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ABSTRACT 

A STUDY ON MODELLING SPATIAL-TEMPORAL HUMAN MOBILITY 

PATTERNS FOR IMPROVING PERSONALIZED WEATHER WARNING 
MAY 2018 

 

YUE XU, B.S., NANJING NORMAL UNIVERSITY 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Qian Yu 

 

Understanding human mobility patterns is important for severe weather warning since 

these patterns can help identify where people are in time and in space when flash floods, 

tornados, high winds and hurricanes are occurring or are predicted to occur.  A GIS 

(Geographic Information Science) data model was proposed to describe the spatial-

temporal human activity. Based on this model, a metric was designed to represent the 

spatial-temporal activity intensity of human mobility, and an index was generated to 

quantitatively describe the change in human activities. By analyzing high-resolution 

human mobility data, the paper verified that human daily mobility patterns could be 

clearly described with the proposed methods.  This research was part of a National 

Science Foundation grant on next generation severe weather warning systems.   Data was 

collected from a specialized mobile app for severe weather warning, called CASA Alerts, 

which is being used to analyze different aspects of human behavior in response to severe 

weather warnings.  The data set for this research uses GPS location data from more than 

300 APP users during a 14 month period (location was reported at 2 minutes interval, or 

at based on a 100m change in location).  A targeted weather warning strategy was 

proposed as a result of this research, and future research questions were discussed.    
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CHAPTER 1  

INTRODUCTION 

Human mobility patterns are derived by collecting data on where people go, and how 

long they stay there by time of day as they go about their daily activities. Previous 

research demonstrates the existence and predictability of these patterns. A study of 

historical human trajectories conducted by González et al. shows a high degree of 

temporal and spatial regularity (González et al. 2008), which makes it possible to find the 

mobility pattern based on people’s previous movement data. The study of Song et al 

(2010) answered the fundamental question “is human behavior predictable?”  By 

measuring the entropy of individual’s historical movement, they found 93% of the 

mobility could be predicted when time is incorporated.  Besides, Song et al. (2010) found 

predicting human activity is largely independent of the size of the spatial area where 

people move around.  

Understanding human mobility patterns is important for many fields, such as urban traffic 

planning (Guo et al. 2012), hazard management (Lindell and Hwang 2008), as well as 

crime prediction (Andresen and Malleson 2013a, Mohler et al. 2011). Studying human 

mobility for hazard management has become more significant these years because severe 

weather events occur more frequently due to global climate change and have caused 

losses of lives and property (Meehl et al. 2000). Sending an alert or evacuation guidance 

to people before or during these severe weather events can effectively reduce or avoid the 

losses. To better understand the human behavior related weather alert, we can divide the 

human activity into three stages. As Figure 1 shows, in pre-alert stage, people are 

engaged in their routine activities. After they receive the alert (in-alert stage), they begin 
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to react to the alert and the weather event. After the alert stops (post-alert), they will 

resume routine activities or begin rescue.   

Understanding people’s mobility patterns in all three stages both spatially and temporally, 

can help optimize alert warning. By studying the pre-alert stage, we can send targeted and 

timely warning messages to a specified individual to give him/her a more clear 

suggestion or guidance on where and how to take protective action. Stakeholders can then 

develop hazard response strategies based on people’s behavior in the in-alert and post-

alert stages. For example, Becker et al. (2015) conducted research on people’s behavior 

to floodwater.  They analyzed why some people still entered floodwater area after the 

flood happened, and proposed suggestions on providing future public education. Similar 

works were also conducted by Basher (2006) which resulted in a new concept of a 

people-centered global early warning system that accounts for people’s behavior.  

 

Figure 1. Three Stages of Human Behavior Related to Weather Alert 

 

Usually, severe weather warning systems send the same message to all people within a 

predicted hazard area. It does not consider an individual's or a specified group of 

individuals’ situations (He et al. 2009). These general warning messages might cause 

confusion and uncertainty. Those people who were not really affected by hazard might 

become desensitized to warnings, while those affected people might think the message is 
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too general to follow (Mileti and Peek 2000). To improve the accuracy of the warning 

messages, some hazard warning systems consider people’s response to the alert message 

to make alerts more effective, but human behavior is one of the most complex aspects in 

these systems (Mileti and Sorensen 1990). As shown in Figure 2, public responses to 

warnings are monitored in the Response Subsystem and sent to the Management 

Subsystem, then can be used for adjusting warnings. However, the meaning of ‘response’ 

considered here is that how people interpret the broadcasted warning messages based on 

their perception. Thus, a better system which can actively monitor people’s behavior is 

needed and human mobility patterns could be integrated into warning systems to generate 

personalized warning strategies. Specifically, to improve the warning system, the human 

mobility pattern in pre-alert stage should be considered in the Management Subsystem 

before generating warning messages, while the pattern in the in-alert and after-alert 

stages should be considered in the response subsystem.  
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Figure 2. The General Components of An Integrated Warning System(Mileti and 

Sorensen 1990) 

 

Four key challenges need to be considered for characterizing human mobility patterns. 

The first one is the data that represents human activities. Lack of high-quality movement 

tracking limits the spatial and temporal resolution of the derived human mobility pattern. 

For example, some previous researchers used the locations from twitter messages or 

mobile phone base stations as a proxy variable when the movement data is not available 

(Gao 2015, Wang et al. 2016). Analyses of Andresen and Malleson are based on street 

level crime data and monthly or seasonal level time interval analysis (Andresen and 

Malleson 2013a). 91% of American grown-ups possess a mobile phone, and numerous 

underserved populaces depend on mobile phones as their essential wellspring of data. 

(Bean et al. 2015). This penetration of cellphones makes it   possible to study human 
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behavior based on high resolution positioning data from mobile phones, if the big volume 

of the data can be processed efficiently. 

The second challenge is the geographic boundary used as a unit to hold activities in order 

to conduct further analysis. Many researchers use clusters to represent activities within a 

certain spatial and time range. A popular way is to the use of changing geographic 

boundary of activity clusters. A cluster is generated by the activities of an individual 

sharing similar characters like time and distance. So the size and location of one cluster is 

unfixed and differs by each individual, which will cause overlap of locations and reduce 

the efficiency for further analysis. For example, someone used GPS track data of 

individual human activities to generate the cluster directly (Song et al. 2006, Etter et al. 

2013). Thus, it will be very hard to model a group of people (citizens of a city) in a large 

area (the whole city) with clusters because generating every individual’s activity clusters 

is low efficiency. It is also difficult to represent behaviors of grouped individuals with 

clusters. 

The third challenge concerns describing the intensity of human activity within certain 

time and detecting human activity change. We still need to find a better way to detect 

human mobility changes, which is a crucial step on characterizing the pattern. Some 

previous research detected human activity changes by comparing the average duration 

difference of the activity points within the generated cluster (Huang et al. 2015).  

However, duration can only represent the time dimension of human activities. The spatial 

intensity of human activity is not considered. So, a new comparison method considering 

both spatial and temporal intensity is needed.  
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The last challenge is to quantitatively describe the difference among human activities. 

Generally, we use similar, increase and decrease to describe the variations of human 

activities qualitatively. Andresen (2009, 2016) provides an approach using Monte-Carlo 

resample method to generate a similarity index S which can quantitatively describe the 

similarity between human activities in two time stages. This similarity index is not 

enough to meet our purpose because it lacks the “increase” and “decrease” phases.  

This paper proposes a method to quantitatively describe the spatial-temporal human 

mobility pattern, to improve the personalized weather warning. In chapter 2, we design a 

GIS (Geographic Information Science) model to describe the spatial-temporal movement 

pattern. A metric for describing the activity intensity was proposed based on this model. 

In Chapter 3, we define mobility pattern changes. Spatial intensity change and duration 

change were used to indicate the mobility pattern changes. An index was designed to 

indicate the magnitude of spatial-temporal pattern change. In chapter 4, based on the data 

collected by the ‘CASA Alert mobile app, we calculated the index in different time 

intervals, and analyzed the relationship between the index and the daily mobility 

behaviors. By overlaying daily mobility behaviors with the distribution of housing units 

from demographic data from US Census Bureau, we conclude that the index can clearly 

indicate the daily pattern change.  A warning process is proposed based on the proposed 

methods.  
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CHAPTER 2 

DATA MODEL DESIGN 

2.1 Data Description 

This research uses high-resolution human mobility data collected by the “CASA Alert” 

platform developed by CASA (the Engineering Research Center for Collaborative 

Adaptive Sensing of the Atmosphere) at University of Massachusetts Amherst.  As 

shown in Figure 3, multiple radars have been installed in the area around Dallas and Fort 

Worth, Texas, to monitor severe weather events.  Weather reports and alerts are 

generated based on the radar data, and then sent to users through an APP called CASA 

ALERTS installed on their mobile devices. The APP also collects the users’ location 

every 2 minutes in time interval and every 100 meters in spatial interval while using the 

app (250 m if the app is turned off). With the data collected within 14 months (from 30 

June 2016 to 29 August 2017) from more than 300 users, we were able to analyze 

5,529,335 high-quality GPS data points.  
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Figure 3. CASA Weather Alert System in Texas Developed by UMass CASA 

(Collaborative Adaptive Sensing of the Atmosphere) Engineering Research Center 

2.2 Duration-Based Data Model Represent Human Activity 

To model the human activity, we need first define its core components. Human activities 

are three dimensional because they are located in certain area (space, usually represented 

by longitude and latitude) and certain time interval (time) with a certain frequency 

(intensity). Figure 4 shows the trajectories of one person within two weeks, and the 

calculated occurrence density (activity intensity). We can see that this person mainly 

moves back and forth between two high activity intensity locations. This proves that 

time, space and intensity are the components needed to be considered in representing 

human activity. 
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Figure 4. Three key Factor of the Human Activity 

We propose a duration-based data model to represent the human activity based on above 

analysis. Figure 5 is the conceptual model. Human activity is composed of a series of 

single occurrences.  A single occurrence has ‘spatial location’ and ‘temporal location’.  

The Spatial Location can be defined by a pair of longitude and latitude. The ‘temporal 

Location’ is defined by the start-time and end-time, which we call a duration. Another 

attribute of human activity is the spatial-temporal magnitude, which can be described 

with spatial intensity and temporal intensity.  
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Figure 5. Conceptual Model Representing Human Activity 

 

The raw data collected by the APP is structured as Table 1. The locations (longitude and 

latitude) of the user were collected every 2 minutes. If the user did not move during the 

data collection time interval, the two adjacent location points show in database will be the 

same. This caused redundancy of the computer memory and reduced the efficiency of 

calculation.  

Table 1 Raw Data Structure from the CASA ALERTS 

DataID PersonID latitude longitude Timestamp 

 

We design the logical model based on the conceptual data model we proposed, as in 

Table 2.  

Table 2 Proposed Logical Data Model  

DataID PersonID latitude longitude Start-time End-time duration 

 

Spatial Location 

Longitude / x 

Latitude / y 

Start time/ t 

End time 

Duration 

Single 
occurrence 

Human Activity 

Spatial-
Temporal  
intensity 

1:n 
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We transformed the ‘timestamp’ in the raw structure into ‘duration’ with ‘start-time’ and 

‘end-time’, which indicates the start and end time of the user’s single activity occurrence. 

When the person stops at the same point for some time length, we will know the 

‘duration’ of his stop instead of the duplicated locations every 2 minutes. This will save 

the memory and improve the calculation speed.  

We give the following definition of single activity occurrence: 

Definition 1: A single activity occurrence is represented by a record in the Logical 

Model. The record is extracted from raw GPS Data dataset and transformed to the new 

structure. 

 

2.3 Quantitatively Describing Activity Intensity 

2.3.1 Define Temporal Activity Intensity by Considering Duration 

We can use duration to describe the temporal activity intensity based on the designed 

conceptual model. As mentioned in section 2.2, the “CASA Alert” platform detects 

location change of a mobile device with 100 meters spatial resolution and update every 2 

minutes. We can generate the duration of every record. If a user moves continuously in 

certain time period, we will get many short durations, which is considered high activity 

intensity during this time period. Figure 6 schematically shows the relationship between 

duration and time of single activities.  
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Figure 6. Relationship Between Duration and Start Time of Single Activities 

 

We use a tornado event as a case study to further explain the proposed model. On January 

15, 2017, a tornado (EF0) was detected by the CASA radar (Ridgeline Instruments, RXM 

25) near Mansfield, TX. Several alerts were sent during 19:30 to 21:00 (as Figure 7 

shows). There were 24 users of ‘CASA Alert’ around the area and received the alert 

message. 
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Figure 7. Tornado Position (in black circle) and the Alert Message (Jan. 15, 2017) 

 

With trajectories of these users, 130 durations of activities were generated. Figure 8 

shows the activity start time versus duration length. We can see that, comparing to pre-

alert period in which activities has long duration, more short duration activities occurred 

at post-alert period.   
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Figure 8 People’s Response to 

Tornado Alert 
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Table 3 Movement Summary by Alert Stage 

Alert Stage Time Activity frequency Average stay duration 

Pre-alert 7:30-19:30 0.08 move/min 50.04 min 

In-alert 19:30-21:00 0.54 move/min 20.19 min 

After-alert 21:00-23:00 0.22 move/min 9.74 min 

 

Table 3 shows the activity frequencies and average stay duration along time. We can see 

from Figure 8 and Table 3 that before the alert, people were doing daily routine activities, 

so we got lowest move frequency and highest average duration. During in-alert period 

people move with the highest frequency but the average duration is lower, which means 

that those who were not in a safe place moved quickly to find a shelter and then stayed 

until the alert ended. At the time the alert starts, long durations mean people who had 

already been in safe place would not move until the warning ends. When the alert ended, 

the average duration decreased, and the move frequency is higher than pre-alert period. 

This indicated that the alert actually paused people’s routine activities. Activities resumed 

in post-alert period. 

2.3.2 Kernel Density Estimation for Point Mobility Data 

Kernel density estimation is a method to quantitatively describe activity intensity. It can 

characterize spatial distribution of events and determine where events are more likely to 
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occur in space (Thakali et al. 2015). The Kernel density estimator for multivariate 

datasets with Kernel Function K and bandwidth h is defined by: 

𝑓(𝑠) =
1

𝑛ℎ𝑑
∑ 𝐾 (

𝑠−𝑠𝑖

ℎ
)𝑛

𝑖=1      (1) 

It is a multivariate function.  

The kernel function K(s) is a function, defined for d-dimensional s, satisfying:   

∫ 𝐾(𝑠)𝑑𝑠
𝑅𝑑 = 1                              (2) 

K is usually a radially symmetric uni-modal probability density function. There are many 

choices of kernel function. For example, ArcGIS uses the Epanechnikov kernel function 

described by Silverman (Silverman 1986). In my study, refer to the experiences in the 

Crime Process Modeling (Mohler et al. 2011), we use Gaussian kernel as K function  

For spatial point p (x, y) we can use two dimensional kernel density estimator to calculate 

the spatial density. Here x and y represent the location of the point, usually are longitude 

and latitude respectively. In this case d=2, s=p (x, y). If we consider the time duration of 

each point, we can add duration as the weight value base on two-dimensional kernel 

density.  

With above described method, we calculated a 2-dimensional kernel density based on 

data collected in the study area, as shown in Figure 9. The kernel density integrates 

spatial information with the duration, so we can visualize the spatial distribution and 

hotspot pattern. The density value can quantify the spatial intensity pattern of the points. 

Higher values in the northeastern and southwestern area of Figure 9 showed more 

activities happened there.  
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Figure 9. Visualization Example of Two Dimensional Kernel Density, K(x,y) 

Alternatively, for spatial-temporal point s=p (t, x, y), we can use three-dimensional 

Kernel density to demonstrate the spatial-temporal pattern, where t represents the specific 

start time of an activity. In this case d is equal to 3.  Figure 10 shows a visualization 

example of three-dimensional Kernel density estimation calculated from human activity 

points. We can see that people’s spatial-temporal activity pattern represented by kernel 

density value changes as the time goes up along the vertical axes.  
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Figure 10. Visualization of Three Dimensional Kernel Density, K(x,y,t) 

 

2.3.3 Describe Activeness of Human Spatial-Time Activities 

We can use the points in the study area to generate an area-based kernel density. It is 

similar to the way of making the crime hotspot maps to visualize spatial-temporal crime 

patterns for near-repeat crime prediction (Mohler et al. 2011). The crime hotspot only 

flagged the highest density value area, while our proposed method can detect overall 

mobility pattern. Here we assign our estimation value to each area (polygon) we want to 

use. The estimation value in this thesis is called the Activeness value. 

During time interval [𝑡0, 𝑡1], the input dataset is: 

𝑂 = {𝑠𝑖𝑛𝑔𝑙𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 (𝑥𝑘, 𝑦𝑘, 𝐷𝑘); 𝑡0  ≤  𝑡𝑘 < 𝑡1}        (3) 

Where, k is the total number of single activity occurrence, Dk is the duration. Each 

activity occurrence is an individual’s behavior; more activity occurrences with short 

duration mean high activity intensity during this time interval.  
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For O in time interval [t0, t1],the Activeness is calculated according to:  

𝑓′(𝑂(𝑥, 𝑦, 𝐷))  = ∑ 𝐾′( 𝑥𝑘, 𝑦𝑘; 𝑊𝑘) 1:𝑘                                  (4) 

Then, we can overlay activeness result to a polygon-based map by assigning average 

Activeness value on grid to each polygon. 

Where in (4), K′ is a two-dimensional (d=2) Kernel.  

𝑊𝑘 = 𝐷𝑚𝑎𝑥 − 𝐷𝑘,                                                                    (5) 

is the weight function giving short duration activities more weight than long ones, Dmax. is 

the maximum duration value in O. This activeness density will work better than regular 

kernel density when applying to describing activity intensity, as shown in Figure 11. The 

left figure is the regular kernel density generated with raw GPS data points of one person 

with (1). It shows the spatial mobility pattern of this person. The right figure is the 

activeness density calculated with (4). We can find mainly two ‘nodes’ in western and 

eastern part of the map with higher kernel density value, which means people stay longer 

and/or frequent around these two places. One node might be the location of residence and 

the other might be working place. Whereas, in the activeness figure, the connection 

between the two ‘nodes’ has higher activity intensity. This means the commuting 

pathway where this person travels between the two nodes is also detected. We generated 

a polygon-based kernel density map shown in Figure 12 by assigning the average density 

to each polygon. Here we used the census tracks as polygons.  The scale of polygons can 

be adjusted according to the scale of analysis. For example. we can use city boundary or 

state boundary to make city level or state level analysis.   
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Figure 11. Visualization of Kernel Density and Activeness Estimation Result 
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Figure 12. Visualization of Density Value by Census Tract 
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CHAPTER 3 

PATTERN CHANGE DETECTION AND TEST 

3.1 Define Mobility Change Based on Activeness 

As we have known from section 2.3, higher activeness value is caused by more 

occurrences and shorter stay durations, which means more activities at that time interval 

in the area. Thus we can detect the spatial pattern change in each polygon by comparing 

the change of activeness value. If the activeness value of polygon P1 at time t1 is higher 

than that of same polygon at time t2, we can say that there is more activity happened in t1.  

Definition 2: Within a specific area, changing of the activeness from one time interval to 

another time interval means the spatial intensity or temporal duration of human activities 

change.  

Spatial intensity change or duration change can cause the change of activeness value. We 

explain the relationship between the changes of human activity pattern and the activeness 

value with Figure 13. At time 1, two people in area 1 are running to area 2, leaving eight 

short duration activity occurrences in area 1. At time 2, these same two people are 

moving slowly in area 2. One is moving around inside area 2. The other is moving back 

to area 1. They left four longer duration activity occurrences in area 2. Thus, for area 1, 

activeness decreases from time 1 to time2, due to spatial intensity decrease (8 occurrence 

→ 0 occurrence). For area 2, activeness increases from time 1 to time 2, due to spatial 

intensity increase (0 occurrence → 4 occurrence). At time 3, one person starts running 

inside area 2, leaving four short duration activity occurrences. While, the other person is 

moving slowly in area 1, leaving two longer duration activity occurrences. Thus, for area 
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1: activeness increases from time 2 to time 3, due to spatial intensity increase (0 

occurrence → 2 occurrence). For area 2, activeness increases from time 2 to time 3, due 

to duration decrease (4 long duration occurrence → 4 short duration occurrence). 

 

Figure 13. Schematically of Relationship between Changes of Activity Pattern and 

Activeness Value 

 

3.2 Nonparametric Monte Carlo Approach for Detecting Spatial-Temporal Pattern 

Change 

In this section we focus on comparing of spatial-temporal patterns in two different time 

intervals, which is represented by the activeness value. We proposed a modified 

statistical approach for the comprising, based on a nonparametric Monte Carlo approach 

given by a series of papers led by Andersen (Andresen 2009, Andresen and Linning 

2012, 2012, Andresen and Malleson 2013b). They used this method to compare the 

similarity of two datasets based on polygons. We adopted and revised this similarity 

comparison method to detect our mobility change. Andresen created an index S to 

represent the similarity of two datasets. The index S is calculated as: 𝑆 =
∑ 𝑆𝑖

𝑁
𝑖=1

𝑁
 , which 
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summarizes the comparison result in the whole region of datasets by calculate percentage 

of similar spatial patterns in N polygons. 𝑆𝑖 is signed to 1 if the spatial pattern of two data 

sets is considered similar for Polygon i, and 0 otherwise.  

In this thesis, X similar index represents the overall spatial similarity of the study area as the 

S-index, but added the increase and decrease evaluation of activity intensity. Based on 

the criteria of Anderson’s method, if S-index ⩾ 0.80, the spatial patterns will be 

considered similar. We used the same criteria for X. Otherwise, the pattern can be 

considered as change, either X𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒  (denotes the proportion of polygons wich consider 

Activeness decrease) decrease or 𝑋𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 for increase (denotes the proportion of 

polygons wich consider Activeness increase). Thus, we introduce the net increase Xincrease 

- Xdecrease to describe the relationship between increase and decrease. The extended 

activeness index A is defined as: 

A = {
𝑋𝑠𝑖𝑚𝑖𝑙𝑎𝑟 , 𝑋𝑠𝑖𝑚𝑖𝑙𝑎𝑟 ≥ 0.8

𝑋𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 − X𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 , 𝑋𝑠𝑖𝑚𝑖𝑙𝑎𝑟 < 0.8
 

 

Figure 14 shows the flow chart of calculating the extended index. We first resampled the 

data using the Monte Carlo approach and created a confidence interval of the Activeness 

value. Then we compare the confidence interval to the observed density from base point 

dataset. Finally, the overall index is calculated. 
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Figure 14. Flow Chart for Calculation 

 

Table 4 Variables for Calculation 

Variables Explainations 

Bp Base point dataset at time interval t 
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Tp Test points dataset at time interval t 

Pi polygons inside the area 

Dbi Density/Activeness values for Bp 

Dtij Density/Activeness values for Tp 

Ti Confidence interval for the test 

X result indexes indclding Xsimilar, Xincrease, Xdecrease 

i ranges from 1 to N 

N The number of polygon 

j ranges from 1 to M 

M the times of resample 

. 

Step 1: For comparing spatial pattern of two occurrence datasets of different time s1(x, y, 

t1), s2(x, y, t2), choose one dataset as base points Bp, and another dataset as test points Tp. 

Step 2: Prepare geographic polygons P1 to PN in the study area as comparison unit 

Step 3: Calculate the Activeness as in eq 4 for Bp, and for each polygon Pi , calculate 

mean Activeness value within the polygon as Dbi. 
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Step 4: Resample test points with replacement for M times, the total points for each 

sample is 0.85 of the original test points dataset. Also, for each sample and each polygon, 

calculate the mean Activeness/kernel density value, Dtij. 

Step 5: For each Pi, calculate the 0.025 and 0.975 quantiles of Dti, save as confidence 

interval Ti. 

Step 6: Compare base polygon’s density Dbi with confidence interval Ti. The result fell 

into three categories.  If Dbi falls inside Ti, this means two spatial patterns are similar; If 

Dbi falls outside Ti and is greater than the Base polygon’s density, the activity intensity 

increases; Similarly, if confidence interval is lower than the Base polygon’s density, the 

activity intensity is decreased.  

Step 7: Count the number of polygons in each category of result. Divide the count 

number by N to get result total summaries: Xsimilar, Xincrease, Xdecrease.  

By applying this method to our case study with different time interval from hourly to 

weekly, we got the similarity ranged from 0.0007 to 0.088. This means none of two 

human activity patterns are similar and it changes dramatically even by hourly. 
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CHAPTER 4 

RESULT AND DISCUSSION 

The method we proposed can describe both individual behavior and group overall 

behavior. We processed the data of over 300 APP users and got 32255 valid duration 

records. Activeness index in every one-hour interval of daily was calculated, and analysis 

was made based on the index.  

4.1 Daily Spatial Pattern Analysis 

To find the spatial-temporal regularities of daily human activities, we divided one day 

into time intervals with one hour for each interval and aggregate every day’s records into 

each interval accordingly. Only weekday data was used because we believe people’s 

behavior regularity will be different on weekends. We used one certain hour’s records as 

base data to compare to the next hour’s records.  

Figure 15 shows the calculated result. As can be seen from the result, in working days 

(weekday), there are several activity increase intervals, from 06:00 am to 07:00 am, from 

10:00 am to 11:00 am and from 18:00 pm to 03:00 am. There are several activity 

decrease intervals, from 03:00 am to 06:00 am, from 06:00 am to 09:00 am, and from 

11:00 am to 17:00 pm. It is interesting that there is a slight decrease during 22:00 pm to 

23:00 pm.  

We think the increase during 06:00-07:00 am is the time interval for departure 

commuting, indicating people are waking up in the morning and departure for work. The 

big activity increase around 10:00 am is a combination result of business and commuting 

activities, indicating some people travel to different places for business after some 
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preparation/meeting in office, and others are going to work or going home after finishing 

the morning work. The interval starting from 18:00 pm should be the time interval for 

leaving commuting, indicating people finished their work and started heading home or 

having non-work time activities. Most people fall into sleep during 03:00-05:00 am, and 

stay in office or home during 11:00 am-17:00 pm. The abnormal activities during 01:00-

03:00 am is investigated later in section 4.2. The slight decrease during 22:00-23:00 pm 

might indicate that some people go to rest from where they are staying.  In general, we 

can see that activities are decreased during working time and increased during non-

working time. 

 

Figure 15. Index Result of Dataset Which Has Duration up to 72 Hours 

 

We use Figure 16 to analyze and verify the temporal pattern changes. Figure 16 a and 

Figure 16 b show the activity changes at 10:00 am and 18:00 pm, the two commute time 

intervals we detected in Figure 15. The activities increased mainly around downtown, 

international airport and along main roads (the red lines in the map). At 10:00 am many 

activities happened in the northern part of the area, the university district. This justified 

the above deduction that some working activities happened in 10:00 am interval. Figure 
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16 c. and Figure 16 d. show the activity change comparison result at 06:00 am and 19:00 

pm. We found that in 06:00 am people has an activity increase in the southern part of the 

city.  Since this time interval was assumed by us as the departure commuting period in 

the morning, we can deduce that the southern part of this area is mainly residential zone. 

The pattern at 19:00 pm shows another high activity in the same area, indicating people 

are commuting home after work. 

To further verify our deduction, we overlap demographic data with our maps. Figure 17 

shows the number of total housing unit based on 5-year Estimate for census tracts from 

the American Community Survey in Texas State. We think the distribution of housing 

unit should not change a lot within recent years. Although the demographic data was 

collected in different year with our data, the distribution of housing unit quite well 

coincides with the area we found in Figure 16. We can see from Figure 17 that low 

housing unit in the central area are mainly the working area, the higher housing unit value 

distributing around the central are mainly residential area and university zone. The user 

of the APP might mainly live in the south part of the area. 
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Figure 16. Activeness Similar/Decrease/Increase Based on Census Track, a: 10:00 am, 

b:18:00 pm, c: 06:00 am, d: 19:00 pm. 
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Figure 17.Total Residential Housing Unit by Census Track 

 

4.2 The Abnormal Activities During 01:00-03:00 am 

Furthermore, we try to further figure out why there is still some activeness index increase 

from 1:00 am to 3:00 am. We applied kernel density estimation to each individual 

person’s GPS data, as shown in Figure 11 of section 2.3.3. Now we divide every person’s 

historical footprint into several polygons according to the kernel density value (from high 

to low), as illustrated in Figure 18. It means people stay longer in high density value 

polygon than the low density value polygons. Figure19 shows the activity occurrence 
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difference between top 20% polygon and all other polygons by hour of all individuals. 

We can see during midnight (1:00 – 3:00 am), activity occurred mainly in the top 20% 

kernel density polygon. This means people are mainly concentrated within top 20% 

polygons, so causes high intensity in 20% polygon with quite small space range. The 

locations of 20% polygons are very likely people’s sleeping places at night. From the 

view of the whole region, the total activeness-index would show an overall increasing.  

 

 

Figure 18. Divide Every Person’s Historical Footprint into Several Polygons According 

to the Kernel Density Value (from high to low) 

 

 

 
Figure 19. Difference of Activity Occurrence Between Top 20% Kernel Density Area 

and Other Areas 
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However, this conclusion is still not enough to explain the phenomenon of activity 

increase during 1:00-3:00 am. We further checked the activity occurrence of each day at 

1:00 am to 3:00 am. The median value of the count of activity occurrence by day is 2, 

which mean people seldom move at midnight time.  Surprisingly, we found that in 

3/29/2017 during 1:00 am to 3:00 am, there are 157 activity occurrences, which is 

unusual and increase the total occurrence count during 1:00 am to 3:00 am by 19.2%, as 

Figure 20 shows. We thought this could be caused by error data. After further comparing 

with the system log records of CASA Alert, we found a better reason for that. In 

3/29/2017 evening between 1:00 am and 3:00 am, major storms with 70-90 mph winds 

and tornadoes happened through our study area. People may have woken up and sheltered 

in their basements, or checked their properties.  This late night episode further validates  

our method. 

 
 

Figure 20. Abnormal Activity Occurrence During 1:00-3:00 Am, 3/29/2017   
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4.3 Eliminate the Noise Caused by Overlength Duration Sample Points 

Another advantage of applying the inverse weight function defined in section 2.3.3 is that 

it can reduce the influence of ‘noise’ caused by the over-length durations. There are some 

over-length durations in the dataset been recorded when the APP user did not bring the 

mobile device with him/her or did not turn location service. These over-length durations 

will decrease the computational efficiency and accuracy.  

Figure 21 and Figure 22 show the calculated results for subsets of data with different 

maximum duration length. Figure 15 is calculated using original dataset in which data 

points has a maximum duration of 72 hours, whereas Figure 21 and Figure 22 uses subset 

which duration less than 24 hours and 12 hours respectively. We can see that all of them 

have a similar overall trend as indicated in section 4.1.  

The average duration time of data points hourly in each subset is shown in Figure 23. We 

can find in subset with long duration such as 24 and 72 hours, the trends become unclear 

due to the strong influence of long durations in each time interval. In the subsets with 

long durations less than 12 hours, the value goes low during 19:00 pm - 3:00 am because 

long duration has been filtered. Thus we think index works better than durations.  

Figure 21. Index Result of Dataset Which Has Duration Less 24 Hours 
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Figure 22. Index Result of Dataset Which Has Duration Less 12 Hours 

Figure 23. Average Stay Duration of Each Subset of Data Versus Time 

4.4 Weather Warning Suggestions by Considering Hourly Human Activity Pattern 

The approach can be used by weather alerting agencies. For every individual user or 

grouped user, we can collect their historical mobility data. By applying the method in this 

paper, their specified time interval and moving pattern can be found. With this spatial-

temporal pattern, we can first generate people’s historical footprint location polygon, then 

send the alert in an intentional way by comparing alert area polygon to user foot print 
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polygon. For example, we can send weather alert about a potential tornado happening not 

just in the person’s current location, but in his route to his place of work.  The specific 

algorithm shows below:  

Algorithm 1: 

If (alert polygon location and alert time interval intersects user current location) 

{ 

Send regular alert  

} 

If (alert polygon location and alert time interval intersects user historical foot print 

polygon) 

{ 

Send regular Alert  

Include intersected foot print location and time interval 

   } 

4.5 Conclusion and Perspective Study 

This paper proposed a GIS data model to describe the spatial-temporal pattern of human 

activity, a metric to represent the intensity of the activity, and an index to describe the 

change of the activity.  By applying to high spatial-temporal resolution trajectories of 

CASA ALERTS users, we verified that human daily mobility pattern can be clearly 

described with the proposed methods. Especially, the method in this thesis is able to 

detect the influence of severe weather events to human mobility pattern. Targeted 
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weather warning strategy can be designed based on the hourly human mobility pattern 

generated with this method. The method also shows high efficient by reducing data 

redundancy with a new data structure, and high robustness by reducing the influence of 

long duration data.  

Future Research will focus on the following aspects:  

First, deeper analysis based on more APP records and extended information of the users, 

including specified group mobility pattern based on profession and age of the APP users; 

pattern in longer time period considering seasons, holidays, etc. Transportation data, such 

as public transportation records, real-time traffic flow, will also be very helpful to 

conduct further analysis. 

Second, research on how to predict the possible behavior of the users based on their 

routine mobility pattern.  

Third, study the strategy of targeted alert during in-alert and post-alert periods based on 

our research methods, and its integration with the CASA Platform. 
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