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Modeling non-stationary urban growth: The SPRAWL model and the
ecological impacts of development
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A B S T R A C T

Urban development is a principal driver of landscape change affecting the integrity of ecological systems and the
capacity of the landscape to support species. We developed an urban growth model (SPRAWL), evaluated it with
hindcasting, and used it to simulate urban growth across the northeastern United States between 2010 and 2080
under four alternative scenarios. In the model, urban growth is constrained by demand for new development for
each time step at the subregional scale. Demand is subsequently allocated to local application panes (5 km on a
side within 15 km window) using a unique landscape context matching algorithm, such that the more historical
development that occurred in the matched training windows the higher the proportion of future demand as-
signed to the pane. Lastly, demand in each pane is allocated among development types and then allocated to
individual patches based on suitability surfaces unique to that landscape context. SPRAWL has a multi-level,
multi-scale structure that captures urban growth drivers operating at multiple scales and, when combined with
the unique matching and suitability algorithms, induces non-stationarity in urban growth across time and space.
Our evaluation indicated that SPRAWL was highly discriminatory, well-calibrated, and highly predictive of new
development, but performed weakly for redevelopment transitions. We evaluated the ecological impacts of four
alternative urban growth scenarios varying in total demand for new development and “sprawliness” of new
development relative to historical patterns using an ecological integrity index. The results were consistent with
expectations and demonstrated the potential of SPRAWL for scenario analysis.

1. Introduction

Urban growth (i.e., land use change associated with residential,
commercial or industrial development) is a major landscape change
driver in many parts of the world, and in many areas it is the principal
driver of permanent landscape change and habitat loss affecting both
the integrity of ecological systems and the capacity of the landscape to
support biodiversity (Allen 2006; Grimm et al. 2008; Newbold et al.
2015). This is especially the case in the northeastern United States
(hereafter simply the Northeast) where the multi-century history of
human land use associated with urban development has caused major
changes in the capacity of the landscape to support biodiversity (e.g.,
Foster & Aber 2004) and continues to do so today (DeNormandie &
Corcoran 2009). To combat this ongoing loss of biodiversity it is
paramount that we better understand and manage urban growth tra-
jectories. To this end, conservation organizations and others are

increasingly seeking ways to predict future urban growth patterns in
order to design conservation strategies that proactively protect im-
portant natural areas and the fish, wildlife, and other components of
biodiversity that they support (e.g., Sim & Mesev 2014; Wear, Pye, &
Riitters 2004).

The Designing Sustainable Landscapes (DSL) project (McGarigal,
Compton, Plunkett, Deluca, & Grand 2017) was established under the
auspices of the North Atlantic Landscape Conservation Cooperative
(NALCC) and Northeast Climate Science Center (NECSC) to develop a
modeling framework for predicting future landscape changes in the
Northeast driven by urban growth and climate change (among other
processes), assessing the potential ecological impacts of those landscape
changes, and designing landscape conservation strategies to combat
those potential impacts. A key component of this modeling framework
necessarily addressed urban growth. Specifically, we sought an urban
growth model that met the following criteria:
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• Ability to efficiently model land cover transitions at the 30m re-
solution aggregated into realistic patches over the entire Northeast;

• Empirically-driven to the extent possible to minimize subjective
parameterization and avoid having to make assumptions about the
socioeconomic mechanisms that drive urban growth (as needed in a
process-driven approach);

• Ability to model multiple types of urban land use and land-use
changes associated with urban growth;

• Ability to implement scenario-based analysis to reflect our un-
certainty in the future urban growth rate and spatial patterns of
development; and

• Ability to simulate non-stationarity in the amount and spatial pat-
tern of urban growth across both space and time.

There have been myriad efforts to model land use changes asso-
ciated with urban growth, and many excellent reviews (e.g., Berling-
Wolff & Wu, 2004a; Li & Gong, 2016; Matthews, Gilbert, Roach, Polhill,
& Gotts, 2007; Parker, Manson, Janssen, Hoffmann, & Deadman, 2003;
Santé, García, Miranda, & Crecente, 2010; Triantakonstantis &
Mountrakis, 2012; Verburg, Schot, Dijst, & Veldkamp, 2004). Despite
marked variations in model structure, data requirements and applica-
tion scales, urban growth models can be unified in a general framework
of urban land use change with two explicit components: demand
quantification and spatial allocation. The variation among models

largely stems from differences in conceptual and technical approaches
to these two components. While many of the existing models appear to
meet several of our criteria, none to our knowledge allow for a suffi-
cient degree of non-stationarity in urban growth across both space and
time. Moreover, many of the models have onerous input data require-
ments and computationally expensive and complex model calibration
procedures. Therefore, we developed a new model (SPRAWL) that
meets all of our design criteria; in particular, it consists of several inter-
dependent components, including demand, allocation, and suitability
modules loosely based on the CLUE-S (Verburg et al., 2002) and FORE-
SCE (Sohl, Sayler, Drummon, & Loveland, 2007) models, but with the
addition of a unique matching component that induces non-stationarity
in urban growth across space and time, and the use of a novel state-
space approach for spatially allocating growth to individual disturbance
patches based on resistant kernels (Compton, McGarigal, Cushman, &
Gamble, 2007) applied to suitability surfaces. We believe that these
innovations provide a useful framework for modeling urban growth in
other geographies and will serve to motivate the development of new
and better ways to address non-stationarity in urban growth modeling
systems.

There is recognition that the goal of urban growth modeling should
not be accurate predictions of urban growth at the pixel level, but ra-
ther realistic patterns of growth overall at coarser scales as well as
useful comparisons among alternative growth scenarios (Li & Gong,

Fig. 1. Schematic outline of the SPRAWL model. (1) Training. Training data (which need not coincide with application data) consists of land cover in two time steps.
The training landscape is divided into 15 km windows within each subregion. Training windows are placed in two-dimensional suitability state space based on their
intensity of development and open water. Logistic regression models are built for each uniformly distributed model point within the state space to determine
suitability. (2) Demand. The expected future development rate is supplied by subregion (we used counties or census block statistical areas) from outside the model
(we used RPA assessments). (3) Allocation. The demand within a subregion is allocated to each 5 km application pane (within an overlapping 15 km application
window) based on the relative historical allocation to the three most similar (matching) training windows. (4) Suitability. Each application pane (within an
overlapping window) is placed in the suitability state space, and nearby logistic regression models are averaged to determine suitability at the cell level. (5) Building.
Finally, patches of development (for each of 6 different transition types) are built within each application pane based on the corresponding suitability surface,
matched to the distribution of patch sizes for matching windows in the training data.
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2016). Moreover, the utility of urban growth modeling stems pre-
dominantly from understanding the consequences of land use change to
inform land use planning and policy with regards to a wide variety of
ecosystem services, such as the regulation of freshwater quantity and
quality, sequestration of carbon, and the conservation of biodiversity
(Verburg et al., 2004). In particular, planning for the conservation of
biodiversity can be informed by scenario-based urban growth modeling,
and there are numerous ongoing efforts to do so, for example those
associated with the North American Landscape Conservation Co-
operatives (Millard et al., 2012). As with the variety of urban growth
models, there are myriad approaches for assessing the ecological im-
pacts of urban growth. The DSL project includes a complementary two-
pronged ecosystem- and species-based approach, each of which has
multiple elements. Of particular interest here is the ecosystem-based
assessment (McGarigal et al., 2018), which is based on the concept of
“ecological integrity” defined as the ability of an area to support bio-
diversity and the ecosystem processes necessary to sustain biodiversity
over the long term, especially in response to disturbance and stress. The
ecological integrity assessment provides a basis for comparing the po-
tential ecological impacts of alternative land use scenarios, which can
then be used to inform landscape conservation design.

Our primary objective in this paper is to describe the SPRAWL
model and its application to simulate land-use conversions associated
with urban growth across the Northeast for 10-year time steps between
2010 and 2080 under a baseline scenario. Our secondary objective is to
conduct a scenario-based analysis of the effects of urban growth on
ecological integrity under scenarios of varying total demand and sprawl
intensity, but here the focus is on illustrating the scenario-based utility
of the SPRAWL model rather than the details of the ecological assess-
ment.

2. Methods

We implemented our SPRAWL model in R (R Core Team., 2016)
using custom packages for both parallel and raster processing. Fig. 1
outlines the structure of the SPRAWL model as described below.

2.1. Model training

2.1.1. Training data
We selected three regions across the Northeast to be used as training

areas: Maine, Massachusetts, and the Chesapeake Bay (Fig. 2). Maine
and Massachusetts data came from the National Oceanic and Atmo-
spheric Administration (NOAA) Coastal Services Center's Coastal
Change Analysis Program (C-CAP) for the years 1996 and 2006. Che-
sapeake Bay data came from the Chesapeake Bay Watershed Land cover
Data Series (CBLCD; Irani & Claggett, 2010) for the years 1984 and
2006, which was based partly on the C-CAP data as well. One strength
of the matching approach described below is that the historical training
data need not be available throughout the entire application region.
However, it is important that the training data be representative of
conditions throughout the application region and be directly compar-
able to the land-use layer for the initial (or starting) condition of the
simulation. The three training regions were chosen because they each
had a relatively long period of historical land-use GIS layers available
that included multiple urban land-use classes (low-, medium-, and high-
intensity development, and developed open space) mapped at the 30-m
resolution. Together, they represented varied amounts of current land-
use intensity and historical land-use conversion that likely represented
the full gradient found across the Northeast. In addition, these data
were directly comparable to the 2011 National Land Cover Data (NLCD;
Homer et al. 2015) that is the most consistent and spatially compre-
hensive product of its kind currently available across the Northeast. We
examined each of the developed classes in NCLD, C-CAP and CBLCD in
comparison with aerial imagery and determined that the developed
open space class was unreliable and inconsistently characterized, and it

had the lowest producer’s accuracy of any of the developed categories
in the NLCD (e.g., Wickham et al., 2017), so we opted to treat it as static
in the urban growth model (i.e., the footprint of land classified as de-
veloped open space remains constant during an urban growth simula-
tion). The other three developed land classes generally performed
better in the NLCD (e.g., Wickham et al., 2017) and were fairly con-
sistent between the data sources.

2.1.2. Development transitions
For each training region, we compared the raster from the earlier

time step to the later one to create a change raster for each of six
transition types: undeveloped to each of 1) low-, 2) medium-, and 3)
high-intensity development, and the three possible increases in devel-
opment intensity: 4) low-to-medium, 5) low-to-high, and 6) medium-to-
high. We did not consider transitions to lower urban intensities or
transitions back to a non-urban or undeveloped condition (i.e., “re-
wilding”). While these transitions did occur, they were unreliably as-
sessed in the training data and, moreover, were extremely rare; thus, we
deemed these transitions of minor importance and omitted them from
the urban growth model.

2.1.3. Training windows
We divided each training region into non-overlapping square

training “windows” approximately 15 km on a side (498 30-m cells, or
14.94 km on a side). The choice of window size reflected a compromise
between keeping the windows as small as possible to reflect meaningful
local variation in landscape context that might affect urban growth and
keeping the windows large enough to avoid the idiosyncrasies of very
small landscapes (and to reduce computer processing time). We used
the change raster to calculate and store for later use in the matching
algorithm (see below) three statistics for each training window:

1) Rate of new urban development — number of cells that underwent
new development (i.e., transition types 1–3) during the training

Fig. 2. Northeastern U.S. subdivided into 241 “subregions” defined by U.S.
Census Bureau 2010 Core Base Statistical Areas (CBSAs) where they existed, or
individual counties for those not in CBSAs, that we used for projecting the
demand in urban growth forecasts, and the three areas (Maine, Massachusetts,
and the Chesapeake Bay) used to train the SPRAWL model.
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period, divided by the length of the training period, and multiplied
by 10 to convert to amount in cells per decade.

2) Distribution of transition types — proportion of the total number of
cells exhibiting any transition (transition types 1–6) during the
training period comprising each of the six transition types.

3) Patch size distribution — distribution of development patch sizes,
where a patch was defined as a set of contiguous cells (based on an
eight-neighbor rule) that underwent the same development transi-
tion. Note, because the Chesapeake Bay training data period was
22 years (instead of 10), there was undoubtedly a bias high in the
computed patch size distribution for these training windows, since
there was roughly twice the time for individual developments to
coalesce into larger patches. While this bias was real, we deemed the
overall effect on the coarse-scale patterns of urban growth to be
minimal.

2.1.4. Building suitability models
For each training window, we computed the Gaussian kernel

(12.8 km bandwidth) intensities of adjusted development and of open
water based on the land cover map developed for the DSL project
(McGarigal et al., 2017), which was consistent with the training data
sets with regards to the mapped developed land uses, and converted
these values to z-scores (i.e., mean=0 and standard deviation=1).
This allowed us to place each training window in a standardized two-
dimensional state-space defined by the intensity of adjusted develop-
ment and open water (Fig. 3), which we determined to be the two most
important variables affecting allocation based on preliminary analyses.
We defined adjusted development by assigning weights to cells as fol-
lows: 1= low-intensity development, 2=medium-intensity develop-
ment, 3=high-intensity development, n/a = “non-buildable” cells,
and 0=buildable cells. We treated cells classified as any land cover
class associated with open water, wetland, roads and developed, in
addition to cells designated as secured lands (i.e., already protected
from future development; derived from The Nature Conservancy (2011)
secured lands layer), as “non-buildable”, and all other cells as “build-
able”.

We located 16 uniformly distributed “model points” or locations in
this state-space (Fig. 3). For each of these points, we fit separate binary
logistic regression (i.e., “suitability”) models for each of the six tran-
sition types to a set of training points (i.e., randomly selected cells of

the corresponding transition type at least 150m apart to avoid pseudo-
replication, matched with an equal number of randomly selected
buildable cells excluding cells that transitioned during the training
period) from the training windows located within 1, 1.5 or 2 standard
deviations (on the z-scored axes of the state space) from the model
point in the state-space. We used the smallest of the three standard
deviations needed to achieve a minimum of 200 (mean=3,458;
range=208–60,449) training points (half of which experienced that
transition and half of which were buildable points) in order to have the
fitted model most closely reflect landscape conditions described by that
model point in the state-space (Fig. A1). If we could not meet the
minimum sample size of training points within 2 standard deviations of
the model point, we dropped the model point from consideration.

For each model point and transition type, we fit all-subsets logistic
regression models based on a set of 10 predictors, including the in-
tensity (at multiple kernel bandwidths) of open water, primary and
secondary roads, all roads except motorways, and adjusted develop-
ment, in addition to transformed percent slope and distance to nearest
road (Appendix A). This suite of predictor variables was informed by
preliminary analyses that involved a comprehensive hierarchical model
selection process including 103 different predictors representing com-
binations of a large number of candidate variables and wide range of
spatial scales. Finally, we used full model averaging based on AIC
model weights for models within 4 AIC units of the best model to
predict each of the six transition types for each of 12–16 model points
(depending on transition type) (see Appendix A for detailed results).

2.2. Model execution: Simulating urban growth

The SPRAWL model involves simulating urban growth according to
a user-specified scenario based on the algorithm described below. We
use as the basis for the “current” or initial land-use condition the set of
developed land cover classes in the DSL land cover raster which are
based on 2011 NLCD, although any land cover classification would
suffice so long as it is consistent with the training data and the derived
suitability models. We subdivide the entire application region into non-
overlapping square application “panes” ∼5 km (166 cells, or 4980m)
on a side, each of which is embedded as the central pane within a
square application “window” consisting of 3x3 panes (∼15 km on a
side, identical to the training windows). We implemented overlapping

Fig. 3. (a) Standardized two-dimensional model state-space defined by the intensity of adjusted development (see text for details) and open water within which each
training window (∼15 km on a side, depicted by gray points) was located and the 16 uniformly distributed model points for which we developed suitability models
(see text for details); and (b) the corresponding spatial distribution (at the∼ 5 km application pane resolution) of the 16 model points depicted in the model state-
space.
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windows to prevent major boundary effects across application panes. In
this way, each application pane shares 2/3 of its window with each of
its four nearest neighboring panes, preventing abrupt differences from
occurring between neighboring panes.

2.2.1. Determining demand
Prior to model execution, we establish the “demand” for additional

cells of each urban land cover class in each 10-year time step. The
demand dictates the overall amount (in cells) of urban land-uses to
allocate throughout the area of interest in each time step. Although
demand could be derived from any suitable data source, we chose to
base demand on county-level forecasts derived for a U.S. Forest Service
2010 Resources Planning Act (RPA) assessment (Wear, 2011), after
resolving some issues with the data (Appendix B). We assigned each
application pane to a single county (or merged county) based on a
majority rule, producing a gridded version of the RPA county map at
5 km resolution, and then aggregated the application panes into U.S.
Census Bureau 2010 Core Base Statistical Areas (CBSAs) where they
existed, or retained the forecasts at the county level for those counties
not in CBSAs, resulting in a total of 241 geographic units, which we
refer to as “subregions” (Fig. 2). We converted the RPA forecasts (which
were given in absolute area) to development rates, computed as the
projected development divided by the land area (as reported in the RPA
assessment), and then converted this to an absolute demand (in cells)
for each subregion in our gridded version by multiplying the forecasted
rate of development by the count of land cells within the gridded
subregion (Appendix B for link to final spatial data). Note, calculating
development rates based on land area as reported in the RPA assess-
ment corrected for the discrepancy in land area between RPA counties
and our gridded version.

2.2.2. Matching to training windows
Based on the pre-determined total demand (above), we simulate

urban growth for each time step as follows:
First, the application window for each pane is matched to the three

most similar training windows (from any of the three training regions)
based on geographic proximity and four landscape metrics, including
the intensity (Gaussian kernel bandwidth=12,800m) of 1) adjusted
development (as defined above), 2) all roads, except motorways, and 3)
open water; and 4) density of roads (except motorways) within the
window. The selection of the landscape metrics was informed by pre-
liminary analyses that involved a comprehensive model selection pro-
cess involving 50 different variables and scales to determine which
combination of variables and scales had the greatest ability to predict
the amount and pattern of future growth in each training window.

As noted previously, the reason matching occurs at the window
scale, but then the allocation described below is applied at the pane
level (which represents 1/9 of the window size), is to reduce boundary
effects across application panes. For each application and training
window, we compute the four landscape metrics listed above and
convert the values to z-scores (mean= 0 and standard deviation=1).
We then compute a similarity score between each application window
and every training window based on Euclidean distance in z-scores,
such that it ranges from 1 if all four metrics are the same and 0 if all
four metrics differ by 6 standard deviations. We then multiply these
similarity scores by a geographic adjustment that applies a penalty to
training windows based on how much farther they are from the ap-
plication window than the closest training window. The adjustment is
based on a Gaussian function such that it ranges from 1 at small deltas
(i.e., the closest training window gets an adjustment of 1) to 0.5 at very
large deltas (Appendix C). The resulting adjusted similarity scores are
rank-ordered and the three most similar (weighted by proximity)
training windows are matched for each application window.

The proximity adjustment reflects the lack of regionally available
and consistent spatial data on local socio-economic drivers (e.g., zoning
laws, median income, etc.) that influence land-use change that are not

incorporated into the model. We recognize that application windows
are likely to grow more like nearby windows simply because they have
similar local factors acting upon them. To partially account for this
local variation, we added the local weighting component described
above to the matching algorithm. In this way, an application window in
Maine is more likely to be matched with training windows in Maine
than training windows in Massachusetts or Chesapeake Bay, with the
expectation that they will grow more like Maine has grown historically.
Moreover, the proximity adjustment helps alleviate potential issues
from matching to training windows from different datasets.

2.2.3. Allocating urban growth
Once each application window is matched to three training win-

dows, we allocate the total demand (in cells) for the current time step
within each gridded subregion to each application pane. To do this, we
calculate the average total amount of new development (i.e., transitions
types 1–3) per decade observed historically in the three matched
training windows. This “match amount” is multiplied by the proportion
of the application window that is buildable and the proportion of
buildable cells in the central pane. We also adjust this match amount as
necessary to ensure that no more than 14% of the buildable cells for
transitions 1–3 (i.e., available for new development) in the pane are
built in any one decade. This maximum rate of development per decade
was based on the 99th percentile of the corresponding distribution ob-
served in the hindcast dataset we developed to validate the urban
growth model (see below). The result is an interim measure of the
amount to allocate to each application pane that reflects the historical
distribution among panes having a similar landscape context. Lastly,
the absolute demand (in cells) for each application pane in the current
time step is computed by dividing the pane's interim match amount by
the total interim match amount across all panes in the corresponding
subregion and multiplying by the total demand in the subregion. In this
manner, the total demand (in cells) for each subregion is allocated
among application panes such that the more historical development
that occurred in the matched training windows, the higher proportion
of the future demand is assigned to the application pane.

Next, the demand (in cells) in each application pane for the current
time step is allocated among the six transition types based on the his-
torical distribution in the matched training windows, with the sum of
the first three transitions (i.e., undeveloped to low-, medium- or high
intensity developed) made to match the total allocation to the pane, and
the ratio among all six transitions made to match the historical ratios in
the matched training windows.

2.2.4. Determining suitability
Once the number of cells needed for each transition type in each

application pane for the current time step is determined, we determine
the probability of each transition type occurring at the cell level in each
pane. To do this, for each transition type we create an inverse distance-
weighted average logistic regression model based on the distance be-
tween the application window and each model point in the model state-
space developed during the Training phase (Fig. 3). For this calculation,
we force the distance to be at least 0.05 standard deviations for all
model points so that a single logistic regression model cannot get 100%
of the model weight. Next, we use these weighted-average models to
compute the relative probability (i.e., suitability) of each transition type
for each cell in the application pane (Fig. 4). Lastly, for transition types
1–3, we assign a zero value to all non-buildable cells. For transition
types 4–6, we assign a zero value to all cells not of the focal class (e.g.,
for transition type 4, only cells of low-intensity development are al-
lowed to have a non-zero value).

Importantly, because the Gaussian kernel (12.8 km bandwidth) in-
tensity of adjusted development surface is changing over time due to
urban growth, the position of each application window in the two-di-
mensional model state-space is shifting over time as well. Consequently,
the patterns of urban growth in an application window will shift over
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time and become more like the patterns characteristic of increasingly
urbanized windows (see Results). This feature ensures non-stationarity
in the patterns of urban growth over time, which we deem an important
and distinctive feature of our urban growth model.

2.2.5. Building development patches
Given the demand (in cells) for each transition type allocated to

each application pane for the current time step and the corresponding
suitability surfaces, we build development patches for each transition
type, as follows:

1) First, randomly select a cell to initiate a disturbance based on the
relative probability (i.e., suitability) surface for that transition, but if
the candidate pool of buildable cells vastly exceeds the development
target (> 500 times as many cells in the top 15% than needed for
the transition), we also limit the selection of cells to those in the top
15th percentile of suitability within the application pane; thus, cells
with the highest suitability values are more likely to initiate a new
development. Note, regardless of whether the selection is limited to
the top 15th percentile of suitability values, cells are still selected
based on their relative probabilities;

2) Next, randomly draw a patch size from the observed distribution of
patch sizes in the three matched training windows for the corre-
sponding transition type;

3) Next, spread outward from the initiation cell with a resistant kernel
(Appendix D) to the desired patch size where resistance is based on
the complement of the probability of transition. This produces pat-
ches that extend farther into neighboring cells that are more suitable
for the transition.

4) Lastly, repeat the process above, building development patches se-
quentially, until the total allocation of cells for the transition type is
exhausted in the application pane (Fig. 5).

2.3. Model evaluation

It was impractical to truly validate the SPRAWL model as applied
here because the outcome depended strongly on the RPA forecasts of
future development which were based on several assumptions about
global and U.S. socioeconomic and climate trends likely to affect future
U.S. resource conditions and trends as reflected in the IPCC 4th
Assessment A1B, A2, and B2 scenarios (IPCC, 2007), none of which can
be verified without waiting to see if the predictions come true. How-
ever, hindcasting provided an alternative for evaluating model perfor-
mance, which we describe in detail along with the results in Appendix
E. Briefly, we used the NLCD change raster for the period 2001–2011, in
which each cell was coded as either unchanged or one of our six
transition types, to create an approximate year 2000 version of our DSL
land cover raster by applying the same process to the 2001 NLCD raster
that we used to create DSL land cover (McGarigal et al., 2017). Next, we
used the DSL 2000 land cover raster as the initial condition and ran the
SPRAWL model for a single 10-year time step to generate the prob-
ability of development (or suitability) surface for each transition type,
but we set the demand for new development (transition types 1–3)
within each subregion to be equal exactly to what we observed for the
buildable portion of the landscape in the NLCD change raster, effec-
tively removing demand from the model evaluation (since our purpose
was not to evaluate the RPA forecasts).

To evaluate the performance of the SPRAWL model for the
2000–2010 time step, we computed four different statistics. First, we
compared the average derived probability of development at cells that
actually underwent a development transition in the NLCD change raster
to that of available cells (and reported the ratio) for each of the tran-
sition types. Second, despite the fact that the data were appropriately
considered observations of “presence-vs-available” rather than “pre-
sence-vs-absence”, since the cells that underwent a transition were
simply a subset of those that could have undergone a transition given
the same suitability, we computed the area under the Receiver

Fig. 4. Probability of development (i.e., suitability) at the 30m cell level for a random application window and time step within the northeastern U.S. for each of six
transition types (see text for details).
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Operating Characteristic Curve (or AUC, e.g., Fielding & Bell, 1997) to
gauge the model's discriminatory ability. In our context, AUC is equal to
the probability that our model-derived probability of development
ranked a randomly chosen transitioned cell higher than a randomly
chosen available cell. Third, we computed the coefficient of con-
cordance (Lin, 1989) between observed and predicted based on the
methods recommended by Johnson, Nielsen, Merrill, Mcdonald, and
Boyce (2006) for “presence-vs-available” data. The concordance coef-
ficient measures the strength of agreement (in both accuracy and pre-
cision) between these two allocations based on their deviation from a
45-degree line (i.e., a line originating at 0 with a slope of 1), with values
closer to 1 indicating better agreement and thus better overall model
performance. Lastly, we computed the weighted skewness statistic
based on the method recommended by Gregr and Trites (2008) for
“presence-vs-available” data. This statistic measures the (weighted)
skewness of the distribution of model-derived predicted probability of
transition values, whereby the more predictive the model is the higher
the proportion of observed transition points (after weighting to reflect
availability) that are located at the higher end of the probability scale,
resulting in a more left-skewed distribution.

2.4. Model application: Ecological impacts of alternative urban growth
scenarios

The SPRAWL model has two basic mechanisms for creating urban
growth scenarios, both of which involve subjective deviations from the
empirically-based baseline scenario. First, the overall amount of land
that is developed (or the corresponding rate of development) can be
modified from the baseline demand, which for this application we de-
rived from the RPA assessment. Here we simply multiply the baseline
demand by a factor to either increase or decrease the amount of de-
velopment relative to the baseline; e.g., to increase the demand by 25%
we would multiply the baseline demand by 1.25. In this scenario, the
relative allocation of development among application panes and spatial
patterns of development at the cell level would remain the same as the
baseline, but the total amount of development would be 25% greater.

The other mechanism for creating scenarios is the “sprawl dial”,
which allows us to create scenarios that are more “sprawlly” than the

baseline. The baseline scenario acts as the status quo (sprawl level= 0)
and distributes the number of new urban cells to each application pane
in accordance with historical patterns using the allocation process de-
scribed above. Thus, the baseline scenario exhibits sprawl, but at the
level observed in the historical training data. Increasing the sprawl dial
redistributes more of the allocation to panes further away from urban
centers. Briefly, we create a variable-bandwidth Gaussian smooth of the
baseline allocation, where the bandwidth ranges from 10 to 45 km, with
larger bandwidths chosen when the focal pane is in proximity to a
larger urban center (based on the 12.8 km Gaussian kernel intensity of
adjusted development, as defined earlier). Thus, the development al-
located to each baseline application pane is reallocated to itself and
nearby panes based on the Gaussian kernel smooth, whereby the re-
allocation is distributed more broadly the larger the urban center.
Generally the redistribution is forced further from the urban center,
because the limited buildable area closer to the urban center restricts
how much of the reallocation can be accommodated — resulting in the
desired sprawl effect. For a relatively small urban center, this translates
into redistributing the allocation over roughly a 10–20 km radius, and
for a larger urban metropolitan area (e.g., Boston, Philadelphia, New
York, Washington DC, etc.) the reallocation occurs over roughly
45–90 km. Thus, for the same setting of our sprawl dial, the realized
scale of sprawl varies with the size of the urban center. Finally, we
compute the weighted average of the standard baseline allocation and
the smoothed allocation, with the weight determined by the setting of
the sprawl dial. Thus, as the sprawl dial is increased between 0 and 1,
more of the allocation to urban areas is dispersed to the outlying sub-
urban areas based on the smoothed allocation, which determines how
contagious (compact vs. “sprawlly”) growth patterns will be at the
broad scale compared to the baseline.

For this application, we analyzed four scenarios in a two-way fac-
torial combination of two levels of demand (baseline and 25% increase)
and two levels of sprawl (baseline and sprawl level= 0.75). See
Appendix F for images depicting each of these scenarios. For each
scenario, we ran three replicate 70-year simulations (2010–2080). For
each simulation, we computed the Index of Ecological Impact (ecoImpact,
McGarigal et al., 2018) for the year 2080 (Appendix G). Briefly,
ecoImpact is derived from a composite of 6–18 ecological integrity

Fig. 5. Simulated development transition patches for the random application window and time step depicted in Fig. 4.
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metrics, depending on the ecosystem, measuring different aspects of
ecosystem intactness and resiliency and provides an index of the change
in ecological integrity between the current and future time steps re-
lative to the initial condition. A site that experiences a major loss of
ecological integrity due to urban growth has a high predicted ecological
impact. ecoImpact is a raster, but here we sum the raster and average
across the three replicate simulations for each scenario to produce a
scalar index for comparison among scenarios.

3. Results

Model evaluation.—The average probability of transition derived
from the SPRAWL model applied to the hindcast dataset was roughly
10–11 times greater for cells that realized new development (transition
types 1–3) between 2000 and 2010 than that of available cells (i.e., all
undeveloped buildable cells), indicating that the SPRAWL model was
very effective in discriminating undeveloped sites likely to transition to
new low-, medium-, or high-intensity development. This was reflected
in the relatively high AUC values for new development and the rela-
tively large negative values of the weighted skewness statistic (Table 1),
which can also be visualized graphically (Appendix E). However, the
SPRAWL model was weakly discriminating and therefore had weak
predictive ability for redevelopment transitions (i.e., transitions from
already developed to a higher-intensity development, AUC < 0.6),
which was not surprising given the relatively poor ability of the NLCD
map to accurately detect redevelopment changes (Wickham et al.,
2017). The SPRAWL model was also moderately well calibrated for the
Northeast landscape, with coefficients of concordance between ob-
served and predicted> 0.7 for all 6 transition types (Table 1), which
can also be visualized graphically (Appendix E).

Non-stationarity.—As intended, the SPRAWL model exhibited spatial
and temporal non-stationarity in the allocation of future development
(based on the specified demand to each subregion) to individual 5 km
application panes and in the distribution to individual development
patches within panes based on the derived suitability surfaces (Fig. 6).
The shifting spatial allocation of new development over time reflected
the evolving development of a subregion, such that as panes were de-
veloped they “behaved” more like similarly developed panes in the
historical training data. Differences between the two development

scenarios illustrated in Fig. 6 reveals that in the increased demand and
sprawl scenario more of the reallocation of future development was
shifted away from the urban center to the outskirts of the subregion,
particularly to the northwest in what might be considered a “sprawl
zone”.

As intended, the model also exhibited non-stationarity in the cell or
patch-level distribution of transitions. Application panes occupied a
position in the two-dimensional model state-space in 2010 based on
intensity of open water and development in the application window
they ware embedded within. The position of the pane in this state-space
determined the weighted-average logistic regression model used to
create the suitability (i.e., probability of development) surface, which
stochastically determined where new development patches were
placed. As the pane was developed over time, its position in the state-
space shifted along the x-axis (Fig. 7), resulting in an evolving suit-
ability surface. Differences between the two development scenarios il-
lustrated in Fig. 7 was reflected in the longer arrows (i.e., greater shift
in the state space over time) in the increased demand and sprawl sce-
nario.

Model application: scenario-based ecological assessment.—The total
ecoImpact under the baseline urban growth scenario varied little among
replicate simulations (coefficient of variation= 0.2%), and the re-
plications varied even less (CV < 0.02%) within each of the three al-
ternative scenarios, suggesting that a single simulation for each sce-
nario was sufficient to describe the overall ecological impact when
pooled across the entire regional landscape. The 25% increase in de-
mand scenario resulted in an∼ 11% increase in total ecoImpact com-
pared to the baseline scenario, indicating that there was not a 1:1 re-
lationship between development and impact. Indeed, while some
locations experienced relatively high impact, some of the additional
development occurred in places that suffered little ecological impact
(i.e., infilling of already developed areas). The increased sprawl sce-
nario resulted in a ∼3% increase in total ecoImpact compared to the
baseline scenario, indicating that although greater sprawl than was
observed under the baseline scenario (reflecting historical trends) had a
negative ecological impact, the magnitude of impact was relatively
small for the increased level of sprawl that we simulated. Additional
scenarios are needed to fully examine how ecoImpact varies as a func-
tion of greater levels of sprawl, and further research is needed to cali-
brate our sprawl dial with other established metrics for quantifying
sprawl (e.g., Frenkel & Ashkenazi, 2008; Reis, Silva, & Pinho, 2015;
Sudhira, Ramachandra, & Jagadish, 2004). Lastly, the increased de-
mand and sprawl scenario resulted in a ∼14% increase in total
ecoImpact compared to the baseline scenario, indicating that the impact
of increased demand and increased sprawl was largely additive.

4. Discussion

The staggering variety of extant urban growth models (Li & Gong,
2016) undoubtedly stems from the diversity of application-specific
modeling objectives coupled with practical constraints imposed by
things such as data availability and computational resources. We de-
veloped the SPRAWL model to meet several design criteria specific to
its application within the broader modeling framework of the Designing
Sustainable Landscapes project and with respect to the following im-
portant considerations.

Addressing demand for urban growth.—One of the biggest challenges
in urban growth modeling is determining the future demand for urban
land use. Not surprisingly, one of the major distinctions among urban
growth models is related to methods for addressing future demand (Li &
Gong, 2016). For example, agent-based models (ABMs) approach de-
mand as an emergent property of the modeled behaviors or decisions of
individual agents (Crooks, Castle, & Batty, 2008; Matthews et al., 2007;
Parker et al., 2003); thus, demand is an endogenous process in the
model. Models variously classified as cellular automata (CA, Santé
et al., 2010), on the other hand, often generate demand via projecting

Table 1
SPRAWL model evaluation based on hindcasting, including for each of six de-
velopment transition types (1–3 represent new development from undeveloped
land; 4–6 represent redevelopment) the following statistics: 1) ratio of the
average computed probability of development for cells that underwent devel-
opment in the hindcast dataset (∼2000–2010) to that of the corresponding
available cells, 2) area under the Receiver Operating Characteristic Curve Area
(AUC), 3) coefficient of concordance (CC), and 4) weighted skewness statistic.

Transition type Use/availability
ratio

AUC CC Weighted
skewness

1 11.14 0.93 0.70 −0.73
(undeveloped to low-

intensity developed)
2 11.70 0.94 0.77 −0.71
(undeveloped to medium-

intensity developed)
3 9.86 0.93 0.80 −0.61
(undeveloped to high-

intensity developed)
4 1.08 0.53 0.93 0.05
(low- to medium-intensity

developed)
5 1.25 0.60 0.98 −0.31
(low- to high-intensity

developed)
6 1.26 0.57 0.77 −0.17
(medium- to high-intensity

developed)
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Fig. 6. Heat maps depicting the difference between the 2080 and 2010 allocation to the application panes (∼5 km on a side) within the Boston metropolitan
subregion in the northeastern U.S. under two urban growth scenarios: (a) baseline and (b) increased demand (25% greater than baseline) and sprawl (sprawl
level= 0.750). Warmer colors are associated with positive deltas (i.e., panes receiving more allocation of new development in 2080 compared to 2020); conversely,
cooler colors are associated with negative deltas (i.e., panes receiving less allocation of new development in 2080 compared to 2020). Deltas are computed as the
difference in the number of cells of new development (i.e., transitions 1–3, see text for details) between 2020 and 2080. Non-zero deltas indicate non-stationarity; i.e.,
new development was allocated among panes differently in 2080 compared to 2020.

Fig. 7. Illustration of non-stationarity in the suitability surfaces for 50 randomly selected application panes (∼5 km on a side) within the Boston metropolitan
subregion in the northeastern U.S. under two urban growth scenarios: (1) baseline and (2) increased demand (25% greater than baseline) and sprawl (sprawl
level= 0.750). Plot depicts the trajectory of change in the position of the selected application panes in the model state-space between 2010 and 2080 for transition 1
(new low-intensity development). Each pane moves through state-space on the x-axis (intensity of development) to a varying degree depending on how much
development it receives. The varying magnitude of change among panes, as reflected by the varying length of the vectors, represents non-stationarity in urban
growth. The vectors are longer in the increased demand and sprawl scenario because of the greater amount of development simulated. Any movement through state-
space over time results in a change in the derived suitability surface that in turn affects the stochastic development, indicating non-stationarity in urban growth.
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forward statistical trends derived from the historical training data (e.g.,
Sohl and Sayer, 2008). For the SPRAWL model, we chose instead to rely
on the expertise of others and treat demand as an entirely exogenous
process, whereby we simply input the demand as a constraint on urban
growth. For this application, we used the RPA forecasts developed by
Wear (2011) which combined historical trends with econometric pro-
jections of future human population and land use tied to the SRES
scenarios (Nakicenovic, Alcamo, & Davis, 2000), which we deemed to
be more robust than simply extrapolating the historical trends in our
training data. In addition, the RPA forecasts exist at the county level,
which we deemed a sufficiently fine spatial resolution to discern im-
portant spatial patterns across the Northeast, and the RPA assessment is
done every 10 years which provides a consistent basis for updating
demand in future urban growth applications.

Spatial allocation of urban growth.—Another challenge that lies at the
core of urban growth modeling is determining how to spatially allocate
demand. There are perhaps as many different approaches as there are
models. Most approaches involve transitioning cells or patches typically
within some higher level spatial unit (e.g., county, land cover type,
ecoregion) based on some form of a suitability surface or set of tran-
sition rules applied at the cell level until the demand is met (e.g.,
Chaudhuri & Clarke, 2013; Sohl et al., 2007; Theobald 2005; Veldkamp
& Fresco 1996; Verburg, DeKoning, Kok, Veldkamp, & Bouma 1999;
White & Engelen 2000; Zhao & Murayama 2007). In the SPRAWL
model, we implement a unique multi-level allocation of growth within
subregions (CBSAs or counties) that involves first allocating growth to
overlapping application panes (5 km on a side) and then to individual
disturbance patches within panes. The pane-level allocation is based on
a unique matching algorithm that matches each application window to
similar windows in the historical training data based on several land-
scape metrics describing the intensity of development, roads and open
water in addition to geographic proximity. Thus, each pane receives its
proportional allocation of each urban transition type based on how
historical growth was allocated to similar landscape contexts. The al-
location to each pane is then distributed among individual disturbance
patches based on the derived suitability surface for that landscape
context. In this manner, the cell or patch-level disturbance patterns
emulate the fine-scale patterns of growth observed historically in si-
milar landscape contexts, at least to the extent that they are controlled
by factors such as the intensity of open water and development at
multiple scales, slope and proximity to roads. Moreover, similar to some
other models (e.g., Chen, Li, Liu, & Ai, 2014; Meentemeyer et al., 2013;
Sohl & Sayler, 2008) we transition patches of cells rather than in-
dividual cells independently and do so organically by selecting initia-
tion cells and growing outward based on the suitability surface using a
unique resistant kernel algorithm (Appendix D) until a randomly se-
lected patch size is met based on the historical distribution of patch
sizes in the matched training windows. Importantly, this multi-level
and multi-scale allocation is computationally efficient and requires no
model calibration. Our model evaluation based on hindcasting suggests
that this approach was very effective in representing the recent his-
torical urban growth patterns.

Local suitability.—Most urban growth models have some form of
suitability module for deploying urban growth at the cell or patch level,
and as with allocation, there again appear to be almost as many ap-
proaches as there are models. After evaluating several alternative ap-
proaches, we opted to use logistic regression based on a parsimonious
suite of predictors at multiple scales that are easily computed from a
land cover map, similar to other models (e.g., Hu & Lo, 2007; Sohl &
Sayler, 2008; Wu, 2002). However, we recognized that the factors that
influenced urban growth patterns at the cell or patch level were not
necessarily the same in all landscape contexts; in particular, the factors
that drove growth in urban areas and near the coast and other large
water bodies differed from those in more rural and terrestrial settings.
To address this variability we developed the suitability model state-
space approach, in which we used the training data to develop model-

averaged logistic regression models for “points” distributed evenly
throughout a two-dimensional state-space defined by the intensity of
development and open water. This state-space captures two dominant
gradients affecting local urban growth patterns in the Northeast, but it
could be based on other user-selected gradients for other applications.
Once the state-space is defined and logistic regression models are built
for each model point and transition type, during the urban growth si-
mulation each cell, as part of an application window, is positioned in
the state-space and an inverse-distance weighted logistic regression
model is applied. In this manner, the suitability surface derived from
the logistic regression model varies as an application window moves
through the state-space. This is analogous to geographically-weighted
regression, but instead of geographic space the model varies in ecolo-
gical (i.e., land cover) space.

Treatment of scale.—The importance of explicitly dealing with
scaling issues in urban growth models is generally recognized (Verburg
et al., 2004), and increasingly models are adopting a multi-scale ap-
proach in either the structure of the model or in the quantification of
the driving variables or both (Li & Gong, 2016). The multi-scale ap-
proach acknowledges that different driving forces behind land use
change are important at different scales, but there are myriad ways of
dealing with it in a model. In the SPRAWL model, we chose to in-
corporate multiple scales into both the multi-level structure of the
model and the quantification of the driving variables. Regarding the
multi-level structure of the model, demand is input at the subregional
level (CBSA or county), but then allocated to the application pane level,
and then to the individual cell or patch level. This hierarchical three-
level structure is implicitly multi-scale as well, as subregions encompass
larger spatial extents than application panes (5 km on a side), which are
larger than individual cells (30m) or disturbance patches. In addition,
the landscape variables that drive the pane-level allocation of demand
in the matching algorithm and that drive the suitability surfaces within
each pane can be quantified at multiple scales via kernel smoothing of
the predictors at different bandwidths. Ultimately, the choice of scales
for the subregions and panes and the bandwidths for the variables in the
matching and suitability modules provides a flexible framework for
incorporating the multi-scale nature of land use change.

Mechanisms governing urban growth.—Urban growth models typically
are a hybrid of empirically-driven (statistical) and process-based (me-
chanistic) approaches (Li & Gong, 2016). However, due to the com-
plexity of the mechanisms governing urban growth (at multiple scales)
and the challenges in parameterizing such a model, we opted for an
entirely data-driven approach in the SPRAWL model. Thus, the allo-
cation of demand to application panes and then to individual cells and
patches is driven by statistical relationships observed between urban
development and various explanatory variables in the historical
training data, without any attempt to infer causal relationships. While
the use of correlative relationships in the model may be deemed a
limitation, it allows the model to be computationally efficient and
avoids the need for a comprehensive theoretical understanding of the
mechanisms that drive urban growth and the challenging para-
meterization of the corresponding model.

Data and computing requirements.—An important consideration in
any modeling application is the data and computing requirements, and
urban growth models vary markedly in this regard (Li & Gong, 2016).
We sought a model that could be implemented with minimal data re-
quirements and efficiently at the spatial resolution of 30m cells over
the extent of the northeastern U.S. (64.5 million ha). Accordingly, we
sought to avoid a computationally expensive internal model calibration
process that is common in many models (e.g., SLEUTH, Chaudhuri &
Clarke, 2013). In addition, NLCD is the only land cover product avail-
able across the entire Northeast with multiple urban intensity classes
(i.e., low, medium, and high). However, we sought to use training data
that were more accurate than NLCD, even if they were incomplete for
the entire Northeast so long as they were representative of land use
patterns observed throughout the region. We developed the unique
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matching algorithm in the SPRAWL model in part for this purpose,
which allows growth to be allocated locally to any application pane
outside of the training regions based on similarity to matching windows
in the training regions. This afforded us the opportunity to use the
NOAA C-CAP and CBLCD data sources that were more accurate than
NLCD (e.g., C-CAP, 2014) but there were available only for a portion of
our entire application region (Fig. 2). Note, we retained the complete
NLCD 2001–2011 change data as a somewhat independent, albeit less
accurate, dataset for model evaluation via hindcasting.

Non-stationarity in urban growth.—One of the biggest challenges
confronting urban growth modeling is dealing with non-stationarity in
urban growth over both time and space (Li & Gong, 2016). In this
context, non-stationarity refers to variation over time and/or space in
the functional drivers of land use change, which is largely manifested in
the treatment of model parameters that control urban growth. Indeed,
this has proven to be quite challenging owing to our limited under-
standing of land use change drivers, but perhaps more so because of
unpredictable changes in socioeconomic and political conditions that
drive land use decisions and policies. Consequently, most models either
assume stationarity (e.g., SLEUTH, Chaudhuri & Clarke, 2013) or in-
corporate a limited degree of non-stationarity (e.g., SERGoM, Theobald,
2005). Perhaps the most distinctive feature of the SPRAWL model is the
degree to which we have induced non-stationarity in urban growth.
First, as with many urban growth models, the user-specified exogenous
demand allows for non-stationarity over time and among subregions via
the temporally and spatially explicit forecasts. This feature allows
subregions to vary over time in response to a non-linear forecast in
demand (as is the case in the RPA forecasts we used) as well as allowing
the allocation among subregions to vary over time (as is also the case in
the RPA forecasts). Second, our unique matching algorithm induces
non-stationarity over time and space at the application pane level, such
that individual panes receive more or less of the subregional demand
over time as their landscape character changes, as shown in Fig. 6.
Lastly, our state-space suitability algorithm induces non-stationarity
over time and space at the cell and patch level because the averaged
logistic regression models for predicting relative suitability change as
the application pane shifts its position in the state-space over time, as
shown in Fig. 7.

Scenario-based analysis.—The utility of scenario-based analysis of
urban growth simulations is widely accepted (e.g., Li & Gong, 2016)
and there are numerous examples of using scenarios to evaluate land
use change under alternative futures (e.g., Berling-Wolff & Wu, 2004b;
Jantz, Goetz, & Shelley, 2003; Xiang & Clarke, 2003; to name just a
few). Increasingly, scenario-based analysis is being used to evaluate the
ecological impacts of alternative land use futures for the purpose of
conservation planning (e.g., Eppink, van den Bergh, & Rietveld 2004;
Seto, Guneralp, & Hutyra 2012; Sim & Mesev 2014). Here, for the main
purpose of demonstrating the utility of the SPRAWL model for scenario-
based ecological assessment and conservation planning, we conducted a
limited scenario analysis to evaluate the effect of increasing the demand
and the “sprawliness” of future development on ecological integrity in
the Northeast. We demonstrated that greater sprawl for the same total
amount of development has a negative effect on ecological integrity
and, not surprisingly, that ecological impact increases as demand for
new development increases. Additional investigation is needed to de-
termine the shape of these relationships as both demand and sprawl
increase even further. In addition, more comprehensive scenario-based
analyses of the ecological impacts of urban growth under alternative
landscape conservation designs is being done as part of the overall DSL
project and will be reported on separately.

5. Conclusions

The SPRAWL model we presented here is one component of a more
comprehensive landscape change, assessment and design (LCAD)
modeling system that we developed for the DSL project. Importantly,

the model has a multi-level and multi-scale structure that aims to
capture urban growth drivers operating at multiple scales. Due to this
structure and the unique matching and state-space suitability algo-
rithms, the model induces a relatively high degree of non-stationarity in
urban growth across both time and space. In addition, the model is fully
empirically-based, obviating the need for understanding and para-
meterizing a complex process-based model, and has minimal input data
requirements.

Of course no model is without limitations (e.g., quality of training
data), and the SPRAWL model is no exception. First, the model’s de-
pendence on the historical pattern means that any errors or biases in the
historical land use mapping may be reproduced by the model. We de-
tected one such bias (underrepresentation of development near roads)
and partially corrected it (see Appendix A), but others may exist. There
is a clear need for more accurate region-wide mapping of development
intensity.

Second, the exogenous treatment of demand means that the burden
of addressing socioeconomic drivers of urban growth is deferred to
experts in the field. Indeed the SPRAWL model has no endogenous
mechanisms for explicitly considering socioeconomic drivers, other
than through their correlation with land cover characteristics as re-
presented in the historical training data. In the Northeast, in particular,
we recognize that local socioeconomic factors such as local zoning
bylaws play an important role in determining where urban growth can
and cannot occur. Unfortunately the spatial data for these factors across
the entire Northeast do not yet exist. We tried to indirectly incorporate
these effects, but only in part and at a relatively coarse scale, by adding
the geographic distance between application window and training
windows to the matching algorithm, but ultimately this is not a sa-
tisfactory solution.

Third, roads are undeniably a hugely important driver of new de-
velopment. Currently, common to most urban growth models, the
SPRAWL model has no provision for building new roads, or expanding
existing roads to support or direct future urban growth. Roads are
disproportionately important in generating the suitability surfaces, and
generally constrain new development to occur very close to existing
roads. Thus, the model is biased against the building of subdivisions
into currently non-roaded areas. While this is an important limitation of
the model, we could not devise a justifiable method for predicting new
road development, so this remains an important subject for future re-
search. Similarly the model has no provision for “rewilding” or con-
verting from a developed class to an undeveloped class owing to lim-
itations in the historical land cover data; however, this shortcoming is
easily rectified should more reliable land cover data become available
in the future.

Lastly, the SPRAWL model operates under the general assumption
that the factors that affected the local amount and spatial pattern of
development in the recent past (as reflected in our allocation of demand
to individual application panes and the corresponding suitability sur-
faces) will persist into the future. Is the past a reliable guide for the
future? This question is at the heart of a major challenge for most
empirically-based urban growth models. Without a detailed and accu-
rate mechanistic understanding of the socioeconomic and political
forces that drive land use decisions at multiple scales, it would seem to
us that using the past is perhaps our best option, as long as we con-
tinually update our inferences based on the most recent trends and
predictions of altered resource utilization patterns due to factors such as
climate change (Jones, Watson, Possingham, & Klein, 2016).

Despite the limitations above, we posit that the SPRAWL model can
simulate realistic enough future land use patterns that when combined
with meaningful ecological assessments can help provide useful gui-
dance to landscape conservation design.
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