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ABSTRACT 

PHTHALATES, EMBRYO DEVELOPMENT, AND SPERM DNA METHYLATION 

 

MAY 2018 

HAOTIAN WU 

B.S., UNIVERSITY OF OTTAWA 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor J. Richard Pilsner 

 
 Infertility affects 15% of all couples and presents a major public health 

issue. Animal and human data indicate that epigenetic dysregulation in sperm is 

associated with poor male reproductive health and extensive epigenetic 

reprogramming during spermatogenesis presents a window of vulnerability for 

environmentally-induced epigenetic dysregulation.  

 Phthalates is a class of ubiquitous environmental contaminant and global 

health concern. Phthalate exposure in humans has been associated with 

diminished male fertility, adverse birth outcomes, and altered offspring 

development. In order to facilitate additional research on this topic, we aimed to 

developing a higher throughput method of sperm nucleic acid extraction. In 

addition, this dissertation also examined the associations of paternal phthalate 

exposure with sperm methylation patterns and blastocyst development.  
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 In order to maximize efficiency of the limited and difficult to acquire 

samples while increasing throughput for epidemiologic studies, we developed a 

novel method of sperm nucleic acid extraction that improved ease and efficiency. 

Compared to previously published methods, our new method has 1) increased 

yield of DNA per sperm cell, 2) reduced time required for DNA processing, and 3) 

eliminated the need for odorous sulfur-based reducing compounds.  

 As part of the Sperm Environmental Epigenetics and Development Study 

(SEEDS), we recruited 50 couples from an in vitro fertilization (IVF) clinic. We 

observed that concentrations of select paternal urinary metabolites of phthalates 

or phthalate alternatives were associated with a marked decrease in blastocyst 

quality. With respect to sperm DNA methylation, we found that the male urinary 

anti-androgenic phthalate metabolite concentrations were associated with 131 

differentially methylated regions in sperm DNA. Gene ontology analyses revealed 

that these differentially methylated regions were enriched in genes related to 

growth and development as well as cellular function and maintenance. 

Overall, the evidence presented by this dissertation show that paternal 

adult exposure to select phthalates and phthalate alternatives may influence both 

embryo development and sperm DNA methylation patterns. Additional work is 

required to replicate our findings as well as determine whether the observed 

aberrant sperm DNA methylation patterns associated with urinary metabolites of 

phthalates and phthalate alternatives are true biological mediators of the 

concurrent decrease in embryo quality. 
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CHAPTER 1 

INTRODUCTION 

 

Summary 

Infertility affects 15% of all couples and studies have associated 

phthalates, a class of endocrine disrupting compounds with widespread 

exposure, with adverse male reproductive outcomes. However, research in this 

area has been hampered by both methodological challenges and lack of 

understanding of sperm biology. This dissertation addressed both issues as well 

as examines the influence of adult human preconception phthalate exposure on 

both embryo development and sperm DNA methylation.  

 

Infertility and Its Implications for Public Health 

Infertility, commonly defined as the inability for a couple to conceive within 

one calendar year, affects 15% of all heterosexual couples [1-3]. Male factor 

infertility is estimated to be present in 40-50% of diagnosed couples [1, 4] and 

affects 2.5% to 12.5% of all men [5]. In addition to the inability to conceive, poor 

male reproductive health has several adverse health implications. First, male 

infertility may be an indicator of general wellbeing as it has been reported to be 

associated with increased mortality rate [6] and poorer overall health [7]. Second, 

despite advances in assisted reproductive technology (ART), offspring conceived 

via ART are reported to have lower birthweights, increased adiposity, higher blood 

pressure and fasting glucose concentration, and changes in the bone and thyroid 
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during childhood [8, 9]. Lastly, infertility has mental and social consequences [10] 

on the affected families, resulting in higher rates of divorce or end of cohabitation 

[11]. Together, it is clear that male fertility has broad public health implications 

beyond the diagnosed individual. 

In a follow up to previous analyses [12, 13], a recent meta-analysis showed 

that after accounting for semen collection methods and other relevant factors, 

sperm counts in men from North America, Europe Australia and New Zealand have 

declined by 59.3% between 1973 and 2011 [14], indicative of a possible decline in 

male fertility. Other studies around the world reported similar observations of 

declining semen parameters [15-20]. Despite this alarming observation, the extent 

and causes of the decline in male fecundity are unknown. In addition, while many 

causes of male factor infertility are known, nearly half of all cases of male infertility 

have no known causes [21]. Thus, there is a need to better understand the 

biological biomarkers and mediators of male fertility as such investigations may 

help elucidate underlying causes to male infertility and clarify the role of male 

infertility as a general health indicator. 

 

Sperm Epigenetics and Its Implications for Public Health 

Epigenetics is the study of semi-heritable changes in gene expression that 

do not involve changes in the DNA sequence. Epigenetic reprogramming refer to 

non-permanent changes to epigenetic features leading to differential gene 

expression. Of the many known mechanisms of epigenetics, DNA methylation, the 

addition of a methyl group on nucleobases of DNA, is the best characterized. In 
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mammals, DNA methylation primarily occurs at the 5 position of the pyrimidine ring 

in CpG dinucleotides and is one means of gene expression control, with the degree 

of methylation generally inversely correlated with degree of gene expression. DNA 

methylation can be found in ~1% of the total nucleotides in human somatic tissue 

[22] and it is currently believed that DNA methylation regulates gene expression 

by inhibiting transcription factors from binding or by recruiting repressor complexes 

[23]. The latter results in chromatin changes that ultimately lead to suppression of 

transcription [23]. Imprinting is a parent-specific, germline inherited, form of DNA 

methylation based gene regulation. Imprinted genes will have either >90% or 

<10% methylation, depending on the parent of origin. For example, a paternally 

imprinted gene will have >90% methylation on the paternal allele and <10% on the 

maternal allele. Because imprinting “defects” are known to cause several disease 

phenotypes, it is hypothesized that methylation at these genes may act as targets 

for environmental agents [24].  

Traditionally, spermatozoa have been considered solely as a delivery 

vehicle for the paternal genome to oocytes. However, this paradigm is 

challenged by the accumulation of evidence that sperm epigenetics is also a 

critical determinant of fertility. Spermatogenesis involves extensive epigenetic 

reprogramming [25, 26] and there is a growing body of compelling animal and 

epidemiologic data that suggest the epigenome of male germ cells is central to 

reproductive health due to its potential to affect offspring phenotype and lifelong 

health trajectory [27-29]. It is believed that environmental exposures at critical 

windows such as spermatogenesis may introduce alterations in the sperm 
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epigenome and lead to adverse male reproductive outcomes [25, 30]. Not 

surprisingly, sperm epigenetic dysregulation, particularly DNA methylation, has 

been associated with male infertility [26, 31]. Similarly, aberrant sperm DNA 

methylation are associated with reduced IVF success [32], poor sperm 

parameters [33-36], and adverse offspring outcome [37-39].  

Given the public health importance, there is a need to identify biological 

determinants and prognostic markers of male fertility. Traditionally, male fertility 

status is determined on the basis of WHO guidelines on semen analysis, a 

battery of tests to evaluate features of the semen such as sperm count and 

concentration, semen volume, sperm morphology, etc. [40]. However, it is 

recognized that semen analysis is a poor predictor of pregnancy and more 

generally, male fecundity [1]. Given its role in normal sperm function, the sperm 

epigenome is thought to be a candidate diagnostic and prognostic marker in the 

context of male infertility [27]. A better understanding of the environmental 

influences on sperm DNA methylation may clarify the mechanisms by which the 

male environment affects fertility and offspring health.  

  

Phthalates, Phthalate Alternatives, and Their Implications On Fertility 

Phthalates are one class of endocrine disrupting compounds used in 

plastics, medical devices, toys, paints, and personal care products. Phthalates are 

not covalently bound to the plastics in which they are found and thus easily leach 

into the environment. Combined with the ubiquitous nature of products that contain 

phthalates, there is a constant and unavoidable exposure through ingestion, 
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inhalation, and dermal contact. Not surprisingly, recent and historical data show 

extensive phthalate exposure worldwide [41, 42].  

Though phthalates are a family of compounds, the absorption, distribution, 

metabolism, and excretion properties of its members share similar features. 

Phthalate esters are lipophilic and typically enters the human body via dermal 

absorption, inhalation, or ingestion [43, 44]. It is also possible to have direct human 

exposure to phthalate esters via plastic medical products [43, 44]. Once the 

phthalates have entered the blood stream, it is usually protein bound [43]. 

Generally, the gastrointestinal tract and execratory organs are initial sites of 

storage, but phthalates do not accumulate in any tissue. The majority of the internal 

dose is excreted within 24 hours and none is left after a few days [43]. Phthalate 

metabolism involves a hydrolysis and conjugation step. In the hydrolysis step, the 

phthalate esters are hydrolyzed by lipases and esterases in the intestine and 

parenchyma. Short-branched phthalates are excreted in the urine in the 

hydrolyzed form while long-branched phthalates undergo several hydroxylation 

and oxidation steps before excretion via urine and feces [45]. 

The potential of phthalates to adversely influence reproductive health is well 

documented [46-59]. Certain phthalates display anti-androgenic activities [60-62] 

and have been associated with adverse reproductive outcomes. In men, 

phthalates exposure have been associated with reduced serum testosterone [63-

65], reduced sperm counts and concentrations [53, 66], sperm morphological 

changes [66], sperm aneuploidy [64], and increased sperm DNA damage [54, 55, 

63-65, 67]. Similarly, in women, lower oocyte yield [68], and increased risk of 
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endometriosis [69-72] and leiomyomata [72] have been associated  with phthalates 

exposure.  

Preconception phthalate exposures, in particular, have been associated 

with adverse pregnancy and birth outcomes. A series of studies from the 

Longitudinal Investigation of Fertility and Environment (LIFE) cohort reported that 

male preconception exposure to select phthalates are associated with a 20% 

reduction in fecundity as measured by increased time-to-pregnancy [52], smaller 

birth size [58], increased gestation time [58], and skewed secondary sex ratio [73]. 

Another group reported that male preconception urinary concentrations of select 

phthalate metabolites were associated with decreased odds of implantation and 

live birth among couples seeking fertility treatment [57]. However, no association 

was observed with the embryo quality at the cleavage stage [57]. Given the 

controlled nature of IVF, if the observed association between male preconception 

urinary concentration and decreased odds of implantation is true, then the results 

suggest that paternal contributions to early-life development occur after the 

cleavage stage of embryo development. Equally important, both maternal and 

paternal preconception exposures to phthalates are associated with specific 

behavioural changes in the offspring, even after adjustment for prenatal exposures 

[74]. 

Given the accumulating evidence that phthalates exposure may be harmful 

for reproductive health, certain traditional phthalates are being replaced by 

chemical alternatives such as 1,2-Cyclohexane dicarboxylic acid diisononyl ester 

(DINCH). Little is known regarding the health impacts of DINCH, although recently 
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published toxicologic data from screening assays and animal models suggest that 

it also has adverse effects on male reproductive health [75-78]. The investigation 

of these replacement compounds is important to public health as moving forward, 

it is likely that the general public will experience increased exposure to these 

replacement compounds. 

Despite the accumulating evidence, the mechanism and pathogenesis by 

which preconception exposure to phthalates and phthalate alternatives contribute 

to the observed adverse reproductive effects have not been elucidated. There is a 

need to identify potential critical windows of susceptibility as well as investigate the 

mechanism by which phthalates and their alternatives affect reproductive health. 

 

Research Gaps 

 Despite advancing and accumulating evidence in the field of sperm 

biology and sperm epigenetics, research into potential environmental influences 

on sperm epigenetics is still lacking. We have identified the following four specific 

research gaps: 

1. To our knowledge, there were no reviews that comprehensively integrated all 

available toxicologic and epidemiologic data on the environmental influences 

of sperm epigenetics. In addition, no one has comprehensively described and 

characterized the known and suspected windows of reprogramming and 

environmental susceptibility in germ cell development.  

2. Sperm DNA is resistant to somatic tissue DNA isolation techniques. 

Historically, the isolation of high quality sperm DNA required slow and labor 
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intensive methods. Such techniques are low throughput and present a 

challenge for sperm genetic and epigenetic research. Thus, there is a need for 

a simple and fast method of sperm DNA extraction. 

3. To date, no study has examined the associations of paternal preconception 

urinary phthalate and phthalate alternative metabolite concentrations with 

embryo development through day 5 post fertilization.  

4. To date, no study has examined the associations of paternal preconception 

urinary phthalate and phthalate alternative metabolite concentrations on sperm 

DNA methylation. 

 This dissertation addresses all four of the identified research gaps in 

chapters 2-5.   
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CHAPTER 2 

ENVIRONMENTAL SUSCEPTIBILITY OF THE SPERM EPIGNOME DURING 

WINDOWS OF MALE GERM CELL DEVELOPMENT 

 

Summary 

 This chapter presents a review from 2015 of available evidence of 

environmental influences on sperm epigenetics. There are compelling data that 

suggest environmental exposures, both chemical and dietary, can influence the 

epigenome of male germ cells, which in turn can affect offspring phenotype. It is 

likely that each of the numerous epigenetic reprogramming events throughout the 

life-course of the male germ cell represents a discrete window of susceptibility to 

environmental exposures and human research into this area is lacking. 

Abstract 

Male germ cells require multiple epigenetic reprogramming events during 

their lifespan to achieve reproductive capacity.  An emerging body of compelling 

data demonstrates that environmental exposures can be embodied within the 

developing male germ cell as epigenetic marks. In turn, these epigenetic marks 

can impart information at fertilization to affect the trajectory of offspring health and 

development.  While it is recognized that in utero epigenetic reprogramming of 

male germ cells is a particularly susceptible window to environmental exposures, 

other such windows exist during germ cell development.  The objective of this 

review is to discuss epigenetic reprogramming events during male germ cell 
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development and to provide supporting evidence from animal and human studies 

that during specific periods of development, germ cells are susceptible to 

environmentally-induced epigenetic errors.  Moving forward, the nascent field of 

sperm epigenetics research is likely to advance our understanding of paternal 

environmental determinants of offspring health and development.      

Introduction 

Spermatozoa have been traditionally considered vehicles for the sole 

delivery of the paternal genome to oocytes upon fertilization.  In this context, 

paternal contributions to offspring phenotype are strictly limited to germline genetic 

information without the ability to impart environmental information that is 

encountered during the life-course.  However, a growing body of compelling data 

demonstrates that certain environmental exposures can be embodied within the 

developing male germ cell without altering the germline genetic information and in 

turn can affect the offspring phenotype.   

Epigenetics is the study of semi-permanent, mitotically-heritable and in 

germ cells meiotically-heritable changes in gene expression that primarily result 

from modifications of chromatin structure, rather than changes in the underlying 

DNA sequence [79].  The three major mechanisms of epigenetics are DNA 

methylation primarily within CpG dinucleotides [80], a host of modifications to 

histone tails [81], and noncoding RNAs (e.g. microRNAs and long noncoding 

RNAs) [82].  In concert, these epigenetic mechanisms control chromatin structure 

to confer cell-specific gene expression.   
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In humans, male germs cells do not attain reproductive capacity until the 

second decade of life.  Despite this long latency period, male germ cells begin 

development early in fetal life, and upon sex determination, embark on a 

remarkable journey of cellular differentiation and morphological changes to 

prepare for its sole purpose – the propagation of its genome.  During development, 

male germ cells progress from primordial germ cells (PGCs), diploid 

spermatogonia to haploid spermatozoa that involves stage- and testis-specific 

gene expression, mitotic and meiotic divisions, and chromatin remodeling that is 

unique only to sperm [83, 84].  To undergo these transformations, stage-specific 

epigenetic reprogramming is required in addition to more modest, but still 

significant, epigenetic changes that gradually progress germ cell phenotype 

towards reproductive capacity.  As the epigenome allows considerable cellular 

plasticity, epigenetic changes across the many stages of male germ cell 

development represent windows of susceptibility by which environmental 

exposures can sculpt the epigenetic landscape.    

In this review, we identify and discuss multiple windows of susceptibility 

during mammalian male germ cell developmental in which dietary and toxicant 

exposures have been shown to influence sperm epigenetics as well as offspring 

phenotype in animal models and humans.  

Windows of Male Germ Cell Development 

In utero period and primordial germ cells 

Primordial germ cells (PGCs) arise from the proximal epiblast with a 

population of < 50 cells and undergo clonal expansion as they migrate and colonize 
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the genital ridge, the precursor to the gonads [85] (Figure 1).  As PGCs are derived 

from cells of the epiblast, which have begun on a course of somatic fate, epigenetic 

reprogramming is essential to re-establish totipotency for sex-specific epigenetic 

programming of germ cells.  The loss of genome-wide methylation occurs 

passively during the rapid proliferation of PGCs.  Although the maintenance DNA 

methyltransferase 1, DNMT1, is readily expressed in PGCs, its essential cofactor, 

Uhrf1, is not, resulting in the loss of maintenance of methylation during cell 

divisions [86].  Imprinted-specific differential methylated regions (iDMRs), which 

are methylated in a parent-of-origin manner and have escaped epigenetic 

reprogramming shortly after fertilization, follow slower kinetics requiring active 

demethylation via Tet proteins in mice [87].  In humans, a second wave of 

reprogramming in PGCs occurs several weeks later to erase imprinted marks via 

histone remodeling, most notable depletion of H3K27me3 and removal of the 

histone variant, H2A.Z [88] .  At the end of methylation erasure, global levels of 

methylation of male PGCs are estimated at 16.3% compared to the 70% 

methylation in the embryo [89].  The lack of complete erasure is mostly due to the 

resistant nature of intracisternal A particles (IAPs), a class of retrovirus-like 

transposons, and their proximal genes, to demethylation, which bestows a 

potential mechanism for epigenetic inheritance [90].  The majority of methylation 

is re-established in mitotically-arrested type A spermatogonia prior to birth and is 

fully resolved postnatally during spermatogenesis [91].   

Nutritional manipulation. Given the extensive reprogramming that occurs in 

PGCs to redefine their epigenetic landscape in a sex-specific manner, 
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environmental exposures in animal models during this period have been shown to 

induce inter- and transgenerational effects through the sperm epigenome.  Severe 

in utero caloric restriction during the window of re-acquisition of DNA methylation 

in mouse (E16.5) led to differential methylated regions (DMRs) in F1 sperm mainly 

at intergenic regions and CpG islands, which were also reported to associate with 

regions of histone retention [92].  While both F1 and F2 male mice exhibited 

metabolic-related disorders, DMRs of F1 sperm did not persist in somatic tissue of 

F2 males [92].  Interestingly, the expression of nearby metabolic genes were 

altered in F2 males, indicating that although sperm DMRs were lost, other 

epigenetic mechanisms, not measured in this study, could persist to influence F2 

gene expression [92]. These results are in contrast to another study in which in 

utero caloric restriction resulted in the transmission of altered DNA methylation of 

a lipogenic gene, Lxra, in F1 sperm to F2 somatic tissues [93]. Additionally, 

streptozotocin-induced gestational diabetes altered the expression of imprinted 

genes, IGF2 and H19, in F1 sperm and F2 pancreatic islets [94] and increased 

Peg3 DNA methylation in F1 sperm [95].   

In an intriguing study in male mice, life-long (i.e., in utero and adult) 

deficiency in folate, a key component of one-carbon metabolism that facilitates the 

transfer of methyl groups for DNA and histone methylation reactions, resulted in 

craniofacial and musculoskeletal birth defects in their offspring [96].  Genome-wide 

analyses of sperm from folate-deficient animals in adulthood identified 57 DMRs, 

none of which were associated with iDMRs, but rather, they were associated with 

genes related to cancer, diabetes, and neurological diseases. Moreover, global 
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mono- and tri- methylation at H3K4 and H3K9 were also reduced in folate-deficient 

F1 sperm [96]. While in the placenta, over 300 genes were differentially expressed; 

however, only two associated with sperm DMRs, suggesting that other epigenetic 

modifiers such as sperm H3 methylation were involved.  It must be noted however, 

that since exposure was life-long, it is difficult to discern the timing of germ cell 

development (e.g., PGCs or spermatogenesis) in which folate deficiency induced 

these observed epigenetic effects.   

Environmental toxicants.  Skinner and colleagues have repeatedly 

demonstrated environmental toxicant-induced transgenerational effects through 

the paternal germ line in outbred rats. In utero exposure to chemicals exhibiting 

endocrine disrupting characteristics, such as vinclozolin [97-100], DDT [101], 

2,3,7,8-tetrachlorodibenzo[p]dioxin (TCDD) [102, 103], the jet propellant, JP8 [102, 

104], pesticide mixture of permethrin and DEET [102, 105], and plastic mixture of 

bisphenol-A, (BPA), bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate 

(DBP) [102, 106] all elicited DMRs in F3 sperm without any additional exposures 

in subsequent generations. Interestingly, the DMRs, which were mostly intergenic, 

displayed little overlap between exposures [101, 102], indicating the lack of 

specificity of environmentally-induced DMRs in male germ cells.  Moreover, 

vinclozolin exposure at a similar dose and timing produced no overlapping DMRs 

in sperm of F3 rats [99] and mice [98], demonstrating again that the sperm 

epigenome may be programmed by environmental toxicants in a stochastic 

fashion.  
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In contrast to the faithful inheritance of the transgenerational effects 

reported above, other studies have reported that in utero exposure to pesticides, 

vinclozolin and methoxychlor, modified methylation of iDMRs in F1 sperm, but a 

trend towards recovery was observed starting in the F2 sperm and continued 

through the F3 [107, 108].  Similarily, in utero exposure to the endocrine disruptors, 

vinclozolin, BPA or DEHP, in mice resulted in DNA methylation changes in F1 

prospermatogonia but these changes did not persist into the F2 germline [109].  

Most recently, in utero exposure to vinclozolin was found to alter the expression of 

miRNAs, miR-23b, miR-21, and let-7, in F1-F3 PGCs; however, no prominent 

changes in DNA methylation were observed in either F1 PGCs or mature sperm 

[110]. 

It is currently unclear from the above studies whether the observed 

environmentally-induced DMRs in sperm are direct effectors of offspring 

programming or they are themselves biological intermediates for other epigenetic 

modifiers [92, 96], such as unmeasured histone modifications and/or altered non-

coding RNA expression.  Alternatively, these DMRs may act as non-causal 

markers of exposures, such that environmental exposures may operate through 

other pathways to induce adverse offspring health.  As a consequence of the 

difficulty of conducting life course studies in humans, there is currently no data we 

are aware of on the associations between in utero exposures and adult sperm 

epigenetic endpoints.  

Infancy and Prepubertal Periods 
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The timing of postnatal testicular development varies considerably among 

mammalian species with a marked distinction between rodents and higher 

primates [111] (figure 1).  In laboratory rodents, testicular development begins a 

few days after birth in which mitotically-arrested prospermatogonia resume clonal 

expansion resulting in an estimated 30-fold increase in spermatogonia prior to 

puberty [112].   In contrast, humans have a long latency period between birth and 

puberty, whereby after the first few months of postnatal life, referred to as mini-

puberty, steroidogenic activity and testicular development is thought to remain 

quiescent until the onset of puberty [113].   

This notion of inactive testicular development in childhood was largely 

driven by palpation and Prader’s orchidometer measures that detected no change 

in testicular volume until the onset of puberty [114].  However, employing more 

sensitive methods, such as stereological measures from testes obtained after 

autopsy, data indicate that testes, despite displaying no outwardly changes in size, 

are actively developing organs during infancy [115, 116].  For example, during the 

first ten years of life, stereological measures revealed that testicular volume tripled 

with increases in seminiferous tubule length and the number of spermatogonia and 

Sertoli cells [115].  Another study reported that germ cell proliferation is not linear 

with age but may occur in waves, such that during periods from 3-8 years and at 

10 years to the onset of puberty experienced marked proliferative activity [116].  

This proliferation has been proposed to be related to transient awakening of the 

hypothalamus-pituitary-gonadal (HPG) axis during childhood [117] and to a more 

pronounced awakening around two years before puberty onset, also known as the 
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slow growth period [118-120]. Thus, the HPG axis during infancy, and especially 

prior to puberty, may be activated to “prime” spermatogonia proliferation prior to 

full activation at puberty.   

This “priming” of spermatogonia proliferation provides a biological 

explanation for the epidemiologic data associating prepubertal environmental 

exposures with male germ line effects [121].  In Seveso, Italy, acute high TCDD 

exposure from a chemical plan accident during infancy/prepuberty was associated 

with reduced sperm concentration and motility, while the opposite was observed 

with exposure around puberty [122].  Moreover, a reduction in estradiol and an 

increase in FSH was observed in both groups; however, no changes in hormone 

levels or sperm quality were observed among TCDD-exposed adults [122].  In 

support of the observed time-dependent effects of TCDD, using population data in 

Överkalix, Sweden, studies reported that the grandchild experienced shorter 

survival and greater risk of diabetes mortality if the paternal grandfather 

experienced at least one “good” harvest during the ages of 9 to 12 and longer 

survival and decreased risk of diabetes if the paternal grandfather experienced at 

least one “poor” harvest during the same age period [123-125].  More recently, 

male, but not female, offspring of men who smoking before the age of 11 were 

found to have an increased BMI at age 7 and increased waist circumference and 

fat mass by age 13 [124], which persisted through the latest follow-up at age 17 

[126]. Offspring of mothers who reported smoking before the age of 11 showed no 

increase in BMI up to age 17 [126].   Together, these studies, while they lack sperm 

epigenetic data, provide compelling data indicating that the prepubertal period, a 
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time in which the HPG axis begins to awaken to drive spermatogonia proliferation, 

is a sensitive period in which environmental exposures may target the epigenetic 

programming of germ cells.  Epidemiologic studies are needed to confirm these 

observational studies by demonstrating that environmental exposures during the 

prepubertal period are associated with sperm epigenetics across generations. 

Spermatogenesis in Adulthood 

To date, the majority of experimental research in animals has focused on 

environmental exposures during in utero epigenetic reprogramming of PGCs with 

little regard to other susceptible periods occurring in the adult.  Spermatogenesis, 

the final process of germ cell development that entails the progression from diploid 

spermatogonia to haploid spermatozoa, requires dynamic epigenetic 

reprogramming for the production of viable sperm for fertilization (figure 1).  In 

humans, spermatogenesis is estimated to take around 74 days (around 35 days in 

mice) to produce mature spermatozoa from undifferentiated spermatogonia, and it 

can be divided into two sequential processes:  spermatocytogenesis, which 

includes spermatogonial proliferation and differentiation through mitosis to 

produce spermatocytes and meiosis I and II to produce round spermatids; and 

spermiogenesis, in which differentiation and maturation of spermatids occurs 

without further cellular division (Figure 1). In the end, 32 spermatozoa are 

produced from one type B spermatogonium in humans, which is in great contrast 

to rodents where premeiotic cell divisions are intense, such that one 

spermatogonium has the potential to produce 4,096 spermatids [111].  This 

dramatic difference in clonal expansion of male germ cells among man and rodents 
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may beget caution in the interpretation of rodent data.  For example, if an 

epigenetic error such as DNA methylation occurs in the first few cell divisions in 

humans, this error, if not corrected would propagate to affect only a few 

spermatozoa in a large pool, compared to the same scenario in mice where this 

error is likely to be more pronounced.   

Acquisition and loss of methylation have also been reported during 

spermatocytogenesis [91, 127].  In adult mice, passive demethylation, likely 

occurring during spermatogonial cell divisions, was found to be enriched in 

interspersed repeat sequences, while methylation acquisition was observed in the 

pachytene stage of primary spermatocytes and was enriched in non-repeat 

sequences located within or flanking gene bodies as well as in paternal iDMRs 

[91].  The mechanism of this targeted resetting of DNA methylation during 

spermatocytogenesis may be linked with the expression of BORIS [127], a testis-

specific protein paralogous to the insulator protein of imprinted marks, CTCF. 

Interestingly, BORIS and CTCF were expressed in a mutually-exclusive manner 

during spermatogenesis in mice and humans [127].  The proposed model suggests 

that BORIS is upregulated in primary spermatocytes and associates with 

demethylases that erase methylation marks and once CTCF is reactivated (and 

BORIS removed), targeted de novo methylation of paternal imprints and other 

regions is initiated in postmeiotic cells [128], which contradicts previous findings 

[91], likely due to methodological differences in methylation detection. 

Furthermore, age-dependent intra-individual alterations in sperm DNA methylation 

have been reported, indicating that sperm methylation can be modified throughout 
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the adulthood [39]. Taken together, these data signify that spermatocytogenesis is 

an important developmental period that shapes DNA methylation profiles of mature 

spermatozoa.         

After acquisition of final DNA methylation profiles, spermatids enter 

spermiogenesis, a multi-step developmental window of global reorganization of 

chromatin [129].  Starting during meiosis, the canonical histones, H1, H2A, H2B 

and H3, are replaced by testis-specific variants, which decrease the stability of 

nucleosomes [130, 131].  Next, hyperacetylation of histone tails occurs, most 

notably at H4K5 and H4K8, which “relaxes” nucleosomes to further enhance 

histone destabilization[129].  Brdt, a testis-specific protein harboring two 

bromodomains capable of specifically recognizing acetylated histones, is then 

recruited to H4K5 and H4K8 acetylation to facilitate histone removal [132, 133].  

Transition nuclear proteins, TNP1 and TNP2, then displace histones and are 

themselves replaced with the protamine proteins, protamines 1 and protamine 2 

(PRM1 and PRM2), which are typically found in equal proportions [134].  

Protamine packaging of DNA restricts transcriptional activity and therefore has 

been proposed as a nontraditional form of epigenetic regulation unique to sperm 

cells [26].  It also is critical to enhance motility and safeguard the paternal genome 

from the harsh environment soon to be encountered in the epididymis and female 

reproductive tract [135].  

This histone-protamine exchange; however, is not complete, such that an 

estimated 10% and 1% of histones in humans and mice, respectively, are retained 

in mature sperm [136, 137].  Histone retention is also not randomly distributed 
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throughout the genome, suggesting that they may play a form of postfertilization 

epigenetic regulation.  Several studies using human and mouse sperm report that 

histone retention is enriched in regulatory regions of developmental and imprinted 

genes [136, 138-141].  However, two recent studies contradict these findings 

showing that nucleosomes were generally not located in promoter regions 

including developmental promoters but rather in gene-poor regions [142, 143].  

Additional work is needed to resolve these opposing findings before a definitive 

role for sperm nucleosomes, as well as their histone modifications, is assigned to 

embryo development.  

Upon exiting the testes, spermatozoa are morphologically transformed but 

are immotile and lack fertilization potential.  Sperm maturation occurs through 

sequential modifications within distinct microenvironments during the 1–2 week 

transit  through of the epididymis, which is estimated to be 6-7 meters long in 

humans [144, 145].  Additionally, epididymal-specific exosomes 

(“epididymosomes”) are reported to act as carriers of somatic proteins and RNAs 

to sperm [146-148].  Interestingly, epididymal secretions are regulated by 

androgens [149, 150], indicating that environmental factors that disrupt endocrine 

signaling may impact sperm procurement of exosomal proteins and RNAs [151]. 

Thus, while epididymal sperm maturation is directed at the acquisition of 

fertilization potential, exosomal shuttling may also provide the final opportunity for 

sperm to “epigenetically match” their current environment prior to fertilization. To 

our knowledge, no study has examined the direct effect of environmental 
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exposures in the epididymis on the sperm epigenome; however, recently 

developed model systems may provide future insights [147]. 

Nutritional manipulations.  Along with in utero environmental exposures, emerging 

data indicate that the epigenome during the dramatic transformation of male germ 

cells that occurs in spermatogenesis is also susceptible to environmentally-

induced epigenetic programming.  Nutritional manipulation, such as low-protein 

diet [152] and pre-diabetic conditions [153], in adult rodents induce metabolic 

disorders in offspring through changes in sperm epigenetics of founder male mice. 

For example, a low protein diet in adult mice resulted in the down-regulation of 

transcriptional factors and chromatin regulators as well as a decrease in 

H3K27me3 of specific loci in sperm; however, genome-wide DNA methylation was 

largely unresponsive to the diet [152].  This latter finding is in contrast to other 

studies, such that streptozotocin-induced prediabetes conferred widespread 

alterations to sperm DNA methylation patterns [153].  The susceptibility of 

chromatin to nutritional manipulation during spermatogenesis is most recently 

highlighted in work in Drosophila, where high sugar diet in adult males altered 

methylation of H3K9/K27me3 within chromatin-bound regions of mature sperm 

that conferred metabolic programming of offspring [154].  Similarly, high fat diets 

in adult mice resulted in altered miRNA content [155] and increased the acetylation 

of H3K9 in late round spermatids to early elongating spermatids, possibly mediated 

by a corresponding decreased expression of SIRT6, a stress-response 

deacetylase [156].  The effect of high-fat diet on global DNA methylation of sperm, 

however, is inconsistent [155, 157]  
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Toxicant exposure.  Exposure of adult mice to particulate air pollution 

obtained from Hamilton, Ontario increased global methylation of spermatogonia, 

which persisted through spermatogenesis and remained elevated in mature sperm 

[158]. Interestingly, these effects were observed after 10 weeks, but not after 3 

weeks, of exposure, and persisted for 6 weeks after exposure removal, indicating 

that the epigenetic modifications occurred in early stages of spermatogenesis 

(e.g., premeiotic germ cells) [158].  Using a gene-candidate approach, chromium 

(III) chloride exposure to adult mice for two weeks decreased sperm DNA 

methylation of the 45S ribosomal RNA gene [159, 160].  

In regard to iDMRs, adult exposure to methoxychlor, an endocrine 

disrupting compound, decreased sperm DNA methylation of the paternal iDMR of 

Meg3 and increased methylation of the maternal iDMRs of Mest, Snrpn and Peg3 

[108].  Similarily, acrylamide exposure for two weeks in adult rats decreased sperm 

DNA methylation of IGF2 iDMR after 35 days, but not after 19 days, indicating that 

imprinted regions of spermatogonia and primary spermatocytes are susceptible to 

environmental exposures [161].  These studies demonstrate that the loss and gain 

of methylation in iDMRs during spermatocytogenesis as previously described [91, 

127] can be modified by environmental exposures.   

In humans, eight cross-sectional studies in adults to date have documented 

that chemical exposures, mostly cigarette smoking, are linked with alterations to 

the sperm epigenome (Table 1).  Sperm from adult male smokers exhibited altered 

miRNA expression [162], higher LINE-1 methylation [163], elevated histone-to-

protamine ratios [164, 165], and increased global acetylation of H4K8 and H4K12 
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[166], compared to sperm from non-smokers, suggesting that chronic smoking 

exposure may lead to a host of epigenetic changes in the sperm, though imprinted 

genes H19 and IGF2 were unchanged [167].  In regard to endocrine disrupting 

compounds, exposure to perflouroalkyl substances among a general population 

study in Europe did not find consistent associations between exposures and global 

as well as repetitive sequence DNA methylation [168].  Miao et al. (2013) found 

that urinary BPA exposures were inversely associated with LINE-1 methylation in 

occupationally-exposed workers as well as in non-exposed workers with low 

exposures.  Interestingly, no significant associations were found between urinary 

BPA and LINE-1 methylation of leukocyte DNA [169].  This observed decrease in 

LINE-1 methylation in sperm may have strong public health implications as the 

occupationally non-exposed workers in the study had lower BPA levels than what 

has been reported for the US general population [170]. 

Sperm epigenetics and offspring development 

After fertilization, parental-specific epigenetic marks of gametes undergo 

reprogramming to establish totipotency in the developing embryo. The kinetics of 

demethylation differs between parental genomes, whereas the paternal genome is 

actively and the female genome is passively demethylated [171] (figure 1).  While 

it has been widely recognized that parental-specific iDMRs and certain classes of 

repetitive sequences, such as IAPs, escape this reprogramming event [172], 

sperm DNA methylation in other genomic loci may also be resistant to 

reprogramming and also contribute to this non-Mendelian form of inheritance, as 

demonstrated in the numerous studies discussed in the previous sections.  
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Technical advances in next-generation bisulfite sequencing of small quantities of 

cells have recently allowed for the resolution of genome-wide methylation maps of 

mouse gametes and through post-implantation embryogenesis to better 

understand gamete-specific heritable DMRs.  In addition to known iDMRs, one 

study identified over 1,600 CpG island germline DMRs between oocytes and 

sperm and over half of these were found to be at least partially resistant to 

demethylation of which 34 were sperm-methylated germline DMRs [173].  

Moreover, Meissner and colleagues identified over 4,894 sperm-derived DMRs 

that were enriched in intergenic regions and retained intermediate methylation 

values during demethylation [174].  Similarly, 34 sperm-derived DMRs identified 

within CpG islands were also partially resistant to demethylation [173].  However, 

in both of these studies, these DMRs appear to be targets for de novo methylation 

after implantation [173, 174].   The relevance of these sperm-derived DMRs in 

regard to environmental exposures and epigenetic inheritance remains unclear.   

Furthermore, the epigenetic inheritance via sperm is not confined to DNA 

methylation, as other epigenetic factors such as histone retention and ncRNA are 

likely to act, in concert, to elicit paternal epigenetic inheritance.  Since sperm 

protamines are quickly replaced, within 1 hour, by oocyte-derived histones in the 

zygote [175, 176], the location and modifications of retained histones in the sperm 

genome likely provide a structural framework to govern reprogramming events 

within the paternal genome.  Similarly, sperm-derived RNAs, including ncRNAs, 

are proposed to influence embryo development and transgenerational inheritance 

by providing a window into the environmental history of sperm [177].  For example, 
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paternal stress in adult mice altered sperm miRNA content as well as offspring 

stress responsivity [178].  Recent data also indicate that sperm-derived factors 

may not be the only paternal component for proper embryo development, such 

that ablation of the seminal plasma by surgical excision in mice impaired 

conception, and among surviving offspring, altered growth trajectory and metabolic 

parameters [179].  Recently, human seminal exosomes were found to harbor 

unique profiles of small ncRNAs, including miRNAs, Y RNAs and tRNAs [180].  

These results indicate that the seminal plasma is not only a transport medium for 

sperm but contains important non-genetic constituents, such as hormones and 

exosomes, that act to regulate the female tract environment to support embryo 

development [181].   

Conclusions 

There are numerous epigenetic reprogramming events throughout the life-

course of the male germ cell and each may represent a unique window of 

susceptibility to environmental exposures.  Data demonstrate that such inputs from 

the environment are embodied within the epigenome of sperm, and in turn, are 

acquired during embryo development.  Future animal research needs to expand 

on these findings by characterizing the full spectrum of sperm epigenetic changes 

induced by environmental exposures at each window of germ cell development.  

Additionally, prospective cohort studies are necessary to determine the response 

of sperm epigenetics in relation to early life environmental exposures.  

Understanding sperm epigenetics is critical to advance our understanding of 

paternal environmental determinants of offspring health and development.  Such 
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research may result in a paradigm shift in the way reproductive success is viewed, 

such that the burden of environmental health may not be restricted to expectant 

mothers but rather is shared with male partners.  In this manner, males may need 

to monitor their environmental health months prior to conception in order to 

optimize their sperm epigenome for fertilization.   
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Table 2.1. Summary of the epidemiologic studies of environmental influences on sperm epigenetics in adulthood. 

 

Life Period Design Exposure Main Results Reference  

Adulthood 
Cross-

Sectional Smoking 
25 unique miRNA showed different expression levels 
between smokers and non-smokers 

Marczylo et al. 
2012 

Adulthood 
Cross-

Sectional Smoking 

Before swim up, acetylation of H4K8 and H4K12 
sperm cells were statistically significantly increased 
in smokers compared to non-smokers while no 
significant changes were observed in the global 5-
mC%, or acetylation of H3K9, H3K14, H4K5, and 
H4K16. The sperm cells isolated after swim up 
revealed no differences in acetylation of any histone 
or global 5-mC% Kim et al. 2015 

Adulthood 
Cross-

Sectional Smoking 

Heavy smokers showed significantly higher 
percentage of sperm cells with elevated histone-to-
protamine ratios compared to never smokers Yu et al. 2014 

Adulthood 
Cross-

Sectional BPA 

BPA exposure is significantly correlated with lower 
sperm Line-1 methylation among Chinese factory 
workers, including those exposed to BPA levels 
equal or lower than reported in the U.S. general 
population 

Miao et al. 
2014 

Adulthood 
Cross-

Sectional Smoking 
Smokers showed more abnormal histone to 
protamine transition compared to non-smokers 

Hammadeh et 
al. 2010 

Adulthood 
Cross-

Sectional Smoking 
Smoking is associated with elevated methylation of 
Line-1, but not Alu and Sata. 

Consales et al. 
2014 

Adulthood 
Cross-

Sectional Smoking 
H19 and IGF2 methylation were not different 
between smokers and non-smokers 

Ouko et al. 
2009 

Adulthood 
Cross-

Sectional Perfluoroalkyl 

No consistent associations between exposure to 
perfluooralkyl substances (perfluorooctane sulfonate, 
perfluorooctanoic acid, perfluorohexane sulfonic 
acid, perfluorononanoic acid) and global or repetitive 
sequence (Line-1, Alu, Satα) DNA methylation 

Leter et al. 
2014 
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Figure 2.1. Windows of susceptibility during male germ cell development.  

(1) Primordial germ cells (PGCs) arise from proximal epiblast (E7.5 in mouse and G4 in humans) and undergo 

clonal expansion as they migrate and colonize the genital ridge. Epigenetic remodeling of histone and DNA 

methylation marks of PGCs are essential to achieve totipotency for sex-specific epigenetic programming. In mice, 

comprehensive loss of methylation in PGCs occurs (around E13.5) passively via Uhrf1 silencing and actively via 

Tet proteins to remove imprinted marks; while in humans, the first wave occurs around G7 with the second wave, 
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via loss of H3K27me3, to erase imprinted marks at G11. Afterward, de novo 

methylation occurs via Dnmt3a, Dnmt3b, and the non-catalytic Dnmt3l. Histone 

modifications after PGC specification include hypoacetylation of H3 and H4; 

hypermethylation of H3K4, H3K9, and H3K27; and replacement of the histone 

variant, H2A.Z. (2) After birth, rapid expansion of spermatogonia occurs in mice; 

however, after an initial clonal expansion, germ cells remain most dormant with 

intermittent expansion, most notable a few years before puberty upon awakening 

of the HPG axis. This prepubertal clonal expansion may be susceptible to 

environmental exposures as indicated by epidemiologic evidence. (3) Initiated at 

the onset of puberty by the activation of HPG axis, spermatogenesis occurs in 

the seminiferous epithelium and is supported by mitotically inactive Sertoli cells. 

Final DNA methylation patterns, including imprinted domains, are acquired 

possibly via CTCF–BORIS switch during spermatocytogenesis. Also, histone 

variants begin to be incorporated. (4) During the first stage of spermiogenesis, 

extensive chromatin remodeling occurs via the histone-protamine exchange, with 

acetylation of histone, insertion and removal of transition proteins, and then 

insertion of protamines 1 and 2. Approximately 90 and 99 % of histones are 

replaced with protamines in humans and mice, respectively. (5) During 

epididymal maturation, the last stage of spermiogenesis, germ cells become 

motile and exosomes shuttle proteins and ncRNA to mature spermatozoa. (6) 

Shortly after fertilization, the two parental genomes are demethylated in an 

asymmetrical manner: the paternal genome is actively depleted of DNA 

methylation, while the maternal genome (shown in read), which harbors 
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substantially lessDNAmethylation than sperm, undergoes a passive loss ofDNA 

methylation that is characterized by a dilution effect as a result of the lack of 

maintenance of DNA methylation over multiple cleavage divisions. Demethylation 

is not complete as imprinted genes intra-cisternal A particles (IAPs) and 

heterochromatin regions around centromeres largely escape this demethylation 

event. Sperm protamines are replaced with oocyte histones with hours of 

fertilization.  
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CHAPTER 3 

RAPID METHOD FOR THE ISOLATION OF MAMMALIAN SPERM DNA 

Summary 

This chapter presents a novel method for isolation of high quality sperm 

DNA for genetic and epigenetic studies. Previously published methods are slow, 

labor intensive, and use chemicals ill-tolerated in in vitro fertilization (IVF) 

settings. The new protocol is simple, reduces the workflow from 24 hours to 20 

minutes, and eliminates the need for unstable and odorous chemicals. 

Abstract 

There is a growing interest in elucidating the role of sperm genetics and 

epigenetics on reproductive success and offspring health. The unique DNA 

packaging renders spermatozoa resistant to isolation techniques used for somatic 

cells and existing protocols use slow and labor intensive methods. Our objective 

was to develop a rapid method for isolating high quality sperm DNA. Isolated 

human sperm cells were homogenized with 0.2mm steel beads for 5 minutes at 

room temperature in the presence of guanidine thiocyanate lysis buffer 

supplemented with 50mM tris(2-carboxyethyl)phosphine (TCEP). Our method 

resulted in yields >90% of high quality DNA using three different commercially 

available silica-based spin columns. DNA yields did not differ between immediate 

isolation (2.84±0.04 pg/cell) and after two weeks of homogenate storage at room 

temperature (2.91±0.13 pg/cell). DNA methylation analyses revealed similar 

methylation levels at both time points for three imprinted loci. Our protocol has 
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many advantages: it is conducted at room-temperature; lengthy proteinase K 

digestions are eliminated; the reducing agent, TCEP, is odorless and stable at 

room-temperature; nucleic acids are stabilized to allow storage of homogenate; 

and it is adaptable for other mammalian species. Together, our improved method 

has important implications for settings where sample processing constraints may 

exist. 

Methods Summary 

Our optimized protocol utilizes bead-based homogenization to facilitate 

sperm cell lysis in concert with an odorless reducing agent, tris(2-

carboxyethyl)phosphine (TCEP), to dissociate disulfide bonds without the use of 

proteinase K. After homogenization, DNA can be extracted by user-preferred 

silica-based spin columns for a total processing time of 15-20 minutes. Our 

protocol has many advantages: it is conducted at room-temperature; lengthy 

proteinase K digestions are eliminated; the reducing agent, TCEP, is odorless and 

stable at room-temperature in aqueous solutions; nucleic acids are stabilized to 

allow storage of homogenate for future DNA isolation; and it is adaptable for other 

mammalian species. 

Introduction 

There is a growing interest in elucidating the role of sperm genetics and 

epigenetics on reproductive success and the life-course trajectory of health 

outcomes of subsequent generations. Recent genetic studies have shown a 

positive association between germline de novo mutations and paternal age [182-

185]. Aberrations in sperm DNA methylation of imprinted genes [35, 186, 187] and 
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epigenome-wide dysregulation [138, 188, 189] have also been reported among 

men with infertility issues such as low sperm count and sperm quality. Moreover, 

compelling animal data indicate that the epigenome of sperm harbors a legacy of 

environmental exposures that can influence offspring phenotype [92, 96, 153].  

Spermatogenesis requires extensive epigenetic reprogramming during the 

progression from diploid spermatogonia to haploid spermatozoa and involves 

stage- and testis-specific gene expression and mitotic and meiotic divisions [83, 

84]. Extensive reorganization of chromatin structure occurs where 90% and 99% 

of histones are replaced by protamines in humans and mice, respectively [136, 

137]. During this protamine-histone transition, tight compaction of the sperm 

nucleus is achieved by the oxidation of cysteine-rich residues of protamines and 

the subsequent formation of disulfide bridges that link protamines together [190]. 

This nuclear compaction is necessary for sperm motility and protection of the 

genome from oxidation within the female reproductive tract [135]. Furthermore, the 

protamine bound packaging of DNA precludes transcriptional activity and has been 

considered a nontraditional form of epigenetic regulation unique to sperm cells 

[26].  

The unique DNA packaging renders spermatozoa resistant to DNA isolation 

techniques used for somatic cells [191, 192]. The development of efficient methods 

for isolating DNA from mammalian sperm has been a gradual process. All existing 

protocols use a combination of three components to gain access to sperm DNA: 

1) detergents and/or chaotropic salts to facilitate cell lysis; 2) proteinase K (ProK) 

to digest nuclear proteins; and 3) reducing agents to break disulfide bonds 
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between protamines. One such widely adopted method for the isolation of 

mammalian sperm DNA uses an ionic detergent, sodium dodecyl sulfate (SDS), 

ProK, and either dithiothreitol (DTT) or 2-mercaptoethanol (βME). After overnight 

incubations at 55°C, DNA is isolated by ethanol precipitation [188] or silica-based 

spin columns [92]. Other popular approaches utilize guanidine salts, such as 

guanidinium thiocyanate (GTC), as the cell lysis reagent. GTC is a chaotropic 

agent that disrupts cell membrane and organelles by solubilizing individual 

molecules or cellular structures, including separating nucleic acids from associated 

proteins [193]. In addition, it is able to denature proteins, inactivate nucleases, and 

enhance activity of ProK [193, 194]. Bahnak et al. first reported a protocol 

incorporating GTC in a lysis buffer along with the ionic detergent, Sarkosyl, and 

βME [191]. However, this protocol required overnight incubations and time 

consuming CsCl ultracentrifugation for DNA isolation. More recently, this protocol 

has been modified to include ProK in the lysis buffer, which significantly reduced 

incubation time to 2 hours and replaced lengthy CsCl ultracentrifugation with 

isopropanol precipitation of DNA, resulting in 80% yield of sperm DNA [194, 195].  

While the previous methods for sperm DNA isolation have progressed over 

time, they still have drawbacks.  First the limited stability of DTT, βME, and ProK 

in aqueous solutions at room temperature requires fresh preparation of lysis 

buffers and involves long incubations ranging from 2 hours to overnight at 56°C 

[188, 194-196]. In addition, DTT and βME possess odors that may not be tolerated, 

especially in clinical settings. Finally, most protocols recover DNA from sperm 

lysate through ethanol precipitation, which increases processing time and may 
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result in co-precipitation of proteins and/or ethanol carryover that may affect 

downstream applications.  

Given the need for a simple and rapid protocol for sperm DNA isolation, we 

developed a novel approach for isolating high quality sperm DNA. Our protocol 

incorporates a five minute mechanical homogenization step in the presence of a 

guanidine-based lysis buffer and a thiol-free reducing agent, TCEP, to facilitate 

sperm cell lysis and dissociation of disulfide bonds without the use of ProK. Sperm 

lysate is then applied to silica-based columns for the isolation of high-quality DNA 

with > 90% yield. To further streamline our protocol, we use commercially-available 

reagents that are stable at room temperature. This method is likely to expedite 

genetic and epigenetic research of sperm in clinical settings as well as in other 

mammalian species.  

Methods 

Isolation of sperm cells:  This study was approved by the Institutional 

Review Board at the University of Massachusetts Amherst (#2014-2337). All 

participants gave written informed consent and were required to have at least 48 

hours of abstinence prior to each donation. Five healthy male participants each 

donated multiple whole ejaculate samples throughout the course of the study. To 

remove somatic cell contamination, sperm cells were isolated using a continuous 

one-step 90% gradient (Sage, Beverly, MA: ART-2100 and ART-1006) as per the 

manufacturer’s protocol. Sperm pellets were washed once, re-suspended, counted 

on a hemocytometer using the average of eight grid areas, and visually inspected 
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for somatic cell contamination. Isolated sperm from individuals ranged from 20 to 

109 million cells. 

Cell Lysis: Reducing agents, TCEP (Pierce, Rockford, IL, Catalog: 77720, 

final concentration: 10-50mM), DTT (Promega, Madison, WI: V3151 final 

concentration: 150 mM), or βME (final concentration: 2%), were added to Buffer 

RLT (Qiagen, Limburg, Netherlands Catalog: 79216) to a final volume of 500 µl. 

Three different homogenization techniques were also evaluated: 1) sperm were 

pulse-vortexed in lysis buffer for 5 minutes, diluted 1:1 in nuclease free water, and 

then incubated with ProK (final concentration: 200 µg/mL) at 56°C for 2 hours; 2) 

sperm were pulse-vortexed in lysis buffer for 5 minutes and lysates were loaded 

onto Qiashredder columns (Qiagen: 79656) and centrifuged for 2 minutes at max 

speed (≥17,000 x g); 3) sperm cells in homogenized in the presence of lysis buffer 

and 0.1g of 0.2mm stainless steel beads (Next Advance, Averill Park, NY, Catalog: 

SSB02) for 5 minutes on a Disruptor Genie (Scientific Industries, Bohemia, NY, 

Catalog: SI-238). To ensure equal aliquots of sperm, resuspended sperm cells 

after gradient isolation were vortexed for 10 seconds between each aliquot as 

previously described [197].  

DNA Isolation: Sperm DNA was extracted with three different commercially-

available kits using modified protocols:  

AllPrep DNA/RNA Mini Kit (Qiagen: 80204). Lysates were added to spin 

columns and centrifuged at 10,000 x g for 30 seconds to bind DNA. Subsequent 

washing steps followed manufacturer’s protocol. To elute, 50 uL of Buffer EB 

(preheated to 70°C) was added to the columns, incubated at room temperature for 



 

38 

3 minutes, and centrifuged for 1 minute at max speed. This was repeated twice for 

a total elution volume of 150uL.  

QIAamp DNA Mini Kit (Qiagen: 51304). Lysates were combined with equal 

volumes of Buffer AL and 100% ethanol, loaded onto the spin columns, and 

centrifuged at 6,000 x g for 1 minute to bind DNA. Wash and elution steps followed 

manufacturer’s protocol, including three separate 200 µl elutions to maximize yield.  

Quick-gDNA MiniPrep (Zymo, Irvine, CA, Catalog: D3025). DNA/RNA 

Shield (Zymo: R1100) and Quick gDNA Genomic Lysis Buffer (included in kit), 

were used for sperm lysis instead of Buffer RLT. Samples in the Genomic Lysis 

Buffer were loaded onto the columns while samples in DNA/RNA Shield were 

combined with 3 volumes of Genomic Lysis Buffer before loaded onto spin 

columns. Samples were centrifuged at 10,000 x g for 1 minute to bind. Wash and 

elution steps followed manufacturer’s protocol for a final elution volume of 100 uL.  

DNA yields and quality were determined using the Nanodrop 2000 

Spectrophotometer (Thermo Scientific, Somerset, NJ: E112352). A total of 350 ng 

of genomic DNA was resolved on a 0.7% agarose gel at 100V for 45 minutes, 

stained with 0.5 μg/mL ethidium bromide solution and visualized on a BioDoc-It 

Imaging System (UVP: M-26X). Provided that DNA quantity of a haploid cells is 

expected at 3 pg/cell, DNA yields were calculated by observed yield/expected yield 

based on cell count.  The full protocol for DNA isolation is provided in Appendix A. 

RNA isolation: Sperm cell lysate may be partitioned for the isolation of 

sperm RNA by adding 1:1 ratio of Qiazol and following the protocol of Goodrich et 

al. [198] starting at step 18 under section 3.1.  
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DNA Methylation Analysis: DNA methylation analyses of imprinted genes 

were performed on Sequenom’s MassARRAY platform, which uses RNA base-

specific cleavage (MassCLEAVE) and matrix-assisted laser desorption/ionization 

time-of-flight mass spectrometry (MALDI-TOF MS) for quantitative DNA 

methylation analyses of PCR-amplified bisulfite-converted DNA [199]. Briefly, 7.5 

ng of bisulfite converted DNA (EZ DNA Methylation Kit, Zymo Research: D5002) 

was amplified with reverse primers containing a T7-promoter tag. Primers and 

PCR conditions are provided in Appendix B. After treatment with shrimp alkaline 

phosphatase to remove unincorporated dNTPs, amplification products were 

subjected to in vitro transcription and T-specific cleavage and were then analyzed 

by MALDI-TOF MS. The C/T changes introduced by bisulfite treatment are 

reflected as G/A changes on the T7-directed RNA transcript and result in a mass 

difference of 16 Da for each CpG dinucleotide. The level of methylation for each 

CpG unit was quantified using EpiTYPER software and methylation across loci 

was calculated as the average methylation of individual CpG units.  

Results and Discussion 

To improve processing time and work flow, we exploited several areas in 

current protocols where considerable improvements could be achieved. Because 

recently published methods for sperm DNA isolation relied on user-prepared GTC-

based lysis buffer and ethanol precipitation, we reasoned that commercially-

available GTC lysis buffers could offer an effective alternative to user-prepared 

lysis buffers as well as provide optimal DNA binding conditions for silica-based 

spin columns, thereby avoiding ethanol precipitation. Similar to the reported yield 
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of 80% in a recent GTC-based method with ethanol precipitation [194], treatment 

of sperm cells with diluted Buffer RLT, 150 mM DTT, and 200 µg/mL ProK for two 

hours and DNA isolation via AllPrep DNA columns resulted in a 79% yield (Figure 

2.1, Panel A; 2.37 ± 10 pg/cell). As an alternative, we examined the utility of TCEP, 

an odorless, room-temperature stable, thiol-free reducing agent primarily used for 

protein biochemistry. We found that 50 mM TCEP (Figure 2.1, Panel A; 2.32 ± 0.09 

pg/cell) resulted no appreciable differences in DNA yields compared to 150 mM 

DTT, indicating that TCEP is a viable alternative to thiol-based reducing agents for 

the isolation of sperm DNA. 

With Buffer RLT’s high concentration of GTC (2.8-4M), we also reasoned 

that lengthy ProK digests could be circumvented if sperm cells are efficiently lysed. 

Therefore, we examined the utility of different mechanical homogenization 

techniques (Figure 2.1, Panel B). QIAshredder, a column based mechanical 

homogenization system offered by Qiagen for the rapid homogenization of cells 

and tissues, resulted in better yield (Figure 2.1, Panel B; 1.51 ± 0.23 pg/cell) 

compared to no homogenization (Figure 2.1, Panel B; 0.42 ± 0.01 pg/cell), but was 

less effective compared to the 80% yields achieved by ProK digestions.  

We next incorporated the novel homogenization method used for sperm 

RNA isolation developed by Krawetz and colleagues that utilizes 0.2mm stainless 

steel beads [198]. In the presence of Buffer RLT and 50 mM TCEP, 

homogenization with 0.2mm stainless steel beads resulted in  >90% yields (Figure 

2.1, Panel B; 2.78 ± 0.23 pg/cell). Given the interest in obtaining sperm DNA from 

abnormal sperm parameters (e.g., low count), we determined the efficiency of our 
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method was >80% (e.g. 2.40 pg/cell) with 5 x 105 or more cells. Moreover, we 

tested our protocol down to 1 x 104 cells and were able to isolated sufficient DNA 

for bisulfite PCR of imprinted genes (data not shown).   

Next, we evaluated the compatibility of the bead-based homogenization 

procedure with other reducing agents as well as other commercially-available DNA 

column kits. As compared to 50mM TCEP, we found no appreciable differences in 

DNA yields for 150 mM DTT and 2% βME using the same beads-based 

homogenization (data not shown). Furthermore, ProK digestion after 

homogenization did not increase DNA yield (data not shown), indicating that 

lengthy ProK digestions are unnecessary. Therefore, this homogenization 

procedure circumvented the need for time-consuming ProK incubations.  As 

compared to the AllPrep DNA columns, QIAamp DNA and and Zymo’s Quick-

gDNA columns resulted in slightly higher overall yields (Figure 2.1, Panel C; 2.70 

± 0.09 pg/cell vs. 2.95 ± 0.13 pg/cell and 3.01 ± 0.28 pg/cell, respectively. Use of 

Zymo’s Quick-gDNA kit by replacing Buffer RLT with their genomic lysis buffer 

(contains 4M GTC) resulted in lower 260/280 and 260/230 ratios compared to the 

other kits (data not shown).  

We then aimed to test the stability and integrity of DNA in Buffer RLT and 

50 mM TCEP after bead homogenization. Compared to immediate processing 

(T0), two week storage (T2) at room temperature showed no decrease in DNA 

yield (Figure 2.1, Panel D: T0; 2.84 ± 0.05 pg/cell vs T2; 2.91 ± 0.13 pg/cell, 

respectively). Sperm genomic DNA resolved on 0.7% agarose gel revealed high 

molecular weight DNA that displayed no differences in integrity between samples 
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processed immediately (T0) or after two week storage (T2) at room temperature 

(Figure 2.2). Finally, to verify the feasibility of our protocol with downstream 

applications, we conducted DNA methylation analyses of three imprinted loci 

(SNURF, PEG10, H19). As expected for sperm DNA [200], differentially 

methylated regions (DMRs) of maternally-expressed, H19, displayed high levels 

of methylation, while DMRs of paternally- expressed genes, SNURF and PEG10, 

showed very low level of methylation (Figure 2.3). Furthermore, we found no 

differences between samples that were processed immediately (T0) and after two 

week storage (T2) at room-temperature for DNA methylation levels of H19 (T0: 

94.1% ± 0.1% and T2: 92.2% ± 1.9%), SNURF (T0: 3.5% ± 0.7% and T2: 2.6% ± 

1%), and PEG10 (T0: 3.7% ± 1.8% and T2: 6.9% ± 3.2%).  

 The use of the commercially-available GTC lysis buffers streamlined our 

protocol by eliminating the preparation of lysis buffers and allowing for optimal 

binding conditions for standard silica column-based DNA kits. We recommend 

Qiagen’s RLT lysis buffer and columns because 1) DNA yields and 260/280 ratios 

were consistently greater than 90% and 1.80, respectively and 2) sperm cell 

lysates can be partitioned for sperm RNA purification using a previously published 

protocol [198]. In addition to the DNA columns from the AllPrep DNA/RNA kit, we 

found that the QIAamp DNA Mini kit and Zymo’s Quick-gDNA MiniPrep kits can 

also be adapted to use the RLT-based lysate with similar total yields. However, 

there are drawbacks to both. The QIAamp DNA Mini Kit achieves similar total yield 

compared to AllPrep DNA/RNA kit, but it requires a higher elution volume for 

maximum yield (600 µL), thereby lowering final concentrations. This may not be 
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desirable when there is limited starting material. While Zymo’s Quick gDNA kit had 

the highest yield, it must be noted that the 260/280 and 260/230 ratios were 

consistently low, < 1.8 and < 1.0, respectively, suggesting low purity of DNA due 

to protein and/or GTC carryover.  

 Clinical-based research can present its own set of unique challenges. In 

studies where semen samples are processed at an in vitro fertilization laboratory, 

organic thiols may not be permissible due to their strong sulfur odor. TCEP 

irreversibly reduces disulfides and is reported to be more effective at reducing 

disulfides than DTT below pH 8.0 [201], which represents the typical pH of GTC 

lysis buffers (e.g. Qiagen RLT is pH 7.0). Moreover, while DTT and βME readily 

undergo atmospheric oxidation, TCEP is resistant to oxidation allowing for room 

temperature storage in aqueous solutions. Our results show no appreciable 

difference in DNA yield between TCEP and thiol reductants and supports previous 

data that TCEP is equally effective as DTT in lysing sperm cells and may provide 

an effective substitute for organic thiols [197]. Together, TCEP offers an odor-free 

and room-temperature stable alternative for the reduction of disulfide bonds, 

thereby making it our preferred reducing agent for DNA isolation of sperm cells.     

The workflow of our protocol presents several practical advantages when 

isolating sperm DNA. First, our protocol provides flexibility, such that the stability 

of DNA after homogenization allows for the convenient storage of lysates for future 

downstream DNA isolation. Secondly, our protocol is streamlined by incorporating 

commercially available reagents that are stable at room temperature and 

eliminating the need for lengthy ProK digestions. These first two points have 
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important implications, especially in regard to research in clinical settings when 

technician time may be limited. Moreover, the potential for lysate storage prior to 

DNA isolation and the use of commercially available reagents minimizes potential 

batch effects when conducting large epidemiologic studies. Our protocol is also 

amenable to partitioning lysates for RNA purification from the same sample. For 

example, given a 500 µl of lysate that contains 3 x 107 sperm, 100 µl of lysate is 

expected to provide, at 90% yield, approximately 16 µg of DNA with our protocol. 

The remaining 400 µl of lysate can then be used for the isolation of RNA, which is 

in extremely low quantities in sperm (50 fg/cell) [198]. By incorporating the sperm 

RNA isolation method of Goodrich et al [198], our theoretical example is estimated 

to provide 1.2 μg of RNA. These yields provide ample nucleic acids for many 

downstream applications, including next generation sequencing techniques. 

Additionally, our protocol is optimized for silica-based spin columns, thereby 

avoiding ethanol precipitation procedures. Lastly, our protocol can be extended for 

isolation of sperm DNA in other mammalian species. For example, our method is 

equally effective in isolating sperm DNA from mice (data not shown). 

In conclusion, our optimized 5 minute room-temperature homogenization 

protocol results in > 90% yield of high quality sperm DNA by utilizing steel beads 

to facilitate sperm cell lysis in concert with an odorless reducing agent, TCEP, to 

dissociate disulfide bonds without the use of ProK. After homogenization, in lieu of 

lengthy ethanol precipitation, DNA can be extracted by user-preferred silica-based 

spin columns for a total processing time of 15-20 minutes. Our protocol also 

stabilizes nucleic acids to allow for optional storage of homogenate for DNA 
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isolation at a later date. A schematic and full protocol of the DNA isolation method 

is found in Figure 2.4 and Appendix A, respectively. Together, our improved 

method has important practical advantages for research in clinical settings where 

sample processing constraints likely exist.  
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Figure 3.1 Utility of tris(2-carboxyethyl)phosphine (TCEP) as a reducing agent for 
the isolation of sperm DNA  
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(A) Mean (±SD) DNA yield (pg/cell) of sperm cells treated with Buffer RLT, either 

50 mM TCEP or 150 mM DTT, and proteinase K (ProK) for two hours at 56°C. 

DNA was isolated from sperm cell lysate via AllPrep DNA columns. (B) Mean 

(±SD) DNA yield (pg/cell) of sperm cells treated with Buffer RLT (50 mM TCEP) 

and the following homogenization methods: none; Qiashredder (as directed); or 

0.1 g of 0.2 mm stainless steel beads. DNA was isolated from sperm cell lysate 

via AllPrep DNA columns. (C) Mean (±SD) DNA yield (pg/cell) of sperm cells 

purified with Qiagen AllPrep, QIAmp Mini, or Zymo Quick-gDNA spin columns. 

Sperm cells were homogenized by 0.2 mm stainless steel beads in either Buffer 

RLT (AllPrep and DNA Mini) or Zymo gDNA lysis buffer (Quick gDNA), both 

supplemented with 50 mM TCEP. (D) Mean (±SD) DNA yield (pg/cell) of sperm 

cells homogenized by 0.2 mm stainless steel beads in the presence of Buffer 

RLT and 50 mM TCEP. DNA was isolated from sperm cell lysate via AllPrep spin 

columns processed immediately (T0) and after 2 weeks storage (T2) at room 

temperature (22°C). 
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Figure 3.2 Electrophoresis of sperm DNA 

 

Sperm DNA isolated from 3 individuals immediately (T0) and after 2 weeks of 

storage at room temperature (T2) on a 0.7% agarose gel. 
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Figure 3.3 DNA methylation of three imprinted loci. 

Mean (±SD) percentage DNA methylation of CpG sites within imprinted regions 

of SNURF, PEG10, and H19 using NA isolated from sperm lysate immediately 

(T0) and after 2 weeks of storage at room temperature (T2). 
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Figure 3.4 Schematic of sperm DNA isolation workflow. 

Sperm cells are isolated from ejaculate via gradient centrifugation with 90% 

PureCeption. Pelleted sperm cells are then homogenized with Buffer RLT, 50 

mM tris(2-carboxyethyl)phosphine (TCEP), and 0.1 g of 0.2 mm stainless steel 

beads on a Disruptor Genie for 5 min. This produces a working lysate that is 

ready for DNA and RNA isolation. 
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CHAPTER 4 

PARENTAL CONTRIBUTIONS TO EARLY EMBRYO DEVELOPMENT: 

INFLUENCES OF URINARY PHTHALATE AND PHTHALATE ALTERNATIVES 

AMONG COUPLES UNDERGOING IVF TREATMENT 

 

Summary 

This chapter evaluates the associations of parental urinary phthalate and 

phthalate alternative exposures with embryo quality through day 5 post-

fertilization. Overall, we found that paternal, but not maternal urinary metabolite 

levels of select phthalate and phthalate alternatives were associated with a 

marked decrease in blastocyst quality. 

 

Abstract 

STUDY QUESTION: Are preconception urinary concentrations of phthalates and 

phthalate alternatives associated with diminished early stage embryo quality in 

couples undergoing in vitro fertilization (IVF)? 

SUMMARY ANSWER: Male, but not female, urinary concentrations of select 

metabolites of phthalates and phthalate alternatives are associated with 

diminished blastocyst quality. 

WHAT IS KNOWN ALREADY: Phthalates, endocrine disrupting compounds with 

widespread exposure worldwide, are associated with adverse reproductive health. 

Male and female preconception exposures to select phthalates have been 
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previously associated adverse reproductive outcomes in both the general 

population and in those undergoing IVF.  

STUDY DESIGN, SIZE, AND DURATION: This prospective cohort included 50 

subfertile couples undergoing IVF in Western Massachusetts. 

PARTICIPANTS/MATERIALS, SETTING, METHODS: The current study includes 

the first 50 couples recruited from the Baystate Medical Center’s Fertility Center in 

Springfield, Massachusetts as part of the Sperm Environmental Epigenetics and 

Development Study (SEEDS). Relevant data from both partners, including embryo 

quality at the cleavage (day 3) and blastocyst (day 5) stages, were collected by 

clinic personnel during the normal course of an IVF cycle. A spot urine sample was 

collected from both male and female partners on the same day as semen sample 

procurement and oocyte retrieval. Seventeen urinary metabolite concentrations 

were quantified by liquid chromatography mass spectrometry (LCMS) and 

normalized via specific gravity. Generalized Estimating Equations (GEE) were 

used to estimate odds ratios (OR) and confidence intervals (95% CI), with urinary 

phthalates and phthalate alternatives fitted as continuous variables and embryo 

quality as a binary variable.  

MAIN RESULTS AND THE ROLE OF CHANCE: The 50 couples contributed 761 

oocytes, of which 423 progressed to the cleavage stage, 261 were high quality 

cleavage stage embryos, 137 were transferrable quality blastocysts, and 47 were 

high quality blastocysts. Adjusting for age of both partners, urinary phthalate 

concentrations of female partners, and male infertility status, male urinary 

monoethyl phthalate (MEP) concentrations were positively associated with high 
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quality cleavage stage embryos (OR=1.20, 95% CI 1.01-1.43., p=0.04); no other 

significant associations were observed at this stage. At the blastocyst stage, male 

urinary concentrations of monobenzyl phthalate (MBzP) (OR=0.55, 95% CI 0.36-

0.84, p=0.01), mono-3-hydroxybutyl phthalate (MHBP) (OR=0.37, 95% CI 0.18-

0.76, p=0.01), mono-n-butyl phthalate (MBP) (OR=0.55, 95% CI 0.42-0.73, 

p<0.01), and monomethyl phthalate (MMP) (OR=0.39, 95% CI 0.26-0.60, p<0.01) 

were inversely associated with high quality embryos. A borderline statistically 

significant relationship was observed for male concentrations of mono(2-

ethylhexyl) phthalate (MEHP) (OR=0.52, 95% CI 0.27-1.00, p=0.05) and 

cyclohexane-1,2-dicarboxylic acid-monocarboxy isooctyl ester (MCOCH) 

(OR=0.21, 95% CI 0.04-1.03, p=0.05) at the blastocyst stage. Similar inverse 

associations were observed between male urinary phthalate metabolite 

concentrations and likelihood of being transferrable quality blastocysts. For female 

partners, select metabolites were positively associated with odds of high or 

transferrable blastocyst quality, but the observed associations were not consistent 

across blastocyst quality measures or between sex-specific and couples-level 

models.  

LIMITATIONS, REASONS FOR CAUTION: Our modest sample size only included 

50 couples contributing one cycle each. In addition, non-differential 

misclassification of exposure remains a concern given the single spot urine 

collection and the short half-life of phthalates.  

WIDER IMPLICATIONS OF THE FINDINGS: Our results suggest that an inverse 

association between male preconception concentrations of select phthalate 
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metabolites and blastocyst quality, likely occurring after genomic activation. If 

corroborated with other studies, such findings will have public health and clinical 

significance to both the general population and those undergoing IVF.  

 

Introduction 

Endocrine disrupting compounds (EDCs) have received considerable 

attention due to their potential to disrupt hormonal function and their association 

with a range of adverse reproductive health consequences in humans [202, 203]. 

Phthalates, one class of EDCs, are used in a large variety of commercial products 

such as medical products, food packaging, personal care products, and solvents 

[204].  Because they are not chemically bound to products, phthalates are easily 

released into the environment resulting in chronic and widespread human 

exposure in the United States [41] and globally [205-208]. The potential of 

phthalates to adversely influence reproductive health has been well documented 

[209]. Similar to other EDCs, phthalates display anti-androgenic properties [60-62]. 

In addition, both male and female preconception phthalate exposure has been 

associated with a range of adverse pregnancy and birth outcomes [52, 58, 59, 

210]. The recent rise in use of replacement phthalates and phthalate alternative 

compounds is a developing public health concern. Human exposure to these 

compounds has increased over the past decade [41]; however, there is limited 

research on their role in male and female reproductive health.  

To our knowledge, only one cohort previously investigated the association 

of preconception phthalate concentrations with embryo development. Studies from 
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the Environmental and Reproductive Health (EARTH) have reported that male 

preconception urinary concentrations of select phthalate metabolites were 

associated with decreased odds of implantation and live birth among couples 

seeking fertility treatment while female phthalate metabolite concentrations were 

associated with lower mature and overall oocyte yield as well as decreased 

probability of clinical pregnancy and live birth; however, null associations were 

observed with embryo quality at the cleavage stage (day 3) [57, 68]. These results 

suggest that parental contributions to early-life development may appear after day 

3, the cleavage stage, when the embryo transitions away from maternal control 

and zygotic genome activation occurs.  

In light of the compelling evidence from these previous studies, we 

conducted a prospective study to examine the relationship of preconception 

concentrations of phthalates and phthalate alternatives on in vitro embryo quality 

through the blastocyst stage of development. 

Methods 

Study Population. The study population comprised 761 oocytes from the 

first 50 couples recruited as part of the Sperm Environmental Epigenetics and 

Development Study (SEEDS), a prospective cohort designed to investigate 

parental preconception exposures to EDCs and early life development. All couples 

were recruited from the Baystate Medical Center Fertility Center in Springfield, 

Massachusetts, which primarily serves western Massachusetts and northern 

Connecticut. Couples were included if the male partners were 18-55 years old 

without vasectomy, female partners were ≤ 40 years old with expected delivery at 
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Baystate Medical Center, and fresh ejaculate sperm were used for IVF, including 

intracytoplasmic sperm injection (ICSI). Relevant data on demographics, lifestyle 

factors, and medical history were collected by clinic personnel from both partners 

during the course of an IVF cycle. Prior to sample collection, each partner 

completed an intake questionnaire regarding lifestyle factors. Each couple 

contributed only one cycle to the study. 

Written consent was obtained by attending physicians from eligible males 

and females interested in study participation. This study was approved by the 

institutional review boards at Baystate Medical Center and at the University of 

Massachusetts Amherst. 

Urinary Biomarkers Measurement. A spot urine sample was collected from 

both male and female partners in a sterile polypropylene collection cup on the 

same day as semen sample procurement and oocyte retrieval. Urine samples were 

vortexed, divided into several aliquots, and stored at -80°C before being shipped 

overnight on dry ice to the CDC’s National Center for Environmental Health, where 

the urinary biomarkers were quantified via enzymatic deconjugation, solid-phase 

extraction, separation, and analyses using LCMS [211]. 

In total, seventeen urinary metabolites were quantified: mono(2-ethylhexyl) 

phthalate (MEHP); mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP); mono(2-

ethyl-5-oxohexyl) phthalate (MEOHP); mono(2-ethyl-5-carboxypentyl) phthalate 

(MECPP); mono-carboxy-isooctyl phthalate (MCOP); mono-isononyl phthalate 

(MNP); monobenzyl phthalate (MBzP); mono (3-carboxypropyl) phthalate (MCPP); 

monocarboxy-isononyl phthalate (MCNP); mono-n-butyl phthalate (MBP); mono-



 

57 

3-hydroxybutyl phthalate (MHBP); mono-isobutyl phthalate (MiBP); mono-

hydroxyisobutyl phthalate (MHiBP); monoethyl phthalate (MEP); monomethyl 

phthalate (MMP); cyclohexane-1,2-dicarboxylic acid-monocarboxy isooctyl ester 

(MCOCH); and cyclohexane-1,2-dicarboxylic acid-mono(hydroxy-isononyl) ester 

(MHINCH). The limits of detection (LODs) ranged from 0.2 to 0.6 ng/mL, 

depending on the metabolite. Specific gravity (SG) was measured at room 

temperature using a digital handheld refractometer (Atago Co., Ltd., Tokyo, 

Japan).   

Embryo Quality Assessment. Embryos were evaluated on a five-point scale 

(1 being the best and 5 being the worst quality) on days 3 and 5 post-insemination, 

during the cleavage stage and blastocyst stage, respectively. A separate category 

was reserved for all arrested embryos at both time points. At the cleavage stage, 

embryos were evaluated morphologically for the presence or absence of 

blastomere multinucleation, symmetry, cell number, and amount of fragmentation 

using the Veeck system [212].  For example, embryos with 8 cells, no 

multinucleated blastomeres, and no fragmentation were considered grade 1, while 

embryos with 7 cells, no multinucleated blastomeres, and <10% fragmentation 

were considered grade 2, and embryos with 6 cells, no multimucleated 

blastomeres, and 20% fragmentation are grade  4. At the blastocyst stage, 

embryos were evaluated for the developmental stage including the expansion of 

blastocoel, and quality of trophectoderm and inner cell mass. For example, 

embryos at blastocyst stage with full expansion, hatching or hatched with large 

compact inner cell mass and well-defined cohesive trophectoderm with many cells 
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are considered grade 1 blastocyst. An expanded blastocyst with a large, mostly 

compacted inner cell mass and medium number of trophectoderm cells is 

classified as grade 2. Blastocysts lacking full expansion or having an inner cell 

mass comprised of a small number of cells or a small number of non-uniform 

trophectoderm cells are grade 4 quality. At both time points, grades 1-2 were 

classified as high quality embryos, similar to that of a previously published study 

[57], while at day 5 grades 1-4 were additionally classified as transferrable quality. 

Statistical Analysis. Urinary biomarker concentrations below the limit of 

detection (LOD) were assigned a value of the LOD divided by the square root of 

2. All urinary phthalate measurements were corrected for SG and log transformed. 

SG-correction followed the formula Pc=P[(SGm-1)/(SG-1)] where Pc is the SG-

corrected urinary metabolite concentration (ng/mL), P is the measured metabolite 

concentration, SGm was the sex-specific median SG, and SG is the specific gravity 

of the urine sample. Geometric means and selected percentiles were calculated 

for both males and females to describe the distributions of SG-adjusted urinary 

phthalate and phthalate alternative metabolites. Wilcoxon Paired-Signed Rank test 

and Fisher’s exact test were used to test for differences in distribution of 

demographics, where applicable. 

For embryo level outcomes, general estimating equations (GEE), using a 

binomial distribution and exchangeable correlation structure, were used to account 

for the correlated structure of the embryo data within couples and to estimate the 

associations between partner urinary concentrations of phthalates and phthalate 

alternatives and embryo development measures through 5 days post insemination. 
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Log transformed and SG corrected urinary biomarker concentrations were fitted as 

continuous values when the majority of the population had levels above the LOD 

and dichotomous values based on the LOD when majority of the population had 

levels below the LOD. Fertilization, high quality, and transferable quality statuses 

for each embryo were fitted as a dichotomous outcome. All ORs represent the 

impact of a one unit increase in log transformed paternal urinary metabolite 

concentration, except for MCOCH and MHINCH, where the ORs represent above 

or below the limit of detection (0.4 and 0.5 ng/mL, respectively). Two types of 

models were fitted: sex-specific and couple-level. The sex-specific models 

included only the covariates of specific partners, male or female, but not both, 

whereas couples-level models adjusted for covariates and metabolite 

concentrations from both partners. Inclusion of covariates in multivariable models 

was based on biological plausibility and statistical significance (p<0.1) in bivariate 

models of embryo quality. Covariates considered for inclusion were age, body 

mass index (BMI), race, infertility status, alcohol use, and smoking status.  

For additional sensitivity analyses, we restricted the embryos under 

analysis to mature oocytes, fertilized oocytes (for outcomes at days 3 and 5), 

embryos of sufficient quality to be cultured past cleavage stage (for blastocyst 

stage embryos), or oocytes from non-smokers. Lastly, to cross-validate our GEE 

model, we fitted 1) Poisson models at the couple level, aggregating the number of 

embryos and using the total number of embryos at day 3 as an offset, and 2) two-

level mixed models specifying random intercepts and binomial distribution. 
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Analysis was performed with R (v3.3.0) using the “gee” package (v4.13.19) 

for GEE models. Statistical significance was defined as p-values < 0.05. 

Results 

Select demographics for the current study population of 50 heterosexual 

couples seeking fertility treatment are shown in Table 2.1. Compared to female 

partners, the male partners were 1.7 years older on average and more likely to be 

over the age of 40 whereas female partners were more likely to be between 30 

and 40 years of age. The majority of the participants in our sample identified as 

non-Hispanic white, with only 4 males and 2 females identified as non-white. The 

mean body mass index (BMI) for males and females were 28.8 and 28.9, 

respectively, with 78% of males and 66% of females classified as overweight (BMI 

25-29.9) or obese (BMI ≥30). Race and BMI were not found to be associated with 

embryo quality and thus were not included in the multivariable models. 

The majority of the couples at the fertility clinic had at least one partner 

diagnosed with subfertility or infertility (Table 2.1). In our sample, 20 couples had 

a diagnosis of female factor alone (40%), 6 couples with male factor alone (12%), 

8 couples with both (16%), and 16 couples with unexplained infertility (32%). 

Fourteen males were considered as infertile based on semen quality according to 

the World Health Organization references values (Cooper 2010). Females were 

diagnosed infertile based on a variety of known, non-exclusive, conditions. Of the 

28 females classified as infertile, 10 had polycystic ovary syndrome, 9 were 

anovulatory, 7 had diminished ovarian reserve, 5 had tubal factor, 1 had 

endometriosis, and 6 had other diagnoses.   
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Descriptive statistics of couple-specific oocyte and embryo data are also 

presented in Table 2.1. A total of 761 oocytes were retrieved, yielding an average 

of 15.2 oocytes per couple per cycle. Of the 761 oocytes, 599 were mature at the 

time of insemination, 449 were fertilized, and 423 progressed to the cleavage 

stage. Three days after conventional IVF or ICSI, 261 of the oocytes developed 

into high quality cleavage stage embryos while 391 embryos were of sufficient 

quality to be cultured until day 5. Of those 391 embryos, 47 developed to high 

quality blastocysts at day 5; however, 137 were considered to be of transferrable 

quality.  

The distributions of SG-adjusted urinary metabolite concentrations for male 

and female partners are reported in Table 2.2. For both male and female partners, 

13 of the 15 of the measured urinary phthalate metabolite concentrations (MEHP, 

MEHHP, MEOHP, MECPP, MBP, MBzP, MiBP, MHiBP, MEP, MCPP, MCNP, 

MCOP, and MMP) had detection frequencies ranging from 75% - 100%. Urinary 

MHBP was detected in 74% of male samples and 65% of female samples, while 

urinary MNP was detected in 62% of male samples and 57% of female samples. 

Concentrations of MHINCH and MCOCH, metabolites of the phthalate alternative 

DINCH, were only detected in 43% and 16% of couples’ samples, respectively, 

and were fitted as dichotomous predictor variables, above and below the LOD, in 

subsequent regression analyses. Compared to male partners, female partners had 

higher urinary concentrations for the four metabolites of DEHP (MEHP, MEHHP, 

MEOHP, and MECPP) and MCOP, MCNP, MHiBP, MHBP, and MEP (p<0.05).  
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 In sex-specific and couple-level multivariate models, male or female urinary 

concentrations of phthalate and DINCH metabolites were not found to be 

associated with fertilization (Appendix B1). In sex-specific models, there were no 

significant associations between urinary biomarkers and embryo quality at the 

cleavage stage (Table 2.3). However, after the inclusion of partners’ metabolite 

concentrations and age, there was a statistically significant positive association 

between male urinary MEP concentrations and high quality cleavage stage 

embryos (OR=1.20, 95% CI: 1.01-1.43).  

Table 2.4 presents the associations between urinary biomarkers and high 

quality embryos at the blastocyst stage in sex-specific and couple-level 

multivariate analyses. Among male partners, there were statistically significant 

inverse associations between urinary concentrations of MBzP (OR=0.64, 95% CI: 

0.44-0.94), MBP (OR=0.73, 95% CI: 0.57-0.94), MHBP (OR=0.38, 95% CI: 0.20-

0.73), MMP (OR=0.62, 95% CI: 0.45-0.85), and MCOCH (OR=0.34, 95% CI: 0.13-

0.90) and high blastocyst quality. In couple-level models with adjustment for female 

age and female metabolite concentrations, the significant inverse associations 

between male urinary metabolite concentrations and high blastocyst quality largely 

persisted: MBzP (OR=0.55, 95% CI: 0.36-0.84), MBP (OR=0.55, 95% CI: 0.42-

0.73), MHBP (OR=0.37, 95% CI: 0.18-0.76), and MMP (OR=0.39, 95% CI: 0.26-

0.60); however, the estimates for MCOCH became borderline significant 

(OR=0.21, 95% CI: 0.04-1.03; Table 2.4). In both models, male urinary MEHP 

concentrations were associated with a > 40% decrease in odds of high blastocyst 

quality, but it did not reach statistical significance in either model (p=0.08 and 0.05 
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in sex-specific and couple-level models, respectively).  In sex-specific models, 

female urinary concentrations of MHiBP were positively associated with high 

blastocyst quality (OR=1.86, 95% CI: 1.01-3.4); however, this association did not 

reach statistical significance in couple-level models after adjusting for male age 

and male urinary MHiBP concentrations (OR=2.00, 95% CI: 0.95-4.17). 

Conversely, female urinary concentrations of MMP (OR=2.43, 95% CI: 1.23-4.79) 

and MCOCH (OR=2.51, 95% CI: 1.02-6.14) were found to be positively associated 

with high blastocyst quality in the couple-level models with adjustment for male 

age and urinary metabolite concentrations, but not in the sex-specific models.  

When considering transferrable blastocyst quality (Table 2.5), the couple-

level model estimates for male urinary concentrations of MBzP (OR=0.70, 95% CI: 

0.48-1.01), MBP (OR=0.67, 95% CI:0.43-1.03), MHBP (OR=0.41, 95% CI: 0.21-

0.80), MMP (OR=0.72, 95% CI: 0.52-1.00), and MCOCH (OR=0.41, 95% CI: 0.19-

0.88) were all slightly attenuated compared to estimates from models of high 

quality blastocysts, but all remained either statistically significant or borderline 

significant (p < 0.07). However, male urinary concentrations of MEHP were not 

associated with transferrable blastocyst quality in either sex-specific or couples-

level models. In contrast to the results for fertilization and cleavage stage embryos, 

male urinary concentrations of MEP were not associated with increased high 

(OR=0.69, 95% CI: 0.44-1.08) or transferrable (OR=1.06, 95% CI: 0.89-1.26) 

blastocyst quality.   Female urinary concentrations of MHiBP (OR=1.56, 95% CI: 

1.00-2.43) and MNP (OR=1.54, 95% CI: 1.14-2.09) were positively associated with 

transferrable blastocyst quality in the sex-specific models; however, in couple-level 
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models accounting for male age and metabolite concentrations, only MNP 

remained statistically significant (OR=1.74, 95% CI: 1.25-2.42).  

A series of sensitivity analyses were conducted to validate the observed 

associations between male urinary metabolites and blastocyst quality. Sensitivity 

analyses were not performed on the DINCH metabolites due to small number of 

partners with detectable urinary concentrations. Eleven of the 15 phthalate 

metabolites were correlated between couples, three inversely and eight positively 

(Appendix C2). Of the four phthalate metabolites (MBzP, MBP, MHBP, and MMP) 

associated with diminished blastocyst quality, only MBzP (r=0.50, p<0.01) and 

MMP (r=0.47, p<0.01) were correlated between couples. Furthermore, 

stratification of the results for these four metabolites based on whether female 

partner’s exposure was above or below the median (Appendix C3) showed similar 

effect estimates within the two strata of female urinary metabolite concentrations, 

further indicating that the associations of male phthalates on decreased blastocyst 

quality are independent of female concentrations.  

Quartile analyses adjusting for male and female age, male infertility status, 

embryo grade at cleavage stage, and female urinary metabolite concentrations, 

revealed that male urinary MMP displayed an inverse dose-response relationship 

with high blastocyst quality.  Moreover, most quartiles of male urinary MEHP, MBP, 

MHBP, and MBzP concentrations were negatively associated high blastocyst 

quality (Figure 1). Restriction of analyses to mature oocytes, fertilized oocytes, 

embryos of sufficient quality to be cultured past the cleavage stage, or oocytes 

from non-smokers did not appreciably alter the model estimates (Appendices C4-
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C7). Similarly, inclusion of other variables that did not meet the criteria for covariate 

selection, such as BMI, race, smoking, and alcohol use, did not appreciably alter 

the effect estimates (data not shown). Lastly, to cross-validate our model fit, we 

used Poisson regression and mixed models logistic regression approaches, which 

produced similar estimates and trends compared to our GEE models (data not 

shown). 

Discussion 

 In our prospective study of 761 oocytes from 50 couples undergoing IVF, 

we observed that select male urinary concentrations of phthalate and phthalate 

replacement metabolites were inversely associated with high embryo quality. 

Specifically, male urinary concentrations of MBzP, MBP, MHBP, MMP, and 

MCOCH were associated with a pronounced decrease in blastocyst quality; 

however, no such associations were observed during the cleavage stage for either 

male or female metabolites. Such results suggest that the negative influences of 

paternal phthalates on embryo quality arose after day 3 - during the transition from 

cleavage to blastocyst stage of embryo development. It is noteworthy to mention 

that zygotic genome activation occurs during this transition. Select female 

metabolites were associated with increased odds of high blastocyst quality, but the 

lack of consistency hinders the reliability and interpretability of these results. 

Overall, our observed inverse association of male preconception phthalate and 

phthalate alternative metabolites with blastocyst quality supports the growing 

evidence that preconception paternal environmental health may contribute to 

reproductive potential. 
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 The findings from our study are supported by previous work from the LIFE 

Study [213], which reported that preconception male urinary concentrations of 

MMP, MBP, and MBzP were negatively associated with couples’ fecundity, as 

measured by time to pregnancy (TTP) [52]. The association between male 

preconception phthalates and increased TTP is a broad observation and is likely 

facilitated by unobserved intermediate clinical endpoints throughout pregnancy 

such as altered embryo development, decreased chances of implantation, and 

increased chances of pregnancy loss. While the LIFE Study could not observe 

some of these early life endpoints, the EARTH study of 211 couples totalling 406 

treatment cycles recently reported that higher male preconception urinary 

concentrations of MCPP and MCOP were associated with decreased odds of 

implantation and live birth following IVF; while MBP was associated with decreased 

odds of live birth following IUI, but not IVF [57]. In agreement with our findings, 

male urinary phthalate metabolite concentrations in the EARTH study were not 

associated with fertilization rate or embryo quality at day 3; however, it must be 

noted that blastocyst quality data were unavailable because the majority of EARTH 

participants received embryo transfers on day 3.   

One advantage of our SEEDS cohort of couples undergoing fertility 

treatment was the investigation of early embryo development through blastocyst 

development. We found that five male concentrations of phthalates or phthalate 

alternatives metabolites, including all three aforementioned metabolites found to 

be associated with decreased fecundity in the LIFE Study, were associated with 

decreased blastocyst quality, resulting in a lower odds of high quality transferrable 
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embryos. However, in contrast to the findings that male urinary MCNP and MCOP 

concentrations were associated with decreased odds of implantation and live birth 

in the EARTH cohort, we found no such associations between urinary 

concentrations of these metabolites and embryo development. Such discrepancies 

in findings may be due to a smaller sample in our study and require further 

investigation. Lastly, male urinary MEP concentrations were associated with 

increased embryo quality at the cleavage stage in our study, but this association 

was not observed at the blastocyst stage. This particular observation may be either 

spurious or transient. Together with previous reports from the LIFE and EARTH 

cohorts, our results add to the growing body of literature suggesting that 

preconception male phthalate exposures are likely contributors to adverse 

reproductive health outcomes. 

IVF laboratory protocols bypass direct exposure of female partners to 

seminal fluid and other paternal inputs; therefore, the only avenue for male 

environmental contributions to embryo development is through acquired 

characteristics of sperm. It follows that our observed negative association between 

male urinary metabolite concentrations of phthalates and blastocyst morphology 

imply a sperm-mediated effect. Though our results do not show altered embryo 

development associated with urinary metabolites at day 3, it is possible that the 

molecular changes associated with phthalates and phthalate alternatives were too 

subtle to be detected morphologically during these early cleavage stages and that 

such early molecular changes manifest at the morphological level during later 

stages of development. Alternatively, it is possible that urinary phthalates and 
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phthalate alternatives are not associated with embryo development until after day 

3. Our observed associations with blastocysts, but not cleavage stage embryos, 

coincides with the timing of the embryonic genome activation (EGA). At the 4- to 

8- cell stage, corresponding to day 3 of human embryo development [214], the 

human embryos are in a stage of relative transcriptional silence, relying on 

maternally-derived products for the first cell divisions [215, 216]. EGA facilitates a 

transition from maternal to embryonic control, which includes the degradation of 

maternal mRNAs and major changes in expression of histone isoforms, histone 

modifications, chromatin structure [217], and DNA methylation [218].  In this 

scenario, that the timing of observed morphological changes may be due to altered 

features of the paternal genome or factors that would otherwise govern the 

paternal genome. It has been hypothesized that paternal epigenetic inheritance of 

factors governing DNA expression is important for embryogenesis [219] and is 

modifiable by the male environment [30]. Furthermore, studies have reported that 

select phthalates, including those that are inversely associated with embryo quality 

in our study, have been associated with sperm DNA damage and abnormalities in 

humans [54, 55, 63, 64].  

In recent years, certain phthalates have been substituted for newer 

phthalate compounds and phthalate alternative compounds due to their potential 

negative impacts on human health [220]. The detection frequency and 

concentrations of urinary metabolites of DiNP and DiDP, two relatively new 

phthalate compounds, have increased dramatically over the last decade. For 

example, the creatinine-corrected mean urinary concentration of MCOP, a 
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metabolite of DiNP, has risen from 5.26 µg/g creatinine in 2005-2006 to 22.4 µg/ng 

creatinine in 2011-2012 according to NHANES data [41]. Similarly, DINCH was 

commercialized in 2002 and has been detected in increasingly higher number of 

the general US population since 2007 [41, 211]. While most of the metabolites of 

the new phthalates and phthalate alternatives were not found to be associated with 

embryo quality, we observed that having detectable levels of MCOCH in the male 

partner’s urine was associated with nearly 80% decreased odds of high blastocyst 

quality and 60% decreased odds of transferable blastocyst quality. However, we 

must note only 16% of male partners, contributing to 129 oocytes out of 761 , had 

detectable levels of MCOCH; therefore these estimates need to be interpreted 

cautiously and replicated in other studies.  

To our knowledge, our study was the first prospective study to assess the 

associations between paternal exposure to phthalates and phthalate alternatives 

and embryo quality in humans. The urine samples were collected on the day of 

sperm donation and embryo retrieval and is representative of parental phthalate 

exposures prior to conception, eliminating any potential temporal bias. Unlike 

previous studies using couple level data, our study employed embryo level data, 

which allowed us to account for inter-individual differences that likely exist when 

considering the potential of oocytes and sperm to form high quality embryos. We 

also recognize some limitations of our study. First, our modest sample size only 

included 50 couples contributing one cycle each. However, data was collected on 

over 700 individual oocytes, including over 400 embryos. In addition, non-

differential misclassification of exposure remains a concern given the single spot 
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urine collection and the short half-life of phthalates, though such non-differential 

misclassification of exposures will likely bias the results towards the null. 

Furthermore, previous studies suggest that a single spot urine is sufficient to 

represent phthalate exposure over several months [221, 222].  

CONCLUSION 

 Results from our prospective study of 50 couples undergoing IVF show that 

male urinary metabolite concentrations of select phthalates and phthalate 

alternatives are inversely associated with high and transferrable quality 

blastocysts. Our study provides the first data demonstrating associations between 

phthalate and phthalate alternatives and embryo development, a critical step 

towards our understanding of the paternal preconception contributions to 

reproductive success. Future studies are needed to investigate the long term 

effects of altered embryo development and elucidate the mechanism by which 

paternal preconception exposure to phthalates and phthalate alternatives affects 

embryo development. 
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Table 4.1 Demographic and clinical characteristics of SEEDS couples (N=50). 

Individual Characteristics Males Females 

Age 35.8 ± 5.3 34.1 ± 4.2 

     <30 10 (20%) 9 (18%) 

     30-40 27 (54%) 38 (76%) 

     40+ 13 (26%) 3 (6%) 

Race    

     White 39 (78%) 47 (94%) 

     Non-White 4 (8%) 2 (4%) 

     Unknown/Refused 7 (14%) 1 (2%) 

BMI† 28.8 ± 5.0 28.9 ± 6.8 

      <25 11 (22.4%) 17 (34%) 

      25-30 19 (38.8%) 15 (30%) 

      30+ 19 (38.8%) 18 (36%) 

Couple/Cycle-Specific 
Characteristics 

Couples 

Primary Infertility Diagnoses   

     Male Factor Alone 6 (12%) 

     Female Factor Alone 20 (40%) 

     Both 8 (16%) 

     Unexplained 16 (32%) 

Oocytes Retrieved 15.2 ± 7.9 

Mature Oocytes 12 ± 7.1 

Fertilized Embryos 9.0 ± 6.5 

Embryos at Day 3 8.5 ± 6.1 

High Quality Embryos at Day 3 5.2 ± 4.1 

Embryos Cultured Past Day 3* 8.1 ± 5.8 

Embryos at Day 5* 6.2 ± 5.5 

High Quality Embryos  at Day 5* 0.94 ± 1.6 

Transferrable Embryos at Day 5* 2.7 ± 3.0 

Values are mean ± SD or N (%) 
† Male BMI (N = 49) 
*Excluded 2 couples with embryo transfers on day 3 
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Table 4.2. Distribution of specific gravity-adjusted urinary metabolite 
concentrations (ng/mL) of SEEDS couples (N = 50). 
 

Parent 
Esters 

Metabolite Sex 
% > 
LOD 

GM† 
Percentiles 

25th 50th 75th 95th 

HMW Phthalates 
DEHP MEHP  Males 78 1.1 0.7 1.1 1.7 3.7 

Females 88 8.0 2.4 10.2 22.6 64.8 

MEHHP  Males 100 6.0 4.2 6.2 8.7 13.6 

Females 100 19.7 10 19.7 40.9 86.4 

MEOHP  Males 100 4.0 3 4 5.2 8.3 

Females 100 13.8 6.7 14.5 25.6 48.7 

MECPP  Males 100 8.8 6.5 9.2 12.7 18.4 

Females 100 27.8 15 27.9 49.3 118.2 

DiNP MCOP Males 100 24.5 10.4 21.5 47.4 179.3 

Females 100 34.9 12.7 37.5 94.6 214 

MNP Males 62 0.9 <LOD 0.7 1.6 6.4 

Females 57 1.0 <LOD 1 2.1 5.6 

BBzP MBzP Males 98 3.7 2 3.7 7.8 20.8 

Females 98 4.4 1.8 4.6 9.2 49.3 

DOP MCPP Males 98 2.1 1 1.8 3.8 13.5 

Females 92 2.4 1.2 2.1 4.2 10.8 

DiDP MCNP Males 100 2.9 1.8 2.6 4.4 10.1 

Females 100 3.8 2.1 3.8 5.8 14.4 

LMW Phthalates 
DBP MBP Males 96 6.9 5.6 7.4 11.2 21.9 

Females 90 6.7 4.3 7.9 13.9 23.4 

MHBP  Males 74 0.6 <LOD 0.6 0.9 1.5 

Females 65 1.0 <LOD 0.6 0.9 3.1 

DiBP MiBP  Males 100 6.2 4.1 6.6 10.2 15.3 

Females 100 5.8 3.1 6.4 10.3 18.9 

MHiBP  Males 98 1.9 1.4 1.9 2.7 5.4 

Females 94 2.8 1.8 2.8 4 9.9 

DMP MMP Males 94 2.1 1.3 1.9 3.9 7 

Females 88 2.2 1.3 2.3 3.3 12.6 

DEP MEP Males 100 25.1 9.2 19.5 49.9 246.7 

Females 100 43.1 17.2 38.7 85.1 327.2 

Phthalate Alternative 
DiNCH MCOCH Males 18 * <LOD <LOD <LOD 1.8 

Females 14 * <LOD <LOD <LOD 1.7 

MHINCH Males 44 * <LOD <LOD 0.9 2.4 

Females 43 * <LOD <LOD 0.5 1.9 

LOD, limit of detection; GM, geometric mean 
† For those samples < LOD, a value is assigned by taking LOD divided by the square root of 2. 
* GM not calculated due to large number of samples < LOD. 
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HMW, high molecular weight; LMW, low molecular weight. 
 

Abbreviations: Bis(2-ethylhexyl) phthalate (DEHP); diisononyl phthalate 
(DiNP); benzyl butyl phthalate (BBzP); dioctyl phthalate (DOP); diisodecyl 
phthalate (DiDP); dibutyl phthalate (DBP); diisobutyl phthalate (DiBP); diethyl 
phthalate (DEP); dimethyl phthalate (DMP); 1,2-cyclohexane dicarboxylic acid 
diisononyl ester (DINCH); mono(2-ethylhexyl) phthalate (MEHP); mono(2-
ethyl-5-hydroxyhexyl) phthalate (MEHHP); mono(2-ethyl-5-oxohexyl) phthalate 
(MEOHP); mono(2-ethyl-5-carboxypentyl) phthalate (MECPP); monocarboxy-
isooctyl phthalate (MCOP); mono-isononyl phthalate (MNP); monobenzyl 
phthalate (MBzP); mono (3-carboxypropyl) phthalate (MCPP); monocarboxy-
isononyl phthalate (MCNP); mono-n-butyl phthalate (MBP); mono-3-
hydroxybutyl phthalate (MHBP); mono-isobutyl phthalate (MiBP); mono-
hydroxyisobutyl phthalate (MHiBP); monoethyl phthalate (MEP); monomethyl 
phthalate (MMP); cyclohexane-1,2-dicarboxylic acid-monocarboxy isooctyl 
ester (MCOCH); and cyclohexane-1,2-dicarboxylic acid-mono(hydroxy-
isononyl) ester (MHINCH). 
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Table 4.3 Adjusted odds ratios (95% CIs) for high quality embryos at cleavage stage (day 3) and couples urinary 

metabolite concentrations of phthalates and phthalate alternatives. 

Parent 
Esters 

Metabolite 
Males Females  Males Females 

OR 95% CI OR 95% CI  OR 95% CI OR 95% CI 

HMW Phthalates3          
DEHP MEHP 0.87 0.65-1.17 1.02 0.87-1.19  0.88 0.66-1.18 1.03 0.87-1.21 

MEOHP 0.89 0.56-1.41 1.07 0.90-1.28  0.93 0.57-1.51 1.12 0.91-1.39 
MEHHP 0.96 0.61-1.50 1.07 0.91-1.25  1.03 0.64-1.66 1.12 0.93-1.35 
MECPP 1.21 0.77-1.92 1.06 0.89-1.26  1.26 0.77-2.06 1.12 0.93-1.35 

DiNP MCOP 1.08 0.91-1.28 1.01 0.87-1.16  1.08 0.87-1.32 1.00 0.85-1.17 
MNP 0.93 0.76-1.14 0.96 0.82-1.14  0.92 0.71-1.21 1.02 0.81-1.27 

BBzP MBzP 1.01 0.84-1.23 1.08 0.94-1.25  0.96 0.77-1.21 1.08 0.91-1.29 
DOP MCPP 0.96 0.77-1.20 0.97 0.84-1.13  0.94 0.71-1.25 1.00 0.84-1.20 
DiDP MCNP 1.18 0.84-1.66 0.94 0.72-1.22  1.23 0.87-1.73 0.93 0.69-1.24 
LMW Phthalates3          
DiBP MBP 1.12 0.86-1.45 1.13 0.88-1.46  1.12 0.86-1.44 1.09 0.83-1.43 

MHBP 0.97 0.68-1.38 1.26 0.90-1.77  0.98 0.68-1.42 1.18 0.82-1.69 
DBP MiBP 0.89 0.67-1.17 1.06 0.82-1.38  0.84 0.61-1.15 1.11 0.82-1.51 

MHiBP 0.78 0.59-1.03 1.01 0.75-1.37  0.76 0.56-1.03 1.08 0.75-1.56 
DMP MMP 1.00 0.81-1.25 0.98 0.80-1.22  1.01 0.75-1.35 0.99 0.72-1.37 
DEP MEP 1.18 0.99-1.41 0.94 0.80-1.10  1.20 1.01-1.43* 0.94 0.81-.109 
Phthalate Alternative4          
DiNCH MCOCH 1.08 0.65-1.81 1.06 0.44-2.55  1.01 0.49-2.07 1.27 0.48-3.37 

MHiNCH 1.12 0.69-1.81 0.79 0.52-1.20  1.17 0.71-1.93 0.84 0.54-1.31 
1Each model adjusted for age and infertility status of the specific partner (i.e. not both) 
2A single model adjusted for age of both partners and infertility status of male partner 
3Log transformed and specific gravity-adjusted 
4Dichotomous variable based on above/below LOD 
* p-value < 0.05 
** p-value <0.01 
*** p-value <0.001 
HMW, high molecular weight; LMW, low molecular weight. Other abbreviations are detailed in table 2.2.  
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Table 4.4 Adjusted odds ratios (95% CIs) for high quality embryos at blastocyst stage (day 5) and couples urinary 

metabolite concentrations of phthalates and phthalate alternatives. 

    Sex-Specific Models1 Couple-Level Models2 

Parent 
Esters 

Metabolite 
Males Females Males Females 

OR 95% CI OR 95% CI OR 95% CI OR 95% CI 

HMW Phthalates3     
  

DEHP MEHP 0.57 0.30-1.06 1.11 0.84-1.45 0.52 0.27-1.00 0.99 0.82-1.19 
MEOHP 0.94 0.42-2.10 1.00 0.69-1.46 0.92 0.41-2.07 1.05 0.78-1.42 
MEHHP 0.75 0.37-1.53 1.00 0.71-1.40 0.72 0.35-1.51 1.00 0.77-1.30 
MECPP 0.77 0.39-1.51 0.90 0.58-1.38 0.76 0.38-1.51 1.03 0.74-1.44 

DiNP MCOP 1.01 0.60-1.70 1.02 0.63-1.66 1.03 0.63-1.67 0.99 0.60-1.62 
MNP 1.17 0.75-1.81 1.29 0.82-2.02 1.10 0.69-1.77 1.11 0.66-1.84 

BBzP MBzP 0.58 0.42-0.82** 1.04 0.73-1.48 0.55 0.36-0.84** 1.09 0.70-1.68 
DOP MCPP 1.10 0.60-2.01 1.05 0.56-1.99 1.11 0.63-1.96 1.07 0.56-2.07 
DiDP MCNP 0.96 0.46-2.01 0.94 0.39-2.27 1.01 0.45-2.27 1.08 0.41-2.88 
LMW Phthalates3        

DiBP MBP 0.66 0.53-0.82*** 1.29 0.86-1.95 0.55 0.42-0.73*** 1.31 0.87-1.98 
MHBP 0.37 0.19-0.75** 1.16 0.52-2.58 0.37 0.18-0.76** 0.88 0.50-1.56 

DBP MiBP 1.34 0.70-2.56 1.50 0.83-2.69 1.08 0.51-2.28 1.34 0.68-2.65 
MHiBP 1.16 0.53-2.54 1.86 1.01-3.41* 0.86 0.41-1.78 2.00 0.95-4.17 

DMP MMP 0.63 0.46-0.87** 1.17 0.62-2.20 0.39 0.26-0.60*** 2.43 1.23-4.79* 
DEP MEP 0.78 0.56-1.09 1.31 0.85-2.02 0.69 0.44-1.08 1.37 0.96-1.94 
Phthalate Alternative4       

DiNCH MCOCH 0.34 0.13-0.90* 0.20 0.04-1.103 0.21 0.04-1.03 0.73 0.20-2.71 
MHiNCH 0.75 0.30-1.85 1.03 0.42-2.51 0.48 0.18-1.41 2.51 1.02-6.14* 

1Each model adjusted for embryo grade at cleavage stage and the age and infertility status of the specific parent (i.e. not both) 
2A single model adjusted for embryo grade at cleavage stage, age of both parents, and infertility status of male parent 
3Log transformed and specific gravity corrected 
4Dichotomous variable based on LOD 
* p-value < 0.05 
** p-value <0.01 
*** p-value <0.001 
HMW, high molecular weight; LMW, low molecular weight. Other abbreviations are detailed in table 2.2. 
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Table 4.5 Adjusted odds ratios (95% CIs) for transferrable quality embryos at blastocyst stage (day 5) and couples 

urinary metabolite concentrations of phthalates and phthalate alternatives. 

   Sex-Specific Models1 Couple-Level Models2 

Parent Esters Metabolite 
Males Females Males Females 

OR 95% CI OR 95% CI OR 95% CI OR 95% CI 

HMW Phthalates3         
DEHP MEHP 1.06 0.76-1.48 1.10 0.95-1.27 1.05 0.76-1.45 1.09 0.93-1.27 

MEOHP 1.30 0.81-2.07 1.09 0.86-1.39 1.40 0.89-2.21 1.14 0.89-1.47 
MEHHP 1.08 0.64-1.84 1.09 0.88-1.34 1.20 0.71-2.03 1.13 0.90-1.42 
MECPP 1.11 0.64-1.93 1.12 0.84-1.50 1.22 0.71-2.10 1.17 0.88-1.56 

DiNP MCOP 1.01 0.73-1.39 1.21 0.88-1.67 0.83 0.62-1.10 1.33 0.96-1.84 
MNP 1.16 0.87-1.56 1.54 1.14-2.09** 0.83 0.63-1.10 1.74 1.25-2.42** 

BBzP MBzP 0.71 0.53-0.96* 0.91 0.72-1.13 0.70 0.48-1.01 1.03 0.78-1.34 
DOP MCPP 1.10 0.77-1.57 1.29 0.85-1.94 0.96 0.69-1.35 1.33 0.90-1.97 
DiDP MCNP 0.75 0.40-1.41 1.28 0.71-2.29 0.59 0.33-1.06 1.66 0.93-2.96 
LMW Phthalates3         

DiBP MBP 0.71 0.47-1.08 1.09 0.82-1.45 0.67 0.43-1.03 1.13 0.84-1.52 
MHBP 0.42 0.21-0.83* 0.89 0.47-1.69 0.41 0.21-0.80** 0.82 0.51-1.33 

DBP MiBP 1.54 0.92-2.55 1.40 0.94-2.06 1.29 0.66-2.55 1.23 0.77-1.96 
MHiBP 1.32 0.73-2.40 1.56 1.01-2.43* 1.06 0.54-2.06 1.49 0.93-2.41 

DMP MMP 0.86 0.64-1.16 1.16 0.73-1.85 0.72 0.52-1.00* 1.45 0.91-2.32 
DEP MEP 1.07 0.92-1.24 1.05 0.80-1.39 1.06 0.89-1.26 1.01 0.78-1.31 
Phthalate Alternative4         
DiNCH MCOCH 0.48 0.22-1.03 0.57 0.22-1.48 0.41 0.19-0.88* 1.07 0.43-2.65 

MHiNCH 0.78 0.45-1.38 1.07 0.58-1.97 0.65 0.34-1.27 1.59 0.77-3.28 
1Each model adjusted for embryo grade at cleavage stage and the age and infertility status of the specific parent (i.e. not both) 
2A single model adjusted for embryo grade at cleavage stage, age of both parents, and infertility status of male parent 
3Log transformed and specific gravity corrected 
4Dichotomous variable based on LOD 
* p-value < 0.05 
** p-value <0.01 
*** p-value <0.001 
HMW, high molecular weight; LMW, low molecular weight. Other abbreviations are detailed in table 2.2. 
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Figure 4.1 Odds ratios for high-quality blastocysts status by quartiles of male 

urinary phthalate concentrations.  

The results shown here were products of general estimating equations with 

quartile exposures and binary embryo quality outcomes. The models also 

included age of male and female partners, male infertility status, embryo grade at 

cleavage stage, and female urinary metabolite concentrations. 

 

 

  



 

78 

CHAPTER 5 

PRECONCEPTION URINARY PHTHALATE CONCENTRATIONS AND SPERM 

DNA METHYLATION PROFILES AMONG MEN UNDERGOING IVF 

TREATMENT: A CROSS-SECTIONAL STUDY 

 

Summary 

This chapter evaluates the associations of male urinary phthalate and 

phthalate alternative concentrations with sperm DNA methylation. Numerous 

male urinary anti-androgenic phthalate metabolite concentrations were 

associated with differentially methylated regions in sperm DNA. Functional 

analyses revealed enrichment of genes related to growth and development as 

well as cellular function and maintenance. 

 

Abstract 

STUDY QUESTION: Are preconception phthalate and phthalate replacements 

associated with sperm differentially methylated regions (DMRs) among men 

undergoing in-vitro fertilization? 

SUMMARY ANSWER: Ten phthalate metabolites were associated with 131 sperm 

DMRs that were enriched in genes related to growth and development, cell 

movement, and cytoskeleton structure. 

WHAT IS KNOWN ALREADY: Several phthalate compounds and their 

metabolites are known endocrine disrupting compounds and are pervasive 

environmental contaminants. Rodent studies report that prenatal phthalate 
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exposures induce sperm DMRs, but the influence of preconception phthalate 

exposure on sperm DNA methylation in humans is unknown. 

STUDY DESIGN, SIZE, AND DURATION: An exploratory cross-sectional study 

with 48 male participants from the Sperm Environmental Epigenetics and 

Development Study (SEEDS). 

PARTICIPANTS/MATERIALS, SETTING, METHODS: The first 48 couples 

provided a spot urine sample on the same day as semen sample procurement. 

Sperm DNA methylation was assessed with the HumanMethylation 450K array. 

Seventeen urinary phthalate and 1,2-Cyclohexane dicarboxylic acid diisononyl 

ester (DINCH) metabolite concentrations were measured from spot urine samples. 

The A-clust algorithm was employed to identify co-regulated regions. DMRs 

associated with urinary metabolite concentrations were identified via linear 

models, corrected for false-discovery rate. 

MAIN RESULTS AND ROLE OF CHANCE: Adjusting for age, BMI, and current 

smoking, 131 DMRs were associated with at least one urinary metabolite. Most 

sperm DMRs were associated with anti-androgenic metabolites, including mono(2-

ethylhexyl) phthalate (MEHP, n=83), mono(2-ethyl-5-oxohexyl) phthalate 

(MEOHP, n=16), mono-n-butyl phthalate (MBP, n=22), and cyclohexane-1,2-

dicarboxylic acid-monocarboxy isooctyl (MCOCH, n=7). The DMRs were enriched 

in lincRNAs as well as in regions near coding regions. Functional analyses of 

DMRs revealed enrichment of genes related to growth and development as well 

as cellular function and maintenance. Finally, 13% of sperm DMRs were inversely 

associated with high quality blastocyst-stage embryos after IVF. 
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LIMITATIONS, REASONS FOR CAUTION: Our modest sample size only included 

48 males and additional larger studies are necessary to confirm our observed 

results. Non-differential misclassification of exposure is also a concern given the 

single spot urine collection. 

WIDER IMPLICATIONS OF THE FINDINGS: To our knowledge, this is the first 

study to report that preconception urinary phthalate metabolite concentrations are 

associated with sperm DNA methylation in humans. These results suggest that 

paternal adult environmental conditions may influence epigenetic reprogramming 

during spermatogenesis, and in turn, influence early-life development.  

Introduction 

Human spermatogenesis, a 72 day process by which diploid spermatogonia 

progress to haploid spermatozoa, requires several epigenetic reprogramming 

events, which may provide a final opportunity for sperm to epigenetically respond 

to their current environment prior to fertilization [30]. Indeed, two intriguing rodent 

studies found that sperm DNA methylation can be influenced by adult exposures 

to pre-diabetic conditions [153] and fear conditioning [223], which subsequently 

produced phenotypic changes in the offspring of affected fathers. In humans, adult 

sperm DNA methylation patterns were associated with body weight and was 

modifiable within individuals after gastric bypass surgery [224]. Similarly, sperm 

DNA methylation was responsive to high dose folic acid supplementation (5 

mg/day) [225], but not to low dose supplementation (400 µg/day) or food 

fortification [226]. With respect to environmental toxicants, adult exposures to 

particulate air pollution [158], Chromium III chloride [160], and methoxychlor [108] 
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altered sperm DNA methylation patterns in rodents. Together, these studies 

provide compelling data that the sperm epigenome can respond to environmental 

conditions experienced in adulthood.  

Phthalates are a ubiquitous class of compounds found in many commercial 

products such as medical equipment, food packaging, and personal care products. 

Select phthalate metabolites have been associated with decreased sperm 

concentration and motility, increased sperm DNA damage, and increased sperm 

apoptosis [54, 55, 63, 67, 227-230]. In a cohort of the US general population, select 

male phthalate metabolites were associated with decreased fecundity as 

evidenced by a 20% increase in time to pregnancy [52]. Similarly, among couples 

undergoing fertility treatment, we have previously shown that male, and not female, 

phthalate metabolites were associated with diminished blastocyst quality [231], 

while others have shown decreased odds of implantation and live birth [57]. Such 

results suggest a sperm-derived effect because IVF protocols eliminate all other 

paternal inputs such as seminal plasma. However, the mechanism by which male 

preconception phthalates affect these early-life outcomes has not been fully 

resolved.   

Several animal studies report that in utero phthalate exposure alters sperm 

DNA methylation. For example, maternal exposure to bis(2-ethylhexyl)phthalate 

(DEHP) during gestation altered sperm DNA methylation in subsequent 

generations of offspring [106, 109, 232], although it is unclear if the effects persist 

for more than one generation  [106, 109].  
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Given the compelling data from animal studies showing that the sperm 

epigenome is responsive to adult environmental conditions, we conducted a cross-

sectional study to explore the relationship of preconception urinary phthalate and 

1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) metabolite 

concentrations with sperm DNA methylation in men undergoing fertility treatment.  

Methods 

Study Population. Forty-eight couples were recruited from the Baystate 

Reproductive Medicine in Springfield, Massachusetts, as part of the Sperm 

Environmental Epigenetics and Development Study (SEEDS). Inclusion criteria 

were: male partners were 18-55 years old without vasectomy, female partners 

were ≤ 40 years old with expected delivery at Baystate Medical Center, and fresh 

ejaculate sperm was used for in-vitro fertilization (IVF) treatment. Relevant 

demographics (race, age, height, weight), lifestyle factors (current and past alcohol 

and cigarette use), medical history (diagnoses of infertility) data were collected by 

clinic personnel during the IVF cycle for both partners. Written consent from eligible 

males and females who were interested in participating was obtained by attending 

physicians. This study was approved by the institutional review boards at Baystate 

Medical Center and at the University of Massachusetts Amherst. 

Urinary Exposure Biomarker Measurements. A spot urine sample was 

collected from couples in a sterile polypropylene collection cup on the same day 

as semen sample procurement and oocyte retrieval. Urine samples were vortexed, 

divided into several aliquots, and stored at -80°C before being shipped overnight 

on dry ice to the National Center for Environmental Health of the Center for 
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Disease Control (CDC), where the urinary biomarkers were quantified via 

published methods [211, 233]. Analytical standards, quality control (QC) materials 

(prepared from spiked pooled urine), and reagent blank samples were included in 

each batch along with study samples. The QC concentrations—averaged to obtain 

one measurement of high-concentration QC and one of low-concentration QC for 

each batch—were evaluated by using standard statistical probability rules [234].  

In total, seventeen urinary metabolites were quantified: mono(2-ethylhexyl) 

phthalate (MEHP); mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP); mono(2-

ethyl-5-oxohexyl) phthalate (MEOHP); mono(2-ethyl-5-carboxypentyl) phthalate 

(MECPP); monocarboxy-isooctyl phthalate (MCOP); mono-isononyl phthalate 

(MNP); monobenzyl phthalate (MBzP); mono (3-carboxypropyl) phthalate (MCPP); 

monocarboxy-isononyl phthalate (MCNP); mono-n-butyl phthalate (MBP); mono-

3-hydroxybutyl phthalate (MHBP); mono-isobutyl phthalate (MiBP); mono-

hydroxyisobutyl phthalate (MHiBP); monoethyl phthalate (MEP); monomethyl 

phthalate (MMP); cyclohexane-1,2-dicarboxylic acid-monocarboxy isooctyl ester 

(MCOCH); and cyclohexane-1,2-dicarboxylic acid-mono(hydroxy-isononyl) ester 

(MHINCH). The limits of detection (LODs) ranged from 0.2 to 0.6 ng/mL, 

depending on the metabolite. Specific gravity (SG) was measured at room 

temperature using a digital handheld refractometer (Atago Co., Ltd., Tokyo, 

Japan).   

Sperm Collection and DNA Isolation. Semen samples were collected in a 

sterile plastic specimen cup after a recommended 2-3 day abstinence period, per 
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standard IVF protocol. Motile sperm cells were isolated using a two-step gradient 

fractionation and DNA was isolated using our previously published protocol [235].  

450K Beadchip Analysis.  Genomic sperm DNA (400 ng) was bisfulfite 

converted and employed on the 450K Infinium Methylation Beadchip Array 

(Illumina) at Wayne State University’s genomic core. The 450K array provides 

genome-wide coverage of 485,577 methylation sites. Samples were randomized 

within and across beadchip to minimize any potential batch effects. 

450K Data Analyses.  The minfi package in R was used to correct for 

technical variation in background signals [236], to remove probes below the 

background fluorescence level, and to adjust for differences in Type I and Type II 

probes [237]. The ComBat function in the sva package [238] was used to correct 

for batch effects. Cross-hybridizing probes and sex chromosome probes were also 

removed using the DMRcate package [239].  

Statistical Analyses. We used the A-clustering algorithm [240] to identify co-

regulated regions by generating clusters of ≥2 CpG sites ≤1000 base pairs apart. 

These CpG clusters formed the unit of our analyses. To balance both validity and 

interpretability, we conducted statistical analyses using both M-values and β-

values.  First, to identify differentially methylated regions (DMRs) associated with 

urinary exposure concentrations, we used M-values due to their better adherence 

to homoscedasticity in linear models [241].  Next, we used β-values, which are the 

ratio of the methylated probe intensity to the overall intensity (sum of methylated 

and unmethylated probe intensities), to generate CpG methylation values between 

0% and 100% to facilitate the biological interpretation of our results. 
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General estimating equations (GEE) were used to identify DMRs from CpG 

clusters associated with paternal exposure concentrations. For each model, we 

specified Gaussian distribution and an exchangeable correlation structure. The 15 

phthalate metabolites were fitted as continuous variables (after SG-correction and 

log-transformation), while the two DINCH metabolites were fitted as dichotomous 

variables (above or below the LOD) due to their low detection rates. To account 

for multiple comparisons, we used the Benjamini-Hochberg method,  which 

corrects the p-values generated from linear GEE models using the total number of 

comparisons and the rank order of the p-values [242]. Statistical significance was 

set at a false discovery rate (FDR) q-value < 0.05. 

Inclusion of covariates in multivariable models was based on biological 

plausibility and statistical significance in bivariate models (p<0.1). Covariates 

considered for inclusion were age, body mass index (BMI), race (white vs. non-

white), alcohol use, cigarette smoking, and season of biological collections. 

Bivariate analyses showed that age, BMI, and current smoking status were 

associated with ≥1 metabolite and ≥1 DMR and were included in all models. In 

contrast, race and seasonality did not fulfil this criteria and were not included in the 

models. Alcohol was not included in the model as 92% of those who had available 

data reported current alcohol use (data not shown).  

Analysis was performed with R (v3.3.0, R Foundation for Statistical 

Computing, Vienna, Austria) using “aclust” package (v2.0.1) the ‘gee’ package 

(v4.13.19).  
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Bioinformatics Analyses. Prior to gene set enrichment analysis (GSEA) and 

Ingenuity Pathway Analysis (IPA), each cluster was assigned the closest gene 

using GRCh37 assembly data from ENSEMBL via the ChIPpeakAnno R package 

(version 3.6.5). Similarly, we determined genic (exons, introns, promoters, 

enhancers, intergenic regions), CpG (island, shelves, shores), functional (protein 

coding, pseudogene, lincRNA), and protamine (protamine vs. nucleosome) 

features of clusters via annotations from Ensembl. Binding site locations for 

transcription factors EZH2 and CTCF were retrieved from ENCODE. Fisher’s exact 

test was used to test for significant enrichment or depletion of each feature in the 

DMRs versus the entire set of clusters. 

We used IPA (www.qiagenbioinformatics.com/products/ingenuity-pathway-

analysis/) and GSEA (www.broadinstitute.org/gsea) [243] to determine whether 

the observed exposure-associated DMR was affiliated with sets of genes with 

similar biological function, chromosomal location, or regulation. For IPA, we 

restricted results to include only networks with score ≥20 or functional groups with 

p<0.05 and an available activation Z-score. For GSEA, we set the cut-off to be 

normalized enrichment score ≥1.8 or ≤-1.8 and q-value <0.20. IPA and GSEA 

analyses were restricted to clusters within 1500 bp of a gene. 

Sequenom Validation. To validate the results from the 450K array, eight 

CpG sites from five clusters were assayed on the Sequenom MassARRAY system 

(van den Boom and Ehrich, 2009). The sites were randomly selected from all 

clusters.  
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Embryo Quality Assessment. A full description of embryo quality 

assessment methods can be found elsewhere [231]. In brief, blastocysts were 

graded by trained embryologists at the IVF clinic five days post-fertilization based 

on standard morphological characteristics. For analysis, blastocysts were 

classified as high vs. low quality embryos.  

Results 

 Table 3.1 presents the demographic and semen parameter data. The 

majority of the men were non-Hispanic white, over the age of 30, and overweight. 

Four of the 48 participants were current smokers. Although all men were seeking 

fertility treatment with their female partners, only 12 (25%) were diagnosed by 

attending physicians with male factor infertility based on WHO semen reference 

levels [40]. Of the remaining 36 men, 20 sought fertility treatment due to female 

factor infertility and 16 couples were diagnosed with unexplained infertility. In our 

study, 42.2% and 18.2% of participants had values below the WHO semen 

reference levels for percent morphologically normal sperm and semen volume, 

respectively. In contrast, less than 10% of our population were below the WHO 

semen reference levels for percent motile sperm, total sperm count, and sperm 

concentration.  

The distributions of SG-corrected urinary phthalate and DINCH metabolite 

concentrations for male partners are summarized in Table 3.2. Fourteen of the 15 

of the measured urinary phthalate metabolite concentrations (MEHP, MEHHP, 

MEOHP, MECPP, MBP, MHBP, MBzP, MiBP, MHiBP, MEP, MCPP, MCNP, 

MCOP, and MMP) had detection frequencies above 75%, while urinary MNP 



 

88 

concentrations were detected in 67% of the samples. Concentrations of MHINCH 

and MCOCH, metabolites of the phthalate alternative DINCH, were only detected 

in 50% and 17% of the samples, respectively.  

DMR Identification. Of the original 485,577 interrogated CpGs, 74,193 

were removed, leaving 411,384 available for analysis. The A-clust algorithm 

identified 6,479 clusters spanning 22,420 CpG sites, with a range of 2 - 46 sites 

per cluster over a length of 3 - 4,456 bp. Adjusted for age, BMI, and current 

smoking status, we observed that urinary phthalate metabolite concentrations 

were associated with 138 sperm DMRs (q<0.05), comprising 131 unique DMRs 

(Table 3.3).  Seven overlapping DMRs were identified between individual 

metabolites (Appendix D1), all of which had identical direction of effects across 

metabolites.  

To aid in the interpretations of the magnitude of associations, we also report 

effect estimates based on models built from beta-values, which directly correspond 

to percent methylation of DMRs. Figure 4.1 shows the minimum, median, and 

maximum percent difference associated with one interquartile range (IQR) 

increase in urinary phthalate metabolite concentrations for all 131 DMRs. For 

example, for DMRs (q<0.05) positively associated with MEHP concentrations, the 

median beta-value difference per IQR was 2.9% and ranged from 1% - 7.4%. 

Results of the GEE models for all DMRs, including annotations, are included in 

Appendix D2. Furthermore, Figure 4.2 provides a graphical representation of the 

mean methylation of two significant sperm DMRs by tertiles of urinary phthalate 

metabolite concentrations. 
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To validate our DMR findings from the 450k array, we chose eight CpGs 

from five randomly selected clusters. Seven of the eight CpGs showed a high 

concordance of methylation between the two platforms (Appendices D3-D4). 

Moreover, GEE models using MassARRAY data provided similar estimated effects 

compared to those statistical models using 450K data (data not shown).  

Imprinted Genes. To further validate our results, we examined the potential 

for somatic cell contamination by analyzing methylation levels (e.g, beta-values) 

of 203 probes across 18 imprinted loci identified previously [244]. Our analyses 

showed that all maternal and paternal imprinted regions were <10% or >85%, 

respectively, indicating negligible somatic cell contamination in the sperm 

samples. 

Given that imprinted genes are known to escape the re-programming event 

in pre-implantation embryos, we examined them independently from the main 

statistical analysis described above. Using the average M-values across the 18 

imprinted loci, we found that MCNP was associated with increased methylation at 

eight (PLAGL1/HYMAI, KCNQ1/KCNQ1OT1, PEG3/ZIM2, MESTIT1/MEST, 

GNAS-AS1/GNAS, NAP1L5, PEG10/SGCE, L3MBTL) of the 14 maternally 

imprinted loci and with decreased methylation at one (H19) of the four paternally 

imprinted loci, adjusting for age, BMI, current smoking status, and multiple 

comparisons (Appendix D5). No statistically significant results were observed for 

any of the other urinary phthalate metabolites.  

  Enrichment Analysis. To determine the functional significance of the 

significant DMRs, we conducted enrichment analyses (Table 3.4). To investigate 
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if our sperm DMRs were enriched in DNA regions known to retain nucleosomes, 

we used previously published mnase-seq data (Donkin et al., 2016). Although 

there was a 7% increase in nucleosome retention in our significant DMRs, 

compared to all DNA methylation clusters, it was not statistically significant 

(p=0.13). The proportion of lincRNA was twice as high in DMRs as compared to 

all clusters (8% vs. 4%, p=0.03) while no differences were observed for the 

proportion of pseudogenes (p=0.60) and protein coding genes (p=0.24). DMRs 

were enriched in CpG islands (p=0.08), shelves (p=0.01), and shores (p<0.01) at 

the expense of open sea regions (p<0.01). This was also reflected by the fact that 

DMRs were enriched in exons (p=0.03) and introns (p=0.02) whereas intergenic 

regions were depleted (p=0.10). We observed no significant enrichment of DMRs 

for predicted binding sites for transcription factors CTCF (p=0.74) and EZH2 

(p=0.25). 

Pathway Analysis. Network and functional analyses via IPA examined three 

sets of DMRs – 1) those associated with DEHP, 2) DBP, or 3) all known or 

suspected anti-androgenic parent compounds (DEHP, BBzP, DiNP, DBP, DiBP, 

and DINCH). For DEHP-alone and anti-androgenic compounds, most of the DMRs 

were associated with one of three general pathway categories – “cancer”, “cellular 

function and maintenance”, and “growth and development” (Figure 4.3, Appendix 

D6). For “cellular function and maintenance” and “growth and development”, more 

pathways were associated with an increase in methylation compared to loss of 

methylation, as determined by the Activation Z-score (Figure III). In contrast, the 

number of DMRs within the “cancer” pathway was more balanced with respect to 
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gain or loss of methylation. Network analysis also revealed alterations in genes 

related to overall themes of “development” and “cellular function” (Figure III). DBP-

associated DMRs were not statistically related to specific diseases or functional 

groups, but were found to be related to genes involved in the cell cycle. Consistent 

with the results from IPA, GSEA showed that all four tested metabolites (MEHP, 

MEOHP, MBP, MCOCH) were associated with gene sets related to early 

development (Appendix D7).  

Blastocyst Quality. We previously reported that paternal anti-androgenic 

phthalate metabolite concentrations (MEHP, MHBP, MBP, MMP, and MCOCH) 

were associated with diminished blastocyst quality [231].  Here, we find that three 

of these anti-androgenic metabolites (MEHP, MBP, MCOCH) are associated with 

the majority of sperm DMRs. Of the 57 DMRs inversely associated with urinary 

phthalate metabolite concentrations, two were positively associated with high 

blastocyst quality while one was negatively associated. Conversely, of the 74 

DMRs positively associated with urinary phthalate metabolite concentrations, 16 

were inversely associated with high blastocyst quality and none were positively 

associated (Appendix D8). All GEE models were adjusted for age, BMI, and 

current smoking. Four of these 19 DMRs associated with both urinary metabolite 

concentrations and embryo quality were located in nucleosomes and 17 were 

located on exonic, intronic, or promoter regions.  

Discussion 

In our investigation of 48 males undergoing fertility treatment, 131 sperm 

DMRs were associated with at least one urinary phthalate and DINCH metabolite 
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concentration. Functional analyses revealed that sperm DMRs were enriched in 

pathways related to development and general cell function and maintenance. In 

particular, urinary concentrations of MEHP, MEOHP, MBP, and MCOCH were 

associated with the greatest number of sperm DMRs. Interestingly, the parent 

compounds of these metabolites, DEHP, DBP, and DINCH all have known or 

suspected effects on androgens [245-247]. Our previous findings have shown that 

these same metabolites in the male, but not the female partner, were also 

associated with diminished blastocyst quality [231]. These results suggest that 

phthalates may be associated with sperm DNA methylation in or near genes 

relevant to early embryogenesis, providing a pathway linking the observed inverse 

associations between anti-androgenic phthalates and blastocyst quality. More 

broadly, our results support the growing evidence that preconception paternal 

environmental health may contribute to both male reproductive potential and 

offspring development.  

Functional enrichment analyses showed that many DMRs associated with 

both DEHP alone and all anti-androgenic compounds as a whole are within or near 

genes related to “growth and development” and “cellular function and 

maintenance”.  It is generally believed that proper sperm DNA methylation is 

important for embryogenesis and one recent study reported that DNA methylation 

patterns are predictive of embryo quality in an IVF setting [248].  Alterations in 

methylation of genes associated with growth/development and cellular 

function/maintenance in sperm may have potential implications for embryo 

development. Aside from cell death and survival, most of the genes within the 
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cellular function and maintenance group are related to cytoskeleton structure and 

cell migration. Cytoskeleton structure is known to play an important role during 

fertilization and pre-implantation embryo development [249] while many genes 

related to cell migration are similarly important for early life development. For 

example, DMRs associated with DEHP (and thus also anti-androgenic compounds 

as a whole) were found on or near genes C-C motif chemokine 11 (CCL11) [250] 

and Wnt Family Member 7b (Wnt7b) [251], known regulators of trophoblast 

development and migration. The potential for phthalate and DINCH metabolites 

associated DMRs to influence embryogenesis is further supported by the 

observation that lincRNAs were enriched in our DMRs compared to the 

background of all clusters. LincRNAs are a class of non-coding RNAs with diverse 

functions that include gene regulation [252] and roles in early development, 

including myogenesis, haematopoiesis, adipogenesis, and neurogenesis [253].  

The observation that 19 of the 131 DMRs were associated with phthalates 

and DINCH as well as with poor blastocyst quality extend our previous findings 

that paternal MEHP, MHBP, MBP, MMP, and MCOCH were associated with 

diminished blastocyst quality [231] by suggesting that sperm DNA methylation is a 

pathway linking paternal exposures with embryo quality.  These observed 

associations with blastocyst quality coincide with the timing of embryonic genome 

activation, which marks the earliest time in the developing embryo when the 

paternal genome and its methylation patterns may be relevant.  

Despite the global epigenetic reprogramming that occurs shortly post-

fertilization, imprinted sites and certain other regions may escape reprogramming 
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[254]. In our study, we observed that methylation at 9 imprinted genes are 

associated with urinary concentrations of MCNP, implying that these imprinted 

DMRs may have the potential to escape the epigenetic reprogramming event and 

thus be inheritable. Furthermore, we observed that the 131 sperm DMRs 

associated with metabolites of phthalates and DINCH were enriched in exons and 

introns, regions previously reported to be preferentially maintained during the 

transient hypomethylation of pre-implantation embryos [255]. It is unknown if our 

sperm DMRs at non-imprinted regions can escape, at least in part, reprogramming 

in the developing embryo. However, compelling animal data supports the notion 

that some sperm DMRs may be resistant to this reprogramming event [153, 223].  

In regard to the interpretation of sperm DMRs, we need to consider that 

each sperm carries a haploid genome with a binary option (methylated or 

unmethylated) at each CpG site and that differences in percent methylation (beta-

values) represent differences in the frequency of sperm with methylation at those 

specific CpG sites and/or regions. For example, a 5% increase in beta-values is 

interpreted as a 5% increase in the frequency of sperm containing methylation at 

that particular CpG site and/or region. Given that only a single sperm is needed for 

fertilization, even modest changes in frequency of methylation in motile sperm may 

be important for early-life development. Thus, while ≤10% methylation changes 

may not be biologically relevant in somatic cells such as leukocytes, such changes 

in frequency could be biologically significant in the “winner takes all” scenario of 

fertilization.  
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We recognize that there are some limitations to our study. First, our modest 

sample size only included 48 males and additional larger studies are necessary to 

confirm our observed results. Second, as our population was recruited from the 

IVF clinic, our findings may not be generalizable to the broader population. Third, 

non-differential misclassification of exposure remains a concern given the single 

spot urine collection and the short half-life of phthalates. Though studies have 

reported temporal variations in urinary concentrations of phthalate metabolites 

[221, 256-259], most have concluded that spot urine samples are comparable to 

the more intensive 24-hour sample. Most importantly, a study using a population 

very similar to our study population showed that a single urine sample adequately 

represents exposure over 3 months, which spans over one spermatogenesis cycle 

[221]. The non-differential misclassification of exposure due to within-individual 

temporal variability in urinary phthalate metabolite concentrations likely biased our 

results toward the null and could have led to fewer DMRs being detected. 

Additionally, while we did collect information on lifestyle factors such as smoking 

and alcohol use, we do not have information on socioeconomic status and other 

related variables. Lastly, due to confidentiality considerations, we do not have 

information on refusal rates or characteristics of non-participants, and thus cannot 

rule out potential selection bias related to factors associated with both phthalates 

and sperm DNA methylation.  

Despite these limitations, our study has notable strengths. First, our study 

utilized state-of-the-art exposure analytical methods for profiling urinary metabolite 

concentrations of phthalates and new emerging non-phthalate replacements. 
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Second, we measured DNA methylation from the motile fraction of sperm, which 

represents those sperm with the highest fertilization potential and may better 

approximate relevant phthalate-related impacts on sperm DNA methylation in IVF 

and non-IVF populations. Third, the same cohort of sperm in our DNA methylation 

analyses was used for IVF; thus, our study design allowed us to connect sperm 

DMRs directly with embryo quality to facilitate our understanding of the influence 

of sperm DMRs on early-life development, which otherwise would not be possible 

among couples from the general population.  

Conclusion 

Our study is the first, to our knowledge, to examine the associations 

between preconception phthalates and sperm DNA methylation profiles in 

humans. Overall, we found that select preconception anti-androgenic phthalate 

metabolites are associated with 131 sperm DMRs, which are enriched in genes 

related to growth and development and basic cellular functions such as cell 

movement and cytoskeleton structure. This provides a critical step towards our 

understanding of the paternal preconception contributions to reproductive success 

and offspring development. Future studies are needed to replicate such findings 

and further clarify the role of phthalate-associated sperm DNA methylation on 

subsequent offspring health and development.  
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Table 5.1 Demographics and Semen Parameters of SEEDS Participants (n=48) 

  n % 

Age    

<30 10 21% 

30-40 25 52% 

40+ 13 27% 

BMI    

<25 10 21% 

25-30 19 40% 

30+ 18 38% 

Missing 1 2% 

Current Smoking    

Yes 4 8% 

No 44 92% 

Diagnosed Infertility    

Male Factor 6 13% 

Female Factor 20 42% 

Both 6 13% 

Unexplained 16 33% 

Race    

White (non-Hispanic) 37 77% 

All Others 4 8% 

Missing 7 15% 

  
Median 

% < WHO 
Reference 

Normal Morphology (%) 5.5 42.2 

% Motile 59.0 9.1 

Sperm Count (106) 90.8 4.6 

Semen Volume (mL) 3.1 18.2 

Sperm Concentration (106/mL) 47.8 9.1 
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Table 5.2 Distribution of specific gravity-adjusted urinary phthalate metabolite 

concentrations (ng/mL) among SEEDS participants (N=48). 

Parent 
Metabolite 

Metabolite 
Detection 

Rate 
Geometric 

Mean 

Percentiles 

25th 50th 75th 

HMW        

DEHP 

MEHP 77% 1.15 0.72 1.14 1.86 

MEOHP 100% 4.3 3.23 4.41 5.62 

MEHHP 100% 6.53 4.52 6.84 9.27 

MECPP 100% 9.51 7.12 9.87 13.83 

DiNP 
MCOP 100% 26.39 11.17 22.21 51.53 

MNP 67% 0.99 0.44 0.75 1.74 

BBzP MBzP 100% 4.06 2.15 3.94 8.69 

DOP MCPP 100% 2.38 1.22 1.98 4.09 

DiDP MCNP 100% 3.1 1.94 2.83 4.42 

LMW        

DBP 
MBP 98% 7.42 6.04 7.99 11.76 

MHBP 77% 0.65 0.46 0.64 1.00 

DiBP 
MHiBP 98% 2.09 1.58 2.01 2.79 

MiBP 100% 6.69 4.53 7.11 10.98 

DEP MEP 100% 26.72 9.84 19.28 54.46 

DMP MMP 96% 2.28 1.43 2.07 3.80 

Phthalate Alternatives       

DINCH 
MHiNCH 50% 0.48 0.30 0.39 0.65 

MCoCH 17% 0.61 0.34 0.53 0.89 

Abbreviations: Bis(2-ethylhexyl) phthalate (DEHP); diisononyl phthalate (DiNP); 
benzyl butyl phthalate (BBzP); dioctyl phthalate (DOP); diisodecyl phthalate 
(DiDP); dibutyl phthalate (DBP); diisobutyl phthalate (DiBP); diethyl phthalate 
(DEP); dimethyl phthalate (DMP); 1,2-cyclohexane dicarboxylic acid diisononyl 
ester (DINCH); mono(2-ethylhexyl) phthalate (MEHP); mono(2-ethyl-5-
hydroxyhexyl) phthalate (MEHHP); mono(2-ethyl-5-oxohexyl) phthalate (MEOHP); 
mono(2-ethyl-5-carboxypentyl) phthalate (MECPP); monocarboxy-isooctyl 
phthalate (MCOP); mono-isononyl phthalate (MNP); monobenzyl phthalate 
(MBzP); mono (3-carboxypropyl) phthalate (MCPP); monocarboxy-isononyl 
phthalate (MCNP); mono-n-butyl phthalate (MBP); mono-3-hydroxybutyl phthalate 
(MHBP); mono-isobutyl phthalate (MiBP); mono-hydroxyisobutyl phthalate 
(MHiBP); monoethyl phthalate (MEP); monomethyl phthalate (MMP); cyclohexane-
1,2-dicarboxylic acid-monocarboxy isooctyl ester (MCOCH); and cyclohexane-1,2-
dicarboxylic acid-mono(hydroxy-isononyl) ester (MHINCH). 
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Table 5.3 Number of Differentially Methylated Regions (DMRs) Associated with 

Individual Phthalate Metabolites. 

Parent Metabolite Metabolite 
DMRs 
(q<0.05) 

Shared 
DMRs 

High Molecular Weight Phthalates (HMW) 

 

DEHP 

MEHP 83 

MEOHP 16 

MEHHP 0 

MECPP 1 

DiNP 
MCOP 0 

MNP 0 

BBzP MBzP 2 

DOP MCPP 0 

DiDP MCNP 2 

Low Molecular Weight Phthalates (LMW) 

DBP 
MBP 22 

MHBP 2 

DiBP 
MHiBP 2 

MiBP 0 

DEP MEP 0 

DMP MMP 1 

Phthalate Alternatives 

DINCH 
MHiNCH 0 

MCoCH 7 

 

  

 1 

 2 

 
4 
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Table 5.4 Enrichment Analysis of Differentially Methylated Regions (DMRs) 

Compared to All Clusters 

  
DMRs 

(n=131*) 
All 

(n=6479*)   

  n % n % p-value** 

Chromatin Features           

Nucleosome 35 27% 1356 21% 0.1287 

Protamine 96 73% 5123 79%   

Gene Features 

lincRNA 11 8% 277 4% 0.0300 

Pseudogene 5 4% 196 3% 0.6009 

Protein Coding 86 66% 3904 60% 0.2409 

CpG Features 

Island 39 30% 1496 23% 0.0760 

Shelves 28 21% 860 13% 0.0131 

Shores 75 57% 2744 42% 0.0009 

Open Sea 38 29% 2901 45% 0.0003 

Genic Regions 

Exons 49 37% 1728 27% 0.0408 

Introns 47 36% 1872 29% 0.0218 

Promoters 32 24% 1404 22% 0.4540 

Enhancers# 6 5% 192 3% 0.2905 

Intergenic 30 23% 1933 30% 0.1002 

Transcription Factors 
CCCTC-binding factor 

(CTCF) 29 22% 1344 21% 0.744 
Histone-lysine N-

methyltransferase (EZH2) 15 11% 509 8% 0.249 

*Categories are not exclusive, the numbers may not all add to 
100% 
**calculated from Fisher's exact test 
#Taken from FANTOM5 project 

 

 

 

 

 

 

  



 

101 

Figure 5.1 Associations of urinary phthalate and phthalate-alternative metabolite 

concentrations with sperm differentially methylated regions. 

 

 

Sperm DNA methylation clusters (n = 6479) were generated by A-clust and 

modeled with phthalate metabolite concentrations as continuous variables using 

general estimation equation models adjusting for age, BMI, and current smoking 

and were corrected for false discovery rate (FDR). The dots represent the 

median percent difference in sperm DNA methylation associated with 

interquartile range (IQR) increase in phthalate metabolite concentrations, except 

for MCOCH, where the analysis was binary (those with detectable levels versus 

those below limits of detection). The error bars represent the minimum and 

maximum percent methylation change per IQR, and the numbers above/below 
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metabolites represent the number of differentially methylated regions (DMRs) in 

each group. MEHP (mono(2-ethylhexyl) phthalate); MEOHP (mono(2-ethyl-5-

oxohexyl) phthalate); MECPP (mono(2-ethyl-5-carboxypentyl) phthalate); MBzP 

(monobenzyl phthalate); MCNP (monocarboxy-isononyl phthalate); MBP (mono-

n-butyl phthalate); MHBP (mono-3-hydroxybutyl phthalate); MHIBP (mono-

ydroxyisobutyl phthalate); MMP (monomethyl phthalate); MCOCH (cyclohexane-

1,2-dicarboxylic acid-monocarboxy isooctyl ester). 
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Figure 5.2 Mean percentage methylation of two DMRs by tertiles of urinary MBP 
and MEHP concentrations. 

 

Using GRCh37 annotations, the region Chr1:870791–872737 is located within 

the gene body of SAMD11 while the region Chr19:9270837–9271995 is located 

within the promoter region of ZNF317 gene. Error bars are standard deviations. 
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Figure 5.3 Ingenuity pathway analysis of DMRs associated with urinary concentrations of DEHP metabolites and all 

anti-androgenic metabolites (MEHP, MEOHP, MBzP, MBP, MHBP, MHiBP, MCOCH). 

The general categories of disease and functional groups are shown by their calculated activation Z-score, which is 

an overall measure of loss or gain of methylation at genes associated with this functional category. The bars 

represent the mean activation Z-score in each category while the error bar represents the absolute maximum. The 

number in each bar represents the number of DMRs in each group. DEHP, bis(2-ethylhexyl)phthalate. 
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CHAPTER 6 

SYNTHESIS AND FUTURE DIRECTION 

 

Summary 

Paternal adult environmental conditions may influence epigenetic 

reprogramming during spermatogenesis and influence early-life development. In 

our research, we found that paternal urinary anti-androgenic phthalate metabolite 

concentrations are associated with diminished blastocyst quality and DMRs in 

the sperm DNA. 

 

The Hypothesized Relationships Between Phthalates, Sperm DNA Methylation, 

and Embryo Development 

 As described by the literature review in chapter 2, additional human data 

are necessary to understand the response of sperm epigenetics to preconception 

environmental exposures. To this point, a major focus of this dissertation was to 

examine the association between phthalates and select reproductive health 

outcomes. In chapter 4, we used the data from the first 50 couples in the SEEDS 

study to examine the associations of urinary metabolite concentrations of 

phthalates and phthalate alternatives with embryo development measures through 

the blastocyst stage. We observed no associations between any urinary 

concentrations of metabolites of phthalates or phthalate alternatives and embryo 

quality through the cleavage stage, which is consistent with the results published 
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from a similar study [57]. However, interestingly, select paternal urinary metabolite 

concentrations (MBzP, MBP, MHBP, MMP, and MCOCH, with MEHP as borderline 

statistically significant) were associated with poor blastocyst quality, suggesting 

that negative influences of paternal exposure to phthalates or phthalate 

alternatives manifest in the embryo during the transition from cleavage stage to 

blastocyst stage. This timing coincides with zygotic genome activation, which 

marks the activation of the paternal genome. Given the controlled setting of the 

IVF, our results suggest that paternal preconception exposure to phthalates and 

phthalate alternatives results in poor embryo quality via features related to paternal 

genome.  

 Stemming from the findings in chapter 4, the associations of urinary 

concentrations of phthalates and phthalate alternative metabolites with sperm 

DNA methylation were presented in chapter 5. Not only were select phthalate 

metabolites (MEHP, MEOHP, MECPP, MBzP, MCNP, MBP, MHBP, MHiBP, 

MMP, MCOCH) associated with ≥1 sperm DMRs, many of these metabolites 

(MEHP, MBzP, MMP, MHBP, MBP, MCOCH) were also the metabolites found to 

be associated with diminished embryo quality in chapter 4. It is also interesting to 

note that MMP, MBP, and MBzP were previously reported to be positively 

associated with time-to-pregnancy in a cohort of 501 couples from the general 

population [52]. Of the 131 total unique DMRs associated with urinary phthalate 

metabolite concentrations, 19 were also associated with blastocyst quality. 

Eighteen of the 19 followed the expected direction where if the urinary metabolite 

concentrations were positively associated with methylation at that region, then the 
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methylation at the region is inversely associated with odds of being a high quality 

blastocyst; and vice-versa.  

 Given the evidence from chapters 4 and 5, we hypothesize that exposure 

to phthalates and phthalate alternatives adversely impacts embryo development 

via altered sperm DNA methylation patterns. Despite the global “erasure” of the 

paternal genome in early embryogenesis described in chapter 2, the demethylation 

process is not complete [260] and provides biologic plausibility for the hypothesis. 

In support, as described in chapter 5, functional analyses of the 131 DMRs 

associated with urinary metabolites of phthalates and phthalate alternatives 

revealed enrichment of genes related to growth and development as well as 

cellular function and maintenance. For example, two DMRs were found on or near 

genes CCL11 and Wnt7b, known regulators of trophoblast development and 

migration. 

Research Gaps and Future Directions 

 Despite the evidence presented in this dissertation, there are numerous 

gaps remain in our understanding of the mechanisms by which phthalates affect 

reproductive health.  

First, It is important to note that the results presented in chapters 4 and 5 

were based on 50 couples recruited from an IVF clinic. On one hand, the IVF 

setting provides advantages such as a controlled environment where any observed 

differences in embryogenesis and development are only dependent on the 

characteristics of sperm and oocyte. On the other hand, such results may not be 
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generalizable to the broader population. Ultimately, our results need to be 

replicated not only in a larger study, but also in the general population. 

 Alternative explanations exist for the apparent lack of associations 

observed between phthalates and phthalate alternatives and embryo quality prior 

to the blastocyst stage. It is possible that the molecular changes associated with 

phthalates and phthalate alternatives were too subtle to be detected 

morphologically during these early stages, and such changes only manifest at the 

morphological level at the later stages of development. For example, such early 

paternal effects on embryo development may be mediated by sperm-borne RNA. 

It has recently been reported that levels of sperm miRNA-34c expression were 

associated with rates of high quality embryos at day 3, implantation, pregnancy, 

and live birth among 162 ICSI cycles [261] though it must be noted that mouse 

data on the role of miR-34c on embryo development have been conflicting [262, 

263]. Alternatively, phthalates-associated sperm DNA damage [54, 55, 63-65, 67] 

may be another contributor. However, these alternative explanations do not 

necessarily contradict current results as numerous mechanisms may mediate the 

association between phthalates and phthalate alternatives exposure and poor 

embryo quality. These mechanisms could be working in concert or independently.  

 Sperm DNA methylation may also be mediating the association between 

urinary metabolite concentrations of phthalates and phthalate alternatives and 

poor semen parameters. As described in chapter 5, when examining the DMRs 

associated with phthalates, there was an enrichment of genes related to growth 

and development and cellular function and maintenance, but these are not specific 
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to embryos. A closer examination of the ontological analyses suggests that many 

DMRs are on or near genes relevant to cell movement and cell assembly and 

organization, which indicates a potential to affect sperm function. For example, it 

appears that all six DMRs on or near genes related to transport of Ca2+ (AVP, 

CCL11, CDK5R1, TRPM4, COL18A1, TMBIM6), a key regulator of sperm motility 

[264, 265], have increased methylation associated with phthalates. Similarly, in 

general, other functional groups related to cell movement, which comprised 24 

other genes, also have increased methylation associated with phthalates. With 

respect to cell assembly and organization, 22 DMRs were found on or near genes 

related to formation and organization of cytoskeleton and protrusions.  

In addition to replication in larger cohorts of general population, future work 

should clarify whether phthalates affect other sperm characteristics such as 

chromatin features and RNA species. Such work will better our understanding of 

the environmental influences on sperm epigenetics; whether these influence male 

fecundity; and if these influences have effects on embryogenesis and development 

at the molecular level before the blastocyst stage. Furthermore, it is of both biologic 

and public health relevance to address whether sperm DNA methylation can 

influence pregnancy health and fetal development beyond the blastocyst stage. 

Lastly, given that inter- and transgenerational effects have been observed as a 

result of exposure to environmental toxins and famine, additional long term 

observational studies are necessary to examine whether adult exposure to 

phthalates is associated with health of the subsequent generations via epigenetic 

mechanisms.  
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It is necessary to recognize that logistical and ethical concerns will likely 

limit the scope of human research. However, in areas where human research is 

not possible, animal models may address unanswered questions. Experimental 

evidence may be necessary to validate the observational data. For example, model 

organisms such as rodents would be exposed to various doses of phthalates and 

phthalate replacements to observe potential changes in sperm DNA methylation 

and other epigenetic features. Another interesting line of investigation would utilize 

transgenic animal models where the parental allele or origin can be tracked. This 

will allow us the ability to track the contribution of each parent’s environmental 

influence on embryogenesis, fetal development, and offspring health.  
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APPENDIX A 

PROTOCOL – SPERM DNA ISOLATION 

 

Equipment 
Disruptor Genie (Scientific Industries, Bohemia, NY, # SI-238) 
0.2mm stainless steel beads (Next Advance, Averill Park, NY, # SSB02) 
 
Reagents 
100% PureCeption Isotonic Solution (Sage, Beverly, #: ART-2100) 
Quinn’s Sperm Wash Solution (Sage #: ART-1006) 
Bond-Breaker TCEP Solution, Neutral pH (Pierce, Rockford, IL, # 77720) 
Buffer RLT (Qiagen, Limburg, Netherlands, # 79216) 
AllPrep DNA/RNA Mini Kit (Qiagen # 80204) 

 

A. Sperm Cells Isolation from Whole Ejaculate 

(If sperm is already pelleted, skip to step 12) 

1. Make 90% PureCeption solution by combining 9mL 100% PureCeption 

with 1mL Quinn’s sperm washing solution 

2. Warm up 90% PureCeption solution and Quinn’s sperm washing solution 

to 37°C 

3. Add 1 mL 90% PureCeption solution to 15 mL conical tube 

4. Carefully layer 1-2 mL clear ejaculate on top of PureCeption solution 

5. Spin at 500 x g for 25 minutes 

6. Transfer the pelleted sperm cells to a new 15 mL conical tube 

 Use 1mL pipette to transfer 500 µL from the bottom, including the 

pelleted cells 

7. Add 3-5 mL Quinn’s Sperm Washing Media  

8. Spin at 500 x g for 5 minutes 

9. Transfer 1mL of the cells and solution to a microcentrifuge tube (1.5 mL or 

2.0 mL) 

 Better to transfer 2 x 500 µL in order to capture the entire pellet 

 Take out 10 µL for cell counting, make to vortex vigorously before 

10. Spin at 4,000g for 1 minute 

11. Carefully decant supernatant 

B. Sperm Cell Lysate  

12. Add 450 µL Buffer RLT and 50 µL TCEP-HCl to sperm pellet 
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 Final concentration of TCEP should be 50 mM 

13. Add 0.1g stainless bashing beads 

14. Bash on Disruptor Genie for 5 minutes 

 Rest: Store lysate short-term at RT or long-term (< -20°C) or 

continue on to step 15 

C. DNA Isolation from Sperm Cell Lysate (Qiagen AllPrep Kit) 

Before starting: heat Buffer EB (from the kit) to 70°C 

15. Add the sperm lysate from step #14 to one DNA column from the AllPrep 

kit 

16. Centrifuge at 10,000 x g for 30 seconds, discard the flowthrough 

 Repeat steps 14-15 if the lysate is >700 µL 

17. Add 500 µL Buffer AW1 

18. Centrifuge at 10,000 x g for 15 seconds, discard the flowthrough 

19. Add 500 µL Buffer AW2 

20. Centrifuge at 10,000 x g for 2 minutes, move the column to a new 1.5 mL 

microcentrifuge tube 

21. Apply 50 µL Buffer EB directly onto the silica column, incubate for 3 

minutes 

22. Centrifuge at max speed for 1 minute to elute DNA 

23. Repeat steps 21-22 twice with fresh 70°C Buffer EB, for a total of 150 µL 

a. Helpful hint: dilution volume can be adjusted when starting material 

is <2 x 106 cells  
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APPENDIX B 

PRIMERS USED TO AMPLIFY SNURF, PEG10, AND H19 LOCI BY PCR1 

FROM BISULFITE CONVERTED DNA EXTRACTED FROM HUMAN SPERM 

SAMPLES. 

 

Gene Chromos

ome 

Start2 End Prim

er 

Sequence (5’ – 3’) 

SNU

RF 
15 

25,201,

077 

25,201,

305 

F3 
AGGGGGTATTAGAAGGGGT

AGTAGT 

R4 
ACAAATTCTACACATCATTC

CAATCT 

PEG

10 
7 94,285,

836 

94,286,

063 

F3 
GTTTGGTTTAGGTGTGGGA

TTTTAT 

R4 CCCAAACCTTTAAAACTTAA

TTTCC 

H19 11 
2,020,9

25 

2,021,2

00 

F3 
GGAAAATGTAAGATTTTGGT

GGAATAT 

R4 
CAATACAAACTCACACATCA

CAACC 

1PCR conditions: 1x (94°C, 2 minutes); 40x (94°C, 15 sec; 58°C, 30 sec; 72°C, 

30 sec).  

2Feb 2009, GRC37/hg19 build, UCSC Genome Browser 

35’ tag for all forward primers: aggaagagag  

45’ tag (T7) for all reverse primers: cagtaatacgactcactatagggagaaggct 
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APPENDIX C1 
 ADJUSTED ODDS RATIOS FOR FERTILIZABILITY AND PARENT URINARY METABOLITE CONCENTRATIONS OF 

PHTHALATES AND PHTHALATE ALTERNATIVES 

   Sex Specific Models* Couples Level Model** 

Parent 
Esters 

Metabolite 
Males Females Males Females 

OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value 

High Molecular Weight Phthalates 

DEHP 

MEHP 0.83 0.64-1.08 0.17 1.04 0.89-1.21 0.65 0.88 0.68-1.16 0.37 1.07 0.92-1.25 0.38 

MEOHP 1.03 0.57-1.81 0.92 1.07 0.88-1.30 0.50 1.15 0.64-2.06 0.65 1.18 0.96-1.44 0.11 

MEHHP 1.02 0.62-1.66 0.95 1.06 0.88-1.27 0.53 1.13 0.68-1.86 0.64 1.16 0.96-1.39 0.12 

MECPP 1.10 0.66-1.85 0.72 1.12 0.89-1.42 0.33 1.18 0.69-2.04 0.55 1.23 0.95-1.59 0.12 

DiNP 

MCOP 1.15 0.90-1.46 0.27 0.94 0.77-1.16 0.59 1.20 0.92-1.57 0.19 0.90 0.71-1.12 0.34 

MNP 1.05 0.81-1.36 0.70 0.95 0.77-1.18 0.65 1.08 0.80-1.46 0.60 0.93 0.73-1.19 0.58 

BBzP MBzP 1.11 0.88-1.40 0.38 1.09 0.89-1.35 0.40 1.08 0.83-1.41 0.56 1.05 0.83-1.32 0.69 

DOP MCPP 0.95 0.74-1.23 0.72 0.85 0.69-1.05 0.13 0.97 0.72-1.29 0.82 0.86 0.70-1.06 0.16 

DiDP MCNP 1.10 0.69-1.76 0.69 0.78 0.51-1.20 0.26 1.16 0.75-1.78 0.50 0.78 0.49-1.23 0.29 

Low Molecular Weight Phthalates 

DiBP 
MBP 0.94 0.75-1.18 0.60 1.05 0.79-1.41 0.72 0.95 0.73-1.24 0.73 1.04 0.78-.139 0.80 

MHBP 0.88 0.61-1.28 0.51 1.13 0.78-1.65 0.51 0.88 0.59-1.31 0.52 1.03 0.71-1.49 0.89 

DBP 
MiBP 1.09 0.79-1.50 0.59 1.05 0.79-1.40 0.74 1.13 0.78-1.63 0.51 0.97 0.69-1.37 0.87 

MHiBP 0.85 0.58-1.24 0.39 1.02 0.73-1.43 0.91 0.83 0.54-1.28 0.39 1.04 0.71-1.52 0.84 

DMP MMP 1.13 0.89-1.45 0.31 1.21 0.89-1.65 0.23 1.05 0.82-1.35 0.70 1.20 0.84-1.72 0.30 

DEP MEP 1.15 0.96-1.37 0.13 0.88 0.72-1.07 0.20 1.21 0.98-1.50 0.08 0.86 0.70-1.05 0.14 

Phthalate Alternatives 

DiNCH MCOCH† 1.65 0.89-3.05 0.11 1.73 0.67-4.48 0.26 1.54 0.74-3.2 0.25 1.63 0.65-4.11 0.30 

MHiNCH† 1.14 0.64-2.03 0.67 1.00 0.60-1.67 0.99 1.05 0.52-2.11 0.90 1.10 0.60-2.01 0.76 

*Each model adjusted for embryo grade at cleavage stage and the age and infertility status of the specific parent (i.e. not both) 
**One model with both parental exposures, adjusted for cleavage stage  embryo grade, age of both parents, and infertility status of male parent 
‡Log transformed and specific gravity corrected 
†Dichotomous variable based on LOD 
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APPENDIX C2 

SPEARMAN CORRELATIONS COEFFICIENTS (R) OF URINARY 

METABOLITE CONCENTRATIONS BETWEEN SEEDS COUPLES (N = 49). 

Parent 
Ester 

Metabolite r p-value 

HMW Metabolite 

DEHP 

MEHP -0.18 0.23 

MEHHP -0.41 <0.01 

MEOHP -0.34 0.02 

MECPP -0.20 0.18 

DiNP 
MCOP 0.50 <0.01 

MNP 0.47 <0.01 

BBzP MBzP 0.50 <0.01 

DOP MCPP 0.31 0.03 

DiDP MCNP 0.40 <0.01 

HMW Metabolite 

DiBP 
MBP 0.01 0.93 

MHBP -0.11 0.43 

DBP 
MiBP 0.36 0.01 

MHiBP 0.30 0.03 

DMP MMP 0.47 <0.01 

DEP MEP 0.32 0.03 

HMW, high molecular weight; LMW, low molecular 
weight 
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APPENDIX C3 

STRATIFIED ODDS RATIOS (95% CIS) FOR HIGH QUALITY EMBRYOS AT 

BLASTOCYST STAGE AND SELECT URINARY METABOLITE 

CONCENTRATIONS OF PHTHALATES 

Metabolite concentrations1   

Male  Female OR2 95% CI 

MEHP 
<Median 1.03 0.54-1.97 

>Median 0.28 0.14-0.55 

MBzP 
<Median 0.52 0.10-2.82 

>Median 0.20 0.07-0.58 

MBP 
<Median 0.74 0.60-0.90 

>Median 0.51 0.10-2.47 

MHBP 
<Median 0.39 0.18-0.86 

>Median 0.34 0.09-1.32 

MMP 
<Median 0.34 0.22-0.52 

>Median 0.31 0.12-0.80 
1 Log transformed and specific gravity corrected 
2A single model adjusted for embryo grade at cleavage stage, age 
and infertility status of male parent, and the age and metabolite 
concentration of the female parent 
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APPENDIX C4 

ADJUSTED ODDS RATIOS FOR HIGH QUALITY AT BLASTOCYST STAGE AND PARENT URINARY METABOLITE 

CONCENTRATIONS OF PHTHALATES AND PHTHALATE ALTERNATIVES, RESTRICTED TO MATURE OOCYTES 

   Sex Specific Models* Couple-Level Models** 

Parent 
Esters 

Metabolite Males Females Males Females 

OR Lower CI Upper CI p-value OR Lower CI Upper CI p-value OR Lower CI Upper CI p-value OR Lower CI Upper CI p-value 

DEHP 

MEHP 0.58 0.31 1.08 0.08 1.10 0.84 1.44 0.49 0.53 0.28 1.02 0.06 0.98 0.81 1.19 0.87 

MEOHP 0.97 0.43 2.21 0.95 0.99 0.69 1.44 0.98 0.96 0.43 2.16 0.92 1.05 0.78 1.41 0.75 

MEHHP 0.77 0.38 1.58 0.48 0.99 0.71 1.39 0.96 0.74 0.36 1.55 0.43 1.00 0.77 1.30 0.98 

MECPP 0.79 0.41 1.54 0.49 0.89 0.58 1.36 0.59 0.78 0.39 1.54 0.47 1.03 0.74 1.44 0.87 

DiNP 

MCOP 1.00 0.59 1.68 0.99 1.02 0.63 1.65 0.93 1.01 0.62 1.65 0.95 1.00 0.61 1.61 0.99 

MNP 1.16 0.75 1.80 0.51 1.28 0.81 2.01 0.29 1.09 0.68 1.75 0.72 1.11 0.67 1.84 0.69 

BBzP MBzP 0.59 0.42 0.82 0.00 1.04 0.73 1.48 0.82 0.56 0.37 0.85 0.01 1.09 0.71 1.67 0.71 

DOP MCPP 1.10 0.61 1.99 0.76 1.06 0.57 1.97 0.86 1.10 0.63 1.95 0.73 1.08 0.57 2.05 0.82 

DiDP MCNP 0.95 0.46 1.98 0.89 0.94 0.40 2.24 0.89 1.01 0.46 2.22 0.98 1.08 0.41 2.83 0.87 

DiBP 
MBP 0.67 0.53 0.84 0.00 1.30 0.87 1.95 0.21 0.56 0.42 0.75 0.00 1.31 0.87 1.98 0.20 

MHBP 0.38 0.19 0.77 0.01 1.19 0.55 2.57 0.66 0.38 0.18 0.78 0.01 0.89 0.51 1.57 0.70 

DBP 
MiBP 1.33 0.71 2.50 0.37 1.49 0.84 2.63 0.17 1.07 0.52 2.23 0.85 1.34 0.69 2.62 0.39 

MHiBP 1.15 0.53 2.49 0.72 1.84 1.01 3.35 0.05 0.85 0.42 1.76 0.67 1.99 0.96 4.13 0.06 

DMP MMP 0.64 0.46 0.88 0.01 1.18 0.63 2.20 0.60 0.40 0.26 0.61 0.00 2.38 1.21 4.69 0.01 

DEP MEP 0.78 0.56 1.10 0.16 1.30 0.85 2.00 0.22 0.69 0.44 1.09 0.11 1.37 0.96 1.93 0.08 

DiNCH 
MCOCH 0.35 0.13 0.92 0.03 0.20 0.04 1.02 0.05 0.21 0.04 1.06 0.06 0.71 0.19 2.71 0.62 

MHiNCH 0.77 0.31 1.90 0.56 0.99 0.40 2.41 0.98 0.50 0.18 1.39 0.18 2.42 0.98 5.95 0.05 

*Each model adjusted for embryo grade at cleavage stage and the age and infertility status of the specific parent (i.e. not both) 
**A single model adjusted for embryo grade at cleavage stage, age of both parents, and infertility status of male parent 
‡Log transformed and specific gravity corrected 
†Dichotomous variable based on LOD 
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APPENDIX C5 

ADJUSTED ODDS RATIOS FOR HIGH QUALITY AT BLASTOCYST STAGE AND PARENT URINARY METABOLITE 

CONCENTRATIONS OF PHTHALATES AND PHTHALATE ALTERNATIVES, RESTRICTED TO FERTILIZED 

EMBRYOS  

   Sex Specific Models* Couple-Level Models** 

Parent 
Esters 

Metabolite 
Males Females Males Females 

OR Lower CI Upper CI p-value OR Lower CI Upper CI p-value OR Lower CI Upper CI p-value OR Lower CI Upper CI p-value 

DEHP 

MEHP 0.60 0.32 1.10 0.10 1.08 0.84 1.40 0.55 0.54 0.29 1.03 0.06 0.98 0.81 1.18 0.83 

MEOHP 1.06 0.46 2.43 0.90 0.98 0.69 1.39 0.90 1.03 0.45 2.37 0.94 1.05 0.78 1.40 0.76 

MEHHP 0.82 0.40 1.68 0.59 0.98 0.71 1.35 0.89 0.79 0.38 1.65 0.52 1.00 0.78 1.29 0.99 

MECPP 0.84 0.44 1.63 0.61 0.88 0.58 1.34 0.56 0.83 0.42 1.63 0.58 1.03 0.74 1.43 0.87 

DiNP 

MCOP 0.97 0.58 1.63 0.92 1.03 0.64 1.63 0.91 0.98 0.61 1.58 0.93 1.01 0.64 1.62 0.95 

MNP 1.13 0.73 1.75 0.58 1.25 0.79 1.97 0.33 1.06 0.67 1.69 0.79 1.11 0.68 1.83 0.68 

BBzP MBzP 0.60 0.43 0.83 0.00 1.03 0.73 1.45 0.87 0.57 0.37 0.86 0.01 1.08 0.71 1.66 0.71 

DOP MCPP 1.08 0.60 1.92 0.81 1.07 0.59 1.95 0.82 1.08 0.62 1.87 0.80 1.09 0.59 2.02 0.77 

DiDP MCNP 0.94 0.46 1.91 0.86 0.96 0.41 2.23 0.92 0.99 0.47 2.08 0.97 1.10 0.44 2.76 0.84 

DiBP 
MBP 0.70 0.56 0.88 0.00 1.30 0.87 1.93 0.20 0.59 0.44 0.78 0.00 1.31 0.87 1.99 0.19 

MHBP 0.39 0.20 0.79 0.01 1.21 0.57 2.56 0.62 0.39 0.19 0.81 0.01 0.93 0.54 1.59 0.78 

DBP 
MiBP 1.30 0.72 2.35 0.38 1.47 0.85 2.54 0.17 1.05 0.52 2.12 0.89 1.34 0.70 2.57 0.38 

MHiBP 1.14 0.55 2.38 0.72 1.85 1.03 3.33 0.04 0.85 0.42 1.71 0.65 1.99 0.98 4.04 0.06 

DMP MMP 0.65 0.47 0.90 0.01 1.17 0.64 2.14 0.60 0.40 0.27 0.62 0.00 2.32 1.19 4.51 0.01 

DEP MEP 0.79 0.57 1.11 0.17 1.31 0.87 1.97 0.19 0.70 0.45 1.09 0.12 1.37 0.98 1.92 0.07 

DiNCH 
MCOCH 0.37 0.14 0.95 0.04 0.20 0.04 1.04 0.06 0.23 0.05 1.11 0.07 0.69 0.17 2.75 0.60 

MHiNCH 0.80 0.33 1.97 0.63 0.96 0.40 2.28 0.92 0.54 0.19 1.51 0.24 2.25 0.91 5.55 0.08 

*Each model adjusted for embryo grade at cleavage stage and the age and infertility status of the specific parent (i.e. not both) 
**A single model adjusted for embryo grade at cleavage stage, age of both parents, and infertility status of male parent 
‡Log transformed and specific gravity corrected 
†Dichotomous variable based on LOD 
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APPENDIX C6 

ADJUSTED ODDS RATIOS FOR HIGH QUALITY AT BLASTOCYST STAGE AND PARENT URINARY METABOLITE 

CONCENTRATIONS OF PHTHALATES AND PHTHALATE ALTERNATIVES, RESTRICTED TO EMBRYOS CULTURED 

PAST DAY 3 

   Sex Specific Models* Couple-Level Models** 

Parent 
Esters 

Metabolite 
Males Females Males Females 

OR Lower CI Upper CI p-value OR Lower CI Upper CI p-value OR Lower CI Upper CI p-value OR Lower CI Upper CI p-value 

DEHP 

MEHP 0.60 0.33 1.11 0.10 1.08 0.84 1.40 0.55 0.55 0.29 1.04 0.06 0.97 0.80 1.18 0.77 

MEOHP 1.09 0.46 2.59 0.84 0.98 0.69 1.38 0.90 1.07 0.46 2.45 0.88 1.04 0.78 1.39 0.77 

MEHHP 0.83 0.40 1.74 0.62 0.98 0.72 1.34 0.89 0.80 0.38 1.66 0.54 1.00 0.77 1.29 0.97 

MECPP 0.85 0.43 1.70 0.65 0.89 0.59 1.34 0.57 0.85 0.43 1.67 0.63 1.03 0.74 1.43 0.88 

DiNP 

MCOP 0.92 0.57 1.50 0.74 1.03 0.66 1.63 0.88 0.96 0.60 1.56 0.88 1.02 0.65 1.62 0.92 

MNP 1.04 0.65 1.67 0.86 1.25 0.79 1.96 0.34 1.06 0.67 1.68 0.81 1.11 0.68 1.81 0.67 

BBzP MBzP 0.59 0.40 0.88 0.01 1.03 0.73 1.43 0.88 0.58 0.38 0.88 0.01 1.08 0.70 1.65 0.74 

DOP MCPP 1.02 0.58 1.80 0.94 1.08 0.60 1.94 0.79 1.06 0.61 1.85 0.83 1.10 0.61 2.00 0.75 

DiDP MCNP 0.87 0.47 1.62 0.67 0.97 0.43 2.21 0.94 0.97 0.47 2.01 0.93 1.11 0.45 2.73 0.81 

DiBP 
MBP 0.66 0.51 0.84 0.00 1.29 0.87 1.91 0.21 0.59 0.44 0.79 0.00 1.31 0.87 1.98 0.20 

MHBP 0.39 0.19 0.77 0.01 1.21 0.58 2.53 0.62 0.39 0.19 0.81 0.01 0.93 0.54 1.58 0.78 

DBP 
MiBP 1.14 0.60 2.17 0.70 1.46 0.85 2.50 0.17 1.05 0.53 2.11 0.88 1.33 0.70 2.53 0.39 

MHiBP 0.90 0.46 1.77 0.75 1.85 1.03 3.32 0.04 0.85 0.43 1.71 0.65 1.97 0.97 3.99 0.06 

DMP MMP 0.43 0.29 0.65 0.00 1.17 0.65 2.12 0.60 0.40 0.26 0.61 0.00 2.29 1.18 4.43 0.01 

DEP MEP 0.75 0.52 1.10 0.14 1.31 0.88 1.95 0.19 0.71 0.45 1.10 0.12 1.37 0.98 1.92 0.07 

DiNCH 
MCOCH 0.42 0.16 1.09 0.08 0.19 0.04 1.04 0.06 0.23 0.05 1.14 0.07 0.67 0.16 2.75 0.58 

MHiNCH 0.58 0.19 1.74 0.33 0.92 0.39 2.17 0.85 0.56 0.20 1.56 0.27 2.18 0.89 5.37 0.09 

*Each model adjusted for embryo grade at cleavage stage and the age and infertility status of the specific parent (i.e. not both) 
**A single model adjusted for embryo grade at cleavage stage, age of both parents, and infertility status of male parent 
‡Log transformed and specific gravity corrected 
†Dichotomous variable based on LOD 
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APPENDIX C7 

ADJUSTED ODDS RATIOS FOR HIGH QUALITY AT BLASTOCYST STAGE AND PARENT URINARY METABOLITE 

CONCENTRATIONS OF PHTHALATES AND PHTHALATE ALTERNATIVES, RESTRICTED TO NON-SMOKERS 

   Sex Specific Models* Couple-Level Models** 

Parent 
Esters 

Metabolite 
Males Females Males Females 

OR Lower CI Upper CI p-value OR Lower CI Upper CI p-value OR Lower CI Upper CI p-value OR Lower CI Upper CI p-value 

DEHP 

MEHP 0.57 0.29 1.13 0.11 1.11 0.81 1.51 0.52 0.46 0.24 0.88 0.02 1.05 0.86 1.29 0.62 

MEOHP 0.99 0.40 2.47 0.98 1.07 0.70 1.62 0.76 0.96 0.39 2.37 0.94 1.12 0.79 1.58 0.53 

MEHHP 0.79 0.37 1.70 0.54 1.05 0.71 1.55 0.81 0.81 0.37 1.81 0.61 1.07 0.79 1.44 0.65 

MECPP 0.80 0.38 1.65 0.54 0.99 0.59 1.67 0.97 0.75 0.36 1.60 0.46 1.06 0.73 1.55 0.75 

DiNP 

MCOP 0.97 0.57 1.65 0.92 1.00 0.58 1.72 1.00 0.86 0.50 1.48 0.60 1.12 0.65 1.96 0.68 

MNP 1.15 0.75 1.77 0.52 1.26 0.77 2.07 0.35 1.03 0.63 1.68 0.91 1.18 0.69 2.00 0.55 

BBzP MBzP 0.55 0.38 0.79 0.00 0.98 0.69 1.40 0.92 0.52 0.32 0.85 0.01 1.12 0.72 1.74 0.61 

DOP MCPP 1.08 0.60 1.95 0.79 1.06 0.54 2.10 0.87 1.07 0.63 1.82 0.80 1.12 0.61 2.05 0.72 

DiDP MCNP 0.80 0.33 1.96 0.63 0.98 0.39 2.47 0.96 0.68 0.30 1.53 0.35 1.29 0.53 3.11 0.58 

DiBP 
MBP 0.67 0.50 0.89 0.01 1.34 0.87 2.08 0.18 0.56 0.40 0.77 0.00 1.28 0.82 2.01 0.28 

MHBP 0.33 0.15 0.73 0.01 1.15 0.50 2.64 0.73 0.36 0.16 0.84 0.02 0.87 0.48 1.56 0.63 

DBP 
MiBP 1.38 0.77 2.50 0.28 1.62 0.83 3.16 0.15 1.23 0.59 2.56 0.57 1.23 0.55 2.72 0.62 

MHiBP 1.17 0.57 2.40 0.68 1.97 1.01 3.81 0.05 0.98 0.49 1.94 0.94 1.90 0.87 4.17 0.11 

DMP MMP 0.62 0.41 0.94 0.02 1.21 0.62 2.34 0.57 0.44 0.26 0.74 0.00 2.38 1.23 4.61 0.01 

DEP MEP 0.79 0.56 1.13 0.19 1.36 0.85 2.17 0.20 0.73 0.45 1.17 0.18 1.31 0.92 1.86 0.14 

DiNCH 
MCOCH 0.27 0.07 1.03 0.06 0.21 0.04 1.12 0.07 0.26 0.06 1.22 0.09 0.81 0.21 3.12 0.76 

MHiNCH 0.78 0.31 1.99 0.61 1.19 0.46 3.06 0.73 0.56 0.20 1.54 0.26 2.56 1.05 6.22 0.04 

*Each model adjusted for embryo grade at cleavage stage and the age and infertility status of the specific parent (i.e. not both) 
**A single model adjusted for embryo grade at cleavage stage, age of both parents, and infertility status of male parent 
‡Log transformed and specific gravity corrected 
†Dichotomous variable based on LOD 
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APPENDIX D1 

OVERLAPS FOUND IN DIFFERENTIALLY METHYLATED REGIONS (DMRS) ASSOCIATED WITH URINARY 

METABOLITES OF PHTHALATES AND PHTHALATE ALTERNATIVES 

Gene Alternative Names 
Associated 
Metabolites 

Cluster 
Numbers Function (Gene Cards) 

ESPN Espin 
Autosomal Recessive 
Deafness Type 36 Protein 
Deafness, Autosomal 
Recessive 36 

MEOHP/MBP 91 Multifunctional actin-bundling protein. It plays a major role in regulating 
the organization, dimensions, dynamics, and signaling capacities of the 
actin filament-rich, microvillus-type specializations that mediate sensory 
transduction in various mechanosensory and chemosensory cells. 
Mutations in this gene are associated with autosomal recessive 
neurosensory deafness, and autosomal dominant sensorineural 
deafness without vestibular involvement. 

HERPUD2 Homocysteine-Inducible, 
Endoplasmic Reticulum 
Stress-Inducible, 
Ubiquitin-Like Domain 
Member 2 

MEOHP/MBP 5719 Could be involved in the unfolded protein response (UPR) pathway 

MTHFSD Methenyltetrahydrofolate 
Synthetase Domain 
Containing 

MEOHP/MBP 2567 nucleic acid binding and nucleotide binding. 

MX1 MX Dynamin Like GTPase 
1 
Interferon-Regulated 
Resistance GTP-Binding 
Protein MxA 
Myxovirus (Influenza) 
Resistance 1, Homolog Of 
Murine (Interferon-
Inducible Protein P78) 
IFI78 

MBP/MBZP 4083 The encoded protein is induced by type I and type II interferons and 
antagonizes the replication process of several different RNA and DNA 
viruses. There is a related gene located adjacent to this gene on 
chromosome 21, and there are multiple pseudogenes located in a 
cluster on chromosome 4. GO annotations related to this gene include 
GTP binding and GTPase activity. 
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PLEKHG5 Pleckstrin Homology And 
RhoGEF Domain 
Containing G5 

MEHP/MEOHP 93/94 activates the nuclear factor kappa B (NFKB1) signaling pathway. 
Mutations in this gene are associated with autosomal recessive distal 
spinal muscular atrophy.  

SAMD11 Sterile Alpha Motif 
Domain Containing 11 

MEHP/MBP 5/7 Transcription coactivator activity and PH domain binding; May play a 
role in photoreceptor development. 
From UCSC: GO annotations 0003713 (transcription coactivator activity) 
and 1903506 (regulation of nucleic acid tempalted transcription) 

STK11 Serine/Threonine Kinase 
11 
LKB1 

MEHP/MEOHP 3110 Regulates cell polarity and functions as a tumor suppressor. Mutations 
in this gene have been associated with Peutz-Jeghers syndrome, an 
autosomal dominant disorder characterized by the growth of polyps in 
the gastrointestinal tract, pigmented macules on the skin and mouth, 
and other neoplasms 
 
Isoform 2: Has a role in spermiogenesis. 

TIMM8B Translocase Of Inner 
Mitochondrial Membrane 
8 Homolog B 
DDP2  
DDPL  

MEOHP/MBP 1318  Acts as a chaperone-like protein that protects the hydrophobic 
precursors from aggregation and guide them through the mitochondrial 
intermembrane space 

RP11-
81N13.1 

 
MBZP/MBP 4337 
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APPENDIX D2 

LOCATIONS AND CPGS WITHIN DIFFERENTIALLY METHYLATED REGIONS 

(DMRS) ASSOCIATED WITH URINARY METABOLITES OF PHTHALATE AND 

PHTHALATE ALTERATIVES (BH ADJUSTED P-VALUE <0.05)  

Metabolite cluster_sites chr start end 

MBP 
;cg04269747;cg19537591;cg07540593;cg
03594819;cg18268988 chr11 111956647 111956844 

MBP ;cg09604167;cg21070740 chr12 50134882 50134915 

MBP ;cg19846096;cg10095011 chr12 133049188 133049413 

MBP ;cg26872968;cg10448831;cg26434653 chr13 43930362 43930423 

MBP 
;cg03489965;cg10619342;cg23058194;cg
18376860;cg01569660 chr15 65368982 65369213 

MBP 

;cg26813301;cg04737286;cg08981282;cg
02512202;cg01195053;cg03314158;cg06
035616;cg25000382;cg01124843;cg0043
3159 chr16 2653222 2653839 

MBP ;cg05633380;cg04733911 chr16 78082579 78082701 

MBP 

;cg05981033;cg05225549;cg06093811;cg
16540921;cg00608860;cg08086906;cg04
531202;cg26436829;cg06874952;cg1240
3956;cg16359547;cg10756578;cg065992
74 chr16 86588144 86589076 

MBP ;cg12134570;cg15013019 chr19 13213428 13213451 

MBP ;cg06262280;cg14512870;cg02670123 chr2 173330296 173330395 

MBP 

;cg16785077;cg20451722;cg03215005;cg
12605796;cg14166395;cg16733866;cg13
507964 chr21 42791867 42792703 

MBP ;cg19433066;cg00837649;cg11197418 chr3 67705222 67705285 

MBP ;cg04672903;cg23576358 chr4 6675309 6675513 

MBP ;cg24069286;cg02970919 chr4 186300477 186300945 

MBP 

;cg06531475;cg06624358;cg14156792;cg
24997886;cg01727431;cg10146935;cg02
439789;cg24362661;cg05819296;cg0058
2671;cg22485363;cg06036236 chr1 870791 872737 

MBP ;cg24092907;cg07302938 chr7 12729367 12729527 

MBP 
;cg15476479;cg06466797;cg23759826;cg
11075346 chr7 35734978 35735308 

MBP ;cg04906462;cg02875185 chr7 130788305 130788584 

MBP ;cg05828992;cg23430295 chr7 140732689 140732738 

MBP ;cg11248957;cg23332005 chr10 15963599 15963738 

MBP 
;cg22150335;cg14391247;cg12354377;cg
26607103 chr10 62148959 62149642 

MBP ;cg13284574;cg12406391 chr1 6519923 6520194 

MBZP 

;cg16785077;cg20451722;cg03215005;cg
12605796;cg14166395;cg16733866;cg13
507964 chr21 42791867 42792703 

MBZP ;cg19433066;cg00837649;cg11197418 chr3 67705222 67705285 
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MCNP ;cg10360323;cg23758822 chr17 41437877 41437982 

MCNP ;cg25072359;cg07153921 chr17 41440525 41440717 

MCOCH ;cg24778776;cg14485103 chr11 69017394 69017579 

MCOCH 
;cg19359983;cg27181005;cg05491608;cg
04057861 chr13 103346900 103347391 

MCOCH 
;cg13686919;cg19004608;cg13671412;cg
20379170 chr19 5335045 5335260 

MCOCH ;cg16407924;cg26605809;cg19368625 chr2 1452260 1452665 

MCOCH ;cg09154639;cg07931024 chr20 55925570 55925586 

MCOCH ;cg09009074;cg02130040;cg08935301 chr3 8543508 8543732 

MCOCH 
;cg12513994;cg17922326;cg20455197;cg
16957758;cg19942454;cg12581741 chr10 1558762 1559249 

MECPP ;cg11912315;cg05986168;cg19441908 chr8 41528946 41529140 

MEHP ;cg17255148;cg26884837 chr11 2563802 2563897 

MEHP 
;cg12882392;cg01822289;cg01748193;cg
09337943;cg09035529;cg25165501 chr11 64335229 64335895 

MEHP ;cg18855356;cg06093070 chr1 16957483 16957489 

MEHP 
;cg17004104;cg14520913;cg18367578;cg
14209518 chr11 114165730 114166636 

MEHP ;cg18645647;cg13686847;cg19253743 chr12 109678885 109678973 

MEHP ;cg09788586;cg15008124;cg05738240 chr12 114337676 114337927 

MEHP 

;cg24691910;cg13031611;cg06530563;cg
26471674;cg11302945;cg04528829;cg25
033380;cg08078751 chr12 115132460 115133735 

MEHP 
;cg21415724;cg04770364;cg22078988;cg
01273565 chr12 120127920 120128116 

MEHP 
;cg22295211;cg04415616;cg27608806;cg
10940545;cg01446612 chr12 125509610 125510168 

MEHP ;cg10052597;cg24461952 chr12 132903921 132904014 

MEHP 
;cg02477305;cg15439717;cg10560368;cg
01282150;cg04691180 chr13 23993013 23993527 

MEHP 
;cg02166450;cg01330096;cg02058624;cg
10621576 chr13 112712795 112714526 

MEHP 
;cg23181831;cg25928208;cg10300728;cg
07364729;cg16578825 chr13 112785388 112786727 

MEHP ;cg01318265;cg13981078;cg13052453 chr14 105884721 105885138 

MEHP ;cg11763800;cg02395812 chr14 105955745 105955879 

MEHP ;cg18146152;cg16133244;cg01522083 chr16 1400772 1400861 

MEHP 
;cg08142918;cg03697918;cg24908603;cg
07056644;cg27453745;cg09338251 chr16 86546374 86546979 

MEHP ;cg06706029;cg26879339 chr16 89981752 89981919 

MEHP ;cg01881265;cg17298275;cg20699780 chr17 934534 935017 

MEHP ;cg02089963;cg12121983;cg02061130 chr17 1387495 1387922 

MEHP ;cg19986200;cg04740558 chr17 7660449 7660494 

MEHP ;cg07437263;cg21855910 chr17 30817129 30817397 

MEHP 
;cg24870391;cg05999628;cg27224069;cg
11155489 chr17 32612675 32613298 

MEHP ;cg02186277;cg23632849 chr17 72208213 72208322 
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MEHP 
;cg08470991;cg01246266;cg03190661;cg
20943461;cg19056418 chr17 76126449 76127217 

MEHP ;cg22357164;cg22749810;cg14175304 chr17 78237117 78237397 

MEHP 
;cg06444575;cg00702126;cg14667273;cg
27391934 chr1 1369772 1369948 

MEHP ;cg01133401;cg25232541 chr19 409679 409888 

MEHP 
;cg22467470;cg20637199;cg16192413;cg
06909547;cg07536072 chr19 1226523 1227141 

MEHP ;cg09487101;cg14796563 chr19 1287428 1287576 

MEHP ;cg16889945;cg03404027 chr19 1523070 1523442 

MEHP ;cg04154502;cg15062725 chr19 3831293 3831364 

MEHP 
;cg03088725;cg01914743;cg11277220;cg
10002088;cg15894653;cg14737370 chr19 9270837 9271995 

MEHP ;cg08177015;cg22865824;cg03767475 chr19 18902527 18902727 

MEHP ;cg18627816;cg10092957;cg12574296 chr19 39686695 39687098 

MEHP ;cg03716852;cg17583504 chr19 49669281 49669542 

MEHP ;cg19309676;cg00711496;cg17417856 chr19 50191439 50191637 

MEHP ;cg22511368;cg13728299;cg01387220 chr19 55281057 55281274 

MEHP ;cg27247510;cg05014291 chr2 11780349 11780446 

MEHP ;cg09836979;cg10266648;cg20890180 chr2 106560496 106560771 

MEHP ;cg03850256;cg11272491 chr2 176974592 176974934 

MEHP 
;cg15039182;cg02301319;cg04365609;cg
02960938;cg00993677 chr2 239930734 239931250 

MEHP ;cg06541968;cg06531129 chr2 240431144 240431270 

MEHP ;cg05116145;cg17500202;cg01662942 chr2 241721922 241722113 

MEHP ;cg14684854;cg14059464 chr2 241901865 241901988 

MEHP 
;cg17465173;cg19506677;cg13388615;cg
12203072;cg00551733 chr2 242878496 242879153 

MEHP 
;cg25551168;cg16536918;cg24257309;cg
05136169;cg02187522 chr20 3065343 3065488 

MEHP ;cg20975074;cg24776480 chr1 2066430 2066446 

MEHP 

;cg01753209;cg02983759;cg20206277;cg
12792526;cg12656497;cg27263741;cg03
364381 chr21 43098516 43099460 

MEHP ;cg22978940;cg11113589;cg03705621 chr21 46898610 46898789 

MEHP ;cg27324619;cg26373518;cg18053607 chr22 31518860 31518963 

MEHP ;cg20539366;cg05475172 chr22 46370644 46371152 

MEHP ;cg19808085;cg08173919;cg10341513 chr22 51040520 51041242 

MEHP ;cg12870811;cg03652676;cg01427909 chr3 62361449 62362324 

MEHP ;cg27550618;cg17577431 chr3 175696286 175696388 

MEHP ;cg03538934;cg18030372;cg16417840 chr4 2069683 2069925 

MEHP ;cg08796692;cg13847226 chr4 7192699 7193237 

MEHP ;cg20245328;cg13701738 chr4 186799820 186799847 

MEHP ;cg06572420;cg02208657 chr5 175621395 175621409 

MEHP ;cg11981639;cg08124209 chr6 1622383 1622941 

MEHP ;cg25786333;cg23584176;cg09081266 chr6 29364799 29365287 



 

126 

MEHP 

;cg19813135;cg11812071;cg25934495;cg
01981433;cg19862242;cg18287768;cg12
200164 chr6 138200071 138200679 

MEHP 

;cg14714009;cg26698664;cg11783014;cg
06259339;cg25697490;cg19757131;cg15
408737 chr6 149285724 149286375 

MEHP ;cg20067575;cg04076264 chr6 150437072 150437118 

MEHP ;cg15246238;cg12600030;cg24239690 chr7 5635134 5635953 

MEHP ;cg04107994;cg13337615 chr7 6209931 6210236 

MEHP 
;cg19781251;cg07278332;cg09265417;cg
06999014 chr7 94294278 94294905 

MEHP 
;cg09377301;cg13696531;cg19128364;cg
01262413;cg09193751 chr7 157691177 157691591 

MEHP 
;cg11966432;cg21819129;cg17638856;cg
08575860;cg06040034 chr8 1617616 1618448 

MEHP ;cg19913626;cg09405635;cg23402467 chr8 49533357 49533485 

MEHP ;cg19526685;cg12619165 chr8 126963507 126964345 

MEHP 
;cg17493839;cg00111503;cg22424020;cg
04066400 chr8 140630830 140631269 

MEHP 
;cg00664093;cg00316921;cg07295586;cg
00187981 chr8 142984321 142984613 

MEHP ;cg00118808;cg13693256 chr9 132097931 132098311 

MEHP 
;cg10827460;cg15742605;cg09756115;cg
23731742 chr1 879375 879958 

MEHP ;cg10588310;cg14841011 chr1 3332000 3332125 

MEHP ;cg15605704;cg15580684 chr1 4770676 4770711 

MEHP ;cg06620993;cg04388244 chr10 105420831 105421005 

MEHP ;cg01799460;cg16146806 chr1 6529710 6530205 

MEHP 
;cg19478951;cg23976652;cg00595223;cg
15281331;cg04766005 chr10 133879084 133879763 

MEHP ;cg09033333;cg24324584;cg17348201 chr10 133892406 133892567 

MEHP 

;cg09205751;cg22331032;cg18016138;cg
23437420;cg15451020;cg03009397;cg06
328831 chr11 278394 278912 

MEHP ;cg08596817;cg06046490 chr11 320929 320940 

MEOHP 
;cg04269747;cg19537591;cg07540593;cg
03594819;cg18268988 chr11 111956647 111956844 

MEOHP 

;cg05981033;cg05225549;cg06093811;cg
16540921;cg00608860;cg08086906;cg04
531202;cg26436829;cg06874952;cg1240
3956;cg16359547;cg10756578;cg065992
74 chr16 86588144 86589076 

MEOHP ;cg03125909;cg07509252;cg06534221 chr16 88725584 88725763 

MEOHP 
;cg16275118;cg18775736;cg09323570;cg
24530271 chr18 74153342 74154260 

MEOHP 

;cg23260026;cg16825133;cg05304405;cg
24341615;cg22619412;cg17710576;cg10
503234 chr19 675390 676739 

MEOHP 
;cg22467470;cg20637199;cg16192413;cg
06909547;cg07536072 chr19 1226523 1227141 

MEOHP ;cg02512596;cg15274684 chr21 48054563 48054897 
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MEOHP ;cg12960467;cg23304085 chr5 133703730 133703889 

MEOHP ;cg10578681;cg13962681 chr1 213223453 213223461 

MEOHP 
;cg15476479;cg06466797;cg23759826;cg
11075346 chr7 35734978 35735308 

MEOHP ;cg05307234;cg26292018 chr8 133786975 133787071 

MEOHP ;cg20017995;cg01605984 chr9 136216076 136216154 

MEOHP 
;cg06202426;cg07670566;cg13994338;cg
05656770 chr9 139836994 139838089 

MEOHP ;cg19158553;cg24305579 chr1 5356471 5356578 

MEOHP ;cg13284574;cg12406391 chr1 6519923 6520194 

MEOHP 
;cg00918541;cg17329304;cg24535622;cg
18125265 chr1 6546027 6546646 

MHBP ;cg09646593;cg19898448 chr4 125631168 125631415 

MHBP ;cg11046421;cg04713108 chr5 44806923 44807541 

MHIBP ;cg04321566;cg03921396;cg26268843 chr7 64466846 64467056 

MHIBP 

;cg25645879;cg05151824;cg26702985;cg
19180542;cg14271085;cg17830980;cg08
197448;cg02949969;cg17003301;cg0787
6289;cg14058825 chr10 43047255 43048734 

MMP 
;cg19039481;cg10717610;cg23982445;cg
23399257 chr2 394115 394481 



 

128 

APPENDIX D3 

COMPARISON OF BETA-VALUES DERIVED FROM 450K VS. METHYLATION 

VALUES FROM SEQUENOM (N=47) 

CpG ID Method Mean Min Max SD 
Spearman 

Rho p-value 

cg04388244 
sequenom 0.034 0.010 0.070 0.014 

0.233 0.1155* 
450K 0.079 0.032 0.177 0.040 

cg14156792 
sequenom 0.615 0.050 0.995 0.316 

0.939 <2.2E-16 
450K 0.636 0.060 0.989 0.323 

cg24997886 
sequenom 0.560 0.025 0.920 0.281 

0.911 <2.2E-16 
450K 0.649 0.062 0.961 0.296 

cg01727431 
sequenom 0.629 0.080 0.980 0.253 

0.925 <2.2E-16 
450K 0.673 0.125 0.985 0.283 

cg00410895 
sequenom 0.442 0.275 0.635 0.088 

0.660 4.55E-07 
450K 0.587 0.410 0.850 0.101 

cg19101893 
sequenom 0.540 0.410 0.665 0.073 

0.785 6.25E-11 
450K 0.668 0.525 0.799 0.071 

cg07462448 
sequenom 0.775 0.560 0.935 0.077 

0.894 <2.2E-16 
450K 0.898 0.768 0.962 0.048 

cg04473763 
sequenom 0.683 0.540 0.770 0.058 

0.770 2.43E-10 
450K 0.823 0.683 0.946 0.069 

*Removal of one influential point reduces Spearman p-value to 0.04318 
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APPENDIX D4 

SCATTERPLOT AND TREND LINE COMPARING THE EIGHT VALIDATED CPG SITES USING SEQUENOM 

MASSARRAY (X-AXIS) AND THE 450 K BETA-VALUES (Y-AXIS). 
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APPENDIX D5 

GENERALIZED LINEAR MODEL (GLM) RESULTS OF LOG TRANSFORMED MCNP AND AVERAGED METHYLATION 

OF 21 IMPRINTED GENES* 

Gene Beta_Value_Betas^ Mval_Betas Mval_LCI Mval_UCI Mval_p_value Mval_padjusted 

mean_PLAGL1_HYMAI 0.011 0.345 0.203 0.487 0.000 0.000 

mean_KCNQ1_KCNQ1OT1 0.005 0.188 0.090 0.286 0.001 0.004 

mean_PEG3_ZIM2 0.004 0.138 0.064 0.212 0.001 0.004 

mean_MESTIT1_MEST 0.005 0.170 0.073 0.268 0.001 0.006 

mean_GNAS_GNASAS1 0.003 0.103 0.042 0.165 0.002 0.007 

mean_H19 -0.015 -0.218 -0.357 -0.079 0.004 0.009 

mean_NAP1L5 0.008 0.226 0.082 0.370 0.004 0.009 

mean_SGCE_PEG10 0.003 0.117 0.043 0.192 0.004 0.009 

mean_L3MBTL 0.004 0.130 0.041 0.219 0.006 0.013 

mean_MAGEL2 0.004 0.141 0.001 0.281 0.055 0.076 

mean_MEG3 0.003 0.109 0.001 0.217 0.055 0.076 

mean_MKRN3 0.006 0.136 0.003 0.268 0.051 0.076 

mean_SNRPN 0.003 0.094 0.005 0.183 0.044 0.076 

mean_GRB10 0.001 0.081 -0.005 0.166 0.071 0.092 

mean_KCNK9 -0.003 -0.114 -0.249 0.020 0.102 0.122 

mean_ANKRD11 0.003 0.097 -0.038 0.232 0.165 0.186 

mean_DIRAS3 0.001 0.050 -0.045 0.144 0.310 0.328 

mean_DLGAP2 -0.001 -0.055 -0.169 0.060 0.353 0.353 

*Identified from PMC3348513 
^GLM beta coefficients using the beta-values 
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APPENDIX D6 

CURATED INGENUITY PATHWAY ANALYSIS (IPA) AND GENE SET ENRICHMENT ANALYSIS (GSEA) RESULTS 

Networks related to Differentially Methylated Regions (DMRs) associated with anti-androgenic phthalates, restricted to 

those with Ingenuity Pathway Analysis (IPA) score >20 

Molecules in Network Scor
e 

Focus 
Molecules 

Top Diseases and 
Functions 

ABR, Actin, AMPK, ANK3, AVP, CCL11, CDK5R1, CIT, COL18A1, 
Collagen type IV, Creb, EFNA2, ERK1/2, ESPN, F Actin, FOXF1, 
FSCN1, FSH, FSTL3, Gsk3, GTPase, ITGA6, Laminin, Lh, MAPK8IP2, 
Mek, PI3K (family), Pld, PRKCZ, PTPRN2, Rac, SH3PXD2A, Tgf beta, 
TMBIM6, TNFAIP3 

41 19 

Nervous System 
Development and 
Function,  Organ 
Morphology,  Organismal 
Development 

ACACB, ADCY, Akt, ANK1, caspase, ERK, FBXW5, Focal adhesion 
kinase, Histone h3, HTR1B, IFITM3, IgG, IL1, Insulin, Jnk, KIF1A, 
Mapk, MC1R, MUC8, MVD, MYO1C, NFkB (complex), P38 MAPK, 
PI3K (complex), Pkc(s), PLEKHG5, PRDM16, PRMT1, PRMT2, 
PRMT1/PRMT2, RAE1, Ras, SETD1B, TIMM8B, TRPM4 

33 16 

Cancer,  Gastrointestinal 
Disease,  Organismal 
Injury and Abnormalities 

AGT, CYTH3, DLGAP2, DNAH2, DNAH3, EEF1A1, EEF2K, EIF1AD, 
ELAVL1, ELK1, ENOX1, ESR1, FRAT2, GREB1, HERPUD2, HOXD11, 
IGF2BP3, JMY, KCNK3, KCNK9, Krt10, LSM14A, MDM2, miR-22-3p 
(miRNAs w/seed AGCUGCC), MTHFSD, NCCRP1, PEG10, 
phosphatidylinositol 4, 5-diphosphate, SAMD11, TMC6, TMC8, TP53, 
TUBA8, ZNF282, ZNF516 

28 14 

Cell Cycle,  Dermatological 
Diseases and Conditions,  
Infectious Diseases 

AAK1, ADGRB2, ANKRD50, APP, BCKDK, C21orf59, CCDC115, 
CDKL3, DDX49, DNAH1, ELAVL4, HNF4A, HSPA5, KANSL2, 
KIR2DL1/KIR2DL3, LGR5, LRP2BP, METTL21A, METTL21C, 
MRPS18A, MSL3, NNMT, PHF20L1, PIH1D3, PNPO, RASL12, REL, 
RNF213, RPS6KC1, SF3A3, SIX2, TNIP2, TSR3, TUBA8, ZNF317 

23 12 

Post-Translational 
Modification,  Protein 
Degradation,  Protein 
Synthesis 

1, 3, 4, 5-IP4, AJAP1, ARL4A, butyric acid, C2CD4C, Ca2+, CALB1, 
CALCOCO1, CCND1, CDH5, CDH13, COL18A1, COMP, CRIP1, 
CTNNB1, Fascin, HNF1A, IFITM1, INPP5J, LGR5, LMCD1, LYL1, 

23 12 
Endocrine System 
Disorders,  Organismal 
Injury and Abnormalities,  
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MIR17HG, PAH, PCDH11Y, RHOU, RNF14, RTKN, SAA1, SLC22A11, 
Sphk, TRPC5, WNT3, WNT7B, ZNF117 

Cell-To-Cell Signaling and 
Interaction 

 

Networks related to Differentially Methylated Regions (DMRs) associated with anti-androgenic phthalates, restricted to 

those with Ingenuity Pathway Analysis (IPA) score and p<0.05 

Categories Diseases or 
Functions 
Annotation 

Predicted 
Activation 
State 

Activatio
n z-score 

Assigned 
Category* 

Cellular Development 
differentiation of 
cells  0.185 

Growth and 
Development 

Cell Morphology, Cellular Assembly and Organization, 
Cellular Function and Maintenance 

formation of cellular 
protrusions  -0.316 

Cellular Function 
and Maintenance 

Cancer, Organismal Injury and Abnormalities epithelial cancer  0.246 Cancer 

Cancer, Organismal Injury and Abnormalities 
malignant solid 
tumor  -1.241 Cancer 

Cellular Assembly and Organization, Cellular Function and 
Maintenance 

organization of 
cytoskeleton  -0.867 

Cellular Function 
and Maintenance 

Cell Morphology, Cellular Assembly and Organization, 
Cellular Development, Cellular Function and Maintenance, 
Cellular Growth and Proliferation, Nervous System 
Development and Function, Tissue Development neuritogenesis  -0.651 

Growth and 
Development 

Cellular Assembly and Organization, Cellular Function and 
Maintenance 

microtubule 
dynamics  -0.564 

Cellular Function 
and Maintenance 

Cellular Development, Connective Tissue Development 
and Function, Tissue Development 

differentiation of 
connective tissue  0.555 

Growth and 
Development 

Behavior anxiety  1.408 Other 

Cellular Growth and Proliferation, Tissue Development generation of cells  0.086 
Growth and 
Development 

Cellular Development, Cellular Growth and Proliferation, 
Nervous System Development and Function, Tissue 
Development 

development of 
neurons  -0.524 

Growth and 
Development 
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Cellular Movement cell movement  0.94 
Cellular Function 
and Maintenance 

Cancer, Organismal Injury and Abnormalities metastasis  1 Cancer 

Cell Morphology, Cellular Assembly and Organization, 
Cellular Development, Cellular Function and Maintenance, 
Cellular Growth and Proliferation, Nervous System 
Development and Function, Tissue Development 

morphogenesis of 
neurites  -0.152 

Growth and 
Development 

Cellular Development, Connective Tissue Development 
and Function, Tissue Development 

differentiation of 
connective tissue 
cells  0 

Growth and 
Development 

Gastrointestinal Disease, Hepatic System Disease, 
Organismal Injury and Abnormalities liver lesion  -0.068 Other 

Cell Death and Survival, Organismal Injury and 
Abnormalities 

necrosis of epithelial 
tissue  1.768 

Cellular Function 
and Maintenance 

Cellular Assembly and Organization 
formation of 
cytoskeleton  1.406 

Cellular Function 
and Maintenance 

Cellular Assembly and Organization, Cellular Function and 
Maintenance, Tissue Development 

formation of actin 
filaments  1.951 

Growth and 
Development 

Cellular Assembly and Organization, Tissue Development 
formation of 
filaments  1.406 

Growth and 
Development 

Cellular Movement migration of cells  1.454 
Cellular Function 
and Maintenance 

Cellular Growth and Proliferation proliferation of cells  1.908 
Cellular Function 
and Maintenance 

Cell Death and Survival cell death  0.319 
Cellular Function 
and Maintenance 

Gene Expression expression of RNA  0.124 Other 

Cellular Movement invasion of cells  1.878 
Cellular Function 
and Maintenance 

Cell Morphology, Cellular Assembly and Organization, 
Cellular Function and Maintenance 

formation of 
filopodia  1.109 

Cellular Function 
and Maintenance 

Tissue Development 
growth of epithelial 
tissue  -1.944 

Growth and 
Development 
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Cellular Movement 
invasion of tumor 
cell lines Increased 2.421 

Cellular Function 
and Maintenance 

Cell Signaling, Post-Translational Modification 

tyrosine 
phosphorylation of 
protein  1.199 

Cellular Function 
and Maintenance 

Cell Signaling, Cellular Function and Maintenance, 
Molecular Transport, Vitamin and Mineral Metabolism influx of Ca2+  0.862 

Cellular Function 
and Maintenance 

Cell Signaling, Molecular Transport, Small Molecule 
Biochemistry, Vitamin and Mineral Metabolism release of Ca2+  0.254 

Cellular Function 
and Maintenance 

Developmental Disorder, Skeletal and Muscular Disorders 
muscular 
hypertrophy  1.091 

Growth and 
Development 

Cellular Movement 
migration of tumor 
cell lines  0.987 

Cellular Function 
and Maintenance 

Behavior behavior  0.396 Other 

Connective Tissue Development and Function, Tissue 
Development 

development of 
connective tissue  0.686 

Growth and 
Development 

Inflammatory Response 
inflammatory 
response  -0.117 Other 

Cell Death and Survival, Cellular Compromise cytotoxicity of cells Increased 2 
Cellular Function 
and Maintenance 

Cellular Movement 
cell movement of 
tumor cell lines  0.904 

Cellular Function 
and Maintenance 

Embryonic Development, Organismal Development 
development of 
body axis  -1.698 

Growth and 
Development 

Organismal Survival organismal death  -0.344 Other 

Cell Death and Survival, Neurological Disease, Organismal 
Injury and Abnormalities 

cell death of 
cerebral cortex cells  -1.958 

Cellular Function 
and Maintenance 

Gene Expression transcription  -0.024 Other 

Cell Death and Survival cell survival  1.212 
Cellular Function 
and Maintenance 

Behavior cognition  0 Other 
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Cell Death and Survival necrosis  0.8 
Cellular Function 
and Maintenance 

*Assigned by authors    
 

Networks related to Differentially Methylated Regions (DMRs) associated with Bis(2-ethylhexyl) phthalate metabolites, 

restricted to those with score >20 

Molecules in Network Score Focus 
Molecules 

Top Diseases and 
Functions 

ACACB, ADCY, AMPK, AVP, CCL11, CDK5R1, CDKL3, COL18A1, 
Collagen type IV, Creb, DLGAP2, ERK, ERK1/2, FOXF1, FSCN1, 
FSH, FSTL3, Gsk3, Hsp90, IFITM3, IgG, IL1, Insulin, Lh, Mapk, 
MAPK8IP2, Mek, MVD, Pka, Pld, PRKCZ, PTPRN2, STK11, Tgf beta, 
TNFAIP3 

37 17 

Amino Acid Metabolism,  
Small Molecule 
Biochemistry,  Cell 
Morphology 

ABR, Actin, AFAP1L2, Akt, ANK1, CIT, ELAVL4, ESPN, F Actin, 
Fascin, FBXW5, Focal adhesion kinase, Histone h3, HTR1B, Jnk, 
KIF1A, MC1R, MYO1C, NFkB (complex), P38 MAPK, PI3K (complex), 
Pkc(s), PLEKHG5, PRDM16, PRMT1, PRMT2, PRMT1/PRMT2, Rac, 
RHBDD3, SETD1B, SH3PXD2A, SPAG8, TIMM8B, TRPM4, TYRO3 

31 15 

Neurological Disease,  
Cardiovascular Disease,  
Cell Morphology 

AJAP1, beta-estradiol, C11orf57, C2CD4C, CCND1, CD14, COMP, 
COQ10B, CREBL2, CRIP1, DEPDC1, ELAVL1, GREB1, HERPUD2, 
HNF1A, HNF4A, INPP5J, JUN, L-dopa, MTHFSD, NPTX2, NXF1, 
PCNP, PEG10, PHF20L1, PNPO, RPS6KC1, SLC22A11, STARD10, 
TGFB1, TM4SF4, TMC6, TMC8, WNT7B, ZNF317 

31 15 

Dermatological Diseases 
and Conditions,  
Infectious Diseases,  
Organismal Injury and 
Abnormalities 

ADAMTS7, AGT, ARRB2, ARRDC3, CYP11B1, CYTH3, DCBLD2, 
DNAH2, DNAH3, EFNA2, ESR1, FRMD4B, GPR18, HCAR3, 
HOXD11, HTR1B, KCNK3, KCNK9, KIR2DL1/KIR2DL3, MLANA, 
MMP17, NCCRP1, NNMT, PTHLH, REL, RNF213, SAMD11, 
SLC14A1, SLC16A3, TAC1, TNF, TSR3, TUBA8, VIPR2, ZNF516 

24 12 

Endocrine System 
Development and 
Function,  Molecular 
Transport,  Protein 
Synthesis 
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Networks related to Differentially Methylated Regions (DMRs) associated Bis(2-ethylhexyl) phthalate metabolites, 

restricted to those with Ingenuity Pathway Analysis (IPA) score and p<0.05 

 Categories 

Diseases or 
Functions 
Annotation 

Predicted 
Activation 
State 

Activation 
z-score 

Assigned 
Category* 

Cancer, Organismal Injury and Abnormalities 
malignant solid 
tumor   -1.083 Cancer 

Cancer, Organismal Injury and Abnormalities epithelial cancer   0.067 Cancer 

Cell Morphology, Cellular Assembly and Organization, Cellular 
Development, Cellular Function and Maintenance, Cellular 
Growth and Proliferation, Nervous System Development and 
Function, Tissue Development neuritogenesis   -0.022 

Growth and 
Development 

Cellular Development 
differentiation of 
cells   0.859 

Growth and 
Development 

Cell Morphology, Cellular Assembly and Organization, Cellular 
Function and Maintenance 

formation of cellular 
protrusions   0.553 

Growth and 
Development 

Cell Morphology, Cellular Assembly and Organization, Cellular 
Development, Cellular Function and Maintenance, Cellular 
Growth and Proliferation, Nervous System Development and 
Function, Tissue Development 

morphogenesis of 
neurites   0.44 

Growth and 
Development 

Cellular Development, Cellular Growth and Proliferation, 
Nervous System Development and Function, Tissue 
Development 

development of 
neurons   -0.019 

Growth and 
Development 

Behavior anxiety   1.408 Other 

Cellular Assembly and Organization, Cellular Function and 
Maintenance 

organization of 
cytoskeleton   -0.35 

Cellular Function 
and Maintenance 

Cellular Movement cell movement   1.43 
Cellular Function 
and Maintenance 

Cellular Growth and Proliferation, Tissue Development generation of cells   0.437 
Growth and 
Development 

Cellular Assembly and Organization, Cellular Function and 
Maintenance 

microtubule 
dynamics   -0.041 

Cellular Function 
and Maintenance 
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Cellular Assembly and Organization 
formation of 
cytoskeleton   1.673 

Cellular Function 
and Maintenance 

Cellular Development, Connective Tissue Development and 
Function, Tissue Development 

differentiation of 
connective tissue   0.896 

Growth and 
Development 

Cellular Movement migration of cells   1.947 
Cellular Function 
and Maintenance 

Cellular Assembly and Organization, Tissue Development 
formation of 
filaments   1.673 

Cellular Function 
and Maintenance 

Cellular Assembly and Organization, Cellular Function and 
Maintenance, Tissue Development 

formation of actin 
filaments Increased 2.186 

Cellular Function 
and Maintenance 

Cellular Development, Connective Tissue Development and 
Function, Tissue Development 

differentiation of 
connective tissue 
cells   0.447 

Growth and 
Development 

Gastrointestinal Disease, Hepatic System Disease, Organismal 
Injury and Abnormalities liver lesion   -0.298 Cancer 

Tissue Development 
growth of epithelial 
tissue   -1.331 

Growth and 
Development 

Cellular Growth and Proliferation proliferation of cells   1.575 
Growth and 
Development 

Cell Death and Survival cell survival   1.472 
Cellular Function 
and Maintenance 

Cellular Movement 
invasion of tumor 
cell lines   1.689 

Cellular Function 
and Maintenance 

Cell Death and Survival, Organismal Injury and Abnormalities 
necrosis of epithelial 
tissue   1.544 

Cellular Function 
and Maintenance 

Cancer, Organismal Injury and Abnormalities metastasis   0.259 Cancer 

Cell Death and Survival cell viability   1.47 
Cellular Function 
and Maintenance 

Behavior behavior   0.396 Other 

Cellular Movement invasion of cells   1.604 
Cellular Function 
and Maintenance 

Cellular Development branching of cells   0.059 
Growth and 
Development 
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Cell Death and Survival, Organismal Injury and Abnormalities 
apoptosis of 
endothelial cells   0.414 

Cellular Function 
and Maintenance 

Cellular Movement 
cell movement of 
tumor cells   0.152 

Cellular Function 
and Maintenance 

Inflammatory Response 
inflammatory 
response   -0.117 Other 

Cell Signaling, Cellular Function and Maintenance, Molecular 
Transport, Vitamin and Mineral Metabolism influx of Ca2+   0.862 

Cellular Function 
and Maintenance 

Connective Tissue Development and Function, Tissue 
Development 

development of 
connective tissue   0.686 

Growth and 
Development 

Cell Death and Survival cell death   0.595 
Cellular Function 
and Maintenance 

Cellular Movement 
invasion of 
carcinoma cell lines   0.895 

Cellular Function 
and Maintenance 

Cellular Development, Cellular Growth and Proliferation 
cell proliferation of 
tumor cell lines   1.364 

Growth and 
Development 

Cell Death and Survival, Neurological Disease, Organismal 
Injury and Abnormalities 

cell death of cerebral 
cortex cells   -1.958 

Cellular Function 
and Maintenance 

Organismal Survival organismal death   -0.98 Other 

Cellular Movement 
migration of tumor 
cell lines   1.364 

Cellular Function 
and Maintenance 

Cardiovascular System Development and Function, Cellular 
Movement 

cell movement of 
endothelial cells   1.184 

Growth and 
Development 

Cellular Movement 
cell movement of 
tumor cell lines   1.291 

Cellular Function 
and Maintenance 

Cell Death and Survival necrosis   1.638 
Cellular Function 
and Maintenance 

Cardiovascular System Development and Function, 
Organismal Development angiogenesis   1.439 

Growth and 
Development 

Cell Death and Survival 
cell viability of tumor 
cell lines   1.369 

Cellular Function 
and Maintenance 
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APPENDIX D7 

Gene Set Enrichment Analyses (GSEA) results for all gene sets with normalized enrichment score> 1.8 and false 

discovery rate (FDR) corrected p-value < 0.2 

Metabolite Gene Set NES FDR p-
value 

Effect 

MBP 

IL2_STAT5_SIGNALING -1.96 0.005 Negative 

MEISSNER_BRAIN_HCP_WITH_H3K27ME3 2.07 0.049 Positive 

CHICAS_RB1_TARGETS_GROWING -2.06 0.063 Negative 

SENESE_HDAC3_TARGETS_UP -2.00 0.084 Negative 

ZHANG_RESPONSE_TO_IKK_INHIBITOR_AND_TNF_DN -1.98 0.073 Negative 

SENESE_HDAC1_TARGETS_UP -1.91 0.139 Negative 

FOSTER_TOLERANT_MACROPHAGE_UP -1.88 0.147 Negative 

BURTON_ADIPOGENESIS_6 -1.80 0.197 Negative 

V$CREBP1_01 -1.89 0.166 Negative 

TTCYNRGAA_V$STAT5B_01 -1.84 0.197 Negative 

MCOCH 

CCANNAGRKGGC_UNKNOWN -1.85 0.050 Negative 

GO_ANTERIOR_POSTERIOR_PATTERN_SPECIFICATION -1.98 0.012 Negative 

GO_REGIONALIZATION -1.95 0.013 Negative 

GO_DIGESTIVE_SYSTEM_DEVELOPMENT -1.90 0.030 Negative 

GO_PATTERN_SPECIFICATION_PROCESS -1.87 0.041 Negative 

GO_CARBOHYDRATE_HOMEOSTASIS -1.83 0.068 Negative 

GO_NEGATIVE_REGULATION_OF_CELL_DEVELOPMENT -1.83 0.061 Negative 

GO_FORMATION_OF_PRIMARY_GERM_LAYER -1.82 0.064 Negative 

GO_GLUCOSE_HOMEOSTASIS -1.81 0.062 Negative 

GO_ENDOCRINE_SYSTEM_DEVELOPMENT -1.80 0.062 Negative 

E2F3_UP.V1_DN -1.93 0.007 Negative 

MEHP MEISSNER_BRAIN_HCP_WITH_H3K27ME3 2.32 <0.001 Positive 
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NIKOLSKY_BREAST_CANCER_16P13_AMPLICON 2.12 0.005 Positive 

PENG_LEUCINE_DEPRIVATION_DN 2.04 0.018 Positive 

SMIRNOV_RESPONSE_TO_IR_6HR_DN 2.00 0.026 Positive 

MEISSNER_NPC_HCP_WITH_H3K27ME3 1.90 0.100 Positive 

WAKABAYASHI_ADIPOGENESIS_PPARG_RXRA_BOUND_36HR 1.89 0.092 Positive 

KEGG_WNT_SIGNALING_PATHWAY 1.87 0.101 Positive 

BENPORATH_ES_WITH_H3K27ME3 1.85 0.105 Positive 

V$ARNT_02 1.94 0.116 Positive 

GO_ANTERIOR_POSTERIOR_PATTERN_SPECIFICATION 2.25 0.001 Positive 

GO_TRANSCRIPTION_FACTOR_COMPLEX 2.24 0.001 Positive 

GO_REGIONALIZATION 2.15 0.005 Positive 

GO_TRANSFERASE_ACTIVITY_TRANSFERRING_HEXOSYL_GROUPS 2.09 0.010 Positive 

GO_CARDIAC_CHAMBER_MORPHOGENESIS 2.08 0.010 Positive 

GO_UDP_GLYCOSYLTRANSFERASE_ACTIVITY 2.02 0.021 Positive 

GO_MESENCHYME_DEVELOPMENT 1.99 0.028 Positive 

GO_PATTERN_SPECIFICATION_PROCESS 1.95 0.041 Positive 

GO_CELLULAR_CARBOHYDRATE_METABOLIC_PROCESS 1.93 0.049 Positive 

GO_EMBRYO_DEVELOPMENT_ENDING_IN_BIRTH_OR_EGG_HATCHING 1.92 0.052 Positive 

GO_CANONICAL_WNT_SIGNALING_PATHWAY 1.91 0.052 Positive 

GO_NUCLEAR_EXPORT 1.90 0.053 Positive 

GO_NEGATIVE_REGULATION_OF_CELL_DEVELOPMENT 1.88 0.067 Positive 

GO_LIMB_DEVELOPMENT 1.88 0.063 Positive 

GO_CENTRAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION 1.88 0.061 Positive 

GO_EMBRYONIC_SKELETAL_SYSTEM_DEVELOPMENT 1.86 0.072 Positive 

GO_CELLULAR_RESPONSE_TO_LIGHT_STIMULUS 1.85 0.076 Positive 

GO_ORGAN_MORPHOGENESIS 1.85 0.075 Positive 

GO_MESENCHYMAL_CELL_DIFFERENTIATION 1.83 0.084 Positive 

GO_APPENDAGE_DEVELOPMENT 1.83 0.086 Positive 

GO_CELL_FATE_COMMITMENT 1.81 0.097 Positive 
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GO_REGULATION_OF_CELL_MORPHOGENESIS_INVOLVED_IN_DIFFER
ENTIATION 

1.81 0.095 Positive 

GO_MUSCLE_ORGAN_MORPHOGENESIS 1.81 0.093 Positive 

PDGF_ERK_DN.V1_DN 1.90 0.063 Positive 

GO_MICROTUBULE_ASSOCIATED_COMPLEX -1.96 0.159 Negative 

MEOHP 

IL2_STAT5_SIGNALING -1.82 0.034 Negative 

LENAOUR_DENDRITIC_CELL_MATURATION_UP -2.02 0.110 Negative 

GCAAAAA,MIR-129 -1.99 0.126 Negative 

V$CREBP1_01 -1.95 0.093 Negative 

V$E4BP4_01 -1.84 0.172 Negative 

ATGCAGT,MIR-217 -1.81 0.176 Negative 

KRAS.KIDNEY_UP.V1_UP -1.81 0.149 Negative 

TBK1.DF_UP -1.80 0.085 Negative 
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APPENDIX D8 

Locations and CpGs of All Models from GEE Analyses of Methylation Clusters 

and Blastocyst Quality 

Cluster ID p-value Chr start end distance closest gene 

3240 0.001 chr19 13213428 13213451 73 LYL1 

6224 0.003 chr8 41528946 41529140 865 ANK1 

1641 0.004 chr12 115132460 115133735 -11805 TBX3 

5 0.007 chr1 870791 872737 602 SAMD11 

4083 0.007 chr21 42791867 42792703 -308 MX1 

4332 0.010 chr3 62361449 62362324 -1900 FEZF2 

986 0.011 chr11 320929 320940 -126 IFITM3 

4204 0.013 chr22 46370644 46371152 766 WNT7B 

2133 0.015 chr14 105884721 105885138 156 RP11-521B24.3 

2907 0.019 chr17 76126449 76127217 -77 TMC8 

3123 0.021 chr19 1523070 1523442 -903 PLK5 

1913 0.021 chr13 112712795 112714526 7238 SNORD44 

5763 0.023 chr7 64466846 64467056 39 ZNF117 

3411 0.025 chr19 50191439 50191637 -24 PRMT1 

3116 0.026 chr19 1287428 1287576 1272 EFNA2 

94 0.032 chr1 6546027 6546646 -381 PLEKHG5 

4879 0.037 chr5 44806923 44807541 1524 RP11-53O19.1 

848 0.043 chr10 105420831 105421005 -112 SH3PXD2A 

4337 0.048 chr3 67705222 67705285 -70 RP11-81N13.1 

2626 0.052 chr16 89981752 89981919 1149 MC1R 

91 0.055 chr1 6519923 6520194 -56 ESPN 

4656 0.055 chr4 125631168 125631415 500 ANKRD50 

6315 0.056 chr8 126963507 126964345 406 SOD1P3 

3082 0.060 chr19 409679 409888 -712 C2CD4C 

30 0.062 chr1 1369772 1369948 -100 RP4-758J18.10 

3702 0.064 chr2 106560496 106560771 15018 AC009505.4 

2566 0.064 chr16 86546374 86546979 -628 FOXF1 

5881 0.076 chr7 130788305 130788584 2896 LINC-PINT 

3325 0.078 chr19 39686695 39687098 -884 NCCRP1 

3908 0.078 chr2 242878496 242879153 2531 AC131097.3 

7 0.086 chr1 879375 879958 44 SAMD11 

3283 0.087 chr19 18902527 18902727 -565 COMP 

3487 0.095 chr2 394115 394481 5794 AC105393.1 

4713 0.096 chr4 186300477 186300945 -811 LRP2BP 

4122 0.106 chr21 48054563 48054897 -647 PRMT2 

709 0.111 chr10 15963599 15963738 35258 snoU13 
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1694 0.116 chr12 125509610 125510168 -2768 BRI3BP 

2878 0.121 chr17 72208213 72208322 -545 CTD-2514K5.2 

2524 0.124 chr16 78082579 78082701 447 KRT8P22 

3775 0.144 chr2 176974592 176974934 585 HOXD11 

3876 0.144 chr2 240431144 240431270 -69099 AC079612.1 

4557 0.150 chr4 7192699 7193237 -1591 SORCS2 

2227 0.163 chr15 65368982 65369213 -150 RASL12 

2748 0.169 chr17 32612675 32613298 191 CCL11 

6332 0.173 chr8 140630830 140631269 -128 KCNK9 

128 0.176 chr1 16957483 16957489 8 CROCCP2 

3448 0.178 chr19 55281057 55281274 -134 KIR2DL1 

5798 0.181 chr7 94294278 94294905 375 PEG10 

5673 0.195 chr7 6209931 6210236 138 CYTH3 

4551 0.201 chr4 6675309 6675513 69 RP11-539L10.3 

3929 0.202 chr20 3065343 3065488 -130 AVP 

5682 0.204 chr7 12729367 12729527 272 ARL4A 

4428 0.206 chr3 175696286 175696388 -515 RP11-809F4.2 

1524 0.213 chr12 50134882 50134915 -150 TMBIM6 

3040 0.217 chr18 74153342 74154260 383 ZNF516 

1204 0.244 chr11 64335229 64335895 384 SLC22A11 

4163 0.253 chr22 31518860 31518963 -95 INPP5J 

3891 0.254 chr2 241721922 241722113 -2 KIF1A 

5062 0.254 chr6 1622383 1622941 1592 GMDS 

1760 0.266 chr12 133049188 133049413 101 MUC8 

3160 0.268 chr19 3831293 3831364 100 ZFR2 

4084 0.270 chr21 43098516 43099460 -518 LINC00111 

619 0.277 chr10 1558762 1559249 -9957 ADARB2-AS1 

5719 0.300 chr7 35734978 35735308 -37 HERPUD2 

93 0.313 chr1 6529710 6530205 -288 PLEKHG5 

2744 0.318 chr17 30817129 30817397 879 CDK5R1 

1323 0.319 chr11 114165730 114166636 -807 NNMT 

2607 0.323 chr16 88725584 88725763 -116 MVD 

1786 0.333 chr13 23993013 23993527 -5 SACS-AS1 

3402 0.339 chr19 49669281 49669542 27 TRPM4 

5669 0.355 chr7 5635134 5635953 1160 FSCN1 

1043 0.370 chr11 2563802 2563897 14647 KCNQ1 

5902 0.374 chr7 140732689 140732738 -17752 MRPS33 

6110 0.381 chr8 1617616 1618448 102 DLGAP2 

1658 0.387 chr12 120127920 120128116 90 CIT 

2567 0.397 chr16 86588144 86589076 -171 MTHFSD 

942 0.398 chr10 133879084 133879763 -38887 JAKMIP3 



 

144 

6323 0.418 chr8 133786975 133787071 -731 PHF20L1 

4523 0.418 chr4 2069683 2069925 1652 NAT8L 

3182 0.427 chr19 5335045 5335260 5592 PTPRS 

2795 0.436 chr17 41437877 41437982 9880 LINC00910 

3588 0.443 chr2 11780349 11780446 -1266 GREB1 

81 0.451 chr1 4770676 4770711 -536 AJAP1 

1318 0.453 chr11 111956647 111956844 116 TIMM8B 

5432 0.458 chr6 149285724 149286375 -292 RP11-162J8.2 

3088 0.469 chr19 675390 676739 -395 FSTL3 

4940 0.472 chr5 133703730 133703889 -1094 CDKL3 

6256 0.480 chr8 49533357 49533485 32 RP11-567J20.1 

3513 0.507 chr2 1452260 1452665 -5020 TPO 

2649 0.513 chr17 1387495 1387922 210 MYO1C 

40 0.523 chr1 2066430 2066446 -39 PRKCZ 

6009 0.537 chr7 157691177 157691591 13 PTPRN2 

2640 0.538 chr17 934534 935017 164 ABR 

3893 0.547 chr2 241901865 241901988 996 AC104809.4 

1638 0.552 chr12 114337676 114337927 15030 RBM19 

1261 0.554 chr11 69017394 69017579 -44338 MYEOV 

1817 0.568 chr13 43930362 43930423 -220 ENOX1 

3110 0.570 chr19 1226523 1227141 272 STK11 

4234 0.577 chr22 51040520 51041242 611 MAPK8IP2 

982 0.589 chr11 278394 278912 171 NLRP6 

4722 0.591 chr4 186799820 186799847 15655 SORBS2 

502 0.593 chr1 213223453 213223461 -1263 RPS6KC1 

3208 0.598 chr19 9270837 9271995 -34 ZNF317 

3770 0.651 chr2 173330296 173330395 17 ITGA6 

3870 0.656 chr2 239930734 239931250 -1062 RP11-648F7.1 

5020 0.661 chr5 175621395 175621409 4866 RP11-844P9.2 

83 0.682 chr1 5356471 5356578 -197362 RP1-58B11.1 

2134 0.703 chr14 105955745 105955879 33 CRIP1 

6346 0.707 chr8 142984321 142984613 -42456 AC104417.1 

4111 0.726 chr21 46898610 46898789 446 COL18A1 

2694 0.733 chr17 7660449 7660494 -10 DNAH2 

71 0.769 chr1 3332000 3332125 893 PRDM16 

5134 0.774 chr6 29364799 29365287 111 OR12D2 

2796 0.783 chr17 41440525 41440717 7189 LINC00910 

4248 0.793 chr3 8543508 8543732 32 LMCD1 

2366 0.799 chr16 2653222 2653839 -10 AC141586.5 

1914 0.811 chr13 112785388 112786727 23880 LINC00403 

734 0.823 chr10 43047255 43048734 -411 ZNF37BP 
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6451 0.832 chr9 136216076 136216154 -173 SNORD24 

6464 0.857 chr9 139836994 139838089 -454 FBXW5 

943 0.861 chr10 133892406 133892567 -25825 JAKMIP3 

1622 0.882 chr12 109678885 109678973 -55 ACACB 

6438 0.891 chr9 132097931 132098311 -1091 RP11-65J3.1 

5435 0.904 chr6 150437072 150437118 -27328 PPP1R14C 

2344 0.915 chr16 1400772 1400861 88 TSR3 

1863 0.917 chr13 103346900 103347391 -360 METTL21C 

1755 0.927 chr12 132903921 132904014 1702 GALNT9 

759 0.949 chr10 62148959 62149642 36 ANK3 

5421 0.967 chr6 138200071 138200679 347 TNFAIP3 

4013 0.970 chr20 55925570 55925586 -694 RAE1 

2938 0.993 chr17 78237117 78237397 -218 RNF213 
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