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ABSTRACT 

NOVEL MASS SPECTROMETRY METHODS FOR THE ANALYSIS OF 

COVALENT AND NON-COVALENT PROTEIN STRUCTURES AND THEIR 

INFLUENCE ON THE FUNCTIONS OF THERAPEUTIC PROTEINS 

 

MAY 2018 

 

JAKE WALTER APWLOWSKI, B.S., UNIVERSITY OF MASSACHUSETTS 

AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Igor A. Kaltashov 

 

 Biotherapeutics consist of biopolymers (proteins, polysaccharides, DNA, 

and RNA) that are used to treat a wide range of conditions from cancer to autoimmune 

disease to enzyme replacement.  In recent years biotherapeutics have experience 

tremendous growth due to advances in technology and our understanding of human 

biology.  They are very important to modern medicine due to their ability to treat diseases 

which are unable to be treated with small molecule-based drugs.  Unlike small molecule 

drugs which are synthetically produced, biotherapeutics are expressed inside cells.  

Produced biotherapeutics are not made up of a single homogenous population but instead 

a population of highly similar variants.  The source of these variations are enzymatic and 

non-enzymatic post-translational modifications.  By characterizing these modification, a 
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profile is built that links the in vivo response of a drug to its modifications.  The complexity 

and size of these biopolymers makes their characterization very challenging and demands 

the development of robust analytical techniques.   

 Mass spectrometry- and liquid chromatography-base methods are an integral part 

of protein characterization.  Mass spectrometry provides accurate mass measurements that 

are invaluable for confirming the identity of a protein and any modifications.  Additionally, 

mass spectrometry is used to assess a protein’s higher order structure.  Liquid 

chromatography is a very powerful tool that allows for different post-translational modified 

populations of a biotherapeutic sample to separate by their chemical or physical properties.  

Separated populations can further be characterized to identify and analyze their chemical 

or structural composition.  The presented work utilized a blend of mass spectrometry and 

liquid chromatography methods to characterize proteins with biotherapeutic potential.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Biopharmaceuticals and Their Importance to Modern Medicine 

In 1982 from Eli Lily recombinant human insulin was the first marketed 

biopharmaceutical leading to a transformation in the pharmaceutical industry.1  Previously, 

most commercial drugs consisted of small molecules or biological products purified from 

biological sources (i.e. blood).  A biopharmaceutical is a protein- or nucleic acid-based 

product that is manufactured by any means other than direct extraction from a natural 

biological source.2  In recent years, biopharmaceuticals have experienced a rise in market 

approvals due to the increased understanding of human and cellular biology and the 

underlying mechanisms which lead to diseases. 

Perhaps the two most important advances accounting for the rise of 

biopharmaceuticals were the developments of recombinant DNA technology and 

monoclonal antibody (mAb) production through hybridoma technology.2  The majority of 

proteins with therapeutic promise are produced in limiting amounts by the body and are 

challenging or impossible to purify economically from biological sources.  Fortunately, 

recombinant DNA technology, first utilized in 19723,4, permits genes encoding 

therapeutically relevant proteins to be expressed in large quantities in cell culture.  

Secondly but no less important is the ability to produce monoclonal antibodies (mAb) by 

hybridomas technology, developed in 1975.5  A hybridoma is an immortal cell line, created 

by the fusion of a B cell and myeloma cell, that produces antibodies with identical structure 

and sequence, known as a mAb.6  The ability to produce an almost unlimited amount of an 
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identical antibody has made it feasible to treat diseases with mAbs.  Examples include 

cancer and autoimmune disorders. 

Biopharmaceuticals are not limited in their scope to diseases in the body.  As the 

understanding of human biology moves forward, new treatment opportunities for disease 

are possible.  In 2016, newly approved biopharmaceuticals covered a diverse range of 

ailments that include cancer, autoimmune disorders, psoriasis, and bacterial infections.  

This   highlights the versatility of biopharmaceuticals as they can be utilized to target and 

treat a wide spectrum of diseases.  

 

1.2 Complexity of Biopharmaceuticals 

 Biopharmaceuticals are produced in cells and are orders of magnitude more 

complex than traditional small molecule production.7  Cell lines used for protein expression 

include mammalian (Chinese hamster ovary, human embryonic kidney 293, baby hamster 

kidney cells, etc.) and non-mammalian (yeast, insect, bacteria, and plant) cell lines.8  A cell 

line is chosen depending on the requirements for the biopharmaceutical to be expressed.9  

For example, bacterial expression systems benefit from being simple to grow and produce 

protein in high yields.  However, these expression systems lack the proper glycosylation 

enzymes to decorate expressed proteins with human-like glycans.10,11  If human-like 

glycans or disulfides are necessary for the biopharmaceutical then mammalian cell lines 

are used.  Care must still be taken as non-human mammalian cell lines can add     glycans 

not found in humans such as N-glycolylneuraminic acid and galactose-a1.3-galactose.8  

Due to humans possessing antibodies against these glycans, any biopharmaceutical 
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containing these glycans could generate an immune response and thus possibly neutralize 

the drug.12 

Unlike a small molecule drug whose production is highly controlled, it is 

impossible to maintain this same level of control over protein production due to the 

complexity inside a cell.7  As a result, a produced therapeutically relevant protein will not 

be composed of a single homogeneous protein population but rather a heterogeneous one.  

Heterogeneity is due in part to cellular expression, cell culture media, manufacturing 

processes, transport, and protein storage.13-18  Additionally, changes in any of these factors 

are known to potentially affect the composition of the final product.  It is essential to 

identify these composition differences and assess they cause a change in efficacy.  Even 

changes in the headspace of a vial19 or its oxygen level20 are known to alter the composition 

of a stored protein drug.  These are excellent examples of how even trivial changes in 

storage can lead to a different final product.  Therefore great effort is exerted to minimize 

heterogeneity during production to ensure the safety and efficacy of a biotherapeutic. 

As mentioned vide supra a produced biopharmaceutical is not made up of a single 

homogenous population but rather a population of highly similar variant forms due to post-

translational modifications (PTMs).  The number, range, and variety of these forms are all 

dependent on the cell line used, cell culture conditions, and purification processes.7  

Variation in the population of highly similar variants is commonly referred to as 

microheterogeneity.  As described by the well know biological phrase “structure 

determines function”, changes in biopharmaceutical’s structure may adversely affect its 

function.  Therefore, it is of great importance to characterize and understand at what 

thresholds PTMs will change the function of a protein drug. 
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1.3 Post-Translational Modifications of Proteins 

The majority of heterogeneity in a biopharmaceutical is due to PTMs that occur 

inside a cell or during the manufacturing process and storage. PTMs control a protein’s 

activity state, cell locations, degradation, and other protein interactions.21  Moreover, PTMs 

are not encoded in a protein’s genetic sequence but rather are a product of both enzymatic 

and non-enzymatic processes.  The lack of ability to directly encode PTMs through a 

protein’s DNA sequence makes it difficult to precisely control these modifications and 

gives rise to the possibility of a heterogeneous expressed protein.  While Table 1.1 

describes a small sampling of all the possible PTMs and their effects, there are many PTMs 

which makes protein characterization a challenging goal.  Therefore, it is important to 

detect and quantitate PTMs to ensure that a biopharmaceutical population contains the 

correct modifications (i.e. glycosylation) as well as minimal amounts of damaging PTMs 

(i.e. oxidation, glycation and deamidation). 

Once a biopharmaceutical is characterized, a PTM profile is created to describe all 

possible modifications and their effect on a biopharmaceutical.  The profile is used as a 

standard to compare all future manufactured lots of the biotherapeutic to a quality control 

measurement.  Additionaly, the PTM profile is linked to the function and efficacy of the 

protein drug.  Changes to this profile may have significant changes for a biotherapeutic’s 

in vivo function.22  Therefore, to ensure different batches of a protein drug will elicit the 

same therapeutic response in vivo it is crucial to establish the acceptable presence and range 

of PTMs.  Also, improvements to a biopharmaceutical’s production and storage can be 
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assessed and compared to previously produced protein lots as a way to ensure the drug will 

provide the same efficacy.  

Table 1.1 List of common PTMs 
 
Type Description 

Enzymatic Post-Translational Modifications 

Glycosylation 

Addition of a glycan chain to an asparagine (N-linked) or a 
serine/threonine (O-linked).  Glycans are important for proper 
protein folding,23 protein stability,24 modulating a protein’s 
function,25-30 and cell-cell / protein-protein interaction.31 

Phosphorylation 
Phosphate group is added by a kinase to (most commonly) a 
serine, threonine, or tyrosine as a way to control the function of 
protein in response to a stimuli.32 

Non-Enzymatic Post-Translational Modifications 

Oxidation 

Covalent modification of a protein by a reactive oxygen species.  
Addition of an oxygen is known to affect the structure and 
function of a protein.33  Oxidation is a sign of protein stress and 
may lead to immunogenicity, aggregation, or degradation.34-37  

Deamidation 

Asparagine (or glutamine) is converted, through a succinimide 
intermediate, to aspartic (or glutamic acid) which may affect a 
proteins structure and function due to the introduction of a 
negative charge (and possible isomerization).38  Can enhance39 or 
reduce40 the potency of a biopharmaceutical. 

Disulfide Bridge 

Covalent bond between two cysteines and is important for 
maintaining a protein’s structure.41  Disulfide scrambling affects 
the proteins structure and may lead to aggregation.42  Trisulfide 
formation is also possible and is found in mAbs.43 

Glycation Hexose is covalently attached to a protein.  May affect the efficacy 
and stability of a biopharmaceutical.44 

Designer Post-Translational Modifications 

Pegylation Addition of a PEG polymer chain to a protein.  Increases a 
protein’s half-life and solubility.45 

Drug Conjugates 
Covalent labeling of a protein with a linker and drug.  A drug 
attached to a mAb can be effectively delivered to its target with an 
increased half-life.46 
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1.4 Characterization of Biopharmaceuticals 

Protein PTMs are complex to understand with regard to the function and stability 

of the protein.  Additionally there are hundreds of know PTMs15 which makes 

understanding their effects even more challenging requiring a multivariable equation.  It is 

important to keep in mind that a completely homogenous (structure, sequence, and PTMs) 

biopharmaceutical is impossible to produce on a large scale.  Fortunately, there are 

acceptable ranges in the amount of PTMs in a biopharmaceutical in which they will deliver 

a reproducible clinical performance.47  Great effort goes into defining the acceptable range 

of PTMs in a biopharmaceutical’s population.  Robust analytical methods must be 

implemented to i. identify at what percent of a biopharmaceutical’s population will a PTM 

alter its clinical efficacy and ii. accurately quantitate these PTMs to ensure confidence of 

the measurements.  This will contribute to ensuring that different production lots of a 

biopharmaceutical, even with alteration to its PTM profile, will deliver reproducible 

results. 

Unfortunately, there is not a single analytical tool that can provide all the necessary 

information to fully characterize a therapeutic protein.  Instead a punctilious suite of 

analytical tools is necessary to fully characterize a protein.  These tools range in complexity 

from simple (UV absorbance) to complicated (hydrogen-deuterium exchange).  All these 

analytical measurements of a biopharmaceutical are needed to build a profile of a protein.  

Once a protein’s profile is established it is used as a standard for the acceptable variations 

in the protein’s population.  It is with this standard of acceptable ranges for PTMs that the 

quality of the protein can be judged 
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1.5 Toolbox for Biopharmaceuticals Characterization  

There is a wide range of tools varying from spectroscopic- to imaging- to 

thermodynamic-based methods that are used for characterizing a biopharmaceutical.  

Generally, each tool provides a single straightforward piece of information such as 

concentration, percent aggregation, melting point, or hydrodynamic radius.  By using all 

these measurements, a profile of a biopharmaceutical’s chemical and physical attributes is 

generated.  Two tools vital for characterizing a protein involve liquid chromatography 

(LC)-based, mass spectrometry (MS)-based, or combined LC-MS methods.  MS and LC 

measurements provide an abundance of information about a protein such as its mass, 

heterogeneity, and present PTMs. 

 

1.6 Liquid Chromatography Characterization 

It is very rare for a biopharmaceutical to be produced as a single component but 

more often as a complex mixture with a variety of components.  These complex mixtures 

are problematic for protein characterization due to analytical measurements generating 

convoluted responses from multicomponent samples.  Fortuitously, there are methods 

which allow for not only purification but characterization of the therapeutic protein 

shrouded in these complex mixtures. 

Liquid chromatography is a blanket term used to encompass a diverse group 

ofmethods that allow for the separation, identification, and quantitation of similar 

components in complex samples.  Different types of chromatography separate proteins 

based on their size, polarity, and charge among other intrinsic properties.  Chromatographic 

methods are extremely versatile and an important part of a protein characterization. 
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1.6.1 Size Exclusion Chromatography 

Size exclusion chromatography (SEC) is unique because that molecules inside the 

column do not physically interact with the stationary phase unlike nearly all other types of 

chromatography.  SEC separates molecules based on their hydrodynamic volume not their 

molecular weight as commonly confused (though it is generally a correct assumption that 

a larger molecular weight protein will have a larger hydrodynamic volume).  Molecules 

are able be separated by their hydrodynamic volume by a porous silica bead stationary 

phase.  If the molecule is small enough to enter these pores the time spent is dependent on 

the molecule’s hydrodynamic volume.  It is through this process of entering and exiting 

pores that molecules are separated from largest to smallest hydrodynamic volumes.  An 

isocratic elution is used for SEC and the mobile phase can be an aqueous, salt-containing 

solution that mimics the ionic strength in the blood (~150mM).  The purpose of the mobile 

phase is to preserve the structure of the protein in solution and to mask the stationary phase 

from non-specific interaction with molecules in solution.  Eluting molecules are detected 

by UV/VIS absorbance (typically 280nm for aromatic amino acids) but fluorescent or light 

scattering detectors may also be used.  If MS compatible solutions are used, a mass 

spectrometer can be used to further characterize eluting species. 

SEC is useful in a variety of ways.  One use is to assist with sample purification by 

separating the protein(s) of interest from a complex biological mixture of different sized 

proteins and molecules.  Most commonly SEC is used to detect and estimate aggregation 

to ensure the quality of the protein sample.  Aggregation of a biopharmaceutical is known 

to induce an immune response so it is vital to keep aggregation to a minimum.48   
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1.6.2 Reverse Phase Chromatography 

Reverse phase chromatography utilizes a non-polar stationary phase to separate 

molecules based on their polarity.  The stationary phase consists of a silica bead 

functionalized with C4, C8, or C18 alkyl chains.  More polar molecules will elute first 

followed by less polar. Molecules are eluted with a mobile phase gradient that changes the 

mobile phase from a weak polar mobile phase (H2O) to less polar (acetonitrile or methanol) 

mobile phase.  An optimized gradient is extremely useful because it allows a large number 

of different analytes (i.e. proteolytic digest of a protein) to be separated in a single run.   

Due to the use of MS friendly solvents, a mass spectrometer can be used as a detector to 

help further measure eluting analytes. 

Reverse phase chromatography is most commonly used to separate peptides from 

a proteolytic digest of a protein.49  Most PTMs will affect the retention of the modified 

peptide, as compared to the unmodified peptide, allowing for separation.  A mass 

spectrometer measures the mass of eluting peptides to identify its sequence and 

modifications that are presentZ.  This is extremely useful when characterizing a protein as 

it allows a PTM to be identified and localized on a protein. 

 

1.6.3 Ion Exchange Chromatography 

Ion exchange chromatography utilizes a charged stationary phase (negative or 

positive) to separate analytes based on their charge.  A cation exchange column has a 

negatively charged stationary phase with the column packing being functionalized with a 

carboxylic acid or sulfonic acid.  An anion exchange column has a positively charged 
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stationary phase with the column packing functionalized with a primary or quaternary 

amine.  The pI of the analyte and the pH of the mobile phase dictates which type of ion 

exchange column is used.  Molecules are eluted with a mobile phase gradient where the 

pH is adjusted or the salt concentration is increased.  If MS friendly solvents are used a 

mass spectrometer can be used to measure eluting analytes.  Ion exchange chromatography 

is very powerful because of its ability to take advantage of the charge heterogeneity in 

protein samples.    

 

1.6.4 Other Types of Chromatography 

 Polar compounds (i.e. glycans and some peptides) are weakly retained in reverse 

phase columns, eluting at or close to the void volume and are thus unable to be effectively 

separated.  Hydrophilic interaction liquid chromatography (HILIC) offers an alternative to 

reverse phase chromatography for separation of polar samples.50  Glycan characterization 

is an important part of drug discovery and HILIC is a great tool for separating glycan 

chains.51  Additionaly, due to HILIC’s use of MS-friendly solutions, eluting samples can 

be analyzed online via MS. 

 Affinity chromatography is generally used as a purification method to remove a 

biopolymer of interest from a complex solution but has some application as a 

characterization tool.  A protein G, protein A and FcRn affinity column all can be used to 

detect and measure oxidation of a mAb in its Fc domain.52-54 Oxidation of two conserved 

methionines (252,428) at the CH2-CH3 interface negatively affects the half-life of a 

mAb.55  Therefore, it is vital to ensure there is not significant amount of a mAb oxidized 

at these methionines as it will affect the therapeutic efficacy of a mAb.  Affinity 
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chromatography offers the unique ability to specifically target and separate a specific 

protein from a complex mixture. 

 

1.7 Mass Spectrometry Characterization 

Mass spectrometry (MS) is a powerful characterization tool that has experienced 

rapid growth in recent years due to both improved hardware and software.  No other 

technique offers the ability to accurately and precisely measure the mass of a biopolymer.  

Electrospray ionization (ESI) MS and matrix assisted laser desorption ionization (MALDI) 

are soft ionization techniques that were a fundamental part to the rise of MS.  Both 

ionization techniques can preserve covalent and non-covalent bonds during ionization with 

little to no induced fragmentation making them ideal for measuring biopolymers. 

MS is an excellent tool for measuring the primary structure of a biopolymer.  If the 

sequence of a biopolymer is known then a theoretical mass can be calculated and compared 

against the experimentally measured mass.  This is an important part of protein 

identification and characterization since it confirms that the correct protein has been 

produced as well as providing an assessment of its quality and purity.  Additionaly, PTMs 

can be identified by measuring mass shifts in comparison to an unmodified protein.  While 

the presence or absence of a PTM is important information, the location of the PTM is just 

as significant.  Tandem MS measurements localize PTMs on a protein by inducing 

fragmentation of a polypeptide backbone in the gas phase.  Produced fragments are 

measured and provide more localized data of to identify the location of the PTM.  Ideally 

this is performed at the whole protein level, known as top-down MS, but for proteins over 

30 kDa56 it becomes nearly impossible to achieve the necessary resolution for PTM 
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localization.  For large proteins, a bottom-up or middle-down approach must be 

implemented that typically involve enzymatic digestion of a protein.  Using a reverse phase 

column, digested protein fragments or peptides are separated and eluting molecules are 

measured by tandem MS.  These measurements are indispensable for characterizing the 

primary structure and PTMs of a biopharmaceutical. 

 In addition to measuring the mass of a biopolymer to confirm its identity and 

associated PTMs, mass spectrometry is also used to for higher order structure 

measurements.  Two methods, fast photochemical oxidation of proteins (FPOP) and 

hydrogen deuterium exchange (HDX), utilize covalent labeling to measure the higher order 

structure and dynamics of a protein in solution.  FPOP covalently labels solvent exposed 

amino acid residues by oxidation with hydroxyl radicals produced by photolysis of H2O2.57  

Oxidation is detected by MS in a bottom-up or top-down approach depending on the 

complexity and size of the protein.  HDX exchanges the backbone amide hydrogen of a 

protein with deuterium using a D2O solution.  Unprotected (i.e. not participating in a 

hydrogen bond) or solvent exposed amide hydrogens will quickly exchange with deuterium 

while protected regions will undergo a slower exchange.  Mass shift from deuterium 

labeling are measured by MS, usually in a bottom-up approach.  Both FPOP and HDX 

provide data about the structure and dynamics of a protein in solution by the distribution 

of their covalent labels.  Changes to a protein’s structure due to a PTM or solvent conditions 

can be measured to elucidate their effect to a protein’s higher order structure.  These 

measurements when combined with NMR or x-ray crystallography provide in depth 

information about a protein’s conformation and dynamics in solution. 
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1.7.1 Native MS 

Native MS is an excellent tool for studying a protein’s higher order structure.  

Unlike traditional MS measurements, native MS utilizes near native solutions (150mM 

ammonium acetate) that preserve the native structure of a protein in solution.  ESI MS, first 

used in the 1980s,58 is a soft ionization technique that allows a protein remain folded during 

the ionization process.59  The combination of a gentle ionization technique and a native 

solution allows for non-covalent interactions and protein complexes to be preserved for 

MS measurement.  From these measurements, some structural information can be extracted 

based on the charge state distribution.  Unlike traditional MS which uses solvents that 

denature a protein, native MS preserves the structure thus making it more compact in the 

gas phase.  This more compact molecule carries less charge due to a decrease in available 

surface area for protonation and a narrower charge state distribution.60  If a portion of the 

protein is unfolded in solution a bimodal charge state distribution will be observed 

indicating as both unfolded and folded species are present in solution.  In the case of 

quaternary structures the measured mass can help identify components which make up the 

multimeric protein structure.  Native MS is a valuable tool which allows the native fold of 

a protein to be preserved during measurement to provide structural and composition 

information. 

 

1.8 Monoclonal Antibodies  

Immuglobulins possess properties that make them excellent candidates as 

biopharmaceuticals.  These properties include robustness to harsh conditions, a long half-

life, a versatile mechanism of action, and possible immune system activation.  An 
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immuglobulin is a heterodimeric protein composed of two light (L) and heavy (H) chains 

as shown in Figure 1.1.  An immuglobulin is divided into two domains that are a fragment 

antigen binding (Fab) and fragment crystallizable (Fc) domain.  As the name suggests, the 

Fab domain is responsible for binding its cognate target.  The Fc domain is responsible for 

a mAb’s effector functions that includes complement activation, antibody-dependent 

cellular cytotoxicity, antibody-dependent phagocytosis, degranulation, cytokine release, 

and inhibition of cell activities among other functions.61,62 The majority of these effector 

functions are mediated through binding 

of Fc gamma receptors (FcgRs) present 

on immune system related cells.  How 

the adaptive immune system responds to 

an antigen depends on the bound 

antibody and its associated effector 

functions. 

There are five classes of 

immuglobulins IgA, IgD, IgE, IgG, and 

IgM that each serve unique functions 

inside the body.  All currently approved clinical mAbs are based on the IgG template due 

it its favorable biological qualities.63,64  IgG is glycosylated in its Fc domain on each of its 

H chains at Asn297.  Both glycan chains help provide structure to the Fc domain and the 

glycan composition is known to affect the effector functions of the IgG.61,65-70   

While all therapeutic mAbs bind their target through the Fab domain, a mAb’s 

specific mechanism of action is quite diverse and includes: drug delivery, target 

	
Figure 1.1 Two H (green) and L (blue) 
chains make up an immuglobulin.  Colored 
spheres represent glycan chains. 
PDB: 1HZH 
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neutralization, cell destruction, and imaging.  Depending on the mechanism of action of a 

mAb the effector function needs to be tailored to ensure the correct in vivo response.  One 

option to tailor the  effector function of aa mAb is through its glycan chain.62  For example, 

if the mechanism of action is cell destruction then an elevated antibody dependent cellular 

cytotoxicity would be beneficial.  An afucosylated mAb is known to exhibit a much greater 

antibody dependent cellular cytotoxicity thus making it more effective at destroying its 

cellular target.25  If the mAb is to be strictly a drug delivery vehicle or is being used for 

imaging, an immune response may be unnecessary or even detrimental to its target.  

Removal of the glycan chain offers an attractive option to abrogate a mAb’s effector 

function65,66 and thus preventing an immune response to its target.  It is clear that all these 

factors need to be considered when producing the final product and necessitates proper 

characterization of these mAbs to elucidate their in vivo properties. 

 

1.9 Transferrin  

There are several plasma proteins, other than antibodies, that have 

biopharmaceutical potential.  Transferrin (Tf) is an excellent candidate due to favorable in 

vivo qualities.  The most important quality (in terms of its usefulness as a protein drug) of 

Tf is its ability to cross the blood brain barrier.  Tf offers the ability to transport attached 

drugs to targets in the brain or central nervous system71-73  Unlike a mAb which directly 

affects its target, Tf may act as a passive carrier for an attached drug.  Additionally, 

quantitative information about the drug distribution can be measured by taking advantage 

of Tf’s ability to bind metals other than iron (i.e. indium).71  The ability for Tf to cross the 
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blood brain barrier and bind metals other than iron gives it great potential as a 

biopharmaceutical. 

 

1.9.1 The Role of Transferrin in Iron Homeostasis 

Tf is not only has potential as a biopharmaceutical but has an important biological 

role in the body as the iron transporter in the serum.  Iron is the 4th most abundant element 

in the earth’s crust74 and is essential to almost every living organism due to its intrinsic 

redox properties.  During the appearance of the first single cell organisms the Earth’s 

atmosphere was composed of very little O2.75 The lack of atmospheric oxygen provided 

cells with an abundance of readily available Fe2+ thus establishing a foothold in biological 

processes.75  As the Earth’s atmosphere changed to high oxygen conditions iron became 

more scarce due to Fe3+ forming insoluble iron oxides.  This necessitated that organisms to 

develop strategies to capture Fe3+ which is extremely insoluble (Ksp 1.6x10-39) in aqueous 

solutions.  Furthermore, the same attractive redox properties of iron for biological 

processes makes them potentially dangerous.  Fe2+ reduces O2 and can lead to a hydroxyl 

radical which is extremely damaging to cells.75  Additionaly, due to iron being a scarce 

essential resource for invading pathogens it is imperative to sequester iron as an immune 

system strategy.  Iron must be tightly controlled to help prevent damage by free radicals or 

invading pathogens.   

Tf is a key player in iron homeostasis inside the body.  It is an 80kDa bilobal 

glycoprotein and the major iron transport protein inside the blood.  Each lobe of Tf (Figure 

1.2) is capable of binding Fe3+ tightly (Kd ~1022) but reversibly.76  Iron is coordinated by 

two tyrosines, one histidine, and one aspartic acid (Tyr95, Tyr188, Asp63, and His249 in 
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the N-lobe and Tyr426, Tyr517, 

Asp392, and His585 in the C-lobe, 

respectively) in each lobe.  A 

synergistic anion, usually carbonate, 

is required to complete iron binding 

in transferrin.  However, oxalate can 

also coordinate with Fe in Tf and is 

known to prevent the release of Fe 

inside of cells.  Iron is delivered to 

cells through Tf interacting with a Tf receptor to enter the cell.  Once inside an endosome, 

the pH is lowered to assist with iron release after which the Tf-Tf receptor complex is 

returned to the cell surface.76  Disruptions to the ability of Tf to bind and release iron is 

troublesome to iron homeostasis in the body.  

 

1.10 Objectives  

The complexity of biopharmaceuticals necessitates the need for robust analytical 

methods to characterize biopolymers and their PTMs.  It is through PTMs that a protein’s 

function is defined and allows for proteins to be adaptable with their function in the body.  

Careful measurements are needed to link the presence and amount of PTMs with a protein’s 

in vivo function.  LC- and MS-based methods are a valuable tool for characterizing 

biopharmaceuticals by providing a wealth of information about a protein’s sequence, 

structure, and modifications.  The work presented in the following chapters discuss the 

development of LC and MS methods to characterize proteins with biopharmaceutical value 

	
Figure 1.2 Diferric Tf with two irons (red) 
bound.  PDB: 1HZH 
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(mAb and Tf).  Specifically, the chapters discuss: i. development of a method to extract Tf 

from a clinical sample (serum) and utilizing native MS to determine its metal and 

synergistic anion composition, ii. Modification of a mAb’s glycan chain and the effect on 

its biophysical properties and effector function and, iii development of a novel cross path 

reactive chromatography method for in column reduction or oxidation of disulfide-

containing proteins. 
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CHAPTER 2 

ASSESSING THE IRON DELIVERY EFFICACY OF TRANSFERRIN IN 
CLINICAL SAMPLES BY NATIVE ELECTROSPRAY IONIZATION MASS 

SPECTROMETRY 
 

This chapter has been adapted from a paper published as: Pawlowski, J. W., Kellicker, 

N., Bobst, C. E. & Kaltashov, I. A. Assessing the iron delivery efficacy of transferrin in 

clinical samples by native electrospray ionization mass spectrometry. Analyst 141, 853-

861, doi:10.1039/C5AN02159F (2016). 

 

2.1 Abstract 

Serum transferrin is a key player in iron homeostasis, and its ability to deliver iron 

to cells via the endosomal pathway critically depends on the presence of carbonate that 

binds this protein synergistically with ferric ion. Oxalate is another ubiquitous anionic 

species that can act as a synergistic anion, and in fact its interaction with transferrin is 

notably stronger compared to carbonate, preventing the protein from releasing the metal in 

the endosomal environment. While this raises concerns that high oxalate levels in plasma 

may interfere with iron delivery to tissues, concentration of free oxalate in blood appears 

to be a poor predictor of impeded availability of iron, as previous studies showed that it 

cannot displace carbonate from ferro-transferrin on a physiologically relevant time scale 

under the conditions mimicking plasma. In this work we present a new method that allows 

different forms of ferro-transferrin (carbonate- vs oxalate-bound) to be distinguished from 

each other by removing this protein from plasma without altering the composition of the 

protein/metal/synergistic anion complexes, and determining their accurate masses using 

native electrospray ionization mass spectrometry (ESI MS). The new method has been 
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validated using a mixture of recombinant proteins, followed by its application to the 

analysis of clinical samples of human plasma, demonstrating that native ESI MS can be 

used in clinical analysis. 

 

2.2 Introduction 

Iron is an essential element that is required for nearly all living organisms. There 

are 3-5 grams of iron present in a healthy adult body with over 2 grams found in 

hemoglobin of erythrocytes.152 Despite the attention paid in the field of nutraceuticals to 

iron dietary supplements, the majority of iron circulating in plasma is actually recycled 

from reticuloendothelial macrophages through the degradation of erythrocytes as well as 

other cells.212 Although it is one of the most abundant elements in the Earth’s crust, iron 

bioavailability is limited due to the extremely low solubility of the ferric ion (Fe3+, the 

predominant form under aerobic conditions), forcing all living organisms to devise various 

strategies to solubilize this element. In vertebrates, this problem is solved using proteins 

that bind iron tightly while in circulation and release it in cells via receptor-mediated 

endocytosis.85,123 Human serum transferrin (Tf), a protein intimately involved in iron 

homeostasis, transports iron to cells that need this metal and express the Tf receptor on 

their surface; meanwhile, Tf sequesters iron from pathogens that also require this element 

for growth and proliferation. 

Tf is an 80 kDa bilobal glycoprotein, with each lobe capable of binding Fe3+ strongly (Kd 

~ 1022) but reversibly at physiological pH (7.4).120 Following its association with the Tf 

receptor at the cell surface, Tf is internalized and releases iron under the mildly acidic 

conditions of the endosome, before being recycled back to the cell surface and released to 
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circulation for another cycle of iron acquisition and delivery.2 An intriguing feature of Tf 

(shared across the entire family of Tf-related proteins, including lactoferrin and 

ovotransferrin) is the presence of a synergistic anion (typically carbonate, CO3
2-) in the 

Fe3+/Tf complex, which is required to complete the metal’s coordination sphere124 (see 

Supplementary Material for more detail).  Oxalate (C2O4
2-) is another ubiquitous anionic 

species capable of acting as a synergistic anion.65 While its concentration in serum (10-30 

µM26) is significantly lower compared to the total pool of carbonate (20-30 mM26), it has 

significantly higher Tf affinity.175 

The documented ability of oxalate to prevent iron release from Tf under endosomal 

conditions67 has led to concerns that it may interfere with iron trafficking by inhibiting its 

release from Tf inside the endosome and, therefore, deprive cells of this essential nutrient 

even though there is no iron deficiency in the diet or circulation. Under these circumstances 

the clinical symptoms of anaemia would not correlate with the results of laboratory testing, 

which commonly relies on total iron and protein-bound iron as the biomarkers. While 

anaemia is involved in the etiology of a range of pathologies,117 iron deficiency is 

particularly devastating for the function of the central nervous system, adversely affecting 

inter alia sleep, attention, and cognitive development.103,149,183 In the past decade several 

studies have reported an increased prevalence of iron deficiency in autistic children,20,40,41 

suggesting the involvement of anaemia in the etiology of autism spectrum disorders, 

although more recent studies failed to confirm this correlation.164  

One possible explanation for the lack of an obvious correlation between iron status and the 

occurrence/severity of autism is based on a recent observation by Konstantynowicz et al. 

of a three-fold greater plasma oxalate levels in autistic children compared to their 
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symptom-free peers.104 Oxalate replacing Tf-bound carbonate is likely to disturb iron 

homeostasis by inhibiting metal release in the endosome (Figure 2.1). However, Mason et 

al. have pointed out that the serum level of oxalate could be a poor predictor of the 

disturbed iron homeostasis, as this anion fails to displace carbonate from transferrin on a 

physiologically relevant time scale in solution that has the same pH and ionic strength as 

blood serum.120 While it is possible that oxalate may easily out-compete carbonate during 

the iron loading of transferrin, especially under mildly acidic conditions, the molecular 

mechanisms of iron loading remain a subject of debate, and it remains unclear if there is 

correlation between serum oxalate levels and the presence of oxalate as a synergistic anion 

in circulating Fe2Tf.  

Clearly, a meaningful diagnostic test in this case should specifically focus on the 

relative amounts of oxalate and carbonate bound to Tf (rather than on the total oxalate 

concentration in the plasma). Together with the total amount of Tf-bound iron, this number 

should provide a true measure of Tf potency vis-a-vis iron delivery to cells. While the 

existing analytical protocols cannot accomplish this task, native electrospray ionization 

mass spectrometry (ESI MS) has been shown in the past to be a powerful tool capable of 

determining the composition of the protein/metal complexes.65,145,221,225 However, such 

measurements are always carried out in vitro using solvent systems compatible with the 

ESI process; to the best of our knowledge, no reports have been published on applying 

native ESI MS to characterize metalloproteins in clinical samples. Another complication 

arises from the very small difference between the two synergistic anions (28 Da, which is 

less than 0.04% of the mass of Tf). Although modern mass spectrometry allows even 

smaller mass differences to be measured for polypeptide ions, these measurements are 



 31 

typically carried out under denaturing conditions; the gentle nature of native ESI MS 

typically results in formation of multiple adducts, leading to ion peak broadening and 

making high-resolution and high-accuracy mass measurements extremely challenging.118 

In this work we present a new method for the analysis of clinical blood samples that allows 

the composition of the endogenous ternary complexes (Fe·CO3
2-/C2O4

2-)2Tf to be probed 

using a combination of size exclusion and albumin-depletion chromatographic separations 

and native ESI MS detection. The new method is tested with a mixture of recombinant 

proteins of known CO3
2-/C2O4

2- composition and then applied to clinical samples. The 

technique is ready to be used in clinical studies, to search for a correlation between autism 

and iron deprivation caused by Tf-bound oxalate. 

 

2.3 Experimental 

Materials. Recombinant human Tf used in this work was a generous gift from Prof. 

Anne B. Mason (University of Vermont College of Medicine, Burlington, VT, USA), and 

the glycosylated form of human Tf was purchased from Sigma-Aldrich Chemical Company 

(St. Louis, MO, USA). Clinical samples of human serum from anonymous volunteers were 

provided by Prof. Barry Braun (University of Massachusetts-Amherst, Department of 

Kinesiology).  Amicon Ultracel membrane microconcentrator devices (10 kDa molecular 

weight cut-off) were purchased from EMD Millipore (Billerica, MA, USA).  Cibacron 

F3GA resin was purchased from Pall Corporation (Westborough, MA, USA).  Oxalate, 

EDTA, ammonium acetate, and formic acid were purchased from Sigma-Aldrich Chemical 

Company (St. Louis, MO, USA); all other solvents and buffers were of analytical grade or 

higher.   
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Preparation of Tf Standards. The apo- (iron-free) form of Tf was prepared by 

lowering the pH of Tf solution in 150 mM ammonium acetate to 4.5, followed by addition 

of EDTA (to a final concentration of 10 mM).  This solution was incubated at room 

temperature for an hour, and then buffer exchanged repeatedly to a 150 mM ammonium 

acetate solution containing 10 mM EDTA with pH adjusted to 5.5 using a 

microconcentrator.  During the final step the Tf solution was buffer exchanged to 150 mM 

ammonium acetate with pH adjusted to 6.8. The complete removal of both metal and 

synergistic anion from the protein was verified by native ESI MS (vide infra). The oxalate-

bound form of holo-Tf, (Fe3+·C2O4
2-)2Tf, was prepared by adding oxalic acid to the holo-

Tf solution (dissolved in 150 mM ammonium acetate) to a final concentration of 10 mM 

followed by adjusting the pH down to 5.0 with acetic acid and one-hour incubation at room 

temperature prior to raising the pH back up to 6.8 with ammonium hydroxide.  Excess of 

carbonate, bicarbonate and oxalate was removed from the protein solution by repeated 

buffer-exchange to 150mM ammonium acetate (pH 6.8). The composition of the 

protein/metal/synergistic anion complex in the final solution was confirmed as 

(Fe3+·C2O4
2-)2Tf by native ESI MS (vide infra).   

Tf Purification from Clinical Samples. Tf was extracted from the clinical serum 

samples using a two-dimensional chromatography comprising size exclusion 

chromatography (SEC) and affinity chromatography (albumin depletion).  Briefly, a 125 

µL aliquot of unprocessed serum was injected onto a Superose 12 SEC column using a 150 

mM solution of ammonium acetate (pH 6.8) as a mobile phase and a 0.45 mL/min flow 

rate.  Absorption at 470 nm was used to identify eluting Tf. Multiple injections were used 

to collect Tf-containing fractions, which were subsequently pooled. Removal of serum 
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albumin from these pooled fractions was carried out using a home-made gravity-driven 

affinity column packed with Cibacron F3GA resin (BDR).  A step gradient was used to 

allow hTf to be eluted from the column while retaining HSA.  Three buffers were used for 

the step gradient: a no-salt buffer (pH 6.8, 150 mM ammonium acetate), a low salt buffer 

(pH 6.8, 0.25 M NaCl, 150 mM ammonium acetate), and a high salt buffer (pH 6.8, 2 M 

NaCl, 150 mM ammonium acetate).  All holo-Tf eluted during the no-salt step, which was 

collected and buffer-exchanged to 150 mM ammonium acetate (pH 6.8) using a 

microconcentrator (vide supra).   

Native ESI MS Analyses. All mass spectral data were acquired with a SolariX 7T 

Fourier transform ion cyclotron resonance (FT ICR) mass spectrometer (Bruker Daltonics, 

Billerica, MA, USA).  All samples were directly infused at a flow rate of 3 µL/min. A 4500 

V capillary voltage was used for all measurements. The dry gas was set to a flow of 4.6 

L/min and a temperature of 200oC. Each measurement had a 0.52 second transient time 

and a 32,000-point time-domain. All spectra were acquired in a 3,500-5,000 m/z range with 

400 scans were averaged for each measurement to achieve adequate signal-to-noise ratio. 

The ESI source parameters were adjusted to minimize collisional activation in the ESI 

interface region in order to preserve the integrity of the protein/metal/synergistic anion 

complexes. Reference mass spectra of metal- and synergistic anion-free protein for each 

sample were acquired by lowering the pH of the protein solution to 3.7. Data analysis was 

performed using Compass Data Analysis software (Bruker Daltonics). Generally, the m/z 

value was assigned for each Tf charge state peak observed. Mass shifts were calculated by 

subtracting m/z values, of the same charge state, and multiplying the difference by the 

charge state. Experimentally determined mass shifts were compared to expected calculated 
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values in order to assign the synergistic anion and metal composition (an example of using 

this procedure is shown in Supplementary Material). 

 

2.4 Results and Discussion 

The unequivocal proof that oxalate does disturb iron homeostasis in a specific 

patient can only be provided by measuring the fraction of Tf molecules in circulation in 

which carbonate is replaced with oxalate. Existing methods that measure plasma oxalate 

do not provide such information; however, the ligand composition of Tf/metal complexes 

can be probed by native ESI MS in vitro.221 In the past, we used this technique to determine 

the presence of oxalate as a synergistic ion in a fragment of Tf molecule (its N-lobe),65 but 

the subsequent attempts to extend this method to the full-length protein produced mixed 

results, as the broad shape of the mass spectral peaks typical of native ESI MS prevented 

us from being able to make unequivocal assignments, while collisional desolvation led to 

facile dissociation of the synergistic anion form the protein prior to the mass 

measurement.66,225 Another problem related to the use of native ESI MS for the analysis of 

a clinical sample is the presence of significant amounts of strong electrolytes (e.g., NaCl), 

which are incompatible with the ESI process and must be removed/replaced with volatile 

electrolytes (e.g., CH3CO2NH4) during the sample preparation step. The problem here lies 

with the possibility of altering the composition of the Tf/metal/synergistic anion complexes 

prior to MS analysis, which would obviously render the results of the testing meaningless.  

In order to circumvent these problems, we initially worked with recombinant and 

commercially available protein molecules to explore the utility of thermal desolvation as a 

tool capable of removing non-specific adducts from the Tf/metal/synergistic anion 
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complexes in the ESI interface without altering their composition. This was followed by 

designing a protocol of Tf extraction from clinical samples and placing them in “ESI-

friendly” solutions without altering the composition of the Tf/metal/synergistic anion 

complexes. The absence of any alteration of these complexes’ make-up (either due to 

loss/exchange of synergistic anions or due to a bias introduced by the procedure that would 

preferentially extract one particular form of the protein at the expense of others) was 

verified using a mixture of (Fe3+·CO3
2-)2·Tf , (Fe3+·CO3

2-)·(Fe3+·C2O4
2-)·Tf and 

(Fe3+·C2O4
2-)2Tf complexes that were prepared using recombinant human Tf. Finally, the 

procedure was applied to test several anonymized blood samples for the presence of oxalate 

bound to serum Tf. Intriguingly, while most of the analyzed samples contained only 

carbonate-bound Tf, one contained (Fe3+·C2O4
2-)2Tf as a major component with a mixed 

complex (Fe3+·CO3
2-)·(Fe3+·C2O4

2-)·Tf also present (no (Fe3+·CO3
2-)2·Tf signal was 

detected in this anomalous sample). 

Native ESI MS can make a distinction between the carbonate- and oxalate-bound 

forms of Fe2Tf. The mass difference between carbonate and oxalate dianions is 28 Da; this 

number dictates the minimal level of precision that must be attained in the protein mass 

measurements in order for the meaningful analysis of the composition of serum transferrin 

to be carried out. The ability to resolve a mass difference of 28 Da would allow a distinction 

to be made e.g. between a mixed complex (Fe3+·CO3
2-)·(Fe3+·C2O4

2-)Tf and the carbonate-

bound form (Fe3+·CO3
2-)2·Tf). Although this mass difference corresponds to < 0.04% of 

the total protein mass, the resolving power of many modern MS instruments allows such 

measurements to be readily made. One complication that arises in our particular case is 

that such measurements must be carried out under the so-called native conditions, which 
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presents two challenges. First, protein ions accumulate relatively low number of charges 

in native ESI MS, giving rise to the ionic signal in the high m/z range (> 3,500 for Tf94), 

where most instruments typically have sub-optimal resolution. Second, the gentle nature 

of native ESI MS results in production of multiple adducts, leading to broadening of ion 

peaks in mass spectra, which affects both the accuracy of the mass measurements and the 

ability to resolve closely spaced ion peaks. While mild collisional activation of ions 

representing protein complexes frequently enhances the ionic peak shapes (via adduct 

dissociation), it also leads to partial dissociation of non-covalent assemblies in the gas 

phase.63,111 In the case of Tf, it results in facile removal of the synergistic anion from the 

protein,65,66 which obviously invalidates the measurements aimed at determining the 

composition of Tf/ferric ion/synergistic anion complexes. 

Recently we reported that such complexes exhibit surprising stability when 

subjected to thermal desolvation, even though the adduct ions dissociate readily, allowing 

high mass accuracy measurements to be made.120 Figure 2.2 shows native ESI mass spectra 

of recombinant human Tf reconstituted with carbonate and oxalate, where both carbonate- 

and oxalate-bound forms of Tf can be readily identified based on their masses. The 

identification becomes particularly straightforward when the ligand composition of the 

complex is determined based on the mass difference between the complex ion and the apo-

Tf ion (228.8 Da and 287.2 Da for the peaks shown in Figure 2.2); the theoretical mass 

differences are 229.7 Da for the carbonate-bound form (calculated as a mass of 2Fe3+ + 

2CO3
2- - 2H+) and 285.8 Da (2Fe3+ + 2 C2O4

2- - 2H+) for the oxalate-bound Tf.  

Extraction of Tf from serum for the synergistic anion analysis. Although native MS 

with thermal ion desolvation in the ESI interface does allow the distinction to be made 
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between the carbonate- and oxalate-bound Tf, it is important to remember that the mass 

spectra shown in Figure 2.2 were acquired using a sample prepared with volatile 

electrolytes (ammonium acetate). Direct analysis of a serum sample by ESI MS generates 

abundant, but unresolved (and, therefore, analytically meaningless) ion signal due to the 

presence of (i) multiple protein species and (ii) non-volatile electrolytes leading to facile 

cluster ion and adduct ion formation. To circumvent this problem, we ran the serum sample 

through a size exclusion column using an “electrospray-friendly” solvent system (150 mM 

ammonium acetate) whose ionic strength and pH are close to those of serum. While the 

protein signal spans over a significant time range (Figure 2.3), only three chromatographic 

bands showed strong absorbance at 470 nm (characteristic of the holo-form of Tf). The 

elution time of the second band (9 min) was consistent with the molecular weight of Tf; 

indeed, when this fraction was collected and analyzed by MS, Tf could be readily detected 

(see inset in Figure 2.3). Unfortunately, this fraction also contained a significant amount 

of albumin, whose molecular weight is close to that of Tf, but abundance in serum is an 

order of magnitude higher. Ionic peaks representing these two proteins had significant 

overlap, which made accurate mass measurement of Tf ions (and identification of the 

synergistic anion) very challenging. Albumin depletion is a common task in blood 

proteomic analyses, and is usually accomplished by running the sample through an affinity 

column containing antibodies to the fourteen most abundant plasma proteins.79 

Unfortunately, Tf is one of the proteins depleted using these commercial kits, making it 

necessary to seek alternative ways of albumin depletion. We accomplished this using blue 

dye resin (BDR), which has a high affinity to albumin.187 Injecting the Tf/albumin 

containing SEC fraction through the BDR column allowed holo-Tf to elute at low ionic 
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strength while albumin was retained and could only be eluted under high salt conditions. 

Ammonium acetate was used as a salt in the affinity separation (or, more correctly, 

depletion) step, allowing all eluting fractions to be analyzed by native ESI MS without 

additional sample work-up. 

The combination of SEC fractionation with albumin depletion produces a serum Tf 

sample suitable for the analysis of its composition vis-a-vis the synergistic anion by native 

ESI MS; however, it also introduces the possibility that the ratio of carbonate- vs. oxalate-

bound forms of Tf is altered prior to MS analyses. This can occur through two possible 

mechanisms. First, it is not inconceivable that the recoveries of the two forms of Tf could 

be different from each other; in this case, the extraction procedure would introduce a bias. 

Second, both apo-Tf and mono-ferric Tf may acquire iron during the extraction and 

albumin depletion steps if the metal is present in the soluble form e.g. in BDR. Should this 

occur, a bias would be introduced favouring the carbonated form of holo-Tf (although 

neither oxalate nor carbonate salts were used in preparation of solvents used for protein 

extraction and albumin depletion, ambient CO2 is likely to contribute to formation of 

carbonate in solution which can be utilized as a synergistic anion by Tf upon metal 

binding). In order to prove that no bias is introduced prior to the MS measurements by 

either the SEC fractionation or the albumin depletion step, a mixture of the three forms of 

diferric Tf (carbonate-bound form, (Fe3+·CO3
2-)2·Tf; the oxalate-bound form, (Fe3+·C2O4

2-

)2·Tf; and the mixed form (Fe3+·CO3
2-)·(Fe3+·C2O4

2-)·Tf) was prepared and subjected to 

the established Tf extraction workflow prior to native ESI MS (Figure 2.4). Comparison 

of the protein peak profiles in each case before and after the procedure provided 

unequivocal evidence that no detectable bias is introduced by either the SEC fractionation 
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or the albumin depletion step. Additionally, the apo-form of Tf was tested for its ability to 

scavenge for iron (which could conceivably be present in either SEC or BDR columns due 

to contamination or carry-over) during either of the two sample preparation steps. Once 

again, the result of this study was negative, as neither step lead to detectable acquisition of 

iron by the metal-free form of the protein (Figure 2.5). 

Synergistic anions bound to endogenous Tf in human blood: analysis of clinical 

samples. Once the procedure for Tf extraction from serum followed by identification and 

quantitation of synergistic anions had been validated, it was applied to the analysis of 

clinical samples. One significant difference between the recombinant proteins discussed 

above and endogenous Tf encountered in plasma is that the protein mass of the latter may 

differ from the mass based on the published wild-type sequence and glycosylation pattern. 

Tf glycosylation is known to be affected by several disorders (with alcoholism being 

perhaps the best known,11 but certainly not the only example).231  Glycosylation is an 

enzymatic post-translational modification (PTM) that generally leads to heterogeneous 

protein populations. Tf is rather unusual in that regard, as it exhibits surprising level of 

homogeneity with over 80% of all protein molecules being modified with two fully 

sialylated biantennary glycan chains,213 while other glycosylation patterns make minor 

contributions213,231 Mass profiling of both commercial Tf and Tf extracted from patients’ 

blood confirms the paucity of minor Tf glycoforms (see Supplementary Material for more 

detail). However, the protein mass can also be affected by various non-enzymatic post-

translational modifications as a result of stress or protein aging; the presence of Tf mutants 

in some patients cannot be excluded either. Therefore, confident identification of the 

synergistic anions bound to Tf in vivo would not be possible without the knowledge of the 
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apo-Tf mass in each patient. To obtain this information, we carried out the analysis of each 

serum sample in two steps. First, following the SEC fraction collection and albumin 

depletion on the BDR column, the sample was analyzed by native ESI MS, yielding the 

total mass of the protein/metal/synergistic anion complex. After that, the sample was 

quickly acidified, causing the complex to dissociate, and the mass spectrum was recorded, 

yielding the mass of the endogenous protein in its apo-form.  This allowed the total mass 

of the ligands (metal and synergistic anion) to be calculated as a mass difference between 

the two forms of the protein (Figure 2.6).  

Five out of six anonymized blood samples revealed nearly identical MS patterns; 

one example is presented in Figure 2.6A. The extracted metal-bound Tf population 

consists of both mono-ferric and di-ferric species, each utilizing carbonate as a synergistic 

anion. The presence of the mono-ferric form of Tf is consistent with the known pattern of 

Tf metal loading in healthy subjects, which typically contains a distribution of apo-, mono-

ferric and di-ferric protein species. Interestingly, one of the patients exhibited a very 

different metal loading pattern, with only di-ferric protein species present in the sample. 

The two distinct peaks present in the mass spectrum (Figure 2.6B) correspond to the 

oxalate-bound form (Fe3+·C2O4
2-)2·Tf and to the mixed form (Fe3+·CO3

2-)·(Fe3+·C2O4
2-

)·Tf.  

The fact that the oxalate-bound Tf species were detected in one of the clinical 

samples is exciting, as it clearly signals the ability of oxalate to act as a synergistic anion 

in vivo, and not just in vitro, as had been previously demonstrated.121 We note that this 

anomalous clinical sample did not reveal the presence of mono-ferric forms of Tf, which 

may be indirect evidence of the inhibition of iron release in vivo by oxalate acting as a 
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synergistic anion. Indeed, the inability of Tf to unload iron in the endosome coupled with 

continuous iron uptake would result in complete saturation of the protein with the metal. 

Since the focus of this work was on method development, and we did not have access to 

the patients’ medical records, it is impossible to draw any definitive conclusions regarding 

the interference of Tf-bound oxalate and iron homeostasis. It is clear, however, that oxalate 

can act as a synergistic anion, likely interfering with the iron delivery to cells. The ability 

to differentiate between carbonate- and oxalate-bound Tf in clinical samples will provide 

clinicians with a powerful tool that can be used to establish an actual role of oxalate in 

symptomatic iron deprivation, as well as in the etiology of neuropathologies caused by 

insufficient supply of iron to the brain during its development. 

So far, in the majority of cases autism has eluded attempts to discover its genetic 

origins,194 hinting at the importance of complex gene-environment interactions in the 

etiology of this disease.25 Extensive efforts to identify metabolic biomarkers of autism have 

also met only with limited success.140,191,206 Nevertheless, a relentless pursuit of autism 

biomarkers continues with the ultimate goal of improving both diagnosis of the disease and 

evaluation of the effectiveness of therapeutic interventions, and currently the most 

promising strategies appear to be those integrating Omics-based approaches and clinical 

data.73 Surprisingly, oxalate does not appear on the list of candidate biomarkers despite 

wide-spread anecdotal evidence for its involvement in autism progression,3 and a clinical 

study suggesting a correlation between the elevated levels of oxalate in plasma and the 

occurrence of autism.104  Oxalate is an endogenous anion, which is both produced internally 

(as a final product of metabolism of glyoxalate and glycerate), and acquired with food 

(especially through diets reach in leafy greens, but also from a variety of other sources 
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ranging from chocolate to tofu). As there are no enzymes in humans that can degrade 

oxalate, the only channel of its elimination from circulation is through the kidney, with a 

typical plasma concentration in healthy adults being 10-30 µM.26 While kidney stone 

formation is probably the best known pathology linked to increased levels of oxalate, 

hyperoxaluria may also affect other organs and tissues, including the myocardium and bone 

marrow, through systemic oxalosis.19  

Anemia is also one of the well-documented clinical presentations of systemic oxalosis, 

which is linked to oxalate deposition in the bones.34 Conceivably, limited availability of 

iron may also be caused by oxalate interfering with iron delivery to cells (e.g., increased 

levels of oxalate may lead to this anion replacing carbonate from the (Fe3+·CO3
2-)2·Tf 

complexes in circulation; with the resulting (Fe3+·C2O4
2-)2Tf complexes unable to release 

iron in the mildly acidic endosomal environment, see Figure 2.1). Since the insufficient 

supply of iron to the developing brain is known to have devastating 

consequences,15,60,86,119,134,155,216 arguments have been repeatedly made that iron 

deprivation may also play a role in the etiology of autism. However, multiple studies of the 

iron status in autistic children failed to reach a consensus whether oxalate is a contributing 

factor to iron deprivation. 

However, it is important to note that even abundant plasma oxalate may not 

necessarily interfere with iron delivery to the central nervous system via receptor-mediated 

transcytosis, as this anion fails to displace carbonate from Tf in vitro at neutral pH on a 

physiologically relevant time scale.120 The ability to determine the level of Tf complexed 

with oxalate in clinical samples opens a host of exciting opportunities in this field by 

providing a powerful analytical tool to establish the role of this ubiquitous metabolite in 
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modulating iron supply within the developing organism. Definitive proof of oxalate 

interference with iron delivery in autistic patients would provide an explanation for the 

frequent ineffectiveness of iron supplementation. Otherwise, it would bring into question 

the effectiveness of the aggressively marketed low-oxalate diets, at least with respect to 

ensuring sufficient iron supply, which appear to be common dietary interventions in autistic 

children.3 

 

2.5 Conclusions 

Tf-bound oxalate is expected to disturb iron homeostasis by inhibiting its release 

during Tf receptor-mediated endocytosis, potentially leading to a range of pathological 

conditions triggered by iron deprivation. Although the plasma levels of oxalate can be 

readily determined using a variety of techniques, currently there are no methods to 

determine the extent of oxalate bound to Tf in circulation. We have developed an analytical 

procedure that uses native ESI MS to identify synergistic anions bound to Tf in clinical 

blood samples without introducing artefacts that alter the carbonate/oxalate ratio. 

Therefore, this procedure may allow direct quantitation of different forms of Tf to be 

carried out. Application of this new technique to the analysis of blood samples of patients 

with various forms of anaemia and/or hyperoxaluria will allow the role of oxalate in 

limiting iron bioavailability to be established. This information will be invaluable for the 

design of a targeted and effective treatment of various pathologies triggered by iron 

deprivation without relying on iron supplementation, which frequently fails. The work 

presented in this report had focused specifically on the composition of Tf/metal/synergistic 

anion complexes in vivo. However, a similar strategy may also be used for the analysis of 
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other clinically relevant non-covalent complexes whose composition may provide 

important information regarding disease diagnosis, its progression or the treatment 

progress. 
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2.7 Figures 

	
	
Figure 2.1. Iron delivery to cells by Tf via receptor-mediated endocytosis (top) and inhibition 
of this process by oxalate acting as a synergistic anion instead of carbonate (bottom). Top 
(counter-clockwise, from upper left corner): binding of (Fe·CO3

2-/C2O4
2-)2Tf to TfR at the cell 

surface is followed by internalization of this complex in an endosome. Activation of proton 
pumps (blue) leads to the endosome acidification, a process that eventually triggers iron 
release from Tf and its subsequent transport from the endosomal compartment to the cytosol, 
while the iron-free Tf is recycled back to the cell surface, where it is made available for 
another cycle of iron delivery. Bottom: presence of oxalate prevent iron dissociation from Tf 
at mildly acidic endosomal pH.  
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Figure 2.2. Zoomed views of the native ESI mass spectra of recombinant Tf reconstituted 
with iron using carbonate (blue trace) and oxalate (red) as synergistic anions. The black trace 
represents the ionic signal of the apo-form of recombinant Tf. Only peaks corresponding to 
ionic species at charge state +20 are shown for clarity. 
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Figure 2.3. SEC chromatograms of bovine serum showing the Tf-containing fraction 
(highlighted in orange); native ESI mass spectrum of this fraction is shown in the inset (black 
trace). Serum albumin and Tf peaks are labeled with blue and red circles, respectively. The 
brown trace shows a mass spectrum of unfractionated serum. 
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Figure 2.4. Zoomed views of the native ESI mass spectra of mixtures of recombinant Tf 
reconstituted with iron using carbonate and oxalate as synergistic anions subjected to SEC 
fractionation (top) and albumin depletion on a BDR column (bottom). The black traces 
represent the spectra acquired after the treatments, and the red-filled curves represent the mass 
spectra of the initial mixtures. Only peaks corresponding to ionic species at charge state +20 
are shown for clarity. 
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Figure 2.5. Zoomed views of the native ESI mass spectra of the apo-form of human Tf 
subjected to SEC fractionation (red trace) and albumin depletion on the BDR column (blue). 
The black trace represents the reference mass spectrum of the apo-Tf.  
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Figure 2.6. Representative native ESI mass spectra of endogenous Tf extracted from serum 
of two patients (black traces). The red-filled curves represent reference mass spectra of the 
apo-forms of endogenous Tf acquired following acidification of the extracts to induce 
dissociation of both iron and synergistic anions from the protein. Only peaks corresponding 
to ionic species at charge state +19 are shown for clarity. 
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2.9 Supplemental Figures 
 

 
Figure S2.1. Carbonate (left) and Oxalate (right) coordinated Fe in the N-lobe of Tf 
 
 

 
 
Figure S2.2. Calculated mass shifts between holo- and apo-Tf for the +21 and +20 charge 
states.  Theoretical mass shift is for two Fe3+ and CO3

2- is 229.7Da. 
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Figure S2.3. Shown is the +21 charge state of aTf.  Dashed lines represent the calculated 
mass shift for either the addition of a hexose due to glycation (162.1 Da) as well as the 
addition or absence of a sialic acid (291.2 Da). 
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Figure S2.4. Calculated mass is based on the amino acid sequence of Tf and the mass of 
two fully sialylated biantennary glycan chains. This figure highlights the importance of 
experimentally determining the mass of aTf in order for the correct synergistic anion and 
metal composition to be assigned. 
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 % Area   
Synergistic Anion  
Composition 

Orig. Mix SEC BDR 

2 CO3
2- 21.5% 23.8% 24.0% 

CO3
2/ C2O4

2 28.5% 27.1% 27.9% 
2 C2O4

2 50.0% 49.1% 48.0% 
 
Figure S2.5.  Deconvoluted spectra of recombinant Tf reconstituted with iron using 
carbonate and oxalate as synergistic anions subjected to SEC fractionation (red) and 
albumin depletion on a BDR column (blue).  Peak area’s were integrated and there was no 
significant change in the percent area for any of the three synergistic anion peaks. 
  

Carbonate/Oxalate Mixure
SEC
BDR

3+ 2-
3 2[(Fe     CO    )   Tf ]

3+ 2-
4[(Fe     C  O    CO    )Tf ]2

2-
3

2
3+ 2-

4[(Fe     C  O   )  Tf ]2



 55 

2.9 References 

1 Pantopoulos, K., Porwal, S. K., Tartakoff, A. & Devireddy, L. Mechanisms of 
mammalian iron homeostasis. Biochemistry 51, 5705-5724, 
doi:10.1021/bi300752r (2012). 

2 Weiss, G. & Goodnough, L. T. Anemia of chronic disease. N. Engl. J. Med. 352, 
1011-1023, doi:10.1056/NEJMra041809 (2005). 

3 Luck, A. N. & Mason, A. B. in Metal Transporters Vol. 69 Current Topics in 
Membranes (eds S. Lutsenko & J. M. Arguello)  3-35 (Elsevier Academic Press 
Inc, 2012). 

4 Jandl, J. H. & Katz, J. H. The plasma-to-cell cycle of transferrin. J. Clin. Invest. 
42, 314-326, doi:10.1172/JCI104718 (1963). 

5 Luck, A. N., Bobst, C. E., Kaltashov, I. A. & Mason, A. B. Human serum 
transferrin: is there a link among autism, high oxalate levels, and iron deficiency 
anemia? Biochemistry 52, 8333-8341, doi:10.1021/bi401190m (2013). 

6 Aisen, P. Transferrin, the transferrin receptor, and the uptake of iron by cells. Met. 
Ions Biol. Syst. 35, 585-631 (1998). 

7 Luck, A. N. & Mason, A. B. Transferrin-mediated cellular iron delivery. Curr. 
Top. Membr. 69, 3-35, doi:10.1016/b978-0-12-394390-3.00001-x (2012). 

8 Gumerov, D. R. & Kaltashov, I. A. Dynamics of iron release from transferrin N-
lobe studied by electrospray ionization mass spectrometry. Anal. Chem. 73, 2565-
2570 (2001). 

9 Burtis, C. A., Ashwood, E. R. & Tietz, N. W. Tietz Textbook of Clinical 
Chemistry. 3 edn,  (W.B. Saunders, 1999). 

10 Schlabach, M. R. & Bates, G. W. The synergistic binding of anions and Fe3+ by 
transferrin. Implications for the interlocking sites hypothesis. J. Biol. Chem. 250, 
2182-2188 (1975). 



 56 

11 Halbrooks, P. J., Mason, A. B., Adams, T. E., Briggs, S. K. & Everse, S. J. The 
oxalate effect on release of iron from human serum transferrin explained. J. Mol. 
Biol. 339, 217-226 (2004). 

12 Lopez, A., Cacoub, P., Macdougall, I. C. & Peyrin-Biroulet, L. Iron deficiency 
anaemia. Lancet, in press, doi:10.1016/s0140-6736(15)60865-0 (2015). 

13 Konofal, E. et al. Impact of restless legs syndrome and iron deficiency on 
attention-deficit/hyperactivity disorder in children. Sleep Med. 8, 711-715, 
doi:http://dx.doi.org/10.1016/j.sleep.2007.04.022 (2007). 

14 Simakajornboon, N., Kheirandish-Gozal, L. & Gozal, D. Diagnosis and 
management of restless legs syndrome in children. Sleep Med. Rev. 13, 149-156, 
doi:http://dx.doi.org/10.1016/j.smrv.2008.12.002 (2009). 

15 Otero, G. A., Pliego-Rivero, F. B., Porcayo-Mercado, R. & Mendieta-Alcántara, 
G. Working memory impairment and recovery in iron deficient children. Clin. 
Neurophysiol. 119, 1739-1746, 
doi:http://dx.doi.org/10.1016/j.clinph.2008.04.015 (2008). 

16 Dosman, C. F. et al. Ferritin as an indicator of suspected iron deficiency in 
children with autism spectrum disorder: prevalence of low serum ferritin 
concentration. Dev. Med. Child Neurol. 48, 1008-1009, 
doi:10.1017/s0012162206232225 (2006). 

17 Dosman, C. F. et al. Children with autism: Effect of iron supplementation on 
sleep and ferritin. Pediatr. Neurol. 36, 152-158, 
doi:10.1016/j.pediatrneurol.2006.11.004 (2007). 

18 Bilgic, A. et al. Iron deficiency in preschool children with autistic spectrum 
disorders. Res. Autism Spectr. Disord. 4, 639-644, doi:10.1016/j.rasd.2009.12.008 
(2010). 

19 Reynolds, A. et al. Iron Status in Children With Autism Spectrum Disorder. 
Pediatrics 130, S154-S159, doi:10.1542/peds.2012-0900M (2012). 

20 Konstantynowicz, J. et al. A potential pathogenic role of oxalate in autism. Eur. J. 
Paediatr. Neurol. 16, 485-491, doi:http://dx.doi.org/10.1016/j.ejpn.2011.08.004 
(2012). 



 57 

21 Zhang, M., Gumerov, D. R., Kaltashov, I. A. & Mason, A. B. Indirect detection of 
protein-metal binding: Interaction of serum transferrin with In3+ and Bi3+. J. Am. 
Soc. Mass Spectrom. 15, 1658-1664 (2004). 

22 Yu, X., Wojciechowski, M. & Fenselau, C. Assessment of metals in reconstituted 
metallothioneins by electrospray mass spectrometry. Anal. Chem. 65, 1355-1359 
(1993). 

23 Nemirovskiy, O. V. & Gross, M. L. Determination of calcium binding sites in 
gas-phase small peptides by tandem mass spectrometry. J. Am. Soc. Mass 
Spectrom. 9, 1020-1028 (1998). 

24 Lossl, P., Snijder, J. & Heck, A. J. Boundaries of mass resolution in native mass 
spectrometry. J. Am. Soc. Mass Spectrom. 25, 906-917, doi:10.1007/s13361-014-
0874-3 (2014). 

25 Gumerov, D. R., Mason, A. B. & Kaltashov, I. A. Interlobe communication in 
human serum transferrin: metal binding and conformational dynamics 
investigated by electrospray ionization mass spectrometry. Biochemistry 42, 
5421-5428 (2003). 

26 Kaltashov, I. A., Bobst, C. E., Zhang, M., Leverence, R. & Gumerov, D. R. 
Transferrin as a model system for method development to study structure, 
dynamics and interactions of metalloproteins using mass spectrometry. Biochim. 
Biophys. Acta 1820, 417-426 (2012). 

27 Lei, Q. P. et al. Electrospray mass spectrometry studies of non-heme iron-
containing proteins. Anal. Chem. 70, 1838-1846 (1998). 

28 Griffith, W. P. & Kaltashov, I. A. Highly asymmetric interactions between globin 
chains during hemoglobin assembly revealed by electrospray ionization mass 
spectrometry. Biochemistry 42, 10024-10033 (2003). 

29 Hyung, S. W. et al. Microscale depletion of high abundance proteins in human 
biofluids using IgY14 immunoaffinity resin: analysis of human plasma and 
cerebrospinal fluid. Anal Bioanal Chem 406, 7117-7125, doi:10.1007/s00216-
014-8058-3 (2014). 



 58 

30 Steel, L. F. et al. Efficient and specific removal of albumin from human serum 
samples. Mol. Cell. Proteomics 2, 262-270, doi:10.1074/mcp.M300026-MCP200 
(2003). 

31 Arndt, T. Carbohydrate-deficient transferrin as a marker of chronic alcohol abuse: 
a critical review of preanalysis, analysis, and interpretation. Clinical chemistry 47, 
13-27 (2001). 

32 Zühlsdorf, A. et al. It Is Not Always Alcohol Abuse—A Transferrin Variant 
Impairing the CDT Test. Alcohol Alcohol., doi:10.1093/alcalc/agv099 (2015). 

33 Weykamp, C. et al. Toward standardization of carbohydrate-deficient transferrin 
(CDT) measurements: III. Performance of native serum and serum spiked with 
disialotransferrin proves that harmonization of CDT assays is possible. Clin. 
Chem. Lab. Med. 51, 991-996, doi:10.1515/cclm-2012-0767 (2013). 

34 Luck, A. N., Bobst, C. E., Kaltashov, I. A. & Mason, A. B. Human serum 
transferrin: Is there a link between autism, high oxalate and iron deficiency 
anemia? Biochemistry 52, 8333-8341, doi:10.1021/bi401190m (2013). 

35 Sykes, N. H. & Lamb, J. A. Autism: the quest for the genes. Expert Reviews in 
Molecular Medicine 9, 1-15, doi:doi:10.1017/S1462399407000452 (2007). 

36 Broek, J. A. C. et al. The need for a comprehensive molecular characterization of 
autism spectrum disorders. International Journal of Neuropsychopharmacology 
17, 651-673, doi:10.1017/s146114571300117x (2014). 

37 Wang, H. et al. Potential serum biomarkers from a metabolomics study of autism. 
J. Psychiatry Neurosci. 40, in press, doi:10.1503/jpn.140009 (2015). 

38 Suganya, V., Geetha, A. & Sujatha, S. Urine proteome analysis to evaluate 
protein biomarkers in children with autism. Clinica Chimica Acta 450, 210-219, 
doi:http://dx.doi.org/10.1016/j.cca.2015.08.015 (2015). 

39 Mizejewski, G. J., Lindau-Shepard, B. & Pass, K. A. Newborn screening for 
autism: in search of candidate biomarkers. Biomark. Med. 7, 247-260, 
doi:10.2217/bmm.12.108 (2013). 



 59 

40 Higdon, R. et al. The Promise of Multi-Omics and Clinical Data Integration to 
Identify and Target Personalized Healthcare Approaches in Autism Spectrum 
Disorders. Omics 19, 197-208, doi:10.1089/omi.2015.0020 (2015). 

41 Aitken, K. J. Dietary interventions in autism spectrum disorders why they work 
when they do, why they don't when they don't.  (2009). 

42 Bhasin, B., Urekli, H. M. & Atta, M. G. Primary and secondary hyperoxaluria: 
Understanding the enigma. World J. Nephrol. 4, 235-244, 
doi:10.5527/wjn.v4.i2.235 (2015). 

43 Coulter-Mackie, M. B., White, C. T., Lange, D. & Chew, B. H. Primary 
Hyperoxaluria Type 1. GeneReviews (2014). 

44 Beard, J. One person's view of iron deficiency, development, and cognitive 
function. Am. J. Clin. Nutr. 62, 709-710 (1995). 

45 Pollitt, E. IRON-DEFICIENCY AND COGNITIVE FUNCTION. Annu. Rev. 
Nutr. 13, 521-537, doi:10.1146/annurev.nutr.13.1.521 (1993). 

46 Yager, J. Y. & Hartfield, D. S. Neurologic manifestations of iron deficiency in 
childhood. Pediatr. Neurol. 27, 85-92, doi:http://dx.doi.org/10.1016/S0887-
8994(02)00417-4 (2002). 

47 Gordon, N. Iron deficiency and the intellect. Brain Dev. 25, 3-8, 
doi:http://dx.doi.org/10.1016/s0387-7604(02)00148-1 (2003). 

48 Lozoff, B. & Georgieff, M. K. Iron Deficiency and Brain Development. Sem. 
Pediatr. Neurol. 13, 158-165, doi:http://dx.doi.org/10.1016/j.spen.2006.08.004 
(2006). 

49 McCann, J. C. & Ames, B. N. An overview of evidence for a causal relation 
between iron deficiency during development and deficits in cognitive or 
behavioral function. Am. J. Clin. Nutr. 85, 931-945 (2007). 

50 Jáuregui-Lobera, I. Iron deficiency and cognitive functions. Neuropsychiatr. Dis. 
Treat. 10, 2087-2095, doi:10.2147/NDT.S72491 (2014). 



 60 

CHAPTER 3 

INFLUENCE OF GLYCAN MODIFICATGION ON IGG1 BIOCHEMICAL AND 
BIOPHYSICAL PROPERTIES 

This chapter has been adapted from a paper submitted as: Pawlowski, J. W., Bajardi-

Taccioli, A., Houde, D., Feschenko, M., Carlage, T. & Kaltashov, I. A. Influence of 

glycan modification on IgG1 biochemical and biophysical properties. J. Pharm. Biomed. 

Anal. 151, 133-144, doi:https://doi.org/10.1016/j.jpba.2017.12.061 (2018). 

 

3.1 Abstract 

Monoclonal antibodies (mAbs) are the fastest growing class of biopharmaceuticals. 

The specific therapeutic tasks vary among different mAbs, which may include 

neutralization of soluble targets, activation of cytotoxic pathways, targeted drug delivery, 

and diagnostic imaging. The specific therapeutic goal defines which interactions of the 

antibody with its multiple physiological partners are most critical for function, and which 

ones are irrelevant or indeed detrimental. In this work, we explored the ability of the glycan 

chains to affect IgG1 interaction with two key receptor families, FcRn and γ-type Fc 

receptors, as well as the influence of glycan composition on the conformation and stability 

of the antibody molecule. Three different glycan-modified forms of IgG1 (fully 

deglycosylated, hypergalactosylated and hypersialylated) were produced and characterized 

alongside the unmodified mAb molecule. Biophysical measurements did not reveal any 

changes that would be indicative of alterations in the higher order structure or increased 

aggregation propensity for any of the three glycoforms compared to the unmodified mAb, 

although the CH2 domain was shown to have reduced thermal stability in the fully 

deglycosylated form. No significant changes were observed for the hypergalactosylated 

and hypersialylated forms of IgG1 with regards to binding to FcRn, FcgRIIA and FcgRIIIA, 

suggesting that neither half-life in circulation nor their ability to induce an immune 

response are likely to be affected by these modifications of the glycan chains. In contrast, 

no measurable binding was observed for the deglycosylated form of IgG1 with either 

FcgRIIA or FcgRIIIA, although this form of the antibody retained the ability to associate 
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with FcRn. These highly specific patterns of attenuation of Fc receptor recognition can be 

exploited in the future for therapeutic purposes. 

 

3.2 Introduction 

Monoclonal antibodies (mAbs) are a large and fast growing class of 

biopharmaceuticals used to treat a wide range of diseases. Of the five classes of antibodies, 

the majority of all currently licensed therapeutic mAbs use immuglobulin gamma (IgG) as 

their framework 1,2. IgG consists of a fragment antigen binding (Fab) domain and a 

fragment crystalline (Fc) domain. The latter is responsible for Fc gamma receptor (FcgR) 

and neonatal Fc receptor (FcRn) binding. There are four major subtypes of IgG (IgG1, 

IgG2, IgG3, and IgG4), each having different properties with respect to antigen target, 

complement activation, and affinity for FcgRs 3. 

The most important IgG effector functions are achieved through binding to FcgRs 

on the surface of leukocytes leading to the activation of the immune system.4 There is one 

inhibiting (FcgRIIb) and four activating (FcgRI, FcgRIIa, FcgRIIIa, FcgRIIIb) receptors 

present in humans 5,6. IgG effector functions that are mediated through the binding of 

FcgRs-presenting cells include antibody-dependent cellular cytotoxicity, antibody-

dependent phagocytosis, degranulation, cytokine release, and inhibition of cell activities 

among other functions.3,4 Neonatal Fc receptor (FcRn) is a unique type of Fc receptor 

responsible for IgG longevity in circulation (half-life of up to three weeks) 7. Circulating 

IgG molecules are taken up by cells through pinocytosis and directed to endosomal 

compartments. Upon endosome acidification (pH < 6.5) FcRn binds to the CH2/CH3 region 

of IgG and rescues it from being routed to and degraded in the lysosome. FcRn-bound IgG 

is then returned to the cell surface and released at physiological pH (7.4) back into 

circulation. This pH dependent binding is thought to be due to several pH-titratable 

residues at the FcRn-Fc binding interface 8. FcRn is also able to transport IgG molecules 

across epithelial barriers 9 including the placenta (and thus playing a critical role in 

establishing and maintaining immunity by transferring antibodies from mother to child) 10.  

Interactions of the antibody with its targets and receptors must be considered when 

developing a new therapeutic mAb, as they ultimately determine all aspects of its activity 

and pharmacokinetic (PK) properties, e.g., target recognition (Fab/antigen binding), 
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activation of the immune response (Fc/FcgR binding) and half-life (Fc/FcRn association 

and interaction with neutralizing antibodies 11). However, the relative importance of each 

individual type of interaction depends upon the specific task the new biotherapeutic is 

designed to accomplish (e.g., soluble target neutralization, cell destruction, drug delivery, 

imaging, etc.). For example, in drug delivery or imaging applications the emphasis is 

placed on the Fab/antigen interaction (in fact, an immune response to the target of interest 

is likely to be an unwanted side effect in this case, and the mAb effector function should 

be diminished or eliminated). In contrast, effective targeting of cancer cells would depend 

upon a strong immune response, placing emphasis on optimizing Fc/FcgR interactions.  

Glycosylation is a structural feature common to many therapeutic proteins, including 

most mAbs used in clinical applications. In mAbs, glycan chains can have a significant 

impact on both PK properties and the effector function. The single (and highly conserved) 

glycosylation site is located at position N297 in the CH2 domains of each heavy chain 

(Figure 3.1), and each glycan chain interacts with the CH2 domain and the opposite glycan 

chain 3,12. While the localization of the glycan chains within the Fc region makes their 

influence on antigen binding highly unlikely, their unique “introverted” arrangement plays 

an important role in forming and maintaining the conformation of Fc; it is therefore not 

surprising that changes in the glycan composition alter many aspects of functionality, 

stability and PK profile of mAbs 13. It has been reported that sialylation of IgG molecules 

enhances their anti-inflammatory properties through a decreased affinity to FcgRIIIa 12 and 

a proposed interactions with dendritic cell-specific intercellular adhesion molecule-3-

grabbing non-integrin 3,14-16. Furthermore, afucosylated, terminal galactose, and high 

mannose glycan species have all been reported to affect the PK profile and effector function 

of IgG 17,18. It is very important to understand how glycosylation may affect the effector 

function and PK profile of mAb for efficacy and safety reasons. It may also enable rational 

design of engineered glycoforms with receptor-binding properties optimized for a specific 

therapeutic function. 

In this work, two glycotransferases were used to add a terminal galactose or sialic 

acid to the glycan chain of an antibody (IgG1 subclass), while the glycosidase PNGase F 

was used to completely remove the glycan chain. The glycan-modified mAbs were then 

extensively characterized with regards to changes in stability and function (with an 
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emphasis on binding to FcgRs and FcRn). Since certain steps during enzymatic 

modification of mAbs may introduce non-enzymatic post-translational modifications 

(PTMs) in addition to the desired enzymatic PTMs, the levels of oxidation and deamidation 

were carefully controlled in the final products and compared to those in the starting 

material. Furthermore, changes in the glycan composition can influence both structure and 

functional properties of mAbs via two distinct routes, (i) packing and steric effects and (ii) 

electrostatic effects, which were evaluated separately in this work.  The glycan 

modifications were optimized to minimize other structural changes to the mAb, and these 

modifications did not appear to have a significant effect on the mAbs biophysical and/or 

biochemical properties. Addition of galactose and/or sialic acid did not significantly 

interfere with the mAb’s binding to FcRn or FcgRIIA/IIIA. Deglycosylation of the mAb 

produced a modest decrease of its affinity for FcRn, and completely abrogated binding to 

FcgRIIA/IIIA, as previously reported 19,20. Modification of a mAb’s glycan composition 

opens exciting new possibilities to fine-tune its properties with the purpose of achieving a 

desired therapeutic outcome 21-23. The results of this study help to further understand the 

impact of Fc glycosylation on the function and structure of an IgG1 molecule. 

 

3.3 Results 

Three glycoprotein variants (deglycosylated IgG1, hypergalactosylated IgG1 and 

hypersialylated IgG1) were produced from the same mAb sample as described in the 

Experimental section. All three glycan-modified mAb samples, as well as the reaction 

control (IgG1 incubated in the same buffer and temperature as the glycan-modified 

samples) and unmodified IgG1 were characterized as described below.  

 

Intact Mass Spectrometry Analysis. Successful enzymatic modification of the IgG1 

glycans was verified by comparing the mass spectra of the modified (enzymatically treated) 

IgG1 to control (unmodified) IgG1 species (Figure 3.2). The unmodified mAb has four 

major glycan chain variants, which range from having no terminal galactoses (G0/G0 in 

Figure 3.2) to 3 terminal galactose residues (G1/G2). A list of all possible glycan species 

is shown in the Supplementary Material (Figure S3.1). Based on the mass shift from the 

G0/G0 peak of the unmodified IgG1, hypergalactosylation was shown to convert the 
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heterogeneous ensemble of unmodified IgG1 molecules to a fully galactosylated species 

(G2/G2 in Figure 3.2). Hypersialylated IgG1 exhibited a combination of 2, 3, and 4 

terminal sialic acid residues, with the glycoforms bearing 2 and 3 sialic acid residues being 

the major species (G2S1/G2S1+G2S0/G2S2 and G2S1/G2S2 in Figure 3.2). The mass of 

the deglycosylated IgG1 species is consistent with a complete removal of both glycan 

chains from the protein. No significant increase in either oxidation or glycation was 

observed in the enzymatically modified IgG1 samples (Table 3.1, Figure S3.2 in 

Supplementary Material). 

Size Exclusion Chromatography. Size exclusion chromatography (SEC) was used to 

evaluate the extent of aggregation of enzymatically treated IgG1 samples by monitoring 

formation of both soluble aggregates. None of the enzymatic modifications used in this 

work resulted in a detectable shift of the retention time for the main (monomer) peak. The 

level of the soluble aggregate formation was found to be less than 2% (by absorbance) for 

all IgG1 samples, including fully deglycosylated one (Table S1), suggesting that no the 

experimental conditions to modify the glycan did not significantly alter molecular stability 

or lead to increased levels of protein aggregates.  

Lys-C peptide mapping. Lys-C peptide mapping of all IgG1 samples was carried out 

using reversed phase liquid chromatography with detection by mass spectrometry 

(LC/MS). The generated peptide maps were used to detect and quantitate several possible 

PTMs that could be present in the intact IgG1 sample and generated as side products of the 

glyco-modification treatment (e.g., oxidation, deamidation, and glycosylation). Possible 

oxidation of the protein was a particular concern, as the FcRn binding interface 

incorporates two conserved 24 methionine residues present on each HC (Met252 and Met428, 

located in peptides L17 and L32, respectively). Oxidation of either methionine has been 

shown to negatively affect the binding of IgG1 to FcRn, provided its twin methionine 

residue (located on another HC chain) is also oxidized 24-26. Deamidation introduces a 

negative charge into a protein and in some cases, is accompanied by isomerization which 

elongates the polypeptide backbone. Somewhat elevated levels of deamidation were 

observed in peptide L19-20 containing Asn304 and Asn322, and of which are located close 

to the FcRn binding interface (see Figure 3.1) and are known to be prone to deamidation 
27,28. Glycosylated peptides were monitored to confirm the glycan composition of the 
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hypergalactosylated and hypersialylated IgG1 samples; in the case of the deglycosylated 

IgG1, successful removal of the glycan chain was verified by the absence of any 

glycopeptides in the Lys-C digest (Table 3.2).  

An example of non-enzymatic PTM quantitation (oxidation of Met252) using LC/MS is 

illustrated in Figure 3.3, and Table 3.1 compares the relative levels of oxidation and 

deamidation in both modified and unmodified IgG1 molecules. Peptide maps for the 

hypergalactosylated and hypersialyated IgG1 species show a modest increase of oxidation 

of Met252 and Met428. Importantly, the estimated percentage of modified IgG1 molecules 

with oxidation at both methionine residues is less than 2% for all samples; therefore, 

oxidation is not expected to impact FcRn binding. There is a slight increase of deamidation 

for both hypergalactosylated and hypersialyated IgG1 (Table 3.1), although this has not 

been reported to affect FcRn binding (vide supra). Deglycosylated IgG1 showed a decrease 

in oxidation of the two methionine residues, and a modest increase of deamidation. The 

decrease in oxidation is due variability in sample handling of the deglycosylated IgG1 from 

the other samples were prepared from aliquots held at 2-8 Co for > 2 weeks. The reaction 

control IgG1 sample showed a minor increase in oxidation and deamidation levels 

following exposure to the reaction conditions for hypersialylated IgG1 sans 

sialyltransferase as, but the absence of major changes indicates reaction conditions do not 

adversely affect IgG1. 

Relative abundance of observed glycopeptides for each IgG1 sample was calculated 

(Table 3.2). For hypergalactosylated IgG1, the only identified glycopeptide was found to 

have a G2 glycan chain (core complex glycan moiety with two terminal galactoses). This 

is consistent with the intact mass measurement which showed IgG1 being fully 

galactosylated (see Figure 3.2). Hypersialylated IgG1 contained a mixture of 

glycopeptides with one or two terminal sialic acid glycans (G2S1 and G2S2, one and two 

terminal sialic acids respectively), consistent with the intact mass measurement which 

showed only IgG1 glycans with 2, 3, and 4 terminal sialic acids (see Figure 3.2). No 

glycopeptides were detected in the deglycosylated IgG1 sample, as was expected since the 

intact mass measurement shows no glycans attached to IgG1 (see Figure 3.2). 
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Second Order Derivative UV-VIS Spectroscopy. Second order derivative UV-VIS 

spectroscopy was performed to monitor changes in absorbance of aromatic residues in the 

modified IgG1 samples. Plots of second order derivatives of the absorption spectra for all 

IgG1 samples are shown in Figure 3.4. No significant change is observed, consistent with 

the absence of global structural change for any of the IgG1 samples.  

Differential Scanning Calorimetry. Differential scanning calorimetry was used to 

assess the thermal stability of the IgG1 samples. Thermograms of the IgG1 samples 

examined in this work (Figure 3.5) show multiple transitions, the lower of which is 

assigned as thermal unfolding of the CH2 domain (Tm1), while the higher-temperature 

transitions (Tm2/3) are assigned as thermal unfolding of the Fab and CH3 domains.29,30 No 

temperature change of either thermal transition was observed for the hypergalactosylated 

IgG1 as compared to unmodified IgG1, while deglycosylated IgG1 had noticeably lower 

Tm1, consistent with a previous study.31 Interestingly, hypersialylated IgG1 had slightly 

lower temperatures for both transitions, with the downward shift of the higher-temperature 

transition being more pronounced. Regardless of the reason for the modest decrease of 

Tm2 in the hypersialylated IgG1, it is not expected to have significant impact on its long-

term stability.30  

Biolayer Interferometry Binding Kinetics. A biolayer interferometry assay was used to 

measure the kinetics of IgG1 association to and dissociation from the FcRn fusion protein. 

The experimental curves (Figure 3.6) were fitted using a 1:1 binding model to generate 

association and dissociation rate constants (kon and koff), as well as the dissociation constant 

(KD, calculated as koff/kon) 32. The calculated KD values are presented in Table 3.3. The 

reaction control IgG1 sample did not show a change in its KD value as compared to the 

unmodified IgG1. Deglycosylated IgG1 was found to have a modest increase in KD, while 

both hypergalactosylated and hypersialylated IgG1 samples showed a modest decrease in 

KD values.  

Fcg Receptor Binding. AlphaScreen-based competitive FcRn, FcgRIIa, and FcgRIIIa 

assays were used to measure the relative potency for each modified form of the IgG1 

(compared to the unmodified IgG1). The results are shown in Figure 3.7 and Figure 3.8. 

Deglycosylated and hypergalactosylated IgG1s were observed to have a decrease of their 

relative potency for FcRn. Conversely, the reaction control and hypersialylated IgG1s were 
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observed to have an increase of their relative potency for FcRn. Deglycosylated IgG1 was 

not observed to bind either FcgRIIa or FcgRIIIa. Hypergalactosylated and hypersialylated 

IgG1 showed a minor decrease and increase of its relative potency for FcgRIIa and 

FcgRIIIa, respectively. 

 

3.4 Discussion 

The goal of this study was to understand how specific changes to this IgG1 glycan 

chain affect both biophysical properties of the protein and its ability to bind to Fc receptors. 

To that end, fully deglycosylated, hypergalactosylated, and hypersialylated IgG1 

molecules were prepared enzymatically, and their structural and receptor-binding 

characteristics were assessed using a variety of biophysical tools and compared to those of 

intact (unmodified) IgG1. Successful modification of the glycan chains was verified by 

measuring the mass of intact IgG1 molecules with ESI MS 33,34 (Figure 3.1), as well as 

profiling glycopeptides in the Lys-C map of each glycoform of IgG1, including the 

unmodified molecule. In addition to modifying the glycan chains, the enzymatic treatment 

of the IgG1 sample may inadvertently introduce unintended non-enzymatic PTMs (such as 

oxidation, deamidation and glycation). Among the several non-enzymatic PTMs that 

frequently affect monoclonal antibodies during both production and storage, oxidation is 

particularly critical in the context of this study. First, extensive oxidation is known to have 

a negative impact on the conformational integrity of proteins 35-37. Second, oxidation of 

both methionine residues at the FcRn binding interface (Met252 and Met428) is known to be 

detrimental to FcRn binding 24-26. Should the extensive oxidation occur during the 

enzymatic treatment of IgG1, the resulting instability of the protein and/or its inability to 

interact with FcRn might be incorrectly correlated with a particular structural feature of the 

glycan chain. Both the occurrence and the extent of non-enzymatic PTMs were determined 

by careful examination of the Lys-C peptide maps for each of the glycoforms. No 

significant increase in non-enzymatic PTMs (deamidation or oxidation) were observed that 

would be detrimental to the stability of IgG1 or its ability to bind FcRn. Indeed, it would 

require the oxidation level for Met252 and Met428 to exceed 50% (a recent study failed to 

observe a significant difference in serum clearance profiles between the intact IgG1 and its 

modified version in which the oxidation level of one of the key Met residues was 50% 25). 
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The absence of extensive non-enzymatic PTMs triggered by glycan chain modification 

procedures in IgG1 samples is important, as it allows all observed changes in the stability 

of the higher order structure, as well as receptor-binding characteristics of the modified 

protein samples to be attributed directly to the change in the glycan structure. The only 

exception is the deamidation observed in the fully deglycosylated IgG1, where elevated 

deamidation levels were observed (Table 3.1). The affected residue (Asn322) are located 

near the FcRn binding interface of the antibody (see Figure 3.1) and are highly unlikely to 

have any influence on its association with either of the Fcγ receptors examined in this work; 

there are no reports of deamidation in this region of the IgG1 Fc having any impact on 

FcRn binding.  

Second-order derivative UV-VIS does not provide any indication of a tertiary structure 

change for any of the modified IgG1s (Figure 3.4). Second order derivative UV-VIS 

spectroscopy is a sensitive probe of the environment of aromatic side chains in protein 

molecules.38,39 These residues are present in all domains of the molecule (see the inset in 

Figure 3.4, where positions of Tyr, Phe and Trp residues are shown within the IgG1 

structure), lending them a useful probe of the changes in conformational integrity.40 

Therefore, absence of any changes in the second order derivative UV-VIS absorption 

spectra provides a strong indication that there are no significant (large-scale) 

conformational changes. Consistent with this conclusion, changes in the glycan 

composition (including complete deglycosylation) did not result in a detectable change in 

the elution time of the IgG1 monomer peak in SEC chromatograms (Table S1 in 

Supplementary Material), suggesting the consistency of the hydrodynamic radius across 

the different variants studied. Furthermore, the extent of dimerization (based on the relative 

abundance of the dimer peak in the SEC chromatograms) is also unaffected by the 

composition of the glycan chain. This provides a strong indication that the aggregation 

propensity of the IgG1 molecules (which is commonly thought of as being linked to the 

changes in the higher order structure) 41-43 is not altered by either modification or removal 

of the glycans. Deglycosylation can have a profound negative effect on the solubility of 

many proteins 44,45 (a loss of even a single glycan chain may lead to significant aggregation 
46); furthermore, removal of the glycan chains has been shown to have a detrimental effect 

on the stability of the CH2 domain of an antibody under acidic conditions 47. However, we 
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have not observed any loss of solubility for the antibody molecule after deglycosylation at 

physiologically relevant pH; this should not be surprising, given the unusual “inward” 

orientation of the glycan chains within the native conformation of the homo-dimeric IgG1 

molecule, where it can hardly act as a solubility enhancer.  

While the higher order structure of the IgG1 molecules does not appear to be 

compromised as a result of its complete deglycosylation, the conformational stability does 

change upon removal of the glycan chains. DSC measurements clearly demonstrate a 

significant (> 5OC) decrease of Tm1 in the deglycosylated IgG1 sample compared to the 

unmodified molecule (Figure 3.5). This transition is usually interpreted as thermal 

unfolding of the CH2 domain,30 and the dramatic decrease in the melting temperature of 

this domain upon the complete removal of glycans suggests that the inward orientation of 

the glycans within the homo-dimer enhances its stability by providing additional 

interactions between the two units forming the homo-dimeric structure. While it might be 

tempting to speculate that the increased level of deamidation in the CH2 domain observed 

in the deglycosylated IgG1 sample may also contribute to decreased thermal stability, a 

significant fraction of the IgG1 molecules in this sample are not affected by deamidation. 

Should this PTM result in loss of thermal stability, a split peak would be observed in the 

thermogram representing both deamidated (Asp322) and intact (Asn322) populations; in 

contrast to this, a single well-defined peak is observed in the Tm1 region of the 

thermogram, indicating that the entire ensemble of the deglycosylated IgG1 molecules 

suffers from the decrease of thermal stability. Above and beyond the CH2 domain, 

deglycosylation does not appear to affect the thermal stability of the IgG1 molecule (no 

shift in Tm2/3 is evident in Figure 3.5), consistent with the notion that the stabilizing 

effects of the glycan chains are localized within the CH2 domain and to not affect thermal 

stability of either CH3 or Fab regions of the molecule.  

Hypergalactosylation does not result in any detectable changes in either Tm1 or Tm2/3, 

which is hardly surprising given the relatively modest increase of the length of the glycan 

chain (compared to the unmodified IgG1). On the other hand, hypersialylation of IgG1 

does give rise to modest, but detectable shifts of both Tm1 and Tm2/3 (Figure 3.5). The 

slight (ca. 1.5 OC) decrease in Tm1 is not surprising, as the introduction of two to four 

negative charges within the relatively small interstitial space between the two CH2 
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domains is likely to exert at least some destabilizing effect due to Coulombic repulsion. 

Intriguingly, the effect of the electrostatic repulsion is also felt outside of the CH2 domains, 

as indicated by a modest decrease of Tm2/3 (ca. 2 OC) compared to all other IgG1 samples. 

This modest decrease of Tm2/3 is suspected to be destabilization of the CH3 domain due 

to the proximity of the glycan chain. 

Even though the DSC measurements clearly demonstrate a modest decrease of thermal 

stability of IgG1 following hypersialylation, these changes are too small to have a 

measurable negative impact on the protein stability at either room or body temperature. 

Furthermore, even though the CH2 domain appears to be sensitive to the effects of 

hypersialylation, neither FcRn nor FcγRIIA/FcγRIIIA binding is affected by 

hypersialylation (for which the binding interfaces are located in the CH2/CH3 and the 

CH2/lower hinge regions, respectively 23), as demonstrated by the results of the biolayer 

interferometry and the AlphaScreen measurements. FcRn is responsible for the long half-

life of IgG1 molecules in circulation (by rescuing them from lysosomal degradation in 

macrophages 8, which is the major clearance route for large proteins in circulation), while 

the FcRγ receptors are responsible for activation of the immune system. Highly sialylated 

IgG1 molecules have been shown to possess anti-inflammatory properties 48-50. The 

absence of any measurable influence of sialylation on IgG1, interaction with either FcRn 

or γ-type Fc receptors demonstrated in this work, suggests that hypersialylation can be 

exploited for therapeutic purposes without a significant impact on PK characteristics of 

antibodies, at least with respect to the receptors explored in this work. 

All biophysical characteristics of hypergalactosylated IgG1 assessed in this work 

remain unchanged compared to the intact (unmodified) antibody, and its ability to interact 

with FcγRIIA and FcγRIIIA is also preserved. This also has important practical 

implications, as the increase in the content of terminal galactose residues of antibodies’ 

glycan chains is known to be correlated with greater complement dependent cytotoxicity 

as a result of greater affinity for C1q 51. The results of our work suggest that this trait may 

be exploited for therapeutic purposes without compromising PK and PD profiles of the 

antibody. 

Biolayer interferometry and AlphaScreen assays for FcRn displayed similar trends with 

relative potency and affinity (Figure 3.7 and Table 3.3) for all modified samples excluding 
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hypergalactosylated IgG1mAb. Hypergalactosylated showed contradictory results with a 

lower relative potency (AlphaScreen) and higher affinity (biolayer interferometry) as 

compared to the unmodified IgG1 but the minor changes observed are likely within the 

range of assay variability and are not significant. Deglycosylated IgG1 was observed to 

have the largest change in both assays but it has been previously reported that 

deglycosylated IgG1s do not have a different in vivo half-life 52-54. None of the observed 

changes in relative potency and KD values are expected to manifest in a detectable change 

in the half-lives for any of the modified mAbs. 

 The AlphaScreen assays for FcγRIIA and FcγRIIIA showed changes in the relative 

potency for hypergalatocylated and hypersialylated IgG1 (see Figure 3.8). These changes, 

however, are relatively minor compared to those that are known to elicit observable 

changes in the in vivo behavior of IgG1. For example, afucosylated IgG1 is reported to 

have a fifty-fold affinity increase towards FcγRIIIA, and exhibited a higher antibody 

dependent cellular cytotoxicity 21. The magnitude of the changes observed for both 

hypergalactosylated and hypersialylated forms of the IgG1 is not significant enough to 

result in measureable changes in vivo. Additionaly, deglycosylated IgG1 was not observed 

to bind either FcγRIIA or FcγRIIIA. Consistent with earlier reports 19,20, this inability for 

deglycosylated IgG1 to interact with either FcgRIIA or FcgRIIIA is expected to eliminate 

its ability to activate immune cells expressing these receptors. 

Perhaps the most important observation related to IgG1 glycoforms’ interactions with 

Fc receptors is a complete loss of the ability of the deglycosylated IgG1 to interact with 

FcgRIIA and FcgRIIIA receptors, while maintaining FcRn affinity A modest decrease in 

FcRn affinity for deglycosylated mAbs had been reported previously 55 and the complete 

obliteration of their ability to associate with FcgRIIA or FcgRIIIA is also consistent with 

the previously published work 12. However, it seems puzzling that the complete removal 

of the glycan chains from the IgG1 molecule (a process which is shown in our work to have 

a negative influence on conformational stability of the CH2 domain) exerts such vastly 

different effects on its interactions with two Fc receptors (modest decrease of FcRn binding 

and completely obliterating γ-receptor binding), even though each relies on CH2’s 

structure to provide a part of a binding interface (see Figure 3.1). A more detailed study 

would be needed to understand the differential effect of the glycan chains on the 
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stability/integrity of different parts of the CH2 domain that are involved in the interactions 

with these two different types of Fc receptors. Regardless of the specific mechanisms 

involved in attenuating the receptor-binding properties, this behavior of glycan-free 

antibodies makes them highly attractive as vehicles in targeted drug delivery applications, 

where both the long half-life and the absence of immune response are needed. The former 

would be guaranteed by conformational integrity of the molecule at both room and body 

temperature, as well as enhanced interactions with a “rescue” receptor (FcRn), while the 

latter (an abrogated effector function) is ensured by the lost ability to interact with the γ-

type Fc receptors, thereby avoiding an undesirable immune response. While disrupting a 

mAb’s interaction with FcgR’s can be readily achieved by mutating key residues in the 

binding interface located in the CH2/lower hinge region, an unintended consequence of 

this could be an immune response to the neo-epitope not present in the wild-type molecule; 

elimination of the glycan chain might provide an alternative approach to this problem that 

would not trigger productions of the neutralizing antibodies by the host.  

The study of the impact of glycosylation attributes on specific IgG functions can be 

leveraged for risk assessments of therapeutic mAbs.  The risk assessment performed on 

product quality attributes of biopharmaceuticals (see ICH Q8(R2) and Q11) requires 

assessment of the potential impact of different attributes on a drug’s efficacy, 

pharmacokinetic properties, and safety 56,57. These risk assessments can help inform 

process development, and enable an analytical control strategy that can be used to ensure 

proper control of critical quality attributes (CQAs) within the process. Often, structure-

activity relationship studies are performed to provide relevant data to help inform these 

risk assessments to understand which product attributes are most critical. Previous studies 

have shown the criticality of specific glycan species such as afucosylated glycans and high 

mannose glycans on effector function via the FcγRIIIa pathway 17,18. This study queried 

the potential impact of elevated levels of terminal galactose or terminal sialic acid on Fc 

receptor interactions. In both cases, no significant impact was observed. The data shown 

here provides important context when assessing the criticality of IgG1 glycosylation, in 

terms of any potential impact on PK and effector function.  

 

3.5 Conclusions 
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Three different glycan-modified forms of mAb (deglycosylated, hypergalactosylated 

and hypersialylated) were produced and characterized alongside the intact mAb molecule. 

Biophysical measurements have not revealed any changes that would be indicative of 

alterations in the higher order structure of the mAb or increased aggregation propensity for 

any of the three forms compared to the intact mAb, although reduced thermal stability in 

the CH2 domain was observed for the fully deglycosylated form by DSC. The 

deglycosylated mAb showed a modest decrease in FcRn affinity (though not expected to 

affect its half-life) while having no binding to FcgRIIa and FcgRIIIa.  Depending on the 

mechanism of action required for a mAb, an aglycosylated or deglycosylated mAb may be 

attractive for use if effector functions are undesirable while retaining a long half-life. No 

significant changes were noted for binding of the hypergalactosylated and hypersialylated 

forms of IgG1 to both FcRn, FcgRIIA, and FcgRIIIA suggesting that neither the half-life 

in circulation nor the ability to induce an immune response are affected by these 

modifications of the glycan chains. The results described provide valuable information 

regarding the criticality of IgG1 galactosylation and sialylation that can be leveraged 

during risk assessments and process characterization studies. These attributes may also be 

of interest to researchers using a therapeutic mAb with a high percentage of terminal 

galactose and or sialylated glycan chains.   

 

3.6 Experimental 

IgG1 Deglycosylation. IgG1 was buffer exchanged into a 100 mM tris-acetate buffer 

(pH 7.5). 20 mg of IgG1 was added to a 1.5 mL vial with 10 µL of PNGase F (500,000 

U/mL, New England Biolabs, Ipswich, MA) and diluted up to 600 µL with 100 mM tris-

acetate buffer (pH 7.5). The sample was incubated in a water bath at 37 oC for 24 hours. 

After incubation, deglycosylated IgG1 was buffer exchanged into a 50 mM MOPS buffer 

(pH 7.2) and stored at -80 oC.  

IgG1 Hypergalactosylation. IgG1 was buffer exchanged into a 100 mM tris-acetate 

buffer (pH 7.5). 20 mg of IgG1 was added to a 2 mL vial with 10 µL of MnCl2 (10 mM), 

200 µL UDP-Galactose (EMD Millipore Corp., Billerica, MA) (25mg/mL), and 250 µL 

galactosyltransferase (Sigma-Aldrich Co., St. Louis, MO) (2 U/mL). The volume of the 

solution was adjusted to 1000 µL with 100 mM tris-acetate buffer (pH 7.5) and incubated 
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in a water bath at 37 oC for 24 hours. After 24 hours, 10 µL of a 10 mM solution of MnCl2 

(Fisher Scientific, Hampton, NH), 5 mg UDP-Galactose (25 mg/mL), and 0.5 units of 

galactosyltransferase (2 U/mL) were added to vial and incubated in a water bath at 37 oC 

for an additional 24 hours. After incubation, hypergalactosylated IgG1 was purified by size 

exclusion chromatography to remove excess reagents. Hypergalactosylated IgG1 was 

buffer exchanged into a 50 mM MOPS buffer (pH 7.2) and stored at -80 oC.  

IgG1 Hypersialylation. IgG1 was first hypergalactosylated as described above, since 

the sialyltransferase used will only add sialic acid to glycan chain with a terminal galactose. 

Two hypersialylation reactions were run in parallel as follows: 12.5 mg of 

hypergalactosylated IgG1, 30 mg of CMP-Sialic Acid, and 0.5 mg sialyltransferase (Roche 

Life Science, Penzberg,Germany)(5.7 mg/mL) were added to a 2 mL vial. The volume of 

the solution was adjusted to 1500 µL with 100 mM tris-acetate buffer (pH 7.5) giving the 

final concentration of the enzyme 0.33 mg/mL. and incubated in a water bath at 37 oC for 

8 hours. After incubation, hypersialylated IgG1 was purified by size exclusion 

chromatography to remove excess reagents. Hypersialylated IgG1 was buffer exchanged 

into a 50 mM MOPS buffer (pH 7.2) and stored at -80 oC.  

Size Exclusion Chromatography. Size exclusion chromatography (SEC) measurements 

were carried out using an Agilent 1100 HPLC system (Agilent Technologies, Santa Clara, 

CA). IgG1 samples (100 µg total protein mass) were individually injected onto an SEC 

column (Tosoh TSKgel G3000SWxl, Tosoh, Tokyo, Japan) using a 150 mM ammonium 

acetate buffer (pH 6.8) with at a 1 mL/min flow rate. Absorbance was monitored at 280 

nm and peaks were integrated manually using ChemStation software (Agilent 

Technologies).  

Mass Spectrometry. Electrospray ionization mass spectrometry (ESI MS) was used to 

monitor modification or complete removal of the IgG1 glycan chain by measuring intact 

protein mass. IgG1 samples (50 µg) were injected onto a MassPREP online desalting 

(Waters, Milford, MA) column and using a two mobile phase gradient (A: H2O, 0.1% (v/v) 

formic acid B: 10:90 (v/v) H2O/ acetonitrile, 0.1% (v/v) formic acid). The eluting protein 

fraction was collected for ESI MS analysis. A SolariX 7 (Bruker Daltonics, Billerica, MA) 

Fourier transform ion cyclotron resonance mass spectrometer (FT ICR MS) with a 7.0 T 

superconducting magnet was used to acquire MS data of desalted IgG1 samples.  
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Lys-C Peptide Mapping. IgG1 samples were digested with a Lys-C protease (Wako 

Pure Chemical Industries, Richmond, VA) and reversed phase (Agilent Zorbax 300-SD-

C18) liquid chromatography (HP 1100, Agilent Technologies, Santa Clara, CA) coupled 

with a SolariX 7 FT ICR MS was used to generate peptide maps. Solution aliquots 

containing 5 µg of peptides (total peptide mass) were injected onto the C18 column and 

eluted using a two mobile phase gradient (A: H2O, 0.1% (v/v) formic acid B: 10:90 (v/v) 

H2O/acetonitrile, 0.1% (v/v) formic acid). Each peptide map was used to detect occurrence 

and evaluate the extent of two specific non-enzymatic PTMs (oxidation and deamidation). 

The presence of glycopeptides was also monitored to confirm the addition of sugars to the 

glycan chain. Peak areas for various PTMs were integrated manually using built-in data 

analysis software to calculate their relative abundance.  

Second Order Derivative UV-VIS Spectroscopy. Normalized second order derivative 

UV-VIS absorbance spectra of the protein samples were calculated based on the 

absorbance measurements carried out over a wavelength range of 200 nm to 600 nm using 

Agilent Technologies (Santa Clara, CA) 8453 spectrophotometer.  

Differential Scanning Calorimetry (DSC). DSC thermograms were obtained with a 

MicroCal VP DSC (Malvern, Westborough, MA) in the temperature range from 25 oC to 

100 oC at a 200 oC/hour scan rate and analyzed using Origin 9.0 (Origin Lab, Northampton, 

MA). 

FcRn binding assessment by Biolayer Interferometry.  FcRn-Fc fusion protein: FcRn-

huM4Fc, a soluble dimeric Fc binding protein was constructed by genetically fusing the 

extracellular domain of a neonatal receptor with the Fc region of an IgG1 antibody, as 

described in US 8,618,252 B258 (Farrington et al., Biogen Idec, Cambridge, MA) to use as 

reagent in the binding assays. FcRn-huM4Fc is a FcRn-Fc fusion protein, consisting of two 

beta-2-microglobulin and two FcRn alpha-Fc fusion chains, where the Fc region was 

mutated by site-directed mutagenesis from the wild type sequence at residues 388, 389, 

511, and 512 to eliminate the likelihood of the FcRn-huM4Fc binding to itself.  

Biotin-FcRn-Fc: FcRn-huM4Fc was biotinylated using ChromaLink Biotin 

(catalog # B-1001-1005, Solulink, San Diego, CA) at a biotin/protein molar ratio of 3/1 

following manufacturer’s procedure.  
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 Biolayer Interferometry: A fortéBio Octet® QKe system and streptavidin (SA) bio-

sensors (cat# 18-0009) were purchased from Pall ForteBio Corp. (Menlo Park, CA). This 

instrument was used to study kinetics of IgG1 protein samples binding to FcRn. The assays 

were performed in solid black 96-well plates (Greiner Greiner Bio-One, cat #65520), using 

streptavidin biosensors (SA), with agitation set at1000 rpm, and temperature set at 30°C. 

All reagents were diluted in assay diluent containing MES Buffer, pH 5.8, supplemented 

with 150mM NaCl, 1.0% BSA Bovine Serum Albumin (BSA), and 0.02% Polysorbate-20. 

Biotin- FcRn at 5µg/ml was used in a loading step for 300 seconds to bind FcRn to the SA-

biosensor surface. A 60 seconds biosensor washing step was applied prior to the association 

of the IgG1 protein samples to FcRn on the biosensor. All samples were tested at the same 

concentrations, 33.3 nM, 16.7 nM, and 8.33 nM, 4.17nM, with an association step of 150 

seconds, and a dissociation step of 100 seconds. Experimental data was fit with the 1:1 

binding model and was analyzed with global fitting using Octet software (v. 7.1) to 

calculate kon and koff rates.   

 

FcRn binding assessment by by AlphaScreen®screen. A competition assay was used 

to measure the relative potency for each modified mAb for FcRn binding. Biotin-FcRn-Fc: 

FcRn-huM4Fc was biotinylated using ChromaLink Biotin (catalog # B-1001-1005, 

Solulink, San Diego, CA) at a biotin/protein molar ratio of 20/1 following manufacturer’s 

procedure. AlphaScreen® beads (streptavidin-coated donor beads and Human IgG1-

conjugated acceptor beads) were purchased from Perkin Elmer, Waltham, MA. MES (N-

morpholine ethanesulfonic acid) buffer, pH 5.8, supplemented with 150mM NaCl, and 

0.1% Bovine Serum Albumin (BSA) was used as a binding assay diluent. 

AlphaScreen®-based FcRn competitive binding assay was performed as described in 

elsewhere 32, using the following reagents: biotin–FcRn (0.6 µg/mL), hIgG1-conjugated 

acceptor beads (10µg/mL), and streptavidin-coated donor beads (20µg/mL), final 

concentrations. This assay is based on the competition between the Fc-fusion protein and 

hIgG1-conjugated to acceptor beads for binding to biotin-FcRn.  Biotin–FcRn and the Fc-

fusion protein samples were incubated for 30 minutes, followed by the addition of hIgG1-

acceptor beads and 30 minutes incubation, and a final step with addition of streptavidin-

donor beads and incubation for 60 minutes. All incubations were done in the dark with 
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shaking at 22° C. All reagents were diluted in assay diluent containing. Plates were read 

on EnVision Multilabel 2101, (Perkin Elmer, Waltham, MA). Each sample was tested in 

triplicates. Parallel Line Analysis software (Stegmann Systems, Germany) was used to 

assess the linearity, parallelism, and potency of the sample in relation to the standard. 

FcgRIIa and FcgRIIIa binding assessment by AlphaScreen®screen. A competition 

assay was used to measure the relative potency for each modified mAb for FcgRIIa and 

FcgRIIIa binding. 

 FcgRIIa and FcgRIIIa reagents: Glutathione-S-Transferase (GST)-FcgRIIa and 

GST-FcgRIIIa were constructed at Biogen (Cambridge, MA). 

 AlphaScreen® beads: Reduced Glutathione (GSH)-coated donor beads (Catalog # 

6765302), and human IgG1-conjugated acceptor beads (custom made) were purchased 

from Perkin Elmer, Waltham, MA. 

FcgRIIa Binding assay diluent: 50 mM Tris Buffer, pH 7.2, supplemented with 25 

mM NaCl, 0.1% Bovine Serum Albumin (BSA), and 0.01% Tween-20. 

FcgRIIIa Assay Diluent: PBS, pH 7.2, supplemented with 0.1% Bovine Serum 

Albumin (BSA), 0.01% Tween-20 

AlphaScreen®-based FcgRIIa and FcgRIIIa binding assays: The assays are based 

on the competition between the IgG1 protein and hIgG1- conjugated to acceptor beads for 

binding to GST-FcgRIIa or GST-FcgRIIIa. The FcgRIIa and FcgRIIIa binding assays, were 

carried out in white ½ area 96-well plates (catalog #3693, Corning, Tewksbury, MA), using 

the following reagents: GST-FcgRIIa (6µg/mL) and GST-FcgRIIIa (10µg/mL), hIgG1- 

conjugated acceptor beads (2µg/mL), and GSH-coated donor beads (2µg/mL), final 

concentrations. The assays were performed as follows, IgG1 protein samples, hIgG1-

acceptor beads, and GST-FcgRIIa, or GST-FcgRIIIa, were incubated for 2 hours in the dark 

with shaking at 22° C. All reagents were diluted in binding assay diluent. Plates were read 

on EnVision Multilabel 2101, (Perkin Elmer, Waltham, MA). Each sample was tested in 

triplicates. Parallel Line Analysis software (Stegmann Systems, Germany) was used to 

assess the linearity, parallelism, and potency of the sample in relation to a reference 

standard. 

 



 78 

3.7 Acknowledgements 

This work was supported in part by the President’s Enhancement Funding from the 

Graduate School of the University of Massachusetts-Amherst. FT ICR mass spectrometer 

was acquired through the Major Research Instrumentation program (grant CHE-0923329 

from the National Science Foundation), and is now a part of the Mass Spectrometry Core 

facility at UMass-Amherst. 

 

  



 79 

3.8 Tables 

Table 3.1. Relative levels of oxidation and deamidation of Lys-C peptide fragments. 

Peptide # Met34 

Met83/ 

Met111 Met259 Asn322 Met365 Met435 

Unmodified IgG1 0.0% 2.5% 10.1% 2.4% 1.7% 6.6% 

Reaction Control IgG1 0.0% 3.6% 10.3% 2.7% 2.4% 7.2% 

Hypersialylated IgG1 0.0% 3.8% 12.6% 3.9% 3.0% 5.1% 

Hypergalactosylated IgG1 0.0% 4.5% 14.3% 3.9% 3.0% 10.7% 

Deglycosylated IgG1 0.0% 1.4% 6.8% 9.6% 1.0% 3.6% 

 

Table 3.2. Relative abundance of various glycoforms present within the only glycopeptide 
ion (L19/20) detected in the entire complement of Lys-C peptide fragments.  
 
Peptide # G0 G1 G2 G2+SA G2+2SA 

Unmodified IgG1 59.5% 36.4% 4.1% 0.0% 0.0% 

Reaction Control IgG1 64.6% 32.0% 3.4% 0.0% 0.0% 

Hypersialylated IgG1 0.0% 0.0% 0.0% 62.6% 37.4% 

Hypergalactosylated IgG1 0.0% 0.0% 100.0% 0.0% 0.0% 

Deglycosylated IgG1 0.0% 0.0% 0.0% 0.0% 0.0% 
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Table 3.3. Values of kon, koff, and KD for IgG1/FcRn interactions calculated from the 
biolayer interferometry assay.  
 
Sample KD (M) kon(1/M*s) koff(1/s) % Change 

Unmodified IgG1 4.8E-09 9.2E+05 4.5E-03 100% 

Reaction Control IgG1 4.7E-09 8.9E+05 4.2E-03 103% 

Hypersialylated IgG1 4.0E-09 8.5E+05 3.4E-03 122% 

Hypergalactosylated IgG1 4.4E-09 8.5E+05 3.7E-03 110% 

Deglycosylated IgG1 5.9E-09 9.0E+05 5.3E-03 83% 

 
Table 3.4. Retention time, %HMW, and %HMW change (as compared to unmodified 
IgG1) for each IgG1 sample. 
 
Sample Ret. Time (min) %HMW %HMW Increase 
Unmodified IgG1 9.74 0.6% -- 
Reaction Control IgG1 9.78 0.6% 0.0% 
Hypersialylated IgG1 9.77 0.2% -0.4% 
Hypergalactosylated IgG1 9.79 0.3% -0.3% 
Deglycosylated IgG1 9.76 1.1% 0.5% 
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3.9 Figures 

 
Figure 3.1. Schematic representation of IgG1 architecture based on 1HZH scaffold. The 
light chain is colored in red and the heavy chain is colored in blue (with FcRn binding 
interface highlighted in purple and FcRγ in cyan). The glycan chain is shown in spherical 
representation, and the secondary structure of the polypeptide chains is shown using 
common notations (strands, turns and helices). The side chains of two methionine residues 
and one asparagine residue prone to non-enzymatic PTM as shown in spherical 
representation.  

Asn330

Met252

Met428

Asn297
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Figure 3.2. Deconvoluted mass spectra of intact (blue), fully-deglycosylated (black), 
hypergalactosylated (yellow), and hypersialylated (magenta) forms of IgG1. The inset 
shows the structure of the glycan chain. 
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Figure 3.3. Extracted ion chromatograms for the two peptide ions representing intact 
(black) and oxidized (red) forms of Met252 (the corresponding mass spectra are shown in 
the inset). The peptides were produced by Lys-C digestion of the control (left panel) and 
hypersialylated IgG1 samples.  
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Figure 3.4. Plots of second derivatives of near-UV absorption spectra of intact (blue), 
fully-deglycosylated (black), hypergalactosylated (yellow), and hypersialylated (magenta) 
forms of IgG1. The inset shown distribution of aromatic residues within the IgG1 structure 
using 1HZH as a scaffold. 
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Figure 3.5. Overlay of DSC thermograms for intact (blue), fully-deglycosylated (black), 
hypergalactosylated (yellow), and hypersialylated (magenta) forms of IgG1 samples. Tm1 
and Tm2/3 correspond to the CH2 and combined CH3/Fab melting points respectively. 
Deglycosylated IgG1 showed a decrease of its Tm1 which has been previously reported. 
Hypersialylated IgG1 is observed to have a global decrease of its melting points.  
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Figure 3.6. FcRn binding and dissociation curves for intact (blue), fully-deglycosylated 
(black), hypergalactosylated (yellow) and hypersialylated (magenta) forms of IgG1 
obtained with a biolayer interferometry assay at 4.17, 8.33 nM, 16.7 nM, and 33.3 nM. 
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Figure 3.7. Bar graphs for intact (blue), reaction control (red), fully-deglycosylated 
(black), hypergalactosylated (yellow) and hypersialylated (magenta) forms of IgG1 
binding to FcRn. Error bars correspond to the 95% confidence interval of each 
measurement.  FcRn relative potency: intact (100%), reaction control (111%), fully-
deglycosylated (58%), hypergalactosylated (82%) and hypersialylated (98%) 
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Figure 3.8. Bar graphs for intact (blue), reaction control (red), fully-deglycosylated 
(black), hypergalactosylated (yellow) and hypersialylated (magenta) forms of IgG1 
binding to FcgRIIA (top) and FcgRIIIA (bottom). Error bars correspond to the 95% 
confidence interval of each measurement.  FcgRIIA/ FcgRIIIA relative potency: intact 
(100%/100%), reaction control (106%/104%), fully-deglycosylated (N.B./N.B.), 
hypergalactosylated (77%/109) and hypersialylated (95%/119%) 
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3.10  Supplemental Figures 

	

Figure S3.1. Naming convention for all observed carbohydrate chains attached to IgG1. 
G0/G0 is the core moiety of a complex glycan chain. 
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Figure S3.2. Intact (blue), reaction control (green), hyper-galactosylated (yellow), and 
hyper-sialylated (magenta) forms of IgG1 samples were deglycosylated and two charge 
states (+65/64) were looked at to assess if there increases of PTMs (glycation and 
oxidation). 
  

m/z

re
la
!v

e 
in

te
ns

ity
 (%

)

[IgG1]+65

+glyc
a!

on

+glyc
a!

on

[IgG1]+64



 91 

 
Figure S3.3. Representative extracted ion chromatograms and mass spectra for 
G0/G1/G2 glycopeptides. 
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CHAPTER 4 

INTEGRATION OF ON-COLUMN CHEMIAL REACTIONS IN PROTEIN 
CHARACTERIZATION 

 
This chapter has been adapted from a paper submitted as: Pawlowski, J., Carrick, I. & 

Kaltashov, I. A. Integration of on-column chemical reactions in protein characterization 

by LC/MS: cross-path reactive chromatography. Anal. Chem., 

doi:10.1021/acs.analchem.7b04328 (2018). 

 

4.1 Abstract 

Profiling of complex proteins by means of mass spectrometry (MS) frequently 

requires that certain chemical modifications of their covalent structure (e.g., reduction of 

disulfide bonds) be carried out prior to the MS or MS/MS analysis. Traditionally, these 

chemical reactions take place in the off-line mode to allow the excess reagents (the majority 

of which interfere with the MS measurements and degrade the analytical signal) to be 

removed from the protein solution prior to MS measurements. In addition to a significant 

increase in the analysis time, chemical reactions may result in a partial or full loss of the 

protein if the modifications adversely affect its stability, e.g. making it prone to 

aggregation. In this work we present a new approach to solving this problem by carrying 

out the chemical reaction on-line using the reactive chromatography scheme on a size-

exclusion chromatography (SEC) platform with MS detection. This is achieved by using a 

cross-path reaction scheme, i.e. by delaying the protein injection onto the SEC column 

(with respect to the injection of the reagent plug containing a disulfide-reducing agent), 

which allows the chemical reactions to be carried out inside the column for a limited (and 

precisely controlled) period of time, while the two plugs overlap inside the column. The 

reduced protein elutes separately from the unconsumed reagents, allowing the signal 

suppression in ESI to be avoided and enabling sensitive MS detection. The new method is 

used to measure fucosylation levels of a plasma protein haptoglobin at the whole protein 

level following on-line reduction of disulfide-linked tetrameric species to monomeric units. 

The feasibility of top-down fragmentation of disulfide-containing proteins is also 
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demonstrated using β2-microglobulin and a monoclonal antibody (mAb). The new on-line 

technique is both robust and versatile, as the cross-path scheme can be readily expanded to 

include multiple reactions in a single experiment (as demonstrated in this work by 

oxidatively labeling mAb on the column, followed by reduction of its disulfide bonds and 

MS analysis of the extent of oxidation within each chain of the molecule). 

 

 

4.2 Introduction 

Analysis of protein covalent structure (which includes both amino acid sequence 

and post-translational modifications, PTMs) is now routinely carried out using LC/MS and 

LC/MS/MS. While comprehensive structural analyses have traditionally relied upon the 

so-called “bottom-up” approach, where proteolysis precedes the LC/MS step, analysis of 

the whole protein provides an attractive alternative as it allows valuable protein 

characteristics (including information on structural heterogeneity) to be obtained without 

requiring time-consuming proteolytic steps.1 Furthermore, the progress made in recent 

years in the field of top-down MS2 resulted in a dramatic expansion of the range of proteins 

amenable to analysis by this technique.3-6  

By eliminating the need for proteolysis, top-down MS not only simplifies the 

sample handling step, but also greatly reduces the possibility of introducing artifacts.7-10 

One serious impediment that frequently complicates the top-down analysis of protein 

structure is the presence of multiple disulfide bonds. Indeed, even though dissociation of 

the thiol-thiol linkages can be achieved in the gas phase by using electron-based ion 

fragmentation techniques,11 negative-ion CID12 or ultra-violet photo-dissociation 

(UVPD),13 these approaches typically work for small proteins14 or peptides,15 while larger 

proteins with multiple intact disulfide bonds remain out of reach of these techniques. 

Therefore, it is not surprising that in most cases successful top-down analysis of 

biopharmaceutical products relies on disulfide bond reduction prior to MS/MS 

measurements, which can be done using either conventional chemical reduction methods4 

or electrochemical cells interfaced with MS.16,17 Above and beyond top-down MS/MS 

analysis of protein structure, reduction of disulfides prior to MS measurements may prove 

beneficial for other analytical tasks. For example, complexity and heterogeneity of 
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recombinant proteins, protein/drug conjugates and endogenous macromolecules used as 

biomarkers can frequently be assessed by measuring their masses (or, more precisely, 

distribution of molecular masses in analytical and/or clinical samples).1 While this task can 

be readily accomplished using modern MS tools for proteins with relatively low degree of 

complexity, it becomes increasingly challenging as both the size and the degree of 

heterogeneity increase.  

One of the most significant sources of heterogeneity of many proteins is their 

glycosylation, the most abundant type of post-translational modifications (PTMs) found in 

both membrane and secreted proteins.18 Glycosylation patterns frequently have a 

tremendous diagnostic value, holding enormous promise in the emerging field of 

personalized medicine.18 Indeed, carbohydrate composition is known to be modulated not 

only by congenital disorders that affect the glycosylation machinery at the genetic level,19 

but also by a variety of other pathologies, including Alzheimer’s disease and other 

cognitive disorders,20 diabetes,20 immune disorders,21 and cancer.18,22  

The use of biomarkers in personalized medicine can be quite complicated, since 

frequently it is a panel of biomolecules, rather than a single reporter molecule, that needs 

to be considered. Therefore, sophisticated mathematical tools, such as multivariate 

statistical analysis,23 are commonly used in order to provide meaningful results. 

Fortuitously, a number of serum glycoproteins offer unique opportunities for streamlined 

cancer diagnosis by exhibiting disease-specific glycosylation patterns.24 Traditionally, 

protein glycan analysis is carried out in the bottom-up fashion, by isolating the protein of 

interest followed by enzymatic removal of the glycans and their analysis by MS and/or 

MS/MS.22 Alternatively, composition of glycans can be established in favorable cases by 

the analysis of the intact protein mass,25 bypassing the enzymatic step. Unfortunately, this 

approach is feasible only when applied to proteins with a relatively low extent of 

glycosylation (such as IgG molecules25), while extensive glycosylation inevitably results 

in high levels of heterogeneity preventing meaningful mass profiling.26 In many cases, 

however, the extent of heterogeneity can be reduced to allow meaningful MS 

measurements without compromising the information encoded by glycans. For example, a 

number of plasma glycoproteins with high diagnostic value (haptoglobin and complex 

immunoglobulins) are multi-unit assemblies linked by disulfide bonds. Reduction of the 
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thiol-thiol linkages may produce monomeric glycoproteins that can be readily mass-

profiled by MS at the whole protein level, while their glycosylation patterns remain 

preserved. Unfortunately, such monomeric units are frequently only marginally stable and 

readily aggregate/precipitate prior to MS analysis. 

Above and beyond disulfide reduction, a variety of other chemical reactions are 

used to probe biopolymer structure, e.g. selective chemical labeling and cross-linking.27,28 

Top-down MS offers an elegant way to determine the chemically modified and cross-

linked sites in biopolymer complexes,29 but it cannot be applied directly to analyze 

modified proteins in reaction mixtures without removing all unconsumed reagents and/or 

quenching agents that are incompatible with the ESI process. The clean-up step not only 

increases the analysis time and cost, but can also lead to the protein loss should 

modifications render it less stable. Clearly, there is an urgent need for an experimental 

scheme eliminating the clean-up step and enabling protein MS characterization in an on-

line fashion immediately following the completion of the chemical transformations.  

The goal of this work is to explore the possibility of carrying out chemical reactions inside 

a chromatographic column as a means of combining protein modification and MS analysis 

in a one-step experiment. Reactions taking place inside chromatographic columns are 

commonly viewed as detrimental (e.g., reactions between the analyte and the mobile phase 

components giving rise to artifacts30). However, there are applications where on-column 

reactions are carried out intentionally in order to enhance the analyte detection while 

maintaining the separation fidelity (e.g., on-column derivatization with chromophores to 

enable spectrophotometric detection in LC31,32 or with ionizable groups to enhance 

detection in GC/MS33). Integration of certain reactions with the separation process (e.g., 

acid/base reactions,34 as well as a combination of metal ion complexation and redox 

reactions 35-37) may also improve the LC separation selectivity. Finally, integration of 

chemical reactions with chromatographic separation can also be used to study organic 

reaction mechanisms.38,39  

Recently, on-column chemical reactions were used to enhance the quality of 

biopharmaceuticals by converting trisulfide bonds to disulfides within a monoclonal 

antibody (mAb) captured by an affinity column.40 Affinity capturing is a reliable way of 

retaining a protein while carrying out modifications that do not disrupt its native structure. 
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However, this approach is too restrictive with regards to the types of chemical reactions. 

Indeed, this scheme would not allow incorporation of chemical reactions altering the higher 

order structure (i.e., conformation and/or quaternary assembly), nor would it be tolerant to 

denaturing solvents. More importantly, on-column reactions are likely to target the affinity 

ligand in addition to captured analytes, thereby compromising the analyte retention and 

damaging the column. Lastly, even though affinity separation of immunoglobulins is now 

a routine procedure due to the availability of a wide range of antibody-specific ligands,41,42 

high-affinity ligands for other proteins may not be available as readily. 

Since our goal was to devise a versatile experimental scheme allowing a variety of chemical 

reactions to be carried out on the column, we focused our attention on methods of 

separation that utilize stationary phases remaining inert towards protein-modifying agents, 

such as size exclusion chromatography (SEC). Since the majority of biomolecules cannot 

be permanently captured in SEC, we adopted a cross-path scheme: injection of the fast-

moving protein molecules is delayed with respect to the loading of slow-moving chemical 

regents; the chemical reactions occur inside the column during the time interval when the 

reagent and protein plugs overlap (Figure 4.1). This separates the chemically modified 

protein upon its elution from the unconsumed reagents, enabling on-line protein analysis 

by MS. The feasibility of this approach is demonstrated by carrying out on-column 

reduction of several disulfide-containing proteins. The new method of protein structure 

analysis (dubbed XP-RC/MS, or cross-path reactive chromatography with MS detection) 

can be expanded to accommodate multiple reactions in a single experiment (demonstrated 

in this work by oxidative labeling of mAb, followed by reduction of its disulfide bonds and 

MS analysis of each immunoglobulin chain). 

 
4.3 Experimental 

Materials.  Haptoglobin 1-1 (Hp) was purchased from Athens Research (Athens, 

GA); b2-microglobulin (β2m) was purchased from Lee Biosolutions (Maryland Heights, 

MO), and the mAb sample was generously provided by Biogen (Cambridge, MA). PNGase 

F (500,000 U/mL) was purchased from New England Biolabs (Ipswich, MA). Hydrogen 

peroxide (30%), ammonium acetate (HPLC grade), Tris and TCEP were purchased from 
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Thermo-Fisher Scientific (Hampton, NH).  All solvents and chemicals were of analytical 

grade or higher. 

Deglycosylation of mAb. The mAb sample was buffer exchanged into 100 mM Tris buffer 

(pH 7.5) followed by pipetting solution containing 25 mg of mAb (by dry weight) into a 

vial and diluted up to 990 µL with 100 mM Tris buffer (pH 7.5). A 10 µL aliquot of PNGase 

F was added to the vial, followed by incubation in a water bath at 37 OC.  After incubation, 

deglycosylated IgG1 was buffer exchanged into a 150 mM ammonium acetate solution and 

stored at 2-8 OC. 

On-column protein modification. On-column chemical reactions were carried out 

on a TSKgel SuperSW mAb HTP (Tosoh, Tokyo, Japan) SEC column used with an HP 

1100 (Agilent, Santa Clara, CA) HPLC system. A 75 mM ammonium acetate solution (pH 

5.5) at a flow rate of 0.15 mL/min was used as a mobile phase for the analysis of Hp 

glycosylation patterns; a 150 mM ammonium acetate solution (pH 3.0) at a flow rate of 0.1 

mL/min was used as a mobile phase for the top-down β2m analysis; and a 9:1 (v:v) mixture 

of aqueous 75 mM ammonium acetate solution (pH 3.0) with acetonitrile at a flow rate of 

0.15 mL/min was used as a mobile phase for the structural analyses of deglycosylated mAb. 

The reduction plugs were composed of 100 mM TCEP (β2m analysis), 50 mM TCEP and 

4M guanidinium chloride (Hp analysis); and 0.5 M TCEP and 5M guanidinium chloride 

(mAb analyses) in their respective mobile phases. The plugs were introduced using a 

manual injector with a loop volume of 100 µL (β2m) and 150 µL (mAb and Hp), which 

was placed between the sample injector and the SEC column. The protein samples were 

injected with a delay time of 10 sec (β2m) or 1 min (mAb and Hp) following the reagent 

plug injection.  

Sequential on-column reactions (oxidation followed by disulfide reduction) were 

carried out with a TSKgel 3000SW xl (Tosoh, Tokyo, Japan) SEC column used with an 

HP 1100 HPLC system.  A 75 mM ammonium acetate solution (pH adjusted to 3.0) with 

10% methanol at a flow rate of 0.5mL/min was used as a mobile phase for the analysis of 

deglycosylated mAb.  A flow splitter was used to send ~10% of the flow to the mass 

spectrometer and the rest to waste.  The oxidation plug was composed of 2% hydrogen 

peroxide, 10% methanol, and 75 mM ammonium acetate (pH 3.0).  The reduction plug was 

composed of 100mM TCEP, 10% methanol, and 75 mM ammonium acetate (pH 3.0).  
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Each plug was introduced using a manual injector with a loop volume of 250 µL.  The 

reduction and oxidation plugs were injected three and one minute prior to deglycosylated 

mAb injection, respectively. 

MS Measurements and data analysis.  All MS and MS/MS measurements were 

performed with a SolariX 7 (Bruker Daltonics, Billerica, MA) Fourier transform ion 

cyclotron resonance (FT ICR) mass spectrometer equipped with a 7.0 T superconducting 

magnet and a standard ESI source. Protein ions at successive charge states +11 through 

+14 (β2m) and +12 through +16 (mAb light chain) were isolated in the front-end 

quadrupole for MS/MS measurements; collision-induced dissociation (CID) in the 

hexapole region was used to induce ion fragmentation. The excitation voltage was set for 

at 22V and 30V for β2m and mAb light chain ions, respectively.  MS/MS data were 

analyzed with DataAnalysisTM and BioToolsTM software packages (Bruker Daltonics, 

Billerica, MA); all assignments made by BioToolsTM were manually inspected to eliminate 

a possibility of false positives.   

 
4.4 Results and Discussion 

Feasibility of using on-column reactions in LC/MS: XP-RC MS profiling of 

haptoglobin. Haptoglobin 1-1 (Hp) is a plasma glycoprotein composed of four subunits 

(two heavy chains, H, and two light chains, L) connected by disulfide bonds as H-L-L-H.43  

There are eight glycosylation sites within this protein (residing exclusively within the H 

chains), making the carbohydrate content of this protein nearly 20% of the total mass (92 

kDa). Such a significant extent of glycosylation gives rise to a high level of structural 

heterogeneity making it nearly impossible to obtain reliable MS measurements.26 Indeed, 

even though an SEC/MS spectrum of intact Hp contains abundant ionic signal (Figure 

4.2A, B), the peaks representing different charge states are broad and do not show distinct 

contributions from individual glycoforms. This makes it impossible to deduce any 

meaningful information on the composition of Hp glycans. Reduction of disulfides would 

be an obvious approach to glycoform profiling at the intact polypeptide level (it should 

produce monomeric H-chains with a mass of only 37 kDa) and lower the extent of 

glycosylation (four glycans per each H-chain). However, these monomeric species become 

unstable upon disulfide reduction, and aggregate readily during a buffer exchange step 
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preceding MS analysis. The new approach to disulfide reduction explored in this work (on-

column chemistry followed by on-line MS detection) minimizes the time between the 

protein reduction and the MS measurement and provides an opportunity to vary it from 

tens of seconds to several minutes by selecting an appropriate delay for protein injection 

(Figure 4.1). Increasing this delay decreases the time period spent by the metastable 

chemically modified species inside the column, dramatically reducing the specter of on-

column aggregation.  

On-column reduction (with TCEP used as a reducing reagent) gives rise to an 

abundant ionic signal of L-chains (12 min elution) and H-chains (11 min) in SEC/MS 

(Figure 4.2C). The reduction is incomplete, as evident by the presence of covalent dimers 

L2. We also note that limited aggregation of metastable polypeptides does occur, as 

evidenced by the SEC peak at 8 min. elution (no interpretable ionic signal could be obtained 

for these high molecular weight species). This highlights the intrinsic instability and 

aggregation propensity of monomeric H-chains. Nevertheless, the abundance of both L- 

and H-chains ions in the mass spectra collected at longer elution times (11-12 min) is high, 

allowing the assignment of all eluting species to be readily made based on their masses. In 

a stark contrast to intact Hp, ionic signal of monomeric H-chains displays a number of 

baseline-resolved peaks representing different glycoforms (Figure 4.2D). Measuring the 

mass differences between adjacent peaks allows three major clusters to be identified (as 

labeled in Figure 4.2D). The mass difference between the clusters corresponds to a 

segment comprising a GlcNAcGalNeuAc trisaccharide (N-acetyl-glucosamine, galactose, 

and N-acetylneuraminic acid). The spacing between adjacent peaks within each cluster 

corresponds to a fucose residue mass (142.1 Da), with the total level of fucosylation 

ranging from zero to four (as indicated in Figure 4.2D). Fucosylation patterns are highly 

reproducible, allowing the extent of fucosylation to be calculated with an error not 

exceeding 9% RSD (see Supporting Information). Therefore, XP-RC MS provides a 

means of exploiting the high diagnostic value of Hp fucosylation patterns without the need 

to remove/isolate carbohydrate chains from the protein. Sufficient amounts of monomeric 

species are produced during Hp transient exposure to the reducing agent (TCEP) inside the 

column, while the cross-path scheme eliminates any interference from TCEP during the 
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on-line MS analysis of these monomeric polypeptides: the reagent plug does not emerge 

from the column until after all Hp components have eluted (Figure 4.2A). 

Top-down sequencing of small disulfide-containing proteins: XP-RC MS/MS 

analysis of β2-microglobulin. Despite its modest size (11.7 kDa), β2m presents a challenge 

for top-down MS/MS analysis. Its single disulfide bridge (Cys25-Cys80) exerts a two-fold 

negative effect on the diagnostic value of the top-down MS/MS data. First, collision-

induced dissociation (CID) of the peptide bonds within the [Cys25-Cys80] segment does not 

give rise to observable fragment ions (the two fragments are still physically connected by 

the thiol-thiol linkage, and the mass of this dimer is indistinguishable from that of intact 

protein ions). Indeed, all CID-generated b- and y-fragments of β2m with the intact disulfide 

are confined to the short terminal segments of the polypeptide, [Ile1-Cys25] and [Cys80-

Met99] (see Supporting Information). Second, the presence of the disulfide cross-link 

within the polypeptide chain results in a significant reduction of the conformational space 

it can sample in solution even under denaturing conditions. Since the physical size of the 

protein is the major determinant of the extent of its multiple charging in ESI,44,45 the 

number of charges accommodated by β2m ions with the intact disulfide bridge will remain 

modest, limiting the collision energy. The highest charge state observed for β2m ions in 

conventional SEC/MS is +10; and the efficiency of cumulative CID of four precursor ions 

(from +7 to +10) is rather modest (see Supporting Information). 

In contrast, the extent of multiple charging of polypeptide ions produced by ESI 

following the on-column disulfide reduction is relatively high (extending up to a charge 

state +17, see Supporting Information). In addition to the dramatic change in the protein 

ion charge state distribution, disulfide reduction also manifested itself by a mass increase 

of 2 Da for ions at lower m/z. Mass increase for ions at lower charge states (<+9) was also 

evident, although the overall shift was less than 2 Da, indicating the presence of both 

disulfide-reduced and surviving disulfide-intact proteins. CID of ions corresponding to the 

disulfide-reduced β2m (charge states +11 through +15 were selected as precursors) gives 

rise to a large number of fragments (see Supporting Information). In addition to a 

significant gain in the overall intensity of fragment ions, the fragmentation pattern also 

changes dramatically, with half of the observed fragment ions resulting from amide bond 

cleavages within the [Cys25-Cys80] segment, which failed to generate distinguishable 
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fragment ions without on-column protein reduction. Clearly, on-line reduction of β2m 

results in a dramatic increase of the quality of information that can be extracted from the 

top-down MS/MS measurements while minimizing both sample preparation and analysis 

time.   

Top-down analysis of a disulfide-connected protein assembly’s subunit: on-line 

mAb’s light chain analysis. While the XP-RC MS/MS analysis of β2m yields sequence 

information not accessible via CID of the disulfide-intact protein, it should be remembered 

that β2m is a rather modest protein whose single disulfide bond can be cleaved in the gas 

phase using electron capture dissociation.14 The vast majority of biopharmaceuticals are 

significantly larger and contain multiple disulfide bonds (which could both reinforce the 

conformation of a single polypeptide chain by providing intra-chain cross-links, and 

connect several monomeric units in a multi-unit assembly). These features are epitomized 

by mAbs, recombinant proteins based on the IgG1 structural template.  

There are sixteen disulfide bonds in the mAb used in our work. This includes twelve 

internal thiol-thiol connections, two in each of the light chains (L) and four in each of the 

heavy chains (H), and four inter-chain linkages (with each L/H pair being connected by a 

single disulfide bond, and the remaining two thiol-thiol linkages connecting the two H-

chains). The inter-chain bonds are more labile, as they can be reduced under native 

conditions, when the intra-chain bonds remain intact.46 Since our goal was to explore the 

utility of top-down MS for structural characterization of mAbs, we used low-pH conditions 

to maximize the reduction of all disulfide bonds. The chromatogram of mAb that 

underwent on-column reduction has a convoluted shape; on-line MS analysis reveals the 

presence of both monomers (L and H) and incompletely reduced assemblies (HL, H2 and 

H2L), see Supplementary Material for more detail.  

While the effective reduction of external disulfide bonds in XP-RC is evident due 

to the presence of L- and H-chain ions, mass spectra acquired on-line do not produce direct 

evidence that the on-column reduction also succeeded in eliminating the internal disulfide 

bonds. Some indirect evidence is provided by the charge state distributions of the L- and 

H-chain ions. Indeed, the bimodal character of the charge state distributions, as well as the 

presence of ionic species with high charge density (in the low m/z regions of the spectra) 

suggest that at least some internal disulfides have been reduced. In order to determine if 
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any internal disulfide bonds were indeed eliminated as a result of the on-column reduction, 

on-line MS/MS analysis of the L-chain was carried out. Five charge states (+16 through 

+12) were mass-selected as precursors for CID. The presence of 5 M guanidinium chloride 

in the reagent plug results in the most facile fragmentation (as judged by both overall 

intensity of the fragment ions and the number of amide bonds undergoing dissociation, see 

Figure 4.3 and Supplementary Material). The detected high-abundance fragment ions 

(both b- and y-type) correspond to cleavages of nearly half of the amide bonds within the 

constant region of the L-chain (fifty-two out of one hundred and thirteen).  

Guanidinium chloride is a very effective chaotrope frequently used as a protein 

unfolding agent. Its presence in the reagent plug likely results in more efficient unfolding 

of mAb chains, exposing the disulfide bonds to the reducing agent. Guanidinium chloride 

cannot be used in ESI MS measurements; however, in our scheme this interference is 

eliminated by separating polypeptide chains from the chaotrope prior to MS analysis. 

Importantly, twenty fragment ions detected in the XP-RC/MS/MS analysis of the L-chain 

correspond to the region of the polypeptide chain flanked by two cysteines (Cys134 and 

Cys194) forming an internal disulfide bond (Figure 4.3). This provides unequivocal 

evidence that this internal disulfide had been successfully eliminated during protein 

exposure to the reagent plug inside the column. A comparable sequence coverage was 

obtained in XP-RC MS/MS measurements in the absence of guanidinium chloride in the 

reagent plug, but the overall abundance of the fragment ions was noticeably lower (see 

Supplementary Material). As an alternative approach to MS/MS, in-source fragmentation 

of ions without mass selection was carried out within the time window corresponding to 

the elution of L-chains (14-20 min, see Supplementary Material for more detail). Although 

the total fragment ion abundance was lower compared to the on-line MS/MS experiments, 

the extent of the sequence coverage was comparable, suggesting that XP-RC MS can be 

implemented on inexpensive MS platforms lacking tandem capabilities. 

Since the presence of guanidinium chloride appears to favor dissociation of 

disulfide bonds, it seems reasonable to assume that other chaotropic agents may also prove 

beneficial as far as breaking thiol/thiol linkages. One particularly attractive possibility lies 

with the use of co-solvents that do not have to be confined to the reagent plug, but instead 

can be used as a part of the mobile phase. For example, addition of alcohols to the mobile 
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phase is likely to destabilize the tertiary structure of the proteins, while keeping the 

secondary structure largely intact. This should increase the solvent exposure of disulfide 

bridges (and, therefore, reduction efficiency) without raising the specter of protein 

aggregation. Indeed, addition of even relatively modest amount of methanol to the mobile 

phase (10% by volume) results in a notable decrease of the relative abundance of all 

partially reduced species (H2L, H2, and HL), and near-complete elimination of the ionic 

signal of the surviving intact assembly H2L2 (see Supplementary Material for more detail). 

An important question that should be addressed in connection with the on-column disulfide 

reduction is the possibility of recombination of free thiol groups outside of the reagent plug. 

Should this process occur, it would lead to (re)formation of disulfides prior to MS/MS 

detection.  Above and beyond its obvious negative effect on the overall efficiency of the 

XP-RC process, thiol/thiol recombination can give rise to artifacts (e.g., formation of 

disulfide bonds that were not present in the original protein). We note, however, that all 

multimeric species observed in the XP-RC MS of the mAb sample appear to be 

“legitimate” products of partial disulfide reduction (e.g., H2L, H2, and HL), while any signs 

of de novo disulfide formation are absent (e.g., HL2, L2, etc.). This provides a reasonable 

assurance that no disulfide recombination occurs under the conditions employed in XP-RC 

measurements following the on-column disulfide reduction. 

It is interesting to compare the results of XP-RC/MS/MS analysis of mAb in this 

work with the top-down characterization of IgG molecules carried out using common 

approaches. Due to their large size, structural analyses of antibodies by MS until recently 

were almost exclusively carried out using the bottom-up approaches, where gas-phase 

fragmentation is preceded by proteolysis in solution. This is now beginning to change 

mainly due to the rapidly increasing demands for the high-throughput analysis of mAbs 

and mAb-related products in the biopharmaceutical sector, with several groups actively 

exploring the feasibility of the top-down approach.6,16,47 Not surprisingly, intact disulfide 

bonds present a formidable problem for the top-down analysis of mAb: while electron-

based ion dissociation techniques allow some thiol-thiol linkages to be cleaved in the gas 

phase, the large number of disulfides typically present in mAbs limits the number of 

fragment ions derived from polypeptide segments flanked by disulfide-connected cysteine 

residues.47 Chemical reduction of disulfides prior to antibody analysis by top-down MS 
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results in a dramatic increase of the number of structurally diagnostic fragments and the 

extent of sequence coverage. Interestingly, sequence coverage of the variable regions is 

highly antibody-specific. For example, Marshall and co-workers observed that despite the 

88% sequence identity between the variable domains of the light chains of Adalimumab 

and Efalizumab, the sequence coverage in this region differed by nearly six-fold, while the 

coverage of the constant regions was nearly identical between the two antobodies.6 

Therefore, a meaningful comparison of two different techniques vis-à-vis the extent of 

mAb sequence coverage should focus on the constant (κ) region, rather than compare the 

overall sequence coverage across the entire polypeptide chain. The number of the amide 

bonds within the constant region of mAb light chains that dissociate under ETD/CID 

combination giving rise to structurally diagnostic fragment ions reported by Marshall and 

co-workers for disulfide-reduced proteins is 61-62.6 This number far exceeds the extent of 

sequence coverage that can be obtained without the reduction step prior to dissociation (up 

to 23 for the same segment47), but is comparable with that obtained in XP-RC MS/MS 

experiments (50 in the constant region of the light chain, as shown in Figure 4.3).  

Interestingly, the fragmentation efficiency of the light chain of a mAb molecule subjected 

to the top-down MS/MS analysis following the on-line reduction in an electrochemical cell 

was relatively modest in comparison: even though the intra-chain disulfides were 

successfully reduced, the number of structurally diagnostic fragments derived from the 

light chain was relatively low, and their localization within the sequence was consistent 

with the notion of the internal thiol-thiol linkages remaining intact.16 Clearly, XP-RC MS 

appears to be a more robust method for on-line reduction coupled to top-down MS analysis 

of monoclonal antibodies. Another important advantage offered by this technique is its 

versatility, as it allows various types of chemical modifications to be carried out prior to 

MS analysis (vide infra). Furthermore, multi-step modification procedures can be 

implemented in a single experiment, as outlined in the following section.  

Feasibility of using multiple reactions in XP-RC MS: sequential on-column 

oxidative labeling of mAb and reduction of disulfide bonds. All examples of protein 

analysis with XP-RC MS considered so far utilize a single reagent plug. However, one can 

envision using multiple plugs containing different reagents in a single experiment. As long 

as all reagents fall under the permeation limit, the plugs will travel inside the SEC column 
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along parallel trajectories, and the protein injected with a delay will be exposed to these 

reagents in a sequential manner (Figure 4.4). This would provide an opportunity to expand 

the use of XP-RC MS to probing higher order structure of proteins and protein assemblies, 

e.g. by employing chemical labeling as a probe of solvent accessibility.48 The feasibility of 

this approach was evaluated using a scheme depicted in Figure 4.4, where oxidative 

labeling of mAb was carried out by using a plug of a 2% H2O2 solution, followed by 

exposure of the labeled protein to the TCEP plug. The ensuing disulfide dissociation 

generates L- and H-chains along with partially reduced species (H2L, H2, and HL), as 

previously observed in a “single-reaction” XP-RC MS/MS analysis of mAb. On-line MS 

detection provides clear evidence for the three oxidation events occurring within the H-

chain (manifested by a mass shift of 50±2 Da), but not in the L-chain (see the top panels in 

Figure 4.4). The mass shifts observed within the partially reduced species and the intact 

assembly are also consistent with the notion of the H-chain undergoing oxidation at three 

sites, while the L-chain does not suffer any oxidative damage (48±3 Da shift for HL, 97±2 

for H2, and 98±3 for H2L).  

While H2O2 is hardly the best choice as a labeling reagent in terms of its efficiency with 

respect to protein labeling and the effect on the column longevity, the multiple reaction 

XP-RC scheme can be used for probing higher order protein structure with a variety of 

labeling reagents in the first plug, including amino-acid specific labeling reagents.27 

Another application where the multiple-reaction feature of XP-RC MS will be 

advantageous is the ranking of disulfide susceptibility to reduction using isotopically 

labeled thiol-capping reagents.49 

4.5 Conclusions 

Top-down MS analysis of proteins is a powerful tool for elucidation of various 

aspects of both covalent50-52 and higher order structure.53-56 Many applications of top-down 

MS require chemical treatment of proteins prior to MS analysis, which inevitably 

introduces ESI-incompatible low-molecular weight components (unconsumed reagents, 

quenchers, etc.) that must be removed prior to the MS analysis. This creates problems for 

proteins where the chemically modified forms are metastable and undergo 

aggregation/precipitation during the sample clean-up step. Furthermore, even for proteins 

that remain stable throughout the clean-up step, the latter results in a significant increase 
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of the sample handling/analysis time. The cross-path reactive chromatography (XP-RC) 

presented in this work as a means of facilitating top-down MS protein analysis solves this 

problem by initiating the chemical transformations inside the chromatographic column, 

and separating the high-molecular weight products (modified proteins) from the low-

molecular weight reagents prior to the on-line MS analysis.  

In this initial report we focus primarily on disulfide reduction as a means of 

increasing the value of information provided by on-line MS and MS/MS measurements for 

proteins that have traditionally been challenging for the top-down MS analysis. This new 

approach offers a straightforward way to control the extent of chemical modifications by 

varying either the width of the reagent plug or the reagent concentration (or both). It also 

provides a means of controlling the undesirable post-reaction processes (e.g., aggregation 

of metastable chemically modified species) by allowing the time interval between the 

analyte’s exposure to the regent plug and its elution from the column to be minimized by 

selecting an appropriate injection delay. An additional benefit offered by this technique is 

the (partial) separation of the reaction products, which allows the spectral crowding to be 

reduced and the quality of the MS data to be enhanced. 

Above and beyond disulfide reduction, XP-RC allows other reactions to be 

implemented, including those that can be used to probe protein higher order structure. In 

some ways, the cross-path scheme presented in this work resembles the “catch-me-if-you-

can” approach introduced by Krylov and co-workers as a means to measure kinetics of 

non-covalent interactions of proteins with small ligands.57 A unique advantage of the cross-

path scheme demonstrated in our work is the possibility of carrying out multiple reactions 

in sequence during a single experiment (e.g., oxidative labeling followed by disulfide 

reduction to assist on-line MS characterization). Lastly, even though all experiments 

presented in this work had been carried out using SEC, the XP-RC methodology can be 

implemented on a variety of other LC platforms, provided the chemically treated protein(s) 

can be separated from the unconsumed reagents prior to the on-line MS analysis (we are 

currently exploring the utility of ion exchange chromatography for this purpose) 
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4.7 Tables 
 
Table 4.1. Distribution of fucosylation within the [NeuAc2Gal2Man3GlcNac4]4/Fucx 
glycoforms based on the ionic peak heights in the on-line mass spectra of Hp H-chains 
produced upon on-column disulfide reduction   
 

Total number of 
fucose residues 

Relative abundance 
(based on the peak 

heights) 
95% confidence interval (based on a 
set of three replicate measurements) 

0 13% 2% 
1 12% 2% 
2 38% 5% 
3 29% 3% 
4 8% 1% 
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4.8 Figures 

 
Figure 4.1. Schematic representation of the XP-RC using a 2-D depiction of the 
chromatographic process. The numerals on the diagram indicate injection of the low-
molecular weight reagent plug (0), injection of the protein (1), chemical reaction between 
the protein and the reagent (2), and elution of the unreacted protein species (3) and the 
products of the chemical reaction (4 and 5). 
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Figure 4.2. XP-RC MS analysis of haptoglobin 1-1. A: A UV chromatogram of a control 
Hp injection without the on-column disulfide reduction (black trace) and the XP-RC 
chromatogram (magenta). B: On-line mass spectrum of the control Hp injection (averaged 
across the 9-10 min elution window). C: On-line mass spectra acquired in XP-RC of Hp 
(the colored arrows in panel A show where the two mass spectra were acquired). D: a 
zoomed view of the on-line mass spectrum of the H-chain of Hp produced by on-column 
reduction. Three clusters of peaks represent the following glycoforms (based on the 
measured masses): [NeuAc2Gal2Man3GlcNac4]4/Fucx (black labels), 
[NeuAc2Gal2Man3GlcNac4]3/NeuAc3Gal3Man3GlcNac5/Fucx (purple) and 
[NeuAc2Gal2Man3GlcNac4]2/[NeuAc3Gal3Man3GlcNac5]2/Fucx (gold); the numerals 
indicate the number of fucose units (x) within each species. 
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Figure 4.3. XP-RC MS/MS of mAb showing CID mass spectrum and fragmentation 
pattern of the L-chain produced upon the on-column reduction of the intact protein. Amino 
acid sequence is shown only for the constant region of the L-chain; the vertical lines 
indicate amide bonds whose cleavage gives rise to the detected b- and y-ions (red lines 
correspond to this data set; blue line correspond to XP-RC MS/MS measurements carried 
out without using guanidinium chloride in the reagent plug; and black lines correspond to 
fragments generated in XP-RC MS using in-source collisional activation). The inset shows 
selected extracted ion chromatograms for several ionic species in XP-RC chromatogram 
(reference XICs obtained in the absence of the reducing agent in the reagent plug are shown 
as color-filled curves). The complete set of XICs with representative mass spectra (MS1) 
is shown in the Supplementary Material section. 
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Figure 4.4. A schematic diagram of an XP-RC experiment employing two reagent plugs 
and the mass spectra of the constituents of mAb produced by the on-column reduction with 
TCEP (reagent plug 2) following the on-column oxidative labeling with hydrogen peroxide 
(reagent plug 1). The numerals on the diagram indicate injection of the protein (1), 
chemical reaction between the protein and the reagent 1, e.g. oxidation with H2O2 (2), 
chemical reaction between the protein and the reagent 2, e.g. reduction of disulfide bonds 
(3), and elution of the unreduced (disulfide-intact) protein species (4) and the products of 
the external disulfide reduction (5 and 6).  
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4.8 Supplemental Figures 

 
Figure S4.1. Reproducibility of Hp fucosylation patterns obtained with XP-RC MS 
(TCEP in the reagent plug). Three different data sets are shown for the monomeric H-
chain at charge state +12; labeling of individual glycoforms is the same as in Figure 
4.2D.  
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Figure S4.2. Isotopic distributions of β2m ions (charge states +7 and +14) produced by 
XP-RC MS with TCEP in the reagent plug. Black squares in the left-hand panel show the 
calculated isotopic distribution of a β2m ion at charge state +14 with a reduced disulfide 
bond. The blue trace in the right-hand side diagram shows the isotopic distribution of a 
β2m ion (charge state +7) produced by SEC MS (no on-column reduction). 
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Figure S4.3. SEC MS/MS (top panel) and XP-RC MS/MS (bottom) analysis of β2m. The 
colored traces in each panel show mass spectra of intact protein (no collisional activation), 
and circles indicate protein ion used as precursors in CID measurements. The 
fragmentation patterns are shown at the top of the figure for both SEC MS/MS (blue lines) 
and XP-RC MS/MS (red). 
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Figure S4.4. Extracted ion chromatograms for fully-, partially- and non-reduced species 
of mAb detected in SEC MS without on-column reduction (filled curves) and XP-RC MS 
experiments (150 mM ammonium acetate solution, pH adjusted to 3.0; TCEP in the reagent 
plug). The three representative on-line mass spectra shown on the right-hand side were 
averaged across the following elution windows: 14-16 min (top), 16-17 min (middle), and 
17-19 min (bottom). The XICs were generated by plotting ionic signals for the following 
species: H2L2, charge state +33 (m/z window 4419-4423); H2L, charge state +23 (m/z 
window 5332-5336); H2, charge state +21 (m/z window 4736-4740); HL, charge state +17 
(m/z window 4289-4293); H, charge state +14 (m/z window 3552-3556); and L, charge 
state +9 (m/z window 2576-2580). Note that the early-eluting peaks of partially- and fully-
reduced species are artifacts due to the interfering signal of the intact mAb (e.g., it is 
impossible to distinguish the ionic signal of HL+17 from that of H2L2

+34).  
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Figure S4.5. Extracted ion chromatograms for fully-, partially- and non-reduced species 
of mAb detected in SEC MS without on-column reduction (filled curves) and XP-RC MS 
experiments (150 mM aqueous ammonium acetate solution, pH adjusted to 3.0, with 10% 
methanol by volume; TCEP/10% methanol in the reagent plug). The three representative 
on-line mass spectra shown on the right-hand side were averaged across the following 
elution windows: 15-17 min (top) and 17-19 min (bottom). The XICs were generated by 
plotting ionic signals for the following species: H2L2, charge state +33 (m/z window 4419-
4423); H2L, charge state +23 (m/z window 5332-5336); H2, charge state +21 (m/z window 
4736-4740); HL, charge state +17 (m/z window 4289-4293); H, charge state +14 (m/z 
window 3552-3556); and L, charge state +9 (m/z window 2576-2580). Note that the early-
eluting peaks of partially- and fully-reduced species are artifacts due to the interfering 
signal of the intact mAb (e.g., it is impossible to distinguish the ionic signal of HL+17 from 
that of H2L2

+34).  
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Figure S4.6. XP-RC MS/MS analysis of mAb: fragment ion spectra of the L-chain 
generated by on-column disulfide reduction of mAb (TCEP in the reagent plug). 
Fragmentation was induced by collisional activation of ions of monomeric L-chains at 
charge states +12 through +16 (blue-filled curve) and by collisional activation of all ions 
in the ESI interface without precursor ion selection (in-source fragmentation, black trace). 
The two fragmentation patterns are overlaid in the top diagram (the amino acid sequence 
is shown only for the constant region of the L-chain). 
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1 Conclusion 

MS and LC are excellent characterization tools as demonstrated by this thesis.  MS 

allows for precise and accurate mass measurements that are extremely valuable for protein 

identification and quality.  Additionally, these measurements can be used for discovery and 

quantitation of PTMs.  LC provides the ability to separate components in a complex sample 

by a variety of physical and chemical properties.  The ability to separate proteins by a 

specific property creates opportunities to tailor a method to separate out an analyte of 

interest.  This thesis describes a diverse set of novel LC and MS methods to analyze 

proteins with biotherapeutic potential. 

In chapter II, a method was developed to analyze the metal and synergistic anion 

composition of Tf.  LC and native MS usefulness were both highlighted with their ability 

to purify and measure the composition of a non-covalent complex, respectively.  To purify 

Tf from serum a 2D separation strategy was required due to the complexity of the sample.  

SEC was used to collect a Tf-containing fraction while a BDR column was used to deplete 

the abundant serum albumin.  Native MS was mandatory to preserve the metal and 

synergistic anion composition of Tf which would be lost under denaturing conditions.  One 

of the six serum samples was observed to have oxalate as the synergistic anion instead of 

the typical carbonate.  Tf with bound oxalate is known to negatively affect iron homeostasis 

as iron is unable to be released in cells.  Current clinical tests can measure the amount of 

oxalate in the blood but are unable to detect Tf-bound oxalate.  The developed method has 
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great potential to discover any potential link between oxalate-bound Tf and disruption to 

iron homeostasis and its role in iron-related diseases. 

 Chapter III presented work on the glycan modification of a mAb and the effect on 

its effector functions and biophysical properties.  An IgG1 was enzymatically modified to 

produce three different glycan-modified forms (deglycosylated, hypergalactosylated, and 

hypersialylated).  All three forms were characterized by various analytical methods for 

comparison to each other and the unmodified IgG1.  The goal of these experiments was to 

understand how the glycan composition of a mAb affects its biophysical properties and 

effector functions.  Biophysical measurements did not reveal any significant changes 

(excluding the loss of stability for the CH2 domain of deglycosylated IgG1 which has been 

previously reported) in the higher order structure or stability of any of the three modified 

IgGs.  Removal of the glycan chain appears to abrogate any effector functions of IgG1 

while maintaining its long half-life.  If a mAb’s mechanism of action is drug delivery or 

imagine, using a deglycosylated or aglycosylated mAb may be an attractive choice due to 

its lack of effector function while maintaining a long half-life.  Hypersialylation and 

hypergalactosylation of an IgG1 were not shown to have a significant effect on half-lives 

and effector functions.  The lack of a significant effect allows for more variability of an 

IgG1’s glycosylation composition during production without potentially affecting a mAb’s 

in vivo function.  An increase of terminal galactose(s) on a IgG1’s glycan chain is known 

to correlate with a greater complement dependent cytotoxicity which might be attractive 

for cancer targeting mAbs.  Additionally, sialylated IgGs are known to possess anti-

inflammatory properties making its incorporation during production attractive for treating 

inflammatory-related diseases.  It is very important to establish how PTMs (glycosylation 
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in this case) may affect the biophysical properties of a protein.  If it can be determined that 

PTMs will not affect a protein’s function or provide an alternative use for a biotherapeutic, 

it provides more flexibility in producing a biotherapeutic. 

 A novel XP-RC/MS method was presented in chapter IV.  A reagent plug is first 

injected onto a column after which a protein sample is injected following a specified time 

delay.  At some point inside the column the two traveling peaks will cross and a chemical 

reaction can take place.  Due to SEC separating molecules by their hydrodynamic radius, 

proteins will have a faster velocity than the reagent plug allowing them to be separated 

during elution. Three proteins (β2m, IgG1, and Hp 1-1) were used to demonstrate the 

versatility and usefulness of this approach.  All three proteins were successfully reduced 

on column using a TCEP-containing reagent plug.  Each reduced protein was analyzed on-

line by MS to confirm that reduction was successful.  Reduction of Hp 1-1 allowed for 

determining of the glycosylation of the heavy chain: such a determination is impossible at 

the whole protein level due the heterogeneity of Hp 1-1.  Specifically, the amount of 

fucosylation of Hp 1-1 could be measured and is known to be relevant for certain disease 

diagnoses.  β2m and IgG1’s LC were both top-down sequenced by MS/MS after on column 

reduction.  XP-RC/MS is a powerful method as it allows for on column reduction of 

disulfide containing proteins for MS and MS/MS analysis.   

To further demonstrate the versatility of XP-RC/MS, a two reagent plug method 

was implemented to first oxidize and then reduce IgG1.  Eluting oxidized and reduced 

species were detected on-line by MS to identify where oxidation is occurring on IgG1.  

Based on measured mass shifts, only the HC was oxidized while the LC was unaffected.  

A two reagent plug method suggests numerous possibilities in which a protein can be 
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modified and then reduced.  XP-RC/MS is a powerful tool for protein characterization that 

greatly reduces sample analysis time and is suitable for proteins that are unstable after 

reduction.  The methods presented in this thesis demonstrate the wide range of usefulness 

of LC- and MS-based methods for characterization of proteins with biotherapeutic 

potential.  

 

5.2 Future Directions 

 

5.2.1 Quantitation of Iron Occupancy in Tf 

 The maximum concentration of iron that can be bound by serum Tf, from an 

individual, is known as the total iron bound concentration (TIBC).1  TIBC is a colorimetric 

assay that utilizes an iron binding molecule (chromazurol B) to measure free iron released 

from Tf in solution.  A TIBC measurement is used for a diagnosis of anemia, hereditary 

hemochromatosis, and other iron deficiency disorders.1-3  However, TIBC does not provide 

information with regard to the concentration of apo-, monoferric-, or holo-Tf in serum 

which may be important to iron homeostasis in an individual.  Holo-Tf binds to Tf receptor 

(at pH 7.4) with the highest affinity followed by monoferric-Tf while apo-Tf has a very 

weak affinity.4  Further information may be gathered by measuring the concentration or 

percentage of apo-, monoferric-, or holo-Tf in a patient’s serum.  It has been reported the 

distribution of holo-Tf in is ~11 to 27%4 in serum.  A plausible scenario of the importance 

of being able to measure the concentrations of apo-, monoferric-, or holo-Tf is as follows.  

Two patients are determined to have the same TIBC value but differ in their distribution of 

monoferric- and holo-Tf which would not be detected by TIBC.  Measuring the 
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concentration of monoferric- and holo-Tf could be useful when diagnosing iron related 

diseases.  Currently, urea gel analysis is used to estimate the different iron occupancy states 

of Tf in serum.4  However this is not a high throughput assay that could be implemented 

as a clinical test.  Presented below is a method to measure the amount of apo-, monoferric-

, or holo-Tf in serum. 

 Figure 5.1 describes the general procedure for the purification of Tf from serum 

and its analysis. First, serum is injected onto an SEC column and the eluting Tf fraction is 

collected.  To separate holo-Tf from apo- and monoferric-Tf a BDR column is used.  As 

show in figure 5.2, holo-Tf is not retained by the resin while monoferric- and apo-Tf are.  

Separation of holo-Tf from apo- and monoferric-Tf allows for their concentrations to be 

indirectly measured by a using chromazurol B.  Free iron is bound by chromazurol B and 

the concentration iron is calculated by measuring the 660nm absorbance and comparing it 

to a calibration curve.  The general strategy to measure the concentration of apo-, 

monoferric-, and holo-Tf involves the adjustment of the solution’s pH to promote Tf to 

bind or release iron.  Both Tf-containing fractions (holo-Tf and monoferric-/apo-Tf) are 

first added to a low pH (4.5) solution with iron and chromazurol B.  Released iron results 

in the increased absorbance at 660 nm and is used to calculate the concentration of iron 

bound by Tf.  For the holo-Tf sample, the measured iron concentration is halved to 

calculate holo-Tf’s concentration. The iron concentration for the monoferric-/apo-Tf 

sample is equal to the concentration of monoferric-Tf.  To determine the concentration of 

apo-Tf, a neutral carbonate buffer (pH 7.0) is added to the low pH monoferric-/apo-Tf 

solution.  Raising the pH to near neutral permits Tf to bind iron and results in the decrease 

of 660 nm absorbance.  The concentration of iron bound is calculated by the decrease of 
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660 nm absorbance and the concentration of Tf is equal to half of the measured iron 

concentration.  However, it is important to keep in mind that monoferric-Tf was converted 

to apo-Tf in the previous step so the measured concentration of Tf is the combined 

concentration of (previously) monoferric- and apo-Tf.  Subtracting monoferric-Tf’s 

concentration from the total Tf concentration results in the concentration of apo-Tf.  

Importantly, an automated plate reader with liquid transfer capabilities is able to handle the 

chromazurol B absorbance detection making this assay to be high throughput. 

It is the goal of this proposed method to accurately quantitate the amount of apo-, 

monoferric-, or holo-Tf in serum.  The generated data may help relate iron-related disease 

symptoms with the iron occupancy of Tf.  With this additional information, it may be 

possible to establish additional biomarkers (such as % of holo-Tf or total concentration) to 

assist with iron-related disease diagnosis. 

 

5.2.2 Cross Path Reactive Chromatography 

XP-RC/MS is a very versatile method due to the variety and number of plug that 

can be employed.  As shown in chapter IV, multiple plugs can be injected to facilitate 

different protein reactions.  This leads to the enticing possibility of performing online HDX 

inside an SEC column.  An HDX XP-RC/MS schematic is shown in figure 5.3.  By 

adjusting the time between plugs, a protein can be detected very quickly after exchange 

and reduction.  Furthermore unlike traditional HDX experiments there will be no dilution 

(excluding diffusion of the protein plug inside the column) of the protein sample as it passes 

through the deuterium plug.  Additionally, the reduction plug can be removed if global 
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HDX measurements are of interest.  Reducing the time between exchange and detection 

will help with back exchange that is major issue affecting current HDX measurements. 

Other types of chromatography can be used for XP-RC/MS as long as the analyte 

and reactive plugs can be separated.  Ion exchange chromatography is a possible alternative 

to SEC due to its ability to retain a molecule for significant amount of time under the correct 

mobile phase conditions.  By reversing the order of plugs in an SEC experiment, a protein 

can first be injected followed by any number of reactive plugs, as shown in figure 5.4.  

Once the reactive plugs elute from the column, a step gradient can be used to elute the 

modified protein.  This has the added benefit over SEC XP-RC/MS which has a limited 

range of the number of plugs that can be effectively injected.  XP-RC/MS is a 

compartmental method where different plugs or types chromatographies can be 

implemented to tackle the unique requirements of an experiment.  
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5.3 Figures 

 
 
Figure 5.1 General schematic for quantitation of apo-, monoferric-, and holo-Tf.  Serum 
is injected onto an SEC column and a fraction containing Tf is collected.  A BDR column 
(cibacron F3GA) is used to separate holo-Tf from apo- and monoferric-Tf.  Holo-Tf is 
added to a low pH solution (4.5) containing iron and chromazurol B.  The change in 660 
nm absorbance is measured to calculate the concentration of holo-Tf.  Apo- and 
monoferric-Tf are added to a low pH solution (4.5) containing iron and chromazurol B.  
The change in 660 nm absorbance is measured to calculate the concentration of 
monoferric-Tf.  Next, a carbonate buffer, pH 7.0, is added to the solution to allow Tf to 
bind iron.  The change in 660 nm absorbance is measured to calculate the concentration 
of total Tf in solution.  This concentration is subtracted by the previously measured 
monoferric-Tf concentration to calculate the concentration of apo-Tf. 
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Figure 5.2 Separation of holo-Tf from monoferric- and apo-Tf on a cibacron F3GA 
column using a salt gradient (red).  The identity of Tf in each eluting peak was confirmed 
by MS. 
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Figure 5.3 Schematic for an online HDX assay inside an SEC column.   
 
 
 

Figure 5.4 Representative workflow for an XP-RC-MS experiment in an IXC column. 
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APPENDIX A 

PURIFICATION AND ANALYSIS OF TF AND HUMAN SERUM ALBUMIN 

FROM SERUM SAMPLES. 

A.1 Introduction 

Using the method developed in chapter II Tf was purified and measured from 

several different serum samples.  Additionally, human serum albumin (HSA) was also 

measured by buffer exchanging HSA from the high salt fractions of the BDR runs into a 

MS-friendly buffer.  The objective was to determine the metal and synergistic anion 

composition for Tf to determine if other Tf samples contained oxalate as the synergistic 

anion.  In addition, any PTMs of Tf and HSA were identified.  Of particular interest was 

the presence of glycation on Tf and HSA as it is a potential biomarker for diabetes 

mellitus.1-3  Glycation has also been shown to negatively affect Tf’s ability bind iron thus 

affect iron homeostasis in the body.4,5  Briefly, it was found at a physiologically relevant 

time scale and glucose concentration Tf was able to be glycated at lysine534.4  Lysine534 is 

a component of the secondary pH sensitive shell that is responsible for Tf’s ability to bind 

and release iron.  Glycation of lysine534 appears to disrupt Tf’s C-lobe to bind iron.  

Therefore, it is important to determine if Tf is glycated as it may play a role in disrupting 

iron homeostasis in the body. 

 

A.2 Results and Discussion 

All five HSA samples (Figures A.6-A.10) were observed to be modified by 

glycation and cysteinylation. The relative abundance of glycation and cysteinylation for 

each sample is different with respect to each other and unmodified HSA.  Unfortunately, 
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the health status of the serum sample patients is unknown.  Consequently, no meaningful 

correlation between glycation and or cysteinylation can be made to any ailments.   

Of the five serum Tf samples two were observed with oxalate bound to iron.  Also 

observed was three of the Tf samples were glycated as shown in figures A.2-4.  

Additionally, all five Tf samples appear to have different levels of apo-, monoferric-, and 

holo-Tf.  While it is tempting to make conclusions from the observed iron saturation and 

synergistic anion composition, without the full medical history of the serum sample donors 

this would be a imprudent decision.  What can be discussed is out of the 7 (5 in this 

appendix and 2 from the published paper) different Tf samples analyzed, three had oxalate 

present as the synergistic anion.  Moreover, three of the Tf samples were also observed to 

be glycated. While this is a small sample set, oxalate bound to iron in Tf appears to be 

common as well as glycation.  To confirm this hypothesis and to attempt a link between 

oxalate and glycation to iron related diseases, a large set of Tf samples would need to be 

analyzed. 
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A.1 Tf from serum was found to be bound to iron with carbonate and/or oxalate as its 

synergistic anion.  The black trace corresponds to native Tf and the red trace corresponds 

to Tf at pH 3.7. 
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A.2 Tf from serum was found to be bound to iron with carbonate as its synergistic anion.  

Glycation of Tf was also observed.  The black trace corresponds to native Tf and the red 

trace corresponds to Tf at pH 3.7. 
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A.3 Tf from serum was found to be bound to iron with carbonate as its synergistic anion.  

Glycation of Tf was also observed.  The black trace corresponds to native Tf and the red 

trace corresponds to Tf at pH 3.7. 
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A.4 Tf from serum was found to be bound to iron with carbonate as its synergistic anion.  

Glycation of Tf was also observed.  The black trace corresponds to native Tf and the red 

trace corresponds to Tf at pH 3.7. 
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A.5 Tf from serum was found to be bound to iron with carbonate and/or oxalate as its 

synergistic anion.  The black trace corresponds to native Tf and the red trace corresponds 

to Tf at pH 3.7. 
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A.6 Zoomed in mass spectrum of the +17-charge state of HSA.  Peaks corresponding to 

cysteinylation and glycation are labeled with a blue circle and red diamond respectively. 
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A.7 Zoomed in mass spectrum of the +17-charge state of HSA.  Peaks corresponding to 

cysteinylation and glycation are labeled with a blue circle and red diamond respectively. 
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A.8 Zoomed in mass spectrum of the +17-charge state of HSA.  Peaks corresponding to 

cysteinylation and glycation are labeled with a blue circle and red diamond respectively 
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A.9 Zoomed in mass spectrum of the +17-charge state of HSA.  Peaks corresponding to 

cysteinylation and glycation are labeled with a blue circle and red diamond respectively 
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A.10 Zoomed in mass spectrum of the +17-charge state of HSA.  Peaks corresponding to 

cysteinylation and glycation are labeled with a blue circle and red diamond respectively. 
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APPENDIX B 

CALCULATIONS AND SIMULATIONS FOR XP-RC-LC 

B.1 Calculating the residency time of an analyte in the reactive plug 

 In order for XP-RC-LC to considered as a robust analytical technique additional 

details about the interaction of the analyte and reactive plug as they cross paths is 

required.  One important detail is the time an analyte spends in the reagent plug which is 

necessary for determining the reaction kinetics.  Figure B.1 describes the relationship of 

an analyte’s residency in the reactive plug to the difference in elution between analyte 

and reactive plug.  From the graph, it is clear the smaller difference between an analyte’s 

and reactive plug’s elution time the more time they spend interacting which intuitively 

makes sense.  To calculate the time an analyte spends interacting (describe in detail vide 

infra) with the reactive plug the reactive plug is treated as stationary to the analyte.  This 

can be modeled by subtracting the velocity of the analyte by the reactive plug to calculate 

an adjusted analyte velocity.  By dividing the volume of the reactive plug by the adjusted 

analyte velocity, the time an analyte spends interacting with the reactive plug is 

calculated.  From this simple calculation, it is clearly seen that the time an analyte spends 

interacting with the reactive plug can be easily controlled.  One option is to change the 

volume of the reactive plug while the other is to change the flow rate of mobile phase.  

Both options allow for a great degree of control of the time an analyte interacts with the 

reactive plug. 
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Analyte residency time in the reactive plug calculation: 

To calculate the analyte’s residency time in the reactive plug several values must be 

experimentally determined. 

(1) Column volume:  Inject a small volume (20µL) of a 5% acetone solution onto the SEC 

column.  Calculate the elution time from the maximum of the eluting peak’s absorbance 

(280nm).  Multiply the elution time by the flow rate of the mobile phase to calculate the 

column volume. 

(2) Reactive plug’s velocity (vp):  Assuming the reactive plug is composed of small 

molecules far below the SEC column’s permeation limit and will not interact with the 

stationary phase, the vp will be equal to the flow rate of the mobile phase. 

(3) Analyte’s velocity (va):  Inject a small volume of the analyte onto the SEC column.  

Calculate the elution time from the maximum of the eluting peak’s absorbance (280nm).  

Divide the column volume by the analyte’s retention time to calculate va. 

(4) Analyte’s adjusted velocity (v’a):  To calculate the analyte’s residency time in the 

reactive plug, it will be treated as if the plug is stationary (as a point of reference) to the 

analyte.  The velocity of the analyte (va) will be subtracted by the velocity of the reactive 

plug (vp) to calculate the adjusted velocity (v’a).   

(5) Residency time in reactive plug:  The volume of the reactive plug is divided by the 

analyte’s adjusted velocity (v’a) to calculate the analyte’s time spent in the reactive plug. 

*Note* Diffusion of the plug and analyte in the SEC column was not considered for these 

calculations.   
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B.1 The graph depicts the relationship of the difference of elution time for the analyte and 
reactive plug to the amount of time an analyte spends in the reactive plug.   
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B.2 Diffusion of reactive plug inside an SEC column 

 To further understand the reaction kinetics for XP-RC-LC the shape of the 

reactive plug must be more fully defined.  As the reactive plug travels through the SEC it 

will diffuse longitudinally as described in the Van Deemter equation for chromatography.  

This diffusion will lead to a concentration gradient that the analyte will interact with as it 

passes through the reactive plug.  To assess how shape of a plug changes as it travels 

through an SEC column, a 300µL plug of 0.5% acetone was run at three different (100, 

250, 500 µL/min) flow rates.  For each flow rate a measurement was taken where the 

UV/VIS detector was place pre- and post-SEC column as shown by figure B.2.  When the 

peaks from the respective flowrates are scaled and overlaid (figure B.3) it is clear there is 

minimal longitudinal diffusion.  Not surprisingly was the lowest flow rate (100µL/min) 

had the most diffusion due to its increased time spent traveling through the column. 

Also thought to be contributing to the band broadening is the introduction of the 

plug to the SEC column.  For all these experiments (and those performed in chapter IV) a 

manual injector was used with a sample loop.  The sample loop has a larger diameter than 

the tubing coming from the pump and leading to the column.  It is suspected as the 

manual injector is turned and thus introducing the plug to the SEC column the mobile 

phase is spiked through a portion of the reactive plug due to laminar flow.  This would 

create a mixture of mobile phase and reactive plug that will alter the concentration of the 

active component(s) in the plug as well as lead to an increase of the plug’s volume.  New 

plumbing schemes will be needed to help minimize these issues to give a more uniform 

reactive plug.  
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B.2 UV/VIS detector placed before (top) and after (bottom) the SEC column. 
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B.3 Overlay of the elution of the 0.5% acetone peak pre- (filled) and post- (outlined) SEC 
column at the three different flow rates. 
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