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ABSTRACT 
 

ESTIMATION OF CDOM IN INLAND WATERS VIA WATER BIO-OPTICAL PROPERTIES USING 
A REMOTE SENSING APPROACH  

 
MAY 2018 

 
JIWEI LI, B.S., NORTHWEST UNIVERSITY, CHINA 

 
M.S., CAPITAL NORMAL UNIVERSITY, CHINA 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Qian Yu 

 
 

Monitoring of Colored dissolved organic matter (CDOM) in inland waters 

provides important information for tracing carbon cycle at the land-water interface and 

studying aquatic ecosystem. Remote sensing estimation of CDOM in the inland waters 

offers an alternative approach to field samplings in examining CDOM spatial-temporal 

dynamics. However, CDOM retrieval is a challenge due to the lack of algorithm for 

resolving bottom effect in shallow inland waters. Moreover, an effective approach 

based on multi-spectral, high spatial resolution and global coverage satellite images is in 

urgent need. To resolve these challenges, shallow water bio-optical properties (SBOP) 

algorithm was developed to overcome bottom reflectance effect on the total water 

leaving reflectance in shallow inland water. SBOP algorithm included the bottom 

reflectance in building underwater light transfer model. It was designed based on the 

field spectral data from four cruises in Lake Huron. SBOP algorithm had an obviously 

advantage over previous deep water CDOM algorithm (e.g. QAA-CDOM). In this study, 

Landsat-8 multi-spectral satellite imagery was selected to derive CDOM spatial-temporal 



 

viii 

dynamics in lake and river waters. The coastal blue band (443 nm), global coverage and 

high spatial resolution (30 m) of Landsat-8 images offered suitable data for inland water 

CDOM mapping. The SBOP algorithm was applied on Landsat-8 images in broad ranges 

of inland waters with high accuracy (Lake Huron (R2 = 0.87), 14 northeastern freshwater 

lakes (R2 = 0.80), and 6 large Arctic Rivers (R2 = 0.87)). Both the spatial patterns and 

seasonal dynamics were derived to study the multiple factors’ impact on terrestrially 

derived CDOM input to the rivers and lakes, including river discharge, watershed 

landcover, and temperature. This new satellite approach of CDOM estimation in inland 

waters provided high accuracy spatial-temporal information for studying land-water 

carbon cycle and aquatic environment. 
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CHAPTER 1  
 

BACKGROUND 
 
 
1.1 Colored dissolved organic matter  

Colored dissolved organic matter (CDOM) is defined as the photoactive portion 

of dissolved organic matter (DOM) (Brando and Dekker 2003). The ‘dissolved’ represents 

the small physical size of CDOM that it could pass through 0.7 µm-pore size filter (or 0.2 

µm in some studies) (Mannino et al. 2008). This small size allowed CDOM  to well mix in 

the natural waters. The ‘colored’ represents its optical properties, the most notable 

feature of CDOM. It could be used to quantify CDOM level through the optical 

measurements, including lab measurement and remote sensing estimation (Del Vecchio 

and Blough 2002). This absorption property of CDOM was often used by remote sensing 

community (Blough and Del Vecchio 2002). The CDOM light absorption is represented 

by strong absorption in UV and blue wavelengths, and sharp decrease through visible 

wavelength to minimal at a longer wavelength (Del Castillo et al. 1999). Because the 

strongest absorption of CDOM was from UV and blue bands, the 440 nm was often 

selected by many previous studies. Moreover, this band is available from many satellite 

sensors (Rochelle-Newall and Fisher 2002). Therefore, 𝑎𝑐𝑑𝑜𝑚(440) was generally 

adopted in current remote sensing studies to indicate the CDOM level in the waters.  

The previous CDOM remote sensing product were mostly made as one of the 

productions of ocean color algorithms (Carder et al. 2004; Maritorena et al. 2010; 

O'Reilly et al. 1998). In the ocean color studies, the major efforts were made on the 

deriving of Chl-a or phytoplankton because they have strong reflectance signals and 
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easy to derive from the simple empirical algorithm. Also, the remote sensing of 

phytoplankton was the mainstream because of its strong relationship to the sea surface 

temperature. The phytoplankton is used as an indicator of the climate change (Babin et 

al. 2003b; Diehl 2002; Larkum and Wood 1993; Meon and Kirchman 2001). Remote 

sensing of CDOM has not been well studied by the ocean color community. The normal 

ocean color algorithm often derived the combined absorption of CDOM and non-algae 

particles as colored dissolved and detrital material absorption (CDM) (Dall'Olmo et al. 

2005; Darecki and Stramski 2004; Gordon and Wang 1994; O'Reilly et al. 1998; O’Reilly 

et al. 2000). Until very recently, more attention of CDOM estimation was moved from 

open ocean to the inland waters (Chen et al. 2017; Frey et al. 2016; Kutser et al. 2016a; 

Kutser et al. 2016b; Yang et al. 2015; Zhu et al. 2014). 

CDOM in inland waters, including the streams, rivers, and lakes, had significant 

implications for both land-water carbon cycle and inland aquatic environment (Brezonik 

et al. 2015). DOC transport from land to water represents one active carbon exchange 

pathway at the land-water interface (Butman and Raymond 2011). Many previous 

studies had confirmed the inland water CDOM was highly correlated to DOC where the 

conservative terrestrially derived DOM was the major sources (Del Castillo et al. 1999; 

Del Castillo and Miller 2008; Del Vecchio and Blough 2004; Ferrari et al. 1996; Hestir et 

al. 2015; Kowalczuk et al. 2003; Sand-Jensen and Staehr 2009; Stedmon et al. 2006). 

Therefore, CDOM could be applied as the tracer for monitoring the transport of 

terrestrial DOC from land to aquatic environment through the remote sensing approach 

(Mannino et al. 2008).  
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CDOM in the inland waters also impacts inland aquatic ecosystems in different 

aspects (Williamson et al. 1999). CDOM in the waters has strong absorption in UV and 

blue light which would affect underwater light intensity and consequently impact the 

growth of plankton in the lake environment (Diehl 2002; Williamson et al. 1996). 

Meanwhile, the terrestrial CDOM in lake waters represent important DOM sources as 

joining in the food web in lake ecosystems (Cole et al. 2006). Lake waters were also 

important drinking water sources. According to the statistics data from U.S. 

Environmental Protection Agency (EPA), nearly 68% of total drinking waters of 

community consumption came from the lake waters (EPA 2008). The estimation of lake 

water CDOM could provide useful knowledge for monitoring and treatment of drinking 

water (Baghoth et al. 2011; Matilainen et al. 2010). 

1.2 Water optical components 

When light penetrates water surface, it interacts with water-self and different 

components in natural waters. The different water color components, including 

phytoplankton, non-algae particles, CDOM, and pure water together determine the 

underwater light field (Mobley 1994). These natural water components absorb 

(phytoplankton, non-algae particles, CDOM, and water) or scatter (phytoplankton, non-

algae particles, and water) the light under the water surface to determine underwater 

light transfer (Mobley et al. 1993). The remote sensing estimation of water bio-optical 

properties is aiming to invert these water inherent properties (absorption and 

scattering) so as to quantify water components.  
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Among all the water color components, phytoplankton was the major target in 

the water color studies. Phytoplankton is the major component in the aquatic food web 

and basic member in aquatic ecosystem and global carbon cycle (Jansson et al. 2000). 

Phytoplankton photosynthesis absorbs sunlight to produce organic material, releasing 

oxygen and exchange CO2 through its internal chlorophyll (Falkowski and Raven 2013). 

Chlorophyll and other pigments (carotenoids, billiproteins) impact the optical properties 

of the phytoplankton. The chlorophyll is often used in the water color studies to 

represent the phytoplankton because it is the most important and major pigment in 

phytoplankton cell (Bricaud et al. 1998; Carder et al. 1999; Dall'Olmo et al. 2005; Gons 

et al. 2008; Kahru and Mitchell 2001; Kowalczuk et al. 2006; Le et al. 2013; O’Reilly et al. 

2000). The dominant absorption peaks of chlorophyll is at blue and red wavelength. 

These absorption features of chlorophyll formed the remote sensing estimation 

foundations (Dierssen 2010; Gregg et al. 2005; Ruddick et al. 2001).  

Non-algae particles is domantly inorganic particles in the diverse natural waters 

(Babin et al. 2003a). Numerous components in the waters could be included as the non-

algae particles, including bacteria, zooplankton, and mineral particles (Babin et al. 

2003b; Bricaud et al. 1998; Doxaran et al. 2012). Non-algae particles absorbed and 

backscattered underwater light and had similar absorption characters as CDOM and 

scattering. Non-algae particles were also found highly related to the suspended 

particulate matter, especially in river plume and coastal water regions (Bricaud et al. 

1998; Doxaran et al. 2002; Giardino et al. 2015; Miller and McKee 2004; Volpe et al. 

2011).  
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Water also contributes to both light absorption and scattering. Water effects in 

both ocean and inland waters generally cannot be ignored due to its contribution to 

light attenuation. The water absorption and backscattering to light significantly 

increases from red to NIR bands. Although absorption and scattering properties of water 

were slightly affected by salinity and temperature, these parameters were used the 

constant empirical values in building the water optical properties model (Morel 1974; 

Pope and Fry 1997).  

1.3 Radiative transfer from top of atmosphere to sensor radiance 

Sunlight offers energy for the photosynthesis of aquatic environment. It also 

could be applied to derive the information of water bio-optical properties for remote 

sensing estimation. Solar radiation transfers from top of the atmosphere to the bottom 

of inland waters, and transfers back through water and atmosphere. Then it is received 

by sensor. During this radiative transfer, the light was absorbed and scattered by both 

atmosphere and aquatic environment. The atmospheric correction is an pre-processing 

procedure in aquatic remote sensing (Gordon 1997). This process aims to extract water-

leaving radiance from top-of-atmosphere (TOA) radiance based on different empirical 

and optical models (Siegel et al. 2000). Non-water contribution portions, including 

Rayleigh scattering, aerosols scattering, sun glint, surface reflectance, and whitecap, 

need to be removed from satellite images.  

Previous atmospheric correction methods mainly focus on chlorophyll 

dominated waters in open ocean regions (Case-1 waters) (Hu et al. 2000; Jamet et al. 

2011; Ruddick et al. 2000). In clean open ocean waters (Case-1 waters), the NIR band of 
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water leaving radiance are almost negligible so that the atmospheric effect can be 

estimated through these bands (Jamet et al. 2011). However, the inland waters (Case-2 

waters) are not “dark” at NIR bands due to rich suspended sediments. Moreover, the 

high CDOM level in Case-2 waters leads to high absorption in blue bands, so the satellite 

sensors receive extremely low upwelling radiance at these bands (Shi and Wang 2014; 

Vanhellemont and Ruddick 2014). Therefore, it is essential to examine current empirical 

and radiative transfer-based atmosphere correction models for inland waters. 

Water inherent optical properties were independent of the sunlight. So 

apparent optical properties (AOPs) were introduced by the water color community to 

describe the properties determined by both water body and directional radiance 

distribution (Mobley 1995). One of the most important AOPs is remote sensing 

reflectance (𝑅𝑟𝑠). It is the principal information can be extracted from field measured 

spectra data and satellite images. The inversion of water IOPs is a computation process 

for retrieving water IOPs from AOPs, particularly 𝑅𝑟𝑠. In the aquatic remote sensing, the 

Rrs is generally caculated from the upwelling radiance (𝐿𝑡), sky radiance (𝐿𝑠) and the 

downwelling irradiance (𝐸𝑑) as: 

𝑅𝑟𝑠 =
𝐿𝑡−𝜙𝐿𝑠

𝐸𝑑
       (1) 

Where the 𝜙 is empirical factor for calculating the water surface reflectance from the 

sky radiance. The value of the 𝜙 was set as 0.028 (Mobley 1999). Then the 𝑅𝑟𝑠 was 

applied to calculate below-surface remote sensing reflectance 𝑟𝑟𝑠 as following (Lee et al. 

1998): 

𝑟𝑟𝑠(𝜆) =
𝑅𝑟𝑠(𝜆)

0.52+1.7𝑅𝑟𝑠(𝜆)
      (2) 
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Radiance received by the sensor is contributed by both water column and 

bottom in shallow inland waters. In previous open ocean color studies, waters are 

assumed to be optically deep, and bottom reflectance is often ignored (Stedmon et al. 

2000). However, this assumption is often not valid for shallow inland waters because 

the total water leaving reflectance was contributed by bottom reflectance (Aitkenhead-

Peterson et al. 2003a). Therefore, in shallow water regions, below-surface remote 

sensing reflectance needs to be considered as two separate parts: one is water column, 

and the other is bottom sediments. Also, the bottom reflectance was also absorbed and 

scattered by water components when it transferred back to the water surface. The 

contamination of bottom reflectance will cause high uncertainty if simply applying 

current ocean color algorithms (Volpe et al. 2011). Moreover, the current semi-

analytical algorithms were originally calibrated by in situ data collected in coastal 

regions (Brando and Dekker 2003). Accordingly, it is a key issue to develop CDOM 

retrieval algorithm which can be applied in shallow inland waters.  

1.4 CDOM retrieval algorithms by remote sensing 

The empirical approach estimates CDOM absorption by using 𝑅𝑟𝑠 band ratios. 

Regression coefficients are often calibrated with field measurements at specific 

locations (Cory et al. 2014; Morel and Gentili 2009). For instance, Morel and Gentili 

(2009) quantified monthly CDOM level in open ocean waters from SeaWiFS images as 

(𝑅𝑟𝑠(412)/𝑅𝑟𝑠(443))/ (𝑅𝑟𝑠(490)/𝑅𝑟𝑠(555)). In another research, CDOM was derived 

from band ratio 𝑅𝑟𝑠(443)/𝑅𝑟𝑠(540) in the California coast regions, where remarkable 

increases of chlorophyll and CDOM were observed during a La Niña year (Kahru and 
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Mitchell 2001). Similarly, 𝑎𝑔(412) calculated from band ratio 𝑅𝑟𝑠(412)/𝑅𝑟𝑠(555) has 

been applied to study CDOM dynamics response to river discharge in the Mississippi 

River plume (D'Sa and Miller 2003). Kutser et al. (2016a) applied band ratio between 

green to red to derive the carbon content in Estonian lake waters. Olmanson et al. 

(2016) performed the band ratio of (5.13(𝑅𝑟𝑠(550)/𝑅𝑟𝑠(640))−2.67) to estimate the 

lake water CDOM spatial dynamics in Minnesota State. Cherukuru et al. (2016) 

generated the CDOM absorption in turbid coastal waters by using the ratio of 

𝑅𝑟𝑠(412)/𝑅𝑟𝑠(448) to examine river flood effects on the CDOM input to the ocean. 

Chen et al. (2017) designed exponential model of ((40.75 ∗ exp(−2.46 ∗
𝑅𝑟𝑠(550)

𝑅𝑟𝑠(640)
)) for 

studying the potential of Landsat-8 satellite estimation of CDOM in inland waters. Cao et 

al. (2018) used the band ratio 𝑅𝑟𝑠(443)/𝑅𝑟𝑠(555) to derive the CDOM absorption in 

Chesapeake Bay for examining tidal effects on CDOM dynamics. As the empirical 

coefficients change across locations and over seasons, the algorithms cannot be simply 

applied from one study site to another. Therefore, more robust algorithms based on 

semi-analytical, bio-optical model have been developed to retrieve water IOPs.  

In the past decade, there is a handful semi-analytical water color algorithms 

developed to derive water absorption, including Garver-Siegel-Maritorena (GSM) and 

quasi-analytical algorithm (QAA) (Lee et al. 2002). The GSM model is based on the 

quadratic relationship between 𝑅𝑟𝑠 and water IOPs, designed for deep ocean waters 

(Maritorena et al. 2010). Along with a few other algorithms, GSM is limited to open 

oceans and has high uncertainly when applied to coastal and inland waters (Zhu and Yu 

2013). In contrast, QAA is a widely used semi-analytical method which can be applied in 
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both coastal and inland waters (Matsuoka et al. 2013). Based on the framework of QAA, 

Zhu et al. (2011) presented the first semi-analytical algorithm QAA-CDOM to invert 

CDOM absorption based on absorption-backscattering relationship from EO-1 Hyperion 

satellite images. Shanmugam (2011) developed a method to derive CDOM absorption by 

establishing a quantitative relationship between 𝑎𝑔(𝜆) and exponential fit of spectral 

slope (S) of CDOM from SeaWiFS images. Watanabe et al. (2016) optimized the 

parameters of QAA algorithm for detecting CDOM in eutrophic lake waters. Matsuoka et 

al. (2017) Derived the CDOM dynamics based on optimized GSM model in Arctic coastal 

regions for examining river export effects on CDOM dynamics. However, all these semi-

analytical algorithms have not including the bottom reflectance in the calculating of the 

CDOM absorption. Suitable semi-analytical algorithm for the shallow inland waters need 

to be developed.  

Several water remote sensing studies have considered the bottom effects, 

including the water depth measurements (Brando et al. 2009; Majozi et al. 2014; 

Maritorena et al. 1994; Zhao et al. 2013), the estimation of the bottom sediments 

properties (Klonowski et al. 2007; Lee et al. 2013; Thompson et al. 2017), and the 

monitoring of the water body attenuation coefficient (Barnes et al. 2014; Barnes et al. 

2013; Dekker et al. 2011; Giardino et al. 2015; Volpe et al. 2011). For instance, Dekker et 

al. (2011) derived the depth of the shallow waters by considering the bottom 

reflectance in the under-water radiative transfer model. Barnes et al. (2014) analysis the 

diffuse attenuation of light in the underwater light field by considering bottom 

reflectance contribution in shallow coastal waters. Lee et al. (2013) designed 
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hyperspectral optimization processing exemplar (HOPE) method to derived bottom 

reflectance for shallow waters, but this method derived the combined absorption of 

CDOM and non-algal particle, rather than CDOM. Thompson et al. (2017) Used Bayesian 

optimal estimation for mapping the benthic reflectance features in the shallow coastal 

regions. In these studies, bottom reflectance has been included to develop the 

algorithms. These studies inspired me to develop a new CDOM estimation method by 

considering the bottom reflectance in the total upwelling radiance in the optically 

shallow waters.  

1.5 Satellite sensors for CDOM observation 

The remote sensing estimation of inland lakes and rivers needs the satellite 

images have both ultra-blue bands and suitable spatial resolutions. The ultra-blue 

wavelength (e.g., 440nm) is required for detecting the water-leaving radiance to build 

an underwater bio-optical model (Lee et al. 2002). So previous studies often assessed 

ocean satellite sensors, such as MODIS, EO-1 Hyperion, and SeaWiFS to derive the 

ocean colors (Kutser et al. 2005; Miller and McKee 2004; O'Reilly et al. 1998). These 

images are not sufficient enough to be applied in inland waters CDOM retrieval. Global 

coverage sensor MODIS (500m) is too coarse to observe inland waters. Inland rivers and 

streams built the important transport system for carrying the terrestrial CDOM (Allen 

and Pavelsky 2015). The widths of these CDOM input pathway were less than two 

kilometers. Although experimental imagery sensors EO-1 Hyperion had the high spatial 

resolution, it isn’t operational now, and its spatial coverage is too narrow to cover 



 

11 

relative large inland lakes and to monitor CDOM transport along the rivers (Zhu and Yu 

2013).  

Until recent years, several multi-spectral terrestrial-view satellite imagery 

sensors offered new coastal blue band which provided an opportunity for inland water 

CDOM estimation, like Landsat-8 images with 30 m spatial resolution (Roy et al. 2014). 

The 30 m spatial resolution would greatly expand geographic regions to rivers and lakes 

for satellite estimation of water bio-optical properties (Pahlevan et al. 2014). Also, the 

new coastal blue bands of the Landsat-8 satellite image also provide the key bands for 

the CDOM estimation. A couple of empirical algorithms have used Landsat-8 images as 

the sources for deriving the inland water CDOM through the band ratio methods (Chen 

et al. 2017; Kutser et al. 2016a). However, semi-analytical CDOM retrieval algorithm, 

including atmospheric correction, need to be exploited for multispectral images. 
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CHAPTER 2  
 

REMOTE SENSING ESTIMATION OF CDOM IN OPTICALLY SHALLOW WATERS 
 
 

2.1 Abstract 

It is not well understood how bottom reflectance of optically shallow waters 

affects the algorithm performance of colored dissolved organic matters (CDOM) 

retrieval. This chapter proposes a new algorithm that considers bottom reflectance in 

estimating CDOM absorption from optically shallow inland or coastal waters. The field 

sampling was conducted during four research cruises within the Saginaw River, 

Kawkawlin River and Saginaw Bay of Lake Huron. A stratified field sampling campaign 

collected water samples, determined the depth at each sampling location and measured 

optical properties. The sampled CDOM absorption at 440nm broadly ranged from 0.12 

to 8.46 m-1. Field sample analysis revealed that bottom reflectance does significantly 

change water apparent optical properties. We developed a CDOM retrieval algorithm 

(Shallow water Bio-Optical Properties algorithm, SBOP) that effectively reduces 

uncertainty by considering bottom reflectance in shallow waters. By incorporating the 

bottom contribution in upwelling radiances, the SBOP algorithm was able to explain 74% 

of the variance of CDOM values (RMSE = 0.22 and R2 = 0.74). The bottom effect index 

(BEI) was introduced to efficiently separate optically shallow and optically deep waters. 

Based on the BEI, an adaptive approach was proposed that references the amount of 

bottom effect in order to identify the most suitable algorithm (optically shallow water 

algorithm [SBOP] or optically deep water algorithm [QAA-CDOM]) to improve CDOM 
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estimation (RMSE = 0.22 and R2 = 0.81). Our results potentially help to advance the 

capability of remote sensing in monitoring carbon pools at the land-water interface.  

2.2 Introduction 

Inland waters (streams, rivers and lakes) are responsible for transporting and 

transforming large amounts of carbon from terrestrial ecosystems to aquatic 

environments (Tranvik 2014). Each year, inland waters emit about 1 gigaton of carbon 

as CO2 to the atmosphere and transfer an equivalent amount of carbon to ocean waters 

(Battin et al. 2009). This flux is larger than originally estimated and more than half of it 

results from the movement of dissolved organic carbon (DOC) from terrestrial 

environments (Stedmon et al. 2000). Accordingly, riverine systems (streams and rivers) 

govern much of the DOC export from terrestrial to aquatic environments (IPCC 2007) 

and dictate the spatial and temporal variability of freshwater DOC in drainage 

watersheds. Shallow coastal and estuarine areas are the primary interface regions for 

carbon exchange from terrestrial to aquatic ecosystems. The variations of terrestrial 

carbon exports in these regions are heavily associated with anthropogenic activities 

(Palmer et al. 2015). Therefore, increased attention is being devoted to carbon 

monitoring of optically shallow waters. Several studies have demonstrated that remote 

sensing technologies show great promise for monitoring freshwater DOC dynamics 

through bio-optical properties (Brezonik et al. 2015; Kutser et al. 2015; Olmanson et al. 

2016; Zhu et al. 2015). 

Colored dissolved organic matter (CDOM) is defined as the photoactive fraction 

of dissolved organic matters in water (Brando and Dekker 2003). Light absorption by 
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CDOM tends to be strongest at short wavelengths (ultraviolet to blue) while diminishing 

to near zero in the red wavelength region of the electromagnetic spectrum (Markager 

and Vincent 2000). So CDOM level is often represented by a CDOM absorption 

coefficient within the highly absorbed short wavelengths, and 440 nm is frequently used 

by the remote sensing community (Brando and Dekker 2003; Matsuoka et al. 2013; 

Menon et al. 2011; Watanabe et al. 2016). Many previous studies have confirmed that 

CDOM levels are highly correlated to DOC concentrations in coastal & inland waters 

influenced by river discharge, regulated by terrestrial sources and seasonal effect (Del 

Castillo et al. 1999; Del Vecchio and Blough 2004; Ferrari et al. 1996; Hestir et al. 2015; 

Kowalczuk et al. 2003). Therefore, CDOM is often used as a proxy to trace the spatial 

distribution of DOC so as to help quantify the transport of terrigenous organic carbon 

(Mannino et al. 2008). Thus, the quantitative estimation of CDOM absorption via remote 

sensing aids in the better understanding of carbon cycling at the land-water interface. 

Most research efforts on the remote sensing of water biogeochemistry (CDOM, 

Chl-a and non-algal particles) have focused on the estimation of water bio-optical 

properties in open oceans (Lee 2006; Mobley 1999; Siegel et al. 2002). Generally, many 

of these remote sensing algorithms empirically utilize band ratios calibrated from 

regional datasets to retrieve water properties (Kutser et al. 2005; Matthews 2011). 

However, they are often site-specific and need intensive calibration when applied to a 

new environment. Semi-analytical algorithms made a significant improvement to 

location independence by extracting water biochemical properties based on bio-optical 

radiative transfer models. Representative algorithms include multi-band quasi-analytical 
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algorithm (QAA) (Lee et al. 2002), Carder-MODIS (Carder et al. 2004), Garver-Siegel-

Maritorena (GSM) (Maritorena et al. 2010; Maritorena et al. 2002), and Linear Matrix 

(LM) model (Hoge and Lyon 1996; Yang et al. 2011). Unfortunately, these algorithms 

cannot separate CDOM absorption from adg(440), the combined absorption of CDOM 

and non-algal particles (NAP), due mainly to their similar absorption spectra. Recently, 

several studies endeavored to extend mainstream ocean color algorithms to derive 

CDOM absorption for coastal and open ocean waters (Budhiman et al. 2012; Cui et al. 

2014; Matsuoka et al. 2013; Shanmugam 2011; Zhu and Yu 2013). However, when these 

relatively mature semi-analytical ocean color algorithms are directly applied to inland 

waters, the uncertainty of the resulting CDOM estimation is prohibitively high (Miller et 

al. 2007; Zhu et al. 2013b).  

In general, there are two major challenges with the current semi-analytical 

algorithms used for CDOM retrieval of inland waters. First, the bottom effect of shallow 

freshwater introduces significant uncertainty on CDOM estimation. Ocean color 

algorithms are developed for optically deep waters, which assume the upwelling water 

leaving radiance is only the result of water column constituents and ignore bottom 

reflection (Stedmon et al. 2000). This assumption is not valid for optically shallow inland 

and coastal waters, and therefore greatly limits the usage of these algorithms for inland 

waters (Aitkenhead-Peterson et al. 2003b). Specifically, none of the aforementioned 

algorithms consider the contribution of bottom reflectance and therefore they are not 

capable of accounting for the high uncertainty introduced by bottom effects in optically 

shallow waters. Second, semi-analytical algorithms often incorporate empirical 
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parameters into bio-optical models (water radiative transfer models). Such parameters 

are largely calibrated via ocean and offshore observations. Inland fresh waters are often 

much richer in water-borne constituents, (i.e., a higher concentration of CDOM, Chl-a 

and/or suspended sediment), so these algorithms are often not optimal for handling in-

land water environments (Zhu and Yu 2013; Zhu et al. 2013b). Except for a few cases, 

the majority of published research on CDOM retrieval in optically shallow lake waters 

adopt empirical methods (Campbell et al. 2011; Kutser et al. 2005; Kutser et al. 2015; 

Odermatt et al. 2012; Olmanson et al. 2016).   

Bottom effects have been considered in some aquatic remote sensing studies, 

including estimating water optical depth (Brando et al. 2009; Majozi et al. 2014; 

Maritorena et al. 1994; Zhao et al. 2013), retrieval of the diffuse attenuation coefficient 

(Barnes et al. 2014; Barnes et al. 2013; Dekker et al. 2011; Giardino et al. 2015; Volpe et 

al. 2011), and monitoring bottom sediments properties (Klonowski et al. 2007). All of 

these approaches include the contribution of bottom sediment reflectance to the total 

upwelling radiance, which inspired us to develop a CDOM retrieval algorithm for 

optically shallow waters that also incorporates bottom reflectance.  

First, this chapter examines in situ spectral data and demonstrates the spectral 

variation in response to water depths. Second, we developed the shallow water bio-

optical properties (SBOP) algorithm which incorporates the bottom contribution into a 

CDOM retrieval algorithm. Third, we investigated the effectiveness of a proposed 

bottom effect index (BEI) to quickly separate optically shallow and optically deep 

waters. Finally, an adaptive approach based on our BEI was presented to identify the 
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most suitable algorithm according to varied levels of bottom effect (optically shallow or 

deep water algorithms) in an effort to reduce overall uncertainty. This study aims to 

improve the capability of remote sensing to monitor carbon transportation from 

terrestrial to aquatic ecosystems across broad spatial and temporal scenarios. 

2.3 Method 

2.3.1 Study sites 

In this chapter, Saginaw Bay in Lake Huron was selected for sampling CDOM 

levels concurrently with in situ remote sensing measurements across a broad range of 

CDOM levels. The sampling locations encompassed the Saginaw River, Kawkawlin River 

and inner Saginaw Bay (Figure 2-1). The bathymetry ranged from 0.25 to 4 meters with a 

median value of 1.6 meters. Generally, the bottom is dominated by sand with 

intermittent patches of benthic algae (Cladophora) and other aquatic plants. Compared 

to that of pure sand, the sediments of the lake bottom are relatively dark due to this 

mixture of the sand and benthic plants. The two rivers mentioned above are of vastly 

different size and composition and their drainage basins are covered by different 

dominant vegetation. The Saginaw River is 36 km long with a watershed area of 22,260 

km2. The river has a mean annual discharge of 130 m3/s (2010 to 2016). The dominant 

landcover type is agriculture, which accounts for approximately 52 % of the watershed. 

The Kawkawlin River flows into the Saginaw Bay approximately 1 km north of the 

Saginaw River mouth. Its length (28 km), discharge and drainage area (647 km2) are at a 

significant lower magnitude than those of the Saginaw River. The Kawkawlin River 
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watershed is dominated by deciduous forest (40.2%) with a relatively high percentage of 

wetland (7.9%). 

  

Figure 2-1: The 54 samples located in the Saginaw River, Kawkawlin River, Saginaw Bay, 
and Lake Huron. The four field cruises were conducted from May, 2012 to May 2015. 
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2.3.2 Field and laboratory measurements 

A total of four cruises were carried out from 2012 to 2015. The cruises covered 

both spring and autumn seasons: May 7, 2015, May 7, 2013, May 10, 2012 and October 

18, 2012. Field sampling design used a spatially stratified method to distribute the 

sampling locations at several water depth intervals within and near the river plumes; 54 

samples were collected (Figure 2-1). The sample points were distributed along five 

transects and sample locations were slightly shifted due to the conditions present on 

each sampling date. The water depths of 27 sampling locations were measured by a 

Vexilar® Hand-held Depth Sonar during the cruise on May 7, 2015. The depths of the 

earlier sampling locations were generated from bathymetry contours downloaded from 

Michigan Geographic Data Library (MiGDL). These generated depths have been verified 

by the 2015 field depth measures with a mean error of less than 10%. 

Surface water samples and in situ spectral data were collected in parallel at each 

sampling location. Water samples collected were stored in amber bottles 

(polypropylene 500ml) and kept chilled in a cooler until laboratory measurements of 

CDOM levels were performed. Samples at 5 locations were replicated for sampling 

uncertainty assessment (mean error < 3%). The in situ spectral data were collected at 2 

meters above the water surface with a Satlantic® HyperSAS and HyperOCR sensors. The 

cruises were arranged during cloud free weather and under ~2 - 8 meter/sec wind speed 

so that wave effect is minimum. The HyperSAS instrument was deployed by following 

the operation instructions to ensure sensor view angles were adjusted according to the 

solar position during above-surface spectra data measurements (Figure 2-2). The in situ 
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spectral data included sky radiance (Ls), total upwelling radiance (Lt) and downwelling 

irradiance (Ed) from 400 nm to 800 nm. The radiance sensor for measuring Lt was 

pointed to the water surface at an angle of 40° from nadir. The radiance sensor for 

measuring Li was pointed skyward with an angle of 40° from solar zenith. Both sensors 

were set at the angle of 90° from solar azimuth angle. The Ed irradiance sensor was 

mounted separately and perpendicularly to the water surface. At least 20 

radiance/irradiance measures were recorded at each location. The averages of these 20 

spectral curves were used for all further analyses. 

 

Figure 2-2: The HyperSAS instrument photo. This instrument was deployed to measure 
remote sensing reflectance of water. 

In situ below-surface spectral data were measured to observe the water column 

light field. The below-surface upwelling irradiance was logged via a ASD® Fieldspec 

equipped with an under-water cosine corrected receptor. These below-surface spectra 
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across 300 nm - 1000 nm were collected at 6 locations with varied depths (from ~0.6 m 

to ~4 m). These below-surface measurements were conducted vertically from just below 

the water surface to just above the bottom sediments at 0.3 meters interval. All spectral 

measurements were carried out between 10 A.M. and 2 P.M. in cloud free weather and 

wind conditions ranged from ~2 – 4 m/s (2 to 8 knots) that were associated with waves 

ranging from 0.15 to 0.45 meters according to the data from the National Weather 

Service. Other environment conditions did not vary significantly during the field 

measurements (depth, sediments, etc).  

The CDOM measurements for all the collected water samples were completed 

within six hours of collection. The water samples were first filtered using glass 

microfiber filters GF/F (nominal 0.7 µm pore size) according to the standard laboratory 

measurement of CDOM (Mannino et al. 2008; Vodacek et al. 1997). Then the filtrate 

was transferred into 0.01 m cuvettes to measure CDOM absorbance A(λ) via a Cary® 60 

UV-Vis Spectrophotometer with Milli-Q water as blank. The CDOM absorption 

coefficient ag(λ) was calculated from Equation 1: 

𝑎𝑔(𝜆) =
ln (10)

𝐿
×  𝐴(𝜆)      (1) 

where L is the diameter of cuvette in meters. All laboratory measurements were 

performed in triplicate and averaged in order to increase overall accuracy.  
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2.3.3 The shallow water bio-optical properties (SBOP) algorithm 

In this chapter, A shallow water bio-optical properties algorithm (SBOP) was 

developed for CDOM absorption retrieval to reduce the uncertainty caused by bottom 

sediments (Li et al. 2017). In optically shallow waters, the water-leaving reflectance is 

made up of contributions from both waterbody and bottom sediments. So the below-

surface remote sensing reflectance 𝑟𝑟𝑠  can be modeled as (Lee et al. 2007): 

𝑟𝑟𝑠 = 𝑟𝑟𝑠
𝑐 + 𝑟𝑟𝑠

𝑏 =  𝑟𝑟𝑠
𝑑𝑝(1 − 𝑒−𝐷𝑐(𝑎𝑡+𝑏𝑏)𝐻) +

1

𝜋
𝜌𝑒−𝐷𝑏(𝑎𝑡+𝑏𝑏)𝐻 (2) 

where 𝑟𝑟𝑠
𝑐  represents the water column contribution. 𝑟𝑟𝑠

𝑏  represents the bottom 

sediments contribution. 𝐷(𝑎𝑡 + 𝑏𝑏) represents the light attenuation caused by water 

column absorption and backscattering for water column light components (𝐷𝑐) or light 

components from bottom (𝐷𝑏). Finally, 𝐷𝑐  and 𝐷𝑏 are empirical factors associated with 

under-water photon path elongation due to scattering and can be calculated as below 

(Lee et al. 1999):  

𝐷𝑐 = 1.03(1 + 2.4
𝑏𝑏

𝑎𝑡+𝑏𝑏
)0.5     (3) 

𝐷𝑏 = 1.05(1 + 5.5
𝑏𝑏

𝑎𝑡+𝑏𝑏
)0.5     (4) 

The value 1.05 and 5.5 used in the calculation were determined after repeated 

experiments and they were found to be the optimal. 𝑟𝑟𝑠
𝑑𝑝 represents below-surface 

remote sensing reflectance when the water is infinitely deep and can be modeled as 

(Lee et al. 2013): 

𝑟𝑟𝑠
𝑑𝑝 = (0.089 + 0.125

𝑏𝑏

𝑎𝑡+𝑏𝑏
)

𝑏𝑏

𝑎𝑡+𝑏𝑏
    (5) 



 

23 

Several previous studies as well as our model calibration results showed that using 

0.089 and 0.125 for the calculation of 𝑟𝑟𝑠
𝑑𝑝would improve  model applicability to shallow 

waters (open waters, coastal waters, and inland waters) (Barnes et al. 2013; Lee et al. ; 

Lee et al. 2013; Yang et al. 2013; Zhu and Yu 2013). Then 𝑟𝑟𝑠 can be determined by the 

following bio-optical variables: bottom reflectance 𝜌, water depth 𝐻, absorption and 

backscattering coefficients 𝑎𝑡 and 𝑏𝑏. For the SBOP algorithm, the total absorption 

coefficients (𝑎𝑡) at a given wavelength (λ) is modeled from three components: 

𝑎𝑡(λ) =  𝑎𝑤(λ) + 𝑎𝑝(λ) + 𝑎𝑔(λ)    (6) 

where 𝑎𝑤(λ) is the pure water absorption coefficient, 𝑎𝑔(λ) is the CDOM absorption 

coefficient, and 𝑎𝑝(λ) represents the particle absorption coefficient, which include both 

phytoplankton and non-algal particles. The total backscattering coefficients 𝑏𝑏(λ) is 

calculated via two components: 

𝑏𝑏(λ) =  𝑏𝑏𝑤(λ) + 𝑏𝑏𝑝(λ)     (7)  

where 𝑏𝑏𝑤(λ) and 𝑏𝑏𝑝(λ) are backscattering coefficients of pure water and particles, 

respectively. The values of 𝑎𝑤(λ) and 𝑏𝑏𝑤(λ) are known (Morel 1974; Pope and Fry 

1997). The 𝑏𝑏𝑝(𝜆) and 𝑎𝑔(𝜆) were modeled as follows (Lee et al. 2013): 

𝑏𝑏𝑝(𝜆) = 𝑃 (
𝜆

555
)

𝑦

      (8) 

𝑎𝑔(𝜆) = 𝑀𝑒−𝑆(𝜆−440)      (9) 

where y is the spectral parameter that determines the scattering decay and was 

estimated as (Lee et al. 2002): 
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𝑦 = 2(1 − 1.2𝑒
−0.9

𝑅𝑟𝑠(444)

𝑅𝑟𝑠(555))     (10) 

S is the parameter establishing the absorption decay slope (spectral slope) and its value 

is approximately 0.015 as derived from the global average value (Zhu et al. 2014). This 

value is more applicable to a broad range of water cases and reduces the bias in 

algorithm comparison. The unknown factor M is the CDOM absorption coefficient at 440 

nm. P is the particle backscattering coefficient at 555 nm. There is a good positive 

correlation between 𝑎𝑝(𝜆) and 𝑏𝑏𝑝(𝜆) as both are associated with suspended 

particulate matter (Babin et al. 2003b; Zhu et al. 2014). Ultimately, 𝑎𝑝(𝜆) was modeled 

as:  

𝑎𝑝(𝜆) = 𝑞𝑃 (
𝜆

555
)

𝑦

      (11) 

where q = 0.75 which represents the empirical ratio of 𝑎𝑝 and 𝑏𝑏𝑝 (Zhu and Yu 2013; 

Zhu et al. 2013b). The bottom reflectance (𝜌(𝜆)) at each wavelength is expressed as: 

 𝜌(𝜆) = 𝐵𝜌𝑏𝑜𝑡𝑡𝑜𝑚(𝜆)      (12) 

where 𝜌𝑏𝑜𝑡𝑡𝑜𝑚(𝜆) is the dominant bottom material spectrum (sand) and it is normalized 

by the reflectance at 555 nm (Figure 2-3). Then 𝐵 is the bottom reflectance at 555 nm 

which is unknown. 
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Figure 2-3: The normalized spectra curve of the bottom reflectance. Bottom reflectance 
at 550 nm was assessed to normalize the bottom spectrum curve. 

All the empirical parameters selected in the SBOP algorithm were global average 

values. So, A sensitivity analysis was conducted in order to confirm that global values 

are suitable for the relevant parameters (Table 1). Overall, using alternative settings has 

a negligible effect on the results compared to general setting. The general setting is 

preferable as algorithm validation is dependent less upon the study site. 

Table 2-1: The sensitivity analysis for the parameter settings 

Parameters 
General 
setting 

Alternative 
setting 

Accuracy 
change 

𝐷𝑏 = 1.05(1 + 5.5
𝑏𝑏

𝑎𝑡 + 𝑏𝑏
)0.5 

1.05, 5.5 
New version 

HOPE  

1.04, 5.4 
Old version 

HOPE 
+ 0.5% 

𝑟𝑟𝑠
𝑑𝑝

= (0.089 + 0.125
𝑏𝑏

𝑎𝑡 + 𝑏𝑏
)

𝑏𝑏

𝑎𝑡 + 𝑏𝑏
 

0.089, 0.125 
General 
water 

0.084, 0.17 
High scattering 

water 
+ 2.5% 

Spectral slope S 
0.015 

Global mean 
0.0152 

Field data-based 
- 0.5% 
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Through equations (2)-(12), 𝑟𝑟𝑠 is constructed to describe optically shallow waters’ bio-

optical properties and contains four unknown variables B, M, P and H: 

 𝑟𝑟𝑠(𝜆) = 𝑓(𝐵, 𝑀, 𝑃, 𝐻) (𝜆)      (13) 

The SBOP algorithm solves for these four unknown variables via spectral optimization. In 

the SBOP processing, the initial values of the B, M, P and H were set as following (Lee et 

al. 2013): 

𝐵 = 0.1       (14) 

𝑀 = 0.075(
𝑅𝑟𝑠(444)

𝑅𝑟𝑠(555)
)−1.7     (15) 

𝑃 = 0.025(
𝑅𝑟𝑠(444)

𝑅𝑟𝑠(555)
)−1.7     (16) 

𝐻 = 1.5       (17) 

B, bottom reflectance at 555nm, was set as 0.1. H, the average depth was set as 1.5 

meters according to study site conditions. After tests these initial values were found to 

be the best. Our optimization process minimizes the differences between modeled 

below-surface reflectance 𝑟𝑟�̂� and measured below-surface reflectance 𝑟𝑟𝑠(𝜆) (obtained 

from in situ spectral measurements or remote sensing images), ultimately determining 

each variable in order to derive CDOM absorption and bottom contribution. Specifically, 

the optimization aims to find these four variables that minimize the following error 

function: 

𝑒𝑟𝑟 =
√∑ (𝑟𝑟𝑠(𝜆𝑖)−𝑟𝑟�̂�(𝜆𝑖))2𝑁

𝑖=1

√∑ 𝑟𝑟𝑠(𝜆𝑖)𝑁
𝑖=1

     (18) 
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The nonlinear system solver function in Matlab was applied in this study, which used the 

trust region dogleg algorithm to process the optimization (Powell 1968). The SBOP 

algorithm requires a minimum of four 𝑟𝑟𝑠 values at different wavelengths as input. So 

potentially it can be applied to both multispectral and hyperspectral data. In this study, 

the hyperspectral data (120 𝑟𝑟𝑠 bands) was applied to estimate the CDOM absorption. 

The algorithm performance was evaluated by comparing remote sensing derived CDOM 

results with laboratory measurements of CDOM using field water samples. The following 

five statistical metrics were assessed: bias, mean normalized bias (MNB), absolute mean 

error (AME), root mean squared error (RMSE, log space) and R2 (regression, Type II). 

The validation of the algorithm performances was performed based on the 

following statistical metrics: 

The Bias: 

𝑏𝑖𝑎𝑠 =  
∑ (𝑎𝑖

𝑒𝑠𝑡−𝑎𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

𝑛
      (19) 

The MNB: 

𝑀𝑁𝐵 =  
∑ (

𝑎𝑖
𝑒𝑠𝑡−𝑎𝑖

𝑜𝑏𝑠

𝑎𝑖
𝑜𝑏𝑠 )𝑛

𝑖=1

𝑛
     (20) 

The AME is: 

𝐴𝑀𝐸 =  
∑ (|

𝑎𝑖
𝑒𝑠𝑡−𝑎𝑖

𝑜𝑏𝑠

𝑎𝑖
𝑜𝑏𝑠 |)𝑛

𝑖=1

𝑛
     (21) 

The RMSE is: 
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𝑅𝑀𝑆𝐸 =  √∑ [log(𝑎𝑖
𝑒𝑠𝑡)−log(𝑎𝑖

𝑜𝑏𝑠)]
2𝑛

𝑖=1

𝑛−2
    (22) 

where  𝑎𝑖
𝑒𝑠𝑡 is remote sensing derived results and 𝑎𝑖

𝑜𝑏𝑠 is laboratory measured results of 

CDOM absorptions. 

2.3.4 Adaptive approach for computation efficiency 

In estimating CDOM in inland and coastal waters, a single scene of satellite data 

often contains a broad range of water depths (e.g. Landsat 8). The estimation of CDOM 

through the SBOP algorithm is generally both time and computation intensive, for the 

relatively complex equations illustrated above need to be solved through optimization. 

One way to improve optimization efficiency is to separate the water spectral data into 

high or low bottom effect groups and only apply SBOP to the high bottom effect 

(optically-shallow) group. We introduce an adaptive approach of applying the SBOP 

algorithm only to optically shallow waters and applying the deep water semi-analytical 

algorithm (QAA-CDOM) to optically deep waters.  

The QAA-CDOM is a representative semi-analytical algorithm for CDOM retrieval 

in deep waters (Zhu et al. 2014). This algorithm can be efficiently applied to a wide 

range of water conditions, including estuarine and coastal waters assuming the water is 

optically deep. It calculates CDOM absorption directly from Rrs in 13 steps. The first ten 

steps derive the total absorption coefficient 𝑎𝑡(440) and 𝑏𝑏𝑝(555) (Lee et al. 2002; Zhu 

et al. 2013a). Then last three steps derive the absorption of particulates 𝑎𝑝(440) from 

𝑏𝑏𝑝(555) in order to calculate 𝑎𝑔(440) by the following equations: 

𝑎𝑝(𝜆) =  𝐽1𝑏𝑏𝑝(555)𝐽2     (23) 
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𝑎𝑔(440) = 𝑎𝑡(440) − 𝑎𝑤(440) − 𝑎𝑝(440)    (24) 

where 𝐽1 = 0.63 and 𝐽2 = 0.88 are two parameters that were estimated from in situ 

data from inland waters (Zhu and Yu 2013). The required inputs of the QAA-CDOM 

algorithm are Rrs at wavelengths of 440, 490, 555 and 640 nm.  

Water depth is a key factor determining the bottom effect and is often used to 

separate optically deep or optically shallow waters. However, the bottom effect is also 

highly influenced by water column attenuation (Barnes et al. 2014; Zhao et al. 2013). A 

tangible example is that bottom reflectance could contribute significantly to water-

leaving radiance for deep but clear/transparent water with a highly reflective bottom 

such as sand. Therefore, the bottom effect index (BEI) was introduced which considers 

both the bathymetry and water column attenuation to quickly identify waters for which 

bottom reflectance is significant. It is defined as an exponential function because it has 

been established that underwater light is exponentially attenuated with water depth 

(Markager and Vincent 2000): 

 𝐵𝐸𝐼 =  𝑒
−(

𝑅𝑟𝑠(𝜆1)

𝑅𝑟𝑠(𝜆2)
)𝐻

      (25) 

where 𝐻 is the water depth. The 𝑅𝑟𝑠 band ratio (e.g. 690/555 nm) represents light 

attenuation by the water column and was often used as a proxy for water turbidity in 

previous research (Dall'Olmo et al. 2005; Dogliotti et al. 2015; Doxaran et al. 2005; 

Doxaran et al. 2002). The ratio 690/555 nm was applied in this study.  

The adaptive approach applies either the SBOP or QAA-CDOM algorithm for 

individual location/spectra depending on the significance of bottom effect (Figure 2-4). 
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Initially, the field spectral data is subjected to the BEI in order to determine whether the 

waters are categorized as optically shallow or optically deep waters. Then, the optically 

shallow waters are processed via SBOP while the optically deep waters are processed by 

QAA-CDOM to estimate the CDOM absorption. This adaptive approach aims to improve 

the computation efficiency for the regions with known bathymetry data (e.g. the Great 

Lakes regions), which are largely available for near-coastal shallow waters. Alternatively, 

for multi-temporal CDOM monitoring, the bathymetry of the site can be derived from 

SBOP algorithm once, and then be applied for other seasons when using the adaptive 

approach.  

 

Figure 2-4: Conceptual flowchart of adaptive approach and SBOP algorithm. In the SBOP 
algorithm, the H, B, P, and M were four unknown factors which were derived from 

optimization. The depth H affected the water column reflectance and bottom 
reflectance. The bottom reflectance B contributed to the below-surface remote sensing 
reflectance rrs. The CDOM absorption M and the particle backscattering P determined 

the light attenuation. 
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2.4 Results and Discussions 

2.4.1 Spatial and seasonal dynamics of the CDOM field sampling results 

Field water samples showed that CDOM levels exhibit a distinct spatial trend, 

descending from the near-shore lower river channel and river plume regions to the 

inner bay. The sampled CDOM absorption 𝑎𝑔(440) widely ranged from 0.12 m-1 - 8.46 

m-1 (Figure 2-1). CDOM levels at the river sample locations were generally high, with the 

Saginaw River having a value as high as 8.45 m-1. The average of CDOM levels around 

the plume area of the Kawkawlin River (5.38 m-1) is much higher than that of the 

Saginaw River (1.73 m-1). This marked difference was attributed to the terrestrial 

ecology of the drainage watersheds. The large proportion of both deciduous forest and 

associated litter and wetland areas within the Kawkawlin River watershed likely caused 

the higher CDOM levels in its plume area. The field sampling generally captured the 

complex spatial variation of CDOM in this area and provided a good foundation for 

evaluating these remote sensing algorithms.   

Distinct seasonal variations of freshwater CDOM between May and October 

were also observed, likely driven by the organic carbon supply in the drainage 

watersheds and hydrological processes (Tian et al. 2013). The mean CDOM absorption 

of samples collected in May was 2.75 m-1, much higher than that in October (mean value 

of 0.54 m-1). The higher CDOM levels during the spring season are analogous to trends 

reported in a recent study, which reported that the surface and subsurface hydrology 

associated with snow melt is responsible for transporting organic matters from soil 

organic carbon pools into the river systems (Tian et al. 2013). Similarly, the Saginaw 
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River watershed is dominated by the agricultural land use which has increased 

metabolic activities on crop residues in the spring (Spedding et al. 2004). The second 

most dominant land cover in the Saginaw River watershed is deciduous forest. The large 

proportion of soil carbon originates from the biological decay of both crop litters and 

forest leaf litters, so the soil carbon levels are much higher in spring when the large 

accumulation of carbon is flushed out of the soil through snowmelt. Meanwhile, the 

consumption of organic matters throughout the growing season leads to relatively lower 

soil carbon levels in October (Kalbitz et al. 2000a).  

These seasonal hydrological processes also explain inter-annual CDOM variability 

(Berto et al. 2010; Raymond and Oh 2007). The sampled CDOM level in May 2015 was 

clearly lower (mean 2.05 m-1) than that in 2013 (mean 3.51 m-1) and 2012 (mean 3.70 m-

1). The winter of 2014-15 had relatively large snowfall accumulations and peak 

snowmelt occurred in April, much earlier than in 2012 and 2013 (Figure 2-5). The 

available soil organic matter in the watersheds was largely depleted during this early 

spring thaw in mid-April 2015, which likely resulted in the observed lower CDOM levels 

during the May 2015 sampling campaign. Contrarily, the relatively higher CDOM levels 

sampled in May 2012 and 2013 were associated with the receding leg of a more normal 

spring discharge event.  
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Figure 2-5: River discharge of the Saginaw River from USGS streamflow data (the left) 
and sampled CDOM absorption in boxplot (the right). The boxplot draws the 75th, the 

median and the 25th percentiles of the CDOM absorption. The snowmelt started in 
March 2015. Spring flood depleted much of the terrestrial organic carbon before the 
sample date in May 2015, so the CDOM level in May 2015 is lower than that in May 

2013 and May 2012. 

Above-surface 𝑅𝑟𝑠 measured by the HyperSAS spectrometer demonstrated the 

potential of using remote sensing for the estimation of CDOM levels and other bio-

optical properties of water. Figure 2-6 illustrates how 𝑅𝑟𝑠 measured via HyperSAS is 

spectrally contaminated by strong bottom reflectance. The 27 samples on turbidity 

measurements (Secchi disk depth) were collected in May 2015 and were accompanied 

with comparable measurements of CDOM levels. All the spectra data in Figure 2-6 were 

under the same general water turbidity conditions. The light attenuations by the water 

column were generally the same in these sites, but did differ with depth.  The shallow 

water samples (0.6 m < Depth < 0.9 m) show reflectance (𝑅𝑟𝑠) twice as high as that of 

the deep water samples (2.7 m < Depth < 3.7 m), which is attributed to the bottom 

sediments reflectance. Therefore, neglecting bottom reflectance could introduce 
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significant uncertainties in CDOM retrieval for optically shallow waters. Higher bottom 

effect will lead directly to higher water-leaving radiance. Consequently, the prevailing 

deep waters CDOM retrieval algorithms would significantly overestimate CDOM levels 

(Zhu et al. 2013b). Therefore, our in situ spectra observations strongly suggest that 

bottom reflectance must be considered when applying CDOM retrieval algorithms for 

optically shallow waters. 

 

Figure 2-6: The measured remote sensing reflectance at shallow (0.6 m < depth < 0.9 m) 
and deep (2.7 m < depth < 3.7 m) waters with similar CDOM absorption (1.8-1 < ag(440) < 

2.3 m-1) and turbidity in May 2015. 
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2.4.2 Algorithm performance and validation of SBOP 

We validated SBOP with laboratory measured CDOM from field water samples 

and assessed the algorithm performance in comparison to QAA-CDOM (Table 2-2). The 

SBOP algorithm performed better than QAA-CDOM with respect to all five error metrics. 

In particular, QAA-CDOM resulted in a much higher bias (1.61). In the shallow waters, 

the high bottom reflectance significantly increases the reference at longer wavelengths, 

which leads to the high spectral slope of remote sensing reflectance (440 nm to 600 

nm). Consequently, CDOM is overestimated in deep water algorithm QAA-CDOM. In 

contrast, the SBOP (bias = 0.07) successfully modeled both the bottom and water 

column components of Rrs and greatly reduced the error and bias. Since over half of the 

sample sites were located in optically shallow waters, the performance of the QAA-

CDOM algorithm was indeed affected by the intrusive bottom reflectance, whereas the 

SBOP algorithm successfully reduced uncertainty on CDOM retrieval for optically 

shallow waters. The SBOP algorithm dramatically improves the accuracy of CDOM 

estimation in optically shallow freshwater environments. 

Table 2-2: Performance comparisons of SBOP and QAA-CDOM. SBOP algorithm showed 
better performance in the study sites which contains more than half of the shallow 

water sites. 

Method RMSE bias MNB AME R2 

QAA-CDOM 0.31 1.61 0.85 0.93 0.48 
SBOP 0.22 0.07 0.34 0.54 0.74 

The remote sensing derived ag(440) vs. ground truth ag(440) for individual 

samples is shown in Figure 2-7. The overall R2 of SBOP (R2 = 0.74) significantly 
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outperformed QAA-CDOM (R2 = 0.48). The SBOP performs significantly better by taking 

into consideration the bottom reflectance in the shallow water regions (labeled as 

Group A and Group B). Furthermore, the error range resulting from the QAA-CDOM 

algorithm was also larger and some samples have estimated CDOM (between ~10 m-1 

and ~14 m-1) two or three times larger than the measured values. These overestimations 

were from samples located at the most shallow and clearer locations (less than 1 meter) 

in the Saginaw River and near shore regions where ground-truthed CDOM levels were 

relatively low (labeled as group A). These results further confirmed that neglecting 

bottom reflectance does indeed result in much higher algorithm uncertainty. 

Comparatively, the QAA-CDOM algorithm produced more accurate CDOM estimation 

for samples in shallow waters that had relatively high CDOM levels (between ~4 m-1 and 

~8 m-1) (labeled as group B). This scenario occurred in the Kawkawlin River plume 

regions where water color was stained brown resulting from its watershed being 

dominated by deciduous forest (leaf litters) and wetland. In essence, high CDOM levels 

and associated strong water column absorption reduced the overall negative influence 

of the bottom effect. CDOM levels of deep water samples labeled as group C were 

slightly underestimated by the SBOP algorithm. This is caused by the over-estimation of 

bottom reflectance for deep water samples, as the trend line deviated from the 45 

degree 1:1 line. However, the performance of both algorithms degraded when the 

CDOM level is very low. Specifically, low CDOM samples collected in May 2015 have 

relatively larger errors.  
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Figure 2-7: The measured vs. derived ag(440) from SBOP (the left) and QAA-CDOM (the 
right) algorithm. Group A represents the shallow water samples (<1 m) with low CDOM 
levels (between ~1.8 m-1 to ~3.5 m-1). Group B represents the shallow water samples (< 
1 meter) with high CDOM levels (between ~4 m-1 and ~8 m-1). Group C is the deep water 

samples (> 1.5 m). 

 

2.4.3 Shallow water bottom effect on the SBOP algorithm estimation 

The ASD measured spectra within the water column at six selected locations 

were assessed to study the relative role of bottom effect and to examine the SBOP 

algorithm’s overall effectiveness. Figure 2-8 is an example of the differences in the 

remote sensing reflectance at three levels of water depths: just below water surface, 

just above bottom, and at mid depth measured with ASD Fieldspec. Remote sensing 

reflectance decreases with measurement depth due to absorption and scattering in the 

optical transmission processes.    
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Figure 2-8: The below surface remote sensing reflectance was measured by the ASD 
Fieldspec from just below the water surface to just above the bottom. The plot showed 

the spectral results on shallow (0.76 m) site. 

We choose two measured variables, just below surface reflectance (rrs) and just 

above bottom sediments reflectance (𝜌) at 555 nm to be compared to their estimated 

values by SBOP. Figure 2-9 compared these ASD measured values and the SBOP 

estimated rrs and 𝜌. The R2 value was 0.89 for rrs(555) and 0.79 for 𝜌 (555). These 

relatively high correlations demonstrate that SBOP reasonably modeled water optical 

properties with a bottom reflectance effect. This deviation is understandable since rrs 

and B were solved via optimization with 54 total samples/locations. The relative error of 

SBOP modeled rrs(555) and B(555) were displayed for different depths (Figure 2-9 c). The 

algorithm generally performs well at shallow to moderate depths (~1 meter to ~2.5 

meters). In these regions the bottom contributions account for a relatively lower 

percentage of total water leaving reflectance (~ 15%) when compared to the extremely 

shallow water sites (~30%). The large percentage of the bottom contribution in 

extremely shallow waters (< 1 m) does indeed lead to relatively high errors. Overall, the 

errors are smaller in optically shallow waters than optically deep waters. The implication 
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might be that the set of parameters (determined by optimization) describe the light field 

of the well-mixed water columns in these near-shore waters better, but introduces 

increasing errors as water depth increases lead to absorption and scattering.   

 

Figure 2-9: Comparisons of ASD measured reflectance and SBOP modeled just above the 
bottom (a) and just below the surface (b) reflectance. The relative errors of below 

surface remote sensing reflectance and bottom reflectance at 555nm were assessed at 
six different locations (c). The shaded area indicates the error trend of the SBOP. The 

shaded area indicates the error range of the SBOP. The maximum of the error was 
calculated to be the shade area boundary. 

We plotted percent error with regard to depth or bottom effect index (BEI) at 

individual sampling sites, to investigate the influence of bottom effect on algorithm 

performance of the optically shallow water algorithm (SBOP) and the optically deep 

water semi-analytical algorithm (QAA-CDOM) (Figure 2-10). Such comparisons help to 

determine the threshold for the optically deep and optically shallow waters at our study 
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site. At a depth < 1.5 meters, the SBOP generated a reasonably small error (MNB = 0.09, 

R2 = 0.67) while the QAA-CDOM algorithm significantly over-estimates CDOM levels. The 

MNB (1.20) and R2 (0.24) indicated that the QAA-CDOM caused very large uncertainty in 

such shallow waters (Table 3, Figure 2-11). Similarly, in waters with high bottom effect 

(BEI >= 0.2), the SBOP (RMSE = 0.16, R2 = 0.75) generates more reasonable results 

compared to the QAA-CDOM (RMSE = 0.32, R2 = 0.30). Conversely, in the waters with 

negligible bottom effect (BEI < 0.2) the QAA-CDOM results in a slightly lower RMSE and 

higher R2 than SBOP (QAA-CDOM: RMSE = 0.26, R2 = 0.81; SBOP: RMSE = 0.27, R2 = 

0.47). CDOM levels were under-estimated by SBOP compared to the QAA-CDOM where 

the bottom effect was low (Figure 2-11). As water depth increases, the light is strongly 

attenuated by the water column and its constituents in both the downward and upward 

paths. Theoretically, at a certain depth, bottom reflectance contributed no light to the 

total water leaving radiance (Dogliotti et al. 2015). However, the SBOP output does 

indicate a minimal bottom contribution to the total water leaving radiance at these 

relatively high depths, which inherently over-emphasizes the bottom contribution and 

consequently underestimates the water column contribution. The constraints of B was 

set to the range of 0.01 ≤ 𝐵 ≤ 0.9. After the optimization, the minimal B was 

approximately 0.05 for the optically deep waters. The SBOP algorithm does not produce 

a B constraint for the non-bottom effect waters. This might explain why SBOP outputs 

slightly under-estimation for the optically deep waters. This limitation of the SBOP 

algorithm creates the need to choose the more suited CDOM retrieval algorithm (QAA-

CDOM and SBOP) for waters with low bottom effect or high bottom effect respectively.   
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Table 2-3: Validations of QAA-CDOM and SBOP for optically shallow and deep groups 

when applying Depth or BEI threshold for separation. 

Method RMSE bias MNB AME R2 Optically Depth 

QAA-CDOM 0.26 0.25 0.59 0.72 0.80 Depth > 1.5 m 
SBOP 0.26 0.14 0.51 0.67 0.72 Depth > 1.5 m 

QAA-CDOM 0.35 3.52 1.19 1.20 0.24 Depth <= 1.5 m 
SBOP 0.16 -0.03 0.09 0.36 0.67 Depth <= 1.5 m 

QAA-CDOM 0.26 0.26 0.61 0.70 0.81 BEI < 0.2 
SBOP 0.27 0.12 0.52 0.68 0.47 BEI < 0.2 

QAA-CDOM 0.32 2.93 0.98 1.05 0.30 BEI >= 0.2 
SBOP 0.16 0.03 0.15 0.38 0.75 BEI >= 0.2 

 

 

Figure 2-10: The percent errors of CDOM estimation from QAA-CDOM and SBOP 
methods related to depth and bottom effect index. When depth < 1.5m or BEI > 0.2, the 

QAA-CDOM outputs high error results. 
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Figure 2-11: Derived vs. measured ag(440) for optically shallow and deep groups when 
separated by the depth or BEI threshold. SBOP significantly outperforms QAA-CDOM in 
optically shallow waters (depth <= 1.5 m or BEI >= 0.2), while it slightly under-estimates 

for optically deep waters (depth > 1.5m or BEI < 0.2). 
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2.4.4 Bottom effect adaptive approach 

Adaptive approach improves the CDOM retrieval accuracy and saves 

computation time by applying the most suitable algorithm according to the amount of 

bottom effect (i.e., SBOP for optically shallow waters and QAA-CDOM for optically-deep 

waters). It overcomes the limits of each individual algorithm and considers bottom 

contribution only when necessary. We examined both water depth and BEI as a metric 

used to classify optically deep vs. optically shallow waters. The thresholds were set as 

optically deep waters (depth <= 1.5 m or BEI >= 0.2) and optically shallow waters (depth 

> 0.5 or BEI < 0.2). The threshold values were assessed through the comparisons of the 

algorithm performances. The BEI = 0.2 and depth = 1.5 m was generated through the 

performances of SBOP and QAA-CDOM algorithms (Figure 2-10). These two threshold 

values also provide the most separation in accuracy for the adaptive approach (optically 

deep waters used QAA-CDOM & optically shallow waters used SBOP). We tested 

multiple values to get these threshold values. The estimation results from the adaptive 

method are validated in Figure 2-12 and Table 2-4. The BEI and depth adaptive 

methodologies can both utilize the advantages of the QAA-CDOM and SBOP algorithms 

to output reliable results (Table 2-2 and 2-4). The performance evaluation shows that 

the BEI adaptive method (RMSE = 0.22 and R2 = 0.81) has the advantage over the depth 

adaptive method (RMSE = 0.23 and R2 = 0.78) (Table 2-4). The trend line of the BEI 

method is closer to the 45 degree 1:1 line at relatively high CDOM levels, indicating BEI 

introduces less bias for these high CDOM samples (Figure 2-12). Due to the relatively 

lower number of samples with deep clear waters and high bottom effect, the 



 

44 

performance of the BEI adaptive approach is not markedly better than the depth 

adaptive method. When one considers both the computation efficient and accuracy, the 

adaptive approach is the suggested scheme to derive CDOM levels for inland freshwater 

and shallow coastal waters. 

Table 2-4: Validations of Depth and BEI adaptive methods for ag(440) retrieval. 

Method RMSE bias MNB AME R2 

Depth 
Adaptive 

0.23 0.14 0.39 0.57 0.78 

BEI Adaptive 0.22 0.15 0.39 0.55 0.81 

 

 

Figure 2-12: Derived vs. measured ag(440) from Depth (the left) and BEI (the right) 
adaptive methods. The trend line resulted from BEI adaptive approach is closer to the 

1:1 line and indicates a better overall performance. 
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Our newly proposed BEI quickly separates optically shallow vs. optically deep 

waters based on both water depth and light attenuation (approximated by a band ratio) 

prior to the implementation of the adaptive method. In order to compare how well the 

two metrics, water depth and BEI, represent bottom effect, each was independently 

plotted relative to bottom contribution in Figure 2-13a and 2-13b, respectively. Note 

that for this investigation, bottom contribution (BC) for each sample was calculated as 

the ratio of bottom reflectance (B) and below-surface reflectance (rrs). In Figure 2-13a 

and 2-13b, the shaded region represents a bottom contribution of < 20%, which 

referenced very turbid waters having low light penetration and negligible bottom effect. 

Bottom contribution greater than 20% represents optically shallow waters, which 

theoretically not only include shallow water, but also some relatively deep clear water 

samples. Depth ranging from 0 to 4 meters represents a gradient from optically shallow 

to optically deep waters.  In contrast, a BEI index ranging from 1 to 0 represents a 

gradient from optically shallow to optically deep waters.  

The depth metric cannot properly classify these clear deep or optically shallow 

waters (dashed circle in Figure 2-13a). These samples lead to the high uncertainties in 

the depth adaptive approach since they were processed by QAA-CDOM without 

considering bottom reflectance. In contrast, BEI takes into account both water depth 

and column attenuation. The deep clear water samples circled in Figure 2-13a (e.g. 4.2 

meters with the bottom contribution of 40 %) were properly distinguished as high 

bottom contamination samples (with BEI > 0.2) in Figure 2-13b. For the “deep clear 

water”, the low turbidity waters have relatively low light attenuations, so even the 
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physically deep waters have a high bottom effect. Therefore, these “deep clear water” 

locations should be classified as optically shallow waters. Figure 2-13c presents the 

bottom effect index expressed as isolines as a function of the depth and turbidity (Rrs 

ratio). The BEI 0.2 isoline (blue shaded area) expresses the threshold between optically 

shallow and optically deep waters that effectively separates high/low bottom effect 

zones. High turbidity waters lead to high light attenuation which indicates a much lower 

amount of light was reflected upwards by the bottom, so only very shallow waters (less 

than 1 meter) were classified as optically shallow waters. In contrast, the low turbidity 

waters have relatively low light attenuations, so even the deeper sample locations have 

a high bottom effect and should therefore be classified as optically shallow waters. 

Therefore, it is clear that utilizing the BEI metric leads to a more accurate adaptive 

approach than using our depth metric. Moreover, it can be easily derived and applied to 

many other aquatic remote sensing studies for fast identification of those areas where 

bottom reflectance influences CDOM measurements. 
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Figure 2-13: The bottom contribution vs. depth (a) and bottom contribution vs. bottom 
effect index (b) for individual samples. The turbid water samples indicate that the 
bottom contributions are less than 20%. Two deep clear water samples with high 

bottom contribution were reasonably categorized as optically shallow water by the BEI 
method, different from using our Depth threshold. Panel c plots the BEI value as isolines 

as a function of the depth and turbidity. The BEI considers both the bathymetry and 
water column attenuation to separate the optically shallow and optically deep waters. 
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2.5 Conclusions 

The optically shallow inland and coastal waters are important pathways for 

exporting terrestrially derived carbon sources into aquatic ecosystems. However, 

bottom reflectance introduces high uncertainty to the remote sensing estimation of 

water bio-optical properties (e.g. ag(440)). In addition, for terrestrial carbon dominated 

freshwater environments, CDOM levels exhibit a very broad range (e.g. 0.12 m-1 to 8.46 

m-1 in this study). These two characteristics present challenges for the remote sensing 

retrieval of freshwater biogeochemistry in the coastal and inland waters. Based on 

multi-date in situ measurements, this study developed an efficient shallow water CDOM 

estimation algorithm (SBOP). The overall performance evaluation (RMSE = 0.22 and R2 = 

0.74) demonstrated that the SBOP algorithm can be successfully applied to the optically 

shallow fresh waters with relatively homogeneous bottom sediments/conditions. 

Ultimately, the SBOP model is uniquely designed for estimating CDOM 

absorption in optically shallow waters by taking into account the bottom reflectance 

component of total upwelling radiance. The SBOP algorithm significantly outperforms 

QAA-CDOM in these optically shallow waters (SBOP R2 = 0.74 and QAA-CDOM R2 = 0.48). 

In addition, the algorithm separately derives CDOM absorption as opposed to a 

combined absorption adg from prevailing ocean color algorithms. The removal of bottom 

effect from total radiance reduces the CDOM estimation uncertainty, and therefore 

extends effective carbon monitoring capabilities to optically shallow inland and coastal 

waters.  
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Widespread monitoring of water carbon from remote sensing data in the inland 

and coastal shallow waters demand the processing of large volumes of satellite data. 

We propose a BEI adaptive approach for algorithm selection. The BEI is designed to 

improve the computation efficiency for the regions having reliable bathymetry data, 

which are largely available for near-coastal and inland shallow waters. The BEI is able to 

quickly identify bottom contaminated water spectra/pixels based on both the 

bathymetry and water turbidity, so as to differentiate optically shallow waters. The BEI 

adaptive approach (BEI R2 = 0.81) can efficiently as well as accurately aid in the selection 

of the proper algorithm for the estimation of water CDOM absorption. 

In summary, our study investigated the potentials of remote sensing methods for 

capturing seasonal and spatial dynamics of CDOM in optically shallow water 

environments. Our newly developed SBOP algorithm offers a new inversion algorithm 

that directly considers bottom effect in radiative transfer equation. The BEI based 

adaptive approach presents a more efficient and fast method for monitoring terrigenous 

carbon export to inland and coastal waters with broad CDOM conditions. The outcome 

of this investigation will ultimately improve the monitoring of carbon pools and their 

transport gradients and mechanisms from terrestrial to aquatic systems at both regional 

and global scales. 
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CHAPTER 3  
 

SPATIO-TEMPORAL VARIATIONS OF CDOM IN INLAND WATERS FROM A SEMI-ANALYTICAL  
 

INVERSION OF LANDSAT-8  
 
 
3.1 Abstract 

Bottom reflectance is often the main cause of high uncertainty in Colored 

Dissolved Organic Matters (CDOM) estimation for optically shallow waters. This chapter 

presents an improved Shallow Water Bio-optical Properties (SBOP) algorithm compared 

to normal deep water CDOM algorithm to overcome bottom effects from Landsat-8 OLI 

imagery. So SBOP algorithm could successfully observe spatial and temporal CDOM 

dynamics in inland waters. We evaluated the algorithm via 130 images and a large set of 

field measurements collected across seasons of multiple years in the Saginaw Bay, Lake 

Huron and fourteen lakes of different sizes in the northeastern USA. Results showed 

that the SBOP algorithm reduced estimation errors by as much as 4 times (RMSE = 0.17 

and R2 = 0.87 in the Saginaw Bay; R2 = 0.80 in the northeastern lakes) when compared to 

the QAA-CDOM algorithm that did not take into account bottom reflectance. These 

improvements in CDOM estimation are consistent and robust across lakes with broad 

characteristics (coastal ecology, sizes, and different depth). Our analysis revealed: 1) the 

proposed remote sensing algorithm resulted in significant improvements in tracing  

spatial-temporal CDOM inputs from terrestrial environments to lakes, 2) CDOM 

distribution captured with high resolution land-viewing satellite is useful in revealing the 

impacts of terrestrial ecosystems on the aquatic environment, and 3) Landsat-8 OLI, 

with its 16 days revisit time, provides valuable time series data for studying CDOM 
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seasonal variations at land-water interface and has the potential to reveal its  

relationship to adjacent terrestrial biogeography and hydrology. The chapter presents a 

shallow water algorithm for studying freshwater or coastal ecology, as well as carbon 

cycling science.  

3.2 Introduction  

The assessment of Colored Dissolved Organic Matter (CDOM) in lake waters help 

the scientific community better understand both global/regional carbon cycling and 

aquatic ecosystem biogeochemistry. CDOM can be used as a surrogate for terrestrially 

derived dissolved organic carbon (DOC) transport (Kutser et al. 2015). The export of 

terrestrial DOC to lakes and oceans represents a significant carbon exchange at the land-

water interface (Roulet and Moore 2006; Tian et al. 2013). This carbon flux is a key 

pathway leading to widespread CO2 supersaturation in aquatic environments (Jonsson et 

al. 2003; Sobek et al. 2005). Inland waters also play a significant role in the 

sequestration, transport and mineralization of terrestrially sourced organic carbon 

(Battin et al. 2009). In addition, soil carbon loss to rivers and lakes has an important 

impact on net terrestrial carbon budgets (Davidson et al. 2010). CDOM in inland waters 

also influences the aquatic ecosystem in a variety of ways (Williamson et al. 1999). 

CDOM in inland water absorbs short wavelength incoming light, and this absorption will 

further affect the growth of plankton communities (Diehl 2002; Williamson et al. 1996). 

Moreover, terrestrial DOC transportation to inland waters represents a very important 

nutrient exportation pathway from land to water (Cole et al. 2007). These terrestrial 
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carbon inputs will ultimately impact the food webs within the lake environment 

(Brezonik et al. 2015; Cole et al. 2006). 

Remotely sensed satellite imagery provides an efficient solution for monitoring 

CDOM dynamics (Keith et al. 2016). The remote sensing estimation of water 

biogeochemistry is based on observation of water bio-optical components, including 

CDOM, which influence the underwater light field (Hoge and Lyon 1996; Yu et al. 2010), 

and therefore leads to changes in water leaving radiance received by the satellite sensor 

(Zhu et al. 2011). Previous research centered on inland and coastal water CDOM 

estimation by high resolution satellite data often relied on empirical band ratios 

algorithms, which were developed for specific study areas and require additional 

intensive regional tuning when applied or upscaled to other regions (Kutser et al. 2005; 

Mannino et al. 2008). Location-independent semi-analytical algorithms based on bio-

optical water radiative transfer models have been developed to improve the retrieval of 

water biogeochemistry, particularly chlorophyll absorption (Carder et al. 1999; Kahru 

and Mitchell 2001; Le et al. 2013). In addition, the need to better estimate carbon 

amounts in coastal regions resulted in the development of several semi-analytical 

algorithms designed to retrieve CDOM absorption in optically deep waters (Matsuoka et 

al. 2013; Shanmugam 2011; Zhu and Yu 2013). Unfortunately, these semi-analytical 

CDOM algorithms are not applicable to optically shallow waters, and therefore remote 

sensing techniques are limited for assessing carbon dynamics at the land-water 

interface. An algorithm specific to the estimation of CDOM in inland, optically shallow 

waters is needed.  
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Growing interest in inland water CDOM observation via remote sensing requires  

suitable satellite images with both the proper spectral wavelengths and finer spatial 

resolution (Brezonik et al. 2015; Palmer et al. 2015). Semi-analytical algorithms for 

(Chlorophyll or CDOM) typically use  an “ultra-blue” band (e.g. from 435 nm to 450 nm) 

to build the bio-optical model (Lee et al. 2002). Because studies often used CDOM 

absorption in the ultra-blue band to present CDOM levels, previous studies are mainly 

based on the ocean-viewing multispectral or hyperspectral satellites, such as MODIS, 

SeaWIFS and EO-1 Hyperion that record data in this wavelength domain (Kutser et al. 

2005; Miller and McKee 2004; O'Reilly et al. 1998). However, these images are not 

applicable to studies involving smaller inland lakes and rivers because of coarse spatial 

resolutions (e.g. MODIS) or narrow coverage (e.g. Hyperion). Rivers, that are important 

pathways for transporting terrestrial CDOM, typically have a width narrower than two 

kilometers (Allen and Pavelsky 2015). The spatial resolution or pixel size of most ocean-

viewing sensors such as MODIS are far too coarse to observe inland waters, and much 

uncertainty is introduced when these images contain land-water mixed pixels (Zhu et al. 

2013a). In contrast, the experimental high resolution hyperspectral sensor Hyperion 

provided the spatial resolutions needed for inland waters, but it isn’t operational now 

and its utility was very limited with respect to terrestrial CDOM estimation due to its 

narrow and limited worldwide image footprint or coverage (Zhu and Yu 2013). In recent 

years, several multispectral land-viewing satellite sensors have offered new promise for 

the retrieval of inland water bio-optical properties with the addition of an ultra-blue 

band, predominantly, Landsat-8 (30 m spatial resolution) (Roy et al. 2014). With its 
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relatively high spatial resolution, Landsat 8 is able to effectively capture images of the 

lower reaches and plumes of rivers, thereby increasing its potential for observing inland 

water biogeochemistry (Pahlevan et al. 2014). Several empirical algorithms have been 

applied to Landsat-8 images for observing CDOM absorption based on band-ratio 

methodologies in optically deep waters as mentioned above (Chen et al. 2017; Kutser et 

al. 2016a; Olmanson et al. 2016). 

This chapter continues validates the SBOP algorithm (Li et al. 2017), an approach 

to create a semi-analytical CDOM estimation algorithm for Landst-8 multispectral 

imagery in shallow waters.. To our knowledge, our research represents the first attempt 

to explore a semi-analytical CDOM retrieval algorithm for Landsat-8 multispectral 

imagery in shallow waters. SBOP was initially developed based on in situ 

spectroradiometer data. This study investigates its application to Landsat-8 OLI images 

and evaluates the effectiveness of the multispectral land-viewing images on the 

retrieval of CDOM absorption at a large number of lakes with significant variations in 

biogeochemical properties. Our approach strives to address the challenges of employing 

appropriate atmospheric correction, determining the influence of bottom reflectance, 

and refining a semi-analytical algorithm for bio-optical properties retrieval in optically 

shallow waters. Finally, 130 satellite images were processed and analyzed, 84 from 

Saginaw Bay, Lake Huron as principal study sites and 46 from northeastern USA inland 

lakes/estuaries to better understand CDOM spatio-temporal dynamics and its 

associated driving factors. 
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3.3 Method   

3.3.1 Study sites 

Saginaw Bay, Lake Huron was selected as our principal study site to develop our 

Landsat-8 methodologies (Figure 3-1). A total of four data collection cruises were 

conducted in Saginaw Bay and vicinity to conduct in situ sampling focused on CDOM 

spatial variations. The field data generated from two of these collection cruises were 

used as algorithm validation data because their collection dates corresponded nicely to 

the overpass dates of select Landsat-8 satellite images. Fortunately, Saginaw Bay and 

the Saginaw River near their interface exhibit a wide range of CDOM levels, dynamically 

changing throughout the seasons. This variability makes this location perfect for testing 

if indeed satellite images can adequately capture CDOM seasonal dynamics in optically 

shallow waters. Generally, the major bottom sediments in Saginaw Bay were sand with 

the intermittent spot of aquatic plants and benthic algae. Moreover, the different 

landcover types surrounding Saginaw Bay also provide an opportunity to study the 

impact of various terrestrial CDOM export pathways into an aquatic ecosystem. For 

example, east coast of Saginaw Bay is dominated by agricultural cropland, while west 

coast of Saginaw Bay is dominated by a mixture of agriculture and forest. In addition, 

two major coastal wetland areas border Saginaw Bay and the Saginaw River, Wigwam 

Bay State Wildlife Area and Shiawassee National Wildlife Refuge, respectively. Saginaw 

River represents the largest river discharging into Saginaw Bay and has an overall length 

of 36 km and a watershed area of 22,260 square km2. Also, there are several major 

agricultural drainage channels that discharge into Saginaw Bay.   
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Figure 3-1: The study area of Saginaw Bay, Lake Huron. The surrounding area contains 
varied landcover types, including wetlands, agricultural cropland, and forest. Red stars 

marked the filed samplings locations.   
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Fourteen diverse freshwater lakes and the Great Bay estuary complex located in 

northeastern USA were selected to further validate the transferability and scalability of 

the algorithm to a different ecoregion, and to evaluate to what extent CDOM spatio-

temporal dynamics can be monitored (Figure 3-2 & Figure 3-3). Northern New England 

USA (Maine, New Hampshire, Vermont / NNE) is dominated by Eastern Temperate 

Forest with areas of Atlantic Maritime Highlands, Northeastern Coastal Zone, and 

Acadian Plains and Hills (Omernik 1987). Most lakes are classified as being in “good” 

condition based on a suite of assessment parameters (e.g., chlorophyll-a, secchi depth, 

plankton, total phosphorus, taxa, lake shore habitat) with half of all lakes falling within 

the mesotrophic category (Torbick et al. 2014). Lake Champlain is located along the 

border between the states of New York and Vermont with the area of 1,269 km2. The 

Great Pond (34.5 km2) and China Lake (15.6 km2) are located in the state of Maine. The 

Great Bay estuary complex (24 km2), Baxter Lake, Swains Lake, Northwood Lake and 

Brindle Lake are located in southern New Hampshire. The Lake Winnipesaukee (180 

km2), Newfound Lake (18 km2), Webster Lake, Pleasant Lake, Sunapee Lake, Crystal Lake 

and Mascoma Lake are located in the northern New Hampshire. The Great Bay is a 

drowned river valley which located in the Gulf of Maine watershed. The water of Great 

Bay flowed into the Piscataqua River. The contributing areas of these northeastern lakes 

have different landcover types. As one might expect due to their wide distribution, the 

landcover surrounding these lakes is highly varied. This variation in landcover, and thus 

CDOM levels, is ideal for algorithm validation. For example, the north and east coast 

regions of Lake Champlain are dominated by agricultural farmlands, while the west 
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coast regions are generally covered by mixed forests. Generally, southern New 

Hampshire has more agricultural land that gradually transitions into mixed forest to the 

north. 

 

Figure 3-2: Lake Champlain was in the state boundary of New York and Vermont. It was 
surrounded by different terrestrial landcover. A large area of cropland was in north 

coast regions. 
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Figure 3-3: The 14 freshwater lakes and Great Bay in the northeastern of US. These 
freshwater lakes were important drinking water sources. 

 
3.3.2 Processing of the Landsat-8 images 

Landsat-8 satellite was launched in February 2013, with the addition of a new 

coastal blue band (443 nm). Its worldwide spatial coverage and high spatial resolution 

show promise for inland water CDOM monitoring. A total of 11 images were identified 

for validation of the SBOP algorithm in the two regions because their overpass date 

corresponded to our field sampling date. First, 84 Saginaw Bay images (path 20-21, row 

29-30) between May 2013 and Feb 2016 were processed. Of these, most of the images 

were acquired between March and November in all four years. Ice cover and high cloud 

cover (> 20%) plagued most of the images during winter months. Two images (May 1, 

2013 and May 7, 2015) nicely corresponded to our field sampling date for comparison 

against our field measurements. Satellite image derived CDOM information from 56 
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images were selected to discuss the CDOM spatial-temporal dynamics. The other 25 

processed images didn’t have positive output results due to the cloud coverage. Second, 

46 images of the northeastern USA (paths 12-14, rows 29-30) were processed in 

northeastern USA lakes and Great Bay estuary. Analogous to the approach outlined 

above, a subset of 9 images were selected to be compared to our field sampled CDOM 

measurements for model validation. 

Level-1 satellite images were selected to process. The initial step of satellite 

image processing was the removing of atmospheric effect. This processing aims to 

derive the spectra data which only contains water body information. The processing was 

beginning at the top of atmospheric (TOA) radiance and ending at the remote sensing 

reflectance. The atmospheric correction was processed through ACOLITE software. TOA 

reflectance (𝜌𝑡(𝜆)) could be divided as the following different components as (Gordon 

and Wang 1994): 

𝜌𝑡(𝜆) =  𝜌𝑟(𝜆) + 𝜌𝑎(𝜆) + 𝑡𝑣𝜌𝑤𝑐(𝜆) + 𝑇𝜌𝑔(𝜆) + 𝑡0𝑡𝑣𝜌𝑤(𝜆)   (1) 

In the equation, the 𝜆 means wavelength of the light. 𝜌𝑟(𝜆) is reflectance which is 

caused by Rayleigh scattering during transfer in the atmosphere.  𝜌𝑎(𝜆) is the 

reflectance which is caused by aerosol (solid particles or water droplets in the air) 

scattering. 𝜌𝑤𝑐(𝜆) is light signal which is reflected by foams and whitecaps of water 

surface. 𝜌𝑔(𝜆) is sun light specular reflectance of water surface which also can be called 

as the sun glint. 𝜌𝑤(𝜆) is water-leaving reflectance which only contained information of 

water column. 𝑇 is direct transmittance which represented the path from the water 
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surface to satellite sensors. 𝑡0 is atmospheric diffuse transmittance which represented 

the path from the sun to the water surface. 𝑡𝑣 is the diffuse transmittance which 

represented the path from the water surface to the satellite sensor. The processing of 

the atmospheric correction aims to derive the water leaving radiance (𝜌𝑤(𝜆)) from the 

TOA reflectance (𝜌𝑡(𝜆)). From the TOA, the radiance measured at the top of 

atmospheric 𝐿𝑡(𝜃, 𝜑) is: 

𝐿𝑡(𝜃, 𝜑) = 𝐿𝑝𝑎𝑡ℎ(𝜃, 𝜑) + 𝑡(𝜃, 𝜑)𝐿𝑤(𝑡𝑜𝑡𝑎𝑙)(𝜃, 𝜑)  (2) 

Where the 𝐿𝑝𝑎𝑡ℎ(𝜃, 𝜑) is the radiance along the path of the atmosphere.  𝐿𝑤(𝑡𝑜𝑡𝑎𝑙) is 

the radiance in just above the water surface. The transmittance 𝑡 could be calculated as 

the equation as: 

  𝑡(𝜉) =
𝐿𝑤

(𝑇𝑂𝐴)
(𝜉)

𝐿𝑤(𝜉)
       (3) 

In the equation, the 𝐿𝑤(𝜉) is the water leaving radiance from the water body as the 

direction of 𝜉, the 𝐿𝑤
(𝑇𝑂𝐴)

(𝜉) is the radiance which is contributed by the water in the TOA 

(Gordon 1997). Then the 𝑡0 and 𝑡𝑣 could be estimated through: 

  𝑡 = exp [−(
𝜏𝑟

2
+ 𝜏𝑜𝑧)/𝑐𝑜𝑠𝜃]                     (4) 

Where the 𝜏𝑟 is the average optical thickness for having the Rayleigh scattering. 𝜏𝑜𝑧 is 

the optical thickness for the Atmosphere Ozone (Wang 2000). In the equations for 

calculating the TOA reflectance, the 𝜌
𝑟
(𝜆) could be built from the empirical database 

which is generated under the wind speed as the key controlling factor. (Gordon and 
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Wang 1992).  The components contributed by the whitecaps and foams of the water 

surface can be calculated as: 

𝑆𝑤𝑐 = 2.95 × 10−6𝑈3.52       (5) 

Where the 𝑆𝑤𝑐 is the proportion of the whitecaps in the water surface. The 𝑈 is the 

wind speed for controlling the whitecaps proportion. Therefore, the reflectance 

contributed by the whitecaps can be estimated as following: 

𝜌𝑤𝑐(𝜆) = 0.22𝜖𝑤𝑐(𝜆)𝑆𝑤𝑐      (6) 

Where the 𝜖𝑤𝑐 is the empirical spectral curve profile of the whitecaps (Gordon and 

Wang 1994). Due to the viewing angle of the Landsat-8 satellite sensor, the 𝜌𝑔(𝜆) is 

often ignored in the processing. Then the marine reflectance at two wavelength  

(565𝑛𝑚, 670𝑛𝑚) often have the constant linear relationship, so the 𝜌𝑎(𝜆) is modeled 

as (Ruddick et al. 2000): 

𝜌𝑤(670) = 𝑎𝜌𝑤(565) + 𝑏     (7)   

where a and b are constant values. Then the key information, the 𝜌𝑎(𝜆) was calculated 

as the SWIR methods as: 

𝜌𝑎(𝜆) =   𝜖𝑎𝑅(𝜆)𝑒Δ𝑅(𝜆)     (8) 

Where the 𝑅(𝜆)
𝑒
 is corrected from the SWIR bands and the Δ𝑅(𝜆) is the correction 

factor (Vanhellemont and Ruddick 2015).  

The Figure 3-4 shows the comparisons between the TOA (Figure 3-4a) and water 

leaving reflectance in the Saginaw Bay (Figure 3-4b). After the atmospheric correction, 



 

63 

we can visually examine that the image was corrected by removing atmospheric effects 

(Figure 3-4b). Only some heavy cloud coverage regions (white color) cannot be 

corrected. These cloud regions would be masked out in the next processing step. The 

contributions along the path from the water surface to the top of atmosphere were 

corrected. After the atmospheric correction, the image now contain the reflectance 

which was only from the water. So we can derive the optical information of the water 

regions from the corrected image. 

 

Figure 3-4: The RGB display of the satellite image of TOA and water leaving reflectance. 
Atmospheric effects were removed from the satellite images. 
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After the correction of the atmospheric effect in the satellite images, the next 

step aims to derive the water body extent from the entire image. The whole satellite 

image often cover a large area of the land surface. The reflectance of these terrestrial 

objectives often had much higher values than the water bodies. Normally, the signal 

levels of vegetations, bare land surface, and human constructions were at least one 

magnitude higher than lakes and rivers. If we visually check the different objectives 

through the Figure 3-4, we can find most of the lake water regions showed dark color 

which indicated low signals. Therefore, the removing of the land surface would be 

helpful for reducing computation times and image illustration.  

The normalized difference water index (NDWI) was used to separate water 

bodies from land surface. The NDWI used band ratio for detecting the water boundaries 

(Stedmon et al. 2006). It aims to derive the water bodies by comparing the signal levels 

in green and near-infrared bands. The NDWI can be calculated as the function of NDWI = 

(Green – NIR) / (Green + NIR), where the Green means the wavelengths from the 533 

nm to 590 nm and the NIR means the near-infrared bands from 851nm to 879 nm. The 

output values of the water bodies were positive values. Then the water bodies can be 

derived from the atmospherically corrected images. The Figure 3-5 shows the water 

bodies delineation result in 443 nm. The large terrestrial surface areas were masked out 

from the image. Meanwhile, the cloud regions were also masked out. Moreover, the 

floating ice in the lake surface had significantly abnormal values which could be easily 

excluded in the processing of the SBOP algorithm. Then the following steps would be 

processed based on the water bodies only images.   
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Figure 3-5: Remote sensing reflectance at the 443 nm without the land targets. Water 
bodies were identified by the NDWI index. 

SBOP algorithm selected four wavelengths to calculate CDOM absorption. These 

four wavelengths were 440 nm, 490 nm, 555 nm, and 640 nm. The selection was 

agreeing with the other water semi-analytical algorithms, like QAA and QAA-CDOM. The 

consistent wavelengths would be helpful in algorithm incorporation and comparison. 

The central wavelengths of the Landsat-8 satellite images were 443 nm (coastal blue), 

483 nm (blue), 561 nm (green), and 655 nm (red). So I interpolated the SBOP required 
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remote sensing reflectance (𝑅𝑟𝑠−𝑆𝐵𝑂𝑃(𝜆)) from the four Landsat-8 remote sensing 

reflectance (𝑅𝑟𝑠−𝐿𝑎𝑡(𝜆)) through the spectral reference data as (Barsi et al. 2014): 

𝑅𝑟𝑠−𝑆𝐵𝑂𝑃(440) =  𝑅𝑟𝑠−𝐿𝑎𝑡(443) * 0.990   (9) 

𝑅𝑟𝑠−𝑆𝐵𝑂𝑃(490) =  𝑅𝑟𝑠−𝐿𝑎𝑡(483) * 1.032   (10) 

𝑅𝑟𝑠−𝑆𝐵𝑂𝑃(555) =  𝑅𝑟𝑠−𝐿𝑎𝑡(561) * 0.987   (11) 

𝑅𝑟𝑠−𝑆𝐵𝑂𝑃(640) =  𝑅𝑟𝑠−𝐿𝑎𝑡(655) * 0.968   (12) 

Then the remote sensing reflectance could be processed by SBOP algorithm for the lake 

water CDOM estimation.  

3.4 Results and Discussions 

3.4.1 Landsat-8 satellite images CDOM estimation validations  

The CDOM absorption values derived from the Landsat-8 OLI images were 

validated with the laboratory measurement of CDOM in water samples. The results 

showed the SBOP algorithm can be effectively applied to optically shallow waters with 

relatively homogenous bottom sediment to improve the accuracy of CDOM estimation 

(Table 3-1). A representative optically deep water semi-analytically algorithm (i.e .QAA-

CDOM) was chosen to compare with the SBOP algorithm in the Saginaw Bay area (Zhu et 

al. 2014). Both SBOP and QAA-CDOM are the semi-analytical algorithm with the same 

strategy for designing the absorption coefficient. The SBOP remarkably outperformed 

QAA-CDOM with respect to all four error metrics. The SBOP algorithm achieved a R2 of 

0.87, much higher than that of the QAA-CDOM algorithm (R2 =0.33). The substantially 

larger bias (MNB) and error (AME) of QAA-CDOM (MNB = 1.65 and AME = 1.82) showed 

that it overestimates CDOM levels dramatically. The filed sampling sites majorly 



 

67 

concentrated in Saginaw River and nearshore regions (depth was less than the 2 m). 

These shallow water sites were largely affected by the bottom reflectance. So, the 

normal deep water CDOM estimation algorithm could not be easily applied to these 

shallow water regions. However, SBOP algorithm was designed to include the bottom 

contributions in the underwater light field modeling. It can largely reduce the estimation 

errors caused by the bottom reflectance. Due to the improvements of SBOP algorithm, 

CDOM absorption could be estimated through the Landsat-8 images in the inland 

waters. 

Table 3-1: The validation results from both the SBOP and QAA-CDOM algorithms 

Method RMSE MNB AME R2 

SBOP 0.17 -0.12 0.22 0.87 
QAA-CDOM 0.48 1.65 1.82 0.33 

To examine how errors change across sampling locations, ag(440) derived from 

satellite images vs. field measured ag(440) from field water samples were plotted in 

Figure 3-6. These samples are located at a range of depth between 0.6 to 4 meters, 

including both optically shallow and optically deep waters. The samples were 

categorized as shallow (depth < 1 m), medium (1 m < depth < 2 m) and deep waters 

(depth > 2 m) to evaluate algorithm performances respect to bottom contribution. 

Generally, in Saginaw Bay, the shallow (depth < 1m) and medium (1 m < depth < 2 m) 

sites had the bottom reflectance over 10% to the total water leaving radiance. The 

shallow water sites are in Saginaw River and near shore regions. In these shallow areas 

in the similar rages of CDOM values, SBOP produced much better results than QAA-
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CDOM algorithm. In contrast, the largest errors of the QAA-CDOM algorithm resulted in 

these shallow areas. In optically shallow water sites, the underwater light reflected by 

bottom sediments significantly contributes to water-leaving radiance, some of which is 

received by the satellite sensor. QAA-CDOM essentially does not consider bottom 

reflectance and includes it as a component of water column reflectance, which leads to 

the overestimation of CDOM absorptions due to its calculation strategy. The higher the 

proportion of bottom reflectance included in the total water leaving reflectance, the 

higher the uncertainties resulting from QAA-CDOM. QAA-CDOM could produce a few 

accurate results in medium and deep depth waters. Almost half of the field sample 

locations in southern Saginaw Bay regions were classified as optically shallow water 

according to field measured depth results (depth < 1.5 m). Our results show QAA-CDOM 

is not directly applicable to these shallow waters. On the contrary, the SBOP algorithm 

considers bottom reflectance in the water radiative transfer model and treats rrs as a 

sum of both water column and bottom sediment reflectance. Moreover, bottom 

reflectance also involved in the total water leaving radiance in deep depth and clean 

waters (Li et al. 2017). So SBOP demonstrated a marked advantage over QAA-CDOM for 

estimating CDOM in a broad range of inland waters. 
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Figure 3-6: Image derived vs measured ag(440) from both SBOP and QAA-CDOM 
algorithms in Saginaw Bay. The larger symbol size indicated the higher error of the 

algorithm. Water samples were separated by the depths of field sampling sites. 

The SBOP algorithm was further validated via the fourteen northeastern USA 

lakes and the Great Bay estuary complex by comparing the image retrieved CDOM 

absorption and field sampled CDOM absorption (Figure 3-7). As most of the waterbodies 

are small and appear spatially homogeneous, mean CDOM absorption of non-cloud 

covered pixels was calculated to represent a single lake CDOM level. As Figure 3-7 

illustrates, SBOP algorithm performed well across this broad range of lake types. The 

addition of these additional validation sites seems to confirm that SBOP algorithm can 

be effectively applied to multi-spectral Landsat-8 images of inland waters. Moreover, 

Landsat-8 OLI imagery, particularly the four bands (443nm, 482nm, 561nm, and 654nm), 

provide sufficient spectral information to retrieve inland water CDOM levels. Ultimately, 

if a proper algorithm like SBOP is used, the spectral, radiometric and spatial resolutions 

of Landsat-8 OLI imagery are capable of achieving large-scale lake/estuary CDOM 

monitoring. 
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Figure 3-7: The SBOP algorithm validations in the 14 northeastern lakes and Great Bay. 
SBOP algorithm and Landsat-8 satellite images could be applied in broad types of inland 

waters to derive CDOM absorption. 

3.4.2 CDOM spatial patterns from land to water 

CDOM spatial distribution from the Saginaw River into Saginaw Bay in July 2013, 

April 2015 and September 2015 are illustrated in Figure 3-8. The lake water CDOM levels 

in Saginaw Bay displayed distinct spatial heterogeneity. The CDOM level significantly 

decreased from shallow near shore regions to the deeper inner bay. CDOM was highest 

around the near shore regions where rivers and agricultural channels discharged into 

Saginaw Bay. For example, CDOM levels in Saginaw River and channels were almost two 

times higher than that of Saginaw Bay. Specifically, Saginaw River had much higher 

CDOM levels than the other regions of Saginaw Bay for three non-winter seasons. 
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Scenes in Figure 3-8 strongly suggested that large amounts of CDOM were transported 

by this river system to the lake waters. 

 

Figure 3-8: Spatial distribution of ag(440) across three different seasons in Saginaw Bay. 

In order to more closely examine CDOM spatial distribution from the river into 

Saginaw Bay, CDOM absorption at 440 nm for five non-consecutive months across three 

years was plotted (Figure 3-9) along transect 3 shown in Figure 3-1. The point locations 

along transect 3 were evenly distributed from the Saginaw River mouth out into the 

inner Bay at an interval of 1 km. Figure 3-9a shows that CDOM absorption decreased 

almost by a factor of four in 10 kilometers moving towards the inner bay. Similar data 

generated from September 2015 imagery for two additional transects (transect 1 & 

transect 2) is shown in Figure 3-9b. Both transects are oriented from east to west, 

roughly perpendicular to transect 3. Transect 1 is located near the Saginaw River plume 

region while transect 2 is located in the inner Bay region. The CDOM levels along the 

nearshore transect (transect 1) were two times higher than CDOM levels within the 

deeper inner bay (transect 2). 
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Two groups of the transects were further applied along the west and east coast, 

respectively (Figure 3-10). The transect started from north to east along the coastline at 

the interval of 1.5 km. In the Figure 3-10a, these transects were located near the east 

coast regions. The CDOM levels decreased from the nearshore regions to the inner Bay 

regions. CDOM peak levels in east transects were the small agricultural channels along 

the shore regions. In the Figure 3-10b, the transects were located near the west coast 

regions. Similar decreasing patterns were showed from the nearshore regions to the 

inner Bay regions. By combination analysis of all the transects in the Figure 3-10, we can 

find the CDOM decreased almost two times in the distance of 3 km from land to water. 

Meanwhile, CDOM values in the east coast were higher than west coast. 

 

Figure 3-9: CDOM spatial patterns in the Saginaw Bay. CDOM shows the decreased 
pattern from river plume regions to the inner Bay regions. 
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Figure 3-10: CDOM spatial dynamics in east coast regions and west coast regions. CDOM 
decreased 1 - 2 times in the distance of 5 km from nearshore regions to inner Bay 

regions.  
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CDOM spatial patterns derived from satellite images suggested that CDOM in the 

lake waters is significantly affected by terrestrial CDOM input via the Saginaw River. As 

the elevated CDOM levels associated with the discharge plume of the Saginaw River 

indicates, allochthonous CDOM from terrestrial sources is an important  CDOM source 

for lakes (Kelly et al. 2014; Kritzberg et al. 2004). Often, the major allochthonous CDOM 

source originates from watershed soil carbon leaching and its subsequent transport to 

the aquatic environment (Kalbitz et al. 2000b; Kindler et al. 2011; Major et al. 2010). 

Inland river systems provide the network for this transport of terrestrial CDOM to lakes 

and coastal ocean waters (Findlay et al. 2001). Similar as in Saginaw Bay, terrigenous 

CDOM was observed to be one or two magnitudes higher than the autochthonous 

carbon sources which had a high ratio of allochthonous to autochthonous DOM 

(Michalzik et al. 2001; Neff and Asner 2001). The allochthonous CDOM in the Saginaw 

River was almost two times higher than the CDOM in inner Bay region. The successful 

monitoring of CDOM spatial distribution using high spatial resolution remote sensing is 

significant in that it helps understand the mechanisms of how terrestrially derived 

CDOM modulates the lake water environment through land-water carbon cycling 

(Palmer et al. 2015; Toming et al. 2016). 

3.4.3 Lake water CDOM spatial variations affected by the terrestrial environment 

CDOM levels within aquatic ecosystems are significantly affected by the 

terrestrial sources of organic matter. To further analyze how terrestrial CDOM migrates 

to Saginaw Bay waters, we compared water CDOM levels in areas influenced by 

different landcover types. In Figure 3-11, one high CDOM concentration area was found 
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along the north coast of Saginaw Bay; this was also visible in Figure 3-8a & Figure 3-8b. 

This area of elevated CDOM was associated with the Wigwam Bay State Wildlife Area, 

which is dominated by coastal marsh plant species (Burton et al. 2002; Uzarski et al. 

2004). Figure 3-11 shows how significantly carbon associated with these coastal 

wetlands influences CDOM in the nearshore environment. The average CDOM 

absorption in the wetland influenced areas was 1.70 m-1 while the average of waters 

bordered by mixed agri-forest regions was 0.85 m-1. Moreover, the results in Figure 3-7 

and 3-9 showed the east coast of Saginaw Bay had relatively higher CDOM levels than 

the west coast. The east Bay shore had a higher percentage of agricultural farmland. 

However, the west Bay shore was dominated by mixed agriculture and forest. Another 

large wetland area along the shoreline of the Saginaw River is the Shiawassee National 

Wildlife Refuge (Figure 3-12). Similar to Saginaw Bay, river CDOM levels near the 

Shiawassee wetland region were significantly higher than surrounding regions. 

To further explore how biogeography influences CDOM in aquatic ecosystems, 

mean CDOM levels along the east coast (predominantly agriculture), west coast (agri-

forest mixed), Wigman Bay (wetland), Shiawassee wetlands (upstream Saginaw River) 

and Saginaw River plume regions were plotted (Figure 3-13). As outlined above, waters 

associated with coastal wetlands had the highest CDOM levels compared to that found 

in the agriculture and mixed agri-forest regions. The Shiawassee region had higher 

CDOM levels than that of Wigwam Bay, as might be expected due to the much larger 

size of the Shiawassee wetland area (Wigman = 3.64 km2, Shiawassee = 40 km2) and 

dilution of CDOM levels by Lake Huron. Lakes in the agricultural cropland regions had 
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higher CDOM levels compare to the lakes in the mixed agri-forest regions. The highest 

CDOM levels were again associated with the Saginaw River plume which receives 

contributions from a wide variety of landcover types including wetlands and agricultural 

croplands. 

 

Figure 3-11: CDOM seasonal dynamics in six different months in the north coast of 
Saginaw Bay. CDOM had higher values in the wetland habit affected waters than that 

was affected by agriculture. 

 

Figure 3-12: Comparision of CDOM associated with adjacent landcover types and 
seasonality in the Saginaw River region. Spring had higher CDOM than the other 

seasons. 
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Figure 3-13: CDOM values calculated from ArcGIS zonal statistics in different landcover 
effects regions. Boxplot diagrams show the 75th, median and 25th percentile of mean 

CDOM associated with five different landcover types regions. 

Our results indicate the Landsat-8 images is indeed applicable to the 

examination of the influence of biogeography on CDOM spatial variations. Previous 

studies confirmed the surrounding carbon sources from processes like plant material 

decay and soil carbon leaching contribute greatly to CDOM levels in river and lake 

environments (Boyle et al. 2009; Williams et al. 2010). Different landcover types play an 

important role in determining CDOM transportation from land to water (Butman and 

Raymond 2011). The lake CDOM levels in our studies showed the areas influenced by 

wetlands had the highest levels compared to the agricultural and mixed agri-forest 

regions across all seasons. The organic matter leached from persistent senescent 

wetland plant biomass was observed as an important CDOM source in the lake water in 
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a previous study (Maie et al. 2006).  Both the high density of wetland plants and their 

near water habitat contributed to the leaching of CDOM to the lake aquatic 

environment (Burton et al. 2002). 

However, in the water regions receiving carbon from inland agriculture and 

forest, CDOM is routed through longer paths, and often CDOM concentrations are 

reduced via degradation and dilution. In the Saginaw Bay regions, our results indicated 

ag(440) were slightly higher in agricultural dominated regions than that in mixed agri-

forest regions.  One possible reason for the phenomenon in Saginaw Bay might because 

the crop residues remaining after harvest in agricultural fields supply more abundant 

biomass in the topsoil than that of forest in the Saginaw Bay regions (Boyer and 

Groffman 1996; Laudon et al. 2011). Also, microbial activity in agricultural fields has a 

higher rate, making higher levels of CDOM available for transport, leading to higher 

CDOM levels than forest soils (Anderson and Domsch 1975; Dominy and Haynes 2002). 

In all, CDOM spatial distribution is modulated by both landcover type and human land 

use practices, such as farming. The CDOM monitored via Landsat 8 could provide 

insightful information that helps improve our understanding of effects of land use 

practices and land management on the terrestrial carbon input to the lakes and rivers 

(Yallop and Clutterbuck 2009).  

3.4.4 CDOM seasonal dynamics in the lake water environment 

The path/row designation and associated dates for all processed Landsat-8 

images of the Saginaw Bay (< 20% cloud coverage) were plotted in Figure 3-14a. These 

images spread well over time to monitor CDOM from March to the November. As 
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discussed above, high levels of cloud coverage and ice coverage limit the derivation of 

CDOM in late fall through winter. The CDOM levels in the Saginaw Bay derived from 

satellite images showed clearly seasonal dynamics. For instance, the CDOM values were 

illustrated in five different months had different CDOM levels (Figure 3-12).  

Figure 3-14b provides boxplot diagrams showing the 75th, median and 25th 

percentile of mean CDOM levels associated with different seasons. These mean CDOM 

values were derived in three different regions of Saginaw Bay through the ArcGIS zonal 

statistics for all the available CDOM results. Peak CDOM levels occurred in the spring 

associated with snowmelt and associated spring runoff (e.g., April 2015) and were two 

times higher than that of the other three seasons. This product coincides with the 

recently reported riverine CDOM dynamics in Michigan, particularly high spring CDOM 

fluxes, due to decomposition of agricultural residues and transport processes driven by 

snow melting (Tian et al., 2017). A secondary peak of CDOM level is evident in early fall 

and is associated with litterfall and the availability of crop residues on the landscape 

(e.g., September 2015, October 2013). The summer had the lower CDOM levels 

compared to the spring and fall (e.g., July 2013). Meanwhile, the winter months 

displayed the lowest CDOM values of the year. CDOM seasonal dynamics is related to 

the terrestrial CDOM supplies linked to seasonal changes to landcover and agricultural 

phenological cycles. 
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Figure 3-14: (a) The path/row designation and associated dates for all available Landsat-
8 images of Saginaw Bay study area with cloud coverage less than 20% from 2013 to 
2016. (b) Boxplot draws the 75th, median and 25th percentile of CDOM across three 

seasons. 

To further explore CDOM dynamics associated with the Saginaw River, CDOM 

levels in Saginaw River mouth were compared with its discharge volume (Figure 3-15). 

The comparison aims to investigate the effect of hydrology to further explain the 

seasonal dynamics of terrestrial CDOM export to Saginaw Bay. As one might expect, 

Figure 3-15 illustrates that CDOM levels were positively correlated to river discharge 

throughout the seasons. Large amounts of CDOM were exported from the land 

(allochthonous) to the river as the channel gathered runoff from watershed during 

periods of high discharge (Figure 3-15). The highest riverine CDOM value shown in 
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Figure 3-15 occurred in April 2013, the highest discharge across the four year period 

shown. Similarly, field observations by others link periods of high discharge to relatively 

elevated  CDOM levels (Battin et al. 2008; Evans et al. 2005; Hornberger et al. 1994). The 

highest relative river discharges occurred in the spring (Apr 2013, Apr 2014, March 2015 

and Apr 2015). Snowmelt in combination with elevated precipitation leads to the high 

river discharge in spring (Ågren et al. 2010). Moreover, during winter months, leaf litters 

and agricultural residues slowly decay and leach into the soil carbon reservoir. When 

snowmelt occurs, large amounts of soil carbon are mobilized and are finally exported to 

the aquatic ecosystem (Haei et al. 2010; Qiao et al. 2017). All these reasons lead to the 

highest water CDOM in the spring. During the fall, the breakdown of fresh litterfall 

would cause relatively high soil carbon levels (Kalbitz and Kaiser 2008). These new 

carbon sources result in elevated CDOM in the fall (Oct 2013, Oct 2014 and Nov 2015).  

Interestingly, an anomaly occurred during the winter of 2015, for its CDOM levels 

were elevated compared to other winters shown. This pattern was likely caused by 

historically warm winter temperatures in 2015, leading to both the Saginaw River and 

Saginaw Bay being ice-free for an abnormally long period. We assume that an unfrozen 

river and watershed acts as a better conduit for CDOM (Jan 2016) than what is typically 

expected during winter months. The river systems could more effectively transport the 

terrestrial CDOM to Saginaw Bay. Our CDOM absorption derived from the satellite 

images illustrates that land-water carbon exchange was significantly affected by the 

hydrology. 
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Figure 3-15: Landsat image CDOM absorption versus discharge at the Saginaw River 
mouth from January 2013 to April 2016. 

3.4.5 CDOM spatial and temporal dynamics in the NE lakes 

A similar analysis of CDOM spatial patterns was performed on 14 northeastern 

lakes and the Great Bay estuary complex across the diverse landscapes in which they 

reside (Figure 3-16). Like Saginaw Bay, CDOM spatial distributions across the 

northeastern region were highly affected by the terrestrial biogeography. In Lake 

Champlain, several Bay regions (Missisquoi Bay, Saint Albans Bay, Malletts Bay and 

South Bay) and Richelieu River plume region had relatively high CDOM levels than their 

inner lake regions (Figure 3-17). In general, CDOM absorption was highest in the 

northern regions of Lake Champlain, an area associated with a large zone of agricultural 

along this coastline. Similarly, the southern New Hampshire lakes (Baxter Lake, Swains 

Lake, Northwood Lake and Brindle Lake) had much higher CDOM absorption than the 

northern New Hampshire lakes (Lake Winnipesaukee, Newfound Lake, Webster Lake, 

Pleasant Lake and Sunapee Lake). This trend was attributed to the high proportions of 

agricultural farmland in Southern New Hampshire, which provide transportable carbon 

across the landscape.    
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Figure 3-16: CDOM levels in 14 northeastern USA lakes and Great Bay estuary complex. 
Note that Lake Champlain was color displayed with derived CDOM absorption from a 
single image of Sep 2014. All other smaller lakes display their average CDOM levels 

derived from August 2014-15 or September 2014-15. 

The data associated with the northeastern freshwater lakes and Great Bay 

estuary complex were also processed to further investigate the seasonal dynamics of 

waterbody CDOM and the transferability of the SBOP algorithm from region to region. 

We found that CDOM levels followed similar seasonal patterns as in Saginaw Bay/Lake 

Huron (Figure 3-17). As these images of Lake Champlain illustrate, CDOM levels were 

lowest in the summer months (Jun 2016) than in the spring (May 2014) and fall (Sep 

2014). Similar patterns were observed for the Great Bay estuary complex (Figure 3-18). 

Analogous to the trends shown in Saginaw Bay, CDOM absorption was lowest in the 

summer (July 2015, Aug 2015) and elevated in the spring (Apr 2015) and fall (Oct 2014, 

Nov 2015). Just as in the Saginaw Bay region, CDOM released from the fresh autumn 
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leaf litters, and agricultural residues were transported into the lakes and estuary, 

influencing elevated CDOM levels. Also, snowmelt in the spring would transport 

relatively large amounts of soil originated CDOM into the aquatic environment. Similar 

patterns across all of the data presented illustrate that the methodology presented can 

indeed be applied in different ecoregions and that inland waterbody are highly affected 

by the seasonal CDOM variations. 

 

Figure 3-17: CDOM absorption of Lake Champlain across three different seasons. The 
Bay regions and Richelieu River plume region had higher CDOM absorption than inner 

Lake. 
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Figure 3-18: CDOM seasonal dynamics in the Great Bay estuary complex and 

surrounding rivers. 

3.5 Conclusions 

This study presented an application of a new semi-analytical algorithm, 

previously validated with field spectroradiometer data, to Landsat-8 OLI imagery for 

improving CDOM retrieval in optically shallow inland waters with relatively homogenous 

bottom sediment. The investigation was supported with sufficient satellite images and 

in situ field measurements collected over varying seasons across multiple years from a 

broad range of lake and estuary ecosystems. Our research achievements include:  

1) Improved CDOM estimation accuracies for optically shallow waters via the 

SBOP algorithm benchmarked against an algorithm not considering of bottom 

reflectance. Separating bottom reflectance from other radiance pathways in the SBOP 

algorithm improved the estimation of CDOM for inland optically shallow waters.  

2) The CDOM estimation algorithm was robust and consistent across a broad 

range and varied sizes of freshwater ecosystems and the Great Bay estuary complex. 

The results validation highlighted the transferability and scalability of our methodology. 

The extensive validation convinced that the algorithm is proficient in adapting to a 

broad range of aquatic environment. 
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3) Landsat-8 OLI imagery provides sufficient spatial (30 m), spectral (i.e., 443 nm, 

482 nm, 561 nm, and 654 nm) and radiometric resolution required for retrieving CDOM 

levels for both optical shallow and deep inland waters. It enables high spatial resolution 

mapping of CDOM gradient from lower reaches of a river, shoreline, to open water. 

Consequently, monitoring the allochthonous CDOM transportation from terrestrial to 

aquatic ecosystems will improve our understanding of land-water carbon cycles.  

4) Examination of CDOM seasonal variation coupled with terrestrial 

biogeography and related hydrology has great potential to help improve our 

understanding of aquatic ecology and land-water carbon cycle dynamics. CDOM spatial 

distribution and loading at the land-water interface is found coupling with the type and 

abundance of the terrestrial plant sources in the adjacent ecosystem. Moreover, the 

CDOM temporal variation correlated well to the river hydrographs for spring, summer, 

and fall. This conclusion is encouraging to study to what extent upland hydrology can 

influence the CDOM loading from land to water. 
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CHAPTER 4  
 

RIVERINE CDOM DYNAMICS REMOTE SENSING ESTIMATION IN SIX LARGE ARCTIC  
 

RIVERS 
 
 
4.1 Abstract 

Terrestrially derived CDOM export to the Arctic Ocean is impacted by the global 

environmental change. This CDOM transport also had important effects on the carbon 

exchange at the land-water interface of Arctic regions. Previous monitoring of CDOM in 

the remote regions relied on the field samplings which was limited by both the temporal 

frequency and the spatial coverage. Using satellite remote sensing to estimate CDOM in 

the Arctic rivers provides an efficient approach for studying the CDOM transport from 

land to the Arctic Ocean. Exports of CDOM to the Arctic Ocean through six Arctic Rivers 

(Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were derived from 2013 to 2016 

based on the satellite image derived results. Satellite-derived CDOM levels were at high 

accuracy (RMSE = 0.10 and R2 = 0.87) in the large Arctic rivers. We found that the input 

of terrestrially derived CDOM to the Arctic Ocean was significantly dominated by the 

river discharge. We discovered the changing of landcover types, temperature, 

precipitation, and changing of permafrost in Arctic regions would impact the riverine 

CDOM dynamics.  

4.2 Introduction 

The arctic environment has been greatly impacted by the recent global climate 

change (Schuur and Abbott 2011). The air temperature increasing rate in the pan-arctic 
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regions is almost two times higher than the global mean value (Screen and Simmonds 

2010). If we focus on the temperature increasing rate in the Alaska region, we could find 

the annual mean air temperature has increased by 0.29 °C during the last decade 

(Romanovsky et al. 2007). Along with the rising temperature, River discharge of the 

Arctic Rivers had increased in the past century (McClelland et al. 2006). Previous studies 

had revealed that in the 2000s, total riverine freshwater discharge had increased by 128 

km3/year (7%) compared the 1950s (Peterson et al. 2002). Meanwhile, the global river 

discharge studies also suggested that the Arctic rivers had the world highest discharge 

rate than the other global regions (McClelland et al. 2012; Milliman et al. 2008). A large 

quantity of freshwater was transported through the Arctic rivers to the Arctic Ocean. 

This increase of river discharge was thought to be contributed by multiple changing 

environmental factors, like the global warming, decrease of the snow cover in the Pan-

Arctic regions, landcover change in the arctic terrestrial environment, and permafrost 

degradation (Kicklighter et al. 2013). Under these multiple changes, both the models 

and field observations suggested that the Arctic is becoming warmer and wetter in the 

future (McClelland et al. 2004; Nohara et al. 2006; Rawlins et al. 2010; Wu et al. 2005). 

All these environment changes would lead to the change of terrestrially derived CDOM 

export to the Arctic Ocean through the Arctic river systems (Schuur et al. 2008).  

CDOM in the Arctic rivers systems could be applied as one indicator to trace the 

terrestrial DOC input from land to the Arctic Ocean. The previous study confirmed that a 

substantial amount of organic carbon in the higher latitude was stored in the soils and 

peatlands (Raymond et al. 2007). This large amount of soil carbon storage accounted 
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nearly half of the global soil carbon (Zhulidov 1997). Furthermore, over 80 percentages 

of the soil carbon were thought to store in the permafrost soils (Tarnocai et al. 2009). 

Therefore, both the warming weather and increasing discharge raised the concerns of 

soil-stored carbon input to the Arctic Ocean (Holmes et al. 2008). The large Arctic Rivers 

would play a significant role in altering the carbon cycle by transporting this terrestrial 

carbon from land to the Arctic Ocean (Mann et al. 2017). Arctic Rivers almost account 

for more than 10% percentages of freshwater discharge globally (Raymond et al. 2008). 

And the Arctic Ocean also received more than 10 percent of the terrestrial DOC delivery 

to the global oceans within only 1 percent of global ocean volume (Stein and Macdonald 

2004). The DOC loading to the Arctic Ocean was thought higher than all the other global 

ocean basins (Cooper et al. 2005). Specifically, six major Arctic Rivers account for the 

majority of both freshwater and terrestrial carbon inputs to the Arctic Ocean, so more 

attentions have been attracted to study the large Arctic Rivers. 

Riverine CDOM input to the Arctic Ocean also had multiple effects on the 

physical, biology and chemistry environment conditions (Arrigo and van Dijken 2015; 

Fichot et al. 2013; Matsuoka et al. 2015). CDOM was the photoactive portions of DOM, 

and it had strong absorption at ultraviolet and blue bands. The increase of terrestrially 

derived CDOM input to the Arctic Ocean would affect the water optical depth in the 

Arctic shelf regions (Stedmon et al. 2011). Both phytoplankton and seagrass in the 

benthic would be affected by the change of the underwater light field (Larkum and 

Wood 1993). Serving at the important organic sources, increasing supply of CDOM to 

the Arctic Ocean would impact the primary productivity in the regions, particularly 
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phytoplankton biomass (Thingstad et al. 2008). Moreover, the change of the 

underwater light field would lead to the change of the heat budget at the Arctic coastal 

waters (Granskog et al. 2007). High CDOM in the coastal waters would lead to strong 

absorption of solar energy in the Arctic surface waters. In summary, riverine CDOM 

estimation in the Pan-Arctic regions had significant implications to the Arctic terrestrial-

aquatic environments. 

Terrestrially derived CDOM input to Arctic Rivers need to be monitored at high 

spatial and temporal resolutions for offering supportive information for the carbon 

cycle, biogeochemical cycle and ecological processes studies. Previous studies in the 

Arctic Rivers largely relied on the field sampling to measure the water conditions Due to 

the accessibility challenge in the Arctic regions, data were also very limited in terms of 

spatial coverage and temporal frequency. Therefore, remote sensing technology 

provides large potentials for studying the CDOM spatial-temporal dynamics. However, 

there were no comprehensive studies to derive CDOM information in the Arctic Rivers 

based on satellite images. In this chapter, I applied the new Shallow water Bio-optical 

Properties algorithm (SBOP in chapter 2) and high-resolution satellite images (Landsat-8 

CDOM estimation approach in chapter 3) to retrieve the CDOM spatial-temporal 

dynamics in six major Arctic rivers. All the available Landsat-8 images from 2013 to 2016 

covering the river mouth regions were processed. Multiple environmental and 

landscape factors of their watersheds were investigated to infer their association to 

CDOM loading.   
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4.3 Method   

4.3.1 Study sites 

Six large Arctic Rivers in the Pan-arctic regions were selected as study sites, i.e., 

Lena, Mackenzie, Kolyma, Ob’, Yenisey and Yukon Rivers (Figure 4-1, Table 4-1). The 

Lena river located from mid-latitudes to the Arctic Ocean (Yang et al. 2002). Almost 15% 

of the freshwater discharged to the Arctic Ocean were contributed by the Lena River 

(Peterson et al. 2002). Major part of the watershed were underlined by permafrost 

(Boike et al. 2013). Mackenzie river had the longest length in Canada, and it has the 

second largest watershed area in North America (Aziz and Burn 2006). The majority 

watershed regions of Mackenzie river were underlined by discontinuous and continuous 

permafrost. Kolyma rivers located in the northeastern Siberia (Mann et al. 2012). The 

watershed of Kolyma River is completely underlined by the permafrost. Ob’ river is in 

the western Siberia (Biancamaria et al. 2009). It had lower permafrost compared to 

other large Arctic Rivers in Siberia. Yenisey river is in the center of Siberia. The Yenisey 

River is one of the largest river systems which are discharged to the Arctic Ocean 

(Melnikov et al. 2003). Nearly half of the watershed were coved by permafrost (Yang et 

al. 2004). Yukon River is a major river in North America. More than half of the 

watershed was the discontinuous and continuous permafrost (Spencer et al. 2008).  

Multiple datasets were gathered in Arctic rivers to study the CDOM dynamics. 

The field sampling CDOM absorption and river daily discharge are obtained from Arctic 

Great Rivers Observatory project (Holmes et al. 2015; Mann et al. 2016). Landsat-8 

satellite images are downloaded from USGS earth explorer website. Both mean surface 
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temperature and mean precipitation are from University of Delaware Air Temperature & 

Precipitation v4.01 dataset (Willmott 2000). Permafrost coverage data are downloaded 

from National Snow & Ice Data Center (Brown et al. 2002). At last, landcover data are 

generated by Global Land Cover Facility (Friedl et al. 2010). 

Table 4-1: Parameters for the major Arctic Rivers 

River Length (km) Watershed Area (km2) 

Lena 4,400 2,400,000 
Mackenzie 1,700 1,800,000 

Kolyma 2,100 650,000 
Ob’ 3,650 2,970,000 

Yenisey 3,438 2,580,000 
Yukon 3,190 850,000 

 

 

Figure 4-1: Six large Arctic rivers, of this chapter.    
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4.3.2 CDOM estimation from satellite images 

Landsat-8 satellite images were selected in this chapter to derive the CDOM 

dynamics in six Arctic Rivers. The relative high spatial resolution of 30 m ensured the 

large Arctic rivers could be detected from the satellite images. In this chapter, all the 

available Landsat-8 images for covering the field sampling sites (Artic-GRO project) were 

downloaded to derive the CDOM absorption. The locations of the field sampling sites in 

Arctic-GRO were plotted in Figure 4-1. From 2013 to 2016, a total of 120 Landsat-8 

images were acquired for processing. CDOM retrieval consists of the following steps: 1)  

atmospheric correction for water region, 2) water extent derivation based on NDWI 

(Normalized Difference Water Index), 3) interpolation of SBOP required remote sensing 

reflectance bands, and 4) SBOP algorithm processing (Figure 4-2). The details of the 

satellite processing and SBOP algorithm were described in previous two chapters 

 

Figure 4-2: The processing flow of CDOM estimation based on Landsat-8 satellite 
images, mainly including atmospheric correction, water body identification, and SBOP 

algorithm processing. 
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4.4 Results and Discussions 

4.4.1 CDOM satellite estimation validation across Pan-Arctic Rivers  

CDOM absorption derived from Landsat-8 satellite images were validatd with 

ground-truth data collected by the Arctic-GRO project. Total of 13 satellite images were 

selected to compare with the field measures. The selected images were in July 2013 for 

the Lena River, in June 2013 and June 2014 for the Mackenzie River, in May 2013 and 

August 2014 for the Ob’ river, in May 2013, July 2013 and August 2014 for the Kolyma 

river, in September 2013 and June 2014 for the Yenisey River and in May 2013 and June 

2013 for the Yukon River. The selection of satellite images was based on the smallest 

temporal gap between sampling date and satellite image acquisition date.  

Figure 4-3 illustrated the comparisons between the satellite image derived 

CDOM absorption at 440 nm and field measured values. SBOP algorithm successfully 

derived the CDOM absorption at broad ranges of CDOM levels and spatial locations, 

from low CDOM absorption rivers (e.g., Kolyma river) to medium (e.g., Yukon river), and 

high CDOM absorption rivers (e.g., Lena river and Ob’ river). Almost all the dots are near 

the 1:1 line in the Figure 4-3. Both R2 and RSME demonstrated CDOM absorptions were 

estimated with high accuracy (R2 = 0.87 and RSME = 0.10). Only one image derived at 

Ob’ river site appears to significantly underestimate the CDOM.  Overall performances 

of our method could ensure the solid CDOM absorption results for the analysis.  
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Figure 4-3: The results validation in six large Arctic Rivers. 

4.4.2 CDOM spatial patterns in different Arctic rivers 

CDOM spatial and temporal dynamics were derived from Landsat-8 satellite 

images. The high spatial resolution allows to capture the shape and extent of Arctic 

Rivers. Figure 4-4 showed spatial patterns of CDOM in six different Arctic rivers. In 

contrast to CDOM gradient observed at lower latitude rivers, CDOM levels are shown 

near constant and homogeneous patterns. High CDOM concentrated in the mainstream 

of the rivers for all rivers, much higher than the sub-stream. For instance, CDOM in the 
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mainstream of Lena river was almost two times higher than substream. High CDOM 

were also observed in Yukon river’s wide mainstream, opposed to low in narrow 

tributaries. A large amount of terrestrial CDOM from upland watershed was delivered to 

the ocean through the mainstreams of the large rivers.  

All the six Arctic rivers had relatively high CDOM absorption as illustrated; mostly 

higher than 2.0 m-1. The highest CDOM (~ 5 m-1) was showed in the Lena river. For all the 

six Arctic Rivers, CDOM absorption was estimated near the estuary regions. These 

regions locate close to the Arctic Ocean. Therefore, the satellite derived CDOM could 

represent the riverine CDOM input to the Arctic Ocean. 

 

Figure 4-4: Spatial patterns of CDOM in six different Arctic rivers. Both the mainstream 
and tributaries were captured by the high spatial resolution of Landsat-8 images (30 m). 

CDOM absorption in the mainstreams of rivers had obviously higher value than 
tributaries. 
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CDOM information in Figure 4-4 was selected in late July or early August in 

different rivers. At the close time period, individual Arctic rivers showed different CDOM 

levels. High CDOM rivers were Lena, Ob’ and Mackenzie rivers, and relatively low CDOM 

rivers were Kolyma and Yenisey rivers. These satellite-derived results were consistent 

with previous field studies (Amon et al. 2012; Holmes et al. 2012; Mann et al. 2016).  

Boxplot of both field sampling data (from 2012 to 2014) and satellite image 

derived results (from 2013 to 2016) were plotted in Figure 4-5. Top of the box 

represents 25% percentiles of the CDOM values and bottom of the box represents 75% 

percentiles of the CDOM values. The red line in the middle represents the median values 

of CDOM. We found the extreme high CDOM absorption value was in Lena river with 

the values of ~11 m-1. This CDOM value is nearly 3 m-1 higher than the other rivers’ 

highest values.  All the other rivers had the highest values around 7 m-1 to 7.5 m-1. 

However, these abnormally CDOM peak values didn’t frequently occur in the Arctic 

Rivers, especially in Kolyma and Yenisey rivers. Lena, Ob’ and Mackenzie rivers had 

higher median values than the other rivers. Most of the CDOM values in these three 

rivers were higher than other Arctic rivers. Yukon and Yenisey were the second group in 

CDOM absorption. Kolyma river had lowest CDOM both in median values and total 

ranges of CDOM values. In summary, CDOM absorption at different Arctic rivers could 

be ranked as high CDOM group (Lena, Ob’ and Mackenzie), medium CDOM group 

(Yukon and Yenisey) and low CDOM group (Kolyma) as shown by both satellite image 

derived and field measured results. Moreover, all the Arctic rivers had similar CDOM 
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range between 25 to 75 percentile, about 3 m-1 to 5 m-1.  Six different Arctic rivers 

showed distinct patterns of CDOM absorption. 

 

Figure 4-5: Box plots of six different Arctic rivers CDOM absorption at 440 nm. Both 
satellite images derived values and field measurement values were aggregated for a 

bigger sample size for comparison. 

4.4.3 Seasonal dynamics of Arctic riverine CDOM absorption 

CDOM seasonal dynamics derived from satellite images for six different Arctic 

rivers were illustrated from Figure 4-6 to Figure 4-11. The CDOM information was 

selected to show in different months with low cloud coverage. All CDOM peak values in 

individual Arctic rivers appeared in spring season (June). CDOM absorption in spring 

showed much higher values than all other seasons. For instance, for the Kolyma river in 

Figure 4-6, CDOM absorption in June was two times higher than May. It was 1.5 times 

higher than August. In Mackenzie river, high CDOM absorption in June had almost four 
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times higher values than October. The similar CDOM seasonal patterns were also 

observed in Yukon river. Similar, The Ob’ rivers showed highest CDOM values and widest 

river width in the spring season. All the CDOM absorption in Arctic river had highest 

values in spring season (Kicklighter et al. 2013). These annual high CDOM peak 

happened within the snowmelt (or ice break) in June of the Arctic rivers.  

After the spring, the CDOM decreased to relatively constant levels in the 

summer season. For instance, in Kolyma river, CDOM had similar levels both in July and 

August. CDOM absorption in Yenisey river had constant values in Yukon river after the 

high peak in spring. During the summer season, with relatively constant hydrology and 

watershed environment, CDOM absorption in different Arctic rivers often didn’t exhibit 

distinct variations. After the summer, several rivers had shown second CDOM peak in 

the fall. For instance, in Lena river, the CDOM absorption in late September had high 

values. These might be caused by the contribution of fresh leaf litters in the watersheds 

(Qiao et al. 2017). This high CDOM in the fall season was most notable in Lena river, 

because large portions of landcover were the forest with high leaf litters biomass (Amon 

et al. 2012). All the CDOM absorption decreased to the lowest values in late fall and 

winter (from October to April). Generally during the winter, the river freeze and high 

cloud conditions obstructed a frequent monitoring. We could still find that CDOM 

absorption in Mackenzie river had obviously lower values in October under partial 

freezing conditions (Figure 4-8). In the Yenisey river, the lowest values were also found 

in November where half of the river was frozen. All the riverine CDOM in large Arctic 

rivers had similar seasonal dynamics, i.e., peak values in spring and the lowest values in 
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winter. Especially, high riverine CDOM in spring contributes the major CDOM delivery to 

the Arctic Ocean 

 

Figure 4-6: CDOM absorption at Kolyma River in five different months. CDOM transport 
peak was in spring. 

 

 

Figure 4-7: CDOM absorption in Lena river in five different months. A large amount of 
terrestrial CDOM was carried through the mainstream of the Lena River. 
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Figure 4-8: CDOM absorption in the Mackenzie River. The frozen condition in late fall 
significantly decreased the CDOM input to the Arctic Ocean through the river system. 
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Figure 4-9: CDOM absorption values in the Ob’ River. The spring flood of the river would 
largely increase both the CDOM and freshwater input. 
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Figure 4-10: CDOM absorption in four months of Yenisey River. The Yenisey River had 
relatively low CDOM absorption comparing with other Arctic Rivers. However, it still 

transported a large quantity of CDOM due to its high river discharge. 

 

 

Figure 4-11: CDOM absorption in four different months of Yukon River. CDOM in the 
Yukon River also showed obviously peak in snowmelt season. 
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4.4.4 River discharge controlling on CDOM input from land to the Arctic Ocean  

CDOM seasonal dynamics are highly impacted by the river discharge in six Arctic 

rivers. All the CDOM levels from field sampling measurements and satellite image 

derived results were compared with daily discharge data in Figure 4-12. We found most 

of the Arctic riverine CDOM were positively related to the river discharge. High river 

discharge is associated to high CDOM in all the six rivers. For instance, the highest 

CDOM values were in the Lena river (10 - 11 m-1). At the same time, it obtains highest 

discharge values (80,000 - 150,000 m3/second) among with the Arctic rivers. The 

medium riverine CDOM river was the Mackenzie river with CDOM absorption ranging 

between 4 m-1 and 6 m-1 and discharge ranging between 20,000 and 40,000 m3/second. 

Meanwhile, the Kolyma river had the lowest CDOM absorption of 0.5 m-1 and the lowest 

discharge less than 20,000 m3/second in the pan-Arctic regions. By comparing across 

these rivers, we found the mean CDOM levels were ~2.5 times higher in high discharge 

rivers (Lena = 5.16 m-1, Ob’ Rivers = 5.05 m-1) than low discharge river (Kolyma = 1.96 m-

1). 

In addition to the ordinal rank, CDOM and discharge relationship follows a 

positive linear correlation at each river from the high discharge river (Lena, Yenisey) to 

the low discharger rivers (Kolyma). For instance, some high CDOM absorption values in 

Lena river were 3-4 times higher than the low CDOM one. Meanwhile, these high CDOM 

events also had nearly three times higher discharge rate than others. Although the 

CDOM absorption Kolyma river was much lower than the other rivers. The positive 

relationship between CDOM absorption and river discharge was also observed. In 
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Kolyma River, the high CDOM absorption (~ 1.5 m-1) was related to the high river 

discharge (20,000 m3/second). Other rivers (Yukon, Mackenzie, Ob’ rivers) also showed 

similar relationship between CDOM and river discharge. Overall, the high river discharge 

leads to the high riverine CDOM. Moreover, the total CDOM flux transported by the 

Arctic rivers is determined by both concentration/level and river discharge. Ultimately, 

high discharge river would have dominated impact on the terrestrial CDOM input to the 

Arctic Ocean. 

 

Figure 4-12: CDOM absorption versus river discharge in six large Arctic Rivers. High 
discharge values lead to the high CDOM absorption in the river waters. 
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CDOM absorption and daily river discharge data were compared in Figure 4-13 to 

analyze how riverine CDOM responds to high frequency river flow. First, one notable 

phenomenon is that all the rivers had much higher CDOM levels during the spring than 

all the other seasons. For instance, in Lena river, all the annual CDOM peak 

concentrated at the beginning of the ice-out spring season. Several high CDOM values 

were above 9 m-1. In Kolyma river, all the obviously high CDOM values were in the high 

discharge spring season. Also, all the other large Arctic rivers showed a similar pattern 

that high riverine CDOM was carried during the snowmelt spring. This phenomenon 

reveals that the majority terrestrial CDOM was transported through the significant high 

river flow of snowmelt waters during a short period (Qiao et al. 2017). These results 

were consistent with the previous studies that almost 60% of terrestrial DOM were 

transported in spring in the Arctic regions (Raymond et al. 2007; Stedmon et al. 2011). 

During the snow and ice melt spring, the snowmelt water carried a large amount of 

terrestrial-derived CDOM to the rivers (Perdrial et al. 2014). This terrestrial derived 

CDOM included both annual new litter contributed DOM and soil storage DOM (Feng et 

al. 2013; Matsuoka et al. 2017; Yang et al. 2015). Moreover, the relatively high 

precipitation to the Arctic river watershed during the spring led to high leaching of soil 

DOM (Sinha et al. 2017).   

Future projected temperature rise and discharge increase would enhance both 

CDOM and freshwater input to the Arctic Ocean (Bintanja and Selten 2014). This 

increase of CDOM input based on both ice-out water in spring and constant water 

transport in the other seasons. For the spring ice-out water, global increasing 
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temperature and rising precipitation would lead to the increasing of snowmelt water 

(Wu et al. 2005). The increase of spring discharge would lead to significantly high CDOM 

input to the Arctic Ocean, especially for the high discharge dominated river like Lena 

river and Ob’ river. The increase of CDOM input would also be attributed to the constant 

river discharge rising in the other season. The previous study showed a large portion of 

discharge increase were contributed by the increase of daily discharge (Kurylyk et al. 

2014; Smith et al. 2007). Increase of CDOM input would be specifically notable in 

Yenisey river which had relatively constant CDOM levels during the whole year (Figure 

4-13). Along with its high discharge rate, the Yenisey river could obviously elevate its 

CDOM loading to coast with the future increasing discharge. Overall, this projected 

increase of freshwater CDOM will change Arctic environment through impacting of 

underwater light penetration, changing photochemistry to affect primary productivity, 

and altering carbon cycle at Arctic regions (Matsuoka et al. 2017; Stedmon et al. 2011).    
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Figure 4-13: Daily river discharge values and CDOM absorption in the Arctic river waters. 
CDOM showed seasonal dynamics which is controlled by the river discharge. 
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4.4.5 Multiple environmental impact factors on Arctic riverine CDOM  

Terrestrial derived CDOM accounts for large portion of riverine CDOM in Arctic 

Rivers (Walker et al. 2009). Multiple terrestrial environment factors affected the CDOM 

input from land to water through different ways. These terrestrial environmental factors 

could be landcover types, changing of permafrost soils, temperature, and precipitation. 

First, for the landcover types, the previous studies have proved that the decomposition 

of vegetation litters was important sources for the CDOM in the river systems (Spencer 

et al. 2009; Vodacek et al. 1997). Different landcover types in the watershed would 

contribute to the CDOM in the large Arctic rivers (Figure 4-14). For instances, the 

Kolyma river has the a major landcover type of shrub tundra which obviously lowers 

biomass as terrestrial DOM sources compared to forest and agriculture. Meanwhile, the 

Ob’ river has high CDOM with the medium river discharge rate because of multiple 

terrestrial CDOM sources. These multiple sources were wetland, forest, and agriculture. 

The wetland landcover particularly contributes a large amount of CDOM to the waters 

(Chen and Jaffé 2014).  

Studies had shown the dramatic landcover changes in the Pan-Arctic regions 

because of the rise of global temperature and decreasing of snow cover (Pearson et al. 

2013). These change of landcover was represented as the change from the low biomass 

shrub tundra to the high biomass woody cover in the Pan-Arctic. We also found increase 

of forest landscape in the major Arctic river watersheds (e.g., Kolyma +4%, Mackenzie 

+8.76, Yenisey +3.4%) from the analysis of the MODIS landcover from 2004 to 2012. The 

future projected increase of forest landcover type in the Arctic regions would contribute 
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to the rise of CDOM input from land to the Arctic Rivers. This increase of woody cover 

will contribute a large amount of litter biomass originated CDOM (Verstraeten et al. 

2014).   

 

Figure 4-14: Mean riverine CDOM versus watershed landcovers. Forest landcover types 
contributed a higher amount of CDOM to the river systems than the shrub tundra 

landcover. 
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Precipitation was also an important factor on the terrestrial CDOM input to the 

Arctic Rivers. River discharge is highly associated with the precipitation. The river water 

was contributed by both the surface runoff and groundwater input. One important 

source of groundwater input was caused by the precipitation penetrating through the 

soil. Therefore, both the surface runoff and groundwater input would be accelerated by 

the precipitation (Stedmon et al. 2011). Meanwhile, the rainwater would carry the 

CDOM from vegetation and soil through the surface runoff and water penetrating. This 

phenomenon is most obviously seen in the watershed regions of Lena and Ob’ rivers 

watershed (Figure 4-15). The higher precipitation in these two watersheds might be one 

of the reasons for high CDOM in the rivers. To the contrary, both the precipitation and 

CDOM in Kolyma river had lowest values comparing to other Arctic rivers. Moreover, the 

future projected global rising precipitation might further increase the terrestrial derived 

CDOM input to the Arctic Ocean (Sinha et al. 2017).    
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Figure 4-15: Mean riverine CDOM versus mean precipitation of the watersheds. Higher 
precipitation leads to higher CDOM absorption in the rivers. 
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Global rising temperature had an important effect on the CDOM input through 

the river systems. Rising temperature could contribute to CDOM input through its 

impacts on multiple changings, like rising river discharge contributed by snowmelt, 

changing landcover types in watersheds. Meanwhile, temperature also directly 

impacted the leaching of terrestrial CDOM to the water. For instance, temperature is 

important for controlling the degradation of vegetation litters for producing CDOM. The 

high temperature could lead to high microbiology productivity for accelerating the 

vegetation degradation (Dainard and Guéguen 2013; Watras et al. 2011). For instance, 

the lowest mean temperature in Kolyma river also had low CDOM (Figure 4-16). Again, 

both the high CDOM rivers (Lena and Ob’) showed the relatively higher temperature 

comparing to the other rivers. At last, one urgent terrestrial environmental changing 

caused by increasing global temperature in Pan-Arctic regions was the thawing of 

permafrost soils (MacDougall et al. 2012). Thawing of permafrost soils would cause the 

leaching of aged carbon from soil to the rivers (Butman et al. 2015). We found most 

watershed regions were covered by different levels of permafrost. The thawing of 

permafrost would lead to the significantly rising of terrestrial carbon from land to the 

Arctic ocean.   
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Figure 4-16: Mean air temperature and mean riverine CDOM in six Arctic rivers. 
Temperature affected the terrestrial CDOM input to the rivers through its multiple 

impacts on both terrestrial and aquatic environment. 
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Figure 4-17: Permafrost extent and mean riverine CDOM in the Arctic regions.  
Continuous permafrost regions had the low CDOM in the rivers. 
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4.5 Conclusion 

CDOM was transported from terrestrial environment to the Arctic Ocean 

through large Arctic rivers. CDOM spatial and temporal dynamics monitoring via Landsat 

8 has significant meaning in carbon cycle assessments in Arctic Region. This chapter 

applied SBOP on Landsat-8 OLI images to derive CDOM absorption in the six large Arctic 

rivers. The performance evaluations (RMSE = 0.10 and R2 = 0.87) demonstrated that this 

approach could be successfully applied to the large Arctic Rivers. SBOP algorithm was 

designed to accurately derive CDOM absorption levels by separating bottom reflectance 

from total water-leaving radiance. It significantly improved the performance of CDOM 

estimation in optically shallow waters. And Landsat-8 OLI imagery is well suited for 

CDOM monitoring at the land-water interface. 

CDOM absorption derived from satellite images via the SBOP algorithm exhibited 

clear spatial patterns across space and time. These results illustrate that our algorithm 

can indeed be applied to monitoring the allochthonous CDOM transportation from land 

to the Arctic Ocean. The identify of this allochthonous CDOM input via satellite images 

will ultimately contribute to our better understanding of land-water carbon cycle in 

Arctic Regions. 

Our results illustrate the watershed landcover types have a very important 

influence on the riverine CDOM variations. Watershed landcover characteristics are 

important factors associated with the riverine CDOM. Moreover, Landsat-8 OLI imagery 

also provides the relatively high temporal coverage for the estimation of seasonal 

dynamics. Our results show the terrestrial CDOM transport into the Arctic Ocean 
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displayed clearly seasonal dynamics. Moreover, CDOM input was highly controlled by 

the river discharge. Both snowmelt and precipitation contributed to terrestrial CDOM 

transport to the Arctic Ocean. 

In summary, our study confirms that the remote sensing can be used to monitor 

CDOM at the land-water interface of Arctic Ocean. The results had both high spatial and 

temporal resolutions. The combination of SBOP algorithm and widely available Landsat-

8 OLI imagery present the opportunity to better understand CDOM dynamics in Arctic 

rivers. 
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APPENDIX A 

MAJOR MATLAB CODE FOR SBOP 

 
The Keycode for the SBOP algorithm 

%input filename and header here 

envifile = 'Image.dat'; 

enviheader = 'Image.hdr'; 

  

%read samples,lines,etc from header file 

[samples, lines, bands, dataType, interleave, byteOrder] = 

... 

      read_envi_header(enviheader); 

  

%read the image with multibandread as  

image = multibandread ... 

(envifile, [lines,samples,bands], 'single', 0, interleave, 

'ieee-le'); 

  

image = double ( image ); 

  

%processing begin here: 

band1 = image (:, :, 2); %442nm 

band2 = image (:, :, 3); %482nm 

band3 = image (:, :, 4); %561nm 

band4 = image (:, :, 5); %654nm 

 

%set three bands to record the information 

band6 = zeros(lines,samples); %bottomref555 

band7 = zeros(lines,samples); %cdom 

band8 = zeros(lines,samples); %depth 

  

% set water aw and bbw in exp value 

% aw xdata1 

aw = [0.00635 0.0127 0.0619 0.37];  

  

% bbw xdata2 

bbw = [0.002517 0.001729 0.000888 0.000457]; 

  

% set bottom relfectance on air Reflectance of Sand (ros) 

xdata3 

ros = [0.696065 0.81031 1.028484 1.201533]; 

  

% set other parameters 

s = 0.015; 
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y0 = 2; 

y1 = 1.2; 

y2 = -0.9; 

q = 0.75;  

g0 = 0.089; 

g1 = 0.125; 

  

% 1/cos0 

costhew = 1.2; 

  

% set wavelength xdata4 

wave = [442 482 561 654]; 

  

            

           % set Y=y_0 (1-y_1 exp(y_2  (r_rs (440))/(r_rs 

(555) )))           

           y = y0*(1-

y1*exp(y2*(band1(i,j)*0.983)/(band3(i,j)*0.965))); 

                  

           % set four unkonw parameters 

           % set initial value for these parameters 

           phot = 0.05*(image(i,j,1)/image(i,j,3))^(-1.7); 

           bott = 0.1;         

           part = 0.5*phot;    

           cdom = 1.5*phot;    

           high = 0.5;         

            

           % set R and Rmod 

           R = [0 0 0 0]; 

                               

           

           x0 = [bott cdom part high]; 

            

          

           func = @(x)[(0.52*((0.3183*(x(1)*ros(1))*exp(-

(costhew+... 

               

(1.05*(1+5.5*(((x(3)*((440/wave(1))^y))+bbw(1))/... 

               (((x(2)*exp(s*(440-

wave(1))))+(q*x(3)*exp(s*(440-wave(1))))+... 

               aw(1))+((x(3)*((440/wave(1))^y))+ 

bbw(1)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(1))))+(q*x(3)*exp(s*(440-wave(1))))+... 

               aw(1))+((x(3)*((440/wave(1))^y))+ 

bbw(1)))*x(4)))... 
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               +((g0+g1*(((x(3)*((440/wave(1))^y))+ 

bbw(1))/(((x(2)*... 

               exp(s*(440-wave(1))))+(q*x(3)*exp(s*(440-

wave(1))))+aw(1))+... 

               ((x(3)*((440/wave(1))^y))+ bbw(1)))))*... 

               (((x(3)*((440/wave(1))^y))+bbw(1))/... 

               (((x(2)*exp(s*(440-

wave(1))))+(q*x(3)*exp(s*(440-wave(1))))+aw(1))+... 

               ((x(3)*((440/wave(1))^y))+ bbw(1))))*... 

               (1-exp(-

(costhew+(1.03*(1+2.4*(((x(3)*((440/wave(1))^y))+... 

               bbw(1))/(((x(2)*exp(s*(440-wave(1))))+... 

               (q*x(3)*exp(s*(440-wave(1))))+aw(1))+... 

               ((x(3)*((440/wave(1))^y))+bbw(1)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(1))))+(q*x(3)*exp(s*(440-wave(1))))+aw(1))+... 

               ((x(3)*((440/wave(1))^y))+ 

bbw(1)))*x(4)))))/... 

               (1-1.7*((0.3183*(x(1)*ros(1))*exp(-

(costhew+(1.05*... 

               (1+5.5*(((x(3)*((440/wave(1))^y))+ 

bbw(1))/... 

               (((x(2)*exp(s*(440-

wave(1))))+(q*x(3)*exp(s*(440-wave(1))))+aw(1))+... 

               ((x(3)*((440/wave(1))^y))+ 

bbw(1)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(1))))+(q*x(3)*exp(s*(440-wave(1))))+aw(1))+... 

               ((x(3)*((440/wave(1))^y))+ 

bbw(1)))*x(4)))... 

               +((g0+g1*(((x(3)*((440/wave(1))^y))+ 

bbw(1))/... 

               (((x(2)*exp(s*(440-

wave(1))))+(q*x(3)*exp(s*(440-wave(1))))+aw(1))+... 

               ((x(3)*((440/wave(1))^y))+ bbw(1)))))*... 

               (((x(3)*((440/wave(1))^y))+ bbw(1))/... 

               (((x(2)*exp(s*(440-

wave(1))))+(q*x(3)*exp(s*(440-wave(1))))+aw(1))... 

               +((x(3)*((440/wave(1))^y))+ bbw(1))))*... 

               (1-exp(-

(costhew+(1.03*(1+2.4*(((x(3)*((440/wave(1))^y))+... 

               bbw(1))/(((x(2)*exp(s*(440-wave(1))))+... 

               (q*x(3)*exp(s*(440-wave(1))))+aw(1))+... 

               ((x(3)*((440/wave(1))^y))+ 

bbw(1)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(1))))+(q*x(3)*exp(s*(440-wave(1))))+... 
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               aw(1))+((x(3)*((440/wave(1))^y))+ 

bbw(1)))*x(4))))))) - R(1); 

               (0.52*((0.3183*(x(1)*ros(2))*exp(-

(costhew+... 

               

(1.05*(1+5.5*(((x(3)*((440/wave(2))^y))+bbw(2))/... 

               (((x(2)*exp(s*(440-

wave(2))))+(q*x(3)*exp(s*(440-wave(2))))+... 

               aw(2))+((x(3)*((440/wave(2))^y))+ 

bbw(2)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(2))))+(q*x(3)*exp(s*(440-wave(2))))+... 

               aw(2))+((x(3)*((440/wave(2))^y))+ 

bbw(2)))*x(4)))... 

               +((g0+g1*(((x(3)*((440/wave(2))^y))+ 

bbw(2))/(((x(2)*... 

               exp(s*(440-wave(2))))+(q*x(3)*exp(s*(440-

wave(2))))+aw(2))+... 

               ((x(3)*((440/wave(2))^y))+ bbw(2)))))*... 

               (((x(3)*((440/wave(2))^y))+bbw(2))/... 

               (((x(2)*exp(s*(440-

wave(2))))+(q*x(3)*exp(s*(440-wave(2))))+aw(2))+... 

               ((x(3)*((440/wave(2))^y))+ bbw(2))))*... 

               (1-exp(-

(costhew+(1.03*(1+2.4*(((x(3)*((440/wave(2))^y))+... 

               bbw(2))/(((x(2)*exp(s*(440-wave(2))))+... 

               (q*x(3)*exp(s*(440-wave(2))))+aw(2))+... 

               ((x(3)*((440/wave(2))^y))+bbw(2)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(2))))+(q*x(3)*exp(s*(440-wave(2))))+aw(2))+... 

               ((x(3)*((440/wave(2))^y))+ 

bbw(2)))*x(4)))))/... 

               (1-1.7*((0.3183*(x(1)*ros(2))*exp(-

(costhew+(1.05*... 

               (1+5.5*(((x(3)*((440/wave(2))^y))+ 

bbw(2))/... 

               (((x(2)*exp(s*(440-

wave(2))))+(q*x(3)*exp(s*(440-wave(2))))+aw(2))+... 

               ((x(3)*((440/wave(2))^y))+ 

bbw(2)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(2))))+(q*x(3)*exp(s*(440-wave(2))))+aw(2))+... 

               ((x(3)*((440/wave(2))^y))+ 

bbw(2)))*x(4)))... 

               +((g0+g1*(((x(3)*((440/wave(2))^y))+ 

bbw(2))/... 
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               (((x(2)*exp(s*(440-

wave(2))))+(q*x(3)*exp(s*(440-wave(2))))+aw(2))+... 

               ((x(3)*((440/wave(2))^y))+ bbw(2)))))*... 

               (((x(3)*((440/wave(2))^y))+ bbw(2))/... 

               (((x(2)*exp(s*(440-

wave(2))))+(q*x(3)*exp(s*(440-wave(2))))+aw(2))... 

               +((x(3)*((440/wave(2))^y))+ bbw(2))))*... 

               (1-exp(-

(costhew+(1.03*(1+2.4*(((x(3)*((440/wave(2))^y))+... 

               bbw(2))/(((x(2)*exp(s*(440-wave(2))))+... 

               (q*x(3)*exp(s*(440-wave(2))))+aw(2))+... 

               ((x(3)*((440/wave(2))^y))+ 

bbw(2)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(2))))+(q*x(3)*exp(s*(440-wave(2))))+... 

               aw(2))+((x(3)*((440/wave(2))^y))+ 

bbw(2)))*x(4))))))) - R(2); 

               (0.52*((0.3183*(x(1)*ros(3))*exp(-

(costhew+... 

               

(1.05*(1+5.5*(((x(3)*((440/wave(3))^y))+bbw(3))/... 

               (((x(2)*exp(s*(440-

wave(3))))+(q*x(3)*exp(s*(440-wave(3))))+... 

               aw(3))+((x(3)*((440/wave(3))^y))+ 

bbw(3)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(3))))+(q*x(3)*exp(s*(440-wave(3))))+... 

               aw(3))+((x(3)*((440/wave(3))^y))+ 

bbw(3)))*x(4)))... 

               +((g0+g1*(((x(3)*((440/wave(3))^y))+ 

bbw(3))/(((x(2)*... 

               exp(s*(440-wave(3))))+(q*x(3)*exp(s*(440-

wave(3))))+aw(3))+... 

               ((x(3)*((440/wave(3))^y))+ bbw(3)))))*... 

               (((x(3)*((440/wave(3))^y))+bbw(3))/... 

               (((x(2)*exp(s*(440-

wave(3))))+(q*x(3)*exp(s*(440-wave(3))))+aw(3))+... 

               ((x(3)*((440/wave(3))^y))+ bbw(3))))*... 

               (1-exp(-

(costhew+(1.03*(1+2.4*(((x(3)*((440/wave(3))^y))+... 

               bbw(3))/(((x(2)*exp(s*(440-wave(3))))+... 

               (q*x(3)*exp(s*(440-wave(3))))+aw(3))+... 

               ((x(3)*((440/wave(3))^y))+bbw(3)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(3))))+(q*x(3)*exp(s*(440-wave(3))))+aw(3))+... 

               ((x(3)*((440/wave(3))^y))+ 

bbw(3)))*x(4)))))/... 
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               (1-1.7*((0.3183*(x(1)*ros(3))*exp(-

(costhew+(1.05*... 

               (1+5.5*(((x(3)*((440/wave(3))^y))+ 

bbw(3))/... 

               (((x(2)*exp(s*(440-

wave(3))))+(q*x(3)*exp(s*(440-wave(3))))+aw(3))+... 

               ((x(3)*((440/wave(3))^y))+ 

bbw(3)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(3))))+(q*x(3)*exp(s*(440-wave(3))))+aw(3))+... 

               ((x(3)*((440/wave(3))^y))+ 

bbw(3)))*x(4)))... 

               +((g0+g1*(((x(3)*((440/wave(3))^y))+ 

bbw(3))/... 

               (((x(2)*exp(s*(440-

wave(3))))+(q*x(3)*exp(s*(440-wave(3))))+aw(3))+... 

               ((x(3)*((440/wave(3))^y))+ bbw(3)))))*... 

               (((x(3)*((440/wave(3))^y))+ bbw(3))/... 

               (((x(2)*exp(s*(440-

wave(3))))+(q*x(3)*exp(s*(440-wave(3))))+aw(3))... 

               +((x(3)*((440/wave(3))^y))+ bbw(3))))*... 

               (1-exp(-

(costhew+(1.03*(1+2.4*(((x(3)*((440/wave(3))^y))+... 

               bbw(3))/(((x(2)*exp(s*(440-wave(3))))+... 

               (q*x(3)*exp(s*(440-wave(3))))+aw(3))+... 

               ((x(3)*((440/wave(3))^y))+ 

bbw(3)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(3))))+(q*x(3)*exp(s*(440-wave(3))))+... 

               aw(3))+((x(3)*((440/wave(3))^y))+ 

bbw(3)))*x(4))))))) - R(3); 

               (0.52*((0.3183*(x(1)*ros(4))*exp(-

(costhew+... 

               

(1.05*(1+5.5*(((x(3)*((440/wave(4))^y))+bbw(4))/... 

               (((x(2)*exp(s*(440-

wave(4))))+(q*x(3)*exp(s*(440-wave(4))))+... 

               aw(4))+((x(3)*((440/wave(4))^y))+ 

bbw(4)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(4))))+(q*x(3)*exp(s*(440-wave(4))))+... 

               aw(4))+((x(3)*((440/wave(4))^y))+ 

bbw(4)))*x(4)))... 

               +((g0+g1*(((x(3)*((440/wave(4))^y))+ 

bbw(4))/(((x(2)*... 

               exp(s*(440-wave(4))))+(q*x(3)*exp(s*(440-

wave(4))))+aw(4))+... 
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               ((x(3)*((440/wave(4))^y))+ bbw(4)))))*... 

               (((x(3)*((440/wave(4))^y))+bbw(4))/... 

               (((x(2)*exp(s*(440-

wave(4))))+(q*x(3)*exp(s*(440-wave(4))))+aw(4))+... 

               ((x(3)*((440/wave(4))^y))+ bbw(4))))*... 

               (1-exp(-

(costhew+(1.03*(1+2.4*(((x(3)*((440/wave(4))^y))+... 

               bbw(4))/(((x(2)*exp(s*(440-wave(4))))+... 

               (q*x(3)*exp(s*(440-wave(4))))+aw(4))+... 

               ((x(3)*((440/wave(4))^y))+bbw(4)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(4))))+(q*x(3)*exp(s*(440-wave(4))))+aw(4))+... 

               ((x(3)*((440/wave(4))^y))+ 

bbw(4)))*x(4)))))/... 

               (1-1.7*((0.3183*(x(1)*ros(4))*exp(-

(costhew+(1.05*... 

               (1+5.5*(((x(3)*((440/wave(4))^y))+ 

bbw(4))/... 

               (((x(2)*exp(s*(440-

wave(4))))+(q*x(3)*exp(s*(440-wave(4))))+aw(4))+... 

               ((x(3)*((440/wave(4))^y))+ 

bbw(4)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(4))))+(q*x(3)*exp(s*(440-wave(4))))+aw(4))+... 

               ((x(3)*((440/wave(4))^y))+ 

bbw(4)))*x(4)))... 

               +((g0+g1*(((x(3)*((440/wave(4))^y))+ 

bbw(4))/... 

               (((x(2)*exp(s*(440-

wave(4))))+(q*x(3)*exp(s*(440-wave(4))))+aw(4))+... 

               ((x(3)*((440/wave(4))^y))+ bbw(4)))))*... 

               (((x(3)*((440/wave(4))^y))+ bbw(4))/... 

               (((x(2)*exp(s*(440-

wave(4))))+(q*x(3)*exp(s*(440-wave(4))))+aw(4))... 

               +((x(3)*((440/wave(4))^y))+ bbw(4))))*... 

               (1-exp(-

(costhew+(1.03*(1+2.4*(((x(3)*((440/wave(4))^y))+... 

               bbw(4))/(((x(2)*exp(s*(440-wave(4))))+... 

               (q*x(3)*exp(s*(440-wave(4))))+aw(4))+... 

               ((x(3)*((440/wave(4))^y))+ 

bbw(4)))))^2))*... 

               (((x(2)*exp(s*(440-

wave(4))))+(q*x(3)*exp(s*(440-wave(4))))+... 

               aw(4))+((x(3)*((440/wave(4))^y))+ 

bbw(4)))*x(4))))))) - R(4)]; 

             

            options = optimset(); 
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            result = fsolve(func,x0); 

             

            band6(i,j) = result(1); 

            band7(i,j) = result(2)*exp(s*(440-wave(1))); 

                   

            

       end 

   end 

end 

  

   

  

image (:, :, 6) = band6;%bottom555 

image (:, :, 7) = band7;%cdom 

 

  

 multibandwrite ... 

     (image,'Image', 'bsq', 'machfmt','ieee-

le','precision','single'); 
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APPENDIX B 

MAJOR IDL CODE FOR SBOP REQUIRED IMAGE CALCULATE 

 

  ;Select the image file 
  envi_select, title='Please select a landsat8 Rrs image with 8 
bands', fid=hypdata_fid, dims=dims, pos=pos 
  if (hypdata_fid eq -1) then return 
  envi_file_query, hypdata_fid, data_type=data_type, 
fname=hypdata_fname, $ 
    interleave=interleave, ns=ns, nl=nl, nb=nb, $ 
    xstart=xstart, ystart=ystart 
  map_info=envi_get_map_info(fid=hypdata_fid) 
 
  ;Set the output file 
  out_name = envi_pickfile(title='Save the image file as...', 
filter='*.img') 
  if (n_elements(out_name) eq 0) then return 
  openw, unit, out_name, /get_lun 
 
  BandNumber = size(pos, /n_elements) 
  Rrs = FLTARR(5,ns,nl) 
  Rrs443 = envi_get_data(fid=hypdata_fid, dims=dims, pos=0); 
443nm 
  Rrs483 = envi_get_data(fid=hypdata_fid, dims=dims, pos=1); 
483nm 
  Rrs561 = envi_get_data(fid=hypdata_fid, dims=dims, pos=2); 
561nm 
  Rrs665 = envi_get_data(fid=hypdata_fid, dims=dims, pos=3); 
665nm 
  Rrs865 = envi_get_data(fid=hypdata_fid, dims=dims, pos=4); 
865nm 
 
 
 
  Rrs[1,*,*] = Rrs443 * factor1 ;440nm 
  Rrs[2,*,*] = Rrs483 * factor2 ;490nm 
  Rrs[3,*,*] = Rrs561 * factor3 ;555nm 
  Rrs[4,*,*] = Rrs665 * factor4 ;640nm 
 
  for i=0L,4 do begin 
    writeu, unit, Rrs[i,*,*] 
  endfor 
  free_lun, unit 
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  ;Writing new header file 
  envi_setup_head, fname=out_name, ns=ns, nl=nl, nb=5, $ 
    data_type=data_type, offset=0, interleave=0, $ 
    xstart=xstart, ystart=ystart, map_info=map_info, $ 
    descrip='Test routine output', /write, /open 
 

End 
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APPENDIX C 

SCREEN CAPTURE OF THE DEVELOPED SOFTWARE 
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APPENDIX D 

ACOLITE PROCESSING 
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132 

APPENDIX E 

ILLUSTRATION OF UNDERWATER LIGHT TRANSFER 
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