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Abstract: In this paper we apply the usage of thermal weights, a new variable for 

geostatistical analysis and we present the method for their determination. In the case study we 

tested a data fusion between Sentinel-2 and Landsat 7/8 data, to incorporate also the thermal 

factor in the detection of land cover changes. The process distinguishes grasslands from other 

crops with similar vegetative appearance and offers us the possibility to create a new 

statistical sample with just grasslands. The data fusion is incorporated in the calculation of 

Land Surface Temperature (LSTFU) by combining the Sentinel-2 derived Normalized 

Difference Vegetation Index (NDVI), and from it derived land surface emissivity, with the 

Landsat 7/8 derived Top of Atmosphere Brightness Temperature (TOABT). The 

experimental LSTFU is modified into a normalized assessment variable by a time-series 

analysis. The result is a thermal weight layer which can help us in further object-based image 

analyses and classification. The thermal weight is calculated from Sentinel-2 and Landsat 7/8 

datasets that has small acquisition time gaps between them. The accuracy assessment due to 

time gaps and sensor differences was evaluated with Cohens’s kappa (κ) and correlation 

matrix validation. The data fusion is made to test if a Sentinel-2 fusion approach could 

improve the Thermal Weight created just by Landsat imagery. The purpose was to evaluate 

the importance of thermal bands for LU/LC cover.  
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1. Introduction 

Multi-spectral data in combination with the high revisit frequency makes Sentinel-2 a 

great platform for LU/LC change estimation. Unfortunately, some classifications cannot be 

made precisely with just the input of Sentinel-2 data. Some types of cropland are more 

demanding for classification because of their biomass and biodiversity characteristics. Some 

characteristics can be hardly distinguished with an approach that is based just on vegetation 

index values (NDVI, FAPAR, LAI), their clustering, single-level object-based image analysis 

and even photointerpretation. Such characteristics are typical also for grasslands. Their 

changes in time have different dynamics than other croplands. In general, grasslands have 

lower vegetation indexes than agricultural crops, but their most problematic variety, the 

overgrown ones, are more demanding for monitoring. The normal growth of agricultural land 

can be easily mistaken for the overgrowth of grasslands. Their differentiation demands high 

resolution data for photointerpretation and a robust model for geostatistical analysis. Even 

with very high-resolution data (aerial orthophotos), photointerpretation can be unsuccessful 

in some areas. When we deal with automatic grassland recognition techniques for monitoring 

the minimisation of the margin of error becomes a big challenge.  
 

 

2. Medium resolution imagery for LU/LC: from SAR to TM variables 
 

To perform an effective geostatistical analysis on medium resolution imagery like 

Sentinel-2, we must apply adjustment techniques which include auxiliary variables and 

multilevel analysis. Reducing dimensionality and weighting adjustments can be a very good 

approach for setting up classification models with means of distinguishing similar land 

covers. Fitting of data ranges through principal components analysis (PCA) derived from 

very high-resolution data is a great approach [Deng et al. 2008]. The problem is that high-

resolution airborne data, in general, have no adequate acquisition frequencies that monitoring 

tasks demand. This is different for earth observation data. One of the main advantages of 

satellite derived imagery is their frequency. Unfortunately, open raster data such as Sentinel-

2 data have a medium resolution that cannot give us precise textural information [Yu et al. 

2016]. This means that the largest possible variance is not adequate for performing PCA 

suitable for distinguishing grasslands from growing croplands or low vegetation areas. We 

must move our deductions to a different empirical level of indexing. Weight variables that are 

derived also from other sensors rather than just from visible light and near-infrared optical 

ones can help us with modelling a machine learning process. There are various object-based 

approaches that integrate C-band Synthetic Aperture Radar data (Sentinel-1) and optical data 

for land use classification [Tamm et al. 2016]. The processing of C-band SAR data is a much 

more complicated and time demanding.  

There are many case studies oriented towards the use of Landsat TM thermal bands for 

LU/LC classification which proved that the involvement of thermal imagery with VIS/NIR 

bands improves the accuracy of classification [e.g. Alavipanah et al. 2001; Sun and Schulz 

2015].  

The confusion matrix of Landsat 8 imagery (including Thermal Infrared) classified by 

Sun and Schulz (2015) with the Radom forests algorithm brings out that the crops, which are 

most commonly misclassified as dense and sparse grasslands are barley, corn and wheat. 



FOSS4G-Europe 2018 Academic Program  Thermal Weights Usage 

 

 

OSGeo Journal Volume 18, Issue 1   3 

Such misclassifications can be reduced with a classification based on imagery with better 

resolution. Sentinel-2 derived NDVI can supply us with more accurate indexes which 

improve also the textural information than Landsat 7/8. Our hypothesis is that the growing 

cycle and the watering of croplands effect their thermal proprieties and differentiate them 

from other fields which have different growing dynamics. Grassland can be harvested two to 

four times per season while crops fields are harvested once per season. More studies found 

that there is a strong positive relationship between soil moisture and NDVI, although the 

correlation is lower in areas with high NDVI [Chen et al. 2014; Al-Shehhi et al. 2011]. 

This leads us to suppose, that a combination of Sentinel-2 data and Landsat 7/8 Thermal 

Infrared data can lead us to a better differentiation of grasslands from the misclassified crops, 

which have similar vegetative indices and are classified without Thermal Infrared data or are 

classified in combinations of bands derived just from Landsat 7/8.  

 

3. Methodology 

 

 
Figure 1: Overview of the processes and the methodology 
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Figure 1 provides an overview of the processes on which our methodology is 

constructed. Our methodology is based on data fusion between Sentinel-2 based NDVI and 

Landsat 7/8 Thermal Infrared data: 

 

1. We applied a NDVI-threshold method (NDVITHM) for estimating land surface 

emissivity (ε) from Sentinel-2 (ε1) and Landsat 7/8 (ε2) [Sobrino et al. 2008]; 

2. The data fusion was incorporated in the calculation of Land Surface Temperature 

(LSTFU) by combining the Sentinel-2 derived land surface emissivity with the 

Landsat 7/8 derived Top of Atmosphere Brightness Temperature (TOABT). The 

Thermal Infrared source data is chosen by criteria based on cloud absence with a 

minimum time gap with prioritizing Landsat 8 Thermal Infrared imagery due to 

Landsat 7’s SLC-off data; 

3. The accuracy assessment due to time gaps and sensor differences was evaluated 

with Cohens’s kappa (κ) and correlation matrix validation of NDVITHM data; 

4. The experimental LSTFU and the ε1 are modified into a normalized assessment 

variable by a time-series analysis. The result is a thermal weight layer which can 

help us in further image analyses and classification; 

5. The results are validated and correlated to in-situ data. 

 

3.1. Surface reflectance, gap filing and cloud masking 

 

The preprocessing of satellite imagery was divided into the preprocessing of Sentinel-2 

and Landsat 7/8 data. Sentinel-2 data was corrected for atmospheric effects (including the 

adjacency effects) and slope effect with the multi-temporal MAJA level 2A processor 

[CESBIO 2015; Lonjou et al. 2016].  The level 2A data was masked from all the clouds 

(except the thinnest) and all the shadows by MAJA generated cloud mask. We prioritized the 

use of Landsat 8 Thermal Infrared imagery due to Landsat 7 SLC-off data. Landsat 7 was 

involved as a data source because of its importance in case of big time gaps between 

Sentinel-2 and Landsat 8 imagery due to cloudiness suitability. Landsat 7 Thermal Infrared 

bands has also a better resolution (60 m acquired, 30 m resampled) than Landsat 8 (100 m 

acquired, 30 m resampled) [USGS 2018a]. We chose to fill the nodata gaps by using an 

Inverse Distance Weighting Interpolation (IDW) implemented by GDAL (gdal_fillnodata) 

available in QGIS. There are other geostatistical techniques superior to IDW for SLC-off data 

interpolation, like the modified AWLHEM, which we did not consider because of its multi-

source nature and greater computing time needs [Chen et al. 2012] compared to the efficiency 

of IDW [Sulong et al. 2015]. Landsat imagery (VIS/NIR) was then corrected by the Dark 

Object Subtraction 1 (DOS1) image-based atmospheric correction [Moran et al. 1992] 

implemented in the Semi-Automatic Classification Plugin (SCP) developed for QGIS 

[Congedo 2016]. The TOABT conversion of the Thermal Infrared bands was made with the 

SCP, according to the equation 1 [USGS 2018b]: 

 

TTOAB =
K2

ln(
K1
Lλ

+1)
                                                                      (1) 

 

The thermal constants K1 and K2 are provided in the Landsat 8 metadata, but not in the 

Landsat 7. Therefore, they are calculated from the wavelengths of emitted radiance provided 

in the Landsat 7 documentation [USGS, 2018a] and the c1 and c2 radiation constants [Congedo 
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2016]. All the bands were masked with the Fmask method [Zhu et al. 2012] applied with the 

Cloud Masking QGIS plugin. 

 

3.2. Estimating land surface emissivity (ε) with a NDVI-threshold method 

 

Land Surface Temperature can be calculated from TOABT, according to the equation 2 

[Weng et al. 2014; Congedo 2016]: 

 

                                              LST =
TTOAB

[1+(
λ TTOAB

c2
)∗ln ε]

                                                              (2) 

 

The land surface emissivity ε for its calculation can be determined in various deterministic 

ways and one of them is the presented NDVITHM proposed for the Landsat 7 TM, according 

to the equation 3 [Sobrino et al. 2008]: 

 

                       NDVITM
THM = {

ε = 0.979 − 0.035 ∗ R,            NDVI < 0.2
 ε = 0.986 + 0.04 ∗  PV, 0.2 ≤ NDVI ≤ 0.5

ε = 0.99,               NDVI > 0.5
                          (3) 

 

In equation 3, R is used as the Sentinel-2 red band image and PV is the Proportion of 

Vegetation derived from the Sentinel-2’s NDVI, calculated as the Vegetation Condition Index, 

according to the equation 4 [Orhan et al. 2014]: 

 

 

                                            PV=(
NDVI−NDVImin

NDVImax−NDVImin
)2                                                              (4) 

 

The reclassification and calculations were done with GRASS GIS r.mapcalcc. 

                      

3.2. Accuracy assessment and validation due to time gaps and sensor differences 

 

The accuracy assessment due to time gaps and sensor differences was evaluated with 

Cohens’s kappa (κ) agreement coefficient and by a further correlation matrix validation, due 

to kappa’s inconsistency cause of the high correlation to overall accuracy [Olofsson et al. 2014; 

Strahler et al. 2006]. 

Kappa was calculated by GRASS GIS r.kappa function and the correlation matrix was 

calculated with GRASS GIS r.covar. The results which had an agreement coefficient higher 

than κ=70 and strong correlation between NDVI values were used for further time-series 

analysis which resulted in a Thermal Weight raster layer. 
 

3.3. Thermal Weight calculation 
 

The results which had an acceptable agreement coefficient and correlation were used for 

further time-series analysis with GRASS GIS r.series. We made two different time-series 

analysis: 

• a raster representing the range of the values of the LST and 

• a raster representing the maximum land surface emissivity ε1 values. 

Both rasters were normalized on a scale from 1 to 100. We generated a Thermal Weight layer 

by summing the normalized rasters. 
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4. Study Area and Dataset Used 

 
Our dataset consists of an area in the Slovenian Styria region which extends on 362 km2. 

We obtained a LU/LC shapefile and also in-situ data of validated LU/LC by the Ministry of 

Agriculture, Forestry and Food (areas I2726 and J2824). We tested the proposed methods on a 

sample of 4 different time intervals: April, June, July and August. We excluded May’s data 

cause of cloudiness. The data was preprocessed and the Thermal Weight was calculated as 

described in chapter 3.1. The time gaps between Sentinel-2 and Landsat 7/8 imagery varies 

from 0 to 2 days, as shown in table 1. Our calculations are based on the hypothesis, that the 

NDVI and therefore land surface emissivity ε1 values don’t have a meaningful change in a 

time-gap of two days. 

 
Figure 2: Study area (basemap source: GURS, 2018) 

Sentinel-2 [10:00h] Landsat 8 [9:40h] Time-gap [days] 

1.4.2017 3.4.2017 2 

20.6.2017 22.6.2017 2 

30.7.2017 31.7.2017 1 

24.8.2017 25.8.2017 1 

Table 1: Time of data acquision and time-gaps with Sentinel-2 data 

5. Results and Discussion 

 
Our first analysis was the evaluation of the differences between land surface emissivity 

due to time gaps and sensor differences. Land surface emissivity it is the effectiveness in 

emitting energy as thermal radiation (Štefan-Boltzmann law). It’s calculation by the 

proposed NDVITHM brings up some errors, as its theoretically value is up to 1 (perfect black 

body) and the NDVITHM calculated one has a maximum value of 1.0064. As we use the 

results for comparison of data derived from the same method and furthermore normalize it 

as a weight, we can exclude this type of error. 
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Figure 3: land surface emissivity in April's dataset: Landsat 8 (left) and Sentinel-2 (right) 

Nonetheless, already by photointerpretating the emissivity values we can clearly 

distinguish some arable lands from other land use, as shown in figure 3. The land surface 

emissivities were both derived by NDVITHM and the Sentinel-2 values have more accurate 

information due to their better resolution, as in figure 3 we can see some agricultural fields’ 

emissivites which were not recognized by Landsat 8. After calculating the time series, we found 

that the values of the range of the LST are bigger on agricultural crop fields, which also have 

the highest maximum land surface emissivity values. As described in the methodology, we 

generated a Thermal Weight layer by summing the normalized rasters, as shown in figure 4. 

.  

Figure 4: Thermal Weights 

We added the average raster values to the LU/LC data, which was validated and categorized 

into grasslands and agricultural crops polygons bigger than 5000m2. We evaluated the strength 

and direction of association between the two ranked variables and the Thermal Weights by 

calculating the Spearman’s correlation coefficient for 7662 polygons with R. The calculated 

coefficient has a negative value of -0.57. This means that the strength of direction of association 
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between the variables is significant and that the increase of the Thermal Weight means the 

decrease of the possibility of our polygon to be a grassland one. 

 

6. Conclusion 
 

Thermally weighted raster data can be an important variable for multilevel analysis and 

including it into classification processes could improve the results. Our purpose was to 

integrate Thermal Infrared imagery into Sentinel-2 data calculations as a normalized variable, 

which has a decisive importance in the interpretation process. Our case study chose the 

diversification of grasslands and agricultural crops cause of their vegetation indices similarity 

in some seasons. The differences due to thermal and emissivity values were show as important 

for distinguishing grasslands from agricultural crops. The methodology could be improved by 

involving a better, Sentinel-2 customized NDVITHM for the calculation of the land surface 

emissivity. A more robust statistical model could improve the presented methodology. Our 

methodology is an example, of a possible application of (Landsat) thermal bands in 

combination with better resolution imagery. Hopefully, soon there will be open Earth 

observation data products with better or same resolution as Sentinel-2 which will also include 

a Thermal Infrared sensor capable of medium or high-resolution sensing.  
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