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ABSTRACT

REDUCED MODELS OF POINT VORTEX SYSTEMS IN QUASIGEOSTROPHIC

FLUID DYNAMICS

MAY 2018

JONATHAN MAACK, B.S., COLORADO SCHOOL OF MINES

M.S., COLORADO SCHOOL OF MINES

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Bruce Turkington

We develop a nonequilibrium statistical mechanical description of the evolution of point

vortex systems governed by either the Euler, single-layer quasigeostrophic or two-layer quasi-

geostrophic equations. Our approach is based on a recently proposed optimal closure pro-

cedure for deriving reduced models of Hamiltonian systems. In this theory the statistical

evolution is kept within a parametric family of distributions based on the resolved variables

chosen to describe the macrostate of the system. The approximate evolution is matched

as closely as possible to the true evolution by minimizing the mean-squared residual in

the Liouville equation, a metric which quantifies the information loss rate due to model

reduction.

The point vortex approximation of the fluid dynamics allows the optimal closure, which

is formulated on phase space, to be transferred to physical space resulting in an exact mean-

field theory for the continuum limit. The near-equilibrium linearization of this theory is

used to model the intrinsic relaxation rates for isolated coherent vorticity structures. The

equilibration of initially disturbed vorticity fields is captured by a reduced model that has

few resolved variables and no adjustable parameters.

For the Euler and single-layer quasigeostrophic equations, the theory is used to model

vi



the axisymmetrization of a deformed vorticity patch. In particular, the reduced model ex-

hibits how the rate of symmetrization depends upon the energy and the Rossby deformation

radius. For the two-layer equations the study focuses on the relaxation of baroclinic per-

turbations of stable barotropic structures and the transfer of available potential energy to

kinetic energy. The model predicts the dependence of the barotropization rate on the energy

and the internal Rossby deformation radius. Both axisymmetrization and barotropization

are prominent features of the coherent vortex structures observed in direct numerical sim-

ulations of two-dimensional and quasigeostrophic turbulence. The reduced model is tested

against the evolution of an ensemble of point vortex systems to validate its predictions.

Therefore, the reduced model furnishes a mathematical theory of these fluid dynamical

phenomena.
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CHAPTER 1

INTRODUCTION

Two-dimensional large Reynolds number turbulence theory changed with an important

discovery by McWilliams. He noted that in long time simulations of the Euler equation

as well as the single-layer and continuously stratified quasigeostrophic equations that large

scale coherent vorticity structures emerged as the dominant dynamical phenomena [40, 39].

McWilliams observations were duplicated by Babiano et al. [3] and is still a topic of great

interest [33, 50]. Prior to the observation of coherent structures, two-dimensional turbulence

theory focused on the cascade theory of Kraichnan [32] and Batchelor [4]. It was argued

that energy cascades toward the low Fourier modes while enstropy cascades toward high

Fourier modes so that the energy and enstrophy scale with the wave number. However,

these persistent vorticity patches were found to disrupt the cascade scalings ([33] and [50]

discuss this and the interaction of the cascade and the coherent structures). Thus, the

persistent vorticity patches became another important object of study in two-dimensional

turbulence.

In particular, these coherent structures created an application of statistical mechanics to

turbulence theory and attempts were made to predict the long time vorticity distributions

of these coherent structures as equilibrium states. Onsager anticipated both the coherent

structures and use of statistical mechanics when he first used the point vortex idealization

in a statistical approach to understanding turbulence [44]. Apart from the attempt itself,

perhaps the most important part of the paper was his argument for the existence of negative

temperature states as a result of the bounded phase space of the point vortex system

(see chapter 3 for the details of this argument). He further argued that these negative

temperature states correspond to tightly clustered groups of point vortices to store excess
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energy. These are precisely those states that survive and dominate at long time and, hence,

are the most interesting. Onsager’s work was continued by Lundgren and Pointin and by

Joyce and Montgomery. The former used kinetic methods on a collection of like signed

vortices in an unbounded region [47] and different signed vortices in a bounded region [36]

to derive a mean-field equation governing the most probable state. Joyce and Montgomery

also obtained a mean-field equation for the most probable distribution of equal number

of positive and negative vortices in a bounded region using a maximum entropy argument

[42], where they specifically focused on the negative temperature regime. Since these results,

much work has been done to rigorously support their conclusions [8, 9, 29].

The point vortex system was a natural starting ground for the equilibrium statistical

mechanics of vorticity structures. It is an old approximation of the Euler equation having

been formulated by Helmholtz and further studied by Kirchoff [43]. It has several problems

including infinite self energy and failure to model vortex mergers [57]. In spite of these

criticisms, it has remained a relevant technique even as a method of approximating fluid

flow where it has evolved into the “vortex blob” methods as described in [16, 24]. All of

these methods provably approximate the flow as governed by the Euler equation. That is,

the point vortex and vortex blob methods can be shown to converge in an appropriate weak

sense to the solution of the Euler equation [37, 16, 24]. Furthermore, as a basis for statistical

mechanics, the point vortex idealization remains useful due to its similarity to classical

mechanics—a point vortex resembles a molecule and the theory results in a probability

distribution over real space. These reasons also position the point vortex system well as a

mechanism for developing a nonequilibrium theory of fluids.

The goal of nonequilibrium statistical mechanics is to predict the evolution of certain

desired quantities without explicitly computing the microscopic or fine scale dynamics.

This form of model reduction is very ambitious and leads to the closure problem. In this

problem, we seek to write equations for the evolution of some interesting quantities where

the equations depend only upon those quantities. From another perspective, this problem

is one of how to account for the interactions of the resolved quantities with the unresolved

quantities, or those fine scales that we do not want to track, in the evolution of the resolved

quantities.
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The optimal closure theory advocated by Turkington in [55] is a systematic approach to

building reduced equations for Hamiltonian systems without making use of any adjustable

parameters. This method has been used to formulate theories for the two-dimensional Euler

equation [58], the shell model [52] and the truncated Burgers equation [31, 51]. The optimal

closure methodology departs from the traditional methods of nonequilibrium statistical

mechanics. The key idea of this theory is to choose a parametric family of distributions and

require the predicted evolution to remain within this family. The theory then introduces an

information theoretic error, called the Liouville residual, which quantifies how this predicted

evolution departs from the true evolution. This residual is based on the relative entropy

and can be interpreted as the rate of information loss. The closed equations are derived by

minimizing this residual over all paths through parameter space. Equivalently, the closure

is achieved by taking the evolution within the parametric family that most closely follows

the true evolution in an appropriate sense.

In this work, we use the point vortex idealization together with the optimal closure

to form a nonequilibrium extension of the equilibrium mean-field equations for the Eu-

ler equation, the single-layer quasigeostrophic equation and the two-layer quasigeostrophic

equation. This is done by using the point vortex idealization for the continuum equation,

giving a finite dimensional Hamiltonian system. The optimal closure theory is then applied

to this system. Then by taking the continuum limit, we reduce the Liouville residual to a

residual upon the original continuum equation. As such, we use the point vortex approx-

imation to transfer the optimal closure from phase space to real space. The result is a

nonequilibrium mean-field theory for the Euler, single-layer quasigeostrophic and two-layer

quasigeostrophic equations with no adjustable parameters.

For each equation, we will more thoroughly develop the theory using a near-equilibrium

assumption. There are a couple of reasons for this. First, the minimization of the residual

over a time path is a difficult problem requiring the solution of the Euler-Lagrange equation

or the Hamilton-Jacobi equation. Reducing to the near-equilibrium regime gives us a more

computationally tractable problem. Second, the computation of the mean-field trial densi-

ties for our nonequilibrium theory require solving a nonlinear partial differential equation

subject to several constraints. When near an equilibrium solution, this nonlinear problem is
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replaced by a linear one. Finally, this assumption allows us to construct a modified resolved

vector that necessarily respects the conservation of energy, angular impulse and vorticity.

In turn, this modification further simplifies the necessary minimization problem as we do

not have to externally impose the constraints on the system.

We then use our near-equilibrium theory to study two different problems. The first is

to predict the symmetrization of a distorted vorticity patch. In [40], one of the dynami-

cal processes present in the long time numerical simulations of the Euler and single-layer

quasigeostrophic equations was that of axisymmetrization. When two coherent like-signed

vortices become sufficiently close, they are stretched and strained away from the normal

axisymmetric shape. This could be the result of merging or of the shearing flow from the

other vortex. Once merging is complete or the two have drifted far enough apart, the

vortices relax back to axisymmetric form. We seek to model this axisymmetrization pro-

cess and predict its rate. Furthermore, for the Euler equation we predict how the rate of

symmetrization depends on the energy of the system, and for the single-layer equation we

predict how this rate depends on both the energy and the external Rossby deformation

radius.

The second problem we investigate is that of the “barotropization” of vorticity structures

in stratified fluids. Long time simulations of the continuously stratified quasigeostrophic

equation revealed that the coherent vorticity patches tended to have a uniform vertical

structure [39]. In the language of geophysical fluid dynamics, the isolated vorticity patches

tended to be purely barotropic. This problem can be viewed as a three-dimensional analog

of the symmetrization problem just described. The two-layer quasigeostrophic equation is a

simple model of a stratified rotating fluid. As such, it provides a good testbed for studying

the barotropization process. Using our two-layer closure, we model the relaxation to these

purely barotropic states, and we also quantify the conversion of available potential energy

into kinetic energy throughout this process. Finally, we predict how the barotropization

rate and the available potential energy conversion rate depends on the energy of the system

and the internal Rossby deformation radius.

While studying these two problems, we also investigate the range of validity of our re-

duced model. To do so, we compare the predicted evolution to direct numerical simulations
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of an ensemble of point vortex systems. In particular, we compare the magnitude of depar-

ture from equilibrium due to the asymmetric and baroclinic perturbations as well as the

time scale to return to equilibrium. We also look at the classic relative error of the predicted

and numerical evolutions.

The outlined tasks require a significant amount of background knowledge and we have

sought to provide the necessary material. Chapter 2 provides the required background of

the Euler equation and discusses the point vortex idealization as well as derives the resulting

dynamical system. In chapter 3, we summarize the theory of equilbrium statistical mechan-

ics for the point vortex system and derive the mean-field equation for an ensemble of like

signed point vortices. Chapter 4 outlines the optimal closure theory for the nonequilibrium

statistical mechanics of a general Hamiltonian system. Particular attention is paid to the

near-equilibrium formulation. In chapter 5, we derive our nonequilibirum theory for the

Euler equation. The first result is a general mean-field theory. We then specialize to the

near-equilibrium regime. Chapter 6 applies the near-equilibrium theory to the symmetriza-

tion problem and predicts the symmetrization rate dependence on the energy of the system.

Chapter 7 provides the necessary background material for the single-layer quasigeostrophic

equation, including its derivation from the rotating shallow-water equations. We also de-

scribe the point vortex dynamics in this context. The chapter concludes with generalization

of the equilibrium theory of point vortices to the single-layer equation. In chapter 8, we

derive our nonequlibrium theory for the single-layer case. We then describe the results for

the symmetrization problem and conclude with our prediction of the symmetrization rate

dependence on the energy and external deformation radius. Chapter 9 derives the two-layer

quasigeostrophic model. We discuss the barotropic and baroclinic modes and the division

of energy according to the model before walking through the theory of baroclinic instability.

This theory is one of the major developments of geophysical fluids and is fundamentally a

mechanism for the transference of available potential energy into kinetic energy [60]. This

motivates our interest in quantifying the energetics in our two-layer theory. Finally, the

chapter concludes with the two-layer point vortex idealization and the corresponding equi-

librium statistical theory. In chapter 10, we derive our two-layer nonequlibrium theory

generally and then reduce to the near-equilibrium case. In this regime, we examine the
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rate at which available potential energy becomes kinetic energy as predicted by our theory.

Finally, we conclude the chapter with our analysis of the barotropization problem and our

predictions of the dependence of the barotropization rate and potential energy flow rate

on the energy of the system and the internal deformation radius. Appendix A contains

the technical justification of our mean-field approximation used to reduce the residual on

the Liouville equation to a residual on the associated continuum equations. Appendix B

describes the various numerical methods we have used in this work.

Throughout this work, we have chosen to emphasize application and interpretation over

mathematical rigor. This is especially true of chapters 7-10 where we discuss the more

physically relevant single-layer and two-layer quasigeostrophic equations. This choice was

motivated largely by a desire to make the work more approachable.
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CHAPTER 2

POINT VORTEX DYNAMICS

The evolution of an incompressible ideal fluid under the Euler equations is quite complex,

even in two dimensions where the evolution is completely determined by the vorticity.

One of the earliest approximations of the evolution of the vorticity was the point vortex

idealization where the vorticity is assumed to be concentrated at a finite number of points in

what amounts to the turbulence equivalent of the point mass. The problem of the evolution

of point vortices was investigated by Helmholtz in 1858 and Kirchoff in 1883 [43] and has

remained important into the present as it is the foundation of the vortex blob methods

for numerically simulating the Euler equation [16, 24]. The key idea of the approximation

is that it reduces the Euler equation into a system of 2N ordinary differential equations

for N point vortices. In doing so, the Euler equation moves from an infinite dimensional

Hamiltonian system to a finite dimensional Hamiltonian system.

In this section, we provide the necessary background for the Euler equations in two-

dimensions and the point vortex idealization. We do not provide a derivation of the Euler

equation or proofs that the stated quantities are conserved as we assume the reader is

familiar with them. We refer the reader to [15, 37] for a mathematical treatment of these

or [48, 60] for a more physically oriented perspective. The point vortex idealization, on the

other hand, is discussed more thoroughly as the concept of the point vortex is critical to

all that follows. This approximation is also discussed in [37]. The basics and more of the

modern research can be found in [43].
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2.1 Euler Equations

The incompressible Euler equation on the plane is given by

∂tu + (u · ∇)u = −∇p (2.1a)

∇ · u = 0 (2.1b)

where u is the velocity field and p is the pressure field. We also require that |u| → 0 as

|x| → ∞. This is equivalent to taking the potential flow to be zero.

The incompressibility condition (2.1b) allows us to define the stream function ψ such

that

u = ∇⊥ψ (2.2)

where

∇⊥ = (∂y,−∂x). (2.3)

Now we define the vorticity ζ = ∇ × u. Because the flow is two-dimensional, only the

z-component of ζ does not vanish so that we can regard it as a scalar quantity. Combining

the vorticity definition and (2.2), we arrive at the relation

−∆ψ = ζ.

Taking the curl of (2.1a), using (2.1b) and (2.2) together with the above relation, we

arrive at the stream function-vorticity formulation of the incompressible two-dimensional

Euler equation on the plane

∂tζ + [ζ, ψ] = 0, (2.4a)

−∆ψ = ζ, (2.4b)

where

[A,B] =
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x
.
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Equation (2.4a) tells us that the material derivative of the vorticity field is always zero.

Taking a Lagrangian viewpoint, we see that the vorticity of a fluid particle is constant in

time. This insight drives the point vortex idealization we discuss later.

It can be shown that this equation conserves the total vorticity

Γ =

∫
R2

ζ dx, (2.5)

and the energy

E =
1

2

∫
R2

ψ · ζ dx. (2.6)

Furthermore, the translational and rotational symmetries of the domain give us three more

invariants: the center of vorticity

B =

∫
R2

x · ζ dx, (2.7)

and the angular impulse

L2 =

∫
R2

|x−B|2ζ dx. (2.8)

Since we are considering the problem in the entire R2-plane, we may always translate

the vorticity distribution so that the origin is the center of vorticity (that is, B = 0). This

allows us to simplify the expression for the angular impulse and, more importantly, ignore

the center of vorticity conservation in the statistical mechanics calculations later.

These are not the only conserved quantities of the 2D Euler equation. Any quantity of

the form ∫
R2

f(ζ)dx

is conserved provided f is sufficiently smooth. This is called the generalized enstropy. The

most notable such quantity is the enstrophy (hence the name) which we get by taking

f(ζ) = 1
2ζ

2.
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2.2 Point Vortex Idealization

Now we assume that the initial vorticity distribution is sharply concentrated at N points:

ζN (x, 0) =

N∑
i=1

γiδxi(x) (2.9)

where γi is the vorticity at the point xi. We call the isolated vorticity concentration at xi

a point vortex and ζN a point vortex distribution. As previously discussed, (2.4a) implies

that the vorticity γi of the fluid parcel located at xi is constant in time. Therefore, the

vorticity distribution at time t is given by

ζN (x, t) =

N∑
i=1

γiδxi(t)(x) (2.10)

where xi(t) = (xi(t), yi(t)) is the position of the ith point vortex at time t. Furthermore,

the quantity

Γ =

N∑
i=1

γi (2.11)

(called the total circulation or total vorticity) is a constant of the dynamics. So we see that

the flow is completely determined by the paths of the fluid particles with the vorticity.

Our goal now is to find a dynamical system that describes the paths x(t) which we do

using the stream function. The Green’s function for (2.4b) is

G(x,x′) = − 1

2π
log |x− x′|.

Therefore, the stream function at time t corresponding to the vorticity distribution (2.10)

is given by

ψN (x, t) = − 1

2π

∫
R2

log |x− x′|ζN (x′, t) dx′

= − 1

2π

N∑
i=1

γi log |x− xi(t)|. (2.12)
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Using the definition of the stream function (2.2), the velocity field is

u(x, t) = − 1

2π

N∑
i=1

γi

(
y − yi(t)
|x− xi(t)|2

,− x− xi(t)
|x− xi(t)|2

)
. (2.13)

This formulation gives an infinite velocity at the position of any point vortex. However,

this is only due to the self advection of the point vortex. Physically, we expect a lone point

vortex in the plane to remain stationary–that is, we expect a point vortex to have no effect

on itself. It follows that we may neglect the self-flow term (for a mathematical justification

see [37] chapter 4). Dropping this term and using the fact that

d

dt
xi(t) = u(xi, t),

we arrive at the system of 2N ordinary differential equations

ẋi = − 1

2π

∑
j 6=i

γj
yi − yj
r2
ij

, ẏi =
1

2π

∑
j 6=i

γj
xi − xj
r2
ij

, i = 1, . . . , N, (2.14)

where ẋ = dx/dt and r2
ij = (xi − xj)2 + (yi − yj)2 = |xi − xj |2.

This system can be written as a canonical Hamiltonian system with the conjugate vari-

ables qi =
√
γixi and pi =

√
γiyi and the Hamiltonian

HN (x1, . . . ,xN ) = − 1

4π

N∑
i=1

∑
i 6=j

γiγj log |xi − xj |. (2.15)

Since HN is time invariant, it is a conserved quantity of the motion. The translational and

rotational symmetries also result in the three conserved quantities

B =
∑
i

γixi, (2.16)

L2
N =

∑
i

γi|xi −B|2. (2.17)

The five quantities (2.11), (2.15), (2.16) and (2.17) are the point vortex counterparts

of (2.5), (2.6), (2.7) and (2.8). They result immediately from the Euler equation when
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plugging in the point vortex distribution (2.10). In the case of the Hamiltonian, we must

remove the infinite terms arising from the singularity of the log at the origin. Physically,

this is again removing the self-interaction terms.

It can be shown that by using the quantities (2.16) and (2.17), the system (2.14) is

integrable for N ≤ 3 (see [43] chapter 2). For large N , the system is (generally) chaotic.

The question arises whether or not the point vortex idealization can be used to approx-

imated solutions of the Euler equation. There is significant literature on this question: [37]

provides a basic discussion. The short answer is that the point vortex approximation will

converge in the weak sense of convergence of measures but to prove the convergence one

must introduce a smoothing parameter into the Green’s function. The value of this smooth-

ing parameter depends on N and goes to zero very slowly. As this contributes directly to

the error of the method, the pure vortex method converges rather slowly.

A better approximation is achieved by using vortex “blobs”. Mathematically, these

are point vortices that have been smoothed to remove the logarithmic singularity at its

location. Physically, they can be thought of as a small, intense vorticity patch with nonzero

width. The idea of this is linked to the proof of the convergence result discussed above–by

smoothing out the point vortices, the convergence rate of the method is increased. The

fundamental problem is the large velocities that occur when two vortices are close together.

These are removed when the point vortices are exchanged for vortex blobs. See [16, 24] for

details on these methods.

The slow convergence rate of the point vortex method is one of the limitations of this

model. It has physical problems as well. The most obvious of these is the infinite self

energy of a point vortex. This is a general problem even when the point vortex is in a finite

domain. Since the kinetic energy is given by

KE =
1

2

∫
D
|u|2dx,

in the case of a point vortex (at the origin)

KE ∝
∫
D

1

r2
dx
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which is not integrable. This is actually the convergence problem again as it is the direct

result of the logarithmic singularity of the stream function at the location of a point vortex.

The point vortex model also completely fails to model the process of vortex merger.

Numerical studies of the Euler equations have revealed that when two patches of vorticity

merge they collapse together and shed a small fraction of the total vorticity which is lost

[40, 48]. Given the strength of a point vortex is conserved, the point vortex idealization

cannot possibly model this phenomena.

The final problem is that the point vortex system does not preserve the conservation

of the generalized enstrophies. In particular, the enstrophy itself is not conserved (indeed,

the enstrophy does not even defined in the point vortex case). Since much of the theory of

two dimensional turbulence has to do with energy cascading to large scales and while the

enstrophy cascades to small scales [15, 48], this is a particularly large problem.
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CHAPTER 3

EQUILIBRIUM STATISTICAL MECHANICS OF POINT VORTEX

SYSTEMS

Equilibrium statistical mechanics methods are an attempt to model and understand coher-

ent vorticity patches. Combining the point vortex idealization with statistical mechanics

was one of the first attempts. It was first considered by Onsager [44] and the first major

results came from Montgomergy and Joyce [42] and Pointin and Lundgren [47, 36]. As

discussed last chapter, there are several limitations of the point vortex model—infinite self

energy, failure to conserve generalized enstrophies and failure to model vortex merger.

Despite these failings, the point vortex formulation makes a useful model. The most

attractive aspect is its resemblance to classical statistical mechanics—we can think of a

point vortex much like a particle and the resulting equilibrium formulation is in real space.

For these we reason, we pursue the point vortex model. The following discussion gives the

basic equilibrium statistical mechanics theory of point vortices. These results may also be

found in [37] and [43].

3.1 Derivation of Mean-Field Equations

The main result of equilibrium statistical mechanic theory is a meanfield equation for the

single point probability distribution ρ or, equivalently, for ζ = Γρ. We focus on the case

of like signed vortices in the plane. In this case, the angular impulse constraint acts to

confine the point vortices to a region so that a coherent structure can form. This is also the

reason for requiring the point vortices to be like signed: two equal strength point vortices of

opposite sign can pair up in such a way as to advect each other off to infinity while satisfying

the angular impulse constraint. This behavior precludes the type of coherent structure we
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are interested in.

3.1.1 Microcanonical Distribution

Consider a number N of identical point vortices in the plane with total vorticity Γ = 1.

The interactions are given by the Hamiltonian (2.15) (and move according to system (2.14))

where γi = γ = 1/N is constant. Assume that the value of the Hamiltonian is E and the

system has angular momentum L2. Recall that we have already fixed the center of vorticity

at the origin. We further assume that any point in phase space ΛN = R2N is equally

probable and define the classical microcanonical distribution

1

Ω(E,L2)
δ(HN − E)δ(L2

N − L2)dx1 . . . dxN , (3.1)

where Ω(E,L2) is the normalizing constant

Ω(E,L2) =

∫
ΛN

δ(HN − E)δ(L2
N − L2)dx1 . . . dxN . (3.2)

We make no effort to prove this. We simply assume it to be true. This is a standard practice

in statistical mechanics as actually proving a system is ergodic is usually quite difficult.

We seek the most probable distribution in the limit N →∞ and γ → 0 where Γ = γN

remains constant. To this end, we introduce the entropy defined by

S(E,L2) = log Ω(E,L2). (3.3)

We expect the most probable distribution to maximize the entropy.

It is usual at this point to also define the canonical Gibbs distribution

1

Z
exp{−βHN − α|x|2}dx1 . . . dxN , (3.4)

where the normalization constant Z is called the partition function and given by

Z =

∫
R2

exp{−βHN − α|x|2}.
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The Gibbs distribution fixes the temperature by fixing the coefficient β where as the mi-

crocanonical distribution fixes the energy. (The way we have written it here, the Gibbs

distribution also fixes the constant α. This is somewhat unusual as the angular impulse

constraint is almost always treated microcanonically.)

Many of the calculation are significantly easier using the Gibbs distribution (as opposed

to the microcanonical distribution) and in classical statistical mechanics the two ensembles

are equivalent in standard thermodynamic limits. However, in the point vortex case, the

equivalence of ensembles does not hold [57]. It is inconvenient that this range of nonequiv-

alence occurs in the negative temperature regime where the states of most interest reside.

For this simple reason, we will use the microcanonical distribution in what follows.

3.1.2 Asymptotic Expression for the Entropy

In order to maximize the entropy, we first need an expression for the entropy of a particular

distribution and in the light of our limit

N →∞, γ → 0, Γ constant,

we only need an asymptotic expression for the entropy. To determine this expression, fix a

disc of radius η and say that the vortices are confined to this disc which we denote A. We

partition this disc into M regions of equal area. Call these regions B1, . . . , BM (where the

ith region has area |Bi| = |B| = πη2

M ). In the following, we assume that N >> M >> 1.

Now further assume that the positions of the point vortices are N independent sam-

ples from some distribution. Let ni denote the number of vortices in region Bi. From

combinatorics we know that there are

N !

n1!n2! . . . nM !

ways to arrange N objects into M bins so that the probability of observing a given config-
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uration is

W =

(
N !

n1!n2! . . . nM !

)
|B1|n1 |B2|n2 . . . |BM |nM =

(
N !

n1!n2! . . . nM !

)
|B|N

where we have used
∑

i ni = N and that all the region have equal area [15]. Using Stirling’s

formula, we have

W ∼ NN

nn1
1 nn2

2 . . . nnM
M

|B|N =
M∏
i=1

(
N · |Bi|
ni

)ni

where ∼ means asymptotically equivalent. Since W also gives the volume of phase space

[15], we have S ∼ logW . Taking the logarithm of the above yields

S ∼ −
M∑
i=1

ni log

(
ni

N |Bi|

)
= −N

M∑
i=1

ni
N |Bi|

log

(
ni

N |Bi|

)
|Bi|.

Now, if our system is drawn from the distribution ρ, we expect that

ρ(yi) ≈
ni

N |Bi|
.

where yi is some point in Bi. Using this in the above expression, we have

S ∼ −N
M∑
i=1

ρ(yi) log ρ(yi)|Bi|

In the limit of N → ∞, M → ∞ with N >> M , we recognize the right hand side as a

Riemann sum and conclude that the entropy for a distribution is given by

−
∫
A
ρ(x) log ρ(x)dx.

Since η is arbitrary, it follows that the entropy over the entire plane of a distribution is

given by

−
∫
R2

ρ(x) log ρ(x)dx.

It follows that maximizing the entropy S is equivalent to maximizing this integral.

Therefore, the probability density describing the most probable macrostate with given
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energy E and angular impulse L2 satisfies the variational principle

minimize

∫
R2

ρ(x) log ρ(x)dx subject to (3.5a)

Γ

2

∫
R2

ψ(x)ρ(x)dx = E, (3.5b)

Γ

∫
R2

|x|2ρ(x)dx = L2, (3.5c)∫
R2

ρ(x)dx = 1, (3.5d)

where ψ solves

−∆ψ = ζ = Γρ.

Note that there is actually a fourth constraint that must be satisfied: The total vorticity

constraint given by ∫
R2

ζ(x)dx = Γ.

However, since ζ = Γρ, it is obvious that this is equivalent to the constraint (3.5d). In fact,

from here we assume that Γ = 1 so that we have ζ = ρ.

Here we have given an outline of the proof. It is possible to make these arguments

mathematically rigorous through the use of the theory of large deviations—particularly

Sanov’s Theorem [57]. In doing so, one must show that the Hamiltonian given by (2.15)

converges to the continuum energy (2.6) as N → ∞. This turns out to be a little delicate

since one must deal with the infinite self energy of a point vortex.

3.1.3 Solution of Variational Problem

To complete our derivation of the meanfield equations, we need to solve the above variational

problem. Calculus of variations tells us that to solve the constrained optimization problem

(3.5), we solve the unconstrained optimization problem

minimize

∫
R2

ρ(x) log ρ(x) +
β

2
ψ(x)ρ(x) + α|x|2ρ(x) + µρ(x) dx, (3.6)
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where we have introduced the Lagrange multipliers β, α and µ. The Euler-Lagrange equa-

tion for this is

log ρ+ 1 + βψ + α|x|2 + µ = 0.

After solving for ρ (and redefining µ), we get the nonlinear system

ρ = exp{−βψ − α|x|2 − µ}, (3.7a)

ρ = −∆ψ, (3.7b)

where β, α and µ are constants such that constraints (3.5b), (3.5c) and (3.5d) are satisfied.

The system (3.7) describes the most probable distribution. Here we have used a maximum

entropy argument to derive these mean-field equations. In [43], a derivation of these same

equations is given using kinetic arugments.

Comparing (3.7a) to the canonical Gibbs distribution, we see that µ is the log of the

partition function and so is given by

µ = log

∫
R2

exp{−βψ − α|x|2}dx

Furthermore, β is the “inverse temperature” and satisfies

β =
∂S

∂E
.

However, unlike standard statistical mechanics, there is no reason to suppose that β takes

only positive values. Indeed, in the case of the point vortex system in a bounded domain,

Onsager argued for the existence of negative temperature states (that is, negative values of

β). We recount that argument here as presented in [37, 43].

Consider N point vortices confined to the area D. We assume that there is no transla-

tional or radial symmetries so that the Hamiltonian is the only invariant. Define

Θ(E) =

∫
DN

χ(H < E)dx1 . . . dxN (3.8)
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where χ(H < E) denotes the characteristic function of the set of arrangements for which

H < E. Then

Θ(E) =

∫
R

∫
DN

χ(E′ < E)δ(H − E′)dx1 . . . dxNdE
′

=

∫ E

−∞
Ω(E′)dE′

It follows that

Ω(E) = Θ′(E)

which in turn implies

β =
d

dE
log Ω =

1

Ω
Ω′ =

Θ′′

Θ′

We also know from the definition of Θ that Θ is an increasing function and has the limiting

behaviors Θ → 0 as E → −∞ and Θ → |D|N as E → ∞. Therefore, there must exist a

point Ec where Θ changes concavity, that is, where Θ′′(Ec) = 0. At this energy, Ω = Θ′

attains its maximum and for E > Ec we have

β =
Θ′′

Θ′
< 0

so that we expect to have negative temperature states.

From this argument, we also see that the existence of negative temperature states is the

result of the bounded phase space. For the point vortex system in the plane, the angular

impulse constraint enforces a bounded phase space as argued above so we expect to see

negative temperature states in this case as well.

Since Onsager first made this argument, the existence of negative β states has been

proven [43] and the nature of the states has made them an important part of two-dimensional

turbulence theory (as we shall see later).

3.2 Solutions of the Mean-Field Equations

We saw that the most probable distribution gives rise to a set of nonlinear mean-field

equations. As these are meant to describe coherent vorticity structures, it is worth exploring
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the solutions and whether they give us the desired behavior. If we want to find the actual

vorticity distribution we need to solve the system. In this section, we first describe and

categorize the solutions of the mean-field equations (3.7) before moving on to a special case

that can be explicitly solved.

3.2.1 Behavior of Solutions

Our first step is to fix the space scale by fixing the angular impulse at any value we desire,

say L2 = 2. Having done this, the system (3.7) results in a family of coherent, radially

symmetric vorticity distributions ζ depending on a single parameter–the value of the energy

[43]. We first discuss the qualitative aspects of the distribution with β = 0. This allows us

to break up the range of energy values.

For β = 0, the system (3.7) decouples and ζ is given by a bivariate Gaussian distribution

with zero mean and covariance matrixL2/2 0

0 L2/2


We fixed L2 = 2 so that the covariance matrix is the identity matrix. In this case we may

also write the stream function in closed form (see subsection 3.2.2). From this, we may

calculate the energy corresponding to the case β = 0 simply by computing

Eg =

∫
R2

ψ · ζ dx.

Numerical approximation of this integral gave Eg ≈ −0.03219. For E < Eg (and β > 0),

the distribution flattens near the center and decays to zero at infinity [43]. In a bounded

domain, the vorticity congregates near the boundary [57]. Generally, this is not studied

since the Euler equations are poor approximations of fluid flow near a boundary (due to

phenomena like boundary layers).

For E > Eg (and β < 0), the distribution concentrates toward the center and decays

at infinity. It is this concentration that makes this regime of interest as it resembles the

coherent structures observed in direct numerical simulations of the Euler equation and
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quasigeostrophic equation [40, 39]. Considering the vorticity as a function of the radial

variable r, for large r we have

ζ ∼ C exp

{
−
(

1 +
β

8π

)
r2

L2

}( r
L

)β/2π
where L =

√
L2 [43]. Because Γ is finite, we must have β > −8π.

3.2.2 Solution at “Infinite Temperature”

In order to get an explicit formula for the stream function in the β = 0 case, first note we

may write the vorticity distribution as

ρ =
1

πL2
exp(−r2/L2)

where r2 = x2 + y2. In this case ψ satisfies

−∆ψ =
1

πL2
exp(−r2/L2).

Since the stream function ψ must itself be radially symmetric, this reduces to the ordinary

differential equation

ψ′′(r) +
1

r
ψ′(r) = − 1

πL2
e−r

2/L2
.

We define φ(r) = ψ′(r) and solve the resulting first order linear equation to get

φ(r) =
1

2πr
(e−r

2/L2 − 1)

where we have chosen the constant so that φ(r) is finite in the limit r → 0. Using the fact

that

ψ(x) =

∫
R2

log |x′ − x|ζ(x′)dx′

we can compute

ψ(0) = − 1

2π

∫
R2

log |x′|ζ(x′)dx′ = γe −
logL2

4π
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where γe is the Euler-Masheroni constant. Using this, we can now write

ψ(r) = γe −
logL2

4π
+

∫ r

0
φ(s)ds

which is fairly easily evaluated numerically.

3.3 Computing Equilibrium States

In general, to compute the solutions of the system (3.7), one must resort to numerics. Even

in the β = 0 case, we still need numerics to compute the stream function. The Whitaker-

Turkington algorithm is a particularly useful method for computing both ζ and ψ as well

as the coefficients β, α and µ. It is described generally in [59] and [63]. Here we outline the

algorithm for our application.

The basic idea of the algorithm is to break the problem into two parts: For a given

ζ and ψ, find the appropriate β, α and µ so that the angular impulse constraint (3.5c),

the probability constraint (3.5d) and a modified version of the energy constraint (3.5b) are

satisfied. Then use these parameters to update ζ and ψ using (3.7). We repeat this process

until the iterates have sufficiently converged.

The energy constraint is modified by linearizing around the current vorticity distribution,

call it ζn. The linearized constraint is

Hn +

∫
R2

ψn(ζ − ζn)dx = E

where ψn is the stream function corresponding to ζn and

Hn =
1

2

∫
R2

ψnζndx.

With this modified constraint in hand, we now have the following algorithm: For a given
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ψn, find β, α and µ such that

∫
R2

ψn exp{−βψn − α|x|2 − µ}dx = E +Hn,∫
R2

|x|2 exp{−βψn − α|x|2 − µ}dx = L2,∫
R2

exp{−βψn − α|x|2 − µ}dx = 1.

This can be done with any root finding algorithm. Call the solutions of this problem βn, αn

and µn.

We now form ζn+1 as suggested by (3.7a). That is, we set

ζn+1 = exp{−βnψn − αn|x|2 − µn}

From ζn+1, we find ψn+1 by solving

−∆ψn+1 = ζn+1.

This requires a Poisson solver for the plane. Having ζn+1 and ψn+1 in hand, we return to

the root finding problem.

This iterative process is repeated until some appropriate convergence criterion is met.

We required that

|Hn+1 − E0|
|E0|

< 10−10 and

max
x∈R2
|ζn+1 − ζn|

max
x∈R2
|ζn|

< 10−10.

Despite (or perhaps because of) the simplistic structure, the algorithm is extremely

robust. It can be shown that the algorithm will converge to any equilibrium state with

β ≤ 0 and any initial guess ζ0 with H0 ≥ E and angular impulse L2 and total vorticity Γ

[59]. In practice, we have found the algorithm to be globally convergent. For a discussion

of our root finder and Poisson solver, see Appendix B.
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CHAPTER 4

OPTIMAL CLOSURE THEORY

Equilibrium statistical mechanics is clean and elegant and is one of the more profound

accomplishments of mathematical physics. Perhaps its only failing is that it predicts only

the final state of a system after a long time and says nothing of how the system gets to

that state. This is the purpose of nonequilibrium statistical mechanics—to predict the time

evolution of some, usually chosen, bulk statistical quantities. While the equilibrium theory

has found a cohesive framework with the theory of Gibbs measures [54], there is currently

no equivalent unifying construct for nonequilibrium statistical mechanics. It is a patchwork

of ad hoc approximations and assumptions. To some extent this is unavoidable as the

evolution inevitably depends on the choice of the macroscopic quantities; however, some

form of consistent methodology is highly desirable.

The following discussion gives the general theory of the optimal closure as described in

[55] as well as [30]. The optimal closure theory departs from the standard methodologies of

nonequilibrium statistical mechanics. It seeks to establish a systematic method for deriving

evolution equations for a chosen set of observables by applying a statistical model reduction

procedure determined by the underlying microdynamics. The fundamental idea is to choose

a parametric family of distributions and force the evolution to remain in this family. Then

we quantify the failure of this evolution to follow the true evolution with an information

theoretic residual. We achieve a set of reduced equations by minimizing this residual over

the entire time path of the evolution. The resulting equations are completely determined

and there are no adjustable parameters.

In the following chapter, we will apply the general optimal closure to the point vortex

idealization of the Euler equation and ultimately derive a nonequilibrium statistical theory
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that extends the equilibrium theory described in the previous chapter. In this mean-field

context, we will find that the optimal closure results in an information theoretic residual

on the Euler equation itself that quantifies the failure of our chosen parametric vorticity

distribution to follow the true distribution. A unique path for the macroscopic evolution is

determined by minimizing this residual. Again, these evolution equations are determined

completely and uniquely by the optimal closure theory without resorting to adjustable

parameters.

In what follows, it is assumed that the reader is familiar with the theory of Hamiltonian

systems. Both [43] and [54] have brief summaries of the theory.

4.1 Liouville Equation and the Closure Problem

Consider a Hamiltonian system with canonical positions q = (q1, . . . , qN ) and canonical

momenta p = (p1, . . . , pN ) and Hamiltonian H. We denote phase space by ΛN and a point

in phase space by z = (q,p). The system evolves according to the equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , N (4.1)

where ẋ = dx
dt .

For this system, we are interested in predicting the evolution of m observables A(z) =

(A1(z), A2(z), . . . , Am(z)) where (most of the time) m << N . These are called the resolved

variables. For any observable F , Hamiltonian theory tells us that

dF

dt
= {F,H}

where {F,H} denotes the Poisson bracket

{F,H} =

N∑
i=1

∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂F

∂qi
.

Obviously, computing this for our resolved variables A requires (except in special circum-

stances) the exact integration of the system (4.1). For large N , this can be quite computa-
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tionally expensive. As a result, we turn to a statistical description of the evolution of our

resolved variables. Because Hamiltonian systems for large N are almost always chaotic, we

may assume some sort of ergodicity and therefore expect that a statistical description will

be a good approximation of the actual evolution.

Say we have a density ρ(z, t) which gives the probability that the system is in state z at

time t. The evolution of this probability density on phase space, is given by the Liouville

equation [54]

∂tρ+ {ρ,H} = 0. (4.2)

It is convenient here to introduce the differential operators

T = ∂t, L = {·, H}

In this notation, the Liouville equation is given by

(T + L)ρ = 0

and we may formally write solutions of (4.2) as

ρ(·, t) = e−(t−t0)Lρ(·, t0).

The Liouville equation is equivalently stated in the following way: for any time inde-

pendent observable F (z), the time evolution of the mean is given by

d

dt
〈F |ρ〉 = 〈{F,H} |ρ〉 (4.3)

where 〈F |ρ〉 denotes the expectation of F with respect to the density ρ and is given by

〈F |ρ〉 =

∫
ΛN

F (z)ρ(z, t)dz.
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To see this equivalence, we compute

d

dt
〈F |ρ〉 =

d

dt

∫
ΛN

F (z)ρ(z, t)dz

=

∫
ΛN

F (z)∂tρ(z, t)dz.

Then upon using the Liouville equation and the integration by parts identity

∫
ΛN

A{B,C}dz = −
∫

ΛN

{A,C}Bdz,

we find that

d

dt
〈F |ρ〉 = −

∫
ΛN

F {ρ,H} dz

=

∫
ΛN

{F,H} ρdz

as desired.

The obvious way to compute the time evolution of the resolved vector is to compute

the evolution of the density ρ using (4.2) and taking the appropriate average. However, it

is extremely expensive to compute the evolution of ρ under the Liouville equation. Fur-

thermore, assuming all we care about is the evolution of our mean resolved variables, this

carries much more information forward then is required.

This suggests our goal should be the following: Write a system of differential equations

for the time evolution of the mean resolved variables a = 〈A|ρ〉 in terms of only these

resolved variables. That is, we seek equations of the form

da

dt
= f(a, t). (4.4)

This is, of course, the closure problem. It is in general quite difficult.
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4.2 Liouville Residual

A standard approach to this is kinetic theory [64] in which the microscopic dynamics are used

to construct a hierarchy of reduced distribution functions where the single point distribution

is dependent on the two point distribution and so on. (An example of this method is

discussed in slightly more detail in the introductory remarks of the next chapter.) This

hierarchy in full is equivalent to the Liouville equation and so closure may only be achieved

with some additional assumption. This assumption must be justified for each separate

application.

We will achieve closure in a wholly new manner. Our first step is to impose a constraint

upon the evolution of the density. Instead of the exact evolution ρ(z, t), we force the evolu-

tion to remain within a parametric family of distributions ρ̃(z, λ) where λ = (λ1, λ2, . . . , λm).

We call this family of distributions the trial density. In this light, our approach resembles

galerkin spectral or finite element methods where the solution of a differential equation is

constrained to lay within a family by truncation of an infinite series. Of course, unlike these

numerical methods, there is no guarantee that the true evolution may be recovered in some

suitable infinite limit.

We choose the distribution family so that A is a sufficient statistic for the parameter

vector λ [11, 61]. This means that for any sample, the statistic A contains all the information

for the parameter λ. We further assume that the family is regular so that the score variables

U(λ) =
∂ log ρ̃

∂λ

are defined and that the Fisher information matrix

C(λ) =
〈
U(λ)U(λ)T |ρ̃

〉
is nonsingular [11, 61]. These assumptions guarantee that there is a one-to-one correspon-

dence between the mean resolved vector a and the parameter vector λ.

We now want to choose a path λ(t) through parameter space so that 〈A|ρ̃(λ(t))〉 approx-

imates 〈A|ρ(t)〉. To get the best approximation, we want to match the true evolution as
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closely as possible. That is we want to minimize the distance between the true distribution

ρ(z, t) and the approximate distribution ρ̃(z, t) is some suitable sense. A natural choice for

a distance measure here is provided by the relative entropy or Kullback-Leibler divergence

[17] which is given by

DKL(ρ||ρ̃) =

∫
ΛN

ρ log
ρ

ρ̃
dz. (4.5)

This is not a true distance in the sense that it is not a metric, however, it is nonnegative

and zero if and only if ρ = ρ̃. In statistics, the relative entropy arises as the expectation of

the likelihood ratio and can be interpreted as a measure of the inefficiency of assuming the

distribution ρ̃ when the true distribution is ρ.

As given, the computation of the relative entropy requires the true density ρ. We get

around this difficulty in the following way: Assume that at some moment of time t the true

density ρ and the trial density ρ̃ agree and consider the true evolution and trial density

evolution through some small time ∆t. The true evolution follows the Liouville equation

and is given by

ρ(·, t+ ∆t) = e−∆tLρ(·, t). (4.6)

whereas the trial density evolution is given by

ρ̃(·, t+ ∆t) = e∆tTρ(·, t). (4.7)

The relative entropy between these two at time t+ ∆t is given by

DKL(ρ||ρ̃) =

∫
ΛN

e−∆tLρ · (log e−∆tLρ− log e∆tTρ)dz

Using the fact that any function of ρ is also a solution of the Liouville equation we have

DKL(ρ||ρ̃) =

∫
ΛN

e−∆tLρ · (e−∆tL − e∆tT ) log ρdz

Then since L is an anti-Hermitian operator, we find that

DKL(ρ||ρ̃) =
〈
e∆tL(e−∆tL − e∆tT ) log ρ|ρ

〉
=
〈

(I − e∆t(T+L)) log ρ|ρ
〉
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If we compute the Taylor expansion of the operator e∆t(T+L) we have

e∆t(T+L) = I + ∆t(T + L) +
∆t2

2
(T + L)2 +O(∆t3) (4.8)

so that

DKL(ρ||ρ̃) =
〈

(I − e∆t(T+L)) log ρ|ρ
〉

= −
〈(

∆t(T + L) +
∆t2

2
(T + L)2

)
log ρ|ρ

〉
+O(∆t3). (4.9)

This motivates the definition of the Liouville residual:

R = (∂t + L) log ρ̃. (4.10)

From the definition, we see that the true distribution ρ has zero residual because it satisfies

the Liouville equation. For a general distribution, this is nonzero so that it measures the

lack of fit of the true evolution. This is even more apparent since the definition implies

R =
1

ρ̃
(∂t + L)ρ̃. (4.11)

In this perspective, we can view the Liouville residual as a normalized lack of fit of the true

dynamics.

We now note several additional properties of R. First, consider a time-dependent ob-

servable F = F (z, t). Then using (4.11) and the fact that

∫
ΛN

F · Lρ dz = −
∫

ΛN

LF · ρ dz,
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we get

d

dt
〈F |ρ̃〉 = 〈∂tF |ρ̃〉+

∫
ΛN

F · ∂tρ̃ dz

= 〈∂tF |ρ̃〉+

∫
ΛN

F · (−Lρ̃+ ρ̃R)dz

= 〈∂tF |ρ̃〉+ 〈LF |ρ̃〉+ 〈FR|ρ̃〉

Therefore, we have

d

dt
〈F |ρ̃〉 − 〈LF |ρ̃〉 = 〈∂tF + FR|ρ̃〉 . (4.12)

If F is time independent and we compare (4.12) to (4.3), we see that the extra term is the

covariance of F and R with respect to the trial density ρ̃. We may interpret this term as

quantifying the failure of the evolution of F under ρ̃ to follow the Liouville equation.

Second, taking F = 1 in (4.12) gives us

〈R|ρ̃〉 = 0. (4.13)

Similarly, taking F = R in (4.12) gives us

〈(∂t + L)R|ρ̃〉 = −
〈
R2|ρ̃

〉
. (4.14)

Using (4.10), (4.13) and (4.14) in (4.9) results in

DKL(ρ||ρ̃) = −∆t 〈R|ρ̃〉+
∆t2

2

〈
R2|ρ̃

〉
+O(∆t3)

=
∆t2

2

〈
R2|ρ̃

〉
+O(∆t3). (4.15)

This tells us that for a small time step ∆t, the error in assuming ρ̃(t+∆t) instead of ρ(t+∆t)

is determined to leading order by the variance of the Liouville residual with respect to the

trial density.

The procedure used to derive the Liouville residual is analogous to the computation

of the local truncation error of a numerical method. However, instead of expanding the

absolute error and looking at the leading order term, we have expanded the relative entropy.
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What results is an information theoretic version of local truncation error. In this light, the

Liouville residual measures the information lost by forcing the evolution to remain a member

of the family of trial densities.

4.3 Closure

Having forced the evolution to remain in the parametrized family ρ̃ and found a suitable

measure of the lack of fit in the Liouville residual, we now look to form our closed equations.

The above discussion of the Liouville residual suggests that we select the path λ(t)

through the parameterized family ρ̃ which minimizes the quantity

∫ τ

0

〈
R2|ρ̃(λ(t))

〉
dt

where τ is some chosen end time.

In order to solve this problem, we first introduce the Lagrangian

L(λ, λ̇) =
1

2

〈
R2|ρ̃(λ)

〉
(4.16)

where λ̇ = dλ/dt. Note that the only time dependence of ρ̃ (and therefore of R) is through

the parameter path λ(t). Therefore we can consider L to be a function of λ and λ̇ only.

Before looking to solve the minimization problem, it is helpful to decompose the La-

grangian into resolved and unresolved components. Using the operator

PλF =
〈
FU(λ)T |ρ̃

〉
C(λ)−1U(λ),

which projects any element F of the Hilbert space L2(ΛN , ρ̃(λ)) onto the subspace spanned

by the score functions, and the complementary projection operator Qλ = I − Pλ, we can

write the Lagrangian as

L(λ, λ̇) =
1

2

〈
(PλR)2|ρ̃(λ)

〉
+

1

2

〈
(QλR)2|ρ̃(λ)

〉
, (4.17)

where the first term represents the resolved components and the second the unresolved.
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Using the fact that

〈[L log ρ̃(λ)]U(λ)|ρ̃(λ)〉 =

∫
ΛN

{ρ̃(λ), H}U(λ)dz

= −
∫

ΛN

{U(λ), H} ρ̃(λ)dz

= −〈LU(λ)|ρ̃(λ)〉 ,

we find that

PλR = [λ̇− C(λ)−1f(λ)]TU(λ), (4.18)

QλR = QλL log ρ̃(λ). (4.19)

Plugging these two into (4.17), the Lagrangian becomes

L(λ, λ̇) =
1

2
[λ̇− C(λ)−1f(λ)]TC(λ)[λ̇− C(λ)−1f(λ)] + d(λ) (4.20)

where

d(λ) =
1

2

〈
(QλL log ρ̃(λ))2|ρ̃(λ)

〉
.

Tracing the terms in (4.20) back to (4.17) tells us that the first term is the projection of

the Liouville residual onto the score functions and are, therefore, related to the resolved

vector A. The second term, d(λ), arose from the projection of the Liouville residual by

the operator Q onto the unresolved variables. Hence, (4.20) is the decomposition of the

Liouville residual into resolved and unresolved components.

We now want to solve the variational problem

min
λ(0)=λ0

∫ τ

0
L(λ, λ̇)dt.

At this point, several theories provide us with possible paths to a solution. In particular,

we could use the calculus of variations and the Euler-Lagrange equations or the Pontryagin

maximum principle [34]. However, these methods lead to less (obviously) useful results

than the theory of dynamic programming. This theory is based on the Hamilton-Jacobi-
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Bellman equation [21, 34]. Both calculus of variations and the maximum principle provide

the same theoretical result but, through the use of Hamiliton-Jacobi theory, we will be able

to write our closed equations explicitly and obtain a particularly elegant interpretation of

the resulting equations.

Our first step down the dynamic programming path is to define the value function

v(λ0, τ) = min
λ(0)=λ0

∫ τ

0
L(λ, λ̇)dt, (4.21)

where we have fixed the initial value λ(0) = λ0 and the time horizon τ and the endpoint

λ(τ) is free to take any value. However, for the general value function u, defined to be the

minimal cost for some cost functional, the Hamilton-Jacobi-Bellman equation is given by

∂u

∂t
+H

(
λ,
∂u

∂λ

)
= 0, t ∈ (0, τ), (4.22)

u(τ) = g(λ), (4.23)

where H is the Legendre transform of the kernel of the cost functional. This is a terminal-

value problem, that is, the value function is specified at the end time.

To fit our problem into dynamic programming theory, we need to reformulate our cost

functional to change the initial value problem to a terminal value problem. In order to do

this, we introduce the reversed time s = τ − t. Written in this variable, our value function

now has the form

v(λ0, τ) = min
λ(τ)=λ0

∫ τ

0
L
(
λ,−dλ

ds

)
ds

which, according to dynamic programming theory, solves the time-dependent Hamilton-

Jacobi equation

∂v

∂s
−H

(
λ,−∂v

∂λ

)
= 0, s ∈ (0, τ), (4.24)

v(λ, τ) = 0, (4.25)
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where H is again the Legendre transform of L given by

H(λ, ν) = −dλ
ds

T

ν − L
(
λ,−dλ

ds

)
. (4.26)

We have introduced a negative on the first term to account for the time reversal. The

conjugate variable ν is given by the partial derivative of L with respect to dλ/ds. We can

compute this explicitly from (4.20) after adjusting for the time reversal to find that

ν = −C(λ)
dλ

ds
− f(λ), (4.27)

where C(λ) is the Fisher information matrix and

f(λ) = 〈LU(λ)|ρ̃〉 .

Reformulating this in the forward time variable t = τ−s, we find that the value function

must satisfy the Hamilton-Jacobi equation

∂v

∂t
+H

(
λ,−∂v

∂λ

)
= 0, t ∈ (0, τ) (4.28a)

v(λ, 0) = 0 (4.28b)

and the conjugate variable ν is given by

ν = C(λ)λ̇− f(λ). (4.29)

Furthermore, we know that the optimal path ν̂(t) along an optimal path λ̂(t) is given

by the relation

ν̂ = −∂v
∂λ

(λ̂, t). (4.30)

Combining (4.29) and (4.30) gives us the desired closure

C(λ̂)
dλ̂

dt
= f(λ̂)− ∂v

∂λ
(λ̂, t). (4.31)
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Moreover, according to the theory of viscosity solutions for the Hamilton-Jacobi equation

[21], the value function is the unique viscosity solution of (4.28). It follows that the opti-

mal trajectory λ̂(t) and, therefore, the resulting closed equations (4.31) are complete and

uniquely determined.

From the definition of f(λ), it is apparent that this term captures how the resolved

vector, through the score variables, evolves directly according to the Liouville equation.

Indeed, if we neglect the term with the value function in our closure equations, we get a

system that resembles (4.3) and is time reversible. It follows that the value function is

responsible for the irreversible nature of the reduced equations. Equivalently, the value

function is responsible for entropy production of our system.

With this in mind, it is enlightening to return to look at the Hamiltonian corresponding

to the decomposed Lagrangian given by (4.20) as well as the resulting Hamilton-Jacobi

equation. Taking the Legendre transform of (4.20) gives us the Hamiltonian

H(λ, ν) =
1

2
νTC(λ)−1ν + f(λ)TC(λ)−1ν − d(λ).

Substituting this into (4.28) reveals that the function d(λ) is a forcing function that drives

the value function v(λ, t) away from zero. Equivalently, if d(λ) = 0, then in light of the

initial condition (4.28b), the solution of (4.28) is the trivial solution v(λ, t) = 0.

Returning to the decomposition (4.20), we see that the funciton d(λ) arose from the

unresolved component of the Liouville residual as it is the mean square of (4.19). Therefore,

all irreversible effects in the closure are the result of the unresolved component of the

Liouville residual. Recalling that our Lagrangian is a local truncation error version of

the relative entropy, we see that this irreversibility is an information loss or an entropy

production and so is completely analogous to the irreversibility of thermodynamics and

equilibrium statistical mechanics.

4.4 Near Equilibrium Formulation

In general, computing the value function is quite difficult even numerically. This is simplified

greatly if we are near an equilibrium. In this case, the Hamilton-Jacobi equation (4.28)
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reduces to a Riccati differential equation and the resulting closure is a linear system.

To see this, assume that λ = 0 corresponds to an equilibrium state given by ρeq, then

the near equilibrium assumption corresponds to |λ| being small. In this regime, we expect

the quasi-equilibrium densities

ρ̃ = exp{λTA− µ(λ)}ρeq, (4.32)

where

µ(λ) = log
〈
exp{λTA}|ρeq

〉
, (4.33)

to be a good approximation of the real density ρ. This family of densities minimizes the

relative entropy DKL(ρ||ρeq) under the constraint a = 〈A|ρ〉. Using this family of trial

densities, the score variables are given by the resolved vector A and the Liouville residual

is given by R = λ̇TA + λTLA.

Expanding about the equilibrium, our Lagrangian becomes

L(λ, λ̇) =
1

2
λ̇TCλ̇+ λTJλ̇+

1

2
λTKλ (4.34)

where

C = C(0) =
〈
AAT |ρeq

〉
,

J =
∂f

∂λ
(0) =

〈
(LA)AT |ρeq

〉
,

K =
〈
(LA)(LA)T |ρeq

〉
.

From the definitions, we see that C and K are Gram matrices and, hence, symmetric and

positive definite. J is anti-symmetric because L is an anti-Hermitian operator. Employing

the form (4.20), we can write

L(λ, λ̇) =
1

2
[λ̇− C−1Jλ]TC[λ̇− C−1Jλ] +

1

2
λTDλ, (4.35)

where D =
〈
Qλ(LA)Qλ(LA)T

〉
. In terms of the above matrices, D is given by D = K +
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JC−1J . Again from the definition, we see that D must be symmetric positive-semidefinite.

The Legendre transform of the Lagrangian then gives us the Hamiltonian

H(λ, ν) = max
λ̇∈Rm

λ̇T ν − L(λ, λ̇)

=
1

2
νTC−1ν − λTJC−1ν +

1

2
λTDλ (4.36)

and explicitly computing the above maximum gives us the relation

ν =
∂L
∂λ̇

= Cλ̇− Jλ. (4.37)

Since the Lagrangian (4.35) is a quadratic form, the value function which solves (4.28)

must also be a quadratic form. Furthermore, it must satisfy the conditions

v(λ, 0) = 0, (4.38)

v(0, t) = 0. (4.39)

The first from the initial conditions and the second from the fact that λ = 0 is an equilibrium

value. Combining (4.39) and (4.28) gives us the additional condition

∂v

∂λ
(0, t) = 0 (4.40)

As v is a quadratic form that satisfies conditions (4.39) and (4.40), we find that it must

have the form

v(λ, t) =
1

2
λTM(t)λ, (4.41)

where M(t) must satisfy the matrix Riccati initial value problem

dM

dt
+MC−1M + JC−1M −MC−1J = D, M(0) = 0. (4.42)

The Hamilton-Jacobi equation (4.28) reduces to equation (4.42) after substituting the value

function given by (4.41) and the initial condition is the result of condition (4.38). Along
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optimal paths, the relation (4.30) reduces to

ν̂ = −Mλ.

To achieve closure, we combine this with (4.37) to get

Cλ̇ = (J −M(t))λ. (4.43)

We see that in the near equilibrium regime, the optimal closure reduces to a linear system of

equations. Furthermore, comparing this to (4.31), we see that J corresponds to the action

of the Liouville operator L on the resolved vector A and is reversible. The M component

arises from the value function and is driven by the resolved variables interacting with the

unresolved variables and is irreversible. Therefore our linear system appears as the sum

of reversible and irreversible components. Additionally, we have reduced the solution of

the full Hamilton-Jacobi equation (4.28) to the solution of the matrix Riccati differential

equation (4.42). This has the advantage of being much more computationally tractable.

However, we pay the price of being restricted to near an equilibrium state.

As an alternative method to achieve the above closure, we may approach the problem

using optimal control theory. To this end, we introduce the “control” variable ν = Cλ̇−Jλ

so that λ̇ = C−1ν + C−1Jλ. Then our Lagrangian given by (4.35) can be written in the

form

L(λ, ν) =
1

2
λTDλ+

1

2
νTC−1ν,

which is simply the linear quadratic regulator problem from control theory [34]. It follows

that the value function is given by the quadratic form

v(λ, t) =
1

2
λTM(t)λ, (4.44)

where M is the matrix determined by the Riccati differential equation

dM

dt
+MC−1M + JC−1M −MC−1J = D, M(0) = 0, (4.45)
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and the optimal control is given by ν̂(t) = −M(t)λ which combines with the definition of ν

to give the closure

Cλ̇ = (J −M(t))λ.

This perspective produces exactly the same result as the Hamilton-Jacobi theory given

previously but allows us another interpretation. Here the ν̂ represents the optimal input to

the reduced equations and relation ν̂ = −Mλ is the linear state feedback so that the matrix

M dictates the optimal response ν̂ to the state λ.

Either way, we have a system that completely determines the path λ(t) so that we can

form the trial density ρ̃(λ(t)) and compute a(t) = 〈A|ρ̃(λ(t))〉.

Our near equilibrium assumption also provides a useful short cut. Since ρ̃ is given by

(4.32), we have

a(t) =
〈
AAT |ρeq

〉
· λ+O(|λ|2) = Cλ+O(|λ|2).

Therefore, the evolution of the mean resolved vector is given by the system

ȧ = (J −M(t))λ, a = Cλ. (4.46)

In this form, there is no need to form the trial densities. For a given value of λ, we can

use the given equation to step a forward in time. Then using the relation a = Cλ, we can

compute the corresponding value of λ. We can repeat this process as necessary.

We now look to quantify the entropy production rate of the closure in the near equilib-

rium regime. If we assume that the equilibrium density ρeq is given by a Gibbs distribution

then (4.32) takes the form

ρ̃ = exp{λTA− βH − µ(λ,E)}

where E = 〈H|ρ̃〉 is the fixed mean energy and

µ(λ,E) = log

∫
ΛN

exp{λTA− βH}dz.
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Then the entropy function is the negative of the Legendre transform of µ and is given by

s(E, a) = −λTa + βE + µ(λ,E),

and we have the resulting identity

∂s

∂a
= −λ.

From here we may compute the entropy production along the optimal path given by the

closure. From the chain rule, we have

dŝ

dt
=
dŝ

dâ
· dâ
dt
.

Upon using the near equilibrium closure, we find that

dŝ

dt
= −λT (J −M)λ = λ̂TMλ̂ = 2v(λ̂, t) (4.47)

where we have used the fact that λTJλ = 0 for any antisymmetric matrix J and real vector

λ and we have recognized the value function given by (4.44). Since M is semi-positive

definite, this proves that the closure has nonnegative entropy production. Indeed, as the

value function is positive away from the lines t = 0 and λ = 0, we find that the rate of

change of entropy is necessarily positive away from the initial time and equilibrium.

It should be noted that the positive entropy production is not unique to the near equi-

librium optimal closure. In the general case using the trial densities (4.32), it can by shown

that

dŝ

dt
≥ v(λ̂, t) ≥ 0

provided that the value function is convex [55].

In the following two chapters, we will combine the equilibrium statistical mechanics of

point vortices and this near equilibrium formulation of the closure to study nonequilibrium

point vortex systems and the dynamical process of symmetrizing of coherent vortex struc-

tures. In doing so, we find that in an appropriate mean-field limit, the closure reduces to

an information theoretic residual on the Euler equation itself.
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CHAPTER 5

NONEQUILIBRIUM STATISTICAL MECHANICS OF POINT VORTEX

SYSTEMS

Nonequilibrium statistical mechanics attempts to predict the evolution of the “coarse-

grained” smooth vorticity profile when not at equilibrium. There has been relatively little

work on this problem in the context of point vortices.

In [38], Marmanis uses the standard technique of constructing the BBGKY (Bogolubov,

Born, Green, Kirkwood and Yvon) hierarchy from the Liouville equation to model the

evolution of a cloud of N identical positive and N identical negative point vortices. In

this technique, reduced distribution functions are computed from the full distribution by

integrating over many of the variables. For instance, if the full distribution is given by

DNN , then the reduced distribution function for m positive and n negative point vortices

Fmn is given by

Fmn = Am+n

∫
DNN

N∏
i=m+1

dqidpi

2N∏
j=N+n+1

dqjdpj

where A is the area that encloses all the point vortices. Many of the interesting physical

quantities such as the average velocity, average vorticity field and the interaction energy

can be written in terms of these reduced distribution functions. The equations governing

the evolution of these reduced distribution functions is derived from the Liouville equation

describing the evolution of DNN .

However, the closure problem appears again. The evolution equation for Fmn requires

knowledge of F(m+1)n and Fm(n+1). This dependence on higher order reduced distribution

functions stops only when m = n = N at which point the evolution equation is equiv-

alent to the Liouville equation. To achieve closure an additional assumption is needed.

Marmanis uses the “vortex-dipole-chaos” assumption. This states that “colliding dipoles
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come from different regions of space and have met in their past history different dipoles”.

Mathematically, it can be stated as

F22(x1,x2,xN+1,xN+2) = F11(x1,xN+1)F11(x2,xN+2).

This assumption is similar to the closure assumption used by Lundgren and Pointin [43].

Newton argues this approach is overly restrictive since the dipole is not a stable structure

in a cloud of vortices [43].

Chavanis also makes use of the BBGKY methodology to derive a kinetic equation for

N like signed vortex cloud [14]. To achieve closure, Chavanis argues that the nth order

reduced distribution function Fn scales like 1/Nn−1 and points out that this requires either

the initial condition to have no correlation or to respect this scaling. This assumption is

then used to derive a kinetic equation that is valid to order 1/N . However, in the mean-field

limit, this kinetic equation reduces back to the Euler equation.

In an earlier work [13], Chavanis advocated another approach—the maximum entropy

production principle . This principle states that nonequilibrium evolution should follow

the path which produces the maximum amount of entropy. This approach produces an

additional diffusive term in the Euler equation with an unknown diffusive coefficient. The

coefficient cannot be determined from the maximum entropy production principle. In the

case of point vortices, he uses linear response theory to compute the diffusion coefficient

from the systematic drift before arriving at a Fokker-Planck type equation which is the

aforementioned Euler equation with an additional diffusive term.

The previously outlined optimal closure procedure provides us with an alternative ap-

proach. In particular, in this section we will use the general theory described in the last

chapter and apply it to a system of like signed (positive) point vortices to derive our own

nonequilibrium theory. We will develop a time dependent version of the mean-field system

(3.7) that describes the evolution of the desired variables. Our approach will produce an

information theoretic residual on the Euler equation that quantifies the failure of the trial

distribution to describe the evolution of the true the coarse grained continuum distribution.

Closure is then obtained by minimizing this residual. Just as in the general case, closure is
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achieved completely by the theory with no adjustable parameters.

5.1 Mean-Field Formulation

As a starting point, we again consider a cloud of N identical point vortices of strength

γ = 1/N so that Γ = 1. We take as the trial density

ρ̃N (x1, . . . ,xN ) = exp{NλT Ã− 2NβHN −NαL2
N −Nµ} (5.1)

where Ã is the resolved vector, HN is the Hamiltonian (2.15),

L2
N =

1

N

N∑
i=1

|xi|2

and the normalizing constant µ is given by

µ =
1

N
log

(∫
R2N

exp
[
NλT Ã− 2NβHN −NαL2

N

]
dx1 . . . dxN

)
.

We now rewrite the trial density in a form similar to the meanfield equations (3.7). To

do this, we assume that the resolved vector can be written in the form

Ã(x1, . . . ,xN ) =
1

N

N∑
i=1

A(xi).

This assumption on the resolved vector amounts to not introducing any additional depen-

dence between the phase space variables. Physically, we can look at this as the point vortices

interacting only through the stream function. Other than this assumption, we leave the re-

solved vector as general functions so that we may choose appropriate quantities of interest

later. For example, if we were interested in a “coarse graining” of the shape of the vortex

cloud, we may choose to track the spatial moments.

Using the definition of the Hamiltonian, we see that we can decompose it into the sum
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of stream functions. In particularly, we have

HN =
N∑
i=1

1

2N
ψNi (5.2)

where

ψNi (x, t) = − 1

2π

∑
j 6=i

log |x− xj(t)|. (5.3)

We can now rewrite the trial density in the form

ρ̃N (x1, . . . ,xN ) =

N∏
i=1

exp
[
λTAi − βψNi − αr2

i − µ
]

(5.4)

where r2
i = |xi|2 and Ai = A(xi).

The idea is that we force the position of each point vortex to take the probability

distribution of a quasi-equilibrium form where β and α take values so that the Hamiltonian

(2.15) and the angular impulse (2.17) are conserved.

Before continuing, we can simplify the calculations by noting that the angular impulse

may be treated as another element of the resolved vector A. From here, until otherwise

noted, we assume that the resolved vector carries the angular impulse with it.

We cannot do the same with the stream function term since it is time dependent. Indeed,

this time dependence will turn out to be extremely important in our calculations and is a

departure from the general theory described last chapter.

For this choice of trial density, we compute the Liouville residual

R = (∂t +
{
·, HN

}
)

(
N∑
i=1

λTAi − βψNi − µ

)

=

N∑
i=1

λ̇T (Ai − ai)− β̇(ψNi −
〈
ψNi |ρ̃

〉
)− β∂t(ψNi −

〈
ψNi |ρ̃

〉
)

+ λT
{
Ai, H

N
}
− β

{
ψNi , H

N
}
, (5.5)

where HN is given by (2.15) with γi = γ and ai = 〈Ai|ρ̃〉.
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We can simplify this equation by noting several things. First, using (5.2) we find that

β

{
N∑
i=1

ψNi , H
N

}
= 2βN{HN , HN} = 0. (5.6)

Second, since qi =
√
γxi and pi =

√
γyi, the chain rule tells us

∂F

∂qi
=

1
√
γ

∂F

∂xi
,

∂F

∂pi
=

1
√
γ

∂F

∂yi
.

Combining this with the definition of the stream function and Hamilton’s equations, we

find that

∂HN

∂qi
=
√
γ · ∂ψ

N
i

∂xi
,

∂HN

∂pi
=
√
γ · ∂ψ

N
i

∂yi
.

Therefore we can write {
F,HN

}
=

N∑
j=1

[F,ψNj ](xj ,yj), (5.7)

where we have used the notation

[F,B](xj ,yj) =
∂F

∂xj

∂B

∂yj
− ∂F

∂yj

∂B

∂xj
.

Using (5.6) and (5.7) in (5.5) and the fact that Ai is a function of xi only, the equation for

R reduces to

R =
N∑
i=1

(
λ̇T (Ai − ai)− β̇(ψNi −

〈
ψNi |ρ̃

〉
)− β∂t(ψNi −

〈
ψNi |ρ̃

〉
) + λT [Ai, ψ

N
i ](xi,yi)

)
.

We now seek to reduce this equation for the Liouville residual to a continuous mean-field

form. To do this, we assume that ζN → ζ weakly as N → ∞. From this, it results that

ψNi → ψ where ψ is related to ζ by

−∆ψ = ζ = ρ,

and ψ ∼ − log |x|/2π as |x| → ∞. The proof of this fact is given in Appendix A. Therefore,
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for N large, we have ψNi ≈ ψ and
〈
ψNi |ρ̃

〉
≈ 2E. It follows that

R = N(λ̇T (A− a)− β̇(ψ − 2E) + λT [A, ψ]− β∂tψ),

where all spatial functions are now functions of x ∈ R2. We also rescale the parameters λ

and β to account for the N dependence. That is, we replace βN by β and λN by λ. This

is the standard scaling in point-vortex statistical mechanics. Therefore, we have

R = λ̇T (A− a)− β̇(ψ − 2E) + λT [A, ψ]− β∂tψ. (5.8)

Since we do not have the true stream function ψ, we replace it by ψ̃ the stream function

associated with the mean-field trial density ρ̃. These two functions are determined by the

nonlinear system, after detaching the angular impulse function from the resolved vector,

ρ̃(x) = ζ̃(x) = exp
{
λTA(x)− βψ̃(x)− αr2 − µ

}
, (5.9a)

−∆ψ̃ = ζ̃, (5.9b)∫
R2

ψ̃ · ζ̃ dx = 2E, (5.9c)∫
R2

|x|2ζ̃ dx = L2, (5.9d)∫
R2

ρ̃ dx = 1, (5.9e)

where r2 = |x|2 and E and L2 are the energy and angular impulse of the initial distribution.

Similarly, replacing ψ with ψ̃ in the Liouville residual and again explicitly writing the

angular impulse, gives us the mean-field formulation of the Liouville residual

R = λ̇T (A− a)− β̇(ψ̃ − 2E)− α̇(r2 − L2) + [λTA− αr2, ψ̃]− β∂tψ̃. (5.10)

Recalling that ρ̃ = ζ̃, we see that we can write this mean-field version of the Liouville

residual as

R =
(
∂t +

[
·, ψ̃
])

log ρ̃ =
(
∂t +

[
·, ψ̃
])

log ζ̃. (5.11)

In this light, we can interpret the Liouville residual as an information theoretic residual
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on the Euler equations instead of the Liouville equation. Our optimal closure theory now

takes the form of prescribing a family of vorticity distributions and asking that it evolves in

a manner that is most consistent with the Euler equations while restricted to this family.

From this perspective, we have done away with the point vortices. However, the point

vortex idealization has given us the vehicle to derive the appropriate residual on the Euler

equations.

5.2 Near-Equilibrium Formulation

We now assume that we are close to a known statistical equilibrium state corresponding

to λ = 0 so that |λ| is small. This assumption has several consequences. First, it allows

us to use the near-equilibrium formulation of the optimal closure. This allows us to easily

solve the Hamilton-Jacobi equation associated with the optimization problem and compute

the value function. In the general case, this is extremely difficult. Second, the mean-field

formulation of our trial density is implicit. For a given value of λ, we need to solve the

system (5.9). In what follows, we will see that the near-equilibrium assumption allows us

to write our trial densities explicitly to first order.

To simplify the notation, we will adopt a couple of conventions. First, all averages,

unless specifically noted otherwise, are now taken with respect to the equilibrium density

ρeq and denoted by 〈·〉. Second, the equilibrium average of the resolved vector is taken to

be zero. This can easily be accomplished for any observable by replacing A with A− a.

We also remind the reader that by taking the total circulation Γ = 1, that the trial

vorticity distribution is equal to the trial density, that is,

ρ̃ = ζ̃.

As a result, we use the two interchangeably and choose one over the other depending on

the context.
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5.2.1 Explicit Trial Density

We can regard the trial density as a perturbation away from the equilibrium being driven

by λ. From this perspective, the nonzero λ value forces the values of α, β and µ away from

the equilibrium values. Therefore, we set α = αeq−α′, β = βeq−β′ and µ = µeq +µ′ where

the eq subscript indicates the equilibrium value and all prime values are O(λ). Furthermore

we can expand ψ̃ as

ψ̃ = ψeq + ψ′ +O(λ2).

Then the trial density (5.9a) can be expanded as

ρ̃ = exp{λTA + α′r2 + β′ψeq − βeqψ′ − µ′ − αeqr2 − βeqψeq − µeq}+O(λ2)

= exp{λTA + α′r2 + β′ψeq − βeqψ′ − µ′}ρeq +O(λ2)

= (1 + λTA + α′r2 + β′ψeq − βeqψ′ − µ′)ρeq +O(λ2).

This means that we can write the perturbation vorticity distribution as

ζ ′ = (λTA + α′r2 + β′ψeq − βeqψ′ − µ′)ζeq. (5.12)

Now, ζ ′ depends linearly on ψ′, as opposed to exponentially. Of course, to be able to

explicitly write ρ̃, up to first order, we still need values for β′, α′ and µ′ as well as an

expression for ψ′ that does not involve ζ ′.

To accomplish this goal, we look to the energy constraint (5.9c), the angular impulse

constraint (5.9d) and the probability or circulation constraint (5.9e). The probability con-

straint is most easily addressed, so we start with it.

Expanding ρ̃ in (5.9e) gives us

∫
R2

ρeq + ρ′ dx +O(λ2) = 1.

Since
∫
R2 ρeqdx = 1, we conclude, using expression (5.12) and dropping higher order terms,
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that ∫
R2

µ′ρeqdx =

∫
R2

(λTA + α′r2 + β′ψeq − βeqψ′)ρeqdx (5.13)

Using once more that
∫
R2 ρeqdx = 1 as well as〈ψeq〉 = 2E,

〈
r2
〉

= L2 and a = 0, we can

reduce this to an explicit expression for µ′

µ′ = α′L2 + β′ · 2E − βeq
〈
ψ′
〉
. (5.14)

Having found this expression for µ′, we now derive a linear system for the coefficients β′

and α′. Expanding ζ̃ in (5.9d), using the fact that ζeq satisfies the constraint and neglecting

higher order terms gives us ∫
R2

r2ζ ′ dx = 0. (5.15)

Similarly, expanding ζ̃ and ψ̃ in (5.9c), using 〈ψeq〉 = 2E and neglecting higher order terms,

gives us ∫
R2

ψeqζ
′ + ψ′ζeqdx = 0. (5.16)

Green’s second identity allows us to write

∫
R2

ψeqζ
′dx =

∫
R2

ψ′ζeqdx,

so that we find ζ ′ must satisfy ∫
R2

ψeqζ
′dx = 0, (5.17)

and ψ′ must satisfy ∫
R2

ψ′ζeqdx = 0. (5.18)

Note that (5.18) is equivalently stated as 〈ψ′〉 = 0. We can therefore neglect the βeq term

in (5.14).

Because Poisson’s equation is linear, we also know that ψ′ is related to ζ ′ by

−∆ψ′ = ζ ′. (5.19)
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Replacing ζ ′ in (5.19), using (5.12) and eliminating µ′ using (5.14), we get

−∆ψ′ = [λTA + α′(r2 − L2) + β′(ψeq − 2E)− βeqψ′]ζeq.

Upon rearranging, we find that ψ′ satisfies the linear partial differential equation

(−∆ + βeqζeq)ψ
′ = [λTA + α′(r2 − L2) + β′(ψeq − 2E)]ζeq. (5.20)

Because the equilibrium stream function satisfies the condition ψeq ∼ − log |x|/2π as |x| →

∞, the far-field condition on ψ′ is that ψ′ → 0 as |x| → ∞. Now if we let Geq denote the

appropriate inversion operator, we can write

ψ′ = λTGeq[Aζeq] + α′ ·Geq[(r2 − L2)ζeq] + β′ ·Geq[(ψeq − 2E)ζeq]. (5.21)

As a direct consequence of this, we have the equations

∂ψ′

∂λi
= Geq[Aiζeq],

∂ψ′

∂α′
= Geq[(r

2 − L2)ζeq],
∂ψ′

∂β′
= Geq[(ψeq − 2E)ζeq]. (5.22)

Note that ψ′ is given by (5.21) without any dependence on ζ ′. Therefore we can find ψ′

provided that λ, β′ and α′ are known. Furthermore, the only dependence on t in (5.21) is in

the coefficients λ, α′ and β′. It follows that we can easily build ψ′ by computing the terms

given in (5.22), all of which may be done once after finding the appropriate equilibrium

distribution, and then multiplying by the appropriate coefficients.

It remains to determine α′ and β′ in terms of λ. To do this, we substitute (5.21) and

(5.14) into (5.12) to get

ζ ′ = (λTP [A] + α′P [r2] + β′P [ψeq])ζeq, (5.23)

where we have used the notation

P [F ] = F − 〈F 〉 − βeqGeq[(F − 〈F 〉)ζeq] = F − 〈F 〉 − βeqGeq[(F − 〈F 〉)ρeq].

52



Substituting (5.23) into (5.15) and rearranging gives us

−β′
∫
r2P [ψeq]ρeqdx− α′

∫
r2P [r2]ρeqdx = λT

∫
r2P [A]ρeqdx. (5.24)

Similarly, substitution of (5.23) into (5.17) gives us the equation

−β′
∫
ψeqP [ψeq]ρeqdx− α′

∫
ψeqP [r2]ρeqdx = λT

∫
ψeqP [A]ρeqdx. (5.25)

Combining equations (5.24) and (5.25) results in a linear system of equations for α′ and

β′ in terms of the observable coefficients λ

D1

β′
α′

 = D2λ, (5.26)

where

D1 = −

Cov (ψeq, P [ψeq]) Cov
(
ψeq, P [r2]

)
Cov

(
r2, P [ψeq]

)
Cov

(
r2, P [r2]

)
 , D2 =

Cov
(
ψeq, P [AT ]

)
Cov

(
r2, P [AT ]

)
 .

Assuming that the matrix D1 is nonsingular, we may write α′ and β′ as

α′ =
m∑
i=1

αiλi, β′ =
m∑
i=1

βiλi, (5.27)

where αi and βi are the appropriate entries of the matrix D−1
1 D2. These matrices are time

independent so that the computation of the αi and βi coefficients only needs to be done

once. We also remark that this implies

αi =
∂α′

∂λi
, βi =

∂β′

∂λi
. (5.28)

Returning to equation (5.21) and substituting (5.27) for α′ and β′, we get the equation

ψ′ =

m∑
i=1

λiGeq[(Ai + αi(r
2 − L2) + βi(ψeq − 2E))ρeq] (5.29)
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so that we have reduced ψ′ to a function of λ alone. It is natural to define the quantity

ψi = Geq[(Ai + αi(r
2 − L2) + βi(ψeq − 2E))ζeq] (5.30)

so we may write (5.29) as

ψ′ =

m∑
i=1

ψiλi.

We have now achieved our goal of writing our trial densities explicitly. For a given λ, we

can compute α′ and β′ using (5.27) and ψ′ using (5.29). From these we may form ζ ′ from

(5.12). Adding this to the equilibrium distribution ζeq gives us our trial density to leading

order.

5.2.2 Liouville Residual and Closure

Now that we have an explicit form for the trial density, we seek to determine the corre-

sponding form of the Liouville residual and formulate the closed equations.

Recall that for the mean-field trial density

ρ̃ = exp{λTA− βψ̃ − αr2 − µ},

the Liouville residual is given by

R = λ̇TA− β̇(ψ̃ − 2E)− α̇(r2 − L2)− β∂tψ̃ + λT [A, ψ̃]− α[r2, ψ̃].

Making use again of the expansions α = αeq − α′, β = βeq − β′, µ = µeq + µ′ and

ψ̃ = ψeq + ψ′ +O(λ2),

we find that the leading order term of the Liouville residual is given by

R = λ̇TA + α̇′(r2 − L2) + β̇′(ψeq − 2E)− βeq∂tψ′ + λT [A, ψeq]− αeq[r2, ψ′]. (5.31)
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The chain rule tells us that

∂tψ
′ =

m∑
i=1

λ̇i

(
∂ψ′

∂λi
+
∂ψ′

∂β′
∂β′

∂λi
+
∂ψ′

∂α′
∂α′

∂λi

)
.

These partial derivatives are given by equations (5.22) and (5.28) so that we can write

∂tψ
′ =

m∑
i=1

λ̇iGeq[(Ai + αi(r
2 − L2) + βi(ψeq − 2E))ρeq] (5.32)

=

m∑
i=1

λ̇iψi, (5.33)

where we have recognized the definition of ψi given by equation (5.30). Indeed, the above

equation is just the time derivative of equation (5.29). This is not surprising as the only

time dependency in (5.29) is in the coefficient vector λ. Furthermore, equation (5.28) also

implies that

α̇′ =
m∑
i=1

λ̇iαi, β̇′ =
m∑
i=1

λ̇iβi.

Substituting our equations for ∂tψ
′ and ψ′ into the Liouville residual and expanding the

vector multiplication, gives us, to leading order,

R =

m∑
i=1

λ̇i
(
Ai + αi(r

2 − L2) + βi(ψeq − 2E)− βeqψi
)

+ λi
(
[Ai, ψeq]− αeq[r2, ψi]

)
(5.34)

If we define the vectors U and V by

Ui = Ai + αi(r
2 − L2) + βi(ψeq − 2E)− βeqψi, (5.35)

Vi = [Ai, ψeq]− αeq[r2, ψi], (5.36)

we can compactly write the Liouville residual as

R = λ̇TU + λTV. (5.37)

This is a Liouville residual that respects the circulation, angular impulse and energy con-

straints to leading order.
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Squaring and taking the expectation gives us

〈
R2
〉

= λ̇T
〈
UUT

〉
λ̇+ λT

〈
VUT

〉
λ̇+ λT

〈
VVT

〉
λ.

Comparing this with (4.34), we are lead to define the matrices

C =
〈
UUT

〉
, J =

〈
VUT

〉
, K =

〈
VVT

〉
. (5.38)

It is clear that we can now use the near-equilibrium closure as described previously: the

optimal path λ̂(t) satisfies the linear system

λ̇ = C−1(J −M(t))λ

where C and J are given above and M(t) is given by the initial value problem

Ṁ +MC−1M + JC−1M −MC−1J = D, M(0) = 0,

where D = K + JC−1J . Finally, the average of the resolved vector is given by

a(t) =
〈
A|ρ̃(λ̂(t))

〉
= Cλ̂(t).
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CHAPTER 6

SYMMETRIZATION OF POINT VORTEX DISTRIBUTION

A major development in high Reynolds number fluid dynamics was McWilliams discovery of

the emergence of isolated persistent vortices from a disorderly initial vorticity distribution

[40]. This discovery stood in stark contrast to the cascade theory of turbulence in which

vorticity patches were ripped apart until they were small enough that they would dissipate

due to the fluid viscosity. McWilliams argued that the vorticity extrema of sufficient mag-

nitude resisted the strain deformations due to neighboring vorticity structures which lead

to turbulent cascade. These extrema would continue to accumulate circulation and grow in

size. In long time, this results in the isolated coherent vortices which then dominated the

dynamics.

McWilliams noted two types of interactions in this long time regime: Pairwise interac-

tions and relaxation towards axisymmetry. The pairwise interaction is the most common

and occurs when the vortices are separated by distances significantly larger than the vortex

size. Here the isolated patches appear as point vortices to one another and advect each

other as described by (2.14). The relaxation toward axisymmetry occurred after a close

approach by another vorticity concentration. In this close encounter, one of two things

would happen. Either the vortices would strain and distort one another away from the

normal axisymmetric state or the two vortices would merge (this requires the two patches

to be of the same sign). In the latter case one of the two vortices, usually the weaker one, is

ripped apart and the remaining vortex absorbs some of its circulation while the rest is lost

to the turbulent cascade. Once the two vortices are far apart again or the merging process

is complete, we see the relaxation back toward an axisymmetric state.

We will apply the closure theory developed in the preceding chapter to study this axisym-
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metrization process. Apart from being a phenomena generally of interest in two-dimensional

turbulence theory, it is well positioned for us to study with the optimal closure for a couple

of reasons. First, the axisymmetric states are precisely those described by the equilibrium

statistical mechanics of point vortices as described in chapter 3. This means that we will be

able to use the near equilibrium formulation of the optimal closure and so avoid computing

solutions of the Hamilton-Jacobi equation. Second, we will be able to elegantly describe the

problem with only two resolved quantities—the second spatial moments of the cloud. As

a conclusion in studying the problem, we also predict how the rate of symmetrization de-

pends on the inverse temperature of the final equilibrium state. Since there is a one-to-one

correspondence of β and the energy, this is equivalent to the dependence of the energy.

6.1 Observables

As has been stated, we want to look at the rate of radial symmetrization of a point vor-

tex distribution. A natural way to characterize the asymmetry is to consider the spatial

moments. The first moments are given precisely by the center of vorticity and always lie

at the origin. Therefore we consider the second moments x2, xy and y2. These moments

completely determine an elliptical vorticity patch and form a natural “first-order” approx-

imation of the radial asymmetry.

We will not use the second moments in the standard form though. Since r2 = x2 + y2 is

radially symmetric and a conserved quantity, it makes sense to choose the simple observables

A1(x) = x2 − y2, A2(x) = 2xy. (6.1)

This form of the three second moments has the benefit of being orthogonal with respect to

any radially symmetric distribution such as the equilibrium vorticity.

We call (somewhat arbitrarily) A1 the orientation and A2 the ellipticity. The reasoning

for this is that 〈A2〉 looks like (twice) a covariance and so measures how compressed the

cloud is along the line y = x. Given this measurement, the only other degree of freedom

is the rotation of the ellipse, or the orientation. These names are arbitrary since in polar

coordinates A1 = r2 cos(2θ) and A2 = r2 sin(2θ) and so the two observables differ only by
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Figure 6.1: Plot of ellipticity for various number of runs. All runs consisted of 1000 point
vortices drawn from a bivariate normal random variable with unit x and y variance and
covariance of 0.2. The right plot shows the same data but is zoomed in on time t = 200
to t = 500. During this time range, the cloud can be said to be in equilibrium so the right
hand plot shows the deviations from equilibrium for a given number of runs. These give
a rough estimate of the sampling error incurred by using a finite number of runs. This
magnitude of error should be understood to be present throughout the entire time interval
and not just at equilibrium.

a rotation of π/2.

6.2 Results

We regard the truth as the mean of many numerical simulations of the system (2.14). We

call this ensemble direct numerical simulations (EDNS). Specifically, we took N = 1000 and

γ = 10−3. Recall also that we fixed the angular impulse at L2 = 2.0. To integrate this

system, we use the standard 4th order Runge-Kutta scheme with a step-size of ∆t = 10−2.

This step size was chosen so that the change in the conserved quantities was not significant

(generally < 10−6 although single runs occasionally violated this) through simulation time

t = 500. The initial point vortex positions were generated randomly from some appropriate

distribution. The details of the distribution are discussed on a case by case basis. For

this reason, the initial conditions given are not the precise initial conditions of the direct

numerics.

There are also sampling error effects in the EDNS curves. Because the curves are a

sample mean approximation of the true expected value, the given curve is not the exact

evolution of the initial distribution but an approximation. From a (frequentist) statistics
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point of view, each curve is an estimator of the true evolution and has an interval associated

with it in which the actual evolution lies with some chosen probability. The size of the

interval depends on the number of samples, or runs in our case, and the chosen probability

with the interval decreasing in magnitude as the number of samples increases and increasing

in magnitude as we choose larger probabilities. At equilibrium, the true curve would never

deviate from the equilibrium value. Therefore, the magnitude of fluctuations around the

equilibrium value gives a rough estimate of the magnitude of the sampling error incurred

by using a finite sample size. Figure 6.1 depicts the evolution of the ellipticity for several

different numbers of runs and particularly focuses on the long times when the observable

can be said to be in equilibrium. Based on these curves and the amount of wall clock

time required to run the system (especially in the single-layer case where it is necessary to

compute a modified Bessel function of the second kind), we deemed 60 ensemble runs to

have sufficiently small sampling error.

In addition to the time plots, we look at several error quantities. The classic relative

error is given by

erel =
maxt |atruth(t)− apred(t)|

maxt |atruth(t)|
.

In the context of classical numerical methods, this is an adequate measure of error. Given

the drastic model reduction we have undertaken, it is not realistic to expect this error to be

small in the normal sense. Indeed, the closure consistently has a higher frequency (rotates

more quickly) than the EDNS so that the best runs have relative error of roughly 10%.

Because exactly predicting the correct curve is not our main goal, we also look at a

different error quantity. We define peak error as the difference between the corresponding

first peaks. That is, if we denote the first local extrema in the domain t > 0 by ptruth for

the EDNS value and ppred for the closure, then the peak error is given by

epeak = |ptruth − ppred|.
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Figure 6.2: EDNS compared to the optimal closure for case 1. The initial values are a1 = 0.0
(orientation) and a2 = 0.4 (ellipticity). The first and second and even the third peaks are
captured well by the closure. We see good agreement on how long it takes to equilibrate.

The relative peak error is given by

erelpeak =
|ptruth − ppred|
|ptruth|

.

This is a good measure of error if we are primarily interested in predicting the magnitude

of departures from equilibrium. Specifically, perhaps we are interested in how a deviation

from equilibrium in one quantity drives a deviation from equilibrium in another quantity.

For example, we could view our current problem as a deviation in the ellipticity driving

a deviation in the orientation and our goal is to predict the magnitude of the latter. In

this context, the relative peak error is a very good measure of the predictive power of the

closure.

Observable Init Cond Abs Peak Err Rel Peak Err Max Abs Err Rel Err

a1 0.0 8.98389e-04 2.42757e-03 7.93252e-02 2.14348e-01
a2 0.4 3.42847e-03 1.24019e-02 7.36481e-02 1.77998e-01

a1 0.0 2.98681e-02 4.14740e-02 8.19773e-02 1.13831e-01
a2 0.8 5.71151e-02 1.10310e-01 8.36808e-02 1.03865e-01

a1 0.0 1.11250e-01 1.04882e-01 1.89100e-01 1.78276e-01
a2 1.2 1.73228e-01 2.48632e-01 2.45297e-01 2.03629e-01

Table 6.1: Absolute and relative errors of the closure compared to EDNS for the Euler
equation. Peak error is the difference between the first extreme values occurring after t = 0.
In the first two cases the peak error is considerably better than the relative error. This is
the result in the closure result rotating faster than the EDNS.
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Figure 6.3: EDNS compared to the optimal closure for case 2. The initial values are a1 = 0.0
and a2 = 0.8. The closure captures the first two peaks well. It predicts a third peak that
is not present in the EDNS. In fact, the behavior of the EDNS around t = 200 (where the
closure predicts the third peak) begins to show nonlinear behavior. The equilibration time
is still roughly the same.

Figures 6.2, 6.3 and 6.4 compare the numerical simulation (blue) and the optimal closure

prediction (green) for three different initial conditions: a2 = 0.4, a2 = 0.8 and a2 = 1.2

with a1 = 0.0 in all cases. These were generated using a bivariate normal random variable

with unit x and y variance and covariance 0.2, 0.4 and 0.6, respectively. Table 6.1 gives the

discussed error quantities for these cases. Figures 6.5, 6.6 and 6.7 depict the evolution of a

single vortex ensemble up to simulation time 250 at intervals of 50 time units. Overlaid on

each frame is the contour plot of the optimal trial density.

In terms of the relative error, the second case with initial conditions a1(0) = 0.0 and

a2(0) = 0.40 generates the best results (roughly 90% accuracy for both observables). While

the relative error of the first and third cases are comparable, we see from the plots that in

the first case, the error is a result of phase difference—the optimal closure rotates faster than

in actuality. Whereas in the third case, we start to see a failure to capture the magnitude

of the peak. This failure is expressed in the relative peak error. About 1% in case 1 versus

25% in case 3. Furthermore, there appears to be a significant nonlinear behavior around

t = 150 immediately before the observables settle into their equilibrium values. By nonlinear

behavior, we mean a behavior that cannot be captured by our linear reduced model.

Looking at the vortex ensemble and closure contour plots in figure 6.7 suggests what is

happening. As the ellipticity of the initial vortex cloud is increased, we see the evolution of
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Figure 6.4: EDNS compared to the optimal closure for case 3. The initial values are a1 = 0.0
and a2 = 1.2. We start to see the closure fail to adequately capture the first peak and we
see significant nonlinear behavior in the vortex ensemble average in the ellipticity graph
(right) around time t = 125 and in the orientation graph (left) around time t = 150. The
predicted equilibration time is shorter than the EDNS.

the ensemble form arms stretching out from the core. The larger the initial ellipticity values,

the further these arms cut into the core of the vortex cloud. This results in nearly zero

vorticity where the closure predicts nonzero vorticity. Note in figure 6.7 in the simulation

time 100 panel, the significant white space in the upper left and, to a lesser extent, the

lower right inside of the outer most contour. This is a behavior we cannot capture with our

choice of observables and, hence, with our reduced model.

The value of the peak error, the nonlinear behavior of the observables and the unpre-

dicted bare patches are all failures of our model to predict the true behavior. There are a

couple obvious possible causes. First, there is a significant unresolved variable that should

be included in the model to attempt to capture the nonlinear behavior and the bare patches.

This amounts to an error in observable choice—we are not watching all of the appropriate

quantities. Second, it is possible that there is a significant nonlinear interaction between

either the resolved variables themselves or the resolved and the unresolved variables. Since

our near-equilibrium assumption means that we treat all these relationships linearly, we

cannot hope to capture this interaction. Stated simply, our near-equilibrium assumption

may be false.

Whatever the cause, this failure occurs between case 2 and case 3. For these two cases,

the initial magnitude (in the two norm) of λ is approximately 0.145 and 0.167 so we can
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Figure 6.5: Contour plot of the closure density overlaying the evolution of a vortex ensemble
for case 1 of the Euler equation. The initial condition are a1 = 0.0 and a2 = 0.4. The
simulation times are at the top of each graphic. Note the contours and the cloud match up
well. The closure has largely symmetrized by time t = 200. Outside of the contours we see
that some of the point vortices do not appear equilibrated even in the last panel. There is
some suggestion of arm structures reaching out of the core.
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Figure 6.6: Contour plot of the closure density overlaying the evolution of a vortex ensemble
for case 2 of the Euler equation. The initial conditions are a1 = 0.0 and a2 = 0.8. The
simulation times are at the top of each graphic. We see that the contours and the core of
the vortex patch line up well. The last four panels show the formation and lengthening of
the spiral arms. In this case, these arms do not reach the core of the cloud. We can also
see that they are formed from a small fraction of the total vorticity.
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Figure 6.7: Contour plot of the closure density overlaying the evolution of a vortex ensemble
for case 3 of the Euler equation. The initial condition are a1 = 0.0 and a2 = 1.2. The
simulation times are at the top of each graphic. We see the formation of the arms earlier
than case 2 (see figure 6.6) and they are starting to reach the core of the cloud. This is
most apparent in the middle-left panel where there are noticeable blank spots in side the
outermost contour. We can still clearly see the arms in the last frame.
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say our model is good up to roughly |λ| = 0.15.

As mentioned, we could attempt to improve our model by including more observables—

most obviously higher spatial moments. However, we start to run into some problems. The

first has to do with the nature of our point vortex system. Many of these fringe vortices do

not equilibrate. Specifically, we see that the spiral arms persist for quite awhile. This was

not a problem for the second moments which are dominated by the behavior of the vortex

cloud core. However, the higher moments weight the fringe vortices more heavily since they

are further from the center of vorticity at the origin. Indeed, simulations suggest that the

fourth moments take a very long time to reach equilibrium (simulation times great than

2000) if they ever do reach equilibrium.

The second problem has to do with our model. The only radial function that is conserved

by the point vortex system is the angular impulse. It is tedious but not difficult to show

that {f(r), HN} = 0 if and only if f(r) = r2. This is not the case with our model. Consider

the definition of Vi given by (5.36) where Ai is a purely radial function. Since [f, g] = 0 for

any two radially symmetric functions, we see that the first term of Vi vanishes. Looking at

(5.30), and again taking Ai to be a radial function, we see that ψi is also a radial function

so that Vi = 0 for any radial function. From the definition of the matrices K, J and D it

follows that

Kij = Kji = Jij = Jji = Dij = Dji = 0, j = 1, . . . ,m.

Using the Riccati differential equation for M then tells us that, for any j,

Ṁij =

m∑
k=1

m∑
`=1

MikC
−1
k` (J`j −M`j).

Since M(0) = 0, it follows that Ṁij(0) = 0 and so Mij(t) = 0 for any j. Therefore, our

model does not equilibrate any purely radial function. This fact causes problems when

trying to include the fourth (or higher) moments as observables.

Despite these failings, our model does have some notable highlights. First, we have

greatly reduced the complexity of the system. Our original point vortex cloud was a 2000

dimensional system and our model reduced it a simple two-dimensional system. Second,
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our model, including the irreversible component, is derived directly from the dynamics

of point vortices without resorting to any adjustable parameters. Third, our model is

truly predictive. This stands in stark contrast to linear response theory which requires the

computation of autocorrelation functions which in turn requires direct numerical simulation

of the full model. Fourth, our closure procedure has a built in quantity to evaluate its

performance provided by the value function. Intuitively, the larger the value function for a

given model, the worse the performance. In the near equilibrium regime, actually computing

the value function is a minimal amount of extra work. The value function is given by λTMλ

and we have to compute M to propagate the mean resolved vector.

6.3 Equilibration Rate Dependence on Inverse Temperature

We look to predict the dependence of the equilibration rate on the parameter β. Since there

is a one-to-one correspondence between the energy level and β, we can also view this as

how the relaxation rate depends on the energy. We first need to find a sensible measure of

this rate as given by the closure.

We start by looking at how the matrices C and K simplify for our choice of observables.

First note that both A1 and A2 are orthogonal to the radial functions r2 and ψeq with

respect to ρeq. Next note that the operator Geq and the equilibrium distribution ρeq are

purely radial functions. Finally, writing the observables in polar coordinates, we have

A2(r, θ) = A1(r, θ + π/4) which is again just the realization that the two observables are

the same after a phase shift.

Combining these facts results three things. First, provided that D1 is nonsingular, we

have α1 = α2 = β1 = β2 = 0. In turn, this means that U reduces to

Ui = Ai − βeqψi.

Second, that ψ1 and ψ2 also differ by only a phase shift. In polar coordinate, we have

ψ2(r, θ) = ψ1(r, θ + π/4). Third, we have

〈A1ψ2〉 = 〈A2ψ1〉 = 0.
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The proofs of each of these simply follow from writing the necessary convolution with

the Green’s function in polar coordinates and using the polar forms of the observables to

reduce the integrals to the desired result. As such, they are tedious and uninformative and

so have been omitted.

We now use the above results to simplify the matrices C and K. In particular, we have

the following 〈
U2

1

〉
=
〈
U2

2

〉
,

〈
V 2

1

〉
=
〈
V 2

2

〉
, 〈U1U2〉 = 〈V1V2〉 = 0

It follows that C, C−1 and K are diagonal matrices with equal entries. Since both these

matrices are diagonal and J is antisymmetric, we find that D must also be a diagonal matrix

with equal nonzero entries. To summarize, we have the following

C−1 =

c 0

0 c

 , K =

κ 0

0 κ

 , J =

0 −σ

σ 0

 , D =

d 0

0 d

 .

where

c =
〈
U2

1

〉
=
〈
U2

2

〉
, σ = −〈V1U2〉 = 〈V2U1〉 , κ =

〈
V 2

1

〉
=
〈
V 2

2

〉
.

and Ui and Vi are given by (5.35) and (5.36), respectively, and the resolved vector A is

given by (6.1).

For these matrices, it is not difficult to show that the matrix

M(t) =

m(t) 0

0 m(t)


is a solution of the Riccati equation (4.42) provided m(t) is a solution of the initial value

problem

ṁ = d− cm2, m(0) = 0.

Since the solution to (4.42) is unique, we know that M is a diagonal matrix with equal

nonzero entries. Furthermore, we know that M(t) converges to a stationary solution as

t → ∞. (This is a result from Ricatti equation theory [34] but can also be seen from the

above initial value problem for m.) From this, it follows that m(t) goes to the solution of
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the stationary equation

0 = κ− σ2c− cm2

where we have used the definition of D to compute d = κ−σ2c. Solving for m we find that

m =

√
κ− cσ2

c
. (6.2)

We have discarded the negative root because M is positive definite. This is the longtime

(repeated) eigenvalue of M .

This eigenvalue, in fact, determines the rate at which the closures relaxes back to equi-

librium. The relative entropy (4.5) again gives us a suitable measure for how far our trial

distribution is from equilibrium. Note that we can write the near-equilibrium trial density

as

ρ̃ = exp{λTU− φ(λ)}ρeq,

where

φ(λ) = log

(∫
R2

exp{λTU}ρeq dx
)

so that we are exactly enforcing the probability constraint (5.9e). From the definition of

the relative entropy, we find that

DKL(ρeq||ρ̃) = φ(λ).

Using the fact that λ is small and Taylor’s theorem we find that

φ(λ) = log

[∫
R2

(
1 + λTU +

1

2
λTUUTλ

)
ρeq dx +O(|λ|3)

]
=

1

2
λTCλ+O(|λ|3),

where we have used the fact that 〈U〉 = 0. Therefore,

DKL(ρeq||ρ̃) =
1

2
λTCλ (6.3)
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so that the leading order term of the relative entropy is related to the Fisher information

matrix.

Taking the time derivative of this we find that

d

dt
DKL(ρ̃||ρeq) = λTCC−1(J −M)λ

= −λTMλ

= −m|λ|2 (6.4)

where m = m(t) is the aforementioned repeated eigenvalue of the matrix M(t). Therefore,

the equilibration rate to leading order is given by the eigenvalue of the matrix M(t). To

reduce this to a single number, we use the longtime value of m.

Figure 6.8 plots the value m(5000) as we vary the value of the inverse temperature β. In

it we see the standard thermodynamic trend of increased equilibration rate as β decreases,

that is, as the “temperature” rises. This says that the equilibration rate rises as the vortex

cloud becomes more concentrated. In fact, our numerical results here suggest that the

equilibration rate goes to infinity as β approaches −8π, which is the smallest allowed value.

Since the equilibrium distribution becomes more and more concentrated as β decreases,

the distribution looks more and more like a point vortex with a small amount of vorticity

far from the center to satisfy the angular impulse constraint. It follows that for these β

values, the distribution creates larger shearing flow in the immediate area of the core. This

spreads out the outer vortices more quickly and so symmetrizes faster. Ultimately, in the

limit β → −8π, the distribution collapses completely to a point vortex and the relaxation

is “instantaneous”.

At the other extreme, as β →∞, the vorticity distribution becomes a uniform circular

patch whose radius is determined by the angular impulse constraint. In this case our

numerical results predict that the vorticity distribution does not symmetrize at all as the

equilibration rate drops to zero. The closure here is predicting that uniform vorticity patches

can persist under the Euler equation not simply as circular patches, which is required by

the equilibrium theory, but also as elliptical patches. This is a previously known classical

phenomena called a Kirchoff ellipse [43].
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Figure 6.8: Predicted equilibration rate as a function of β. The equilibration increases
as β decreases and goes to zero as β increases. In terms of the equilibrium distribution,
this means that vortex clouds symmetrize faster when the center is more concentrated and
symmetrize more slowly as the vortex cloud becomes more uniform. In the limit β → ∞,
the closure predicst the equilibration rate goes to zero, thus predicting the Kirchoff ellipse.
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CHAPTER 7

SINGLE-LAYER QUASIGEOSTROPHIC DYNAMICS

Much of the interest in two-dimensional turbulence and coherent vorticity structures is mo-

tivated by geophysical fluid dynamics [48]. In this particular subdivision of fluid dynamics,

the fluids (either the atmosphere or ocean) are extremely shallow when compared to hori-

zontal length scales. Furthermore, the rotation of planetary bodies tends to inhibit vertical

fluid flow. The combination of these two facts means that atmospheres and oceans may

be treated effectively as two-dimensional or with a minimal acknowledgement of vertical

variations (see chapter 9). Combine this with seemingly ubiquitous persistent geophysical

vorticity structures–Jupiter’s Great Red Spot [57], cyclones and anticyclones in the Earth’s

atmosphere and jets in the ocean such as the gulf stream [45]–and the reason for the interest

of the geophysical fluids community becomes apparent.

The quasigeostrophic equation is an important part of these studies [48]. It captures

the nearly geostrophic regime where planetary rotation dominates and filters out the “fast”

ageostrophic motions like inertia-gravity waves. Many of the large scale coherent vorticity

structures fall in this regime. The quasigeostrophic equation also brings to light the im-

portance of potential vorticity since the equation may be viewed as a direct consequence

of the conservation of potential vorticity. In the nearly geostrophic regime, the potential

vorticity distribution, just like vorticity for the two-dimensional Euler equation, completely

determines the dynamics.

In this chapter, we first reduce the equations for fluid flow on a rotating surface to

the rotating shallow-water equations. In doing so, we come across the important notion of

hydrostatic balance and the aforementioned key quantity potential vorticity. In the second

section, we derive the single-layer quasigeostrophic equation from the rotating shallow-water
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equation as well as discussing its relation to potential vorticity conservation. Then we intro-

duce another simplifying assumption called the rigid lid approximation which corresponds

to forcing the free surface of the fluid to remain flat. We end this section with a brief discus-

sion of the conserved quantities of the quasigeostrophic equation. For these two sections, we

drew the material from the excellent books by Salmon [48] and Vallis [60]. The final section

of the chapter covers the point vortex idealization in the context of the quasigeostrophic

equation as well as the resulting equilibrium statistical mechanics. We find that these both

greatly resemble the case of the two-dimensional Euler equation.

7.1 Rotating Shallow-Water Equations

The complete equations of motion of a rotating fluid on a planetary body are rarely used as

a model. The most general of the so-called primitive equations (which use shallowness in a

continuously stratified fluid layer) of practical use are the rotating shallow-water equations.

In what follows, we discuss the approximations needed to reduce the general rotating fluid

equations to the rotating shallow-water equations and and the conditions under which

these approximations are valid. To simplify the discussion, we will assume that the fluid

has constant density. In the language of geophysical fluids, we assume that the fluid is a

single homogeneous layer. We also introduce the potential vorticity which is a key conserved

quantity of the rotating shallow-water equations. The potential vorticity governs the large

scale behavior of the fluid and is a key step on our route to the quasigeostrophic equation.

7.1.1 Equations of a Rotating Fluid

Consider a constant density inviscid fluid on the surface of the Earth. (What follows actually

applies to any rotating spherical body but we will limit ourselves to the Earth for simplicity

of language.) For coordinates (x′, y′, z′), we fix the origin at the center of the Earth and

the z′-axis so it coincides with the axis of rotation. We fix the x′ and y′ axes so they form

a right-handed coordinate system with the z′ axis and we allow the coordinate frame to
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rotate with the Earth. In this system, the equations of motion of the fluid are

Dv

Dt
+ 2Ω× v =

1

ρ0
∇p−∇Φ, (7.1a)

∇ · v = 0, (7.1b)

where v is the fluid velocity field, D/Dt denotes the material derivative and is given by

D

Dt
= ∂t + v · ∇,

Ω is the Earth’s rotation vector, ρ0 is the fluid density, p is the pressure field and Φ is the

geopotential. The geopotential accounts for the centrifugal acceleration due to the rotation

of the Earth and gravitational forces. In this light, it can be written as

Φ = φ+ φc,

where φ is the gravitational potential of the Earth and φc is the “centrifugal” potential

given by

φc = −1

2
r2
⊥Ω2,

where r⊥ is the perpendicular distance to the Earth’s rotation axis. It follows that for the

position vector r, we have

∇φc = Ω× (Ω× r)

which is the centrifugal force, hence the name centrifugal potential. Comparing this to (2.1),

we see that these are the Euler equations modified to model a rotating fluid in a gravitational

field. The term Ω× v is an additional advective term due the rotating coordinate frame.

7.1.2 Derivation of Rotating Shallow-Water Equations

The system (7.1) is somewhat cumbersome to work with and most of the time is more exact-

ing than necessary. As a result, we seek to simplify these equations with some appropriate

approximations. The result will be the rotating shallow-water equations.
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Our first assumption is that we consider length scales on the surface of the Earth where

the curvature is not significant. Under this assumption, we can make a change of coordinates

to a system based on the plane tangent to some point on the Earth’s surface. We take this

point to be the origin and allow the coordinates to rotate with the Earth. We choose

the axes so that at the origin, the positive x-axis coincides with East, the positive y-axis

coincides with North and the z-axis coincides with the radial vector emanating from the

center of the Earth.

In these coordinates, we can assume a uniform gravitational field so that the gravita-

tional potential is given by φ = (0, 0,−gz). Taking v = (u, v, w) and Ω = (0,Ωh,Ωv), we

can write (7.1) as

Du

Dt
− 2Ωvv + 2Ωhw =

1

ρ0
∂xp, (7.2a)

Dv

Dt
+ 2Ωvu = − 1

ρ0
∂yp, (7.2b)

Dw

Dt
− 2Ωhu = − 1

ρ0
∂zp− g, (7.2c)

∇ · v = 0. (7.2d)

The “traditional approximation” neglects the horizontal component of the rotation vector,

that is, we set Ωh = 0. We will justify this assumption with a scaling argument later.

The remaining rotation vector term, f = 2Ωv, is called the Coriolis parameter. Our

scaling assumption allows us to simplify this term as well. Using Taylor’s theorem and

expanding f , we can write

f ≈ f0 + βy, (7.3)

where we have retained only the first two terms. This is called the beta-plane approximation.

It is important to note that this β is different than the inverse temperature β that was

introduced in chapter 3.

Sometimes even this approximation is more than required. In this case one can use the

f-plane approximation which keeps only the first term in the Taylor expansion, that is

f ≈ f0. (7.4)
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Applying the traditional approximation and the beta-plane approximation (or f -plane

approximation) to the system (7.2) gives us

Du

Dt
− fv = − 1

ρ0
∂xp, (7.5a)

Dv

Dt
+ fu = − 1

ρ0
∂yp, (7.5b)

Dw

Dt
= − 1

ρ0
∂zp− g, (7.5c)

∇ · v = 0. (7.5d)

We have left the term Coriolis parameter as the general value f but we will assume that it

is given by either (7.3) or (7.4).

We now assume that the vertical component of acceleration Dw/Dt is practically zero

and we can drop it in equation (7.5c) to get the relation

∂zp = −ρ0g. (7.6)

This is called hydrostatic balance, and physically, it says that the vertical variation in

pressure is due only to the weight of the fluid above. Because we have assumed the fluid

density is constant, we can say more. If we let the free surface of the fluid be given by

z = η(x, y, t), then integrating from the surface, where we assume that the pressure is zero,

to some point in the fluid, we find that (7.6) gives us

p(x, y, z, t) = gρ0(η(x, y, t)− z). (7.7)

Therefore the pressure gradient is independent of z and we conclude that the horizontal

flow is also independent of z—that is our fluid moves in columns.

If we are in a regime where hydrostatic balance is approximately satisfied, then we

may simplify our equations. So we want to establish under what condition we may neglect

the vertical component of acceleration so that equation (7.6) is a sound approximation of

(7.5c). This condition can be derived through scale analysis. Let U be the typical horizontal

flow, L the horizontal length scale, W the typical vertical flow and H the typical vertical
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length scale. We assume that the typical time scale is T = L/U . Under this scaling, the

incompressibility condition (7.5d) gives us the relation

W =
H

L
U.

This means that

Dw

Dt
∼ HU2

L2
,

where ∼ means scales like.

We now write the pressure as p = gρ0 · (η−z) +ρ0 · p̃, so that p̃ gives the nonhydrostatic

part of the pressure. Using this, equation (7.5c) reduces to

Dw

Dt
= − 1

ρ0
∂z[gρ0(η − z) + ρ0 · p̃]− g = −∂z p̃.

Therefore, we can regard p̃ as the pressure arising from the changing vertical velocity.

Substituting our expression for p, we can rewrite either horizontal flow equation, say (7.5a),

as

Du

Dt
− fv = −g∂xη − ∂xp̃.

Then, ignoring f , we have the scaling

∂xp̃ ∼
H

L
∂z p̃ ∼

H

L

Dw

Dt
∼ H2U2

L3
.

Since Du
Dt (or Dv

Dt ) scale like U2/L, we see that

∂xp̃
Du
Dt

∼ H2U2

L3
· U

2

L
=
H2

L2

and we conclude that the nonhydrostatic pressure p̃ is unimportant to the horizontal flow

when

H2/L2 << 1. (7.8)

Therefore, we may use the hydrostatic approximation when the fluid depth is small when

in comparison to the horizontal length scale, that is, when the fluid is shallow.
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We can also now justify our use of the traditional approximation. Since W << U as a

result of (7.8), we find that |Ωhw| << |Ωvv| so that this term can be dropped. This leaves

the Ωhu term which we must show does not prevent our neglect of the p̃ terms (recall that

this was the nonhydrostatic variations in the pressure). If

2Ωhu =
∂p̃

∂z
,

then

p̃ ∼ ΩUH

so that

∂xp̃ ∼
ΩUH

L
.

This is negligible compared to the remaining Coriolis term 2Ωvu, which scales like ΩU , if

H << L.

Assuming the shallowness condition (7.8) so that p is given by (7.7), equations (7.5a)

and (7.5b) can be compactly written as

Du

Dt
+ f × u = −g∇η, (7.9)

where we have introduced the two-dimensional horizontal velocity field u = (u, v, 0), the

two-dimensional gradient operator ∇ = (∂x, ∂y, 0) and the rotation vector f = (0, 0, f),

where f is given by the beta-plane or f -plane approximation of the Coriolis parameter.

We can also rewrite the incompressibility condition (7.5d). Rearranging terms gives us

∂w

∂z
= −∇ · u.

Let the bottom be given by z = −ηb(x, y). Then integrating from the top of the fluid to

the bottom and noting that the right hand side is independent of z, we get the relation

w(η)− w(−ηb) = −(η + ηb)∇ · u.
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Since the vertical velocity at the surface is the material derivative of the position and the

position is given by η, we have that w(η) = Dη
Dt . Similarly, at the bottom w(−ηb) = −Dηb

Dt .

Therefore, the above equation reduces to

D

Dt
(η + ηb) + (η + ηb)∇ · u = 0, (7.10)

which can also be written

∂(η + ηb)

∂t
+∇ · (u(η + ηb)) = 0. (7.11)

We can rewrite this equation more compactly, by defining h(x, y, t) = η(x, y, t)+ηb(x, y).

Then (7.9) together with (7.10) and rewriting in terms of h, give us the system of equations

Du

Dt
+ f × u = −g∇η, (7.12a)

Dh

Dt
+ h∇ · u = 0. (7.12b)

These are (at long last) the rotating shallow-water equations. They are a complete set of

equations in the three variables u(x, y, t), v(x, y, t) and η(x, y, t).

7.1.3 Potential Vorticity

We now define the potential vorticity and show it is conserved. We also examine the physical

meaning of potential vorticity conservation.

Define the relative vorticity ζ = ∇× u. Just as in the Euler equations, this is a vector

quantity but only the vertical component is nonzero so we may treat it as a scalar value (in

fact, the relative vorticity is the vorticity from the Euler equations). Taking the curl of the

momentum equation (7.12a), gives us

D

Dt
(ζ + f) + (ζ + f)(∇ · u) = 0. (7.13)

The quantity ζ + f is known as the absolute vorticity. Rearranging equation (7.12b), we
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have

∇ · u = −1

h

Dh

Dt
,

which upon plugging into (7.13) and multiplying by h3 gives us the equation

h D
Dt(ζ + f)− Dh

Dt (ζ + f)

h2
= 0.

Recognizing the quotient rule, we have the equation

D

Dt

(
ζ + f

h

)
= 0. (7.14)

The quantity (ζ + f)/h is called the potential vorticity and equation (7.14) is known as the

conservation of potential vorticity.

To understand the physical meaning of this equation, we consider an arbitrary volume

of fluid, and we follow its advection. Equation (7.14) tells us that the ratio (ζ + f)/h is

constant or (ζ+f) ∝ h. Therefore, if the absolute vorticity increases, the depth of the fluid

must also increase. Conversely, decreasing the vorticity causes a decrease in the height of

the free surface.

The conservation of potential vorticity can be viewed as the rotating shallow-water

equivalent of the conservation of vorticity in the Euler equations as expressed by equation

(2.4a). Just as vorticity conservation has major effects on two-dimensional turbulence,

potential vorticity conservation plays a profound role in rotating shallow-water dynamics.

We will see that it governs much of the large scale motion.

7.2 Quasigeostrophic Equation

We have seen that the shallow-water equations are the result of hydrostatic balance. We

will now see that when the Coriolis forces are greater in magnitude than the horizontal

acceleration terms, we get a new regime called geostrophic balance which allows us to

simplify the shallow-water equations even further. When we are close to this regime, as

expressed by the Rossby number, the result is the (single-layer) quasigeostrophic equation.
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7.2.1 Geostrophic Balance

Return momentarily to equations (7.5a) and (7.5b), which we recall here in vector form for

convenience,

∂tu + v · ∇u− f × u = − 1

ρ0
∇p.

Again, we let u ∼ U and (x, y) ∼ L. In this case then the advective term scales like U2/L

and the Coriolis term scales like fU . Taking the ratio of the advective term to the Coriolis

term results in the dimensionless ratio known as the Rossby number

Ro =
U

fL
. (7.15)

If the Rossby number is small, then the rotational term dominates the flow. If the Rossby

number is large, then the flow acceleration term dominates. Therefore, the Rossby number

expresses the importance of rotation.

We can also view the Rossby number as a comparison of time scales. Assume that the

characteristic time of the dynamics scales like T (so L/U = T ). Since f is an angular

velocity, Ti = 1/f defines a time scale, called the inertial timescale, where we have ignored

the factor of 2π. Then we can write the Rossby number as

Ro =
U

L
· 1

f
=

1

T
· Ti.

From this perspective, we see that short lived phenomenon (T << Ti) like cumulus clouds

or tornados will have a large Rossby number and will largely be unaffected by the rotation

of the Earth. (In particular, this means that the direction the water in the sink or the toilet

spins, contrary to popular belief, is in no way related to the spin of the Earth.) Phenomenon

with larger time scales (T >> Ti) have small Rossby numbers and are greatly influenced

by the Earth’s rotation. This includes phenomena like the jet stream.

We now examine the case when the Rossby number is identically zero so that the change

in the flow v is negligible when compared to the Coriolis forces. Alternatively, we can say

that the time scale on which the flow changes is infinite. In this case, the horizontal
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momentum equations (7.5a) and (7.5b) become the time-independent equations

−fv = − 1

ρ0
∂xp, (7.16a)

fu = − 1

ρ0
∂yp. (7.16b)

This is called geostrophic balance and we define the geostrophic flow field ug = (ug, vg, 0)

to be the flow that satisfies equations (7.16). In this stationary regime, the flow and surface

η are such that they balance the rotation of the Earth.

It is worth noting that in the near geostrophic regime, we can relax the shallow fluid

condition (7.8) and retain our hydrostatic approximation. The reason is that in this regime

our estimate of the scale of the vertical velocity was too great. Let H again denote the

characteristic depth of the fluid and let p = gρ0(η − z) + ρ0p̃. Then cross differentiating

(7.5a) and (7.5b) and subtracting tells us that

∇ · u =
1

f

D

Dt
(∇ · u).

It follows that the characteristic vertical velocity W scales not as HU/L but as

W ∼ H(∇ · u) ∼ H

f

D

Dt
(∇ · u) ∼ H

f
· U

2

L2
= Ro · HU

L

so our previous estimate was off by a factor of the Rossby number. Repeating our previous

analysis then tells us that

∇p̃
Du
Dt

∼ RoH
2

L2

so that our hydrostatic assumption is valid under the weaker condition

Ro
H2

L2
<< 1. (7.17)

7.2.2 Derivation of Single-Layer Quasigeostrophic Equations

We return now to the shallow-water equations and assume that we are nearly geostrophic—

that is, we assume that Ro is small. We use this assumption and a few geometric require-
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ments to derive the quasigeostrophic equation.

Explicitly using the beta approximation f = f0 + βy in equations (7.12) gives us

Du

Dt
+ (f0 + βy)k× u = −g∇η, (7.18a)

∂th+∇ · (hu) = 0, (7.18b)

where k is the vertical unit vector. Non-dimensionalizing (7.12) in this regime yields the

equations

Ro
Du

Dt
+ (1 + β′y)k× u = −∇η, (7.19a)

Ro[∂tη +∇ · (ηu)] +B∇ · [u(1− δ)] = 0, (7.19b)

where we have introduced the fractional bottom elevation

δ =
H − ηb(x, y)

H
,

the dimensionless parameter known as the Burger number

B =
gH

f2
0L

2
,

and the nondimensional version of β

β′ =
βL

f0
.

Furthermore, all variables and derivatives are now dimensionless and assumed to be of order

one.

Note that the Burger number is a comparison of length scales. If we write

B =
gH

f2
0

· 1

L2
,
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we are led to introduce the length scale quantity

Rd =

√
gH

f0

so that B = R2
d/L

2. The length scale Rd is called the external Rossby deformation radius

(often shortened to simply the deformation radius). The importance of the deformation

radius will be discussed later, after we have derived the single-layer quasigeostrophic equa-

tion.

In addition to our assumption that Ro << 1, we also assume that β′ << 1 (this is really

our assumption that we are working in small enough length scales that the curvature of the

Earth is not important), that δ << 1 (so the bottom does not have significant variations

from the typical depth H), that B is order one (so our typical length scale L is roughly the

same size as the deformation radius Rd) and finally that β′ and δ are of the same order as

Ro so that we can write β′ = β̂ ·Ro and δ = δ̂ ·Ro where β̂ and δ̂ are both order one.

We seek solutions of equations (7.19) as expansions in the Rossby number

u = u0 +Ro · u1 +Ro2 · u2 + . . . , (7.20a)

η = η0 +Ro · η1 +Ro2 · η2 + . . . . (7.20b)

Now we plug expansions (7.20) into the system (7.19) and equate orders of Ro. From the

momentum equation (7.19a), we get

O(1) : k× u0 = −∇η0, (7.21a)

O(Ro) : ∂tu0 + u0 · ∇u0 + β̂y(k× u0) + k× u1 = −∇η1, (7.21b)

and from the surface equation (7.19b), we get

O(1) : B∇ · u0 = 0, (7.22a)

O(Ro) : ∂tη0 + u0 · ∇η0 +B∇ · u1 −Bu0 · ∇δ̂ = 0. (7.22b)

Writing (7.21a) in component form and cross differentiating gives us the horizontal incom-
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pressibility condition

∇ · u0 = 0,

which is identical to (7.22a). This leaves us unable to determine the variables u0 and η0,

that is, the order one equations are not closed. Therefore, we must look to the first order

equations.

Taking the curl of (7.21b) and rearranging gives us

∂tζ0 + u0 · ∇(ζ0 + β̂y) = −∇ · u1

where ζ0 = ∇× u0. To eliminate the u1 term in the above, we solve (7.22b) for ∇ · u1 and

substitute to get

∂tζ0 + u0 · ∇(ζ0 + β̂y) =
1

B
(∂tη0 + u0 · ∇η0 −Bu0 · ∇δ̂).

Upon rearranging we have

∂t

(
ζ0 + β̂y − 1

B
η0 + δ̂

)
+ u0 · ∇

(
ζ0 + β̂y − 1

B
η0 + δ̂

)
= 0.

Just as with the Euler equations, we can use the incompressibility condition ∇ · u0 = 0 to

introduce a stream function ψ0 so that

u0 = ∇⊥ψ0 = (∂yψ0,−∂xψ0).

Combining this relation with the definition of ζ0, we get the relation

−∆ψ0 = ζ0.

We also note that (7.21a) implies that η0 = −ψ0. In geophysical fluid dynamics it is

standard to take the sign of the stream function so that η0 = ψ0. We have introduced the

negative to be consistent with our formulation of the Euler equations.
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Again, adopting the notation

[A,B] =
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x
,

we arrive at the equation

∂t

(
−∆ψ0 + β̂y +

1

B
ψ0 + δ̂

)
+

[
−∆ψ0 + β̂y +

1

B
ψ0 + δ̂, ψ0

]
= 0 (7.23)

or, equivalently, the system

∂tq0 + [q0, ψ0] = 0,

q0 = −∆ψ0 + β̂y +
1

B
ψ0 + δ̂.

Restoring the dimensions (or taking L and U to be unity) and dropping the subscripts,

we arrive at the single-layer quasigeostrophic equations

∂tq + [q, ψ] = 0, (7.24a)

q = −∆ψ + βy +
1

R2
d

ψ + f0δ, (7.24b)

where ψ = −(g/f0)η and Rd =
√
gH/f0 is, as previously introduced, the external Rossby

deformation radius.

If we use the f plane approximation, that is, we take β = 0, and consider the special

case of a flat bottom, that is, δ = 0, we get the equations

∂tq + [q, ψ] = 0, (7.25a)

−∆ψ +
1

R2
d

ψ = q. (7.25b)

Comparing this to the Euler equations given by (2.1), we see that the only difference is

the term in (7.25b) with the deformation radius. We will exploit this similarity to ap-

ply our previous theory, the point vortex idealization as well as both the equilibrium and

nonequilibrium statistical theories, with only minor modifications.
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7.2.3 Relation to Potential Vorticity

There is an important connection between potential vorticity and the quasigeostrophic

equation. To explore this connection, recall the potential vorticity

Q =
ζ + f

h

as well as our three assumptions that Ro << 1, βL/f0 << 1 and (h−H)/H << 1. Using

the third assumption, we have

Q =
ζ + f

H(1 + h−H
H )

≈ 1

H
· (ζ + f)

(
1− h−H

H

)
=

1

H
(ζ + f)

(
1− η

H
+ δ
)
,

where we have used the fact that

h−H
H

=
η + ηb −H

H
=

η

H
− δ.

Now since the Rossby number is small and β is small compared to f0, we know that we

are near geostrophic balance so that

fk× u ≈ f0k× u ≈ −g∇η.

It follows that ∇ · u ≈ 0 and that there is a stream function ψ such that

ψ = −gη
f0

and

−∆ψ = ζ.

Using the stream function in place of η in the above approximation of the potential vorticity
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and using the beta-plane approximation gives us

Q ≈ f0

H

(
1 +

βy

f0
− ∆ψ

f0

)(
1 +

f0ψ

gH
+ δ

)
≈ f0

H

(
1− ∆ψ

f0
+
βy

f0
+
f0ψ

gH
+ δ

)
.

We now recognize that

Q ≈ 1

H
q +

f0

H
,

where q is defined by (7.24b). Since Q is materially conserved, we have

D

Dt

(
q

H
+
f0

H

)
=

1

H

Dq

Dt
≈ DQ

Dt
= 0,

which simplifies to (7.24a). Therefore, we can view the single-layer quasigeostrophic equa-

tion as the result of the potential vorticity conservation of the rotating shallow-water equa-

tions.

7.2.4 Rigid-Lid Approximation

In order to gain insight into the physical meaning of the deformation radius and explore how

the single-layer quasigeostrophic equations relate to the Euler equations, we now consider

the case where the typical length scale L is much smaller than the deformation radius Rd.

This amounts to setting Rd to infinity.

Looking at quasigeostrophic vorticity (7.24b), we compare the magnitude of two terms

containing the stream function and find that

∆ψ ∼ ψ

L2
>>

ψ

R2
d

.

Since Rd << L, we may neglect the term ψ/R2
d to get the approximation

q ≈ −∆ψ + βy + f0δ.

Recalling from the derivation of the quasigeostrophic equations (or the discussion of the

89



relation to potential vorticity) that

1

R2
d

ψ =
f2

0

gH
ψ = −f0

H
η,

we see that the term with the deformation radius arises from the changes in the free surface

η. Therefore, the assumption of an infinite deformation radius is equivalent to assuming a

rigid or flat surface. In terms of our variables, we assume that η = 0 for all time. This is

the reason for the name rigid-lid approximation. Physically, this tells us that Rd gives the

minimal length scale on which the free surface deforms.

There is one more important point to make in this regime. If we assume that the bottom

is flat and use the f plane approximation, we arrive at (7.25b). Setting the deformation

radius to infinity here results in the system of equations

∂tq + [q, ψ] = 0,

−∆ψ = q.

These are the Euler equations given by (2.4) with q in place of ζ. Therefore, in this special

case, we see that the quasigeostrophic equations present themselves as a modified (or more

general) version of the Euler equations.

7.2.5 Conserved Quantities

As we saw when discussing the point vortex idealization and the equilibrium statistical

mechanics for the Euler equations, conserved quantities play an important role. Here we

briefly cover the quantities that are conserved by the system of equations (7.25). It should

be noted that not all of these are conserved by the more general single-layer quasigeostrophic

equations (7.24).

Just as with the Euler equations, the equation (7.25a) implies that the total vorticity,

given by

Γ =

∫
R2

q dx, (7.26)

is a conserved quantity. This is just the quantity (2.5) with ζ replaced by q.
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If we consider the system (7.25) on the plane, then we have the same translational and

rotational symmetries as the Euler equations. Therefore, by Noether’s theorem [21, 34], the

center of vorticity

B =

∫
R2

x · q dx (7.27)

and the angular impulse

L2 =

∫
R2

|x|2 · q dx (7.28)

are conserved. These are just the quantities (2.7) and (2.8), respectively, with ζ replaced

by q.

Finally, the energy

E =
1

2

∫
R2

ψ · q dx (7.29)

is also conserved. Unsurprisingly, this is just (2.6) with q replacing ζ. Note, however, in

this case we have |ψ| → 0 as |x| → ∞. This results from the Green’s function (7.31) and

the fact that the total vorticity is finite. Then using (7.25b) and Green’s first identity that

we can express (7.29) as

E =
1

2

∫
R2

|∇ψ|2 dx +
1

2R2
d

∫
R2

ψ2 dx. (7.30)

This is clearly the sum of the kinetic energy (first term) and potential energy (second term).

Just as with the Euler equations, the generalized enstrophy

∫
R2

f(q) dx

is conserved for f sufficiently smooth. This is again named after the enstrophy which we

get when f(q) = q2.

7.3 Point-Vortex Idealization

Here we explore how the addition of the deformation radius affects the dynamics of the point

vortex idealization and the corresponding equilibrium statistical mechanics. We limit our-

selves to the special case given by (7.25) rather than the more general (7.24). In particular,
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we see that the changes from the Euler equations are minimal.

7.3.1 Dynamics

The introduction of the deformation radius changes the Green’s function. For (7.25b), the

Green’s function is given by

G(x,x′) =
1

2π
K0(kd|x− x′|), (7.31)

where kd = 1/Rd and K0 is the modified Bessel function of the second kind. Therefore, for

the vorticity distribution

qN (x) =

N∑
i=1

γiδxi(x), (7.32)

the corresponding stream function is

ψN (x, t) =
1

2π

∫
R2

K0(kd|x− x′|)qN (x′, t)dx′

=
1

2π

N∑
i=1

K0(kd|x− xi|). (7.33)

As in the Euler case, we neglect the self-interaction term, use the stream function

definition and the fact that

d

dr
K0(r) = −K1(r)

to arrive at the system of ordinary differential equations

ẋi = − kd
2π

∑
j 6=i

γj
(yi − yj)
rij

K1 (kd · rij) , (7.34a)

ẏi =
kd
2π

∑
j 6=i

γj
(xi − xj)

rij
K1 (kd · rij) , (7.34b)

where rij = |xi − xj |. This is the same as (2.14) with K1(r) replacing 1/r.

The center of vorticity (2.16) and the angular impulse (2.17) are still conserved quanti-

ties. These are simply equations (7.27) and (7.28) where the vorticity q is given by (7.32).
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The Hamiltonian (2.15) is replaced by

HN (x1, . . . ,xN ) =
1

4π

N∑
i=1

∑
i 6=j

γiγjK0(kd|xi − xj |). (7.35)

Generally speaking, to go from the Euler equations to the single-layer equations, we

replace logarithmic dependence with K0 dependence and 1/r dependence with K1 depen-

dence. This means that we may implement the closure on the point vortex system for the

single-layer equations by making minor modifications to our closure for the Euler equations.

Before we continue on to the equilibrium statistical mechanical theory, we take a moment

to exam the meaning of the deformation radius from another perspective as the Green’s

function provides great insight. The modified Bessel function of the second kind K0(r)

(roughly speaking) behaves like − log r for r small and decays exponentially for r > 1. The

function K1(r) behaves like 1/r for r small and exhibits the same exponential decay for

r > 1. (See figure 7.1 for plots that compare functions K0 and K1 to − log r and 1/r.)

From (7.31), we see that, the deformation radius acts as a screening distance. Specifically,

when any two points are separated by a distance more than the deformation radius, that

is, |x− x′| > Rd, see the exponential decay part of K0 (or K1). Therefore the deformation

radius limits the range of effect of vorticity. In the context of point vortices, the deformation

radius limits the interaction range so that a point vortex only sees other vortices that are

within a distance Rd.

From this perspective, it becomes obvious that in the limit Rd → ∞, we recover the

Euler equations, just as discussed in the case of the rigid-lid approximation. We also see

that in the limit Rd → 0, we will get no motion whatsoever.

7.3.2 Equilibrium Statistical Mechanics

It is surprisingly simple to modify the system (3.7) for use with our single-layer model (7.25).

Because the only difference between the two systems is the change in Green’s functions, we

can repeat the entire statistical mechanics arguments as given in chapter 3 to arrive at the
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Figure 7.1: Modified Bessel functions of the second kind of order zero and one. They are
asymptotically equivalent to log r and 1/r, respectively, which is seen here. They decay
exponentially starting around r = 1.

same variational problem (repeated here for convenience)

minimize

∫
R2

ρ(x) log ρ(x)dx subject to (7.36a)

1

2

∫
R2

ψ(x)ρ(x)dx = E, (7.36b)∫
R2

|x|2ρ(x)dx = L2, (7.36c)∫
R2

ρ(x)dx = 1. (7.36d)

The lone difference is that ψ solves the equation

−∆ψ +
1

R2
d

ψ = q = Γρ.

We can again solve this using calculus of variations and arrive at the mean-field equations

94



q = exp{−βψ − α|x|2 − µ}, (7.37a)

q = −∆ψ +
1

R2
d

ψ, (7.37b)

where β, α and µ are constants such that constraints (7.36b), (7.36c) and (7.36d) are

satisfied. These equations describe a two parameter family of distribution in Rd and either

β or the energy E.

We exploit the similarity of the single-layer equations and the Euler equations to deter-

mine that the algorithm described in section 3.3 also needs little modification. Because the

only change in the mean-field equations is the change of relationship between the vorticity

and stream function, we simply need to swap out our Poisson solver for something that

solves (7.37b).

To get an idea of how the addition of the deformation radius affects the equilibrium dis-

tribution and stream function, figure 7.2 depicts the radial plot of the equilibrium solutions

of Euler equation (or Rd = ∞) and the quasigeostrophic equation with Rd = 1.0 where

both have β = 6.85. There is not a significant difference in the vorticity distribution. The

center is slightly higher and the tails are slightly lighter so there is a little less vorticity at

the center and more further out. This is more apparent in figure 7.3 which is a contour

plot of the same two equilibrium vorticity distributions (note there is a difference in scale

of the contours). The stream function seems significantly different, but the difference of a

constant has no impact on the dynamics as it is the slope that is important. Note that the

quasigeostrophic stream function levels off as r increase whereas the Euler equation stream

function does not. This is the effect of the deformation radius. The opposite happens in

the negative β states with the Euler equation being more concentrated and with a lighter

tail.
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Figure 7.2: Radial plots of the equilibrium distributions and stream functions for the Euler
and quasigeostrophic equations. The deformation radius is Rd = 1.0. The Euler equation
are equivalent to Rd =∞. Both have inverse temperature β = 6.85. The quasigeostrophic
distribution has more vorticity at the center and less at the edge. The constant difference
of the stream function has no impact on the dynamics but the quasigeostrophic stream
function does level out as r increases. This is the effect of the deformation radius as the
flow velocity drops to zero exponentially whereas the in the Euler case, the decay in velocity
is like 1/r.

Figure 7.3: Contour plots of the equilibrium distributions for the Euler equations (left) and
the quasigeostrophic equations (right). The Euler distribution is flatter at the center and
more spread out (note the difference in scales) than the quasigeostrophic equation.
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CHAPTER 8

SINGLE-LAYER QUASIGEOSTROPHIC OPTIMAL CLOSURE

We generalize the nonequilibrium theory we developed for the point vortex idealization of

the Euler equation in chapter 5 to the single-layer quasigeostrophic equation. We then apply

the theory to the same axisymmetrization problem described in chapter 6. The motivation

for this problem is the same as for the Euler equation. As observed in [40], the single-

layer quasigeostrophic exhibits the same emergence of coherent vortices at long time as

the Euler equation and the axisymmetrization process occurs after close encounters with

another vortex. Finally, we predict the rate of symmetrization as it depends on both the

inverse temperature β and the deformation radius Rd.

8.1 Single-Layer Closure

Modifying our closure procedure for the single-layer model is straightforward. The mean-

field reduction of the Liouville residual may be carried out in the same way from the same

starting trial density (5.4) to get the implicit trial density

ρ̃(x) = q̃(x) = exp
{
λTA(x)− βψ̃(x)− α|x|2 − µ

}
, (8.1a)

−∆ψ̃ +
1

R2
d

ψ̃ = q̃, (8.1b)∫
R2

ψ̃ · q̃ dx = 2E, (8.1c)∫
R2

|x|2q̃ dx = L2, (8.1d)∫
R2

ρ̃ dx = 1. (8.1e)
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From here we again make a near equilibrium assumption to find that µ′ is still given by

(5.14), and q′ must still satisfy (5.15) and (5.17). However, q′ and ψ′ are now related by

−∆ψ′ +
1

R2
d

ψ′ = q′,

where ψ′ → 0 as |x| → ∞. Therefore, Geq is replaced by the inversion operator Gsl =(
−∆ + 1

R2
d

+ βeqqeq

)−1
and P [F ] is replaced by

Psl[F ] = F − 〈F 〉 − βeqGsl[(F − 〈F 〉)qeq].

It follows that αi and βi are still determined by (5.26) but D1 and D2 are now given by

D1 = −

Cov (ψeq, Psl[ψeq]) Cov
(
ψeq, Psl[r

2]
)

Cov
(
r2, Psl[ψeq]

)
Cov

(
r2, Psl[r

2]
)
 , D2 =

Cov
(
ψeq, Psl[A

T ]
)

Cov
(
r2, Psl[A

T ]
)
 ,

and the ψi are now given by

ψi = Gsl[(Ai + αi(r
2 − L2) + βi(ψeq − 2E))ρeq]. (8.2)

These are the only differences. Everything else proceeds just as before: the Liouville residual

reduces to (5.37) where U and V are still given by (5.35) and (5.36), respectively, after

substituting the single-layer definitions of αi, βi and ψi. Closure is then achieved in the

same manner.

8.2 Single-Layer Application and Results

We again look at the vortex cloud symmetrization problem. We use the same observables

describing the orientation, A1 = x2 − y2, and the ellipticity, A2 = 2xy, of the point vortex

ensemble.

Figures 8.1, 8.2, 8.3 and 8.4 give plots of several cases with similar initial conditions

for β ≈ 0 with deformation radii of infinity, 4.0, 2.0 and 1.0, respectively. To initialize

these cases, we used the Whitaker-Turkington algorithm as described in chapter 3 with the
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Observable Deform Rad Abs Peak Err Rel Peak Err Max Abs Err Rel Err

a1 ∞ 6.37047e-03 3.61181e-02 2.19530e-02 1.24465e-01
a2 ∞ 8.39497e-03 6.15201e-02 1.69521e-02 8.96124e-02

a1 4.0 2.40721e-03 6.89124e-03 5.31489e-02 1.52152e-01
a2 4.0 3.79747e-03 1.61956e-02 6.41511e-02 1.58953e-01

a1 2.0 5.27331e-03 3.33887e-02 4.05205e-02 2.56561e-01
a2 2.0 3.77902e-03 4.00925e-02 4.66757e-02 2.33639e-01

a1 1.0 5.34709e-03 3.57155e-02 3.37040e-02 2.25123e-01
a2 1.0 1.28718e-04 1.88412e-03 2.60938e-02 1.33002e-01

Table 8.1: Absolute and relative errors of the closure compared to EDNS for the single-layer
quasigeostrophic equation. All runs have the initial condition a1 = 0.0 and a2 = 0.4. The
infinite deformation radius corresponds to the Euler equations. The relative error is quite
large due to the faster rotation of the closure compared to the EDNS whereas the peak
error stays roughly the same regardless of the deformation radius.

Figure 8.1: EDNS compared to optimal closure for case 1 of the single-layer quasigeo-
strophic equation. The initial values are a2 = 0.4 and a1 = 0.0 and Rd = ∞ which
corresponds to the Euler equation. The rotation time is around 175 and both observables
have mostly equilibrated by time 300.

additional constraint ∫
R2

2xy · q dxdy = 0.40

to generate the distribution and sampled it through use of the CDF and random uniform

sampling. Table 8.1 gives the error values discussed in section 6.2.

We again compare the optimal closure prediction to averages of vortex ensembles inte-

grated forward in time according to the ODE system (7.34). We used the classic Runge-

Kutta fourth order method with a time step of ∆t = 10−2 (this step size was deemed

adequate again by evaluating the changes in the conserved quantities which for the most

part were less than 10−6). We averaged a total of 60 ensemble runs. The same caveats
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Figure 8.2: EDNS compared to optimal closure for case 2 of the single-layer quasigeo-
strophic equation. The initial values are a2 = 0.4 and a1 = 0.0 and Rd = 4.0. The phase
difference is becoming apparent as the rotation times are roughly 200 for the closure and
230 for the EDNS. The closure captures the peak values well.

apply as when we discussed the Euler equations—because we are using a finite number of

ensemble runs, the plotted curves are not the exact truth, that is, there is sampling error

associated with each curve. We refer the reader back to the beginning of section 6.2 for a

more thorough discussion of the implications of this and to figure 6.1 for a rough estimate

of this error.

The closure captures the peaks in each case well as reflected by the peak errors. We do

see an increase in the magnitude of the relative error but, from the plots, this is due to the

phase difference—the closure again rotates faster than the numerical result. The decrease

of the relative error in the last case is almost certainly the result of the slow rotation so

that the equilibration has not completed by the end of the simulation. The most notable

trend is the increase of the timescale as the deformation radius decreases. This is true both

of the rotation rate and of the relaxation rate. The closure captures this dependence well.

8.3 Equilibration Rate Dependence on Parameters

As in the case of the Euler equations, we can quantify the equilibration rate, or the sym-

metrization rate, from the eigenvalues of the matrix M . Recall from our observables that

we have a single repeated eigenvalue for M . Figure 8.5 plots of the repeated eigenvalue

of M at large time (t = 5000) as a function of β for several different deformation radii.
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Figure 8.3: EDNS compared to optimal closure for case 3 of the single-layer quasigeo-
strophic equation. The initial values are a2 = 0.4 and a1 = 0.0 and Rd = 2.0. The phase
difference between the closure and EDNS is very apparent. The rotation times are roughly
300 for the closure and 400 for the EDNS. The equilibration times are longer than shown
in the simulation. The closure captures the peak values extremely well including the third
peak of the orientation late in the simulation.

Similarly, figure 8.6 plots the eigenvalue of M as a function of the deformation radius Rd

for β = 0. Because the energy of the system is dependent on the deformation radius, it is

difficult to fix a β value while varying the deformation radius except when the equilibrium

distribution is independent of the stream function. This is precisely the case when β = 0.

In figure 8.5, we again see that as we increase the temperature (that is, decrease β), the

equilibration rate increases regardless of the deformation radius. As β increases to infinity,

the equilibration rate drops to zero for any value of Rd. Indeed for sufficiently large β

(≈ 20) the deformation radius seems to have little impact. Therefore, just as with the Euler

equation, we see that our model is predicting the Kirchhoff ellipse and saying that these are

persistent structures for any value of Rd. At the other extreme, the deformation radius has

a much more profound effect. Note that the addition of the deformation radius means that

−8π ≈ −25.13 is no longer a lower bound for β. This means that the equilibration rate

increases significantly more slowly as the deformation decreases. We see this trend more

clearly in figure 8.6.

We also see that decreasing the deformation radius results in decreasing relaxation

rates. This is intuitively expected. If we limit the range of interaction by decreasing the

deformation radius, we expect smaller magnitude fluctuations and so slower relaxation to
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Figure 8.4: EDNS compared to optimal closure for case 4 of the single-layer quasigeo-
strophic equation. The initial values are a2 = 0.4 and a1 = 0.0 and Rd = 1.0. The time
scales have lengthened so much that a full rotation has not been completed by the end of
the run. A half rotation of the cloud has been completed around time 380 for the closure
and 450 for the EDNS. There is only a single peak for each observable in the simulation
but the closure does a good job predicting the magnitude of them.

equilibrium.

The closure allows us to determine more though in the case of βeq = 0. In the asymptotic

regime of Rd << 1, the closure predicts the equilibration rate is proportional to R2
d. In

the opposite regime of Rd >> 1, the closure predicts that the equilibration rate is given by

m0 −m1/R
2
d where m0 is the equilibration rate for the Euler equation (or when Rd = ∞)

and m1 is some constant. These two regimes are represented in figure 8.6 by the magenta

dashed and green dashed lines, respectively. The red dashed line gives the value of m0.

This change of behavior can be interpreted physically. When Rd is small compared to

the vortex cloud size, which is given by the angular impulse and so is order 1, increasing

the deformation radius results in a point vortex seeing more point vortices at a rate roughly

proportional to the increase in area. Once Rd is roughly the size of the entire vortex, that is,

once Rd is order 1, increasing the interaction range no longer results in more fluctuations.

So a point vortex already sees all the other vortices in the cloud and is no longer significantly

affected by the increased interaction range.

To arrive at the stated asymptotic relation, we need to determine how the eigenvalue

depends on the deformation radius. Recall first that, as argued in section 6.3, the matrices

C, K, D and M are all diagonal with equal nonzero entries as a result of our choice of
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observables. Therefore, we seek to understand how m, the diagonal value of M , depends

on Rd.

An important simplification when βeq = 0 is that the equilibrium distribution ρ or ζ

is independent of Rd (see (7.37)). This means that the only dependence m has on Rd is

through the stream function and, specifically, the values ψeq and ψi.

Next, observe that for β = 0, the vector U reduces to the resolved vector A and has no

dependence on Rd so that the matrix C is independent of Rd.

The final simplification is that the inversion operator Gsl reduces to the inversion oper-

ator for (7.25b). That is, both ψeq and ψ′, and by extension ψi, satisfy an equation of the

form

−∆φ+
1

R2
d

φ = f(x)

This means that these functions depend on Rd in the same way.

We can now determine the asymptotic dependence ofm onRd forRd << 1 andRd >> 1.

We start with the former. Let ε = R2
d so that ψeq and ψi satisfy the equation

−ε∆φ+ φ = εf

for an appropriate f . From this, we find that φ ∼ εφ0 + ε2φ1 + . . . where φ0 and φ1 satisfy

φ0 = f, φ1 = ∆φ0.

Conceivably we could solve for the functions φ0 and φ1 but all we care about is the depen-

dence on ε = R2
d. From the above expansion, we see that both ψeq and ψi grow like R2

d for

Rd small. It follows that V ∼ R2
d and in turn that κ ∼ R4

d and σ ∼ R2
d. Using these terms

in (6.2), we find that for small Rd,

m ∼ R2
d

as stated.

In the case of Rd >> 1, we set ε = 1/R2
d. Then ψeq and ψi satisfy an equation of the
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form

−∆φ+ εφ = f.

We now assume that φ ∼ φ0 + εφ1 + . . .. We then find that φ0 and φ1 satisfy

−∆φ0 = f, ∆φ1 = φ0.

We again ignore the functions φ0 and φ1 and focus on the dependence on ε. As both ψeq

and ψi have this form, we find that V ∼ v0 + εv1 for some functions v0 and v1. From this

it results that

κ ∼ κ0 + εκ1, σ2 ∼ σ0 + εσ1

Substitution of these expressions into (6.2), expanding the square root and replacing ε with

1/R2
d, we find that

m ∼ m0 +
1

R2
d

m1.

As the constant term m0 arises from the order one terms and ε = 0 corresponds to the

case of an infinite deformation radius, it must be the eigenvalue associated with the Euler

equation case.
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Figure 8.5: Predicted symmetrization rate versus inverse temperature for various values
of the deformation radius. We again see that the equilibration goes to zero as β goes to
infinity. We also see the equilibration increases as β decreases. Note that the deformation
radius means that −8π ≈ −25.13 is no longer a lower bound for β.

Figure 8.6: Predicted symmetrization rate versus deformation radius for β = 0. Near zero
the equilibration grows like R2

d as shown by the dashed magenta line. At large values of Rd,
the equilibration grows like 1/R2

d as shown by the dashed green line. The dashed red line
is the equilibration value for the Euler equations case (or Rd =∞).
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CHAPTER 9

TWO-LAYER QUASIGEOSTROPHIC DYNAMICS

We will now study a more realistic version of the quasigeostrophic equation. Instead of a

single fluid of constant density, we assume that there are two fluid layers each of constant

density. Physically, the density difference is often the result of temperature differences.

We can view this system as a warmer less dense fluid on top of a colder more dense fluid.

This simple modification to quasigeostrophic equations provides a surprising amount of

insight into geophysical fluids while remaining relatively simple [48]. Indeed the interaction

of the two-layers is fundamental as revealed by the fact that the continuously stratified

quasigeostrophic equation can be viewed as a fluid composed of infinitely many layers [60].

In this chapter, we derive the two-layer quasigeostrophic equations as well as rewrite

them in barotropic and baroclinic components. We then move on to describe the energy of

the system and particularly the potential energy that can be converted into kinetic energy.

Following this, we look at the theory of baroclinic instability. We rely heavily on [48] and

[60] for these topics. Then we cover the point vortex idealization for the two-layer system

as well as the accompanying equilibrium statistical mechanics theory.

9.1 Two-Layer Quasigeostrophic Equations

In this section we derive the equations of the two-layer system. The derivation is similar to

the single-layer case so we will discuss it briefly. Then we discuss an alternate view of the

two-layer system by decomposing it into the barotropic and baroclinic modes.
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9.1.1 Derivation

Consider two fluids each with constant density ρ1 and ρ2 where the ρ1 is the density of

the fluid on top and we assume that ρ1 < ρ2. We denote the surface of the top layer by

η1(x, y, t), the interface between the two fluids by η2(x, y, t) and the bottom topography by

ηb(x, y). We denote the depth of the top layer by h1(x, y, t) and the depth of the bottom

layer by h2(x, y, t). From these definitions, it is clear that h1 = η1 − η2 and h2 = η2 − ηb.

We now make three assumption. First, the variation in layer thickness is small. If we let

Hk denote the typical depth of the kth layer, we can write hk = Hk+h′k and this assumption

then takes the form that h′k/Hk << 1. Second, the Rossby number is small. This means

that the rotational advection terms dominate the local acceleration and our flow is nearly

geostrophic. Third, the variations in the Coriolis parameter are small. Mathematically, if

we let f = f0 + βy, then this assumption takes the familiar form βL/f0 << 1 where L is

a typical horizontal length scale. These assumptions are nearly identical to those made for

the derivation of the single-layer equations.

Just as we found the single-layer equation as a perturbation expansion of the rotating

shallow-water equations, we could do the same for the two-layer equations. Instead for

brevity, we will start from the potential vorticity. For the kth layer, let

Qk =
ζk + f

hk

denote the potential vorticity of that layer. Then each layer conserves potential vorticity

so that

∂tQk + uk · ∇Qk = 0. (9.1)

From our three assumptions, we have

Qk ≈
1

Hk
(ζk + f)

(
1−

h′k
Hk

)
≈ 1

Hk

(
ζk + f − f0

h′k
Hk

)
(9.2)

Since Qk is an advected term (Qk only appears in (9.1) with derivatives), we may neglect

107



the constant terms and conclude that

∂tqk + uk · ∇qk = 0,

where

qk = ζk + f − f0
h′k
Hk

. (9.3)

In order to complete the derivation we want to replace the h′k term. To do this, we use

hydrostatic and geostrophic balance. From hydrostatic balance, we know that the pressure

is given by integrating from the top so that

p1 = ρ1g(η1 − z)

p2 = ρ1g(η1 − η2) + ρ2g(η2 − z) = ρ1gη1 + ρ1g
′η2 − ρ2gz

where we have introduced the reduced gravity g′ = g(ρ2 − ρ1)/ρ1. Since we are nearly

geostrophic, we expect

f0 × u1 = −g∇η1 = −g∇(h′1 + h′2 + ηb),

f0 × u2 = −g∇η1 − g′∇η2 = −g∇(h′1 + h′2 + ηb)− g′∇(h′2 + ηb).

Because the right hand side in both equations is a gradient term, we can cross differenti-

ate and find that uk is (approximately) incompressible. Therefore, we can define stream

functions ψ1 and ψ2 such that

uk = ∇⊥ψk, −∆ψk = ζk.

It follows that we have the relations

ψ1 = − g

f0
(h′1 + h′2 + ηb), ψ2 = − g

f0
(h′1 + h′2 + ηb)−

g′

f0
(h′2 + ηb).
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Solving for h′1 and h′2 between these two gives the equations

h′1 = −f0

g′
(ψ1 − ψ2)− f0

g
ψ1, (9.4a)

h′2 = −f0

g′
(ψ2 − ψ1)− ηb. (9.4b)

Using these equations in (9.3) gives us the two-layer quasigeostrophic equations

q1 = −∆ψ1 +
1

R2
1d

(ψ1 − ψ2) + βy +
1

R2
ed

ψ1, (9.5a)

∂tq1 + [q1, ψ1] = 0, (9.5b)

q2 = −∆ψ2 −
1

R2
2d

(ψ1 − ψ2) + βy +
f0

H2
ηb, (9.5c)

∂tq2 + [q2, ψ2] = 0, (9.5d)

where Red is the external deformation radius and we have introduced Rkd, the Rossby

internal deformation radius of the kth layer, given by

Rkd =

√
g′Hk

f0
.

In everything that follows, we make the following simplifying assumptions: The bottom

topography is flat (so that ηb = H1 +H2), our length scales of interest are much less than

Red (this is the rigid lid approximation) and finally, H1 = H2 so that R1d = R2d = Rd.

With these assumptions the system (9.5) reduces to

q1 = −∆ψ1 +
1

R2
d

(ψ1 − ψ2), (9.6a)

∂tq1 + [q1, ψ1] = 0, (9.6b)

q2 = −∆ψ2 −
1

R2
d

(ψ1 − ψ2), (9.6c)

∂tq2 + [q2, ψ2] = 0. (9.6d)
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9.1.2 Barotropic and Baroclinic Components

In the simplified case of (9.6), we can write the system in a different way. If we add (9.6a)

to (9.6c), we get the equation

q1 + q2 = −∆(ψ1 + ψ2).

This suggests that we define the new variables

qT =
1

2
(q1 + q2), ψT =

1

2
(ψ1 + ψ2), (9.7)

which are called the barotropic vorticity and barotropic stream function, respectively. The

two are then related by

qT = −∆ψT . (9.8)

Subtracting the same two equations gives us

q1 − q2 = −∆(ψ1 − ψ2) +
2

R2
d

(ψ1 − ψ2),

which leads us to introduce the variables

qC =
1

2
(q1 − q2), ψC =

1

2
(ψ1 − ψ2). (9.9)

These are called the baroclinic vorticity and baroclinic stream function, respectively. They

satisfy the relation

qC = −∆ψC +
2

R2
d

ψC . (9.10)

From the definitions, we see that the barotropic components are an average of the two-

layers. They can be viewed as the single-layer behavior of the system. Indeed, the barotropic

vorticity evolves according to the dynamic equation

∂tqT + [qT , ψT ] + [qC , ψC ] = 0,
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so that if there is no baroclinic component (qC = ψC = 0), the barotropic components obey

the Euler equation. If we had not made the rigid lid approximation, the barotropic compo-

nents would obey the single-layer equations given by (7.25). In this sense, the barotropic

components give the single-layer behavior of the model.

On the other hand, the baroclinic components quantify the difference in the two-layers.

It describes the asymmetry of the system or the two-layer behavior of the model. Indeed,

the baroclinic vorticity is advected by

∂tqC + [qT , ψC ] + [qC , ψT ] = 0.

This tells us that qC evolves according to the cross term advection—that is, its evolution

is governed by how the barotropic and baroclinic components interact with one another.

This stands in contrast to the evolution equation for the barotropic vorticity which evolves

according to the self interaction terms.

Before moving on, we note for future use that we can recover the original variables using

the equations

q1 = qT + qC , ψ1 = ψT + ψC , (9.11)

q2 = qT − qC , ψ2 = ψT − ψC . (9.12)

These are easily obtained from the definitions.

9.2 Available Potential Energy

The study of the two-layer quasigeostrophic system focuses on baroclinic instability. This

instability is driven by the conversion of potential energy into kinetic energy. In this section,

we will define the total energy and discuss how it is divided into kinetic and potential

energy. Fundamentally, the potential energy is gravitational in nature but much of it is not

transferable into kinetic energy. This leads us to the idea of available potential energy.
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From time symmetry and Noether’s theorem [21, 34], we know that the quantity

E =
1

2

∫
R2

ψ1q1 + ψ2q2 dx (9.13)

is conserved. As suggested by the notation, this is the two-layer energy. It is a natural

extension of the energy from the Euler equation case.

We now examine how this total energy is divided into kinetic and potential components.

We first use (9.6a) and (9.6c) to eliminate q1 and q2 to get

E =
1

2

∫
R2

ψ1

(
−∆ψ1 +

1

R2
d

(ψ1 − ψ2)

)
+ ψ2

(
−∆ψ2 −

1

R2
d

(ψ1 − ψ2)

)
dx

Using Green’s first identity and rearranging terms, we see that

E =
1

2

∫
R2

|∇ψ1|2 + |∇ψ2|2 +
1

R2
d

(ψ1 − ψ2)2 dx,

which can be interpreted as the kinetic energy of the first layer, the kinetic energy of the

second layer and a potential energy.

In terms of the barotropic and baroclinic modes, the total energy is given by

E =

∫
R2

ψT qT + ψCqC dx. (9.14)

Proceeding as before, we find that

E =

∫
R2

|∇ψT |2 + |∇ψC |2 +
2

R2
d

ψ2
C dx. (9.15)

The potential energy term present in both decompositions and given by

APE =
1

2R2
d

∫
R2

(ψ1 − ψ2)2 dx =
2

R2
d

∫
R2

ψ2
C dx (9.16)

is called the available potential energy. This is the potential energy that is available to the

system to turn into kinetic energy.

It should be noted that these are strictly formal calculation. As our domain is all of
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R2, many of the above integrals (if not all of them) are infinite. It is nevertheless revealing.

In particular, it tells us that the minimal potential energy state is when ψ1 = ψ2 or when

ψC = 0. This is a purely barotropic state and corresponds to a flat interface between the

two fluids.

To understand the distinction between potential energy and available potential energy,

consider the potential energy of a two-layer shallow-water system

PE =
1

2

∫
R2

ρ2g(h2
1 − η2

b )− ρ1gh
2
1dx =

1

2

∫
R2

ρ1g
′(h′1)2dx + constants,

where we have used the notation defined in section 9.1. Examining the terms, this is clearly

a gravitational potential energy, much of which is pent up in the constants. The constant

terms cannot be converted to kinetic energy. The remaining term is precisely what we have

defined to be the available potential energy. From a physical standpoint, the unavailable

potential energy is the gravitational potential energy of the less dense fluid on top of the

denser fluid. Reducing the gravitational potential energy of a fluid parcel in the top layer,

requires moving it closer to the bottom and thus displacing the denser fluid and increasing

the total potential energy.

9.3 Baroclinic Instability

Baroclinic instability theory was pioneered by Charney [12] and Eady [20] using linear

stability analysis to examine the onset of the resulting turbulent flow. They were attempting

to understand the mechanisms of the midlatitude synoptic storms. Since then it has been

used in oceanography as well as extraterrestrial atmospherics [60]. Here we recount the

Phillips problem which is the the two-layer version of their argument. It was originally

worked out by Phillips [46] and the spirit is the same as that of Eady’s and Charney’s

works.

Fundamentally, the phenomenology is about the conversion of potential energy into

kinetic energy. The uneven heating of the Earth’s surface causes a temperature difference

in the atmosphere with warmer air near the equator and cooler air at the (north) pole.

In terms of our two-layer setup, this corresponds to the interface between the two-layers
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sloping upward as we head north (the positive y direction). The rotation of the Earth

inhibits transferring the potential energy in this configuration into kinetic energy. In fact it

can stop it completely, that is, this can be a stable structure, if the slope is not sufficiently

large. We will now work out the Phillips problem as presented in [60] (with some help from

[48] as well). Specifically, we will use linear stability analysis on an idealized problem to

find stability criteria as well as make a rough estimate of the size of the resulting instability.

We start from the system (9.6) but in the beta plane instead of the f plane. The

equations then take the form

q1 = −∆ψ1 +
1

R2
d

(ψ1 − ψ2) + βy, (9.17a)

∂tq1 + [q1, ψ1] = 0, (9.17b)

q2 = −∆ψ2 −
1

R2
d

(ψ1 − ψ2) + βy, (9.17c)

∂tq2 + [q2, ψ2] = 0. (9.17d)

Recall that we have assumed a rigid lid, a flat bottom and equal layer depth. A steady

solution of the equations is given by

ψ1 = Uy, ψ2 = −Uy.

This corresponds to a flow of magnitude U in the positive x direction in the top layer and

in the negative x direction in the bottom layer.

Now consider a small perturbation of this solution so that

ψ1 = Uy + ψ′1, ψ2 = −Uy + ψ′2,

where ψ′1 and ψ′2 are small. Plugging this into (9.17), eliminating the potential vorticity
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and discarding the double prime terms gives us the (linearized) system

(∂t + U∂x)

(
−∆ψ′1 +

k2
d

2
(ψ′1 − ψ′2)

)
− ∂xψ′1(β + k2

dU) = 0,

(∂t − U∂x)

(
−∆ψ′2 −

k2
d

2
(ψ′1 − ψ′2)

)
− ∂xψ′2(β − k2

dU) = 0,

where we have introduced k2
d = 2/R2

d. We now seek solutions of the form

ψ′j = Re(ψ̃je
ik(x−ct)eily),

where k and l are the x and y wave numbers, respectively, and ψ̃j is a (complex) amplitude.

(This means we must assume a square, doubly periodic domain.)

Plugging this form into our linearized equations, we find that

(ik(U − c))(K2ψ̃1 +
k2
d

2
(ψ̃1 − ψ̃2))− ikψ̃1(β + k2

dU) = 0,

−(ik(U + c))(K2ψ̃2 −
k2
d

2
(ψ̃1 − ψ̃2))− ikψ̃2(β − k2

dU) = 0,

where K2 = k2 + l2. After rearranging and canceling common terms, we get the homoge-

neous linear system in ψ̃1 and ψ̃2

[
(U − c)

(
K2 +

k2
d

2

)
− (β + k2

dU)

]
ψ̃1 −

k2
d(U − c)

2
ψ̃2 = 0

k2
d(U + c)

2
ψ̃1 −

[
(U + c)

(
K2 +

k2
d

2

)
+ (β − k2

dU)

]
ψ̃2 = 0.

In order to have a nontrivial solution, we require that the determinant of the coefficient

matrix is zero. This condition results in the quadratic equation in c

0 = K2(K2 + k2
d)c

2 + 2β(K2 + k2
d/2)c+ β2 − U2K2(K2 − k2

d).

Solving yields the relationship

c = − β

K2 + k2
d

1 +
k2
d

2K2
±

k2
d

2K2

(
1 +

4K4(K4 − k4
d)

k4
βk

4
d

)1/2
 ,
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where kβ =
√
β/U .

Given the initial form of our solution, we know that our solution will grow like eIm(c)t.

In the case of β = 0, we find (either from our solution or more simply from the quadratic

equation) that

c = ±U
(
K2 − k2

d

K2 + k2
d

)1/2

.

This has a positive imaginary part for any value of U so that there is always instability.

However, note that the instability occurs only when K < kd = 2/Rd so that the wave

numbers that experience instability are smaller than the deformation radius.

For the general case, in order for instability to occur, we require

k4
βk

4
d + 4K4(K4 − k4

d) < 0, (9.18)

where K4 = (k2 + l2)2. Rearranging and using the definition of kβ gives us the inequality

β2k4
d < 4U2K4(k4

d −K4).

The maximum of the right hand side occurs at K4 = k4
d/2. Plugging this in, we arrive at

the instability criterion

2β

k2
d

= βR2
d < 2U,

where 2U is the difference between the velocities in the two-layers.

Examining this inequality, we see first that β has a stabilizing influence on the system.

Indeed for a fixed U and Rd value, we can always find β large enough so that the system

is stable. From another perspective, we see that for a fixed β and Rd, there is a minimum

shear velocity for instability to occur. Recall that the stream functions are ψ1 = Uy and

ψ2 = −Uy and that the stream functions relate directly to the displacement of the interface.

Therefore the larger the value of U , the more baroclinic the initial condition and the larger

the slope of the interface between the layers.

Returning to our original instability inequality (9.18), we can extract a few more pieces

of information. Just as in the case of β = 0, we see that the instability can only occur on
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scales comparable to or larger than the deformation radius as it is necessary that

k2
d > K2.

Next, if we consider K << kd, then (9.18) is approximately k4
β − 4K4 < 0 so that

K >
β

U
√

2

and we see that there is a low wave number cutoff for instability.

9.4 Point Vortex Idealization

The point vortex idealization was worked out for the two-layer equations by Gryanik [23].

Hogg and Stommel further explored this model in [25] and [26]. In these works, they

observed that a positive vortex in the upper layer will lower the interface as will a negative

vortex in the lower layer. Because these point vortices have opposite signs, they will self

advect and, in doing so, transport heat and reduce the available potential energy. They

called these pairs hetons and noted that they can be cold (the heton we described above

is cold as the interface of the fluid has been raised) or warm (this would be the opposite

arrangement with the negative vortex on top and the positive vortex on bottom). They

also discovered that groups of like temperature hetons tended to repel each other when

separated by a distance larger than the internal deformation radius and to merge when

their separation was less than internal deformation radius. Based on this observation, they

suggested that hetons were a new approach to modeling baroclinic instability—one that

does not require the idealized circumstances necessary for the linear stability analysis of

Eady and Charney as discussed in the last section.

In this section, we give the dynamical system which describes the evolution of a point

vortex ensemble and the corresponding equilibrium statistical mechanics theory. Many of

the details are similar (if not identical) to the Euler case so we will describe them only

briefly and instead emphasize the physical interpretation.
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9.4.1 Dynamics

Consider a system of N point vortices in the top layer and N point vortices in the bottom

layer. Let the position of the ith vortex in the kth layer be denoted by xki and let its strength

be γki. Then the vorticity distribution in each layer is given by

qN1 =
N∑
i=1

γ1iδx1i(x), qN2 =
N∑
i=1

γ2iδx2i(x). (9.19)

To derive the dynamical system, it is easiest to use the barotropic and baroclinic compo-

nents. From the relations (9.8) and (9.10), we see that the barotropic Green’s function is

gT (x,x′) = − 1

2π
log |x− x′|, (9.20)

and the baroclinic Green’s function is

gC(x,x′) =
1

2π
K0(kd|x− x′|), (9.21)

where kd =
√

2/Rd. Combining this with the definitions (9.7) and (9.9), we see that the

stream function of the kth layer is given by

ψNk (x) =
2∑
`=1

N∑
j=1

γ`jgT (x,x`j)− σ(k, `)γ`jgC(x,x`j), (9.22)

where

σ(k, `) =


1, k = `,

−1, k 6= `.

We obtain the stream function which advects the ith point vortex in the kth layer from

(9.22) by omitting the self advecting term. Denoting this stream function by ψNki(x), we get

the system of 4N ordinary differential equations which governs the dynamics from

ẋki = ∇⊥ψki, (9.23)
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where ∇⊥ is given by (2.3).

It is worth taking a moment to look at the resulting flow in a simplified case. Consider

the case of a single point vortex in the top layer of unit strength. Then for any point in the

top layer (9.22) reduces to

ψ1
1(x) = gT (x,x11)− gC(x,x11),

and the magnitude of the tangential velocity is

1

2π

(
1

r
+ kdK1 (kdr)

)
,

where K1 is the modified Bessel of the second kind and r is the radial distance from the

vortex. Both K0 and K1 decay exponentially at distances longer than 1/kd = Rd/
√

2

and are effectively zero. Therefore, at distances from the point vortex larger than the

(internal) deformation radius, the top layer stream function appears to be a single-layer

fluid. Specifically, it has the 1/r dependence that we saw with the point vortex idealization

of the Euler equations. On the other hand, for small distances, we know that K1(r) ∼ 1/r

so that (
1

r
+ kdK1 (kdr)

)
∼
(

1

r
+

kd
kdr

)
=

2

r
.

Therefore the second layer strengthens the point vortex by a factor of two.

For any point in the bottom layer in our current case, (9.22) reduces to

ψ1
2(x) = gT (x,x11) + gC(x,x11),

and the magnitude of the tangential velocity is

1

2π

(
1

r
− kdK1 (kdr)

)
.

Here we see the same long range behavior. That is, at distances larger than the deformation

radius, the stream function looks like the stream function of a single-layer with a single point

vortex. However, at small distances, we get a significantly different behavior. Again, using
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the asymptotics for K1 with small argument, we have

(
1

r
− kdK1 (kdr)

)
∼
(

1

r
− kd
kdr

)
= 0.

Therefore, the magnitude of the flow reduces to zero as we approach the location of the

point vortex in the bottom layer. It follows that another point vortex positioned at the

same spot in the bottom layer does not see the point vortex in the top layer. Indeed, the

stream function for two point vortices at the same point in different layers is identical to

the single-layer stream function of a point vortex with twice the strength.

Returning to the dynamics of our two distributions, we can again write this system as a

canonical Hamiltonian system with the conjugate variables qki =
√
γkixki and pki =

√
γkiyki

(as in the Euler case) with the Hamiltonian

HN =
1

4

N∑
i=1

∑
j 6=i

γ1iγ1j [gT (x1i,x1j) + gC(x1i,x1j)]

+
1

2

N∑
i=1

N∑
j=1

γ1iγ2j [gT (x1i,x2j)− gC(x1i,x2j)] (9.24)

+
1

4

N∑
i=1

∑
j 6=i

γ2iγ2j [gT (x2i,x2j) + gC(x2i,x2j)] .

This is the energy from the top layer self-interaction (first term) plus energy from the top-

bottom interaction (second term) plus the energy from the bottom self-interaction (third

term). As it is time independent, the Hamiltonian is a conserved quantity. In fact, it is the

point vortex equivalent (after omitting the self interaction terms) of the continuum energy

E =
1

2

∫
R2

ψ1q1 + ψ2q2 dx =

∫
R2

ψT qT + ψCqC dx. (9.25)

We once again have translational and rotational symmetries which lead to the conser-

vation of the center of vorticity

B =
2∑

k=1

N∑
i=1

γkixki (9.26)
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and the angular impulse

L2 =
2∑

k=1

N∑
i=1

γki|xki|2. (9.27)

The corresponding continuum values are given by

B =

∫
R2

x(q1 + q2)dx (9.28)

and

L2 =

∫
R2

|x|2(q1 + q2)dx, (9.29)

respectively. Just as we did in the Euler case we will use translational invariance to assume

that the center of vorticity is the origin.

Finally, as a direct result of the conservation of (potential) vorticity, we have that the

total circulation in each layer is conserved. In terms of the point vortices, this means that

the quantity Γk given by

Γk =

N∑
i=1

γki (9.30)

is a constant. Actually, as is normal with point vortices, the values γki are all constants.

The continuum equivalent is

Γk =

∫
R2

qkdx. (9.31)

9.4.2 Equilibrium Statistical Mechanics

DiBattista and Majda extended the point vortex statistical mechanics for the plane to the

two-layer quasigeostrophic equations [19]. The primary result is a set of mean-field equa-

tions which describe the stream functions and vorticity distributions of the most probable

state. They derive these equations using both a kinetic argument and a maximum entropy

argument. What follows is their maximum entropy argument with some comments added.

To start, just as in the Euler case, we assume that any configuration with the appropriate

value of the Hamiltonian and angular impulse is equally probable. The same warnings

apply here as in the single-layer case: there are no physical grounds on which we make this

assumption. From this, there is an appropriate microcanonical measure from which we can
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define the entropy.

In the limit N → ∞, γ → 0 with Γ = γN held constant, we find that maximizing the

entropy is equivalent to minimizing quantity

∫
R2

ρ1 log ρ1 + ρ2 log ρ2 dx.

To see this, we can make the same sort of classical argument previously made or appeal

directly to the theory of large deviations.

Finding the most probable distribution with energy E and angular impulse L2 is then

equivalent to solving the constrained optimization problem

minimize

∫
R2

ρ1 log ρ1 + ρ2 log ρ2 dx subject to (9.32a)

1

2

∫
R2

ψ1q1 + ψ2q2dx = E, (9.32b)∫
R2

|x|2(q1 + q2)dx = L2, (9.32c)∫
R2

q1dx = 1, (9.32d)∫
R2

q2dx = 1, (9.32e)

where q1 = Γ1ρ1 and q2 = Γ2ρ2, and the stream functions ψ1 and ψ2 are solutions the

system

q1 = −∆ψ1 +
1

R2
d

(ψ1 − ψ2), q2 = −∆ψ2 −
1

R2
d

(ψ1 − ψ2),

where Rd is the (internal) deformation radius.

This can be solved using the calculus of variations as before to arrive at the system of

mean-field equations

q1 = Γ1 exp{(−βψ1 − αr2)Γ1 − µ1}, (9.33a)

−∆ψ1 +
1

R2
d

(ψ1 − ψ2) = q1, (9.33b)

q2 = Γ2 exp{(−βψ2 − αr2)Γ2 − µ2}, (9.33c)

−∆ψ2 −
1

R2
d

(ψ1 − ψ2) = q2, (9.33d)
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where α, β, µ1 and µ2 are values such that the constraints (9.32b), (9.32c), (9.32d) and

(9.32e) are satisfied. The solution of this nonlinear system gives the most probable distri-

bution.

The Whitaker-Turkington algorithm described in section 3.3 can be used yet again to

compute the equilibrium states. The only aspect that is not immediately obvious is how

to modify the energy constraint. The key is to realize that we can view the vorticity

distributions q1 and q2 as well as the stream functions ψ1 and ψ2 as components of a vector

(say q and ψ, respectively) and then apply the our previous energy constraint modification

to these vectors.

In this light, we can write the energy constraint as

1

2

∫
R2

ψ · q dx = E.

Therefore, the linearized energy constraint is simply

Hn +

∫
R2

ψn · (q− qn)dx = Hn +

∫
R2

ψn1 (q1 − qn1 ) + ψn2 (q2 − qn2 ) dx = E, (9.34)

where

Hn =
1

2

∫
R2

ψn · qndx =
1

2

∫
R2

ψn1 q
n
1 + ψn2 q

n
2 dx.

All the other constraints are linear and straightforward to implement.

We also need a way to solve the partial differential equation system

q1 = −∆ψ1 +
1

R2
d

(ψ1 − ψ2),

q2 = −∆ψ2 −
1

R2
d

(ψ1 − ψ2),

for a given q1 and q2. The most direct method would be to rewrite the system as

T

ψ1

ψ2

 =

q1

q2

 ,
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where

T =

−∆ + 1
R2

d
− 1
R2

d

− 1
R2

d
−∆ + 1

R2
d

 .

We then construct a solver for the differential operator T .

An alternative is to use the barotropic and baroclinic decomposition. The barotropic

stream function solves

−∆ψT = qT ,

and the baroclinic stream function solves

−∆ψC +
2

R2
d

ψC = qC .

These are the two equations that we needed to solve to compute equilibrium states for the

Euler equation and the single-layer quasigeostrophic equation cases.

In this approach, we solve the system by first forming qT and qC using the fact that

qT = (q1 +q2)/2 and qC = (q1−q2)/2. Then using our preexisting solvers, find the solutions

ψT and ψC of the above equations. From these, we can form the stream functions for each

layer using ψ1 = ψT + ψC and ψ2 = ψT − ψC .

Having determined the correct form for the linearized energy constraint and how to solve

the system of partial differential equations, we find that the algorithm is the same. For a

given q1, q2, ψ1 and ψ2, find α, β, µ1 and µ2 so that the constraints (9.34), (9.32c), (9.32d)

and (9.32e) are satisfied. Use these values in (9.33a) and (9.33c) to update the distributions

q1 and q2. From these vorticity distributions, solve for ψ1 and ψ2 using one of the methods

outlined above. We repeat this process until some appropriate convergence criterion is met.

We applied the same criteria as given in section 3.3.
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CHAPTER 10

TWO-LAYER QUASIGEOSTROPHIC OPTIMAL CLOSURE

In [39], McWilliams finds from direct numerical simulation of the stratified quasigeostrophic

equation that the same sort of coherent vorticity structures emerge in longtime simulations

as for the Euler equation and the single-layer quasigeostrophic equation. He further found

that the coherent vortices prefer to form vertically aligned states, or in the language of

geophysical fluids, they prefer to be purely barotropic.

The simplicity of the two-layer model makes it a good testing ground to study this

barotropization problem. In this context, it is a little surprising that there is relatively

little statical mechanical theories for the two-layer quasigeostrophic model. DiBattista and

Majda developed an equilibrium theory for a square domain based on continuum methods

[18]. They also extended the point vortex equilibrium theory to the two-layer system in the

entire plane [19]. There has been no work on the nonequilibrium theory (at least that we

are aware of).

We use the optimal closure procedure again. This time to develop a nonequilibrium

statistical theory for the two-layer quasigeostrophic equation by using the point vortex ide-

alization. Just as in the Euler and single-layer cases, we make a mean-field approximation.

This approximation reduces the Liouville residual to an information theoretical residual on

the two-layer quasigeostrophic equation so that once again, we see that the point vortices

provide us with a vehicle to determine the residual on the original continuum equations. We

then make a near equilibrium assumption and use this to turn our implicit trial densities to

explicit densities with a resolved vector that respects the conserved quantities. In the near

equilibrium regime, we also examine the rate of conversion of available potential energy into

kinetic energy.
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Having developed this nonequilibrium theory, we then look to study the barotropization

of coherent vortices noted in the numerical simulations of McWilliams. To do this, we exam-

ine baroclinic perturbations of stable barotropic states. We apply the theory’s prediction of

potential energy transfer rates and compare it to direct numerical simulations. Finally, we

will see how the closure predicts that the equilibration rate and available potential energy

transfer rate depend on the inverse temperature β and the internal deformation radius Rd.

10.1 Two-Layer Closure

In this section, we use the optimal closure to develop a nonequilibirum mean-field theory

for the point vortex idealization applied to the two-layer quasigeostrophic equation. We

start with the general case and then simplify by making a near equilibrium assumption.

This again allows us to take our implicit mean-field trial densities and reformulate them

explicitly as well as reformulating the resolved vector to respect the conserved quantities.

Finally, in the near equilibrium regime, we explore how the closure predicts the available

potential energy flows into kinetic energy.

10.1.1 General Case

We take the trial densities for the vorticity in each layer to be the quasi-equilibrium distri-

butions

ρ̃1(x1, y1) = exp{[λTA1 − βψ̃1 − αr2
1]Γ1 − µ1}, (10.1a)

ρ̃2(x2, y2) = exp{[λTA2 − βψ̃2 − αr2
2]Γ2 − µ2}, (10.1b)

where r2
k = x2

k + y2
k, xk = (xk, yk) is a point in the kth layer, Γk is the total circulation in

the kth layer and ψ1 and ψ2 satisfy

−∆ψ̃1 +
1

R2
d

(ψ̃1 − ψ̃2) = q1 (10.1c)

−∆ψ̃2 −
1

R2
d

(ψ̃1 − ψ̃2) = q2 (10.1d)

where qk = Γkρ̃k.
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Furthermore, we have assumed that the vector of observables is of the form

A(x1, y1, x2, y2) = A1(x1, y1) + A2(x2, y2) (10.2)

where Ak is the component of the observable for the kth layer. We can justify this as-

sumption physically. The layers only interact through the displacement of the interface. As

the stream functions of the top and bottom layer relate directly to the displacement of the

fluid interface (see equations (9.4)), they capture the entirety of the two layers’ interaction.

Therefore, any interaction of the two layers must be through the stream functions. The

above form of the observable vector follows from this.

As a result of this assumption, we are able to write the trial density for the entire system

as the product measure

ρ̃(x1, y1, x2, y2) = ρ̃1(x1, y2)ρ̃2(x2, y2). (10.3)

Again, this parallels the actual dynamics of the two-layer equations. The vorticity distri-

butions (or point vortices) do not interact directly but only through the stream functions.

We have started with a mean-field form of trial density and we need to rewrite the

Liouville residual to match it. We use a similar argument as before. Assume that qN1 and

qN2 converge weakly to some continuum distributions q1 and q2, respectively. From this we

conclude that ψki ≈ ψk. Therefore, for a function of the form

BN (x11, . . . ,x2N ) =
2∑

k=1

N∑
i=1

B(xki, yki),

we have

{BN , HN} =

2∑
k=1

N∑
i=1

[BN , ψki](xki,yki) ≈ N
(
[B1, ψ1](x1,y1) + [B2, ψ2](x2,y2)

)
.

where Bk = B(xk, yk).

Combining this with the product measure form of ρ̃, we find that the Liouville residual
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is

R = (∂t + [·, ψ1](x1,y1) + [·, ψ2](x2,y2))(log ρ̃1 + log ρ̃2)

= (∂t + [·, ψ1](x1,y1)) log ρ̃1 + (∂t + [·, ψ2](x2,y2)) log ρ̃2

= R1 +R2,

where we have used the fact that

[ρ̃`, ψk](xk,yk) = 0,

for ` 6= k. The resulting Liouville residual again takes the form of an information theoretic

residual on the flow of the continuum dynamics. That is, we can think of the Liouville

residual as the information lost by forcing our vorticity distributions to remain in our

family of trial distributions.

The form of the Liouville residual is very revealing but needs to be expanded to actually

be of use computationally. To do this we adopt a couple of conventions. First, for a given

function f(x, y), we denote by fk its value on the kth layer. That is, fk = f(xk, yk). Second,

it is understood that in the advection term [·, ψk], the derivatives are with respect to xk

and yk.

Using these conventions, expanding the Liouville residual for the kth layer gives us

Rk = Γk(λ̇(Ak − ak)− β̇(ψk − 〈ψk|ρ̃〉)− β(∂tψk − 〈∂tψk|ρ̃〉)− α̇(r2
k −

〈
r2
k|ρ̃
〉
)

+ λ[Ak, ψk]− α[r2
k, ψk]).

Summing the residual for the two layers and collecting common terms, we find the total

Liouville residual is given by

R = λ̇(Γ1(A1 − a1) + Γ2(A2 − a2))− β̇(Γ1ψ̃1 + Γ2ψ̃2 − 2E)

− β
(
∂tΓ1ψ̃1 + ∂tΓ2ψ̃2 −

〈
∂tΓ1ψ̃1|ρ̃

〉
−
〈
∂tΓ2ψ̃2|ρ̃

〉)
− α̇(Γ1r

2
1 + Γ2r

2
2 − L2)

+ λ(Γ1[A1, ψ̃1] + Γ2[A2, ψ̃2])− α(Γ1[r2
1, ψ̃1] + Γ2[r2

2, ψ̃2]),
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where we have replaced the unknown true stream functions ψ1 and ψ2 with the trial stream

functions ψ̃1 and ψ̃2, respectively.

We now have a Liouville residual in mean-field form that is compatible with the trial

densities given by (10.1). In principle, we could now find the path λ(t) that solves the

constrained minimization problem

min
λ(0)=λ0

∫ τ

0

〈
R2|ρ̃

〉
dt subject to

1

2

(∫
R2

ψ̃1q̃1dx1 +

∫
R2

ψ̃2q̃2dx2

)
= E,∫

R2

|x1|2q̃1dx1 +

∫
R2

|x2|2q̃2dx2 = L2,∫
R2

ρ̃1dx1 = 1,∫
R2

ρ̃2dx2 = 1.

This gives us our general nonequilibrium theory.

10.1.2 Near Equilibrium Formulation

Just as in the Euler equations case, our trial densities are implicit in nature which com-

plicates the already difficult problem of solving our constrained optimization problem. We

have already seen one way to deal with both of these problems: Assume that we are near

to a statistical equilibrium state. Specifically, we now assume that |λ| << 1 and that λ = 0

corresponds to an equilibrium. We will use this assumption to take the implicit trial den-

sities given by (10.1) and write them in explicit form. Additionally, for these explicit trial

densities, our optimization problem will reduce to solving a matrix Ricatti equation. The

process is the same as in the Euler case. We write everything as expansions in λ and then

use the energy and angular impulse constraints to write the perturbations of α and β as

functions of λ. These are then used to write the stream function perturbations as a function

of λ alone. This allows us to reduce the Liouville residual to a near equilibrium form which

depends only on λ.

Using the small λ assumption, we write α = αeq − α′, β = βeq − β′, µk = µeqk + µ′k,

q̃k = qeqk + q′k and ψ̃k = ψeqk + ψ′k, where all prime terms are O(λ). Note that all averages
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are now taken with respect to the equilibrium density ρeq = ρeq1 ρ
eq
2 .

Under the near equilibrium assumption, the trial densities become

ρ̃k = [1 + Γk(λAk − βeqψ′k + β′ψeqk + α′r2)− µ′k]ρ
eq
k +O(|λ|2).

From this we find that

q′k = Γkρ
′
k = [Γk(λAk − βeqψ′k + β′ψeqk + α′r2)− µ′k]q

eq
k ,

and the stream functions then satisfy

−∆(ψeq1 + ψ′1) +
1

R2
d

(ψeq1 + ψ′1 − ψ
eq
2 − ψ

′
2) = qeq1 + q′1,

−∆(ψeq2 + ψ′2)− 1

R2
d

(ψeq1 + ψ′1 − ψ
eq
2 − ψ

′
2) = qeq2 + q′2.

It follows that ψ′1 and ψ′2 are related to q′1 and q′2 by

−∆ψ′1 +
1

R2
d

(ψ′1 − ψ′2) = q′1,

−∆ψ′2 −
1

R2
d

(ψ′1 − ψ′2) = q′2.

We require the trial distributions to satisfy the constraints on energy, angular momentum

and the circulation in both layers:

1

2

∫
R2

ψ̃1q̃1 + ψ̃2q̃2 dx = E,∫
R2

r2(q̃1 + q̃2) dx = L2,∫
R2

q̃1 dx = Γ1,∫
R2

q̃2 dx = Γ2.
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In the near equilibrium regime this gives the following linearized constraints

∫
R2

ψ′1q
eq
1 + ψ′2q

eq
2 dx =

∫
ψeq1 q

′
1 + ψeq2 q

′
2 dx = 0,∫

R2

r2(q′1 + q′2) dx = 0,∫
R2

q′1 dx =

∫
q′2 dx = 0.

Using the expressions for q′1 and q′2, the two circulation constraints reduce to

µ′k = λkak − 2βeqE
′
k + 2β′Eeqk + α′L2

k,

where ak = 〈Ak〉 and

Eeqk =
1

2

∫
R2

ψeqk q
eq
k dx, E′k =

1

2

∫
R2

ψ′kq
eq
k dx, L2

k =

∫
R2

r2qeqk dx.

Therefore, the vorticity distribution perturbation for the kth layer can be written

q′k = [λΓk(Ak − ak)− βeq(Γkψ′k − 2E′k) + β′(Γkψ
eq
k − 2Eeqk ) + α′(Γkr

2
k − L2

k)]q
eq
k . (10.4)

Taking these expressions for q′1 and q′2 and substituting into our system for ψ′1 and ψ′2

gives

−∆ψ′1 +
1

R2
d

(ψ′1 − ψ′2) = [λTΓ1(A1 − a1)− βeq(Γ1ψ
′
1 − 2E′1) + β′(Γ1ψ

eq
1 − 2Eeq1 )

+ α′(Γ1r
2 − L2,eq

1 )]qeq1 ,

−∆ψ′2 −
1

R2
d

(ψ′1 − ψ′2) = [λTΓ2(A2 − a2)− βeq(Γ2ψ
′
2 − 2E′2) + β′(Γ2ψ

eq
2 − 2Eeq2 )

+ α′(Γ2r
2 − L2,eq

2 )]qeq2 .

Moving all terms with ψ′1 and ψ′2 to one side, we find that they must satisfy the linear
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system

T1ψ
′
1 −

1

R2
d

ψ′2 = [λTΓ1(A1 − a1) + β′(Γ1ψ
eq
1 − 2Eeq1 ) + α′(Γ1r

2 − L2,eq
1 )]qeq1

− 1

R2
d

ψ′1 + T2ψ
′
2 = [λTΓ2(A2 − a2) + β′(Γ2ψ

eq
2 − 2Eeq2 ) + α′(Γ2r

2 − L2,eq
2 )]qeq2

where Tkf = −∆f + 1
R2

d
f +βeqk q

eq
k (f −〈f〉k). We can write the whole thing in matrix-vector

form  T1 − 1
R2

d

− 1
R2

d
T2


ψ′1
ψ′2

 = λTuA + β′uE + α′uL2 , (10.5)

where we have introduced the vectors

uA =

Γ1(A1 − a1)qeq1

Γ2(A2 − a2)qeq2

 , uE =

(Γ1ψ
eq
1 − 2Eeq1 )qeq1

(Γ2ψ
eq
2 − 2Eeq2 )qeq2

 , uL2 =

(Γ1r
2 − L2

1)qeq1

(Γ2r
2 − L2

2)qeq2

 .

We again expect the stream function to look like a point vortex at the origin when very far

away. This is fulfilled by the equilibrium stream functions ψeq1 and ψeq2 so that the far-field

conditions on ψ′1 and ψ′2 are

ψ′1 → 0, ψ′2 → 0

as |x| → ∞.

Let Gtl denote the inversion operator of the system (10.5). We can write

ψ′1
ψ′2

 = λGtluA + β′GtluE + α′GtluL2 (10.6)

Since Gtl, uA, uE and uL2 are all predetermined, we only need to perform the inversion

computation of each vector once.

Substituting the solutions for ψ′1 and ψ′2 into the energy and angular momentum con-

straints and noting that

2E′k = Γk

〈
λGtlkuA + α′GtlkuL2 + β′GtlkuE

〉
k
,
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gives a system of linear equations for α′ and β′

D1

α′
β′

 = D2λ, (10.7)

where D1 is the 2× 2 matrix

D1 = −

∑k Γk
〈
r2Pk(Γkr

2)
〉
k

∑
k Γk

〈
r2Pk(Γkψ

eq
k )
〉
k∑

k Γk
〈
ψeqk Pk(Γkr

2)
〉
k

∑
k Γk

〈
ψeqk Pk(Γkψ

eq
k )
〉
k


and D2 is the 2×m matrix

D2 =

∑k Γk
〈
r2PkA

〉
k∑

k Γk
〈
ψeqk PkA

〉
k

 ,

and we have introduced the notation PkF = (F − 〈F 〉k − βeqΓkq
eq
k (GtlkuF −

〈
GtlkuF

〉
k
).

Provided that D1 is invertible, we can write

α′ =

m∑
i=1

α′iλi β′ =

m∑
i=1

β′iλi

where the coefficients are given by the corresponding entries in the matrix D−1
1 D2.

Using the chain rule we can write

∂tψ
′
k = λ̇T (∇λψ′k + ∂β′ψ′k∇λβ′ + ∂α′ψ′k∇λα′)

so that

∂tψ
′
k =

m∑
i=1

ψ′ki · λ̇i, (10.8)

where

ψ′ki = ∂λiψ
′
k + ∂β′ψ′kβ

′
i + ∂α′ψ′kα

′
i

= GtlkuAi + β′iG
tl
kuE + α′iG

tl
kuL2 . (10.9)
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We can now write our trial densities explicitly. From (10.7) we can compute α′i and β′i.

Then using (10.6) and (10.9), we can compute the values of ψ′ki. Finally, using (10.4) we

compute q′1 and q′2 and add them to qeq1 and qeq2 , respectively, to get the trial densities.

Turning our attention to the Liouville residual, the near equilibrium assumption allows

us to write

R = λ̇T [Γ1(A1 − a1) + Γ2(A2 − a2)] + β̇′(Γ1ψ
eq
1 + Γ2ψ

eq
2 − 2E)

− βeq∂t(Γ1ψ
′
1 + Γ2ψ

′
2) + α̇′(Γ1r

2
1 + Γ2r

2
2 − L2)

+ λT (Γ1[A1, ψ1] + Γ2[A2, ψ
eq
2 ])− αeq(Γ1[r2

1, ψ
′
1] + Γ2[r2

2, ψ
′
2])

+O(|λ|2)

Plugging in the expressions for ψ′k, ∂tψ
′
k, β

′ and α′ and dropping higher order terms then

gives

R = UT λ̇+ VTλ (10.10)

where

Ui = Γ1(A
(i)
1 − a

(i)
1 ) + Γ2(A

(i)
2 − a

(i)
2 ) + α′i(Γ1r

2
1 + Γ2r

2
2 − L2) (10.11)

+ β′i(Γ1ψ
eq
1 + Γ2ψ

eq
2 − 2E)− βeq(Γ1ψ

′
1i + Γ2ψ

′
2i)

and

Vi = Γ1[A
(i)
1 , ψeq1 ] + Γ2[A

(i)
2 , ψeq2 ]− αeq(Γ1[r2, ψ′1i] + Γ2[r2, ψ′2i]) (10.12)

Applying the near equilibrium version of the general closure theory, we have the matrices

C, J and K given by

C =
〈
UUT

〉
, J =

〈
VUT

〉
, K =

〈
VVT

〉
,

where all averages are taken with respect to the equilibrium density ρeq = ρeq1 ρ
eq
2 . The

matrix D is given by

D = K + JC−1J.
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The paths of the average observables are then given by the linear system of equations

ȧ = [J −M(t)]λ, Cλ = a,

where as before M(t) is the solution to the Riccati differential equation

Ṁ +MC−1M + JC−1M −MC−1J = D, M(0) = 0.

10.1.3 Available Potential Energy Conversion

We have seen that the root of baroclinic instability is the transference of available potential

energy into kinetic energy. Even the work of Hogg and Stommel seeks to understand

mechanisms of converting potential energy into kinetic. Therefore it is worth exploring

what our optimal closure predicts about the flow of energy. Here we will look at the near

equilibrium case and derive a matrix that governs the rate at which energy is converted

from available potential energy into kinetic energy.

Recall the energy of the system can be written as

E =

∫
R2

ψT qT + ψCqC dx.

This is the sum of barotropic and baroclinic energy. Since we are in an unbounded domain,

the barotropic kinetic energy is infinite. However, the baroclinic kinetic energy is finite so

that we can rewrite the second term as

Ec =

∫
R2

|∇ψC |2dx +
2

R2
d

∫
R2

ψ2
C dx.

The second of these terms is the available potential energy. Expanding about the equilibrium

state, we find that the available potential energy is given by

APE =
2

R2
d

∫
R2

(ψeqC + ψ′C)2 dx.
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Now if ψeqC = 0 (as is the case when Γ1 = Γ2) or, more generally, if

∫
R2

ψeqC ψ
′
C dx = 0,

then

APE = APEeq +
2

R2
d

∫
R2

(ψ′C)2 dx = APEeq +
1

2R2
d

∫
R2

(ψ′1 − ψ′2)2 dx,

where APEeq is the equilibrium available potential energy given by

APEeq =
2

R2
d

∫
R2

(ψeqC )2 dx.

Using the fact that

ψ′k =
m∑
i=1

ψ′kiλi,

we can then write the total available potential energy as the quadratic form

APE = APEeq +
1

2R2
d

m∑
i=1

m∑
j=1

λiλj

∫
R2

(ψ′1i − ψ′2i)(ψ′1j − ψ′2j) dx.

This leads us to define the matrix P where

Pij =
1

R2
d

∫
R2

(ψ′1i − ψ′2i)(ψ′1j − ψ′2j) dx. (10.13)

so that the total available potential energy is given by

APE = APEeq +
1

2
λTPλ. (10.14)

Differentiating with respect to t gives us

d

dt
APE = λTPλ̇

= λTPC−1(J −M)λ (10.15)

Therefore, the time-dependent matrix PC−1(J −M(t)) governs the flow of available poten-

tial energy into kinetic energy and the rate relates back to λ, the coefficient of the resolved
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vector.

If the above conditions are not satisfied, then first two terms in the available potential

energy expansion gives

APE = APEeq +
2

R2
d

∫
R2

ψeqC ψ
′
C dx = APEeq +

1

2R2
d

∫
R2

(ψeq1 − ψ
eq
2 )(ψ′1 − ψ′2) dx

where APEeq is the same as above. This leads us to define the vector p where

pi =
1

2R2
d

∫
R2

(ψeq1 − ψ
eq
2 )(ψ′1i − ψ′2i) dx.

In this case, the total available potential energy is given by

APE = APEeq + pTλ.

Taking the time derivative, we find that

d

dt
APE = pTC−1(J −M)λ. (10.16)

Here, the time-dependent vector pTC−1(J −M) governs the flow of the potential energy

into kinetic energy. Comparing this to (10.15), we see that the matrix P has been replaced

by the vector p.

10.2 Two-Layer Application and Results

Rotating stratified fluids have been observed in numerical simulation to form coherent purely

barotropic vorticity structures [39]. This “barotropization” is a three-dimensional analogue

of the symmetrization problem we studied previously. In light of the division of energy

given by (9.15), we may also view it as a preference for minimal potential energy states.

As such the process is similar to baroclinic instability, in that it is one of the ways that the

atmosphere or ocean converts available potential energy into kinetic energy.

We will use the above closure procedure to investigate the formation of these barotropic

structures as well as to predict the rate of their formation. Specifically, we will look at
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baroclinic perturbations of the stable barotropic states. This can be viewed as the bookend

of the traditional baroclinic instability as we are focused on the end stages of the evolution

whereas the linear stability analysis of baroclinic instability focuses on the initial stages of

the evolution. In addition, we will quantify the conversion of available potential energy into

kinetic energy. To simplify our analysis, we restrict to the case of equal circulation in each

layer so that Γ1 = Γ2 = 1.

10.2.1 Observables

In order to study the process of barotropization, we could consider elliptical clouds of

point vortices and see how they interact. But we propose what we believe to be a more

physically meaningful situation. Consider two like signed vorticity patches. One patch is

in the top layer and the other is in the bottom layer. These two patches are given some

initial separation distance and allowed to advect one another until they collapse into a single

barotropic vortex cloud. This is reminiscent of the mechanism of the growth of unstable

modes of baroclinic instability as discussed by Salmon in [48]. To investigate this problem a

natural choice of observables is the separation of the center of the vortex clouds as measured

along the x and y axes. That is, in the notation of the previous section, we take

A1(x1, x2) = x1 − x2, A2(y1, y2) = y1 − y2

so that the average resolved vector a gives us the difference in the first moments of the two

vortex clouds

a1 = 〈x|ρ1〉 − 〈x|ρ2〉 , a2 = 〈y|ρ1〉 − 〈y|ρ2〉

This choice of observables also has a nice interpretation in terms of the baroclinic and

barotropic components. Note that we can write the center of vorticity as

B =

∫
R2

x · (q1 + q2) dx = 2

∫
R2

x · qT dx

so that the center of vorticity is (twice) the center of the barotropic vorticity. Taking the
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average of our above observables gives us (in vector form)

∫
R2

x · (q1 − q2) dx = 2

∫
R2

x · qC dx

so that our observable choice corresponds to (twice) the center of the baroclinic vorticity.

10.2.2 Results

We again compare the optimal closure to the mean of an ensemble of direct numerical

simulations. Since the truth is an average of runs, it is actually an approximation of the

true evolution. As such, the EDNS curves are guides to the true evolution and each one

really has an accompanying sampling error. See section 6.2 for a more thorough discussion.

To produce these curves, we randomly generated 40 different initial ensembles from the same

distributions and ran each of these forward in time according to the system of differential

equations given by (9.23). These ensembles consisted of 1000 vortices in the top layer and

1000 vortices in the bottom layer. We fixed the total circulation Γ = 2 which was evenly

divided between the layers (Γ1 = Γ2 = 1). Each of the 2000 point vortices had strength

γ = 10−3. The system was advanced in time using the standard Runge-Kutta 4th order

scheme with a step size of ∆t = 10−2. The step size was chosen because it was used in

the single-layer case and, generally, the changes in conserved quantities were not significant

(< 10−6). However, there were more violations of this than in the single-layer case but

remained fairly rare.

To generate the initial clouds of point vortices, we drew samples from a two bivariate

normal random variable. The two distributions must be related in a certain way to preserve

the various conserved quantities. Since the center of vorticity is conserved and is identically

zero, we must have that ∫
R2

xq1 dx = −
∫
R2

xq2 dx.

Therefore if the clouds are separated by a distance 2s along the x-axis, the two normal

distributions must have means (s, 0) and (−s, 0). Furthermore, if we fix the angular impulse

at L2 = 4 and divide it equally among the layers, then the variance of the normal random
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Figure 10.1: EDNS compared to optimal closure for case 1 of the two-layer quasigeo-strophic
equation. The initial conditions are a1 = 0.2 and a2 = 0.0 and Rd = 1.0. The closure
captures the first peak well and overestimates the second. This is a common trend among
smaller perturbations. There is good agreement between the two on the time taken to
equilibrate.

variables must decrease as the separation distance increases. Specifically, the trace of the

covariance matrix must equal 2− s2. We took the distributions to be radially symmetric so

that the covariance matrix was

Σ =

1− s2

2 0

0 1− s2

2

 . (10.17)

This fully defines the two distributions from which we drew samples.

10.2.2.1 Observable Prediction

Figures 10.1, 10.2, 10.3 and 10.4 give the plots of the predicted observable paths and the

plots of the EDNS observable paths with Rd = 1.0 and initial separations of 0.2, 0.4, 0.6

and 0.8, respectively. Table 10.1 gives the relative error and peak error as described in

section 6.2. In the first three cases, the closure does a good job predicting the magnitude

of the first peak as well as the second and sometimes even the third peak. We see the

same phase difference between the closure and the EDNS as in the Euler and single-layer

results with the closure rotating slightly faster than the EDNS. We also see that the closure

actually expects larger variations for the second and third peaks for smaller departures from

equilibrium suggesting that there is some range at which the merging process is faster than
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Figure 10.2: EDNS compared to optimal closure for case 2 of the two-layer quasigeo-strophic
equation. The initial conditions are a1 = 0.4 and a2 = 0.0 and Rd = 1.0. The closure
predicts each peak well. The equilibration time scale agrees with the EDNS. The phase
difference is not as noticeable in this case.

Observable Init Cond Abs Peak Err Rel Peak Err Max Abs Err Rel Err

a1 0.2 1.01262e-02 7.80894e-02 3.31798e-02 1.65477e-01
a2 0.0 3.98510e-03 2.23927e-02 3.16776e-02 1.78000e-01

a1 0.4 1.30084e-02 4.69825e-02 5.45266e-02 1.36017e-01
a2 0.0 7.25209e-03 1.98663e-02 4.52622e-02 1.23991e-01

a1 0.6 4.88576e-02 1.20704e-01 1.26589e-01 2.11290e-01
a2 0.0 2.48602e-02 4.57205e-02 1.17588e-01 2.16257e-01

a1 0.8 1.13183e-01 2.17730e-01 2.55321e-01 3.19059e-01
a2 0.0 5.55970e-02 7.75434e-02 2.47772e-01 3.45578e-01

Table 10.1: Absolute and relative errors of the closure compared to EDNS for the two-layer
quasigeostrophic equation with deformation radius 1.0. Peak error is the difference between
the first extreme values occurring after t = 0. Just as for the Euler and single-layer cases,
the peak error is consistently better than the relative error due to the closure result rotating
faster than the EDNS.

the closure is predicting. The last case we start to see the closure struggle with the peak

error breaking 20% and the relative error nearly hitting 35%.

Figures 10.5, 10.6 and 10.7 are similar plots but with Rd = 2.0 and initial separations

of 0.2, 0.3 and 0.5, respectively. Table 10.2 gives the error values for these cases. Here, we

see the closure do well in the first case, where it captures the first and second peaks well,

adequately in the second case, where it captures the first peak well and is not great on the

second peak, and badly in the third case, where it completely misses the second peak and

the first peak of a1 but does get the first peak of a2. The degradation of performance is far

faster here with regard to separation distance.
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Figure 10.3: EDNS compared to optimal closure for case 3 of the two-layer quasigeo-strophic
equation. The initial conditions are a1 = 0.6 (x moment) and a2 = 0.0 (y moment) and
Rd = 1.0. The first peaks are captured well by the closure with the a1 peak being somewhat
underestimated. The closure starts to struggle with subsequent peaks for a2. Interestingly,
the closure does a better job with the second x peak. The equilibration time is still roughly
the same.

Observable Init Cond Abs Peak Err Rel Peak Err Max Abs Err Rel Err

a1 0.2 4.05523e-03 2.52919e-02 6.59596e-02 3.29826e-01
a2 0.0 2.22700e-05 1.18879e-04 6.26326e-02 3.34326e-01

a1 0.3 3.31944e-02 1.30447e-01 1.42038e-01 4.73636e-01
a2 0.0 9.80810e-03 3.42655e-02 1.38156e-01 4.82545e-01

a1 0.5 1.32657e-01 3.09987e-01 3.49993e-01 6.99481e-01
a2 0.0 4.66988e-02 9.74623e-02 3.56236e-01 7.43263e-01

Table 10.2: Absolute and relative errors of the closure compared to EDNS for the two-layer
quasigeostrophic equation with deformation radius 2.0. Peak error is the difference between
the first extreme values occurring after t = 0. The peak error and relative error grows much
faster with separation than for Rd = 1.0.

There are a few possible sources of problems for the closure in addition to the normal

reasons (needing more resolved variables and too far from equilibrium). The first is how

the deformation radius and geometry affect the ratio of the concentration and magnitude

of strain placed upon the cloud in a layer. The second is how changing the deformation

radius affects the equilibrium state for a fixed initial setup.

Since the deformation radius is an interaction range, we expect that the larger defor-

mation radius would produce more mixing and a better result. However, recall that the
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Figure 10.4: EDNS compared to optimal closure for case 4 of the two-layer quasigeo-strophic
equation. The initial conditions are a1 = 0.8 (x moment) and a2 = 0.0 (y moment) and
Rd = 1.0. The closure significantly underestimates the first peaks as well as the second
peak of the y moment. The time scale to equilibrate is still roughly the same although it
appears that the closure is shorter than the EDNS.

stream functions satisfy the equations

−∆ψ1 +
1

R2
d

(ψ1 − ψ2) = q1,

−∆ψ2 −
1

R2
d

(ψ1 − ψ2) = q2.

Within each layer, the point vortex cloud is initialized from a radially symmetric normal

random variable which is itself an equilibrium distribution. Therefore, each layer viewed

separately from the other is in equilibrium. For a fixed initial condition, increasing the

deformation radius has no effect on the magnitude of ψC since this is determined by the

magnitude of qC . Therefore, the interaction terms in these equations (that is, the forces

causing variations from equilibrium within each layer) scale like 1/R2
d for a fixed layer circu-

lation. So we see that increasing the deformation radius actually decreases the interaction

necessary for relaxation to the purely barotropic equilibrium.

Physically, the internal deformation radius Rd relates to the length scales on which

the interface between the two layers deform with Rd = ∞ corresponding to a rigid or

immovable interface. This means that as Rd increases and the vortex cloud size remains

fixed, the clouds are unable to detect any disturbance in the interface and thus remain in

their internal equilibrium.
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Figure 10.5: EDNS compared to optimal closure for case 5 of the two-layer quasigeo-strophic
equation. The initial conditions are a1 = 0.2 (x moment) and a2 = 0.0 (y moment)
and Rd = 2.0. The closure predicts the magnitude of the first peaks better than the
corresponding R1 = 1.0 case. The second peaks are underestimated. The simulation is not
long enough to determine whether the equilibration times match.

The geometry of our setup and the conservation of angular impulse also increase the

concentration of the vortex in each layer. As was stated in our discussion of the setup,

the size of the vortex in each layer decreases as the separation distance increases. For a

fixed angular impulse, the size of the vortex cloud in each layer is
√

(L2 − 2s2)/2 where

s denotes the initial separation of the clouds. What we see is that as the square of the

separation distance grows, the cloud size decreases. Indeed, this length scales goes to zero

as s2 approaches L2 so that the clouds appear more like point vortices to one another in

this limit.

This is a potential problem for our theory. Recall that within each layer, the distribu-

tions are in an equilibrium state. If the strain generated by the other vortex cloud is not

sufficiently strong, then there is nothing to cause the equilibration of the system. This is

similar to what McWilliams observed in his two-dimensional turbulence simulations [40].

The long lived vorticity structures could be traced back to a large value in the initial vor-

ticity distribution. So the more concentrated a vortex, the more likely it is to persist.

McWilliams argued that the increased concentration of the initial vorticity increases the

strain required to disperse the patch. In our context, one patch must be strained suffi-

ciently by the other in order to barotropize. However, increasing the separation distance

increases the concentration of the vorticity and reduces the strain due to the patch in the
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Figure 10.6: EDNS compared to optimal closure for case 6 of the two-layer quasigeo-strophic
equation. The initial conditions are a1 = 0.3 (x moment) and a2 = 0.0 (y moment) and
Rd = 2.0. The initial peaks predicted reasonably well but the second peaks are drastically
underestimated. The results are comparable to the Rd = 1.0 case with twice the initial
separation.

other layer. Increasing the deformation radius further acts to reduce the strain by reducing

the shearing velocity.

The other issue has to do with how increasing the deformation radius affects the final

equilibrium state. Let us fix a separation distance and, thereby, an initial distribution. As

the deformation radius is increased, the total energy in the system increases. Physically,

this is because the vortex cloud has a larger range of effect and deforms the interface over

a larger distance. As a result, the value of βeq decreases and the final equilibrium state is

more concentrated. For initial separation 0.2, β ≈ −0.487 when Rd = 1.0 and β ≈ −0.932

when Rd = 2.0. The difference is more pronounced as the initial separation is increased.

For initial separation 0.3, β ≈ −1.08 when Rd = 1.0 and β ≈ −2.03 when Rd = 2.0. It

follows that the initial state moves further away from equilibrium as the deformation radius

increases.

It is unclear whether any of these are the reason for the poor predictive result of the

closure in this case. Other likely causes are that this is too far from equilibrium or we are

being too drastic in our variable reduction and need to introduce more observables, that is,

our model is too crude.
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Figure 10.7: EDNS compared to optimal closure for case 7 of the two-layer quasigeo-strophic
equation. The initial conditions are a1 = 0.5 (x moment) and a2 = 0.0 (y moment)
and Rd = 2.0. The closure completely fails to capture the initial peaks and appears to
significantly underestimate the equilibration time scale as the closure curve has only minor
fluctuations by time 500 whereas the EDNS curve still has significant oscillations about
the equilibrium value. For Rd = 1.0, the closure still had decent results with an initial
separation of 0.6.

10.2.2.2 Available Potential Energy Prediction

We now turn our attention to the conversion of available potential energy to kinetic energy

and how the closure compares with the underlying point vortex dynamics. First note that

based on the definition (9.16), we can compute the available potential energy of the point

vortex system as

APEEDNS =
γ2

8π2R2
d

∫
R2

(
N∑
i=1

K0(kd|x− x1i)−K0(kd|x− x2i|)

)2

dx.

This can be easily be computed numerically. Furthermore, using finite differences, we can

get an approximation of the rate of conversion of available potential energy into kinetic

energy. Note that, because we have used finite differences to approximate the rate of

conversion for the EDNS curves, the curves are quite rough and appear to be “stochastic”

in nature. This is not the case. The roughness is the result only of the finite difference

approximation. It should also be noted that sampling error is present in these curves as

well as a result of the finite number of ensemble runs. However, this would be a smooth

error and does not contribute to the rough appearance of the potential energy conversion

curves.
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Figure 10.8: Predicted available potential energy and rate of transfer of the closure compared
to EDNS for case 1. The initial conditions are a1 = 0.2 and a2 = 0.0 and Rd = 1.0. The
lack of smoothness in the EDNS APE rate curve is the result of using finite differences to
approximate the rate. The rough agreement between the rate curves and the scale of the
energy values suggests that the discrepancy in the total APE curves is the result of sampling
error. The closure predicts the time scale of energy transfer well.

Figures 10.8, 10.9, 10.10 and 10.11 compare the available potential energy calculations

for the direct point vortex numerics to those predicted by the closure as detailed in section

10.1.3 for cases 1, 2, 3 and 4 as given above. Figures 10.12, 10.13 and 10.14 give the same

comparison for cases 5, 6 and 7.

The results of the first four cases are in line with the closures predictive ability for the

resolved vector. We see that the closure does a reasonable job predicting the total potential

energy and the rate of conversion for case 2. Given the “wobbliness” of the total APE EDNS

curves in case 1 and that the rate EDNS curve matches the closure curve reasonably well, it

seems likely that the closure performs well in case 1 and that the significant differences are

a result of the scale and sampling error. Case 3 we see the closure start to struggle. The

total potential energy curve looks pretty good but the predicted peak rate is nearly twice

that of the EDNS curve. In case 4, we start to see significant discrepancies in the potential

energy curve as well as the rate curve—the initial APE prediction is 1.5 times more than
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Figure 10.9: TPredicted available potential energy and rate of transfer of the closure com-
pared to EDNS for case 2. The initial conditions are a1 = 0.4 and a2 = 0.0 and Rd = 1.0.
The total APE and rate of transfer are captured well by the closure as is the time scale over
which the energy transfer occurs.

the EDNS and the peak rate is more than 3 times as large. We do note that the closure

predicts the time scale for potential energy conversion for these four cases reasonably well

although it consistently predicts a shorter time scale than the EDNS.

In the last three cases, we see even more emphatically that the closure struggles with

larger deformation radii. In case 6, we see something similar to case 3, where the total

potential energy is captured adequately but the conversion rate is not—the maximum rate

of the closure is more than twice the EDNS rate. On top of that, we see that the conversion

time scale is not well captured at all. With case 5, we see the closure predicts the total

potential energy well to start with, and then, around time 150, the two curves diverge with

the EDNS curve decreasing much more slowly than the closure. Since the scales are small

and both the EDNS total and rate curves exhibit some wobbling, it is likely that a significant

portion of this error is sampling error. However, given the struggles of the closure in case

6, it is hard to argue that even the majority of the error is the result of a finite number of

ensembles. Case 7 we see the same behavior as with the resolved variable prediction—the
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Figure 10.10: Predicted available potential energy and rate of transfer of the closure com-
pared to EDNS for case 3. The initial conditions are a1 = 0.6 and a2 = 0.0 and Rd = 1.0.
The closure total APE curve is reasonable. However, the closure clearly predicts the trans-
fer of APE at a higher rate than the EDNS. The closure peaks at roughly twice the EDNS
minimum. We also see that the time scale is slightly shorter for the closure than the EDNS
but still a good estimate.

closure fails completely. The total initial potential energy is twice the EDNS value, the

maximum rate is more than six times the EDNS rate and the potential energy EDNS curve

has barely started to level off at the end of the simulation whereas the closure curve is more

or less flat by time 300 so that the time scale is not even close to well approximated. As a

small positive, we note that the closure has picked up that the time scales of conversion are

longer with a larger deformation radius. Comparing case 1 and case 5 which both start with

a1 = 0.2 and a2 = 0.0, we see that for Rd = 1.0, potential energy conversion has stopped

by time 300, whereas for Rd = 2.0 only near the end of the simulation at time 500 has the

conversion rate returned nearly to 0.

The explanation for the struggle of the closure at larger deformation radii with the

available potential energy prediction are likely the same as that for the resolved variables:

Increasing the deformation radius moves a fixed initial distribution further from equilib-

rium, inability of the reduced model to pick up insufficient strain on the vorticity patches,
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Figure 10.11: Predicted available potential energy and rate of transfer of the closure com-
pared to EDNS for case 4. The initial conditions are a1 = 0.8 and a2 = 0.0 and Rd = 1.0.
The closure predicts neither the rate nor the total energy well in this case. The starting
APE total is roughly 1.5 times that of the EDNS and the peak rate is about 4 times larger.
The time scale the closure predicts for the transfer is obviously shorter than the EDNS but
not as off as the total APE and rate.

insufficient resolved variables or the failure of the near equilibrium approximation.

10.2.3 Parameter Dependence

We now use the closure to examine the dependence of the barotropization or equilibration

rate and the available potential energy transfer rate on the inverse temperature β and the

internal deformation radius Rd. Just as in the Euler equation and single-layer equation case,

the C and K matrices are diagonal with equal entries so that the M matrix is diagonal

with equal entries. Therefore the eigenvalues of M (or its entries) describe the rate at

which the observables dissipate. Given the nature of the observables, we can also call this

a barotropization rate.

Figure 10.15 gives a plot of the repeated eigenvalue of M as a function of β with the

deformation radius fixed at 1.0, 2.0 and 4.0. We see again that the equilibration rate

increases as β decreases and is trending toward infinity as β approaches −8π. Physically,
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Figure 10.12: Predicted available potential energy and rate of transfer of the closure com-
pared to EDNS for case 5. The initial conditions are a1 = 0.2 and a2 = 0.0 and Rd = 2.0.
Due to the scale of the energy and the sampling error it is difficult to definitvely evaluate
the closure. However, there does seem to be reasonable agreement for both the total and
rate curves. The closure seems to predict the transfer time scale well.

this means that the barotropization occurs more rapidly the more concentrated or peaked

the final state. As β → −8π, the equilibrium distribution resembles more and more a purely

barotropic point vortex. In this limit, this is the only admissible state so that everything

immediately collapses. This resembles both the Euler and single-layer case.

In the limit β → ∞, we see a different behavior than the Euler and single-layer cases.

As β increases, the equilibration decreases for awhile until it hits a minimum then begins

to increase again. The minimum value and the β value for which it occurs depends on the

deformation radius, but all three curves exhibit this behavior. This means that the after

the minimum β value, the more uniformly distributed the vorticity in the final equilibrium

state, the more quickly the barotropization. This is an interesting prediction and we have

no obvious physical justification for it.

Figure 10.16 depicts the relationship between the deformation radius and the barotrop-

ization rate for several different β values. Here we see that the rate of barotropization
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Figure 10.13: Predicted available potential energy and rate of transfer of the closure com-
pared to EDNS for case 6. The initial conditions are a1 = 0.3 and a2 = 0.0 and Rd = 2.0.
The total APE curve is not unreasonable but the peak APE rate is half of what is predicted.
The closure adequately captures the time scale of transfer.

decreases as we increase the deformation radius. Since the 1/R2
d is the interaction coefficient

of the two layers, this is the expected relationship. That is, as we decrease the interaction

strength of the the two layers, the process of vertical symmetrization takes longer. Perhaps

the only surprising thing in this plot is that the equilibration rate does not approach zero

as Rd approaches zero. The reason for this is that, in the limit of Rd → 0, motion does

not cease. In fact, we recover the Euler equation in this limit. Recall that the internal

deformation radius is given by

Rd =

√
g′H

f0
,

where f0 is f -plane approximation of the Coriolis force, H is the depth of either layer and

g′ is the reduced gravity given by

g′ =
g(ρ2 − ρ1)

ρ1
,

where ρ1 and ρ2 are the mass densities of the fluid in each layer. Physically, the limit of
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Figure 10.14: Predicted available potential energy and rate of transfer of the closure com-
pared to EDNS for case 7. The initial conditions are a1 = 0.5 and a2 = 0.0 and Rd = 2.0.
The closure fails to accurately predict the total APE, the peak rate and the time scale.

Rd going to zero can only be the result of the reduced gravity going to zero. This can only

happen if the difference in fluid density tends to zero. Hence, we recover the single-layer

quasigeostrophic equation. In our case, we have used the rigid lid approximation and so set

the external deformation radius to infinity. Therefore, we get the Euler equations in the

limit Rd going to zero.

To explore the available potential energy transfer rate dependence on the parameters,

we can use the eigenvalues of the matrix −PC−1M . We have observed numerically that

the matrix P given by (10.13) is diagonal for our choice of observables. From this and

the fact that C−1 and M are also diagonal and the fact that J is antisymmetric, we see

that the matrix PC−1(J −M) is composed of an antisymmetric piece given by PC−1J

and a diagonal piece given by −PC−1M . The antisymmetric part can be interpreted as

the transfer of potential energy from one observable to the other and, therefore, has no

effect on the transfer rate. This manifests as the fact that λTBλ = 0 for any antisymmetric

matrix B and real vector λ. It follows that the transfer of potential energy to kinetic energy

is controlled entirely by the matrix −PC−1M . Since it is diagonal, the entries are the
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Figure 10.15: Predicted equilibration rate as a function of inverse temperature for several
values of deformation radius. Similar to the single-layer case, the equilibration rate increases
as β decrease showing that the closure predicts faster relaxation when the final state is more
concentrated. As β increases we do see a decrease in relaxation rate to start. However, in
contrast to the single-layer case, the equilibration rate increases after awhile. We see this
behavior regardless of deformation radius.

eigenvalues and these give a transfer rate.

Figure 10.17 depicts the potential energy transfer rate as a function of β for Rd = 1, 2

and 4. Here we see that potential energy transfers more quickly as β approaches −8π and

that the rise happens more quickly for a larger deformation radius. Just as the case with the

equilibration, it appears that the rate approaches infinity in this limit–that is, the energy

transfer becomes instantaneous. This is again an artifact of the fact that the equilibrium

distribution approaches a point vortex as β → −8π. In the other limit of β → ∞, we see

that the potential energy transfer rate drops to near zero with the drop happening faster

with larger deformation radius. Zooming in on the interval of β ∈ [10, 45] reveals a similar

phenomena as with the equilibration: the curve reaches a maximum and then begins to

drop again. However, unlike with the equilibration rate, there are signs that the concavity

again changes and the potential energy transfer rate again begins to approach zero.

Figure 10.18 plots the available potential energy transfer rate dependence on Rd for
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Figure 10.16: Predicted equilibration rate versus deformation radius for several values of
inverse temperature. For any value of β, the relaxation rate decreases as the deformation
rate increases and decays to zero as Rd goes to infinity. This is the result of the decreased
interaction of the two layers as Rd increases and when Rd =∞ the two layers are completely
independent. As the deformation rate goes to zero, we recover the Euler equations so that
the rates near zero correspond to those of the Euler equations.

several β values. The plot reveals a common “check mark” shape that each fixed β curve

follows as the deformation radius increases. Of particular interest is that for any β value,

the maximal rate of potential transfer occurs with deformation radius around 1.0. This is

reminiscent of the conclusion of baroclinic instability: that the mode of maximum growth

is roughly the same as the deformation radius. The variation due to β that we do see is

that the deformation radius increases as β decreases. That is, as the vortex becomes more

concentrated, we see an increase in the deformation radius that results in the fast transfer

of available potential energy.

In light of the struggles of our model for larger deformation radii, this conclusion may

be questioned. However, in all cases, the closure predicted faster equilibration and APE

transfer than the EDNS result. Therefore, we would expect the eigenvalues of the appro-

priate matrix to be larger in magnitude than the true rates. It follows that the true curve

should lay above our predicted curve (since the APE transfer rates are negative). Thus, the
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Figure 10.17: Predicted APE conversion rate as a function of inverse temperature for sev-
eral values of the deformation radius. The lower plot is zoomed in on the interval [10,45].
The rate of transfer of APE increases as β decreases so that more concentrated equilib-
rium states transfer potential energy more quickly. As β increases, the energy transfer rate
decreases until the difference due to deformation radius is negligible. Therefore, the more
uniform distributions transfer energy more slowly and roughly independent of the deforma-
tion radius. The magnitude of the transfer rate increases after a certain minimal β value
just as in figure 10.15.
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Figure 10.18: Predicted APE conversion rate as a function of deformation radius for several
values of inverse temperature. Note the “check mark” shape common to each fixed β curve.
The peak transfer rates all occur around Rd = 1.0 so that the deformation scale is roughly
the same as the vorticity patch. There is an inverse relation between the two parameters.
The smaller β values transfer energy more quickly at larger deformation radii and larger β
values transfer energy more quickly at smaller deformation radii. The minima occur where
our model has good predictive power.

check mark would be even more pronounced than in figure 10.18. Furthermore, as noted

previously, the minimum occurs around Rd = 1.0 where our model performed well.
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APPENDIX A

MEAN-FIELD CONVERGENCE OF STREAM

FUNCTION

Here, we justify our replacement of the discrete stream function ψNi with the continuum

stream function ψ. This is done simply by making use of the fact that the distribution ζN

converges weakly to some continuum distribution ζ. In particular, this means that for any

continuous, bounded function f , we have

∫
R2

f · ζNdx →
N→∞

∫
R2

f · ζdx.

First define the functions

ζNi (x) =
∑
j 6=i

γδxj , (A.1)

ζN (x) =

N∑
i=1

γδxj . (A.2)

From these definitions, we have

∫
R2

ζNi fdx =

∫
R2

ζNfdx−
∫
R2

(ζN − ζNi )fdx

=

∫
R2

ζNfdx− γf(xi),

from which we see that for any continuous and bounded function f

∫
R2

ζNi fdx −→
N→∞

∫
R2

ζfdx. (A.3)
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Therefore, ζNi also converges weakly to ζ.

Now fix x0 ∈ R2. Let g(x,x′) be the appropriate Green’s function to solve (2.4b). We

leave this as a general function because the same arguments can be applied for (7.25b). In

order to use our weak convergence argument, we need to approximate g with an appropriate

continuous and bounded function. To eliminate the singularity at the origin and smooth g,

we use a mollifier. Specifically, define

φ(x) =


C exp

(
1

|x|2−1

)
, |x| < 1

0, |x| ≥ 1

for the constant C > 0 such that
∫
R2 φ dx = 1. Then for any η > 0, let

φη(x) =
1

η2
φ

(
x

η

)
.

We define gη, the mollification of g, by

gη = φη ∗ g,

where ∗ denotes the convolution product. From the properties of mollifiers (see [21] for a

brief but thorough discussion), we know that gη is infinitely smoothly differentiable and

that gη → g as η → 0.

Define the mollified continuum stream function

ψη(x) =

∫
R2

gη(x,x′)ζ(x′)dx′

and, similarly, the mollified point vortex stream function

ψN,ηi (x) =

∫
R2

gη(x,x′)ζNi (x′)dx′.

Fix η sufficiently small so that |ψη(x0)− ψ(x0)| < 1/N and |ψN,ηi (x0)− ψNi (x0)| < 1/N .
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Since |ψη(x0)| <∞ and |ψN,ηi (x0)| <∞, there is KN ⊂ R2 such that

∣∣∣∣ψη(x0)−
∫
KN

gη(x0,x
′)ζ(x′)dx′

∣∣∣∣ < 1

N
, (A.4)∣∣∣∣ψN,ηi (x0)−

∫
KN

gη(x0,x
′)ζNi (x′)dx′

∣∣∣∣ < 1

N
. (A.5)

Define gηKN
to be the function given by gηKN

(x) = gη(x0,x) for x ∈ KN and gηKN
(x) = 0

for any x ∈ R2 such that dist(x,KN ) ≥ 1/N and for x such that dist(x,KN ) < 1/N , gηKN

is continuous. Therefore gηKN
is a continuous bounded function. It also follows that (A.4)

and (A.5) are still satisfied with gηKN
in place of gη and R2 in place of KN .

It follows that for any N , we have at x0

|ψNi − ψ| ≤ |ψNi − ψ
N,η
i |+

∣∣∣∣ψN,ηi −
∫
R2

gηKN
ζNi dx

∣∣∣∣+

∣∣∣∣∫
R2

gηKN
(ζNi − ζ)dx

∣∣∣∣
+

∣∣∣∣∫
R2

gηKN
ζdx− ψη

∣∣∣∣+ |ψη − ψ|

≤ 4

N
+

∫
R2

gηKN
(ζNi − ζ)dx.

Letting N →∞ and using the weak convergence of ζNi to ζ, we conclude that

ψNi (x0)→ ψ(x0) (A.6)

as desired.
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APPENDIX B

DISCUSSION OF NUMERICAL METHODS

We believe in using previously implemented numerical algorithms (root finding, matrix

solver, numerical integration, etc.) unless there is a compelling reason otherwise. Using

these “black box” implementations has several benefits. The most obvious is saving con-

siderable amounts of time. The other is that the commonly distributed versions of these

algorithms have been used extensively so that users can have a high degree of confidence

that the functions perform as advertised.

Hence, we have tried to use packaged algorithms for the large majority of the numerics

in this work. As such, much of the following discussion briefly summarizes what is found

in the documentation and the interested reader is encouraged to read the documentation

(these almost always include references to books or papers that give the theoretical details

of the particular algorithm).

The direct point vortex ensemble runs were written in C++ for speed purposes whereas

the optimal closure was implemented using Python for ease and portability.

B.1 Direct Numerical Simulation of Point Vortex System

The desire for the direct numerics to run quickly was a compelling enough reason to imple-

ment the needed numerics for ourselves and to do so in C++. In doing so we can circumvent

many of the safe programming practices that are needed when implementing algorithms for

distribution. We also saved a significant amount of time by using a compiled language.

Of course, none of the methods used were exceptionally complicated. The right hand side

of the point vortex equations (2.14) was done directly with no smoothing or cutoff distance.
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This was largely dictated by ease of implementation. For the necessary computation of the

modified Bessel function of the second kind for (7.34) and (9.23) we used the GNU Scientific

Library. This is a free, publicly available numerical library for C and C++ programming.

Information about the library and how to download it can be found at https://www.gnu.

org/software/gsl/.

The actual time integration was done with the standard fourth order Runge-Kutta

method (as was stated in the text) that can be found in any introductory numerical analysis

textbook, [2] for example.

B.2 Time Integration of the Reduced Equations and the Ricatti Equation

Time integration for both the reduced equations resulting from the optimal closure and

the Ricatti matrix differential equation was done using the Scipy (pronounced “Sigh Pie”)

module for Python. Documentation for this module is available at https://docs.scipy.

org/doc/scipy/reference/.

The reduced equations were integrated using the class scipy.integrate.ode using the

“vode” mode. This is a Python wrapper around the Fortran implemented function vode.

The documentation for vode may be found at https://computation.llnl.gov/casc/

odepack/ as well as a downloadable copy (which includes more extensive documentation).

This function solves nonstiff systems using Adams methods and stiff systems using backward

differentiation formula methods and automatically switches between the two as needed.

The Ricatti equation was integrated using the function scipy.integrate.odeint func-

tion. This function is a Python wrapper around the function lsoda again from the For-

tran library ODEPACK. Again, documentation and a downloadable copy is available at

https://computation.llnl.gov/casc/odepack/. This function is very similar the func-

tion vode—it uses Adams methods for nonstiff systems, backward differentiation formula

methods for stiff systems and switches between the two as needed.

The only reason for using different methods is that the Python implementations are not

reentrant and we could not run two versions of the same solver simultaneously. As it was

necessary to integrate the Ricatti equation through time to get the necessary M matrix for
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the integration of the reduced equations, we needed to run two solver at the same time.

B.3 Numerical Implementation of Whitaker-Turkington Algorithm

Implementation of the algorithm described in section 3.3 requires two components: a (non-

linear) root finder and a Poisson solver. Here we provide brief descriptions of the root finder

and Poisson solver used in our implementation.

B.3.1 Root Finding

We relied on black box software for root finding. Specifically using the Scipy module func-

tion scipy.optimize.fsolve. This is a Python wrapper around the hybrd and hybrdj functions

from the MINPACK library. The former is used when the Jacobian matrix must be approx-

imated and the latter when the Jacobian is provided by the user. Documentation for the

MINPACK library can be found at http://www.mcs.anl.gov/~more/ and the source files

can be downloaded at http://www.netlib.org/minpack/. Both functions use a modified

version of the Powell hybrid method.

B.3.2 Poisson Solver

We needed a method to solve Poisson’s equation in the plane

−∆ψ = ζ

with the asymptotic boundary condition ψ ∼ − log |x|/2π as |x| → ∞. This boundary

condition comes from the fact that a distribution of positive unit circulation looks like a

point vortex with unit strength from far away.

As the vorticity distributions in our problem are smooth, a spectral method was the

natural choice. For a traditional numerical analysis approach to spectral methods see [10].

For a more applied and implementation focused text see [6].

We chose to use the collocation or pseudospectral method as opposed to the Galerkin

method. (Actually since we computed the integrals numerically, the two approaches are

equivalent [6].) A particularly easy way to implement collocation spectral methods is to
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use differentiation matrices. The basic idea of differentiation matrices is to interpolate the

solution in some appropriate (truncated) set of basis functions and then on a (finite) grid

compute the derivatives of the basis functions exactly [53]. In this way, the differential

operator is approximated by a matrix operator. In particular, let L be the differentiation

matrix for the Laplacian. Then the solution of the above Poisson problem becomes the

simple matrix-vector problem

−Lp = z,

where p and z are the grid point values of the functions ψ and ζ, respectively.

Because we sought the solution on the whole of R2, we used Hermite polynomials for

the basis functions. To avoid interpolating between different grids, we used Gauss-Hermite

quadrature to numerically evaluate all the necessary integrals. The MATLAB differen-

tiation suite implemented by Weideman and Reddy [62] along with the Python port of

the MATLAB code (which can be obtained at https://github.com/labrosse/dmsuite)

formed the basis of our code.

Note that Hermite expansions require that the function decay to zero as we approach

infinity which does not match our boundary condition. We solve this using the linearity of

the problem. Let ψ = ψD + ψG where ψD → 0 as |x| → ∞ and ψG ∼ − log |x|/2π. We

build ψG and find the corresponding ζG by differentiation. Then ζD = ζ − ζG so that

−∆ψD = ζD

where ζD is known and we can solve for ψD using a Hermite expansion and recover ψ and

ψ is then recovered by using ψ = ψD + ψG.
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