑝𝑝_𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟 is the unit price of electricity generated, which is assumed as 0.123 

$1M per GWh (BRLi and DHI 2007).                                                              

 Benefits from irrigation 

Irrigation benefits are calculated based on the crop yield obtained at each season. 

Each season, the model decides on how much area to allocate for each crop type 𝑐𝑐 based on 

water availability and economic profitability. The model considers a number of crop types 

including sugar cane (all year), market gardening products (all year), grains (wet and dry 
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season) and rice (wet and dry season). The distribution of these crop types over the eleven 

irrigation development zones is shown in Table C.4.  

Table C.4 Crop types considered in each irrigation district  

Irrig_Zone Sugar cane GrainsWS GrainsDS Market G. RiceWS RiceDS 
DZ_1 x x x x x x 
DZ_2 x x x x x x 
DZ_3 x x x x x x 
DZ_4 x x x x x x 
DZ_5   x x x x x 
DZ_6 x x x x x x 
DZ_7 x x x x x x 
DZ_8 x   x x x x 
DZ_9 x x x x x x 
DZ_10   x x x x x 
DZ_11   x x   x   

 

The summation of the area allocated to each crop type 𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐶𝐶𝑅𝑅𝑇𝑇𝑃𝑃  is constrained 

by the irrigable land area 𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐷𝐷𝐿𝐿𝐸𝐸𝑛𝑛𝑖𝑖𝑣𝑣 : 

�𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐶𝐶𝑅𝑅𝑇𝑇𝑃𝑃𝑛𝑛,𝑦𝑦,𝑚𝑚,𝑛𝑛𝑖𝑖
𝑣𝑣 ∙ 𝑐𝑐𝑟𝑟𝐶𝐶𝑝𝑝_𝑐𝑐𝑎𝑎𝑙𝑙𝑛𝑛𝑖𝑖,𝑛𝑛,𝑚𝑚

𝑛𝑛

≤ 𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐷𝐷𝐿𝐿𝐸𝐸𝑛𝑛𝑖𝑖𝑣𝑣  

Equation C.35 

where, the parameter 𝑐𝑐𝑟𝑟𝐶𝐶𝑝𝑝_𝑐𝑐𝑎𝑎𝑙𝑙 specifies the cropping season for each crop type 𝑐𝑐 in 

each irrigation district 𝑛𝑛𝑖𝑖. The total amount of irrigation water required at each season 

𝐷𝐷𝐶𝐶𝐸𝐸𝐶𝐶𝑅𝑅𝑅𝑅 is obtained by multiplying the crop water requirements 𝑐𝑐𝑛𝑛𝑟𝑟 (in mm per month), 

and the area allocated to each crop type 𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐶𝐶𝑅𝑅𝑇𝑇𝑃𝑃: 
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𝐷𝐷𝐶𝐶𝐸𝐸𝐶𝐶𝑅𝑅𝑅𝑅𝑦𝑦,𝑚𝑚,𝑛𝑛𝑖𝑖
𝑣𝑣  = �𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐶𝐶𝑅𝑅𝑇𝑇𝑃𝑃𝑛𝑛,𝑦𝑦,𝑚𝑚,𝑛𝑛𝑖𝑖

𝑣𝑣

𝑛𝑛

 ∗  𝑐𝑐𝑛𝑛𝑟𝑟𝑛𝑛𝑖𝑖,𝑛𝑛,𝑚𝑚 ∗ (1𝑟𝑟 − 3 ) 

Equation C.36 

The area devoted for each crop type 𝑐𝑐 in each irrigation development zone is 

constrained by the specified lower and upper limits as specified in Tables C.5 and C.6 

respectively.  

𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐶𝐶𝑅𝑅𝑇𝑇𝑃𝑃𝑛𝑛,𝑦𝑦,𝑚𝑚,𝑛𝑛𝑖𝑖
𝑣𝑣  ≤ 𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐷𝐷𝐿𝐿𝐸𝐸𝑛𝑛𝑖𝑖𝑣𝑣 ∗ 𝑐𝑐𝑟𝑟𝐶𝐶𝑝𝑝_𝑚𝑚𝑎𝑎𝑥𝑥𝑛𝑛,𝑛𝑛  

Equation C.37 

𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐶𝐶𝑅𝑅𝑇𝑇𝑃𝑃𝑛𝑛,𝑦𝑦,𝑚𝑚,𝑛𝑛𝑖𝑖
𝑣𝑣  ≥ 𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐷𝐷𝐿𝐿𝐸𝐸𝑛𝑛𝑖𝑖𝑣𝑣 ∗ 𝑐𝑐𝑟𝑟𝐶𝐶𝑝𝑝_𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛,𝑛𝑛  

Equation C.38 

 

Table C.5 – Minimum amount of land area devoted to each crop type in each irrigation 
development zone (in %) 

Crop type DZ 
1 

DZ 
2 

DZ 
3 

DZ 
4 

DZ 
5 

DZ 
6 

DZ 
7 

DZ 
8 

DZ 
9 

DZ 
10 

DZ 
11 

RiceWS 50% 50% 50% 50% 60% 0% 0% 30% 30% 30% 60% 

RiceDS 0% 30% 50% 50% 20% 0% 0% 0% 0% 0% 30% 

GrainsWS 0% 0% 0% 0% 0% 50% 50% 30% 30% 30% 0% 

GrainsDS 0% 0% 0% 0% 0% 30% 50% 30% 30% 30% 0% 

Market 
Gard. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Sugar 
cane 

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
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Table C.6 Maximum amount of land area devoted to each crop type in each irrigation 
development zone (in %) 

Crop type DZ 
1 

DZ 
2 

DZ 
3 

DZ 
4 

DZ 
5 

DZ 
6 

DZ 
7 

DZ 
8 

DZ 
9 

DZ 
10 

DZ 
11 

RiceWS 50% 50% 50% 50% 60% 0% 0% 30% 30% 30% 60% 

RiceDS 0% 30% 50% 50% 20% 0% 0% 0% 0% 0% 30% 

GrainsWS 0% 0% 0% 0% 0% 50% 50% 30% 30% 30% 0% 

GrainsDS 0% 0% 0% 0% 0% 30% 50% 30% 30% 30% 0% 

Market 
Gard. 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Sugar 
cane 

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 

Finally, the economic benefits from irrigated agriculture 𝐵𝐵𝐶𝐶𝑅𝑅𝑅𝑅 is calculated based on 

the yield from each crop type: 

𝐵𝐵𝐶𝐶𝑅𝑅𝑅𝑅𝑑𝑑,𝑦𝑦,𝑛𝑛𝑖𝑖  = �𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝐶𝐶𝑅𝑅𝑇𝑇𝑃𝑃𝑑𝑑,𝑛𝑛,𝑦𝑦,𝑛𝑛𝑖𝑖 (𝑐𝑐𝑟𝑟𝐶𝐶𝑝𝑝_𝑦𝑦𝑖𝑖𝑟𝑟𝑙𝑙𝑑𝑑𝑛𝑛,𝑛𝑛𝑖𝑖
𝑛𝑛

 . 𝑐𝑐𝑟𝑟𝐶𝐶𝑝𝑝_𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟𝑛𝑛,𝑛𝑛𝑖𝑖 −  𝑐𝑐𝑟𝑟𝐶𝐶𝑝𝑝_𝑐𝑐𝐶𝐶𝑠𝑠𝑡𝑡𝑛𝑛,𝑛𝑛𝑖𝑖) 

Equation C.39 

where 𝑐𝑐𝑟𝑟𝐶𝐶𝑝𝑝_𝑦𝑦𝑖𝑖𝑟𝑟𝑙𝑙𝑑𝑑 is the average crop yield specified for each crop type 𝑐𝑐 (in 1,000 

tons per Mm2), 𝑐𝑐𝑟𝑟𝐶𝐶𝑝𝑝_𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟 is the selling price of the crop (in 1$M per Mm2), and crop cost 

is the total costs associated with the specified crop type in (in 1$M per Mm2).  

The data associated with average crop yields in each development zone (kg/m2), 

selling price of the each crop in each development zone ($/kg), and average crop costs for 

each development zone ($/m2) are obtained from BRLi and DHI (2007a, b) and shown on 

Tables C.7,  C.8, and C.9 respectively.  
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Table C.7 Average crop yield in each irrigation district (kg/m2) 

Crop type DZ1 DZ2 DZ3 DZ4 DZ5 DZ6 DZ7 DZ8 DZ9 DZ10 DZ11 

RiceWS 0.40 0.55 0.13 0.12 0.45 0.45 0.00 0.45 0.45 0.00 0.00 

RiceDS 0.45 0.45 0.45 0.45 0.45 0.45 0.00 0.00 0.40 0.00 0.00 

GrainsWS 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00 

GrainsDS 0.00 0.00 0.00 0.00 0.30 0.00 0.30 0.30 0.30 0.30 0.30 

Market Gard. 3.00 3.00 3.00 0.00 3.00 3.00 0.00 0.00 0.00 0.00 0.00 

Sugar cane 9.00 9.00 0.00 0.00 0.00 0.00 0.00 9.00 9.00 9.00 0.00 

 

Table C.8 - Selling price of each crop in each irrigation district (in $1M per Mm2) 

Crop type DZ1 DZ2 DZ3 DZ4 DZ5 DZ6 DZ7 DZ8 DZ9 DZ10 DZ11 

RiceWS 0.25 0.25 0.25 0.25 0.25 0.25 0.00 0.25 0.25 0.00 0.00 

RiceDS 0.25 0.25 0.25 0.25 0.25 0.25 0.00 0.00 0.25 0.00 0.00 

GrainsWS 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 

GrainsDS 0.00 0.00 0.00 0.00 0.22 0.00 0.22 0.22 0.22 0.22 0.22 

Market Gard. 0.12 0.12 0.12 0.00 0.12 0.12 0.00 0.00 0.00 0.00 0.00 

Sugar cane 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.00 

 

Table C.9 - The cost of each crop type in each irrigation district (in $1M per Mm2) 

Crop type DZ1 DZ2 DZ3 DZ4 DZ5 DZ6 DZ7 DZ8 DZ9 DZ10 DZ11 

RiceWS 0.06 0.08 0.02 0.02 0.08 0.08 0.00 0.08 0.08 0.00 0.00 

RiceDS 0.07 0.07 0.07 0.07 0.08 0.08 0.00 0.00 0.08 0.00 0.00 

GrainsWS 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 

GrainsDS 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.04 0.04 0.04 0.04 

Market Gard. 3.00 3.00 3.00 0.00 3.00 3.00 0.00 0.00 0.00 0.00 0.00 

Sugar cane 9.00 9.00 0.00 0.00 0.00 0.00 0.00 9.00 9.00 9.00 0.00 
 

Benefits from fisheries 

The benefits from fishery activities are assumed to be as a function of reservoir 

surface area 𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴:  

𝐵𝐵𝐹𝐹𝐶𝐶𝑆𝑆𝐵𝐵𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛
𝑣𝑣 =  𝑆𝑆𝐴𝐴𝑅𝑅𝐿𝐿𝐴𝐴𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛

𝑣𝑣 ∗  𝑓𝑓𝑖𝑖𝑠𝑠ℎ_𝑝𝑝𝑟𝑟𝐶𝐶𝑑𝑑 ∗  𝑓𝑓𝑖𝑖𝑠𝑠ℎ_𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟  
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Equation C.40 

where 𝑓𝑓𝑖𝑖𝑠𝑠ℎ_𝑝𝑝𝑟𝑟𝐶𝐶𝑑𝑑 is the fish productivity constant assumed as 10 tons per Mm2 – 

year and 𝑓𝑓𝑖𝑖𝑠𝑠ℎ_𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝑟𝑟 is the selling price of the fish assumed to be equal to $300 per tons 

based on BRLi and DHI (2007b). Municipal and industrial (M&I) demands are introduced as 

hard constraints to the model, i.e., required to be satisfied to obtain a feasible solution: 

𝐷𝐷𝐶𝐶𝐸𝐸𝑀𝑀𝐶𝐶𝑦𝑦,𝑚𝑚,𝑛𝑛𝑑𝑑
𝑣𝑣 = 𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡_𝑚𝑚𝑖𝑖𝑚𝑚,𝑛𝑛𝑑𝑑

𝑣𝑣  * 𝑐𝑐𝑓𝑓_𝑚𝑚𝑖𝑖𝑣𝑣 

Equation C.41 

where, 𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡_𝑚𝑚𝑖𝑖 is the seasonal M&I demand specified at site 𝑛𝑛𝑑𝑑 and vertex 𝐷𝐷, 

𝑐𝑐𝑓𝑓_𝑚𝑚𝑖𝑖 is a multiplier for increasing the demand in the second period (2035-2049) to two-

folds, and in the third period (2050-2064) to four-folds respectively. For this work, the 

baseline M&I demand estimates are obtained from BRLi and DHI (2007a).  

Environmental flows 

Environmental flow requirements are imposed at 28 nodes points along the Niger 

River and its tributaries, based on the previously adopted standards (BRLi and DHI 2007b; 

NBA 2008) and based on the general recommendations of Zwarts et al. (2005) (Table C.10). 

The flow deficits from the targets are penalized through a set of linear functions: 

𝑄𝑄𝐿𝐿𝐶𝐶𝑇𝑇𝐷𝐷𝐿𝐿𝐹𝐹𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜
𝑣𝑣 =  𝑟𝑟𝑐𝑐𝐶𝐶_𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑛𝑛,𝑚𝑚 -    𝑄𝑄𝐿𝐿𝐶𝐶𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜

𝑣𝑣   

Equation C.42 

𝑃𝑃𝐿𝐿𝑇𝑇𝐿𝐿𝐶𝐶𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜
𝑣𝑣 =  𝑟𝑟𝑐𝑐𝐶𝐶_𝑛𝑛𝑐𝑐𝐶𝐶𝑟𝑟𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜 *    𝑄𝑄𝐿𝐿𝐶𝐶𝑇𝑇𝐷𝐷𝐿𝐿𝐹𝐹𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜

𝑣𝑣    /   𝑟𝑟𝑐𝑐𝐶𝐶_𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑛𝑛,𝑚𝑚   

Equation C.43 

𝑄𝑄𝐿𝐿𝐶𝐶𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜
𝑣𝑣  ≤  𝑄𝑄𝑇𝑇𝑄𝑄𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜

𝑣𝑣  
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Equation C.44                                       

𝑄𝑄𝐿𝐿𝐶𝐶𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜
𝑣𝑣  ≤  𝑟𝑟𝑐𝑐𝐶𝐶_𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑛𝑛,𝑚𝑚             

Equation C.45 

where, 𝑟𝑟𝑐𝑐𝐶𝐶_𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑛𝑛,𝑚𝑚 is the minimum flow target (Mm3/season), 𝑟𝑟𝑐𝑐𝐶𝐶_𝑛𝑛𝑐𝑐𝐶𝐶𝑟𝑟𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜 is 

a subjective weighting factor (dimensionless), 𝑄𝑄𝐿𝐿𝐶𝐶𝑇𝑇𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜
𝑣𝑣  is the variable representing 

environmental flows (Mm3/season), Q𝐿𝐿𝐶𝐶𝑇𝑇𝐷𝐷𝐿𝐿𝐹𝐹𝑦𝑦,𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜
𝑣𝑣  is the deficit between the minimum 

flow target and environmental flows, and finally 𝑃𝑃𝐿𝐿𝑇𝑇𝐿𝐿𝐶𝐶𝑇𝑇 is the penalizing variable used in 

the objective function. 

Table C.10 Environmental flow requirements employed in the optimization model  

Node ID 
Wet season  
Flow target 
(Mm3) 

Dry season  
Flow target 
(Mm3) 

Weighting factor 
(dimensionless) 

SELIN 780 780 10 
FOMI 156 156 10 
DIARA 156 156 10 
TAOUS 1,260 1,260 10 
KANDA 1,260 1,260 10 
KAINJ 318 318 10 
JEBBA 2,340 2,340 10 
SHIRO 2,340 2,340 10 
LAGDO 2,700 2,700 10 
DADIN 1,260 1,260 10 
Node 24 10,000 1,000 8 
Node 16 2,820 2,820 5 
Node 17 780 780 5 
Node 18 780 780 5 
Node 23 780 780 5 
Nodes 30, 31, 32, 52, 53, 55, 56, 57, 
58, 59, 60, 61, and 62  

1,200 1,200 5 
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Table C.11 Sets specified in the optimization model 

Index Description 
t decision stages, T = {t1, t2, t3, t4} 
v scenario tree vertices, V = {v1, …, v67} 
s scenarios, S = {v1, ..., v45} 
pa(v) parents of the vertices 
map_anc(d, pa) parent-child vertex mapping function 
map_vt(v, t) vertex-decision stage mapping function 
map_sv(s, v) scenario-vertex mapping function  
n all nodes 
nn simple nodes 
ns supply nodes  
ni irrigation diversion nodes  
nd municipal and industrial diversion nodes 
nr reservoir nodes (existing and planned) 
nw wetland nodes 
neco flow requirement nodes 
y serial year, Y = {1, …,15} 
m seasons {dry season, wet season) 
yf(y) terminal year, 15 
mf(m) terminal season, dry season 

c crop types {ricews, riceds, grainsws, grainsds, market gardening, 
sugarcane} 

a reservoir capacity alternatives {small, medium, large} 
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Table C.12 Decision variables specified in the optimization model 

Variable Unit/type Description 
AREACROP Mm2 area allocated to each crop type 
AREADEV Mm2 total irrigable land area 
AREAEXP Mm2 expansion of irrigated perimeter 
AREANEW Mm2 creation of new irrigated perimeter 
BIRR $1M Benefits from irrigated agriculture 
DIRR Mm3/season diversions for irrigation 
DMI Mm3/season diversion for municipal and industrial use 
HPGEN MWh/season hydroelectric generated 
K Mm3 Reservoir storage capacity 
KNEW Mm3 New reservoir capacity  
NEVAP m/month Net evaporation from reservoir surface 

PENECO $1M 
Penalty term for not meeting environmental 
flows 

QECO Mm3/season Environmental flow target 
QECODEF Mm3/season Environmental flow deficit 
QIN Mm3/season Inflows to node 
QOUT Mm3/season Outflows from node 
QOUT_INI Mm3/season Outflows from node (initial calculation) 
RHP Mm3/season flow through turbines 
SAREA Mm2 Reservoir surface area 
STR Mm3 Reservoir storage 
STR_INI Mm3 Initial storage volume in reservoir 
X1 binary new dam decisions 
X2 binary dam indicator 
X3 binary flow calculation variable 
Z $1M Objective function 
Z_BFISH $1M Benefits from fisheries 
Z_BHP $1M Benefits from hydroelectric production 
Z_BIRR $1M Benefits from irrigated agriculture  

Z_CIRR $1M 
Present value cost of new irrigation 
infrastructure 

Z_CK $1M Present value cost of new dams 

Z_PENECO $1M 
Penalizing term for environmental flow 
deficits  
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Table C.13 Parameters specified in the optimization model 

Parameter Unit/Type Description 
areaexp_max Mm2 maximum limit for irrigation perimeter expansion 
areanew_max Mm2 maximum limit for irrigation perimeter creation  
area_base Mm2 irrigable land area at the initial period 
av_c0 Mm2 reg. coefficient for reservoir area-volume curve (1) 
av_c1 - reg. coefficient for reservoir area-volume curve (2) 
cf_mi  coefficient for gradual increases in M&I demand 
crop_cal binary cropping calendar 
crop_cost $1M/ Mm2 unit cost of crop production 
crop_price $/kg unit selling price of each crop 
crop_wr mm/season crop water requirement 
crop_yield kg/ Mm2 average yield of each crop 
delta_area_max Mm2 maximum inundated area in the wetlands 
delta_qout_c0 - reg. coefficient for wetland outflow (1)  
delta_qout_c1 - reg. coefficient for wetland outflow (2)  
delta_sarea_c0 - reg. coefficient for wetland surface area (1)  
delta_sarea_c1 - reg. coefficient for wetland surface area (2)  
discf - Discount coeff. assigned to annual benefits 
discf_cap - Discount coeff. assigned to capital investments 
discr % discount rate used in the analysis 
eco_target Mm3/season minimum environmental flow targets 
eco_wcoef - weighting factor for environmental flow nodes 
evapr m/season net evaporation rate from reservoir surfaces 
evap_adj m/season Adjusted net evaporation rate (based on temp.) 
fish_price $/ Mm2 unit price of fish catch 
hp_c0      - reg. coefficient for hydropower calculation (1) 
hp_c1      - reg. coefficient for hydropower calculation (2) 
hp_max      MWh maximum capacity for hydroelectric generation 
hp_price    1$M/GWh economic value of hydroelectricity  
k_alter     Mm3 design capacity alternatives for new dams  
K_cost         1$M cost of new dam alternatives  
k_dead         Mm3 inactive storage of reservoir 
lv_c0       m reg. coefficient for reservoir level-volume curve (1) 
lv_c1        - reg. coefficient for reservoir level-volume curve (2) 
pr_arc       - conditional probability weight of each vertex 
pr_path      - joint probability weight of each vertex 
target_mi    Mm3/season target M&I demand 
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