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ABSTRACT

POWER LAWS IN COMPLEX GRAPHS:
PARSIMONIOUS GENERATIVE MODELS,

SIMILARITY TESTING ALGORITHMS, AND THE
ORIGINS

MAY 2018

SHAN LU

B.Sc., SICHUAN UNIVERSITY, CHINA

M.Sc., UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Weibo Gong and Professor Don Towsley

This dissertation mainly discussed topics related to power law graphs, including

graph similarity testing algorithms and power law generative models.

For graph similarity testing, we proposed a method based on the mathematical

theory of diffusion over manifolds using random walks over graphs. We show that our

method not only distinguishes between graphs with different degree distributions,

but also graphs with the same degree distributions. We compare the undirected

power law graphs generated by Barabási-Albert model and directed power law graphs

generated by Krapivsky’s model to the random graphs generated by Erdös-Rényi

model. We also compare power law graphs generated by four different generative

models with the same degree distribution. The comparison results show that, our

vii



method performs better compared to the traditional features like eigenvalue spectrum

and degree distributions.

To study the generative mechanism of bivariate power law data in social networks,

we use Poisson Counter Driven Stochastic Differential Equation (PCSDE) models as

mathematical tool. We propose three types of bivariate PCSDE models. We study

the tail dependence of the models and compare the models to real data in social

networks. Type 1 model with Markov on-off modulation generates tail dependence

coefficient (TDC) with values either zero or one; while the Type 2 model with coupled

growth has the values between zero and one. The first two types of models do not

fit the real data in distribution. Type 3 model keeps the shared Poisson counter in

Type 1, but uses independent Brownian motion components instead of independent

Poisson counters. We show that second Type 3 model with 0 < γ < 1 has fractional

TDC and synthetic data fits the real data in distribution.

We study the applications of our proposed bivariate models. At first, the con-

nection between Type 3 model to the existing network growing models is discussed.

By connecting the two, our model explains why correlated bivariate power law in

directed growing networks. The idea of exponential growth and random stopping can

also be used to explain the existence of power law in many other natural or man-made

phenomenons. We show that bivariate power law data also exists in natural images.

We propose a new generative model for self-similar images based on our second Type

3 model.
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CHAPTER 1

INTRODUCTION

1.1 Background

Power law distributions have been observed in many natural phenomena (sizes of

earthquakes [44], sizes of neural avalanches clusters [76], etc) and man-made phenom-

ena (frequency of use of words, population of cities, etc) [19, 70]. The degree distri-

bution of many complex networks follow power law distributions, such as networks

of film actors, peer-to-peer networks, etc. In [69], the authors gave basic statistics of

some published networks. Power laws also appear in some critical phenomena, such

as power law cluster size distribution appears at the phase transition point in percola-

tion problems [11, 1, 70]. Natural images are also related to power law distributions,

such as the the power spectra of natural images [89, 90], cluster size distribution in

the k-bilevels of natural images [5, 39].

We begin with the definition of power law distribution. A random variable follows

a power law distribution if its Complementary Cumulative Distribution Function

(CCDF) satisfies:

F̄X(x) = P(X > x) ∼ x−α, (1.1)

for some α > 0. In (1.1), f(x) ∼ g(x) denotes

lim
x→∞

f(x)

g(x)
= c,

where c is some positive constant.
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Power laws are famous for the 80/20 Rule, which is also called Pareto Principle.

In 1971, Pareto pointed out that 80% of the wealth in Italy belonged to 20% of the

population [74]. The 80/20 Rule can also be applied to many other domains. For

example, we normally spend 80% of our time to complete some hard part of a project,

which takes up only 20% of the project.

As we mentioned before, complex networks are also related to power-law phe-

nomenon. Complex networks normally relate to real-life networks, such as social

networks, biological networks, etc. Complex networks are typically very large, and

exhibit some features not found in simple graphs. For example, connections between

the nodes in complex networks are usually random; the degree distributions follows

power law.

A network with power law distribution is often called a scale-free network. In

this dissertation, we focus on topics related to scale-free networks. Power law degree

distributions have been observed in many real networks with the creation of World

Wide Web (WWW) at the beginning of the 90s [4]. In [3], the authors presented the

degree distribution exponents of several scale-free networks, such as Internet [28, 14],

email networks [24], citation networks [77], etc. Power laws are also observed in

financial economics [31, 32]. Social networks [25] have attracted millions of users

since their birth. Normally, social networks contain users and relationship between

the users. In [54, 61], power law distributions had been found in some online social

networks, like Twitter, Youtube, LiveJournal etc. In [84], Ribeiro et al. studied the

distribution of number of friends in MySpace and found that it followed a double-

Pareto distribution. In [52], the authors presented several measurements of two social

networks, Flickr and Yahoo!, and proposed a biased preferential attachment model

to study the evolution of social networks. Social networks exhibit some features that

differ from the traditional Internet, Web and citation networks. We will talk more
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about the differences in the later parts. These differences motivate us to study the

origin of power law data in social networks.

1.2 Related work

1.2.1 Research on graph comparison

Our first interest is to check similarity or dissimilarity of complex networks. This

problem is practical and useful in data analysis.

Based on research in [49, 93], the traditional notion of graph similarity includes

graph isomorphism, edit distance, and maximum common subgraph/minimum com-

mon subgraph. Two graphs are isomorphic when they have the same number of nodes

and the nodes are connected in the same way. Edit distance refers to the minimum

set of operations required to transform one graph to another. It is a generalization

of isomorphism. Another generalization is the minimum/maximum common sub-

graph/supergraph, which means one graph is isomorphic to a subgraph of the other.

This notion is very useful in comparing simple graphs, such as chemical structures.

Checking for graph isomorphism is believed to be NP-Complete, thus may not be

useful for complex graph comparison.

In [73], the author proposed several algorithms for Web graph similarity based on

existing graph similarity measures, such as vertex/edge overlap (VEO), Vertex/edge

vector similarity, etc. These algorithms are designed to detect anomalies in Web

graphs, such as missing random vertices or connectivity changes. These algorithms

need the two graphs to have similar sizes to compare and need to know the nodes

mapping information of the two compared graphs. This is a not suitable for many

complex networks without no detailed vertex information.

When the nodes’ mapping information is unknown, algorithms to measure the

similarities between nodes are needed. Based on the principle that two nodes are

similar if their neighborhoods are also similar, some iterative methods were proposed.
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The iterative methods need to calculate the pairwise similarity scores between graphs

elements. Some examples of iterative algorithms include SimRank algorithm [41],

Similarity Flooding algorithm [59], etc. Such iterative algorithms do not scale well.

Feature extraction methods extract features such as degree distribution, diame-

ter, and eigenvalues to compare between graphs. Using these extracted features, a

similarity measure is applied to compute the similarity scores between graphs, like

similarity measures between probability density functions in [15]. Euclidean distance

is one of the most popular measures. Feature extraction methods significantly reduce

the scale of data needed for comparing and do not need the nodes’ mapping infor-

mation; so are more suitable for complex networks. However, some features may fail

in some special cases. In Chapter 2, we will discuss some failure cases of existing

features, such as the degree distribution and Laplacian spectrum.

1.2.2 Research on power law generative models

The ubiquity of power law distributions has motivated researchers to search for

mechanisms to explain their origins. In [63, 31], the authors summarized several

generative mechanisms for power law distributions, including preferential attachment,

optimization, multiplicative models, and so forth. Generative mechanisms for double-

Pareto distribution were discussed in [64] and [79]. In [79], the model was used to

fit income and other size distributions. In [37], the authors argued that some of the

proposed mechanisms are not robust and existing data is usually not sufficient for

classifying the tail of a distribution.

Network growth models are designed to generate scale-free graphs to explain

the origin of power law degree distributions in complex graphs. The famous undi-

rected generative models like Barabási-Albert Model (B-A) model [8] was proposed

by Barabási and Albert in 1999. B-A model rediscovered the world for undirected

graphs. This model is simple and elegant; but the power law exponent the model
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generated is always 3 no matter how you change the parameters. Some extensions

and modifications of the B-A model are proposed by followers. Albert and Barabási

summarized those models in Table III in [3]. Directed generative models are also

proposed to generate directed power law graphs. In 1965, the famous Price’ model

was proposed to simulate the growing process in citation networks [22]. Many more

directed models were proposed after that for more general cases, like Krapivsky’s

models [51, 50], Aiello’s models [2], Bollobás’ model [9], etc. In [69], the pros and

cons of existing undirected and directed network growing models were summarized

and discussed in Chapter 7.

In [78, 80], authors presented a simple mechanism by showing that power law

emerges when an exponentially growing process is stopped at exponentially dis-

tributed random time. They used a Geometric Brownian Motion (GBM) as the

mathematical model. In their work [81] in 2003, they applied the same mechanism in

[80] to explain the occurrence of heavy-tailed distributions in gene family size distri-

bution and the evolution networks. That means that their mechanism can be applied

to explain many specific problems. In [43], the authors showed the power of this idea

for generating different kinds of power law, log-normal and double-Pareto distribu-

tions with some modifications to the original model. This idea is so powerful and is

not constrained to explain power laws in complex graphs. We use models in [43] as

our mathematical basis in our works.

1.3 Problem outlines and main results

As has mentioned in the previous section, we focus on developing algorithms and

models for problems related to complex networks. The problems include:

1. Design an algorithm to check the similarity between two complex graphs. The

algorithm needs to be scale in the size of the graphs. And the features we extract
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should be better representatives of the graph compared to existing features, not

too loose or too tight.

2. Propose generative models for bivariate power law data. Existing power law

explanations are normally for one dimensional power law phenomenon, except

for some directed network growing models. The network growing models were

designed to model the evolution of directed scale-free graphs. We will design

bivariate models not only aiming at directed graphs but also bivariate power

law data in many other fields.

The main results of our work include:

1. We designed a graph comparison algorithm based on existing heat content the-

ory. This algorithm is computationally efficient for classification. It is robust

against minor changes in graphs. Our algorithm also works well in cases where

more traditional algorithms fail.

2. We propose several bivariate power law generative models based on single vari-

ate models in [81] and [43]. Our Type 3 models fit real bivariate power law data

in scale-free networks. This type of models can be connected to the existing

network growing models. They are also useful in explaining bivariate power law

data in other fields, like natural images.

1.4 Dissertation structure

The thesis contains four chapters. In Chapter 2, we propose a graph similarity

testing algorithm and apply the algorithm to classify graphs with different degree

distributions and graphs with the same degree distribution. In Chapters 3 and 4, we

propose three different types of bivariate Poisson Counter Driven Stochastic Differen-

tial Equation (PCSDE) models to generate correlated bivariate power law data. The

synthetic data generated by our models are compared to real data in social network.
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In Chapter 5, we discuss possible applications of the model proposed in Chapter 4.

We draw conclusions and discuss future works in Chapter 6.
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CHAPTER 2

COMPLEX NETWORK COMPARISON USING
RANDOM WALKS

2.1 Introduction

2.1.1 Background

Graph similarity checking among complex networks is a challenging task since

graph sizes increase extremely fast in diverse areas. Traditional methods for simple

graphs may not apply to complex networks. The complexity and large size of graphs

require scalability in the algorithms. How do we know whether two graphs are struc-

turally similar if the two graphs are large? In Figure 2.1, we show three graphs from

[40]. Can one tell how similar or dissimilar these three graphs are? Does one believes

the three graphs actually have the same degree distribution?

As mentioned in Section 1.2.1, isomorphism is effective in comparing simple graphs

and iterative algorithms are not scalable. Feature extraction is more suitable to

compare large scale complex graphs. However, some previously proposed features may

Figure 2.1. How to check similarity/dissimilarity of complex networks?
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Figure 2.2. An example of isospectral planar graphs in [58]

not reflect the network connectivity structure very well, such as degree distribution

and eigenvalues. For example, In [40], the authors analyzed the structural properties

of graphs with the same degree distribution and found that different networks with the

same degree distribution can have distinct structural properties (as shown in Figure

2.1). In [58], the authors gave an example where two iso-spectral non-isometric planar

graphs could be distinguished by the heat content, despite the fact they shared the

same set of eigenvalues (as shown in Figure 2.2). In our work, we apply the heat

content method in [58] to graph similarity checking.

2.1.2 Mathematical tool

The asymptotic behavior of the heat content has been used as a tool to understand

the geometry of a manifold domain [91, 75], or the connectivity structure of a graph

[57, 58]. The Heat equation describes the distribution of heat in a given region over

time,

∂tu = −∆u,

where ∆ is the Laplacian, a differential operator. ∆ = ∂2
x + ∂2

y in R2. The heat equa-

tion is normally used to study the geometry of manifolds. Likewise, the heat equation

can be defined on graphs too. Accordingly, we replace the continuous Laplacian opera-
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tor by the normalized graph Laplacian. We will introduce the formal definition later.

Similarly, heat equation on graphs can also be used to study the graph structure.

Heat content, as the solution of the heat equation associated with the Laplacian

operator, summarizes the heat diffusion in the manifold domain or on the graph as a

function of time,

Q(t) =

∫
D

u(x, t)dx.

Heat content measures the heat stored in a given domain. One property is that its

asymptotic behavior as t→ 0 separates the heat content curves of different structures.

This enables one to develop fast algorithms for comparing complex graphs. In [35, 36]

it was pointed out that Monte-Carlo simulations of diffusions on graphs are effective

in testing the similarity of complex graphs and that such simulations provide plausible

mechanisms for many brain activities.

Using random walks to compare graphs is not a new idea. In [65], graphs were

compared based on their mixing times. Mixing time is the time needed for a random

walk on the graph to approach its stationary distribution. If the expected variation

distance between the distribution after random walk and the stationary distribution

is too small, this method may expect long walk distance for the computation. Our

method, on the other hand, focuses on the first few random walk steps to compare.

And the random walk step is fixed for all graphs. In [29], the author developed an

efficient algorithm named RWT using random walk to check the structural similarities

of sub-graphs between knowledge networks. Our method is similar to that in [29],

but based on more rigorous mathematical background.

Our algorithm exhibits the following features. First, our method summarizes

graph structure into a single time function so as to facilitate similarity testing. Second,

the behavior of this function around time t = 0 forms the basis for the comparison, so

that we can greatly reduce the computation time. Third, we use a lazy random walk to

estimate the heat content function, thereby avoiding the need to compute eigenvalues
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and eigenvectors of the graph Laplacian while retaining the spectral information.

Fourth, like most of the feature extraction methods, we do not need to know the

mapping information between nodes of two graphs to compare. Finally we note that

our method is robust to minor changes in large graphs according to the interlacing

theorem [13]. With these features, our algorithm is capable of handling very large

complex networks.

The whole chapter is organized as follows. In Section 2.2, we give notations and

review the concept of heat equation and heat content for graphs. In Section 2.3, we

use the lazy random walk simulation method to estimate the heat content. In Section

2.4, the graph generative models used in experiment part are introduced. Experiment

settings and results are presented in Section 2.5. Section 2.6 summarizes the main

results and discusses future work of this part.

2.2 Heat equation and heat content for graphs

In this part, we introduce the definition of heat equation and heat content for

graphs. We begin with basic notations for graphs.

2.2.1 Notations

Let G = (V,E) denote a graph with vertex set V and edge set E ⊆ V × V with

adjacency matrix

A = [auv],

where auv = 1 if there is an edge from u to v; otherwise auv = 0.

The out-degree matrix

D = diag[du],

with du =
∑

v auv.
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The graph Laplacian L is defined as follows

L = D − A,

and the normalized Laplacian L [17] is defined as

L = D−1/2LD−1/2.

We can also write L = (Luv), with

Luv =


1 if u = v,

− 1√
dudv

if u and v are adjacent,

0 otherwise.

The random walk Laplacian Lr differs from the normalized Laplacian L. Lr is

related to the random walk on graph,

Lr = D−1L.

Thus,

Lr = D−1/2LD1/2.

Without loss of generality, we assume that the Laplacian L is diagonalizable and

hence L is diagonalizable. Let λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of L and φi, i =

1, · · · , n the corresponding eigenvectors. With

Λ = diag[λi]

and

Φ = [φ1, · · · , φn],
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L is diagonalized to be

L = ΦΛΨ,

where Ψ = Φ−1 = [ψ1;ψ2; · · · ;ψn]. Meanwhile

Lr = (D−1/2Φ)Λ(D−1/2Φ)−1. (2.1)

Lr and L share the same set of eigenvalues. L is the normalized graph Laplacian

used in the heat equation on a graph. We use the relationship between L and Lr to

develop a random walk simulation method in Section 2.3.

2.2.2 Heat equation and heat content

Define the heat equation on graph associated with the normalized graph Laplacian

as follows

∂Ht

∂t
= −LHt, (2.2)

with initial condition H0(u, u) = 1. Ht(u, v) measures the amount of heat that

initiates from vertex u and ends up at vertex v at time t. In the heat equation (2.2),

we consider using the normalized Laplacian instead of the regular one for the following

reasons.

1. As in [17], the spectra of the normalized Laplacian relate well to other graph in-

variants; while, the other two definitions adjacency matrix and standard Lapla-

cian fail to do. For example, for bipartite graphs, complete graphs and regular

graphs, spectra of normalized laplacian satisfy certain rules; for random graphs,

the spectra satisfy a semi-circle law.

2. The spectra of normalized Laplacian is also consistent with the eigenvalues in

spectral geometry and in stochastic processes [17].
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3. Eigenvalues of normalized Laplacian are in “normalized” forms with 0 ≤ λ ≤

2 and the eigenvalues are bounded according the interlacing theorem for the

normalized Laplacian in [13].

Vertex set V is partitioned into two subsets, the set of all boundary nodes B and

the set of all interior nodes Bc; thus V = B ∪ Bc. Heat flows are from Bc → B but

not B → Bc. Let N = |V | and n = |Bc|. Label the interior vertices as the first

n nodes; the normalized Laplacian L can be partitioned into four parts. The part

related to the interior domain is denoted as LBc ,

L =

 LBc LB,Bc

LBc,B LB

 .
Since we are interested in the heat remaining in the interior domain, define interior

domain as an n × n matrix ht with ht(u, v) = Ht(u, v) (for u, v ∈ Bc). The heat

equation in the interior domain is


∂ht
∂t

= −LBcht,

h0(u, u) = 1.
(2.3)

The solution to the heat equation is ht = e−LBc t. Heat content Q(t) is defined as

Q(t) = 1Tht1 (2.4)

For convenience, we slightly abuse notation and use Λ and Φ as the eigenvalue matrix

and eigenvector matrix of LBc . After performing the eigen-decomposition, we have

LBc =
∑

i λiφiψi. Letting
(
αi = (1Tφi)(ψi1)

)
yields

Q(t) =
n∑
i=1

αie
−λit. (2.5)
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For symmetric graphs, Φ−1 = Φ′, which yields ψi = φi, i = 1, . . . , n. Thus, we

have the heat content for symmetric graphs:

Q(t) =
n∑
i=1

e−λit
∑
uv

φi(u)φi(v). (2.6)

2.2.3 Heat content for asymmetric graph

The eigenvalues and eigenvectors of the normalized graph Laplacian L of the

asymmetric graph can be complex valued, and exist as complex conjugates. For any

complex conjugates pairs of eigenvalues λ = a+ bi and λ = a− bi with corresponding

eigenvectors φ, ψ, φ and ψ, suppose that

w =
∑
uv

φ(u)ψ(v) = α + βi.

Then we have

w = α− βi =
∑
uv

φ(u)ψ(v),

= (
∑

φ)(
∑

ψ),

= (
∑

φ)(
∑

ψ),

=
∑
uv

φ(u)ψ(v). (2.7)

The summation of the heat contents of the pair of complex conjugates becomes

e−λtw + e−λtw = e−(a+bi)t(α + βi) + e−(a−bi)t(α− βi) = 2e−at(α cos(bt)) + β sin(bt)).

(2.8)

Consequently the summation is still a real-valued function. Therefore, the total

summation is still real valued and can be written as

Q(t) =
n∑
i=1

e−ait(
√
α2
i + β2

i sin(bit+ arctan
βi
αi

)). (2.9)
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Compared to the heat content for symmetric graphs in Equation (2.6), the new

oscillatory heat content (OHC) is no longer a sum of purely exponentially decaying

functions. It becomes an oscillatory function that contains components of different

frequencies, amplitudes and phases. In the total heat content, there is one component

Q1(t) corresponding to λ1, the smallest eigenvalue, which is a real number. For large

t, this low frequency component dominates the total heat content curve. We exhibit

this feature through the following example.

Consider a fully connected graph G = (V,E) with |V | = 30 with different weights

(as shown in Figure 2.3). The edge set E = {(u, v), u, v = 1, . . . , |V |} is separated

into two parts: E = {E1, E2}. Define the weight matrix W = [wi,j] with each element

as below:

wi,j =


100
di,j

(i, j) ∈ E1,

1
di,j

(i, j) ∈ E2,

where di,j =
√

(xi − xj)2 + (yi − yj)2 is the Euclidean distance between vertex i and

j. In Figure 2.3, the edges in E1 are draw in the graph using arrows. Edges in E2 are

not shown.

Boundary nodes are selected as the first six nodes in graph: nodes 1, 2, 3, 4,

5 and 6. There are 14 frequency components in the whole heat content, including

four real eigenvalues components and ten complex conjugates pair components. The

eigenvalues (λk) and weights of eigenvectors (wk) of the graph’s Laplacian is shown

in Table 2.2.3. For real eigenvalues, the heat content component is simple. Take λ1

as an example,

Q1 = 40.64e−0.02t.

Two conjugated eigenvalues can be seen as one frequency component of the heat

content function. For example, the heat content component of λ2 and λ3 is
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Figure 2.3. The asymmetric graph as an example; edges in E2 are not shown

Q2,3 =(−2.14− 1.10i)e−(1.33+0.44i)t + (−2.14 + 1.10i)e−(1.33−0.44i)t

=2e−1.33t(−2.14 cos(0.44t)− 1.10 sin(0.44t))

k 1 2 3 4 5 6
λk 0.02 1.33+0.44i 1.33-0.44i 1.49 0.73+0.35i 0.73-0.35i
wk 40.64 -2.14-1.10i -2.14+1.10i 1.14 8.41-13.05i 8.41+13.05i
k 7 8 9 10 11 12
λk 1.36 1.02+0.31i 1.02-0.31i 0.73+0.07i 0.73-0.07i 1.12+0.19i
wk -15.22 -12.37-10.69i -12.37+10.69i -2.40+2.92i -2.40-2.92i 8.01+0.22i
k 13 14 15 16 17 18
λk 1.12-0.19i 0.90+0.07i 0.90-0.07i 0.995+0.13i 0.995-0.13i 0.97+0.09i
wk 8.01-0.22i 0.95+0.22i 0.95-0.22i -0.07-0.86i -0.07+0.86i -0.89-0.74i
k 19 20 21 22 23 24
λk 0.97-0.09i 1.08+0.09i 1.08-0.09i 1.15+0.01i 1.15-0.01i 1.11
wk -0.89+0.74i -0.12+0.23i -0.12-0.23i 0.01+0.32i 0.01-0.32i -1.33

Table 2.1. Eigenvalues and eigenvectors of the graph’s Laplacian

We draw the fourteen components separately and compare them with total heat

content in Figure 2.4. As shown in figure, at the beginning part of the heat content

curve, the high frequency components pull down the curve; and at last, the low
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frequency component Q1(t) dominates, which makes it almost overlap with the total

heat content curve.

Figure 2.4. Heat content and heat content components for asymmetric graph in
Figure 2.3 (dark black line: the total heat content Q(t); solid red line : Q1(t),
corresponding to λ1).

2.2.3.1 Where is the oscillation?

As shown in Figure 2.4, the oscillatory part at the beginning of the total heat

content comes from the complex conjugates pair components. However, it seems

there is no oscillation after that. In Figure 2.5, we show that without Q1(t), the rest

part of the heat content contains oscillations all the way to infinity time. However,

since Q1(t) decreases slowly to 0 and is much larger than the rest part of the total

heat content when t is large, we only observe the first oscillation in the total heat

content.
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Figure 2.5. Where is the oscillations in heat content for asymmetric graphs?
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2.3 Random walk methods for heat content estimation

Computing eigenvalues and eigenvectors of the Laplacian matrix needed for eval-

uating the heat content is very time consuming for large complex networks. We

consider a random walk where the walker moves from vertex u to a neighboring ver-

tex v with probability auv/du. Define the transition matrix M = D−1A and the lazy

random walk transition matrix as

ML = (1− δ)I + δM (0 < δ < 1).

For any given time t = kδ, we have

Pt = Mk
LP0 = [I − t

k
Lr]

kP0 → e−LrtP0. (2.10)

Here the arrow (→) implies taking the limit as k → ∞ (at the same time δ → 0

while keeping kδ = t). P0 is the initial distribution of random walkers. We have

Mk
L → e−Lrt. Mk

L(u, v) measures the probability that a random walker starting at

vertex u ends up at vertex v in k steps in the lazy random walk.

From equations (2.1), we obtain the following approximation for Q(t):

Q̂(t) =
∑
u∈Bc

∑
v∈Bc

Mk
L(u, v)

√
du
dv
. (2.11)

With the lazy random walk approximation, our algorithm avoids computation of

the eigenvalues and weights of the eigenvectors. When the graph is not too big, we

can simply use matrix multiplication method in Equation 2.11 to estimate the heat

content for precision purpose. Matrix multiplication is the method we use in our

experiment part since the networks we generate have only 2000 nodes.

Instead of computing Mk
L(u, v) using matrix multiplication, we can also use the

Monte Carlo method to estimate Mk
L(u, v) based on the definition of Mk

L(u, v). The
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variance of the estimated value is inversely proportional to the amount of random

walkers. Therefore, random walk simulation provides a trade off between precision

and computation time. For each random walker in the graph, we only need to record

its starting node and its current node. Each random walker walks independently and

the next node the random walker moves to is calculated based on its current node’s

local information. So, we can compute and estimate the heat content in parallel. This

property is important since the algorithm needs to be scale in the size of the graphs.

2.4 Generative models

We consider the following generative models to generate graphs to compare, in-

cluding models for undirected graphs and directed graphs.

2.4.1 Undirected graph models

To check the ability of our method to distinguish symmetric graphs with different

degree distributions, we introduce the following two models to generate undirected

graphs with different degree distributions.

2.4.1.1 Erdös-Renyi (E-R) model

This model was first introduced in 1959 by Paul Erdös and Alfred Renyi [27].

They introduced two models. In our work, we consider the simpler one G(n, p). The

G(n, p) graph is constructed by connecting nodes randomly and independently. An

edge is added to each pair of vertices with a given probability p. For a graph with n

vertices, the graph is connected with probability one when the edge adding probability

is larger than 2 ln(n)/n. the degree distribution follows a binomial distribution.

2.4.1.2 Barabási-Albert (B-A) model

This model was first introduced in [8]. The model starts with m0 initial nodes.

Each new node is connected to m(m ≤ m0) existing nodes with a probability pro-
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portional to the number of links that the existing nodes already have. The degree

distribution follows P (D = d) ∼ d−3.

2.4.2 Directed power law graph models

To check the ability of our method to distinguish asymmetric graphs with different

degree distributions, we introduce the following two types of directed graph growing

models.

2.4.2.1 Directed E-R model

The directed E-R model is similar to the undirected model. A directed edge is

added with a given probability p.

2.4.2.2 Directed power law model

In [51], a graph generative model is proposed to describe growing processes in the

Web Graphs (WG).

1. With probability p, a new node is introduced, which immediately attaches to

an existing node u with probability proportional to din
u + λin, where din

u is the

in-degree of node u.

2. With probability q, a new edge from existing node v to node u is created with

probability proportional to (din
u + λin)(dout

v + λout), where dout
v is the out-degree

of node v.

This model produces directed graphs with marginal in-degree and out-degree distri-

butions that are both heavy tailed. The mean in/out-degree is p−1. Let P (din = i) ∼

i−vin and P (dout = j) ∼ j−vout . We have

vin = 2 + pλin
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and

vout = 1 + q−1 + pλout/q.

2.4.3 Generative models for the same degree distribution

In [40], the authors used the following four models to generate graphs with the

same degree distribution. The four models are described as follows. We will use the

four models to check the ability of our algorithm in distinguishing graphs with the

same degree distribution.

2.4.3.1 Molloy-Reed (MR) model

M-R model is proposed by Molly and Reed in 1998 [66]. The algorithm is as

follows:

1. Give each node a degree from the given distribution.

2. Connect a pair of vertices each time randomly, vertices are selected with prob-

ability proportional to the nodes open connections.

3. Repeat step 2 until there is no vertex with open connections.

2.4.3.2 Kalisky model

Kalisky’s model was first proposed by Kalisky et al. in 2004 [45]. The algorithm

of this model is as follows:

1. Give each node a degree from the given distribution.

2. Start with the maximal degree (K) vertex as the first layer. Randomly choose

K open connections. The neighbors of a node in the first layer form the second

layer.

3. Repeat the procedure for nodes in the second layer with open connections.

23



2.4.3.3 Model A (MA)

Model A and the following Model B are proposed by Grisi-Filho et al. in [40].

The algorithm associated with Model A is:

1. Give each node a degree from the given distribution.

2. Start with the maximal degree (K) vertex;

3. Connect the vertex with K other randomly selected vertices whose open con-

nections is nonzero.

4. Repeat step 2 and 3 until there is no vertex with an open connection.

2.4.3.4 Model B (MB)

Model B differs the most from the other ones. At first, as with previous models,

it assigns each node a degree from the given distribution. It also maintains a vector

of vertices list and open connections. Then

1. Start with the maximal degree (K) vertex.

2. Connect the vertex with the first K other vertices in the vector.

3. Repeat step 1 and 2 until there is no vertex with open connections.

Since Model B selects target nodes with a given sequence, not randomly, the

graphs generated by this model can easily contain some subgraphs with bipartite

structure. In Figure 2.1, the three graphs are from B-A, MA and MB one by one.

We observe that the graph from MB obviously differs from the other two. B-A and

MA graphs have some minor differences compared to MB. Is our method enough to

tell the differences between those graphs? In next part, we will design experiments

to check.
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Figure 2.6. Boundary nodes selection

2.5 Experimental results

In the experiment part, we generate several groups of graphs to compare based

on the generative models introduced in previous section.

For boundary nodes, we randomly select a fixed percentage of nodes in the graph

with the smallest degree (as shown in Figure 2.6). The selection is based on the

following reasons: (1) the selection of nodes should not change the graph structure

dramatically. (2) the heat content should not go to zero too fast. For directed graphs,

we selected nodes with the smallest in- and out-degree product. However, nodes with

no in-degree are not included.

2.5.1 Undirected graphs with different degree distributions: B-A vs. E-R

Two groups of graphs are generated using the B-A and E-R models in Section

2.4.1, respectively. We generate random number in each step to determine whether

to keep an edge or determine which node to connect. We use Matlab since it is

efficient in matrix multiplication computing. The total number of nodes is 2000 and

the number of boundary nodes is 40. Each group includes four graphs with average
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Figure 2.7. Heat content of B-A graphs and E-R graphs with different mean degrees

degree varying from 20 to 50. As shown in Figure 2.7, the heat contents of the two

groups of graphs follow different patterns. When t is close to zero, the heat content

for a power law graph drops faster than an E-R random graph, but the decrease speed

slows down after the quick drop. In the Figure, we can see the graphs of the same

type with different mean degrees are also differentiated.

For the spectra of these two kinds of graphs, Chung et.al. [18] proved that eigen-

values of the normalized Laplacian for both E-R random graphs and power law graphs

satisfy the semicircle law. The circle radius is almost the same for graphs with the

same mean degree (as shown in Figure 2.8). Using only the Laplacian spectrum we

can hardly distinguish the two types of graphs. However, according to Equation (2.5),

the values of αi also play an important role in the heat contents. In Figure 2.9, we

compare the weights for the two types of graphs except for the weight α1 for the

smallest eigenvalue λ1 (since its too large to be shown in the same figure with the

other weights). As shown in the figure, the weights (α) for the power law graph are

much larger than those for the E-R random graph, which explains the different heat

26



Figure 2.8. Spectra of a B-A graph and a E-R graph with the same mean degree

content behaviors for the two kinds of graphs. For the B-A graphs, the weights for

the larger eigenvalues are much larger than that for E-R graphs, which pull down the

heat content curves at the beginning part.

2.5.2 Directed graphs with different degree distributions: Krapivsky’s

Model vs. directed E-R Model

For directed graph comparison, two groups of graphs are generated using the

‘WG’ model and the E-R model in Section 2.4.2. Each group contains four graphs

with different average degrees by setting p in ‘WG’ model to be 0.1, 0.15, 0.2 and

0.25, respectively. The total number of nodes is 2000 with 10% of those assigned to

be boundary. As shown in Figure 2.10, directed power law graphs and E-R random

graphs exhibit similar behavior to undirected graphs.

2.5.3 Graphs with the same degree distribution

We first generate a 2000 node power law graph using B-A model with mean degree

10. The number of boundary nodes is 40. Next using each one of the four generative

models MR, Kalisky, MA and MB, we independently generate one graph with the

same degree distribution as the graph generated by the B-A model. We use Matlab
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Figure 2.9. Weights α of a B-A graph and a E-R graph with the same mean degree
(without showing weight α1 for the smallest eigenvalue λ1)

Figure 2.10. Heat content of Krapivsky’s graphs and directed E-R graphs with
different mean degrees
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Figure 2.11. Heat Content of a B-A graph and graphs generated by M-R model,
Kalisky, Model A and Model B with the same degree distribution

and follow the steps introduced in Section 2.4.3. The heat contents comparison results

are shown in Figures 2.11.

We observe that graphs with the same degree distribution can be distinguished

according to their heat content behaviors. Even with the same degree distribution, the

differences of the heat contents between the five generative models are still noticeable.

We also notice that the heat contents for model B (the curves in color magenta)

perform differently from the other four models (B-A, MR, Kalisky, and MA). This

result is consistent with the conclusions in [40] that, although with the same degree

distribution, model B gives the most different network compared to the other four

models.

Next, we compare the spectra of the five models (including B-A Model) in Figure

2.12 and the eigenvector weights in Figure 2.13. We observe that, the spectra of the

graphs generated by B-A, MR and Kalisky all follow semi-circle. For MA and MB

model, the spectra do not follow a perfect semi-circle as the other three graphs.
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For the weights of eigenvectors, the graphs using the same model with different

parameters have similar patterns. The weights for MA and MB are different in an

apparent way. For MB, the weights are larger for smaller eigenvalues, so it drops

slower compared to the other four. We can tell the difference between BA and the

other two graphs (MR and Kalisky) at the very beginning part. The heat content

of MR and Kalisky graphs are quite closer and the weights of the two graphs look

similar. In [40], the authors also pointed out that MR and Kalisky networks showed

similar number of components and giant component size. In their paper, they plot the

average degree of the nearest neighbors as a function of the degree of a given vertex

for the graphs generated by each model. The results for MR and Kalisky looked

similar to each other. So, our results are consistent to the results in [40]. Reader is

referred to [40] for more details.

We try to explain the similar between MR and Kalisky as follows. For Kalisky

model, although it uses a layered structure, the nodes with the largest degrees will

be connected to a huge number of the other nodes in the graph. The selected nodes

are placed in the second layer. And then, for the third layer, it will exhaust almost

all the remaining nodes in the graph. Thus the layer structure in the Kalisky model

is not quite obvious for a graph with power law distribution. Second, the two models

both randomly select open connections, which makes the probability of a node being

selected proportional to the nodes’ open connections. The two reasons make the

power-law graphs generated by the two models similar to each other.

2.6 Conclusions and future work

In this chapter, we proposed a random walk method to estimate the heat content

on graphs for the purpose of determining if two graphs are similar or not. We first

applied the method to compare graphs with different degree distributions. Graphs

with heavy tail degree distributions have different heat content curves compared to

30



Figure 2.12. Spectra of the graphs generated by B-A model and the other four
generative models with the same degree distribution
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Figure 2.13. Weights α of the graphs generated by B-A model and the other four
generative models with the same degree distribution, m = 3 and 5 in B-A model

random graphs generated by the E-R model: the decrease rate for power law graphs

is much larger than E-R graphs at the very beginning part. Our method can also

distinguish graphs with the same degree distribution but different structural proper-

ties. Experiments show that our algorithm performs better in graph comparison than

some other feature extraction methods using eigenvalues and degree distributions.

We have published a paper in [55] for this part of work. The reader are encouraged

to read this paper as a reference.

Our algorithm can also be applied in other classification problems, such as image

retrieval as in [46, 47]. Readers are referred to the two papers for details. We will

discuss the pros and cons of this application in Chapter 6. In our future work, we

consider modifying our algorithm to amplify the oscillation and applying our method

to other classification problems like audio classification problems.

32



CHAPTER 3

PCSDE MODELS FOR BIVARIATE HEAVY TAILED
DISTRIBUTIONS-PART I: MODELS WITH A SHARED

POISSON COUNTER AND COUPLED GROWTH

3.1 Introduction

In Section 2.4.2, we introduced a directed power law network growth model de-

veloped by Krapivsky. There are many other directed network growth models, such

as Price’s model for citation networks [22]; Bollobás’ model [9] for World Wide Web.

Those models are useful in modeling the generative process of some bivariate data

in real world networks. Studying the origin of high dimensional power law behavior

is an important task. In our work, we propose mathematical models to explain the

origin of bivariate power law data.

3.1.1 Background

Bivariate power law distributions have been found in directed real world networks,

such as citation networks (arXiv, CiteSeer, US patent), social networks (Facebook,

Youtube, Flickr, Livejournal), and Web networks (Google) [53]. We are particularly

interested in studying the social network datasets, since we all use social networks

everyday. By comparison, we will also study a Google hyperlink network. Some basic

information about the datasets we will study in this thesis are provided in Table

3.1. The Facebook wall posts dataset is a small subset of posts to other user’s wall

on Facebook. The nodes of the network are Facebook users and each directed edge

represents one post, linking the users writing a post to the users whose wall the post

is written on. The other three datasets are the same datasets as in [61]. They are
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Graph Size (vertices) Volume (edges) Type

Facebook wall posts 46,952 876,993 Directed, Social
Youtube links 1, 138, 499 4, 942, 297 Directed, Social

Flickr 2, 302, 925 33, 140, 017 Directed, Social
LiveJournal 4, 847, 571 68, 475, 391 Directed, Social

Google Hyperlink 875, 713 5, 105, 039 Directed, Web

Table 3.1. Datasets statistics

social networks with users and friendship connections. Google hyperlink network is

a network of web pages connected by hyperlinks. It is a webgraph from the Google

programming contest in 2002.

Take Youtube and Google hyperlinks as examples (as shown in Figures 3.1 and

3.2). In these networks, both in-degree and out-degree exhibit power law distributions

at the tail. Strong dependence correlations are shown between node in-degrees and

out-degrees in Youtube. As shown in Figure 3.3, in-degrees and out-degrees of the

four social network datasets are gathered along the line where the two variables are

equal. We use the Pearson correlation coefficient, which is a measure of the linear

correlation between two variables, to quantify the dependency between in-degree and

out-degree of the datasets. The correlation coefficients of the four social network

datasets Youtube, Facebook, Flickr and LiveJournal, are 0.9492, 0.8470, 0.7558 and

0.6478 separately. On the other hand, for Web Google, the correlation coefficient

between in-degree and out-degree is only 0.1365. In [61], the authors plot overlap

percentage as a function of fraction of users ranked by in-degree and out-degree

in descending order. We redo the experiments on the four social network datasets

(Facebook, Youtube, Flickr, and LiveJournal) and one Web dataset (Google). As

shown in Figure 3.4, the overlap percentage is larger for the four social network

datasets, which is different from the Web dataset. Experiments shows that, for social

network datasets, the top 1% of nodes ranked by out-degree has a more than 64%

overlap percentage with the top 1% of nodes ranked by out-degree (Youtube: 90.62%;
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Figure 3.1. Youtube dataset
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Figure 3.2. Web Google
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Figure 3.3. Scatter plot of four social network datasets

Figure 3.4. Overlap between top x% of nodes ranked by out-degree and in-degree
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Flickr: 72.09%; LiveJournal: 68.94%; Facebook: 64.82%). The corresponding overlap

percentage in the Google Web is only 10.72%.

For the tail behavior, if we find a node in social network with a high in-degree, it

is very possible that the node also has a large out-degree. The tendency for a large

in-degree nodes to have a large out-degree in a Web dataset is much less. This feature

can be measured by the following notion: Tail Dependence Coefficient (TDC), which

is defined as follows:

TDC = lim
t→1−

P(d+ > F−1
d+ (t)|d− > F−1

d− (t)), (3.1)

where d+ denotes out-degree, d− denotes in-degree and FX(x) = P (X ≤ x), the

cumulative distribution function. The tail dependence coefficient in our work is an

upper tail dependence coefficient [26]. The tail dependence of a pair of random

variables is a measure of their co-movements in the tails of the distributions. If the

two variables share the same marginal distribution, then Equation (3.1) can also be

written into the following equation:

TDC = lim
x→∞

P(d+ > x|d− > x). (3.2)

For finite x, we define dependence coefficient DC(x) = P(d+ > x|d− > x) as a

function of x.

In [61], the authors explained the large correlation in social network as a result

of the tendency of users to reciprocate links from other users who point to them. In

our work, we try to design a mathematical model to explain the behavior observed

in social networks.
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3.1.2 Mathematical tools

Stochastic differential equations (SDEs) are widely used to model various phenom-

ena such as stock prices and thermal fluctuations. We are interested in the following

models.

• Geometric Brownian motion (GBM) [71]

dX = βXdt+ σXdW (3.3)

• Constant Elasticity of Variance (CEV) model [20]

dX = βXdt+ σXγdW, (γ ≥ 0, σ ≥ 0) (3.4)

• Cox-Ingersoll-Ross (CIR) model [21]

dX = a(b−X)dt+ σ
√
XdW (3.5)

Those models normally consist of an ordinary differential equation and an additional

random white noise term (W is standard Brownian motion). In [78] and [82], the

authors explain how to use the GBM model to generate a double Pareto distribution

and how to estimate the parameters to fit the model to empirical distributions. By

adding Poisson counters to the above SDE models, we arrive at a new set of models,

the PCSDE models. In [43], Jiang et al. first presented different PCSDE models with

no Brownian motion part to generate power law distributions at different tail parts,

such as at lower tail, upper tail, or near a critical point. Then, by adding a Brownian

motion component, this paper proved that the PCSDE model based on GBM could

be used to produce double Pareto distributions, which confirms results in [78] and

[82]. We will use the univariate PCSDE models in [43] as the basis of our bivariate

model.
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3.1.3 Chapter outline

Our work starts by reviewing the univariate PCSDE model for lower tail power law

distribution in [12], upper tail power law distribution and double Pareto distribution

in [43]. Then we explore a bivariate extensions to explain correlated bivariate power

law behavior in social networks.

In [7], Asimit et al. proposed a new type of multivariate Pareto distribution.

This distribution has arbitrarily parameterized margins compared to the traditional

multivariate Pareto distribution of the second kind [6]. The first type of bivariate

PCSDE model with a shared Poisson counter [42] is formulated in the spirit of this

paper and this model can generate a correlated bivariate power law distribution just

like the one proposed in [7]. We call the PCSDE model with a shared Poisson counter

Type 1 model. In Type 1 model, the two growth processes are uncoupled within

each session. But the life time (the time between occurrence of the last jump of the

Poisson counter and the observation point) of the two processes are the same from

time to time.

The second model takes a complementary approach: the two growth processes are

coupled, but their life times are independent. We call the model with coupled growth

Type 2 model.

Our study of each model divides into three parts. First, we check whether the

marginal density of the proposed bivariate model follows a power law distribution

at the upper tail. Then, we check whether the model can generate synthetic data

that is consistent with the real data in joint distribution. Last, we check the tail

dependence of the model. Reviewing the definition TDC in equation (3.1), TDC

relates to the dependence among the extreme values. We are especially interested in

models with fractional TDCs in order to match to the tail behavior of real datasets

in social networks.
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Figure 3.5. Sample path of lower tail power law model in Equation (3.6)

3.2 Univariate PCSDE models

In this section, we review several univariate PCSDE Models for: lower tail power

law, upper tail power law and double Pareto distribution. These univariate models

form the basis for our bivariate extensions.

3.2.1 Univariate PCSDE model for lower tail power law

As discussed in [12], the following PCSDE model generates a lower tail power law

distribution:

dX(t) = −βX(t)dt+ σdN(t), (3.6)

where β, σ > 0 and N is a Poisson process with rate λ. Figure 3.5 illustrates a sample

path of this model.

As discussed in [34], the Fokker-Planck equation of this model is

∂fX(x, t)

∂t
= β

∂

∂x
[xfX(x, t)] + λfX(x− σ, t)− λfX(x, t). (3.7)

Since fX(x, t) = 0 for x ≤ 0, f(x− σ, t) = 0 when x ∈ (0, σ]. Let t→∞, for the

steady state, we have

β
∂

∂x
[xfX(x)]− λfX(x, t) = 0, x ∈ (0, σ], (3.8)
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which yields

fX(x) = Cxα−1, x ∈ (0, σ], (3.9)

where α = λ
β
.

This model produces power law distribution at the lower tail. This model can be

converted to an upper tail power law generator.

3.2.2 Univariate PCSDE model for upper tail power law

This subsection presents two types of PCSDE models for upper tail power law.

We need the following Ito’s rule for PC SDEs [34].

Ito’s rule for PC SDE

Let

dX = f(X)dt+
n∑
1

gi(X)dNi

where Ni is an independent Poisson counter. Then

dψ(X) = 〈 ∂ψ
∂X

, f(X)〉dt+
n∑
i=1

[ψ(X + gi(X))− ψ(X)]dNi

where〈·, ·〉.

3.2.2.1 Convert lower tail to upper tail

As in the previous subsection, PCSDE model dX(t) = −βX(t)dt + σdN(t) pro-

duces a lower tail power law distribution. In [43], it is shown that this model can be

converted to an upper tail generator by letting Y (t) = X(t)−1. With ε , σ−1, we

have

dY (t) = βY (t)dt− Y (t−)2

ε+ Y (t−)
dN(t) (3.10)

Figure 3.6 presents a sample path of this model. As shown in the figure, Y starts

at a small positive value. It grows exponentially and reverts to a value that relates
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Figure 3.6. Sample path of upper tail power law model in Equation (3.10)

to its current value. For a smooth function ψ(Y ), by using Ito’s rule for PC SDE, we

have

dψ(Y ) =
∂ψ

∂Y
(βY )dt+ [ψ(Y − Y 2

ε+ Y
)− ψ(Y )]dN

=
∂ψ

∂Y
(βY )dt+ [ψ(

εY

ε+ Y
)− ψ(Y )]dN. (3.11)

Taking expectation of both sides of (3.11),

dEψ(Y )

dt
= βE[

∂ψ(Y )

∂Y
Y ] + λEψ(

εY

ε+ Y
)− λEψ(Y ).

Assuming that the density fY (y) vanishes at y = ±∞,

∫
ψ(y)

dfY (y)

dt
= −β

∫
ψ(y)

∂

∂y
[yfY (y)] + λ

∫
ψ(y)fY (h(y))

∂h(y)

∂y
− λ

∫
ψ(y)fY (y),

(3.12)

or,

dfY (y)

dt
= −β ∂

∂y
[fY (y)y] + λfY (h(y))

∂h(y)

∂y
− λfY (y), (3.13)

where h(y) = yε
ε−y .

Assuming initial condition Y (0) > 0, we have Y (t) > 0. So, fY (y) = 0 when

y ≤ 0. When y > ε, h(y) < 0, the Fokker-Planck equation of this model becomes

dfY (y)

dt
= −β ∂

∂y
[fY (y)y]− λfY (y), y ≥ ε. (3.14)
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When t→∞, for steady state, we have

β
∂

∂y
[fY (y)y] = −λfY (y), y ≥ ε, (3.15)

which gives

fY (y) = Cy−(1+λ
β

), y ≥ ε. (3.16)

Thus, this model produces a power law distribution at the upper tail.

3.2.2.2 A simpler model

By letting Y (t) in Equation (3.10) revert to a fixed point, we produce a simpler

PCSDE model

dX(t) = βX(t)dt+ (ε−X(t−))dN(t), (3.17)

where β, x0 > 0. N is a Poisson process with rate λ. In this model, X grows expo-

nentially with rate β, and reverts to a fixed value ε after an exponential distributed

life time with rate λ. The whole process then repeats.

We give the corresponding characteristic function ΦX(k, t) = E[ejkX(t)] by Ito’s

rule

(
∂

∂t
− βk ∂

∂k
)ΦX(k, t) = −λΦX(k, t) + λejkε. (3.18)

Solving Equation (3.18) as in [43] yields

ΦX(k, t) = e−λtΦX(keβt, 0) + λ

∫ t

0

e−λ(t−s)ejεke
β(t−s)

ds.

A change of variable x = εeβ(t−s) along with letting t→∞ yields

ΦX(k,∞) =
λ

βε

∫ ∞
ε

(x
ε

)−λ
β
−1

ejkxdx. (3.19)

The steady-state density of X is given by taking the inverse Fourier transform

fX(x) =
λ

βε

(x
ε

)−λ
β
−1

, x ≥ ε, (3.20)
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Figure 3.7. A sample path of the model in Equation (3.22) (λ = 1, β = 1, σ = 0.2
and ε = 1)

and the Complementary Cumulative Distribution Function (CCDF) is

F̄X(x) =
(x
ε

)−λ
β
, x ≥ ε. (3.21)

From this computation, we see that this model yields similar result to the model in

the previous sub-subsection. In our following bivariate extension, we use this model

as a basis because of its conciseness.

3.2.3 Univariate PCSDE model for double-Pareto distribution

A PCSDE model with Browian motion component based on Gemetric Brownian

motion (GBM) is

dX(t) = βX(t)dt+ σX(t)dW (t) + (ε−X(t))dN(t), (3.22)

where β, σ, ε > 0, W is standard Brownian motion and N is a Poisson process with

rate λ, independent of W . A sample path of this model is shown in Figure (3.7).

This model can be used to produce a Pareto distribution. This model was first

described in [78]. Reed further discussed the implications of this model in modeling

size distributions like income in [82] and [79]. In [30], many more Pareto distributions
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are discussed, like friendship in social networks, number of downloads on the Internet,

oil field reserves, etc.

Since this mode is not used in the first two types of bivariate PCSDE models, we

will leave it here and discuss more details about this model in Chapter 4.

In the following, we will propose different types of bivariate extensions based on

univariate PCSDE models that we discussed above, and talk about their pros and

cons in matching real datasets.

3.3 Type 1: bivariate PCSDE model with a shared Poisson

counter

3.3.1 Basic model

To develop a bivariate model, we start with two independent univariate upper tail

power law generators

dXi = βiXi + (εi −Xi)dNi, i = 1, 2.

We omit the t in parentheses in this and the following equations. We observe,

X1 and X2 grow separately and their life time are controlled by two independent

Poisson counters. So the above model generates independent bivariate power law

data. To introduce dependence between the two variables, a shared Poisson counter

N0 is needed. This model was first presented in [42].

3.3.1.1 Model formulation

We simplify the above model by setting growth rates β1 = β2 = 1 and initial

values ε1 = ε2 = 1,

dXi = Xidt+ (1−Xi)(dN0 + dNi), i =, 1, 2. (3.23)
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Figure 3.8. Sample path of basic bivariate model with a shared Poisson counter

Here N0, N1, and N2 are independent Poisson counters with rates λ0, λ1, and λ2.

Figure 3.8 illustrates a sample path of this model.

3.3.1.2 Marginal and joint density

The marginal steady-state density is

fXi(xi) = (λ0 + λi)x
−(λ0+λi+1)
i , xi ≥ 1, (3.24)

and the marginal CCDF is

F̄Xi(xi) = x
−(λ0+λi)
i , xi ≥ 1, i = 1, 2. (3.25)

We use the characteristic function to compute the joint density. Let

Φ(k1, k2, t) = E[ej
∑
i kiXi(t)],

Φi(ki, t) = E[ejkiXi(t)].
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Applying Ito’s rule yields

(
∂

∂t
− ki

∂

∂ki

)
Φ− λ+Φ + λ0e

j
∑
i ki + λ1e

jk1Φ2 + λ2e
jk2Φ1, (3.26)

where λ+ = λ0 + λ1 + λ2. Solving equation (3.26) and letting t→∞ yields

Φ(k1, k2,∞) =

∫ ∞
1

x−λ+−1λ0e
j
∑
i kixdx

+

∫ ∞
1

x
−λ+−1
1 λ1e

jk1x1Φ2(k2x1,∞)dx1

+

∫ ∞
1

x
−λ+−1
2 λ2e

jk2x2Φ1(k1x2,∞)dx2, (3.27)

and the inverse Fourier transform gives

fX1,X2(x1, x2) = λ0x
−λ+−1
1 u(x1 − 1)δ(x1 − x2)

+ λ1x
−λ+−1
1 fX2(x2x

−1
1 )x−1

1 u(x1 − 1)

+ λ2x
−λ+−1
2 fX1(x1x

−1
2 )x−1

2 u(x2 − 1), (3.28)

where u(x) = 1 when x ≥ 0; otherwise, u(x) = 0; δ(x) is the Dirac delta function. The

two variables in this model are not independent since fX1,X2(x1, x2) 6= fX1(x1)fX2(x2).

The joint CCDF of the model is computed from (3.28)

F̄X1,X2(x, x)

=

∫ ∞
x

dx1

∫ ∞
x

dx2fX1,X2(x1, x2),

=λ0

∫ ∞
x

dx1x
−λ+−1
1

+λ1

∫ ∞
x

dx1x
−λ+−1
1

∫ ∞
x1

dx2fX2(x2x
−1
1 )x−1

1

+λ2

∫ ∞
x

dx2x
−λ+−1
2

∫ ∞
x2

dx1fX1(x1x
−1
2 )x−1

2 ,

=x−λ+ . (3.29)

48



Figure 3.9. Data sample from Type 1 model and joint CCDF of the sample data

With the marginal CCDF in (3.25), we obtain the tail dependence coefficient (TDC)

of this model

P (X2 > x|X1 > x) =
F̄X1,X2(x, x)

F̄X1(x)
= x−λ2

x→∞−−−→ 0. (3.30)

3.3.1.3 Experimental results

We present a scatter plot and CCDF of a group of sample data to compare this

model to the real datasets in social networks, as shown in Figures 3.9 and 3.10. The

scatter plot shows that the density of this model does not fit the real dataset. The

data from the Type 1 model are formed by two types of data: (1) X1 and X2 are

independent; (2) X1 and X2 equals. This is not the case in real datasets.

On the other hand, as indicated in (3.30), although the model in (3.23) is useful for

generating correlated bivariate power law data, the TDC of this model is 0. We try to

explain why this model is asymptotically independent as follows. Since the observed

state is an exponential function of the life time, we require the life time to be larger

than lnx to observe a value larger than x. Given X1 > x, this means no Poisson event

happens for N0 and N1 during that long period. Since N2 is independent of both of
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Figure 3.10. Comparing Type 1 model to Youtube dataset

N0 and N1, it requires N2 never to occur during at least lnx life time to achieve

X2 > x. Recall that, the life time follows exponential distribution. As x → ∞, the

probability of N2 never to occur goes to 0.

In the next two sections, we modify the model in (3.23) to produce a nonzero

TDC. Even though it is not likely that we could change the shape of the scatter plot

of Type 1 model with the following modifications, we are still interested in producing

non-zero TDC for this model.

3.3.2 Modulated model with Markov on-off modulation

Define a Markov on-off process Y (Y ∈ {0, 1})

dY = (1− Y )dM1 − Y dM2 (3.31)

where M1 and M2 are independent Poisson counters with rate µ1 and µ2.

Our idea is to use this Markov on-off process to separate the active times of the

independent Poisson counters (N1 and N2) and shared Poisson counter N0. Our

modified bivariate PCSDE model is

dXi = Xidt+ (1−Xi) ((1− Y )dN0 + Y dNi) , i = 1, 2
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Figure 3.11. A sample path of the bivariate model with a shared Poisson counter
and Markov on-off modulation

Thus, the two independent Poisson counters are active when the Markov on-off

process is “on” and the shared Poisson counter N0 is active when the Markov on-off

process is “off”. A sample path explains how this model works (as shown in Figure

3.11).

We solve this model using characteristic function as we did previous models. De-

fine

Φ(k1, k2, t) = E[ej
∑
i kiXi(t)], Φi(ki, t) = E[ejkiXi(t)],

Ψ(k1, k2, t) = E[Y (t)ej
∑
i kiXi(t)], Ψi(ki, t) = E[Y (t)ejkiXi(t)],

and let m(t) = E[Y (t)]. For the marginal, Ito’s rule yields

(
∂

∂t
− ki

∂

∂ki

)
Hi = −AiHi + bie

jki , (3.32)

where
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Hi =

Φi

Ψi

 , Ai =

 λ0 λi − λ0

−µ1 λi + µ1 + µ2

 ,

and

bi =

λ0(1−m(∞)) + λim(t)

λim(t)

 .

Equation (3.32) can be solved as

Hi(ki, t) = e−AitHi(kie
t, 0)

+

∫ t

0

e−Ai(t−s)bi(s)e
jkie

t−s
ds. (3.33)

Execute a change in variables by letting xi = et−s,

Hi(ki, t) = e−AitHi(kie
t, 0)

+

∫ et

1

e−Ai log xibi(t− log xi)e
jkixix−1

i dxi. (3.34)

Letting t→∞,

Hi(ki,∞) =

∫ ∞
1

e−Ai log xibi(∞)ejkixix−1
i dxi. (3.35)

Taking the inverse Fourier transform, the marginal steady-state density can be com-

puted as

fXi(xi) = ax−Aii bi(∞)x−1
i , xi > 1 (3.36)

where a = (1, 0). Let γ = (1,m(∞))T = A−1
i bi(∞).

The marginal CCDF can be computed as
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F̄Xi(x) =

∫ ∞
x

ax−Aii bi(∞)x−1
i dxi

= ax−AiA−1
i bi(∞),

= ax−Aiγ. (3.37)

For the joint case, Ito’s rule yields(
∂

∂t
−
∑
i

ki
∂

∂ki

)
H = −AH + bej

∑
i ki + cλ1e

jk1Ψ2 + cλ2e
jk2Ψ1, (3.38)

where

H =

Φ

Ψ

 , A =

 λ0

∑
i=1,2 λi − λ0

−µ1

∑
i=1,2(λi + µi)

 ,

and

b =

1−m(t)

0

λ0, c =

1

1

 .

Equation (3.38) can be solved as

H(k1, k2, t) = e−AtH(k1e
t, k2e

t, 0)

+

∫ t

0

e−A(t−s)B(s)ej
∑
i kie

t−s
ds

+

∫ t

0

e−A(t−s)Cλ1e
jk1et−sΨ2(k2e

t−s, s)ds

+

∫ t

0

e−A(t−s)Cλ2e
jk2et−sΨ1(k1e

t−s, s)ds.

The solution to equation (3.38) at t→∞ is

H(k1, k2,∞)

=

∫ ∞
1

dxe−A log xb(∞)ej
∑
i kixx−1

+

∫ ∞
1

dx1e
−A log x1cλ1e

jk1x1Ψ2(k2x1,∞)x−1
1

+

∫ ∞
1

dx2e
−A log x2cλ2e

jk2x2Ψ1(k1x2,∞)x−1
2 . (3.39)
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Taking inverse Fourier transform, we have the joint density

fX1,X2(x1, x2)

=ax−A1 b(∞)x−1
1 u(x1 − 1)δ(x1 − x2)

+ax−A1 cλ1fX2(x2x
−1
1 )m(∞)x−2

1 u(x1 − 1)

+ax−A2 cλ2fX1(x1x
−1
2 )m(∞)x−2

2 u(x2 − 1). (3.40)

Let γ = (1,m(∞))T = A−1[b(∞) + λ1cm(∞) + λ2cm(∞)], we have

F̄X1X2(x, x)

=

∫ ∞
x

dx1ax
−A
1 b(∞)x−1

1

+

∫ ∞
x

dx1ax
−A
1 cλ1x

−1
1

∫ ∞
x1

dx2fX2(x2x
−1
1 )m(∞)x−1

1

+

∫ ∞
x

dx2ax
−A
2 cλ2x

−1
2

∫ ∞
x2

dx1fX1(x1x
−1
2 )m(∞)x−1

2 ,

=ax−AA−1[b(∞) + λ1cm(∞) + λ2cm(∞)],

=ax−Aγ. (3.41)

Let ξi± be the eigenvalues of Ai and ξ± be the eigenvalues of A, we have

ξ
(1)
± =

λ0 + λ1 + µ1 + µ2

2

±
√

(λ1 − λ0 + µ2 − µ1)2 + 4µ1µ2

2
, (3.42)

and

ξ± =
λ0 + λ1 + λ2 + µ1 + µ2

2

±
√

(λ1 + λ2 − λ0 + µ2 − µ1)2 + 4µ1µ2

2
. (3.43)
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Figure 3.12. Theoretical TDC for a special case of the first modulated model

It is easy to check that ξ− − ξ(1)
− > 0, which implies

P (X2 > x|X1 > x) ∼ Cx−(ξ−−ξ(1)− ) x→∞−−−→ 0. (3.44)

As indicated in (3.44), this model is still asymptotically independent. Consider

the following special case. Let the arrival rates of Poisson counters N0, N1 and N2 be

the same, denoted as λ1 = λ2 = λ0 , λ. When µ1, µ2 � λ, we have

P (X2 > x|X1 > x) ∼ µ2

µ1 + µ2

x−(ξ−−ξ(1)− ) (3.45)

and ξ− − ξ(1)
− < µ1, where µ2

µ1+µ2
= 1 −m(∞). When µ1 is small enough, the model

can produce non-zero dependence coefficient over long decades under this special

condition (as shown in Figure 3.12).

This model can also be solved using another method, as presented in Appendix

A. It yields the same results as using characteristic function above.
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3.3.3 Modulated model with Markov on-off modulation and synchronized

reverting

In this subsection, we consider manually reverting the variables to their initial

values as soon as the Markov on-off process changes its state. Thus, for any individual

growth process between two successive reverting, the Markov on-off process is either

in “on” or “off” state during the whole period. The new model is

dXi =Xidt+ (1−Xi) ((1− Y )(dN0 + dM1) + Y (dNi + dM2)) , i = 1, 2. (3.46)

Use the same method in Section 3.3.2, we have

F̄Xi(x) = ax−Aiγ F̄X1,X2(x, x) = ax−Aγ, (3.47)

where in this model,

Ai =

λ0 + µ1 λi − λ0 + µ2 − µ1

0 λi + µ2

 ,

and

A =

λ0 + µ1

∑
i=1,2 λi − λ0 + µ2 − µ1

0
∑

i=1,2 λi + µ2

 ,

and a and γ are the same as in Section 3.3.2.

Let λ1 = λ2 , λ and perform eigen-decompositions on Ai and A. The marginal

and joint CCDF of this model become

F̄Xi(x) = x−(λ+µ2)m(∞) + x−(λ0+µ1)(1−m(∞)), (3.48)

and

F̄X1,X2(x, x) = x−(2λ+µ2)m(∞) + x−(λ0+µ1)(1−m(∞)). (3.49)
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Figure 3.13. The dependence coefficient P (X1 > x|X1 > x) of the second modulated
model as a function of λ0 with different x values

Denote ∆µ = µ1 − µ2. The tail dependence coefficient of this model is

lim
x→∞

P (X2 > x|X1 > x) =


1 λ > λ0 + ∆µ,

µ2
µ1+µ2

λ = λ0 + ∆µ,

0 λ < λ0 + ∆µ.

(3.50)

This modulated model successfully generates nonzero TDCs. However, it seems

that the case when fractional TDC appears is unstable. When a parameter is per-

turbed, the coefficient goes to one or zero. As shown in Figure 3.13, when x is finite,

the dependence coefficient P(X2 > X|X1 > x) is continuous with the increasing

of λ0 (with the other parameters fixed). As x goes to infinity, the TDC becomes

discontinuous at a critical point.
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3.3.4 Summary of Type 1 models

In Section 3.3, we proposed a PCSDE model with a shared Poisson counter and

two modulaitons are made to the original model to produce fractional TDC. As we

observe, even though the second modulation generates non-zero TDC, it is not the

way real datasets do. The synthetic data of this type of models look different to real

datasets too.

We try to propose a model which can generate fractional TDC in a more natural

way. This thought leads to a new type of model in the following.

3.4 Type 2: bivariate PCSDE model with coupled growth

In the previous section, we presented the Type 1 model with a shared Poisson

counter and its modulations. This type of model does not succeed in either producing

non-zero TDC, or fitting real datasets. Reconsidering how to introduce dependence

among variables X1 and X2, we propos a new model, where dependence is introduced

by using Coupled Growth, instead of a shared Poisson counter. We call this the

Type 2 model.

3.4.1 Model formulation

The model is formulated as

d

X1(t)

X2(t)

 =

1 β

β 1


X1(t)

X2(t)

 dt+

1−X1(t)

0

 dN1(t) +

 0

1−X2(t)

 dN2(t).

(3.51)

In this model, the life time of the two variables are controlled by two indepen-

dent Poisson counters N1 and N2; however, the growth part of the two variables are

coupled. The increment of X1 (X2) is also related to the current value of X2 (X1).
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In the following computations, we set the Poisson rates of the independent Poisson

counters N1 and N2 equal to make the computation easier.

3.4.2 Marginal tail

3.4.2.1 Tail exponent

In this part, we will prove the marginal tail of this model follows power law

distribution. We write the matrix

βM =

1 β

β 1

 ,

λ1 = λ2 = λ.

Note that the DE

d

X1(t)

X2(t)

 = βM

X1(t)

X2(t)

 dt (3.52)

has the solution X1(t)

X2(t)

 = etβM

X1(0)

X2(0)

 ,

=
1

2
et(1+β)

1 1

1 1


X1(0)

X2(0)


+

1

2
et(1−β)

 1 −1

−1 1


X1(0)

X2(0)

 . (3.53)

Let Xn be the value of X1(t) at the nth arrival of the Poisson process N2. By the

PASTA property [92], the stationary distribution of (Xn) is the stationary distribution

of (X1(t)). We will prove that (Xn) satisfies a stochastic recursion

Xn+1 = An+1Xn +Bn+1, n = 1, 2, . . . (3.54)
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where (An, Bn), n = 2, 3, . . . are i.i.d. and (An+1, Bn+1) is independent of Xn in

(3.54). Based on the results in [48, 33, 88], once (3.54) has been proved, we know

that for a stationary random variable X such that

X
d

== AX +B (3.55)

(the stationary distribution of (Xn)) we have

P(X > x) ∼ x−α, (3.56)

where α > 0 is such that

EAα = 1. (3.57)

We now prove (3.54). Let K = 0, 1, 2, . . . be the number of arrivals of N1 in the

interval (0, E), where E is the first arrival of N2,

E ∼ exp(λ).

Let 0 < T1 < T2 < . . . < TK < E be the arrival times of N1. Let Yn,j be the state of

X2(t) at t = Tj, j = 1, . . . , K. Note that, at time 0,

X1(0) = Xn, X2(0) = 1.

An illustration of the above state update process is shown in Figure 3.14.

We conclude by (3.53),

Yn,1 =
1

2
eT1(1+β)(Xn + 1) +

1

2
eT1(1−β)(−Xn + 1)

= Xn

(
1

2
eT1(1+β) − 1

2
eT1(1−β)

)
+

1

2
eT1(1+β) +

1

2
eT1(1−β). (3.58)
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Figure 3.14. The state update process of Type 2 model

Similarly, for j = 2, . . . , K,

Yn,j = Yn,j−1

(
1

2
e(Tj−Tj−1)(1+β) +

1

2
e(Tj−Tj−1)(1−β)

)
+

(
1

2
e(Tj−Tj−1)(1+β) − 1

2
e(Tj−Tj−1)(1−β)

)
. (3.59)

We conclude that

Yn,K = Xn
eT1(1+β) − eT1(1−β)

2

K∏
j=2

e(Tj−Tj−1)(1+β) + e(Tj−Tj−1)(1−β)

2

+
K∏
j=1

e(Tj−Tj−1)(1+β) + e(Tj−Tj−1)(1−β)

2

+
K∑
i=2

e(Tj−Tj−1)(1+β) − e(Tj−Tj−1)(1−β)

2

K∏
j=i+1

e(Tj−Tj−1)(1+β) + e(Tj−Tj−1)(1−β)

2
.

(3.60)

Finally, we use (3.53) once again:

Xn+1 =
1

2
e(E−TK)(1+β)(1 + Yn,K) +

1

2
e(E−TK)(1−β)(1− Yn,K),

= Yn,K

(
e(E−TK)(1+β) − e(E−TK)(1−β)

2

)
+
e(E−TK)(1+β) + e(E−TK)(1−β)

2
. (3.61)

Combining (3.60) and (3.61) yields (3.54) with
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A =
eT1(1+β) − eT1(1−β)

2

·
K∏
j=2

e(Tj−Tj−1)(1+β) + e(Tj−Tj−1)(1−β)

2
(3.62)

· e
(E−TK)(1+β) − e(E−TK)(1−β)

2
. (3.63)

There is a more convenient way of representing A in (3.62). Let (Fj) be i.i.d

exp(2λ) random variables, independent of a Geom(1/2) random variable N . The

proof of the distribution of Fj and N is given in Appendix B. Then

if N = 0,

A =
eF1(1+β) + eF1(1−β)

2
; (3.64)

if N ≥ 1, then

A =
eF1(1+β) − eF1(1−β)

2
· e

F2(1+β) − eF2(1−β)

2
·
N+1∏
j=3

eFj(1+β) + eFj(1−β)

2
. (3.65)

Now we need to find α > 0 that (3.57) holds.

We write

EAα =
1

2
E

(
eF1(1+β) + eF1(1−β)

2

)α
+
∞∑
n=1

1

2n+1

(
E

(
eF1(1+β) − eF1(1−β)

2

)α)2(
E

(
eF1(1+β) + eF1(1−β)

2

)α)n−1

.

(3.66)

Let E
(
eF1(1+β)+eF1(1−β)

2

)α
= I1 and let E

(
eF1(1+β)−eF1(1−β)

2

)α
= I2, we have

EAα =
1

2
I1 + I2

2

∞∑
n=1

1

2n+1
In−1

1 ,

=
1

2
I1 + I2

2

1
4

1− 1
2
I1

,

=
1

2
I1 + I2

2

1

4− 2I1

. (3.67)
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where

I1 = 2−α
∫ ∞

0

2λe−2λx
(
ex(1+β) + ex(1−β)

)α
dx, (3.68)

and

I2 = 2−α
∫ ∞

0

2λe−2λx
(
ex(1+β) − ex(1−β)

)α
dx. (3.69)

Let y = e−x, we have

I1 = 2−α
∫ 1

0

2λy2λ−1
(
y−(1+β) + y−(1−β)

)α
dy, (3.70)

and

I2 = 2−α
∫ 1

0

2λy2λ−1
(
y−(1+β) − y−(1−β)

)α
dy. (3.71)

First compute I2,

I2 = 2λ · 2−α
∫ 1

0

y2λ−1y−α(1+β)(1− y2β)αdy,

= 2λ · 2−α
∫ 1

0

y2λ−α(1+β)−1(1− y2β)αdy.

Let z = y2β, so y = z1/(2β), so

I2 = 2λ · 2−α
∫ 1

0

z
2λ−α(1+β)−1

2β (1− z)α · 1

2β
z1/(2β)−1dz,

=
λ2−α

β

∫ 1

0

z
2λ−α(1+β)

2β
−1(1− z)αdz,

=
λ2−α

β
B

(
2λ− α(1 + β)

2β
, α + 1

)
, (3.72)

where B(x, y) is the beta function.
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Using the same method as in computing I2, we have

I1 =
λ2−α

β

∫ 1

0

z
2λ−α(1+β)

2β
−1(1 + z)αdz. (3.73)

We cannot get a closed form solution for I1 similar to that of I2. So we estimate I1

using numerical integration. Consider the following ‘rectangle rule’. Let N > 0 be a

sufficient large integer, ∫ 1

0

f(x)dx ≈ 1

N

N−1∑
n=0

f(
n

N
). (3.74)

Then

I1 ≈
λ2−α

β

1

N

N−1∑
n=0

( n
N

) 2λ−α(1+β)
2β

−1 (
1 +

n

N

)α
. (3.75)

3.4.2.2 Necessary condition

Equation E(Aα) = 1 in (3.57) does not always have a solution for different values

of β. Let h(α) = EAα − 1, it is easy to prove by the definition of A that

h(0) = 0, h′′(α) > 0.

A necessary condition for function h(α) = 0 having a solution other than 0 is h′(0) <

0, which gives E(logA) < 0.

Figure 3.15 gives us an illustration. As shown in Figure 3.15, h(0) = 0 and

h′′(α) > 0. Only when h′(0) < 0, does the function h(α) cross the “0 line” again,

which gives h(α) = 0 a positive solution. If h′(0) > 0, the function will start at 0,

increase with α and never return to 0 again.
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Figure 3.15. h(α)− 1 as a function of α

Write

E(logA)

=
1

2
E

(
log

eF1(1+β) + eF1(1−β)

2

)
+
∞∑
n=1

1

2n+1

(
2E

(
log

eF1(1+β) − eF1(1−β)

2

)
+ (n− 1)E

(
log

eF1(1+β) + eF1(1−β)

2

))
.

(3.76)

Let J1 = E
(

log eF1(1+β)+eF1(1−β)

2

)
and J2 = E

(
log eF1(1+β)−eF1(1−β)

2

)
. Then we have

E(logA) =
1

2
J1 +

∞∑
n=1

1

2n+1
(2J2 + (n− 1)J1),

=
1

2
J1 +

∞∑
n=1

1

2n
J2 +

∞∑
n=1

n− 1

2n+1
J1,

=
1

2
J1 +

1
2

1− 1
2

J2 +

1
23

( 1
1− 1

2

)

1− 1
2

J1,

=J1 + J2, (3.77)

where
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J1 =

∫ ∞
0

2λe−2λx log
ex(1+β) + ex(1−β)

2
dx,

and

J2 =

∫ ∞
0

2λe−2λx log
ex(1+β) − ex(1−β)

2
dx.

Let y = e−x, we have

J1 =

∫ 1

0

2λy2λ−1 log
y−(1+β) + y−(1−β)

2
dy, (3.78)

and

J2 =

∫ 1

0

2λy2λ−1 log
y−(1+β) − y−(1−β)

2
dy. (3.79)

With equations (3.78) and (3.79), we can also use the rectangle rule to perform the

numerical integration. Then using Equation (3.77), we can estimate E(logA).

We will give the numerical results for the exponent α and E(logA) as a function

of β at the experiment part.

3.4.3 Joint tail

Consider our system in steady state. Let Y be a random variable with the sta-

tionary distribution of the value of X1(t) at the moment when the counter N2 has

an arrival. Consider the combined counter N1 ∪N2. Its points are W1,W2, . . ., with

(Wn+1 −Wn) i.i.d, exp(2λ).

The state of the system at these points is a Markov chain, with state space

({1} × [1,∞) ∨ ([1,∞)× {1}) .

The stationary distribution has the form
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 1

Y

 w.p.
1

2
,

Y
1

 w.p.
1

2
. (3.80)

The stationary distribution of the continuous-time process can be computed by

Pst((X1, X2) ∈ A)

=
E
∫Wn+1

Wn
1 ((X1(t), X2(t)) ∈ A) dt

E(Wn+1 −Wn)
,

=
E
∫∞

0
2λe−2λudu

∫ u
0

1 ((X1(t), X2(t)) ∈ A) dt
1

2λ

,

=4λ2

∫ ∞
1

e−2λudu× 1

2

∫ ∞
1

FY (dy)

×
∫ u

0

[1((y
et(1+β) − et(1−β)

2
+
et(1+β) + et(1−β)

2
, y
et(1+β) + et(1−β)

2
+
et(1+β) − et(1−β)

2
) ∈ A)

+1((y
et(1+β) + et(1−β)

2
+
et(1+β) − et(1−β)

2
, y
et(1+β) − et(1−β)

2
+
et(1+β) + et(1−β)

2
) ∈ A)]dt.

(3.81)

Therefore, in the stationary regime

(X1, X2)
d

==


(Y V +W,YW + V ), w.p. 1

2
,

(YW + V, Y V +W ), w.p. 1
2
,

(3.82)

where (V,W ) is a random vector independent of Y , with the following distribution.

Let T ∼ exp(2λ). Given T = t, let u ∼ U(0, t). Then

V =
eu(1+β) − eu(1−β)

2
,

W =
eu(1+β) + eu(1−β)

2
. (3.83)
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Before continuing, we state Breiman’s lemma [10, 23]:

Breiman’s Lemma

Suppose that X and Y are two independent nonnegative random variables such that

P{X > x} is regularly varying of index −α, α ≥ 0, and E{Y α+ε} <∞ for some ε > 0.

Then

P{XY > x} ∼ E{Y α}P{X > x} (3.84)

as x→∞.

With the lemma, we have

P(‖(X1, X2)‖ > x, (X1,X2)
‖(X1,X2)‖ ∈ A)

P(‖(X1, X2)‖ > x)

=
1

2

P(Y ‖V,W‖ > x, (V,W )
‖(V,W )‖ ∈ A)

P(Y > x)

P(Y > x)

P(Y ‖(V,W )‖ > x)

+
1

2

P(Y ‖W,V ‖ > x, (W,V )
‖(W,V )‖ ∈ A)

P(Y > x)

P(Y > x)

P(Y ‖(W,V )‖ > x)
,

t→∞−−−→1

2
E

[
‖(V,W )‖α1

(
(V,W )

‖(V,W )‖
∈ A

)]
1

E‖(V,W )‖α

+
1

2
E

[
‖(W,V )‖α1

(
(W,V )

‖(W,V )‖
∈ A

)]
1

E‖(W,V )‖α
. (3.85)

The right hand side of (3.85) is the spectral measure.

In particular, for x1, x2 > 0,
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P(X1 > tx1, X2 > tx2)

P(Y > t)

=
1

2

P(Y V > tx1, Y W > tx2)

P(Y > t)
+

1

2

P(YW > tx1, Y V > tx2)

P(Y > t)
,

=
1

2

P(Y > tx1
V
, Y > tx2

W
)

P(Y > t)
+

1

2

P(Y > tx1
W
, Y > tx2

V
)

P(Y > t)
,

=
1

2

P(Y > max(x1
V
, x2
W

)t)

P(Y > t)
+

1

2

P(Y > max(x1
W
, x2
V

)t)

P(Y > t)
,

=
1

2

P(Y min( V
x1
, W
x2

) > t)

P(Y > t)
+

1

2

P(Y min(W
x1
, V
x2

) > t)

P(Y > t)
,

t→∞−−−→1

2
Emin

(
V

x1

,
W

x2

)α
+

1

2
Emin

(
W

x1

,
V

x2

)α
. (3.86)

Then the conditional probability becomes

P(X2 > tx2|X1 > tx1) =
P(X1 > tx1, X2 > tx2)

P(X1 > tx1)
,

=
P(X1 > tx1, X2 > tx2)

P(Y > t)

P(Y > t)

P(X1 > tx1)
,

t→∞−−−→
Emin

(
V
x1
, W
x2

)α
+ Emin

(
W
x1
, V
x2

)α
E
(
V
x1

)α
+ E

(
W
x1

)α . (3.87)

Let x1 = x2 = 1, we have

P(X2 > t|X1 > t)
t→∞−−−→ 2Emin(V,W )α

EV α + EWα
=

2EV α

EV α + EWα
, (3.88)

where

EV α =

∫ ∞
0

2λe−2λtdt

∫ t

0

1

t

(
eu(1+β) − eu(1−β)

2

)α
du, (3.89)

and

EWα =

∫ ∞
0

2λe−2λtdt

∫ t

0

1

t

(
eu(1+β) + eu(1−β)

2

)α
du. (3.90)

Let s = e−t and v = e−u, we have

EV α = 2−α · 2λ
∫ 1

0

s2λ−1 1

− ln s
ds

∫ 1

s

1

v

(
v−(1+β) − v−(1−β)

)α
dv, (3.91)
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and

EWα = 2−α · 2λ
∫ 1

0

s2λ−1 1

− ln s
ds

∫ 1

s

1

v

(
v−(1+β) + v−(1−β)

)α
dv. (3.92)

Based on the definition of TDC, the TDC of this model can be computed using

Equation (3.88), where EV α and EWα are both computed using numerical method

introduced before with Equations (3.91) and (3.92).

Another method to compute EV α and EWα is using Equation (3.83). Given β,

we can generate samples (V1, V2, . . . , VN) and (W1,W2, . . . ,WN) by generating sample

data of (u1, u2, . . . , uN) in Equation (3.83). Then EV α and EWα can be computed

by using the sample mean method:

EV α
est =

1

N

N∑
n=1

V α
n , EWα

est =
1

N

N∑
n=1

Wα
n . (3.93)

In the experiment part, we use the sample mean method to compute TDC, since

this method is more straightforward and runs fast.

3.4.4 Experimental results

Here we first present some numerical results of our Type 2 model using Matlab.

Then we compare synthetic data generated by Type 2 model to real social network

datasets.

3.4.4.1 Numerical results

In this part, we present our experimental results based on the theoretical analysis

of the previous subsections. First let λ = 1/4, 1/2, 1, and 2 separately. By increas-

ing β, we compute the corresponding exponent value α and TDC. E(logA) is also

computed to verify the necessary condition in subsection 3.4.2.2.

As shown in Figure 3.16, when β = 0, the two processes are independent, which

yields α = λ. When β increases, the exponent α decreases, which means the tail
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Figure 3.16. Exponent α as a function of β with different λ values

Figure 3.17. E(logA) as a function of β with different λ values
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Figure 3.18. TDC as function of β with different λ values

becomes heavier. Exponent α reaches 0 at some point, and this point varies for

different values of λ.

As discussed in Subsection 3.4.2.2, we obtain a positive solution to Equation (3.57)

only when E(logA) < 0. Based on the results in Fig 3.17, we observe that E(logA)

is negative when β is close to 0 (negative infinity when β = 0). E(logA) increases

with β and eventually reaches 0. The point varies for different values of λ and is the

same as the point when exponent α reaches 0 in Figure 3.16.

When β = 0, the two processes are independent, which yields TDC = 0. As β

increases, TDC increases. TDC reaches one at some point which corresponds to the

point when α reaches zero and E(logA) reaches zero.

3.4.4.2 Comparing Type 2 to real datasets

To obtain a better picture of the joint distribution of Type 2 model, we generate

samples pairs of (X1, X2) using Equation (3.82), and draw the scatter plot and CCDF

of the samples. With λ = 2, β = 0.2, we have α = 1.9203. 100, 000 samples are

generated and the scatter plot and CCDF are shown in Figure 3.19. We compare

the scatter plot of Type 2 datasets to the real data in Youtube in Figure 3.20. We
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Figure 3.19. Synthetic data from Type 2 model and CCDF (λ = 2, β = 0.2)

Figure 3.20. Comparing Type 2 model to Youtube dataset

observe from the figure that the scatter plot and CCDF of the synthetic data has a

weird shape which actually not present in bivariate power law data. The data is not

present along the equal line, but totally on the opposite way.

3.4.5 A generalized model

3.4.5.1 Model formulation

Consider a more general form of the model where the two processes are not sym-

metric
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d

X1(t)

X2(t)

 =

 1 β1

β2 1


X1(t)

X2(t)

 dt

+

1−X1(t)

0

 dN1(t) +

 0

1−X2(t)

 dN2(t), (3.94)

with β1, β2 > 0.

3.4.5.2 Theoretical results

As we did in our previous section, we write the matrix

βM =

 1 β1

β2 1

 ,

λ1 = λ2 = λ.

For the DE

d

X1(t)

X2(t)

 = βM

X1(t)

X2(t)

 dt, (3.95)

we have the solution

X1(t)

X2(t)

 = etβM

X1(0)

X2(0)

 ,

=
1

2
et(1+

√
β1β2)

 1
√

β1
β2√

β2
β1

1


X1(0)

X2(0)


+

1

2
et(1−

√
β1β2)

 1 −
√

β1
β2

−
√

β2
β1

1


X1(0)

X2(0)

 . (3.96)

Using the same method as in the case when β1 = β2 = β, we prove that X1 and

X2 both satisfy the stochastic recursion in (3.54), where A is the same as in Equation
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(3.64) and Equation (3.65). The only difference is that we need to let β =
√
β1β2.

The proof of this is in Appendix C. The marginal exponent α is computed by solving

the Equation EAα = 1, as we did for the symmetric model.

For the joint distribution, given W and V the same as in Equation (3.83), let

V1 =
√

β1
β2
V and V2 =

√
β2
β1
V , we have

(X1, X2)
d

==


(XV1 +W,XW + V2) w.p. 1

2
,

(XW + V1, XV2 +W ) w.p. 1
2
,

(3.97)

and we can compute the conditional probability of this model as follows,

lim
x→∞

P (X1 > t,X2 > t)

P (Xi > t)

=
E [min (V1,W )α] + E [min (W,V2)α]

E[V α
i ] + E[Wα]

, i = 1, 2. (3.98)

Note that the above conditional probability is not the TDC when β1 6= β2.This

due to the fact that the marginal distribution of the two variables are not the same

when the two processes are not symmetric, even though the exponents are the same.

The conditional probability with either X1 or X2 given are different.

3.4.5.3 Experimental results

We did experiments for the general case. Let λ = 1/4, fix the value β1 = 0.001

and increase β2 value. First we compute the exponent α. As shown in Figure 3.21,

the exponent α decreases as β2 increases. β =
√
β1β2 also increases in β2.

Next we compute the conditional probability at infinity lim
x→∞

P (X2 > x|X1 > x)

and lim
x→∞

P (X1 > x|X2 > x) when β1 > β2. As shown in Figure 3.22, the conditional

probability at infinity increases with β2. Meanwhile, lim
x→∞

P (X2 > x|X1 > x) <

lim
x→∞

P (X1 > x|X2 > x) when β1 > β2 and vice versa. Note that, when β1 = β2, we

know the conditional probability at infinity is also the TDC.
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Figure 3.21. α as a function of β2 (λ = 0.25, β1 = 0.001)

Synthetic data generated from the generalized model is shown in Figure 3.23 with

λ = 2, β1 = 0.04 and β2 = 1. With β =
√
β1β2 = 0.2, we have the same marginal

exponents as the synthetic data in symmetric model, α = 1.9203. We observe from the

figure, when β1 6= β2, the synthetic data from this model becomes asymmetric. This

can be explained by analyzing the joint distribution of this model. When β1 = β2,

we can get the density at point (x1, x2) is the same as the density at (x2, x1) from

Equation (3.82); however this is not true when β1 6= β2 from Equation (3.97).

3.5 Summary of Type 1 and Type 2 models

For the Type 1 and Type 2 models, we have published a paper in [56]. The

reader could read that paper for a reference. For the joint density, we compare the

synthetic data of the two types of models to the real dataset Youtube (as shown in

Figure 3.24). We observe from the figure, that neither of the two types of models fits

the real dataset in distribution. However, Type 1 model is better since it has some

data concentrate on the ‘equal line’ as we discussed before. Type 2 model is totally

on the opposite way. So, we believe the dependence between the two variables are
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Figure 3.22. Comparing conditional probability lim
x→∞

P (X2 > x|X1 > x) and

lim
x→∞

P (X1 > x|X2 > x) as a function of β2 (λ = 0.25, β1 = 0.001)

Figure 3.23. Synthetic data from generalized Type 2 model (λ = 2, β1 = 0.04, β2 =
1)
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Figure 3.24. Comparing Type 1 and Type 2 models to real dataset

more likely to be introduced by the shared Poisson counters, but not the coupled

growth.

The problem with the Type 1 model is the way to introduce in the independence.

As we observe from Figure 3.24, Type 1 model has some data where X1 and X2 are

totally independent. This is not the case in real datasets.

In the next Chapter, we will introduce a new type model. In the new model, the

independence of the two variables are introduced in by the independent Brownian

motion components instead of the independent Poisson counters in Type 1 model.

We name this a Type 3 model. The Type 3 model is important since it (1) fits

real datasets; (2) connects to network growing models. We will discuss more in the

following chapters.
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CHAPTER 4

PCSDE MODELS FOR BIVARIATE HEAVY TAILED
DISTRIBUTIONS-PART II: MODELS WITH BROWNIAN

MOTION COMPONENTS

4.1 Mathematical background

In the previous chapter, we discussed two types of bivariate PCSDE models. The

two types models do not fit real data observed in social networks. The Type 1

model is more promising but it has a problem generating independence. In this

section, we introduce a new type of model, which keeps the shared Poisson counter

in Type 1 model, but uses independent Brownian motion components to replace the

two independent Poisson counters.

Before we continue to the PCSDE models with Brownian motion component, let’s

first review some properties of Brownian motion and some models related to Brownian

motion.

4.1.1 Brownian motion

Brownian motion describes the random movement of a small particle suspend in

water or in the air. The movement is caused by collisions between the small particle

and fast moving molecules around it. The Brownian motion we focus on in this

chapter is Wiener process.

The Wiener process W (t) is also called standard Brownian motion. It has the

following properties:

1. W (0) = 0;

79



2. W (t) is continuous in t almost surely;

3. W (t) has independent increments and W (t)−W (s) ∼ N (0, t− s).

W (t) has distribution

fWt(x) =
1√
2πt

e−
x2

2t ,

with expectation

E(W (t)) = 0,

and variance

V ar(W (t)) = t.

We can use the following SDE model to model the Brownian motion as in [34]

dX(t) =
1√
λ

[dN1(t)− dN2(t)]. (4.1)

The two independent Poisson counters N1 and N2 have rates λ
2
. The SDE model

in Equation (4.1) describes the following process: a particle is at the origin at time 0,

i.e. X(0) = 0, where X(t) is the position of the particle at time t. When the particle

is hit from the left by a water molecule, X increases by 1√
λ
. When it is hit from the

right, X decreases by 1√
λ
. The arrivals of hits from left and right. When λ→∞, X

converges to Brownian motion.

In Figure 4.1, 25 sample paths of Wiener process are plotted. Although the mean

of samples keeps 0, the samples diverge with an increase in t.

4.1.2 Ito’s rule for Brownian motion

Consider the following SDE driven by a Wiener process

dX = f(X)dt+ g(X)dW. (4.2)

80



Figure 4.1. Brownian motion: 25 sample paths (blue lines), mean path (red solid
line), one standard deviation from the mean (red dash line)

For a smooth function ψ(X), Ito’s rule yields

dψ =
∂ψ

∂X
[f(X)dt+ g(X)dW ] +

1

2

∂2ψ

∂X2
g2(X)dt. (4.3)

Ito’s rule for Brownian motion is useful in our calculations. Next we discuss

some processes related to Wiener process, such as Brownian motion with drift and

geometric Brownian motion [72][85].

4.1.3 Brownian motion with drift

Brownian motion with drift X(t) is the solution to the following SDE

dX(t) = βdt+ σdW (t). (4.4)

With initial condition X(0) = ε, the solution to the SDE is

X(t) = ε+ βt+ σW (t).
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Figure 4.2. Brownian motion with drift: 25 sample paths (blue lines), mean path
(red solid line), one standard deviation from the mean (red dash line)

Based on the distribution of W (t), we have the distribution of X(t):

fX(x, t) =
1

σ
√

2πt
e−

(x−ε−βt)2

2σ2t ,

with expectation:

E(X(t)) = ε+ βt,

and variance:

V ar(X(t)) = σ2t.

In Figure 4.2, 25 sample paths of Brownian motion with drift are plotted (β = 1,

σ = 0.4, and ε = 0). From the figure, we observe that the mean and standard

deviation of the samples increase in t. Based on the computation results, the standard

deviation increases more slowly than the mean.
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4.1.4 Geometric Brownian motion (GBM)

Geometric Brownian motion is a more complicated model. As we stated in Section

3.1.2, this model has been widely used in finance modeling. The model is

dX(t) = βX(t)dt+ σX(t)dW (t). (4.5)

Let Y (t) = logX(t), using Ito’s rule for Brownian motion, we have

dY (t) = (β − 1

2
σ2)dt+ σdW (t),

which is a Brownian motion with drift. With initial condition X(0) = ε, we have

Y (0) = log ε. Hence,

Y (t) = log ε+ (β − 1

2
σ2)t+ σW (t),

and

X(t) = εe(β− 1
2
σ2)t+σW (t).

Thus, Y (t) follows normal distribution and X(t) follows log-normal distribution.

The density of X(t) is

fX(x, t) =
1

σx
√

2πt
e−

(log x−log ε−(β− 1
2σ

2)t)2

2σt ,

with expectation

E(X(t)) = εeβt,

and variance

V ar(X(t)) = ε2e2βt(eσ
2t − 1).
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The expectation and variance can be computed as follows. First, take the expec-

tations of both sides of the SDE in Equation (4.5). Setting E(dW (t)) = 0 yields

dE(X) = βE(X)dt, X(0) = ε. (4.6)

And the solution to the above DE is

E(X) = εeβt. (4.7)

Next we compute the second order moments. First, let Y = X2. By applying

Ito’s rule for Brownian motion, we have

dX2 =2X(βXdt+ σXdW ) + σ2X2dt,

=(2β + σ2)X2dt+ 2σX2dW. (4.8)

Taking expectation

dE(X2) = (2β + σ2)E(X2)dt, X2(0) = ε2. (4.9)

And the solution of the above DE is

E(X2) = ε2e(2β+σ2)t. (4.10)

Hence, the variance of GBM is

V ar(X) = E(X2)− (E(X))2 = ε2e(2β+σ2)t − ε2e2βt = ε2e2βt(eσ
2t − 1). (4.11)

The standard deviation of GBM is σGBM = εeβt
√
eσ2t − 1. We see that the stan-

dard deviation grows even faster compared to the mean. In Figure 4.3, we plot 25
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Figure 4.3. GBM: 25 sample paths (blue lines), mean path (red solid line), one
standard deviation from the mean (red dash line)

sample paths (β = 1, σ = 0.4, and ε = 1), corresponding mean path and 1 standard

deviation lines to either side of the mean.

4.1.5 Constant Elasticity of Variance (CEV) model

Constant Elasticity of Variance (CEV) Model is first proposed by John Cox in

1975 [20]. The model was already introduced in Section 3.1.2. CEV is a more general

model compared to GBM. When γ = 1, CEV becomes GBM. In our work, we consider

the case when γ < 1:

dX(t) = βX(t)dt+ σXγ(t)dW (t), (4.12)

where β, σ > 0, 0 < γ < 1.

We compute the expectation and variance as we did for GBM. This is not easy

for all γ < 1, we compute the simplest case when γ = 1/2,
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dX(t) = βX(t)dt+ σX1/2(t)dW (t). (4.13)

First, take expectation of the SDE in Equation (4.13). E(dW (t)) = 0 yields the

same DE as GBM,

dE(X) = βE(X)dt, X(0) = ε. (4.14)

And the solution to the above DE is

E(X) = εeβt. (4.15)

Now we compute the second order moments. First, let Y = X2. By applying Ito’s

rule for Brownian motion we have

dX2 =2X(βXdt+ σX1/2dW ) + σ2Xdt,

=(2βX2 + σ2X)dt+ 2σX3/2dW. (4.16)

Taking expectation and with E(X) = εeβt, we have

dE(X2) = 2βE(X2)dt+ σ2εeβt, X2(0) = ε2. (4.17)

The solution to the above DE is

E(X2) =ε2e2βt + σ2

∫ t

0

εe2β(t−s)eβsds,

=ε2e2βt +
σ2ε

β
(e2βt − eβt). (4.18)

The variance of CEV is

V ar(X) = E(X2)− (E(X))2 =
σ2ε

β
(e2βt − eβt). (4.19)

The standard deviation of CEV (γ = 1/2) is σCEV = σ
√

ε
β

√
(e2βt − eβt). Com-

pared to GBM, the standard deviation grows at the same speed as the mean. In
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Figure 4.4. CEV (γ = 1/2): 25 sample paths (blue lines), mean path (red solid
line), one standard deviation from the mean (red dash line)

E(X(t)) Var(X(t)) STD(X(t))

GBM εeβt ε2e2βt(eσ
2t − 1) εeβt

√
eσ2t − 1

CEV(γ = 1
2
) εeβt σ2

β
ε(e2βt − eβt) σ

√
ε√
β

√
e2βt − eβt

Table 4.1. Statistics comparison of GBM and CEV (γ = 1
2
).

Figure 4.4, we plot 25 sample paths (β = 1, σ = 0.4, and ε = 1), corresponding

mean path and one standard deviation lines on both sides of the mean as we did for

GBM. We compare the statistics of GBM and CEV (γ = 1/2) in Table 4.1. With the

same parameters, CEV performs quite differently from GBM. It is reasonable that

we expect different behaviors for the PCSDE models based on GBM and based on

CEV. We will discuss the two kinds of PCSDE models in the following.
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Figure 4.5. Sample path of the first Type 3 model in Equation (4.21) (λ = 0.5, µ =
1, σ = 0.4)

4.2 PCSDE model based on Geometric Brownian Motion

(GBM) (the first Type 3 model)

4.2.1 Model formulation

By adding a Poisson counter to Geometric Brownian motion, we obtain the fol-

lowing PCSDE model

dX(t) = βX(t)dt+ σX(t)dW (t) + (ε−X(t))dN(t). (4.20)

This model has been introduced in Section 3.2.3 to produce double-Pareto distri-

bution.

A bivariate extension with a shared Poisson counter is

dXi = βiXidt+ σiXidWi + (εi −Xi)dN, i = 1, 2, (4.21)

where N is a shared Poisson counter with rate λ. We call the bivariate PCSDE model

based on GBM the first Type 3 model. A sample path of this model is shown in

Figure (4.5).
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4.2.2 Marginal tail

In [43], the authors used a characteristic function method to compute the distri-

bution of this model. Please refer to the paper for more details. Unfortunately, we

cannot apply this method to get the result for the bivariate extension of this model.

Instead we introduce another method in the following based on previous results in

[64] and [38].

Let Y = lnX, we have

dY (t) =

(
β − σ2

2

)
dt+ σdW (t) + (ln ε− Y (t))dN(t).

The solution to the differential equation dY (t) = (β − σ2

2
)dt+ σdW (t) is

Y (t) = ln ε+

(
β − σ2

2

)
t+ σW (t),

and

X(t) = εe

(
β−σ

2

2

)
t+σW (t)

.

We are interested in the case when β − σ2

2
> 0.

The Poisson counter Nt has rate λ. Define the life time T : the time between the

last active Poisson counter occurring and the observation time. By PASTA property

[92], we can prove that T ∼ exp(λ). The proof is as follows:

Let U ∼ exp(λ). Given U = u, T ∼ U(0, u). We have
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P(T ≥ x) =
E
∫ U

0
1(t ≥ x)dt

EU

=

∫∞
0
λe−λudu

∫ u
0

1(t ≥ x)dt∫∞
0
λe−λudu

=

∫∞
x
λe−λu(u− x)du

1
λ

=
λe−λx

∫∞
x
λe−λ(u−x)(u− x)d(u− x)

1
λ

=
λe−λx 1

λ2

1
λ

= e−λx.

Thus T ∼ exp(λ).

Given W (t) ∼ N (0, t), X follows a lognormal distribution

ln(X) ∼ N (ln ε+ (β − σ2

2
)T, σ2T ), (4.22)

which gives

fX(x, T ) =
1√

2πTσx
e−

(
ln x−ln ε−(β−σ

2

2 )T

)2
2σ2T ,

and thus

fX(x) =

∫ ∞
0

λe−λt
1√

2πtσx
e−

(
ln(x/ε)−(β−σ

2

2 )t

)2
2σ2t dt.

Let t = s2,

fX(x) =
2λ√
2πσx

e
ln(x/ε)(β−σ

2

2 )

σ2

∫ ∞
0

e−
λ+

(
β−σ

2

2

)2
2σ2

s2e−
(ln(x/ε))2

2σ2s2 ds.

Given the identity ∫ ∞
z=0

e−az
2−b/z2dz =

1

2

√
π

a
e−2
√
ab,
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we have

fX(x) =


θ1ε
−1
(
x
ε

)β−σ2/2+θ2
σ2

−1
, x < ε,

θ1ε
−1
(
x
ε

)β−σ2/2−θ2
σ2

−1
, x ≥ ε,

(4.23)

where θ1 = λ√
(β−σ2/2)2+2λσ2

and θ2 =
√

(β − σ2/2)2 + 2λσ2. The result is the same

as using the characteristic function method in [43].

Consider the case ε = 1, β = 1 and σ = 1. Based on the result in Equation (4.23),

the marginal density at the upper tail

fX(x) =
λ√

2λ+ 1
4

x−(
√

2λ+ 1
4

+ 1
2

), x→∞. (4.24)

4.2.3 Joint CCDF and TDC

Given T ∼ exp(λ), X1 ∼ N (ln ε1 + (β1 − σ2
1

2
)T, σ2

1T ) and X2 ∼ N (ln ε2 + (β2 −
σ2
2

2
)T, σ2

2T ). X1 and X2 are independent. We have

fX1,X2(x1, x2, T ) =
1

2πTσ1σ2x1x2

e

−


(
ln(

x1
ε1

)−(β1−
σ21
2 )T

)2

2σ21T
+

(
ln(

x2
ε2

)−(β2−
σ22
2 )T

)2

2σ22T


. (4.25)

We give the joint distribution

fX1,X2(x1, x2) =
1

2πσ1σ2x1x2

∫ ∞
0

λe−λt
1

t
e

−


(
ln(

x1
ε1

)−(β1−
σ21
2 )t

)2

2σ21t
+

(
ln(

x2
ε2

)−(β2−
σ22
2 )t

)2

2σ22t


dt.

(4.26)

We prove the joint density of this model at the tail

fX1,X2(x1, x2) ∼ x
− 3

2
+
β1
σ21

1 x
− 3

2
+
β2
σ22

2 H−1/4e−
√

2BH1/2

, (4.27)
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where

H =

(
(lnx1)2

σ2
1

+
(lnx2)2

σ2
2

)
,

and

B = λ+

(
(β1 − σ2

1

2
)2

2σ2
1

+
(β2 − σ2

2

2
)2

2σ2
2

)
.

The proof of conclusion in Equation (4.27) is in Appendix D.1.

To analyze the tail dependence, we need to compute the joint CCDF of this

model. To simplify the computation, let β1 = β2 = 1, σ1 = σ2 = 1. We begin with

the definition of CCDF

P (X1 > x,X2 > x) =

∫ ∞
x

∫ ∞
x

fX1,X2(x1, x2)dx1dx2,

∼ (2B)−1/4

√
2πσ1σ2

∫ ∞
x

∫ ∞
x

x
−1/2
1 x

−1/2
2

(
(lnx1)2 + (lnx2)2

)−1/4

e−
√

2B((lnx1)2+(lnx2)2)
1/2

dx1dx2. (4.28)

We prove the joint CCDF of this model at the tail

P (X1 > x,X2 > x) ∼ x−(
√

4λ+1−1). (4.29)

The detailed proof is in Appendix D.2.

The marginal CCDF of this model can be computed from the marginal density in

Equation (4.24), that

P (X1 > x) =

∫ ∞
x

fX1(x1)dx1 ∼ x−(
√

2λ+ 1
4
− 1

2
).

With the joint CCDF in Equation (4.29), we prove that

P (X2 > x|X1 > x) ∼ x−(
√

4λ+1−
√

2λ+ 1
4
− 1

2
). (4.30)
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It is easy to show that
√

4λ+ 1 −
√

2λ+ 1
4
− 1

2
> 0 for all λ, which means

TDC = limx→∞ P (X2 > x|X1 > x) = 0.

Thus, the first Type 3 model is an asymptotically independent model. Before we

proceed to the new model, we perform experiments using data generated from the

first Type 3 model.

4.2.4 Experimental results

We generate two sets of synthetic data from the first Type 3 model with different

σ values (λ = 1, β = 0.9). As shown in Figure 4.6, the synthetic data from the first

Type 3 model based on GBM does not fit the real data. And as the values increase,

the dependence between X1 and X2 decreases. This corresponds to our theoretical

results in Section 4.2.3, that the model is asymptotic independent. Although the

theoretical result is for special case when β1 = β2 = 1, σ1 = σ2 = 1, it should work on

other cases too. We skip the proof for the other cases.

The marginal CCDF (P (X1 > x) and P (X2 > x)) and dependence coefficients

(P (X1 > x|X2 > x) and P (X2 > x|X1 > x)) as a function of x of the above two

groups of data are shown in Figure 4.7. We observe from the figure, the dependence

coefficients decrease to 0 with x increasing and the speed to 0 is faster when σ is

larger.

In the next section, we consider a more generalized model based on CEV (0 <

γ < 1) instead of GBM. As we said in Section 4.1.5, we expect this model to perform

differently from the model based on GBM.

4.3 PCSDE Model based on Constant Elasticity of Variance

(CEV) Model with 0 < γ < 1 (the second Type 3 model)

We restate the CEV model (0 < γ < 1) from Section 4.1.5
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Figure 4.6. Synthetic data of the first Type 3 model

(a) σ = 0.5 (b) σ = 1

Figure 4.7. Marginal CCDF and dependence coefficients of data in Figure 4.6
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dX(t) = βX(t)dt+ σXγ(t)dW (t), (4.31)

where β, σ > 0, 0 < γ < 1.

Theorem 2 in [16] gives the density of this model

fXt|X0(x, t) = 2(1− γ)k̃
1

2(1−γ) (x̃z̃1−4γ)
1

4(1−γ) exp{−x̃− z̃}I 1
2(1−γ)

(2(x̃z̃)
1
2 ), (4.32)

where

k̃ =
β

σ2(1− γ)(e2β(1−γ)t − 1)
,

x̃ = k̃X
2(1−γ)
0 e2β(1−γ)t,

z̃ = k̃x2(1−γ),

and Iv(z) is the modified Bessel function of the first kind of order v

Iv(z) = (
1

2
z)v

∞∑
n=0

(1
4
z2)n

n!Γ(v + n+ 1)
. (4.33)

The density for this model is more complicated than that of the original model

GBM. Since it is not easy to compute the density of PCSDE model based on this

model, we consider a specific condition γ = 1/2 in the following.

4.3.1 Model formulation

By adding a Poisson counter component to the CEV model, we obtain a new type

of PCSDE model

dX(t) = βX(t)dt+ σXγ(t)dW (t) + (ε−X(t))dN(t), (4.34)

where W is standard Brownian motion, N is a Poisson counter with rate λ and

0 < γ < 1.
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A bivariate extension of the above single variate model is

dXi = βiXidt+ σiXi
γdWi + (ε−Xi)dN, i = 1, 2, (4.35)

where W1 and W2 are two independent Wiener processes. We call the bivariate

PCSDE model based on CEV (γ = 1/2) the second Type 3 model.

4.3.2 Marginal tail

To compute the marginal tail, we further simplify this model by setting ε = 1 and

γ = 1/2. In Section 5.1, we will show that the case when γ = 1/2 also relates to

network growing models.

We have the density function for the DE in (4.32) becomes

fXt(x, t) =
2β

σ
x−1/2 eβt/2

eβt − 1
exp

{
−2β

σ

eβt + x

eβt − 1

}
I1

(
4β

σ

eβt/2

eβt − 1
x1/2

)
, (4.36)

where I1(z) = (1
2
z)
∑∞

n=0

( 1
4
z2)n

n!Γ(n+2)
. With t ∼ exp(λ), we have

fX(x) = λ
2β

σ
x−1/2

∫ ∞
0

e−λt
eβt/2

eβt − 1
exp

{
−2β

σ

eβt + x

eβt − 1

}
I1

(
4β

σ

eβt/2

eβt − 1
x1/2

)
dt.

(4.37)

It is not easy to obtain a closed-form solution to Equation (4.37). We try to

analyze the marginal density at the tail as x→∞.

We obtain the following conclusion

lim
x→∞

x1+λ/βfX(x) = λ
2

σ

∫ ∞
0

y−3/2−λ/β exp

{
−2β

σ
y−1

}
I1

(
4β

σ
y−1/2

)
dy ∈ (0,∞) ,

(4.38)

which means fX(x) ∼ x−(1+λ/β). The reader is referred to Appendix E.1 for a detailed

proof.
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Figure 4.8. The marginal CCDF of synthetic data for the second Type 3 model
with γ varies

The marginal tail is the same as the original PCSDE model without a Brownian

motion component in Equation (3.17). This is quite different from the first Type 3

model. In Figure 4.8, we plot the marginal CCDF of the synthetic data generated by

the second Type 3 model with different γ values. For comparison, we also plot the

CCDF of synthetic data of the first Type 3 model with γ = 1. The black dashed line

is a reference line with slope −λ/β, which is the exponent of the original model with

no Brownian motion component. We observe that the tail exponent is the same as

the original model even with γ = 0.9, which is quite close to γ = 1. Actually we can

prove this in an easier way and the proof is applied to all the cases when 0 < γ < 1

with no need to specify γ = 1/2.

Let Y = logX. By applying Ito’s rule for Brownian motion, Equation (4.34)

becomes

dY =

(
β − σ2

2
e−2Y (1−γ)

)
dt+ σe−Y (1−γ)dW − Y dN.

With 0 < γ < 1, we have 0 < (1− γ) < 1. When Y →∞,
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dY = βdt− Y dN.

With X = eY , we have

dX = βXdt+ (1−X)dN, X →∞,

which gives the marginal tail

fX(x) ∼ x−λ/β−1, x→∞.

4.3.3 Joint CCDF and TDC

In Appendix E.2, we give a rigorous analysis of the joint tail for the case when

γ = 1/2. The conclusion is that

P (X1 > x,X2 > x) ∼ x−λ/β.

Based on the marginal density in Equation 4.38, we have the marginal CCDF

P (X > x) ∼ x−λ/β. (4.39)

With the same tail exponent of the marginal and joint CCDF, we conclude the tail

dependence of the second Type 3 model is non-zero given γ = 1/2. The reader is

referred to Appendix E.2 for a detailed proof.

4.3.4 Experimental results

We generate two groups of synthetic data from the second Type 3 model with

different γ and different σ values. In each group, there are three sets of data. As

shown in Figure 4.9, with the increasing of γ and σ values, the dataset becomes less

dependent between X1 and X2. Meanwhile, with bigger γ value, the tail part of
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(a) γ vary (β = 0.9, σ = 0.5)

(b) σ vary (β = 0.5, γ = 0.5)

Figure 4.9. Synthetic data from the second Type 3 model with γ and σ varying

the data becomes fatter; while the body part of the dataset becomes fatter when σ

becomes bigger.

For different values of σ and γ, we plot the dependence coefficients of the datasets

we generated in Figures 4.10. We observe that the dependence coefficients tend to

stabilize around a fractional value when x goes to large and the TDC is smaller when

σ and γ is larger.

4.4 Pearson correlation coefficients

In Table 4.1, we give the first and second moments for GBM and CEV (γ = 1/2).

In this section, we will use the moments to calculate the moments for PCSDE models.

From Table 4.1, we observe that the expectations for GBM and CEV (γ = 1/2) are
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(a) γ vary (β = 0.9, σ = 0.5)

(b) σ vary (β = 0.5, γ = 0.5)

Figure 4.10. Dependence coefficients of datasets in Figure 4.9

the same

E(X(t)) = eβt.

But for the second moments, we have

E(X2(t)) = e(2β+σ2)t,

for GBM; and

E(X2(t)) = e2βt +
σ2

β
(e2βt − eβt),

for CEV (γ = 1/2).

Given X1 and X2 having the same life time but generated with independent ran-

dom seeds,

E(X1(t)X2(t)) = E(X1(t))E(X2(t)) = e2βt.
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With Poisson resetting in the PCSDE model, life time t ∼ exp(λ). Thus we have

the moments for the Type 3 PCSDE model:

E(Xm) =

∫ ∞
0

λe−λtE(Xm(t))dt.

It is easy to get that, when β < λ < 2β, E(X) exists; E(X2) for both GBM and

CEV (γ = 1/2) are infinite. For a finite dataset, it normally has an upperbound for

the life time (the observation time) T . Assume life time follow truncated exponential

distribution with an upperbound T . Let β1 = β2 = β, σ1 = σ2 = σ, λ1 = λ2 = λ. We

have

E(X1) = E(X2) =

∫ ∞
0

λe−λteβtdt =
λ

λ− β
(
1− e−(λ−β)T

)
,

and

E(X1X2) =

∫ ∞
0

λe−λte2βtdt =
λ

2β − λ
(
e(2β−λ)T − 1

)
= O(e(2β−λ)T ).

For GBM-based PCSDE,

σ2
Xi

=E(X2
i )− (E(Xi))

2,

=

∫ T

0

λe−λte(2β+σ2)tdt−
(

λ

λ− β
(
1− e−(λ−β)T

))2

,

=
λ

2β + σ2 − λ

(
e(2β+σ2−λ)T − 1

)
−
(

λ

λ− β
(
1− e−(λ−β)T

))2

,

=O(e(2β−λ+σ2)T ).

For CEV-based PCSDE (γ = 1/2),

σ2
Xi

=

∫ T

0

λe−λt
(

(
σ2

β
+ 1)e2βt − σ2

β
eβt
)
dt−

(
λ

λ− β
(
1− e−(λ−β)T

))2

,

=
λ

(2β − λ)
(1 +

σ2

β
)
(
e(2β−λ)T − 1

)
− λσ2

β(λ− β)

(
1− e−(λ−β)T

)
−
(

λ

λ− β
(
1− e−(λ−β)T

))2

,

=O(e(2β−λ)T ).
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We observe that the variance σ2
Xi

grows faster with T than E(X1X2) for GBM-

based PCSDE; while σ2
Xi

and E(X1X2) grow at the same speed for CEV-based

PCSDE (γ = 1/2).

We calculate the Pearson correlation coefficient between X1 and X2 to be

Corrcoef(X1, X2) =
E(X1X2)− E(X1)E(X2)

σX1σX2

.

When T →∞, we have

Corrcoef(X1, X2) ∼ 2β + σ2 − λ
2β − λ

e−σ
2T → 0,

for the first Type 3 model; and

Corrcoef(X1, X2)→ 1

1 + σ2

β

∈ (0, 1),

for the second Type 3 model (γ = 1/2).

Although the above results for the second Type 3 model is under a specific con-

dition γ = 1/2, we have shown in our previous sections that, the results for the other

parameters 0 < γ < 1 should be similar. The statistics of the four datasets are given

in Table 4.2. Compared to the statistics in Table 4.2, the second Type 3 model based

on CEV fits the data better. The reason is that E[dindout] and σ2
din

(σ2
dout

) of the real

datasets are in the same order of magnitude. Meanwhile, the correlation coefficients

are much larger than 0.

To fit real datasets, we tune the parameters λ, β, σ and γ of the second Type 3

model in Equation (4.35) and generate synthetic data to compare. The comparisons

between scatter plot of the real datasets and synthetic data generated by the PCSDE

model are shown in Figure 4.11. The results show that our synthetic data with

different parameters fit different social network datasets well.
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(a) Youtube

(b) Facebook

(c) Flickr

(d) Livejournal

Figure 4.11. Synthetic data from the second Type 3 model compared to real datasets
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Graph E[din] σ2
din

(σ2
dout

) E[dindout] Corrcoef

Youtube 4.34 2.37e+003 (1.61e+003) 1.88e+003 0.95
Facebook 18.7 1.91e+003 (2.17e+003) 2.08e+003 0.85
Flickr 14.4 1.25e+004 (1.00e+004) 8.66e+003 0.76
Livejournal 14.1 1.30e+003 (1.88e+003) 1.21e+003 0.65

Table 4.2. Statistics in social network datasets

4.5 Summary

In this chapter, we proposed two types of models. Type 3 models are based on the

idea that two variables are correlated if they have the same life time but independent

random terms. By compared to the real data, the second Type 3 model based on

CEV with 0 < γ < 1 fits the real data in social networks.

We also find that the synthetic data from the fist Type 3 model in Figure 4.6 with

σ = 1 looks similar to the Web Google dataset in Figure 3.2. We compare the two

datasets in Figure 4.12. Thus, the first Type 3 model might be useful in explaining

some bivariate power law data in citation or Web networks. To note that, all the

fitting work for the Type 3 model is not a rigorous fitting. The reason is that it is

pretty hard to get the theoretical joint distribution for Type 3 model. And it is even

not possible to compute the second and higher order moments of the second Type 3

model with γ 6= 1/2.
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Figure 4.12. Synthetic data from the first Type 3 model v.s. Web Google dataset
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CHAPTER 5

APPLICATIONS: NETWORK GROWING MODELS,
NATURAL IMAGES

The second Type 3 model based on CEV (0 < γ < 1) is an interesting model

since it fits the real data in social network in distribution and it generates fractional

TDC. In this chapter, we first connect a special case (γ = 1/2) of this model to

the network growing models. Since the network growing models are only designed

to explain the origin of power law in complex networks, our model serves as a more

general explanation to all the power law observations. For example, bivariate power

law distributions in natural images.

5.1 Network growing models and PCSDE models

We start with a generalized network growing model and then take Bollobás’ model

as an example.

5.1.1 A generalized network growing model

Consider the following generalized model. In each step

• the total number of new nodes added to the existing graph is n;

• the total number of new degree (in-degree/ out-degree for directed graph) added

is m with m1 the degree attached to the new nodes and m2 the degree attached

to nodes in existing graph;
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• when selecting the node in existing graph to attach to, we use preferential

attachment mechanism, say the node is selected with probability proportional

to the node’s current degree.

Our target is to use our PCSDE model to simulate the degree growth process of

a randomly selected node in the graph. First, the PCSDE model assumes the life

time follows an exponential distribution. However, the nodes normally grow linearly

in network growing models since a constant number of nodes and edges are added in

each step. In real life, the size of online social networks normally grows exponentially

at the rapid growing period [25, 67] (as shown in Figure 5.1). Thus, it is reasonable

to assume the nodes grows exponentially, which means the new nodes added in each

”time step” is proportional to the current number of nodes in the existing graph.

Note that time step is different from step in growing models.

Given initial number of nodes in the network n0, denote N(t) the number of nodes

in the network at time t

N(t) = n0e
λt, (5.1)

which yields

dN(t) = λn0e
λtdt = λN(t)dt. (5.2)

At a very large T , we observe the nodes’ life time. Denote the life time as a random

variable L. With the assumption in Equation (5.1), we have

P(L > t) =
Number of nodes appear before time T − t

Total number of nodes at time T
,

=
N(T − t)
N(T )

,

=
n0e

λ(T−t)

n0eλT
,

= e−λt. (5.3)

Thus, L ∼ exp(λ).
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Figure 5.1. Registered users in social networks from 2004 to 2013 (Figure is copied
from [67])
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Next, denote M(t) as the total degree in the graph at time t. Assume the initial

number of degree in the graph is m0 and m0 = m
n
n0, then we have

M(t) =
m

n
N(t) = m0e

λt, (5.4)

and

dM(t) = λm0e
λtdt = λM(t)dt. (5.5)

Now, consider a randomly selected node in the existing graph at time t with degree

D(t), we denote the new degree added to this node in dt as dD(t). For each one new

degree, this node is selected with probability p = D(t)
M(t)

. And the total degree added

to the nodes in existing graph is m2

m
dM(t). Thus dD(t) follows binomial distribution

dD(t) ∼ B

(
m2

m
dM(t),

D(t)

M(t)

)
, (5.6)

with expectation (denote β , m2

m
λ)

E(dD(t)) =
m2

m
dM(t)

D(t)

M(t)
=
m2

m
λD(t)dt = βD(t)dt. (5.7)

When p = D(t)
M(t)
→ 0, we have p(1 − p) → p. Since M(t) grows faster than D(t), we

have D(t)
M(t)
→ 0 as t→∞. Thus

V ar(dD) =
m2

m
dM(t)

D(t)

M(t)

(
1− D(t)

M(t)

)
→ m2

m
dM(t)

D(t)

M(t)
= βD(t)dt. (5.8)

If we let D(0) = 0.1M(0), which is the case in our experiments, the variance can be

approximated by the above equation even when t is very small.

We use the following normal distribution to approximate the above binomal dis-

tribution

dD(t) ∼ B

(
m2

m
dM(t),

D(t)

M(t)

)
≈ N (βD(t)dt, βD(t)dt) . (5.9)

Given standard Brownian motion dW (t) ∼ N (0, dt), we have the following SDE
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dD(t) = βD(t)dt+
√
βD(t)dW (t). (5.10)

Combing with the conclusion drawn from Equation (5.3), we use the following

PCSDE to simulate the degree evolution in the graph.

Let X denote the undirected degree in symmetric graph (in-degree or out-degree

for directed graph). We have

dX(t) = βX(t)dt+
√
βX(t)dW (t) + (x0 −X(t))dN(t), (5.11)

where N(t) is a Poisson counter with rate λ and

λ =
m

m2

β. (5.12)

Equation (5.11) is a special case of PCSDE model of the second Type 3 in Equation

(4.34) with γ = 1/2 and σ =
√
β. With the conclusion in Equation (4.38), the

marginal density is fX(x) ∼ x−(λ
β

+1). With the relationship between λ and β in

Equation (5.12), we have

fX(x) ∼ x
−( m

m2
+1)
. (5.13)

For B-A model in [8], it attaches half of the undirected edges to the new node

and half to the nodes in the existing network in each step, as shown in Figure 5.2.

With m2 = 1
2
m, we have the tail exponent 1 + m

m2
= 3 for B-A model. The result is

consistent with the result in [8].

5.1.2 A directed example: Bollobás’ model

Consider the following directed network growing model in [9]. In [87], the authors

proved that the joint distribution of this model has jointly regularly varying tails. In

this model, the network grows by adding a new node or a new directed edge in each

step.
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Figure 5.2. Illustration of growing process in B-A model (white circle: existing
nodes; gray circle: new nodes; solid line: existing connections; dashed line: new
connections)

• With probability p1, append a new node to the graph with an edge from an

existing node in the graph to the new node.

• With probability p2, append a new node to the graph with an edge from the

new node to an existing node in the graph.

• With probability q = 1− p1 − p2, append to the existing graph a directed edge

from v to w.

• The initiating node v is chosen with probability depending on its out-degree;.

p(v is chosen) =
Dout(v) + εout∑
u(Dout(u) + εout)

,

The targeting node w is chosen with probability depending on its in-degree

p(w is chosen) =
Din(w) + εin∑
u(Din(u) + εin)

.

In the directed model, in-degree and out-degree grow separately. However, the life

time of the two is the same. The in-degree and out-degree bias εin and εout can be
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seen as extra initial in-degree and out-degree given to each node. When introducing a

new node with an in-going link, the new node start with 1+εin in-degree and εout out-

degree; while with an out-going link, the new node start with εin in-degree and 1+εout

out-degree. The expectation of in-degree added at each step is min = 1 + εin(p1 + p2)

with min
2 = p1 + q attached to nodes in existing graph; while the expectation of out-

degree added at each step is mout = 1 + εout(p1 + p2) with mout
2 = p2 + q attached

to nodes in existing graph. With the result in Section 5.1.1, we obtain the following

bivariate PCSDE model:

dX1 = β1X1dt+
√
β1

√
X1dW1 + (1 + εin −X1)dN1 + (εin −X1)dN2;

dX2 = β2X2dt+
√
β2

√
X2dW2 + (εout −X2)dN1 + (1 + εout −X2)dN2, (5.14)

where N1 and N2 are independent Poisson counters with rates λ1 and λ2, with the

relationship:

λ = λ1 + λ2,

λ1/λ2 = p1/p2.

and

β1 =
p1 + q

1 + εin(p1 + p2)
λ,

β2 =
p2 + q

1 + εout(p1 + p2)
λ.

The marginal tail exponents can be computed with Equation (4.39), which are the

same with the results in [9] and [87]. We also prove the asymptotic dependence

between in-degree and out-degree with the conclusion in Section 4.3.3.
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(a) N = 5000, p1 = p2 = 0.2, εin = εout = 1

(b) N = 5000, p1 = p2 = 0.05, εin = εout = 1

Figure 5.3. Comparison between the data generated from Bollobás’ model and the
data from PCSDE model in (5.14) (Blue: Bollobás model; Black: PCSDE model).

5.1.3 Experimental results

We generate two groups of data using the Bollobás’ model in Section 5.1.2 with

p1 = p2 = 0.2 in the first group and p1 = p2 = 0.05 in the second group. Let λ = 1 in

bivariate PCSDE model in Equation (5.14) and we compute the other corresponding

parameters. We have β1 = β2 = 0.5714 for the first and β1 = β2 = 0.8636 for the

second. The total number of nodes N in each group is 5000.

The scatter plot of the synthetic data from the growing model and from the

PCSDE model are compared in Figure 5.3. We observe that the data from the

PCSDE model looks quite similar to the data from growing model. To illustrate
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(a) N = 5000, p1 = p2 = 0.2, εin = εout = 1

(b) N = 5000, p1 = p2 = 0.05, εin = εout = 1

Figure 5.4. Comparison of the CCDF and dependence coefficients between the data
generated from Bollobás’ model and the data from PCSDE model in (5.14) (Left
column: Bollobás model; Right column: PCSDE model).
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the two sets of data following the same distribution, we further compare the CCDFs

and dependence coefficients between the synthetic data from the Bollobás’ model and

from the PCSDE model. As shown in Figure 5.4, the two sets of data have the same

marginal tail exponents and the dependence coefficients stay at the same value when

the value of x is large.

Thus, our PCSDE model can be used to explain the degree growth of a randomly

selected node in the graph. Since the simulation process of generating new nodes

and new connecting edges is very time consuming, we could use our PCSDE model

to generate synthetic data instead of using the original growing model to build the

whole graph.

5.1.4 Some thoughts about new network growing models based on Type

3 model

We have shown that a special case (γ = 1/2) of our second Type 3 model connects

to network growing models. Could we come up with new network growing models,

which connect to the other cases of our PCSDE model?

The problem in the existing network growing model is that each new degree is

added randomly and independently. The accumulated variance is fixed and is just

the case in PCSDE model when γ = 1/2. What about the other cases? Let’s see the

growing part of our PCSDE model, the CEV model

dX

X
= βdt+

σ

X1−γ dW.

In CEV model, the ratio between the increment value and original value dX
X

follows

a normal distribution with a constant mean. The instantaneous variance is also

constant when γ = 1. When γ < 1, the instantaneous variance decreases when X

increases.
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Figure 5.5. Illustration of new network growing model based on Type 3 model
(white circle: existing nodes; gray circle: new nodes; solid line: existing connections;
dashed line: new connections)

So, we let the existing nodes attract a number of new nodes in each step in our

new network growing model, which gives a real exponential growth. As shown in

Figure 5.5, the number of new nodes a given node attracted depends on its current

degree. Instantaneous variance decreases with degree actually makes sense in real

social networks. For a node with large degree, new connections are normally coming

for a reason (a fan, interesting content); so it has smaller instantaneous variance

compared to nodes with smaller degree. γ value reflects the property of the network.

Smaller γ means faster drop with degree, which further indicates that famous nodes

have bigger impact in such kind of networks.

To summarize, here is only some brief thoughts about how to interpret our Type

3 model in real network growing scenario. And we only talk about new growing

models for undirected networks. For directed network growing models, it will be more

complicated. In the next section, we will present another interesting application of

our Type 3 model in natural image.
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Figure 5.6. Power spectrum of a natural image (image, power spectrum, contour of
power spectrum)

5.2 Power law in natural image

5.2.1 Background

Natural images are highly related to power law phenomenon. Average power

spectra of natural images normally follow a power law [89, 90, 68] (as shown in

Figure 5.6). In [90], authors present spectral signatures of different image categories

(as shown in Figure 5.7). We observe that images with natural and man-made objects

are different in power spectra shapes.

Power law spectrum is also observed in internet traffic [62]. In [62], an aggregation

of Markovian Hierarchical On-Off Processes is proposed to model the internet traffic.

However, how to extend this model to two dimension to apply it to two dimensional

images is unclear. In our work, we focus on a more straight forward explanation:

occluding objects with power law distributed sizes.

As explanations in [62] for power law power spectrum in internet traffic, a provoca-

tive interpretation of the power law spectra in natural images is self-similarity [68,

86, 60]. A self-similar object is similar to a part of itself. There is evidence that

the distribution of the object sizes is self-similar in natural image and explanation

models have been delivered in [86, 60]. In their models, the images are composed of

independently occluding objects with constant intensities, whose sizes follow power
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Figure 5.7. Spectral signature of different image categories (image comes from [90])

law distribution. To model self-similar images, power law size distributed circles and

squares are generated [86, 60] (as shown in Figure 5.8).

Power law sized cluster distribution, on the other hand, has been found in the k-

bilevels of natural images [5, 39]. In the works, the authors equally divided pixel levels

[0, 255] into k regions. The images could be represented by k-bilevels. A k-bilevel of

a binary images (l = 1, . . . , k) is as follows:

Il(i, j) =


1 I(i, j) ∈ [(l − 1)N

k
, lN

k
],

0 otherwise.

From experiments, the size distribution of connected components in all the k-bilevels

of an image can be approximated by a power law distribution (as shown in Figure

5.9).

The works in [5, 39] are evidences for the power law sized objects in [86, 60].

5.2.2 Bivariate power law in natural images

In [86, 60], the objects are represented by squares and circles. In fact, the shape

of the connected components in natural image is not always regular. We use different
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(a) (b)

Figure 5.8. Model self-similar images ((a) from “Scaling and Power Spectra of
Natural Images” (2003); (b) from “Origins of Scaling in Natural Images” (1997))

Figure 5.9. The distribution of sizes of connected components of 10-bilevels (from
Gousseau, Y. and Morel, J.M.(2001) “Are natural images of bounded variation?”)
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colors to mark the connected components of natural images using k-bilevel method

with k = 8 (as shown in Figure 5.10).

We observe that the shapes of the objects in real images are quite arbitrary. The

squares and circles with fix diameters are not good enough in capturing the shapes of

the objects in natural images. Since images have two dimensions, we are wondering

whether there exists bivariate power law data in natural images?

We measure the height (from the north-est pixel to the south-est pixel) and the

width (from the west-est pixel to the east-est pixel) of each connected component and

plot a scatter plot of (height, width) jointly (as shown in Figure 5.11). Meanwhile, we

plot the marginal CCDF and the dependence coefficients between the two variables in

Figure 5.12. As shown in Figures 5.11 and 5.12, (height, width) pair of the connected

components in most of the natural images follow power law marginally and their joint

densities and dependence behaviors look similar to the synthetic data generated by

the second Type 3 model.

5.2.3 Model self-similar in natural images

The observation in Section 5.2.2 motivates us to propose a new model to generate

self-similar images. We believe that using rectangles and ellipses instead of squares

and circles should be better choices. We use rectangles to simulate man-made ob-

jects, like building, futurities, etc. The width and height of a rectangle follows joint

distribution in the second Type 3 model. We use ellipses to simulate natural objects,

like leaves, flowers, etc. And the major axis and minor axis of the ellipse follows joint

distribution in the second Type 3 model.

Two self-similar images generated using rectangles and ellipses are shown in Fig-

ures 5.13 and 5.14. We also plot the power spectra and the contour of the spectra.

Compared to the results in Figure 5.7, the power spectrum contour of the image with

rectangles has similar shape to the spectral signature of image with natural object;
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(a) Image with natural objects (b) Clusters of image with natural objects

(c) Image with man-made objects (d) Clusters of image with man-made objects

Figure 5.10. Connected components (k = 8) in images with man-made and natural
objects
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Figure 5.11. Scatter plot of (height, width) of connected components (k = 8) in
natural images
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(a) Image (1)

(b) Image (2)

(c) Image (3)

Figure 5.12. Images: marginal CCDF P (height > d) (P (width > d)) and de-
pendence coefficients P (height > d|width > d) and P (width > d|height > d) as a
function of value d
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Figure 5.13. Model self-similar images with rectangles

Figure 5.14. Model self-similar images with ellipses

while the power spectrum contour of the image with ellipses has similar shape to the

spectral signature of image with man-made object.

Meanwhile, by changing the parameters in the PCSDE model, we can also simulate

different scene scale in real images (as shown in Figure 5.15). As indicated in [90],

close-up views on man-made objects tend to produce images with flat and smooth

surfaces. As distance between the observer and the scene background increases, it is

likely to encompass more objects in the image. Thus, the power spectra for close-

up views is concentrated mainly in low spatial frequencies. While, as the distance

increases, the spectral energy corresponding to high spatial frequencies increases. In

our experiments, larger ε corresponds to close-up scene.

5.2.4 Summary

In this part, we show two major applications of our second Type 3 model.
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(a) ε = 0.6

(b) ε = 1

(c) ε = 3

Figure 5.15. Model self-similar images with different scene scales

125



In the first application, our model can be used to generate synthetic data to save

the time in generating a whole connected graph. To note that, we can only get the

in-degree and out-degree pairs of the nodes in the network. However, the information

of the connections between nodes are lost.

In the second application, we observe the width and height of the connected com-

ponents in an image follow bivariate power law distribution similar to the synthetic

data generated by the second Type 3 model. Based on this observation, we propose

a modified model to generate self-similar images. Our new model with rectangle and

ellipse performs better in capturing the shapes of connected components in natural

images.

Since power laws are observed in many other fields, we believe our PCSDE models

have other potential applications. And we are curious to learn more in our future

works.
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CHAPTER 6

DISCUSSIONS

In this part, we conclude our work and discuss the pros and cons in the work.

This dissertation focused on solving problems related to complex graphs. The first

problem is to propose similarity testing algorithms for complex graphs. The second

problem is to study generative models for bivariate power law distributions observed

in social networks. In this chapter, we first summarize the major contributions in this

dissertation. We discuss the limitations in our work in the second section. At last,

we draw conclusions and present future works.

6.1 Contributions

• We proposed a fast and effective graph comparison algorithm based on heat

content. Heat content transfers graph connectivity information into a one di-

mensional feature. We compute a fixed and short length of heat content feature

to compare for all graphs with different structures. Evidence proves that heat

content feature is more effective in graph comparison compared to some exist-

ing features like degree distribution and eigenvalues. Like many other feature

extraction methods, heat content allows us to compare graphs of different sizes.

And we do not need the nodes’ mapping information between two graphs. Mean-

while, random walk estimation method provides possibility of parallel comput-

ing and scaling. With all these features, we could apply our similarity testing

algorithm to other comparison tasks, such as image retrieval and classification.

We will discuss this more when we discuss the limitations in our algorithm.
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• We proposed several different bivariate PCSDE models to generate correlated

bivariate power law distributions. We analyzed and discussed the property of

each model. We put emphasis on Type 3 model, since this type of bivariate

PCSDE models are useful in explaining the existence of bivariate power law

data in social networks, web networks and natural images. By connecting Type

3 model to existing network growing models, our PCSDE model provides an

quick way to study the joint density and tail dependence behavior of a network

growing model. Although the other two types of proposed PCSDE models fail

in generating power law distributions similar to real network datasets, they are

interesting theoretically and may have potential usages in other fields.

6.2 Limitations

6.2.1 Limitations in our graph similarity testing algorithm

To do more complicated classification tasks like image classification problems, we

need to build a graph based on image pixel levels at first. Then, we compute the heat

content of the generated graph.

The first method is to classify images using only heat content information. We say

two images are similar if their heat contents are close to each other. A problem of this

method is that our heat content method is fixed when the graph is given, which means

our model lacks of the flexibility to apply a training process. A training process is

common in the most popular image classification algorithms, like logistic regression,

neural networks and deep learning. Without a training process, the precision of our

classification result can not be improved by tuning the parameters.

The second method is to use heat content as a one dimensional feature of the

image. Combining with other features, we apply classification algorithms like k-

nearest-neighbor, logistic regression to classify images. Some image classification
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works were done based on this approach. The reader is referred to [46, 47] for more

details.

The problem is that, if we use heat content as a feature, generating this feature is

time consuming compared to using raw pixel levels as an input. The graph generation

process also has a scaling problem. The size of the graph is determined by the number

of pixels in the image; and the number of edges in the graph is the square of the

number of pixels. To save the time in building graphs, we have resized all the images

to a fixed small size, which reduced the precision of our algorithm.

6.2.2 Limitations in our bivariate PCSDE generative models

Type 1 and Type 2 models are interesting theoretically. However, we have not

found any data show the same distributions as the two models. Type 2 model is

a special model. This model gives perfect theoretical results including power law

marginal tail and non-zero tail dependence coefficients. However, this model generates

weird synthetic data. When the value becomes large, there is no data with two

variables sharing the same value. This does not obey our common sense.

Type 3 model gained great success in generating data similar to real data in

Web and social networks. The problem is that the Brownian motion component in

the PCSDE model makes it difficult to compute the theoretical marginal and joint

density. Meanwhile, we can only compute the second moments of the model under

some special cases (γ = 1/2). Lacking of theoretical results make it difficult to fit real

data sets in social networks. We do experiments by tuning the parameters manually

to make the datasets look similar to the real datasets in shapes.

For the applications of Type 3 model in natural images, we have shown our new

model to generate self-similar images using rectangles and ellipses. Actually, for real

images the shape might be very irregular. We did not come up with a solution to

generate random shaped object with a given width and height in this thesis.
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6.3 Conclusion and future works

To summarize, this thesis discussed two major topics related to power law graphs:

similarity testing and the origin. The work included both theoretical results and

experimental results. The importance of our work is presented by discussing possi-

ble applications of our work in image retrieval, social network data fitting, network

growing model explanation, self-similar image generation, etc.

We conclude the whole thesis by discussing our future works. The future works

are mainly based on the limitations we discussed in the previous section.

• We seek improvement to our heat content method. For example, we can amplify

the asymmetric part of the graph Laplacian to create a new kind of oscillatory

heat content. The weight for the asymmetric part can be used as a training

parameter. In [47], two new feature extraction methods were introduced.

• We look for other applications of our graph similarity test algorithm. For ex-

ample, we could use spectrogram of an audio sample as an image and do audio

retrieval by using the same technique in our image retrieval. We did some

small experiments in [46] and the results showed the potential of our method

to succeed in more complicated tasks.

• For models to generate self-similar images, we could propose a solution to gen-

erate random shaped object with a given width and height to mimic real objects

in the nature.

• We will explore applications of the Type 3 models in many other fields; and we

are also curious about the applications of our first two types of models.

• We could extend our PCSDE generative models to higher dimensions, such as

three dimensions. In a color image, the three rgb channels make it possible to

produce three dimensional power law data.
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APPENDIX A

ANOTHER CALCULATION METHOD FOR THE
MODIFIED TYPE 1 MODEL

Consider X1 first. Let us consider the sequence of times when X1 is revert to ε.

Let P
(1)
on , P

(1)
off = P

(1)
on be the probabilities that, at a given one of these times, the

ON-OFF system is ON (correspondingly, OFF).

For t > 0 let hon(t) be the probability that Y1 is not revert to ε again, given that

it starts in an ON period, due to N1. The meaning of Poff (t) is analogous.

We start with the asymptotic analysis of Pon(t). We claim that

Pon(t) ∼ aone
−βt, t→∞, (A.1)

where

β =
(λ1 + λ3 + λ4)−

√
(λ1 + λ3 + λ4)2 − 4λ1λ3

2
. (A.2)

To this end, we will write a renewal equation for Pon(t). We have

Pon(t) = e−(λ1+λ4)t+

∫ t

0

(λ1+λ4)e−(λ1+λ4)xdxθ

[
e−λ3(t−x) +

∫ t−x

0

λ3e
−λ3ydyPon(t− x− y)

]
,

(A.3)

where

θ =
λ4

λ1 + λ4

. (A.4)

We rewrite A.3 in the form

Pon(t) = z(t) +

∫ t

0

f(x)Pon(t− x)dx, (A.5)
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where

z(t) = e−(λ1+λ4)t + θ

∫ t

0

(λ1 + λ4)e−(λ1+λ4)xe−λ3(t−x)dx

= e−(λ1+λ4)t + θ
λ1 + λ4

λ3 − λ1 − λ4

(e−(λ1+λ4)t − e−λ3t) (A.6)

if λ3 6= λ1 + λ4, and

z(t) = e−λ3t + θλ3te
−λ3t (A.7)

if λ3 = λ1 + λ4.

Further,

f(x) = θλ3(λ1 + λ4)

∫ x

0

e−(λ1+λ4)ye−λ3(x−y)dy,

= θλ3(λ1 + λ4)e−λ3x
∫ x

0

e(λ3−λ1−λ4)ydy,

= θ
λ3(λ1 + λ4)

λ3 − λ1 − λ4

(e−(λ1+λ4)x − e−λ3x), (A.8)

if λ3 6= λ1 + λ4, and

f(x) = θλ2
3xe
−λ3x, (A.9)

if λ3 = λ1 + λ4.

In any case, ∫ ∞
0

f(x)dx = θ < 1. (A.10)

We now use Prop. 3.11.1 in Reznick “Adventures in Stochastic Process” [83]. We

are looking for β ∈ R such that

∫ ∞
0

eβxf(x)dx = 1. (A.11)
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Suppose first that λ3 6= λ1 + λ4. Then (A.11) becomes, for

β < min(λ3, λ1 + λ4), (A.12)

1 =θ
λ3(λ1 + λ4)

λ3 − λ1 − λ4

[∫ ∞
0

e−(λ1+λ4−β)xdx−
∫ ∞

0

e−(λ3−β)xdx

]
,

=θ
λ3(λ1 + λ4)

λ3 − λ1 − λ4

[
1

λ1 + λ4 − β
− 1

λ3 − β

]
,

=θ
λ3(λ1 + λ4)

(λ1 + λ4 − β)(λ3 − β)
=

λ3λ4

(λ1 + λ4 − β)(λ3 − β)
. (A.13)

That is, we obtain a quadratic equation for β,

β2 − β(λ1 + λ3 + λ4) + (λ1 + λ4)λ3(1− θ) = 0, (A.14)

or,

β =
(λ1 + λ3 + λ4)±

√
(λ1 + λ3 + λ4)2 − 4λ3(λ1 + λ4)(1− θ)

2
. (A.15)

It is easy to check that only the smaller root satisfies (A.12).

This root is given by (A.2), and it is positive. The property (A.12) guarantees

that the function

z∗(t) = eβtz(t), t ≥ 0. (A.16)

So by Prop. 3.11.1 in Resnick we conclude that (A.1) holds.

The case λ3 = λ1 +λ4 leads to the same quadratic equation and the same solution.

Hence, (A.1) still holds.
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APPENDIX B

PROVE THE DISTRIBUTION OF N AND Fj

B.1 Prove N ∼ Ge(1/2)

P(N = k) =

∫ ∞
0

λe−λx(e−λx
(λx)k

k!
)dx,

=

∫ ∞
0

e−2λx (λx)k

k!
d(λx),

=

∫ ∞
0

e−2xx
k

k!
dx,

=
1

k!2k+1

∫ ∞
0

yke−ydy,

=
1

k!2k+1
Γ(k + 1) =

1

2k+1
.

B.2 Prove Fj ∼ exp(2λ)

P(T1 > t) =

∫ ∞
t<x1<x2

λe−λx1λe−λx2dx1dx2,

=

∫ ∞
x1>t

λe−λx1e−λx1dx1,

=

∫ ∞
x1>t

λe−2λdx1,

=
1

2
e−2λt.

Given P(N > 0) = 1− P(N = 0) = 1
2
, we have

P(T1 > t|N > 0) =
P(T1 > t,N > 0)

P(N > 0)
= e−2λt.
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APPENDIX C

PROVE THE RESULTS FOR THE GENERALIZED TYPE
2 MODEL

Let K = 0, 1, 2, . . . be the number of arrival of N1 in the interval (0, E), where E

is the first arrival of N2,

E ∼ exp(λ).

Let 0 < T1 < T2 < . . . < TK < E be the arrival time of N1. Let Yn,j be the state of

X2(t) at t = Tj, j = 1, . . . , K. Note that, at time 0,

X1(0) = Xn, X2(0) = 1.

Let β =
√
β1β2, we conclude by (3.96),

Yn,1 =
1

2
eT1(1+β)(

√
β2

β1

Xn + 1) +
1

2
eT1(1−β)(−

√
β1

β2

Xn + 1),

= Xn

√
β2

β1

(
1

2
eT1(1+β) − 1

2
eT1(1−β)

)
+

1

2
eT1(1+β) +

1

2
eT1(1−β). (C.1)

Similarly, by (3.96), for j = 2, . . . , K,

Yn,j = Yn,j−1

(
1

2
e(Tj−Tj−1)(1+β) +

1

2
e(Tj−Tj−1)(1−β)

)
+

(
1

2

√
β2

β1

e(Tj−Tj−1)(1+β) − 1

2
e(Tj−Tj−1)(1−β)

)
. (C.2)

135



We conclude that

Yn,K = Xn

√
β2

β1

eT1(1+β) − eT1(1−β)

2

K∏
j=2

e(Tj−Tj−1)(1+β) + e(Tj−Tj−1)(1−β)

2

+
K∏
j=1

e(Tj−Tj−1)(1+β) + e(Tj−Tj−1)(1−β)

2

+

√
β2

β1

K∑
i=2

e(Tj−Tj−1)(1+β) − e(Tj−Tj−1)(1−β)

2

K∏
j=i+1

e(Tj−Tj−1)(1+β) + e(Tj−Tj−1)(1−β)

2
.

(C.3)

Finally, we use (3.96) once again,

Xn+1 =
1

2
e(E−TK)(1+β)(1 +

√
β1

β2

Yn,K) +
1

2
e(E−TK)(1−β)(1−

√
β1

β2

Yn,K),

= Yn,K

√
β1

β2

(
e(E−TK)(1+β) − e(E−TK)(1−β)

2

)
+
e(E−TK)(1+β) + e(E−TK)(1−β)

2
.

(C.4)

Combing (C.3) and (C.4), we obtain

A =
eT1(1+β) − eT1(1−β)

2

·
K∏
j=2

e(Tj−Tj−1)(1+β) + e(Tj−Tj−1)(1−β)

2

· e
(E−TK)(1+β) − e(E−TK)(1−β)

2
. (C.5)

If we let 0 < T1 < T2 < . . . < TK < E be the arrival time of N2 and let Yn,j be

the state of X1(t) at t = Tj, j = 1, . . . , K, we can compute A analogously.
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APPENDIX D

PROVE THE JOINT DENSITY AND CCDF OF THE
FIRST TYPE 3 MODEL

D.1 Prove the joint density

Let ε1 = ε2 = 1 in Equation (4.26), and let

I =

∫ ∞
0

e−λt
1

t
e

−


(
ln x1−(β1−

σ21
2 )t

)2

2σ21t
+

(
ln x2−(β2−

σ22
2 )t

)2

2σ22t


dt,

=

∫ ∞
0

e−λt
1

t
e
− 1

2t

(
(ln x1)

2

σ21
+

(ln x2)
2

σ22

)
−

 (β1−
σ21
2 )2

2σ21
+

(β2−
σ22
2 )2

2σ22

t+
 ln x1(β1−

σ21
2 )

σ21
+

ln x2(β2−
σ22
2 )

σ22


dt,

= x
− 1

2
+
β1
σ21

1 x
− 1

2
+
β2
σ22

2

∫ ∞
0

e−λt
1

t
e
− 1

2t

(
(ln x1)

2

σ21
+

(ln x2)
2

σ22

)
−

 (β1−
σ21
2 )2

2σ21
+

(β2−
σ22
2 )2

2σ22

t
dt. (D.1)

Let

J =

∫ ∞
0

e−λt
1

t
e
− 1

2t

(
(ln x1)

2

σ21
+

(ln x2)
2

σ22

)
−

 (β1−
σ21
2 )2

2σ21
+

(β2−
σ22
2 )2

2σ22

t
dt, (D.2)

with

A =

(
(β1 − σ2

1

2
)2

2σ2
1

+
(β2 − σ2

2

2
)2

2σ2
2

)
,

and

H(x1, x2) =

(
(lnx1)2

σ2
1

+
(lnx2)2

σ2
2

)
,
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we have

J =

∫ ∞
0

e−λt
1

t
e−

H
2t
−Atdt,

=

∫ ∞
0

e−(λ+A)t

t
e−

H
2tdt. (D.3)

Let t = HW , we have

J =

∫ ∞
0

e−(λ+A)HW

W
e−

1
2W dW. (D.4)

Consider very large x1 and x2, we integra W from 0 to a small number δ. Let

B = λ+ A,

J ∼
∫ δ

0

e−(λ+A)HW

W
e−

1
2W dW,

=

∫ δ

0

dW

W
e−(BHW+ 1

2W
). (D.5)

We find W ∗ = 1
(2BH)1/2

that minimize BHW + 1
2W

, which gives

J ∼ (2B)1/2H1/2

∫ δ

0

e−(BHW+ 1
2W

)dW. (D.6)

Let

K = H1/2

∫ δ

0

e−(BHW+ 1
2W

)dW. (D.7)

Set W = zH−1/2, we have

K =

∫ δH1/2

0

e−H
1/2(Bz+ 1

2z
)dz. (D.8)
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Let f(z) = Bz + 1
2z

, this function is minimized at the point when z∗ = 1√
2B

. Do

the Taylor expansion, we have

f(z) = f(z∗) +
1

2
(z − z∗)2f ′′(z∗) +O((z − z∗)3).

Then let

K =

∫ z∗+ε

z∗−ε
e−H

1/2f(z)dz,

∼
∫ z∗+ε

z∗−ε
e−H

1/2(f(z∗)+ 1
2
f ′′(z∗)(z−z∗)2)dz,

= e−H
1/2f(z∗)2

∫ ε

0

e−H
1/2 1

2
f ′′(z∗)z2dz, (D.9)

and let z′ =
√
H1/2f ′′(z∗)z, we have

K ∼ e−H
1/2f(z∗) 2

√
2π√

f ′′(z∗)H1/4

1√
2π

∫ ∞
0

e−
z′2
2 dz′,

= H−1/4e−H
1/2f(z∗)

√
2π√

f ′′(z∗)
, (D.10)

where f(z∗) =
√

2B and f ′′(z∗) = (2B)
3
2 .

Back to the joint distribution in Equation (4.26), we have

fX1,X2(x1, x2) ∼ (2B)−1/4

√
2πσ1σ2

x
− 3

2
+
β1
σ21

1 x
− 3

2
+
β2
σ22

2 H−1/4e−
√

2BH1/2

. (D.11)

Thus, conclusion in Equation (4.27) is proved.
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D.2 Prove the joint CCDF

Let ti = lnxi, xi = eti . Then let

P =

∫ ∞
x

∫ ∞
x

x
−1/2
1 x

−1/2
2

(
(lnx1)2 + (lnx2)2

)−1/4
e−
√

2B((lnx1)2+(lnx2)2)
1/2

dx1dx2,

=

∫ ∞
h

∫ ∞
h

e
t1+t2

2 (t21 + t22)−1/4e−
√

2B(t21+t22)1/2dt1dt2, (D.12)

where h = lnx.

Let t1 = r cosψ and t2 = r sinψ, then

P =

∫ π/2

0

dψ

∫ ∞
0

1(r >
h

cosψ
∨ h

sinψ
)r1/2e

r
2

(cosψ+sinψ)e−
√

2Brdr. (D.13)

Let δ =
√

2B − cosψ+sinψ
2

, we compute the following integral

∫ ∞
a

r
1
2 e−δrdr = (δ)−2/3

∫ ∞
aδ

u
1
2 e−udu,

∼ a
1
2

δ
e−aδ, a→∞. (D.14)

We have

P ∼
∫ π

2

0

( h
cosψ
∨ h

sinψ
)1/2

δ
e−( h

cosψ
∨ h

sinψ
)δdψ,

= h
1
2

∫ π
2

0

( 1
cosψ
∨ 1

sinψ
)1/2

√
2B − cosψ+sinψ

2

e−h( 1
cosψ

∨ 1
sinψ

)(
√

2B− cosψ+sinψ
2

)dψ. (D.15)

Let g(ψ) = ( 1
cosψ
∨ 1

sinψ
)(
√

2B − cosψ+sinψ
2

). g(ψ) achieves minimum at ψ∗ = π
4
,

and
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g(ψ∗) =
√

2(
√

2B − 1√
2

) = 2
√
B − 1.

Then

P ∼ h
1
2

21/4

√
2B − 1√

2

∫ π
4

+ε

π
4
−ε

e−hg(ψ)dψ,

∼ h
1
2

21/4

√
2B − 1√

2

∫ π
4

+ε

π
4
−ε

e−h(g(ψ
∗)+ 1

2
g′′(ψ∗)(ψ−ψ∗)2)dψ,

= h
1
2

21/4

√
2B − 1√

2

e−hg(ψ
∗)

∫ π
4

+ε

π
4
−ε

e−
h
2
g′′(ψ∗)(ψ−ψ∗)2dψ,

= h
1
2

21/4

√
2B − 1√

2

e−hg(ψ
∗)

∫ ε

−ε
e−

h
2
g′′(ψ∗)ψ2

dψ,

=
21/4

√
2B − 1√

2

e−hg(ψ
∗)

∫ ε(hg′′(ψ∗))1/2

−ε(hg′′(ψ∗))1/2
e−

ψ′2
2 dψ′,

∼ 23/4
√
π

(
√

2B − 1√
2
)(g′′(ψ∗))1/2

e− lnx(2
√
B−1),

∼ 23/4
√
π

(
√

2B − 1√
2
)(g′′(ψ∗))1/2

x−(
√

4λ+1−1). (D.16)

So we have

P (X1 > x,X2 > x) ∼ (B)−1/4

σ1σ2

1

(
√

2B − 1√
2
)(g′′(ψ∗))1/2

x−(
√

4λ+1−1). (D.17)

Thus we prove Equation (4.29).
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APPENDIX E

THEORETICAL RESULTS FOR THE SECOND TYPE 3
MODEL

E.1 Marginal tail

We need to analyze the asymptotic behaviour of the density of the second Type

3 model

fX(x) = λ
2β

σ
x−1/2

∫ ∞
0

e−λt
eβt/2

eβt − 1
exp

{
−2β

σ

eβt + x

eβt − 1

}
I1

(
4β

σ

eβt/2

eβt − 1
x1/2

)
dt

(E.1)

as x→∞. We will prove that

lim
x→∞

x1+λ/βfX(x) = λ
2

σ
e−2β/σ

∫ ∞
0

y−3/2−λ/β exp

{
−2β

σ
y−1

}
I1

(
4β

σ
y−1/2

)
dy ∈ (0,∞) .

(E.2)

We will use several facts about the modified Bessel function. First of all, I1 is

bounded on compact intervals. Furthermore,

I1(x) ∼
√

1

2π
x−1/2ex as x→∞. (E.3)

Let M > 0 be a large number. Denote

g1(x) =

∫ β−1 log(x/M)

0

e−λt
eβt/2

eβt − 1
exp

{
−2β

σ

eβt + x

eβt − 1

}
I1

(
4β

σ

eβt/2

eβt − 1
x1/2

)
dt ,

g2(x) =

∫ β−1 log(xM)

β−1 log(x/M)

e−λt
eβt/2

eβt − 1
exp

{
−2β

σ

eβt + x

eβt − 1

}
I1

(
4β

σ

eβt/2

eβt − 1
x1/2

)
dt ,
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g3(x) =

∫ ∞
β−1 log(xM)

e−λt
eβt/2

eβt − 1
exp

{
−2β

σ

eβt + x

eβt − 1

}
I1

(
4β

σ

eβt/2

eβt − 1
x1/2

)
dt .

The claim (E.2) will follow from the following three statements.

lim
M→∞

lim sup
x→∞

xλ/β+1/2g1(x) = 0 , (E.4)

lim
M→∞

lim sup
x→∞

xλ/β+1/2g3(x) = 0 , (E.5)

lim
M→∞

lim inf
x→∞

xλ/β+1/2g2(x) = lim
M→∞

lim sup
x→∞

xλ/β+1/2g2(x) (E.6)

=e−2β/σ 1

β

∫ ∞
0

y−3/2−λ/β exp

{
−2β

σ
y−1

}
I1

(
4β

σ
y−1/2

)
dy .

We start with proving (E.4). Note that for every θ > 0 there are θ-dependent

finite positive constants c1, c2, . . . such that

∫ θ

0

e−λt
eβt/2

eβt − 1
exp

{
−2β

σ

eβt + x

eβt − 1

}
I1

(
4β

σ

eβt/2

eβt − 1
x1/2

)
dt,

≤ c1

∫ θ

0

t−1e−c2t
−1

e−c3t
−1xI1

(
c4t
−1x1/2

)
dt,

≤ c5

∫ θ

0

t−1e−c2t
−1

e−c3t
−1xec6t

−1x1/2 dt,

≤ c7e
−c8x

∫ θ

0

t−1e−c2t
−1

dt ,

an exponentially fast decaying function of x. Next, with the same notation for con-

stants,

∫ β−1 log(x/M)

θ

e−λt
eβt/2

eβt − 1
exp

{
−2β

σ

eβt + x

eβt − 1

}
I1

(
4β

σ

eβt/2

eβt − 1
x1/2

)
dt,

≤ c1

∫ β−1 log(x/M)

θ

e−λte−βt/2 exp
{
−c2xe

−βt}I1

(
c3x

1/2e−βt/2
)
dt,

= c3

∫ x/M

eβθ
w−λ/β−3/2e−c2x/wI1

(
c3x

1/2w−1/2
)
dw,

≤ c3x
−λ/β−1/2

∫ 1/M

0

y−λ/β−3/2e−c2y
−1

I1

(
c3y
−1/2

)
dy ,
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and so (E.4) follows.

We proceed with proving (E.5). The argument is similar to the above. We have

for M ≥ 1 and large x,

∫ ∞
β−1 log(xM)

e−λt
eβt/2

eβt − 1
exp

{
−2β

σ

eβt + x

eβt − 1

}
I1

(
4β

σ

eβt/2

eβt − 1
x1/2

)
dt,

≤ c3x
−λ/β−1/2

∫ ∞
M

y−λ/β−3/2e−c2y
−1

I1

(
c3y
−1/2

)
dy ,

and so (E.5) follows.

Finally, we prove (E.6). Let ε > 0. For a fixed M ≥ 1, and for all large enough x,

e−2(1+ε)β/σ

∫ β−1 log(xM)

β−1 log(x/M)

e−λte−βt/2 exp

{
−2(1 + ε)β

σ
e−βtx

}
I1

(
4β

σ
e−βt/2x1/2

)
dt,

≤
∫ β−1 log(xM)

β−1 log(x/M)

e−λt
eβt/2

eβt − 1
exp

{
−2β

σ

eβt + x

eβt − 1

}
I1

(
4β

σ

eβt/2

eβt − 1
x1/2

)
dt,

≤(1 + ε)e−2β/σ

∫ β−1 log(xM)

β−1 log(x/M)

e−λte−βt/2 exp

{
−2β

σ
e−βtx

}
I1

(
4(1 + ε)β

σ
e−βt/2x1/2

)
dt.

Since

∫ β−1 log(xM)

β−1 log(x/M)

e−λte−βt/2 exp

{
−2(1 + ε)β

σ
e−βtx

}
I1

(
4β

σ
e−βt/2x1/2

)
dt,

=x−λ/β−1/2 1

β

∫ M

1/M

y−3/2−λ/β exp

{
−2(1 + ε)β

σ
y−1

}
I1

(
4β

σ
y−1/2

)
dy ,

we conclude that for any ε > 0,

lim inf
x→∞

xλ/β+1/2g2(x) ≥ e−2(1+ε)β/σ 1

β

∫ M

1/M

y−3/2−λ/β exp

{
−2(1 + ε)β

σ
y−1

}
I1

(
4β

σ
y−1/2

)
dy .

Letting ε→ 0 we obtain

lim inf
x→∞

xλ/β+1/2g2(x) ≥ e−2β/σ 1

β

∫ M

1/M

y−3/2−λ/β exp

{
−2β

σ
y−1

}
I1

(
4β

σ
y−1/2

)
dy .
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Hence

lim
M→∞

lim inf
x→∞

xλ/β+1/2g2(x) ≥ e−2β/σ 1

β

∫ ∞
0

y−3/2−λ/β exp

{
−2β

σ
y−1

}
I1

(
4β

σ
y−1/2

)
dy .

This proves one part of (E.6), and the second part is completely analogous.

E.2 Joint tail

Instead of the density, let us investigate the joint tail

∫ ∞
y1

∫ ∞
y2

fX1,X2(x1, x2)dx1dx2

as y1, y2 → ∞. As in the single variate case, the main part is to investigate the

function

P (X1 > y1, X2 > y2) =

∫ ∞
y1

∫ ∞
y2

x
−1/2
1 x

−1/2
2 dx1dx2∫ ∞

0

e−(λ+β)t exp{−2β

σ
e−βt(x1 + x2)}I1(

4β

σ
e−βt/2x

1/2
1 )I1(

4β

σ
e−βt/2x

1/2
2 )dt

as y1, y2 →∞. We have

P (X1 > y1, X2 > y2) =
1

β

∫ ∞
y1

∫ ∞
y2

x
−1/2
1 x

−1/2
2 dx1dx2

∫ 1

0

zλ/β exp{−2β

σ
z(x1 + x2)}I1(

4β

σ
z1/2x

1/2
1 )I1(

4β

σ
z1/2x

1/2
2 )dz,

∼ 1

β

∫ ∞
y1

∫ ∞
y2

x
−1/2
1 x

−1/2
2 dx1dx2∫ ∞

0

zλ/β exp{−2β

σ
z(x1 + x2)}I1(

4β

σ
z1/2x

1/2
1 )I1(

4β

σ
z1/2x

1/2
2 )dz,

=
1

β

∫ ∞
0

zλ/βdz∫ ∞
y1

∫ ∞
y2

x
−1/2
1 x

−1/2
2 exp{−2β

σ
z(x1 + x2)}I1(

4β

σ
z1/2x

1/2
1 )I1(

4β

σ
z1/2x

1/2
2 )dx1dx2,
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=
1

β

∫ ∞
0

zλ/β−1dz∫ ∞
zy1

∫ ∞
zy2

x
−1/2
1 x

−1/2
2 exp{−2β

σ
(x1 + x2)}I1(

4β

σ
x

1/2
1 )I1(

4β

σ
x

1/2
2 )dx1dx2,

=
1

β

∫ ∞
0

∫ ∞
0

x
−1/2
1 x

−1/2
2 exp{−2β

σ
(x1 + x2)}I1(

4β

σ
x

1/2
1 )I1(

4β

σ
x

1/2
2 )dx1dx2∫ ∞

0

zλ/β−11(z < min(x1/y1, x2/y2))dz,

=
1

λ

∫ ∞
0

∫ ∞
0

x
−1/2
1 x

−1/2
2 (min(x1/y1, x2/y2))λ/β exp{−2β

σ
(x1 + x2)}

I1(
4β

σ
x

1/2
1 )I1(

4β

σ
x

1/2
2 )dx1dx2.

Set y1 = y2 = x, we have

lim
x→∞

P (X1 > x,X2 > x)xλ/β

∼
∫ ∞

0

∫ ∞
0

x
−1/2
1 x

−1/2
2 (min(x1, x2))λ/β exp{−2β

σ
(x1+x2)}I1(

4β

σ
x

1/2
1 )I1(

4β

σ
x

1/2
2 )dx1dx2 ∈ (0,∞).
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