

# Resilience and Early Brain Development

Jessica Hanratty, Viren D'Sa, Sean Deoni, Rebecca McLean, Susan Carnell, Vanja Klepac-Ceraj & Monique LeBourgeois Women & Infants Hospital, Warren Alpert Medical School at Brown University, Brown University School of Public Health, Johns Hopkins University School of Medicine, Wellesley College & The University of Colorado at Boulder.



Successes &

Challenges

Primary successes of

## Why RESONANCE?

- What makes a healthy From conception brain? and throughout childhood, our brains undergo remarkable change.
- Early development underlies cognition and behavior, is responsive to diverse biological and environmental factors, and may be associated with differences in later outcomes
- The goal of RESONANCE is to determine how various factors modulate brain and child development.
- Children in foster care and adopted children demonstrate a remarkable degree of resilience.
- Limited information about the influences of the environment on their growth and neurodevelopmental trajectories.
- This study will
- 1. Characterize trajectories of brain development from early childhood to preadolescence;
- 2. Determine how factors including the benefits of foster care and adoption (diet/nutrition, sleep, activity, etc.), influence cognition and behavior.

#### What is RESONANCE?

- The first longitudinal brain & cognition study following children from early childhood to preadolescence.
- An extensive suite of neurodevelopment measures to examine functional trends & associations.
- Unique sub-cohorts that include
  - Adoptees and foster children (STARK)
  - Late and moderate pre-term children (PEBBLES)
  - Full-term children exposed to environmental lead (PUMBA)
  - Children born small for gestational age or with growth restriction (SIMBA)
  - Previously enrolled, healthy full-term children (BAMBAM)
- Brain development under diverse pre- and post-natal environmental conditions.
- Anticipated ~850 children.
- Common study design, with visits every 3-6 months until 2.5 years of age, and yearly thereafter.

#### **Growth & Environment**

#### Neurocognition

- Cognitive assessments
- Expressive/receptive language
- visuospatial/fine motor coordination
- attention and executive function
- academic learning
- social-emotional and behavioral function.

#### Brain growth

- MRI (magnetic resonance imaging) scans
- non-sedated conditions (child is asleep or awake, watching a movie)
- brain morphology, white matter architecture, microstructure and functional connectivity.

#### Environment

- child sleep quality,
- air quality
- nutrition (ASA24) and eating/feeding habits
- child physical growth and body composition (PeaPod, BodPod)
- directed language (LENA).

### Biological sampling

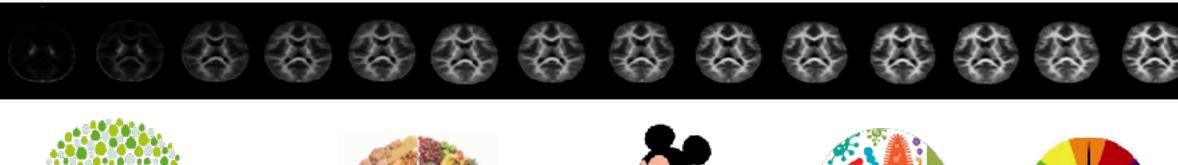
- saliva, stool, urine (microbiome)
- shed deciduous teeth (pre- and post-natal heavy metal exposure)

# Key Findings

- Early preliminary findings suggest differential brain development associated with language development, phonological processing, emerging executive function, prematurity, lead exposure, home air quality, and genetic APOE status.
- Differences in brain development.

- RESONANCE to date include: The acquisition of more than 2500 fetal, infant, and child MRI and cognitive datasets; Development of novel functional analysis methods that handle
- growth are mirrored by differences in cognitive

#### **KEY WORDS**


Neurodevelopment, Brain, Infant, Childhood Growth, Myelination, Connectivity, Environmental Influences on Brain

### of activity, sleep and air quality to gather data on some environmental influences.

Utilization of measures

complex data;

- Some of the challenges we anticipate include the identification of individual and cumulative effects of the multitude of factors that influence child health.
- This study aims to acquire data on a valuable and often under-studied population of children with a focus on the factors that contribute to the emergence and expression of resilience.





Family Health and Sociodemographics



Nutrition & **Eating Behavior** 



Sleep



Oral & Gut Microbiome

Environmental Exposures

AIR QUALITY



# **FUNDING SOURCES**

NIH UG3 OD023313, NIH MH087510, Bill & Melinda Gates Foundation OPP151325

#### **KEY CONTACTS**

S. Deoni <u>sdeoni@mac.com</u> V. D'Sa viren dsa@brown.edu