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ABSTRACT

The user experience of any OpenStreetMap (OSM) based service heavily depends on the quality of the 
underlying data. If the service deals with points-of-interest (POIs), consistent and comprehensive tagging of the 
respective map elements is a necessary condition for a satisfying service.

In this paper, we develop methods that can automatically infer tags characterizing POIs solely based on 
the POI names. The idea being that many POI names already contain sufficient information for tagging. For 
example, 'Pizzeria Bella Italia' most certainly indicates an Italian restaurant. As the OSM data contains 
hundred of thousands POIs for Germany alone,  we aim for a tool that can accomplish tag extrapolation in an 
automated way. In a first step, we automatically extract typical words and phrases that occur in names 
associated with a certain tag. For example, learning indicators for ‘shop=hairdresser’ on German OSM tags 
led to high scores for ‘fris’, ‘cut’, hair’ and ‘haar’. Having available such indicator phrases, we use standard 
machine learning techniques to derive the probability for a POI to exhibit a certain tag. If this probability 
exceeds a certain threshold, we assign the tag to the POI in an automated fashion. We used our extrapolation 
framework to create new amenity, shop, tourism, and leisure tags. The accuracy of our approach was over 85% 
for all considered tags. Moreover, for POIs tagged with amenity=restaurant, we aimed for extrapolating the 
respective cuisine tag. For more than 19 thousand out of 28 thousand restaurants in Germany lacking the 
cuisine-tag, our approach assigned a cuisine. In a random sample of those assignments 98% of these appeared 
to be true. 

1. INTRODUCTION

In particular in the context of community-based or crowd-sourced data gathering 
efforts like OpenStreetMap (OSM), the issue of data quality is of utmost importance. 
Irrespectively, how sophisticated and advanced the employed algorithms are, the user 
experience when using services based on the gathered data is first and foremost affected by 
the quality of the underlying data. Competing commercial offerings will always claim an 
alleged superior data quality to justify their business. Sometimes, their typically much more 
centralized approach of data maintenance and collection indeed allows for an easier 
monitoring of quality issues, for crowed-based approaches like OSM this is much harder to 
achieve.

In the concrete case of OSM, data quality is very much dependent on the contributors' 
tagging discipline. While there are well thought out guidelines how to tag mapped elements, 
in principle every contributor can tag at his/her discretion. This freedom undisputedly has its 
advantages in terms of flexibility, it also creates some consistency problems, though.

For example, when querying a geo-search engine or a location-based service for 
points-of-interest (POIs) in a certain region or next to the current user location, one often asks 
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for classes (‘hotels New York’, ‘supermarkets Berlin’, ‘Italian restaurants London’) rather 
than single points (‘Hotel Belvedere New York’). In OpenStreetMap (OSM), one can specify 
the basic class along with every POI e.g. via the tourism tag (tourism=hotel), the shop tag 
(shop=supermarket), the amenity tag (amenity=restaurant), or several other specialized tags 
as the cuisine tag (cuisine=italian) for restaurants. Not providing the appropriate tags when 
mapping the respective element typically leads to omission of these elements in the result list  
for a class-based query. Moreover, class tags are useful to categorize search results. For 
example, when searching for ‘Venice beach’ the user should be informed that there are 
beaches, hotels, fitness studios and clothing stores with that name. 

Unfortunately, in OSM, there are still plenty of POIs where the class is not provided 
via the appropriate tags. Many of those POIs exhibit a name tag (as e.g. ‘Sunset Hotel’, ‘Wal 
Mart’, ‘Pizzaria Bella Italia’), though, which already contains some information about the 
respective class. In this paper, we investigate methods for automatic extrapolation of classes 
based on POI names. Using machine learning tools we extract typical words and phrases that 
occur in name tags associated with a certain class and learn respective POI classifiers. As a 
result we can augment the existing OSM data by inferred tags and improve the data quality. 
This can be done either fully autonomously or with humans in the loop who verify the 
augmentations suggested by our algorithms – again, a community-based approval mechanism 
for such changes might be an interesting option.

1.1 Related Work

Numerous papers use machine learning (ML) techniques to work on/for OSM data. In 
the following we pick a few examples without claiming completeness. Basically, ML can be 
employed either on the application level – leaving the underlying data pool untouched – or to 
verify and even augment the underlying data pool. For the former, e.g., (Hagenaur et al., 
2012) propose the use of artificial neural networks and genetic algorithms to infer land-use 
patterns without directly feeding the results back into the OSM data pool. For the latter, 
(Jiliani et al., 2014) make use of machine learning techniques to assess correctness of 
highway tags. (Fathi et al., 2010) aim at inferring the structure of the road network by 
analyzing GPS traces using ML techniques.

1.2 Contribution

We describe a framework for automatic tag extrapolation based on POI names. We 
explain in detail how to process the OSM data and how to determine extrapolatable tags. 
Then we introduce a machine learning approach primarily based on k-grams of POI names. 
We apply our framework to extrapolate selected tourism, leisure, amenity, shop and cuisine 
tags for the dataset of Germany. Our experimental evaluation shows the ability of our 
framework to enrich the OSM data. For example, for cuisine, we can extrapolate more than 
70% of missing tags with a precision of  98%.

2. POINTS-OF-INTEREST IN OSM

We are interested in nodes in the OSM data that potentially are POIs. Nodes in OSM 
come with a specific ID and geo-coordinates (lat/lon). In addition, tags in form of key-value-
pairs (k,v) can be specified, as shown in this example:
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<node id="2360485476" visible="true" version="5" changeset="21956784" 
timestamp="2014-04-26T15:28:19Z" user="q_un_go" uid="11374" lat="47.9955298" 
lon="7.8447728">
<tag k="name" v="Backshop"/>
<tag k="shop" v="bakery"/>
<tag k="wheelchair" v="yes"/>
</node>

In the following, we will list tags that indicate POIs of various kinds (like shop) and 
explain their taxonomy.

2.1 Restaurants, Cafes, Pubs and Fast-food Facilities

Let us first consider tags associated with going out to eat or drink. We differentiate 
restaurants, cafes, pubs and fast-food facilities in accordance with the OSM Wiki. The 
amenity=restaurant tag is by far the most frequent amenity tag. As specified in the Wiki , 
amenity=restaurant should be used ‘for a generally formal place with sit-down facilities 
selling full meals served by waiters and often licensed (where allowed) to sell alcoholic 
drinks’.  The cuisine tag can be used in addition to further refine what kind of restaurant it is.  
A cuisine can refer to the ethnicity of the food (cuisine=chinese), to the way of food 
preparation (cuisine=wok or cuisine=grill), to the food itself (cuisine=pasta) or to other 
classifications (cuisine=fine_dining). 

Instead of amenity=restaurant, one should use amenity=fast_food ‘ for a place 
concentrating on very fast counter-only service and take-away food’.  The cuisine tag is used 
in this context as well (e.g. cuisine=burger). Nevertheless, also amenity=restaurant and 
cuisine=fast_food or cuisine=burger are commonly used. Amenity=cafe should be used ‘ for 
a generally informal place with sit-down facilities selling beverages and light meals and/or 
snacks’, including coffee-shops, tea shops and bistros. Again, combinations like 
amenity=restaurant and cuisine=coffee_shop are often used instead.

For drinking, amenity=pub, amenity=bar and amenity=biergarten are intended. All 
are used for establishments that sell ‘alcoholic drinks to be consumed on the premises’. 
Hereby, a pub should indicate a facility where you can sit down, food is available and the 
atmosphere is rather relaxed. In contrast, a bar is assumed to be more noisy, with music and 
no meal-like food. A biergarten is like a pub, but outdoors. Also combinations like 
amenity=pub and biergarten=yes are possible.

Other amenity tags associated with eating and drinking are bbq, drinking_water, 
food_court and ice_cream. 

Note, that there is overlap between all mentioned amenities, and tags are combined in 
various ways to classify places. Therefore we consider all of them together in our learning 
approach.

2.2 Shops,  Services and Entertainment

Besides restaurants, cafes, pubs and similar facilities, there exists a large variety of 
other amenities that mark POIs. For example, places for entertainment as cinema, theatre, 
casino or nightclub fall into that category. But also parking, post_office, post_box, fuel (for 
gas stations), public toilets, library, dentist and other facilities that are public or provide some 
kind of  (health) service are valid amenity tags. Usually, they are more easily to classify than 
facilities associated with eating and drinking. But there is some overlap with another 
important tag, namely the shop tag.  It should be used for all kind of facilities where products 
are sold, as e.g. supermarkets, kiosks,  bakeries, clothing stores, furniture stores, and many 
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more. There are also nodes tagged with amenity=shop, amenity=shopping or variants thereof. 
For those the OSM Wiki encourages to check whether a shop tag can be used instead.  

2.3 Hotels, Tourism Spots and Leisure Facilities

The tourism tag is used to describe possibilities for paid lodging as hotel, hostel, 
motel, camp_site and so on. But also in the context of sights and attractions the tourism tag 
should be used, including zoo, museum or theme_park. There is also an attraction tag for 
specification, e.g. attraction=big_wheel. Alternatively, one can tag a sight primarily 
according to its type, e.g. waterway=waterfall and then add tourism=yes.

The leisure tag applies to all kind of facilities where people can spend their spare 
time.  Most prominent representatives are playground and sports_centre. When it comes to 
e.g. parks and gardens there is some overlap with the tourism tag, though.

3. EXTRAPOLATION FRAMEWORK

To be able to extrapolate missing tag information our overall plan is to identify 
characteristic properties (also called features) of the name tag value that are 'typical' for a 
certain a amenity, cuisine, shop ... tag. For those OSM nodes which should bear a respective 
tag, e.g. shop=hairdresser)  but do not because either the information was not provided or 
added in a non-conformal way (e.g. as part of the informal description tag), we hope to infer 
the missing tag by examining its name tag for characteristic features typical for nodes 
actually bearing this tag. This section gives an overview of the necessary steps for this task.

3.1 Data Extraction and Processing

We only consider named nodes in the OSM data, i.e. the tag k="name” is required.  
Most named OSM nodes refer to streets or parts of the public transport system (as e.g. 
amenity=bus_station, name=Norris_Street).  Such nodes are not POIs according to our 
definition. They are excluded by checking for presence of highway and public_transport  
tags.  Moreover, we pruned nodes tagged with cemetery, power, fire_hydrant, historic, 
natural and man_made.

In order to learn the correlation between names and certain tags, we need to have 
POIs with complete information, that is, a name and the tags we are interested in. These POIs 
will serve as training data in our machine learning approach. For extrapolation, we consider 
the POIs that potentially miss tags of a certain kind.

3.2 Selection of Extrapolatable Tags

Not all tags are suitable for extrapolation. First, there need to be sufficiently many 
POIs which exhibit a certain tag to allow the machine learning approach to work. There are 
plenty of tags in the OSM data which occur only once or very few times, either because they 
are over-specified (e.g. cuisine=asian;curry;noodle), too specific (e.g. cuisine=self made 
cake), home-brewed (e.g. cuisine=german-bohemian), exhibit spelling errors (e.g. 
cuisine=chineese), are not in English (e.g. cuisine=bürgerliche_küche), simply used wrong 
(e.g. cuisine=music) or indeed rare (e.g. cuisine=israelian). Therefore, we count how often a 
certain tag or a combination of tags occurs and only further consider tags whose respective 
count exceeds 200. Second, there are tags which subsume each other or overlap in terms of 
their semantics. For example, cuisine=asian is used but also cuisine=japanese, chinese, 
vietnamese, thai amongst others.  To accommodate for such dependencies, we first group tags 
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and specify their relations manually. If we consider two tags to be interchangeable like 
cuisine=steakhouse and cuisine=steak, we merge them into one.  For a class subsuming 
several others, we check whether the subclasses are large on their own. If that is the case, we 
try to learn the more specific group. Otherwise, we cumulate the names of all subgroups and 
try to learn the more general group.

3.3 Feature Extraction

Once we fixed the set of classes/tags, we need to specify suitable features 
(characteristic properties of the name tag) that allow to learn the correlation between names 
and tags.  We want to identify words and phrases that are typical for certain classes. Consider 
for example this list of names of hairdressers of a city in Germany:

Claudia's Frisierstube, Cut & Color, Der Goldene Schnitt, emporio, Freiseur Ryf, Frerich, 
Friseur Ganter, Friseur Roth, Friseur Ryf, Friseur Salon H.Jonas, Frisör Charisma, 
Frisörsalon Annette, Frisuren-Atelier, Gutjahr Hairlounge, Haar-WG, HaarBalance, 
HaarBar, Haarstudio Burger, Haarstudio Marina Lindle, Haarstudio Marita, Hair Body 
Soul, Hair Saloon, hairkiller, HairSpeed, Helbling, Horst Fischer Friseursalon, Nölle, Power 
Hair Styling, Salon Carmen, Salon Haargenau, Toni & Guy, Via Style

We observe that e.g. ‘fris’, ‘seur’, ‘haar’ (the German word for hair), ‘hair’, ‘styl’, 
‘salo’ and ‘studio’ appear multiple times and therefore might be good indicators for 
shop=hairdresser.  Determining indicator phrases manually for thousands of POIs in 
hundreds of classes is impractical, though. To automatize the process, we proceed as follows. 
Let N be the list of names associated with a certain tag (e.g., shop=hairdresser). For each 
name in N we construct all k-grams for k between 3 and 10. A k-gram of a string/word is a 
consecutive substring of length k. For example, all 4-grams for ‘Hair Styling’ would be 
‘Hair’, ‘air ‘, ir S’, ‘r St’, ‘ Sty’,  ‘Styl’, ‘tyli’, ‘ylin’, ‘ling’.  We count for each k-gram how 
often it occurs in N. We consider a k-gram to be significant when at least two percent of 
names in N share this k-gram. If a significant k-gram is a substring of another significant k-
gram with a similar count (e.g. considering cuisine=burger, ‘onald’  and ‘McDonald’s’  both 
appear 753 times),  we prune the smaller k-gram as we assume it has no significance on its 
own. As a counter-example, ‘burger’ appears more often in the list than ‘Burger King’, 
therefore both k-grams are kept. After this pruning step, we have for each class a final list of 
indicator phrases (k-grams) at hand, each with a percentage specifying the fraction of nodes 
of this class exhibiting the respective k-gram.

Then we construct for each name a so-called feature vector. A feature vector of a 
name is a vector with as many real-valued entries as there are class/significant k-gram 
combinations. The entry corresponding to a certain indicator phrase and class is set to the 
length of the phrase multiplied by the percentage of nodes in the class containing this k-gram. 
Here the intuition is that long shared sequences between the name and the names in N, as 
well as a shared sequence with many names in N indicate a high correlation with the class. 
Standard machine learning machinery is then applied to the derived feature vectors of the 
names.

3.4 Machine Learning

We use the Random Forest (Breiman, 2001) approach for learning the classifier, as it 
allows to take care of dependencies between the feature vector entries. We expect to learn a 
classifier for POI names that can decide which tag (from a given set) should be assigned. As 
it might very well be the case that no tag is suitable, we have to accommodate for that.  
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Therefore, we not only aim for the classification itself but rather for a probability distribution 
over the classes. So for each name to classify, we derive a probability for every class 
denoting how likely it is that the name belongs to this class. The sum over all class 
probabilities for a name always equals 1. If no class has a significantly higher probability 
than the others,  it can be assumed that none of the classes fit.  

3.5 Evaluation

In order to check whether the selected features allow for an accurate classification, we 
first perform a 5-fold cross validation.  Here the training data (the set of POIs with known 
tags) is split into five equal sized parts P1,P2,P3,P4,P5. Then for each part Pi,  we train on the 
other four parts and classify the feature vectors in Pi on that basis. So we train on 
P2,P3,P4,P5 and check whether the resulting classifier works as intended for set P1 (for 
which we know the correct classification), and repeat for P2 vs P1,P3,P4,P5, as well as P3 vs 
P1,P2,P4,P5, etc. 

As a quality measure we compute the following statistical standard machine learning 
quantities (averaged over the  5 experiments):
• Recall: for a specific category - let's say amenity=hair_dresser -, we consider the ratio

(#items correctly classified by our algorithm)/(#items that really have 
amenity=hair_dresser items)

• Precision: for a specific category we consider the ratio 
(#items correctly classified by our algorithm)/(#total number of items that are 
classified as amenity=hair_dresser by our algorithm)

A perfect precision score of 1.0 (or 100%) means that every item classified as having 
amenity=hair_dresser by our algorithm is indeed a hairdresser (but does not imply that every 
hairdresser was found). On the other hand, a perfect recall score of 1.0 means that all 
hairdressers were actually classified as having amenity=hair_dresser by our algorithm. 

Furthermore, we consider the accuracy of the classification, that is, the percentage of 
correctly classified POIs among all considered POIs.

4. EXPERIMENTS

We implemented the described framework using C++ and Python. For the machine 
learning part, we relied on the scikit-learn package (Pedregosa, 2011). Our experiments were 
conducted on a  single core of an Intel i5-4300U CPU with 1.90GHz and 12GB RAM.  The 
Germany data set extracted from OSM as basis for all our experiments contains 771,325 
named nodes. Among those, we identified 84,618 with insufficient tagging (about 12,000 
contained only the name tag,  the others only non-classifying additional tags as e.g. 
wheelchair=yes/no,  opening_hours, website or Wikipedia references  and address 
information). 

4.1 Amenity and Cuisine Tags for Eating and Drinking

4.1.1 Restaurants, Fast Food Facilities, Cafes,  Pubs, Bars and Biergartens

Filtering our data set for eating and drinking related amenities, the following 
distribution was observed: 60,819 POIs with amenity=restaurant, 18,823 with 
amenity=cafe, 18701 with amenity=fast_food, 14,484 with amenity=pub, 3,862 with 
amenity=bar, 2,078 with amenity=biergarten, 786 with amenity=ice_cream, 746 with 
amenity=drinking_water and  391 with amenity=bbq.
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Conducting a cross-validation on this data, we observed that pub, bar and biergarten 
are not sufficiently separable with our basic approach as many bars and biergartens are 
indeed tagged with amenity=pub.  Also pub and restaurant were confused frequently. 
Therefore, we inserted an additional step: We first learned a classifier for bar and biergarten 
and applied it to all POIs with amenity=pub. Then we excluded those classified as biergarten 
or bar from the training data for pub and re-run the experiment. The precision increases from 
68% to 82%. Moreover, we used the classifiers for pub, bar and biergarten to prune the 
training data for restaurant and the ice_cream classifier to prune cafe names. Based on the 
remaining training data, we learned the final classifier.  In the cross-validation, the overall 
accuracy was 76%.  

Next, we applied the learned classifier to data with missing tags. We only assigned a 
tag automatically when the classification probability was 100%. In that way, we created 461 
new tags. For 100 of these, we checked the correctness by using the OSM search engine and 
Google on the name (and possibly further associated tags). In 85% of the instances, the 
assigned tag was valid. Examples for misclassification are e.g. ‘kaffeemaschinenservice 
kafas’  classified as cafe (but should be a shop), 'uh80 ga weingarten’ classified as biergarten 
but really is a fire_hydrant, and ‘lind haustechnik’ classified as  restaurant (because ‘haus’ as 
part of ‘gasthaus’ occurs quite frequent in German restaurant names) but is a building service.  

4.1.2 Cuisine Tags

In total, about 1500 different cuisine tags  among POIs with amenity=restaurant were 
contained in the data set.  Many of those occurred only once or very few times. The most 
frequent ones are listed in Table 1. They all either indicate ethnicity or type of food. If a 
cuisine tag contained multiple entries (as cuisine=pizza;kebab), we counted the POI in both 
categories.

Table 1: Overview of cuisines.
ethnicty frequency type of food frequency
italian 7,365 pizza 3,275
asian 1,808 sandwich 568
bavarian 532 burger 1,491
german 6,753 kebab 2,926
chinese 1,847 chicken 125
greek 3,002 ice_cream 1,921
japanese 281 coffee_shop 723
mexican 394 fish 244
regional 6,673 seafood 116
indian 661 vegetarian 108

french 240 steak_house 310
thai 582 sushi 305
international 787
turkish 1,299
spanish 369
croatian 108
american 163
vietnamese 281
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We performed the following modifications manually to increase the performance and 
meaningfulness of our approach. We merged regional and german into one group as they are 
both too diverse to easily tell them apart. Also bavarian was integrated into this group. In 
contrast, japanese, chinese, thai and vietnamese were considered each on their own and not 
accumulated into the asian group. We excluded international as we do not expect to identify 
consistent phrases and words that indicate this cuisine. Regarding type of food, we merged 
fish and sea_food into sea_food as they were used synonymously and the OSM Wiki 
recommends to use sea_food for both. Furthermore, we excluded vegetarian, as it should not 
be a cuisine tag but a diet tag instead. The croatian, american and chicken groups do not 
contain enough POIs for consideration. So in total, we distinguish 12 ethnicity cuisines and 9 
cuisines related to food type.

We first performed a cross-validation,  subdivided by ethnicity and food type.  For 
food type, the results are presented in Figure 1. 

Figure 1. Accuracy of  the learned food type classifier in a cross-validation.

The overall accuracy is about 78%.  We observe, that the accuracy is worse for groups 
with a small number of representatives as coffee, seafood, steak and sushi. In addition, there 
are some natural mix-ups as pizza and kebab, or ice and coffee which often occurred together 
in cuisine tags of our input data. For ethnicity, we achieved an overall accuracy of about 
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81%. For cuisine=german, the precision was even above 91% and the recall about 94%. 
Again, for smaller groups the results were worse.  Main number of mix-ups occurred for 
german/italian, mexican/spanish, thai/chinese and greek/turkish. 

For our evaluation on unclassified data, we extracted 28,218 POIs tagged with 
amenity=restaurant but without a cuisine tag. We tried to classify those POIs by food type 
and ethnicity. We only assigned an ethnicity tag when the probability for a certain class 
exceeded 75%, and a food type when the classifier was 100% sure. The reason for the 
different percentages being that we expect most POIs to belong to none of the food types in 
question. But the classifier creates a probability distribution over the classes with the 
probabilities summing up to 1. With only nine classes to consider, the chance of a false 
classification would be too high otherwise. In contrast, for ethnicity, we expect most POIs 
indeed to belong to one of the classes we consider. For 19,671 out of the 28,128 restaurants, 
our approach assigned an ethnicity cuisine with a sufficient probability, and for 1,460 a food 
type was matched. Some POIs received both an ethnicity and a food type cuisine, with the 
most popular combinations being pizza;italian, kebab;turkish, ice_cream;italian and 
sushi;japanese.

We manually  checked 250 extrapolated cuisines for ethnicity and 250 for food type 
(by having a look at the restaurant’s website). We first selected 10 examples for each 
considered class randomly (if possible). The remaining samples were selected completely 
randomly among all classified POIs. Table 2 shows an excerpt of 30 samples for ethnicity 
and food type cuisines assigned by our framework. For food type, two examples for 
misclassification  can be seen: ‘rosenburger hof’ and ‘speisekammer’ both serve German 
food. But as those names contain ‘burger’ and ‘eis’ (the German word for ice) respectively, 
they get assigned cuisine=burger and cuisine=ice_cream with high confidence. Nevertheless, 
for the 500 samples in total, the classification accuracy was 98%. As observable in Table 2, 
even spelling errors as ‘kebap’ could be taken care of with our k-gram based approach, as 
well as names borrowed from places or persons as ‘delphi’, ‘dschingis khan’ and ‘café 
mallorca’. The reason for the better precision on real data than in the cross-validation is due 
to only assigning a class to a POI with unknown cuisine when the probability for that class is 
high enough. In the cross-validation, every POI gets assigned the class with the highest 
probability automatically. 

Table 2.  Result excerpts for cuisine classification. Red entries indicate misclassification.
food type ethnicity
pizzahaus   c =  pizza
fischerklause   c =  seafood
la stella   c =  pizza
pizzeria capriccio   c =  pizza
eiscafé rialto   c =  ice_cream
pizzeria italia   c =  pizza
pizzeria venezia   c =  pizza
50's diner   c =  burger
block house   c =  steak_house
fischhaus   c =  seafood
calimero   c =  ice_cream
ristorante pizzeria isola d’ischia c =  pizza
nordsee   c =  seafood
pizzeria marino   c =  pizza
rosenburger hof   c =  burger
nazar kebap stube   c = kebab

schwaben-bräu   c = german
ginnheimer wirtshaus   c = german
china imbiss drache   c = chinese
pizzeria capriccio   c = italian
bauernstübchen   c = german
gameiro pizza-express  c = italian
taverna ilios griechisches restaurant c = greek
zur feurigen bratwurst   c = german
pizzeria italia   c = italian
kartoffelhaus   c = german
pizzeria venezia   c = italian
einkehr   c = german
gasthof pension drexler   c = german
brauhaus am schlössle  c = german
winzerhof weinstuben   c = german
schusterstübchen   c = german
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chilli peppers rock cafe  c =  coffee_shop
eis-cafe da vinci   c =  ice_cream
steakhouse cheyenne   c =  steak_house
eiscafé dolce vita   c =  ice_cream
fischkombüse   c =  seafood
baguetterie filou   c = sandwich
classic western steakhouse  c =  steak_house
shaki sushi   c =  sushi
cafe kamps   c =  coffee_shop
trattoria la grappa   c =  pizza
sakura sushi & grill   c =  sushi
speisekammer   c = ice_cream
piccola italia   c = pizza
döner haus   c = kebab

sushi for friends   c = japanese
il capriccio   c = italian
deutscher hof   c = german
delphi   c = greek
zum bembelsche   c = german
mykonos   c = greek
rhodos   c = greek
zum neuen schwanen   c = german
sausalitos   c = mexican
my thai   c = thai
mr. kebab   c = turkish
dschingis khan  c = chinese
el paso   c = mexican
café mallorca   c = spanish

4.2 Other Amenity and Shop Tags

In total, the data set contained 938 different amenity and 1,853 shop tags. The five 
most frequent amenity tags not related to eating and drinking are bank (18,765 times),  
pharmacy (16,256), place_of_worship (14,309), parking (10,853) and kindergarten (10,174). 
The most prominent shop tags are bakery (22,634 times), supermarket (17,655), clothes 
(14,440), hairdresser (13,310) and butcher (6,862).  Overall, we identified 67 reasonable 
amenity  and 73 reasonable shop classes. The cross-validation revealed a classification 
accuracy of 84%.  Applied to real data, we got 4,212 new tags for previously unclassified 
POIs. We manually checked for each of the 140 considered classes two extrapolated POIs 
with that class  for correctness.  The accuracy was about 76%. Considering only the ten most 
frequent classes listed above, and 10 examples each, the accuracy was 88%, though. 

Table 3 lists the most frequent k-grams for the main shop tags. Reconsidering our 
example shop=haidresser, the main k-grams extracted by our program are close to what one 
would select manually.  Interestingly, for supermarket, the k-grams almost exclusively equal 
supermarket chains. We observed a similar result for gas station chains.  Nevertheless, for 
almost all classes we identified k-grams that occurred in over ten percent of the respective 
class names. This fact, and the overall good classification accuracy, shows that indeed many 
names contain classification information.

Table 3. K-grams and their  for selected shops.
bakery supermarket clothes hairdresser butcher

38.75 bäcker
38.71 rei
33.27 bäckerei
11.36 back
11.20 sch
5.62 ste
4.60 mann
2.80 konditorei
2.13 backstube

12.01edeka
11.72 netto
11.42 markt
10.67 rewe
10.03 aldi
6.69 lidl
6.51 penny
5.72 kauf
3.81 norma

10.87 mode
7.94 haus
7.13 kik
5.61 textil
4.41 family
2.91 s.oliver
2.85 jeans
2.31 peek
2.20 kleid

25.45 fris
19.91 friseur
15.91 haar
15.10 salon 
13.84 hair
8.96 studio
8.20 friseur 
5.00 haarstudio
4.62 cut

54.84 erei
51.62 erei 
42.67 ger
35.08 metzger 
34.99 metzgerei
24.50 fleisch
16.13 fleischere
16.13 leischerei
 4.83 land
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4.3 Tourism  and Leisure Tags

We identified 168 different tourism tags of which 16 occurred more than 200 times. 
Information (45,879) and hotel (12,228)  and attraction (9,404)  had the highest counts.  The 
others are viewpoint, artwork, hostel, museum, alpine_hut, picnic_site, camp_site, 
guest_house, caravan_site, chalet, theme_park, apartment, and zoo. For leisure, 153 different 
tags were contained in the data. Only 9 of them exhibit a high frequency: sports_centre 
(4,622), playground (3,108), marina (1,734), as well as park, water_park, pitch, stadium, 
slipway and nature_reserve.  We excluded artwork, as due to its nature where is little hope 
for consistent indicator phrases. Furthermore, we excluded attraction as this class is too 
diverse and the extracted k-grams were too general. The remaining 23 classes were fed in our 
classifier.  The first cross-validation indicated too much mix-up between information and 
hotel. Therefore, we first created a hotel classifier in order to prune the information data. 
After this step, the overall accuracy improved from 62% to 73%. 

For the real data, we newly augmented 3,452 POIs with a tourism or leisure tag. 
Computing the precision by manually looking up samples was not so easy in this case, as 
information tagged entities are often simply signs next to hiking trails. Moreover, most 
classes were not assigned at all. Therefore, we restricted  ourselves in  the precision 
calculation to hotel, playground, marina, and sports_centre. We checked 50 examples for 
each class. The overall accuracy was 92%. For sports_centre, we even achieved 98% (e.g. 
‘tennishalle görner’, ‘willy-lemkens-sportpark’, ‘eissporthalle’, ‘the strike bowlingcenter’, 
‘tanzsportzentrum’, ‘turnhalle herringhausen’  are correct examples). 

5. CONCLUSIONS AND FUTURE WORK

We showed the potential of OSM name tags to serve as basis for extrapolating tags 
that indicate the class of a POI. Our machine learning approach for automatic tag 
extrapolation was proven to work well on real data. The accuracy was significantly over 80% 
for most considered tags. And especially for cuisine, a significant fraction of missing tags 
was identified with our approach.

In future work, other tags beside name tags could be considered to improve the results 
further. For example, the opening_hour tag could help to distinguish between restaurants and  
pubs. The brand tag could be helpful when it comes to supermarkets, gas stations, 
dealerships, clothing stores and so on. Also the free text tags note and description could be 
parsed for that purpose.  Maybe it is possible to learn also the set of indicator tags for each 
class in an automated way. Furthermore, other countries besides Germany should be 
investigated. Some tags only occur in certain parts of the world, and the indicator phrases as 
well as their frequencies for certain tags are expected to change significantly for other 
countries. 
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