
Free and Open Source Software for Geospatial (FOSS4G)
Conference Proceedings

Volume 15 Seoul, South Korea Article 9

2015

Distributed Agents For Contextual Online
Searches
Elizabeth-Kate Gulland
Cooperative Research Centre for Spatial Information (CRCSI)

Simon Moncrieff
Department of Spatial Sciences, Curtin University

Geoff West
Department of Spatial Sciences, Curtin University

Follow this and additional works at: https://scholarworks.umass.edu/foss4g

Part of the Geography Commons

This Paper is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Free and Open Source
Software for Geospatial (FOSS4G) Conference Proceedings by an authorized editor of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Recommended Citation
Gulland, Elizabeth-Kate; Moncrieff, Simon; and West, Geoff (2015) "Distributed Agents For Contextual Online Searches," Free and
Open Source Software for Geospatial (FOSS4G) Conference Proceedings: Vol. 15 , Article 9.
DOI: https://doi.org/10.7275/R5DN4385
Available at: https://scholarworks.umass.edu/foss4g/vol15/iss1/9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/220128721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/foss4g?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/foss4g?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/foss4g/vol15?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/foss4g/vol15/iss1/9?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/foss4g?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/354?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/foss4g/vol15/iss1/9?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

DISTRIBUTED AGENTS FOR CONTEXTUAL ONLINE SEARCHES

Elizabeth-Kate Gulland1, and Simon Moncrieff2, and Geoff West3

Department of Spatial Sciences, Curtin University
Kent Street, Bentley WA 6102, Australia

and Cooperative Research Centre for Spatial Information (CRCSI)
1Email: e.gulland@curtin.edu.au

2Email: s.moncrieff@curtin.edu.au
3Email: g.west@curtin.edu.au

ABSTRACT

As semantic web use and research blossoms, automated online searches - whether to answer a simple question,
seek specific sensor readings, or investigate research in a particular domain - has raised a number of issues.
Simple search tools cannot handle context-specific search problems, but specialist search tools have a narrow
domain and applicability. Some online tools circumvent these problems by putting more filter controls into the
hands of users, but this leads to more complex interfaces which can raise usability barriers. A distributed
approach, where specialised search agents act autonomously to find contextualised information, can provide a
useful compromise between a simple, general search interface and specialist searches. This paper outlines work
in progress on design and use of specialist search agents, with a case study to find public transportation bus
stops within a spatial region. The approach is demonstrated with a case-study web interface, developed to
interpret a text query to find and show bus stop locations within a named boundary by coordinating multiple
online search agents. Search agents were designed to follow a common model to allow for future development
of agent types, including specialist agents used in the case study to search standard open web services and
extract spatial features.

1. INTRODUCTION

Users searching for data are accustomed to simple text inputs, such as implemented by
Google search, which are straight-forward to use but raise processing complications for
flexible searches including: 1) how to interpret the user’s context, aims and expectations; 2)
what filters are appropriate and applicable; 3) how and where the data itself can be accessed;
4) how to format results; and 5) how to rank the relevance of results.

In this paper, we outline an approach for using distributed online search agents, each
capable of applying specialist operations and/or accessing specific data sources, to manage
complex problems such as these. We demonstrate the approach with a case study web
application to find and display bus stop locations by suburb name.

The case study example shows how agents can be used to extract individual spatial
features rather than complete datasets or documents, such as shapefiles or web pages. It is
tested on data conforming to the Open Geospatial Consortium (OGC) Web Feature Service
(WFS) standard1, although the common design and interoperability of agents mean that this
can be expanded in the future to allow for other data formats and search operations. This

1 http://www.opengeospatial.org/standards/wfs

376

Distributed agents for contextual online searches

example coordinates agents, based on a common model, to find: WFS features by name
and/or location; regions by name; and bus stop point locations. From the user’s perspective,
the process from a natural language text input to an output map and list of results is hidden.

In section 2 we introduce some background to the search problem. We discuss the
approach for our case study example in section 3 and results in section 4. Discussion and
conclusions about our findings are in sections 5 and 6.

2. BACKGROUND

Current online information retrieval (IR) tools typically incorporate flexibility by
adding specific filters to the interface, such as choice of spatial location, temporal range,
codes or identifiers, or problem-specific categories like author name or government
department. This can limit applicability to a narrower purpose or group of users and lead to
more complex search tools, but simplifying to a single text input requires more complex
processing to interpret natural language text queries and manage potential disparity between
what the user asks for and what the data or metadata provides.

Our framework for contextual online searches makes use of multiple software agents
which can be distributed across different machines. Agents can be designed to take advantage
of the semantic web, with its definitions of relationships between resources and terminology.
They can also be designed to carry out specialised tasks, such as spatial searches for
geographic features within datasets with differing formats.

2.1 Agents

Software agents are computer programs that can communicate with other agents,
machines and/or users to solve a task. Web services are one way to facilitate communication
between distributed agents, which can be housed on different computers. An agent can use
communication standards such as the RESTful framework (Representational state transfer) as
an access point to a web service; for example, by sending a DescribeFeatureType request to a
WFS service with parameters specifying the feature type (i.e. spatial dataset) to be described.

Individual agents can be designed to solve problems such as translating between a
user's text query and messages to send to web service(s) to answer that query, accounting for
implementation details such as syntax differences between service versions (Huang and
Webster 2004, Zhao et al. 2008). Complex tasks typically require the interaction of multiple
agents and, as a result, systems allowing interaction between agents and services have been
developed in a number of contexts, including geospatial (Yue et al. 2007, Zhao et al. 2012,
Tian and Huang 2012).

2.2 Semantic Web

The semantic web also facilitates machine-to-machine communication, by defining
relationships between entities, examples of which can include related terminology or a
sequence of web services to use in a knowledge discovery process. Entities and relationships
are commonly defined in ontologies, using triples such as ["highway", "is-a-type-of", "road"].
Linking resources and terms together facilitates the expansion of simple text-based search
interfaces by allowing agents to take advantage of more complex processes, without requiring
the user to manually enter extra search parameters.

377

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

Relating terms together can assist with the processing of natural language queries such
as “bus stops in North Perth”, and this can be extended to cater for cases where context
affects the interpretation of a query: consider the term “K12”, which could refer to a
geographic feature (mountain in South Asia); the ICD102 code for “stomatitis and related
lesions” in health, or “kindergarten to year 12” in education. The most appropriate data
sources to search would depend on the intended context and, in some cases, the type of data
returned would also depend upon context - for instance, a polygon or point object could be
more appropriate for a geographic feature, where a textual description or statistical plot could
be more useful in the health context. Related terminology is also relevant to spatial queries - a
semantic triple like ["North Perth", "is-in-the-state-of", "Western Australia"] could inform the
search example without requiring spatial operators or features. Where an agent has no ability
to check spatial boundaries, a dataset described as “stations in Western Australia” could be
marked as potentially relevant, even though it shares no terms with the original query.

Methods for automatic extraction of semantic links have been investigated for a number
of information sources, including Wikipedia (Gabrilovich and Markovitch 2009), Google
(Cilibrasi and Vitanyi 2007), and context-specific resources such as in the biomedical field
(Rybinski and Aldana-Montes 2014). Semantic search tools have been developed to make use
of different resources, including ontologies, XML, and images, and some search tools
combine semantic web and offline search techniques (Dong et al. 2008).

For a flexible search tool to be applicable to a range of contexts and user types, it
should be able to take advantage of multiple strategies. It would need to distinguish between
contexts, search strategies, data sources, and types of results. Using multiple search agents,
where each can apply a more limited range of strategies and search a specific subset of data,
is an approach to include this flexibility whilst managing the complexity involved.

2.3 Spatial searches

Spatial service standards such as WFS describe syntax for defining query parameters
such as bounding regions, often making use of other standards such as Geographic Markup
Language (GML). Each standard has numerous options and syntax requirements can differ
across versions and implementations. A level of expert knowledge is necessary to manipulate
these settings directly, so it is more feasible to produce requests to a data service
programmatically via a user interface or software agent. To enable reuse of standard services
without coupling them to specific use-cases, extra details about the services are required. One
strategy to manage this approach is to record semantic information about the services
themselves (Tian and Huang 2012).

Geographic search engines are designed to search for web pages that are relevant to a
text query, both in text content and spatial location. Tools such as the IR-Tree are used to
rank the likely relevance of web pages for both aspects of content (Li et al. 2011).

The case study described in this paper combines aspects of both approaches, by
including textual information with spatial searches and also returning features rather than
entire datasets or documents. Encapsulating technology-specific requirements such as syntax
into agents allows for communication between agents that uses more general parameters.

2 International Classification of Diseases and Related Health Problems, http://apps.who.int/classifications/icd10/

378

Distributed agents for contextual online searches

A benefit of using multiple agents for different data sources and contexts is that it
provides the opportunity to process and search data defined in alternative formats by using
standard request parameters. For example, SIRF3 is an online infrastructure developed by the
Australian CSIRO (Commonwealth Scientific and Industrial Research Organisation) for
linking data that includes spatial content. It aims to use consistent identifiers for locations that
may have multiple IDs and names over different government departments. It has its own
unique APIs that could be accessed by SIRF-aware agents. SIRF aims to be an intersection
point between government data in various formats, including OGC standards.

3. APPROACH

A DataAgent model was designed as a generic search agent, with each specialised
agent inheriting from this model. As a minimal requirement, every agent model defines its
type (such as “WFS” or “boundary”), name, and optionally service URI and read-only list of
data sources. Each agent defines actions: process (accepting a dictionary of query
parameters), getCapabilities, and addSource. The process action can be passed on to any data
source agents, with or without alteration of the initial parameters.

Subclasses of DataAgent were created to search for WFS features, boundary regions,
and public transportation locations respectively. Each implemented agent can be accessed
programmatically or via a RESTful web interface for access. Request parameters include at
least query (the initial query text) and other parameters depending on the agent’s purpose and
context, for example bbox, boundary, and name. An example RESTful request to an agent
searching for boundaries, in this case for regions with a name that includes the word “Perth”,
is http://localhost:8000/spatial/boundary?query=bus stops in Perth&name=Perth. Com-
pare this to a WFS request for the same data, as produced by the agent, shown in Error!
Reference source not found.. The WFS syntax produced could differ from that shown,
depending upon implemented WFS capabilities or versions, whilst the request to the agent
would remain the same.

http://localhost:8080/geoserver/region/ows?service=WFS
&request=GetFeature&version=1.1.0&maxFeatures=50
&outputFormat=application/json&typeName=region:PerthSuburbs
&filter=<Filter>
 <PropertyIsLike wildCard="*"
 singleChar="." escape="!">
 <PropertyName>SSC_NAME</PropertyName>
 <Literal>*Perth*</Literal>
 </PropertyIsLike></Filter>

Listing 1. WFS (version 1.1) request to find Perth suburbs by name

Adding a spatial filter to a WFS request increases its complexity and requires details
that an agent can discover, such as geometry attribute name, and spatial reference system. An
extract from an agent-produced WFS request extract is shown in Listing 2.

http://localhost:8080/geoserver/transport/ows?service=WFS
&request=GetFeature&version=1.0.0&maxFeatures=200
&outputFormat=application/json&typeName=transport:Stops
&filter=<Filter

3 Spatial Identifier Reference Framework, http://portal.sirf.net/about-sirf/

379

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

 xmlns:gml="http://www.opengis.org/gml">
 <Within><PropertyName>the_geom</PropertyName>
 <gml:MultiPolygon srsName="EPSG:4283">
 <gml:polygonMember><gml:Polygon>
 <gml:outerBoundaryIs><gml:LinearRing>
 <gml:coordinates>115.867820512,‐31.9533984945
 115.867814048,‐31.95334971
 115.867764352,‐31.9529839465
 ... 115.867820512,‐31.9533984945
 </gml:coordinates>
 </gml:LinearRing></gml:outerBoundaryIs>
 </gml:Polygon></gml:polygonMember>
 </gml:MultiPolygon></Within></Filter>>

Listing 2. WFS (version 1.0) request to find point features within a region

All agents return information about the service itself - its type and the date it was
invoked - and results, if any are found. Results are returned in a list, with each entry
containing metadata about the source and, where available, a list of individual records. Each
result is named and each record (where available) is labelled: see the example in Listing 3 for
results from a PublicTransportAgent, which also shows how geometry information for each
record, where available, is returned.

{"date":" 30/06/2015 ",
 "request": {"query":"bus stops in Perth"},
 "results": [
 {"name":"transport:Stops",
 "url":"http://...",
 "records": [
 {"label": "Charles St After Gill St",
 "geometry": {"type":"Point",
 "coordinates" :[...]} , ...
 }, ...]
 }, ...]
}

Listing 3. Response (extract) from a PublicTransportAgent

3.1 Case Study Design

The aim of the case study was to reduce a multi-step manual workflow to a single user
action: entering a text query. An example manual workflow, assuming spatial data is
accessed via WFS, is:

1. Find a data service that contains information about suburbs.
2. Enter a WFS query to find suburbs with names that match the target name.
3. Extract polygon geometry information from returned records.
4. Find a second data source holding bus stop information.
5. If necessary, transform the polygon feature(s) to the second source’s a

compatible spatial reference system.
6. Convert polygon(s) into a GML filter that the bus stop service can interpret.
7. Enter a WFS query with the new filter to retrieve bus stop features.
8. Extract desired property value(s) and geometries from any returned records

and display them.

380

Distributed agents for contextual online searches

A local GeoServer instance was set up to host WFS layers created from public spatial
data layers: Western Australian bus stops from Transperth4, and 2011 state suburbs from the
Australian Bureau of Statistics5. A project was developed using the Django web application
framework connected to a PostgreSQL database and tested locally with development settings.
Specialised search agents were designed as Django models:

 DataAgent: the template for all other search agents to build upon.
 DataAgentSource: a link between an agent and a data source agent.
 WFSAgent: to handle a Web Feature Service layer.
 BoundaryAgent: to retrieve boundary region records from one or more sources.
 PublicTransportAgent: to extract a subset of bus stop features from one or more

sources.

Three instances of WFSAgent were created, whose sources were the local GeoServer
WFS layers and a public online WFS for Australian waste management point sites6
respectively. The latter was selected as a proxy for bus stop locations as it contained point
data in the same location as the suburb data. An instance of BoundaryAgent was created with
the suburb WFSAgent as a source, and an instance of the PublicTransportAgent was created
with the other two WFSAgents as source. Although the data sources were manually pre-set in
this case, consistent parameter and output formats mean that agents with service discovery
capabilities could be designed at a later stage and used as alternative data sources.

Internally, the WFSAgent adapts the query parameters it creates to send to its WFS
source by interrogating its WFS version, capabilities, and details about its feature type
(dataset) via WFS requests such as GetCapabilities and DescribeFeatureType. This allows it
to check for capabilities such as spatial operators before attempting to apply them. The agent
also looks for names of attributes likely to contain a geometry field or a label. In the latter
case, partial matches were sought - in the suburb data, for instance, a match was found to an
attribute called “SSC_NAME”.

A web application was designed with a textbox for the user’s initial text query. Python
code was added to extract region names and target feature types (e.g. bus stop or station)
from simple text patterns such as “bus stops in Subiaco” or “Subiaco bus stops” in a user’s
text query. If the region name was ambiguous, a selection of possible names was extracted -
for example, “Mount Lawley stations” becomes ["Mount", "Mount Lawley", "Mount Lawley
stations"]. The web application coordinated the use of the specialised agents, as shown in
Figure 1: requested suburb name(s) were passed as a parameter to the BoundaryAgent and, if
a polygon feature was retrieved by the agent, this was sent as a boundary parameter to the
PublicTransportAgent which used it to filter out point features. As it cannot be assumed that
all types of sources return geometries or even individual records, any results it returned to the
coordinating web application were ignored if they contained no records or no geometries. All
other results were combined and processed for display on the user interface.

4 http://www.transperth.wa.gov.au/About/Spatial-Data-Access
5 http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1270.0.55.003July\%202011?OpenDocument
6 http://www.ga.gov.au/gis/services/topography/National_Waste_Management_Facilities/MapServer/WFSServer

381

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

Figure 1. Processing steps between search agents in the case study implementation

If no region is found, or the query’s target feature type (such as bus stop or station) is
not recognised, an error message is shown (Figure 2) and a plain map with no added features
is displayed.

Figure 2. Search results for unknown target (left) or unknown region (right)

Where point features were retrieved, a map was produced using the Leaflet7 JavaScript
library with marker clusters8, and a scrollable text area was added to list selected attributes
from the returned features, as seen on Figure 3. Attributes are also displayed on the map
when the mouse rolls over a point feature, as shown in the zoomed-in area on the left of
Figure 3.

7 http://leafletjs.com/
8 https://github.com/Leaflet/Leaflet.markercluster

382

Distributed agents for contextual online searches

Figure 3. Screen captures of search window showing clustered results.

4. RESULTS

Manual workflows were tested to extract spatial features from the local GeoServer host
using queries for WFS versions 1.0.0, 1.1.0 and 2.0.0. Filters were tested for matches to
exact, partial, and non-existent suburb and bus stop names. The public waste management
service, described with WFSAgent instances in section 3.1 was also tested manually. The
case study tool was tested with queries that included exact, partial, case-insensitive or
misspelled suburb names, or that missed a suburb name entirely. It was also tested with
known feature types (such as bus stops and stations) and unrecognised feature types.

Testing of the case study web application showed that it could find points within
suburbs after a partial or case-insensitive name match. In contrast, a WFS request for
“subiaco” found no matching polygon features, even when the PropertyIsLike filter was used,
because the name attribute expected a capital letter: “Subiaco”.

Where an agent was not flexible enough to interpret a request, it returned no results. For
instance, when the WFSAgent requested JSON output from the waste management service
WFS, which can only output in XML format, no points were returned. However, the
coordinating PublicTransportAgent still returned features from its other source - the local
Transperth WFS. This demonstrated the robustness of the overall design. All the returned
points had labels that could be used for display, although there was no attribute called “label”
in the original WFS data records.

383

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

Comparing results from the case study tool to the Google browser showed that both can
interpret similar, simple semantic queries (“bus stops in North Perth”) but with some
differences. Google can interrogate a data source to find a geocoded suburb bounding box to
zoom in to and another source to show bus stop point features. However, zooming out shows
that point features are not filtered to the suburb polygon, or even the bounding box (Figure 4).
Also, the global geocoding can give unexpected results - searching for “Albany” from a
computer located in Western Australia found the city in New York, USA instead of Australia.

Figure 4. Search results from Google Maps (left) and the case study tool (right)

5. DISCUSSION

Automating the creation of WFS parameters from generic query parameters within
WFSAgent was complicated by differences between versions and implementations, but
returning empty datasets where problems arose allowed other agents to continue searching
any other sources they had available. Encapsulating syntax requirements into a WFSAgent
allowed for specialised search agents like the BoundaryAgent and PublicTransportAgent to
focus on relevant, contextual actions without needing to consider quirks of different data
sources. More agents could be added as sources to these agents to allow access to additional
data sources without needing to alter the agents, even if the sources have different usage
requirements (such as SIRF).

In the next stage, additional contextualised agent(s) will be implemented to further test
coordination of distributed agents. The coordinating agent will need to be extended to allow it
to await responses from distributed agents that are concurrently processing initial search
parameters. As agents are designed to return an empty set upon failure or lack of results, the
coordinator can send out responses to all known agents, rather than pre-determining which
ones to access. An exception, as demonstrated in the case study, is the BoundaryAgent, which
could be called first in order to find boundary parameters to send to any other agents that can
make use of it.

Another agent currently under development focusses upon expanding a query with
semantically related terms, which may include related terms from different contexts. This will
allow for future expansion into ranking of results and contextual display, such as showing
results within facets (Adams and McKenzie 2013) defined by the results’ or agents’ domains.

384

Distributed agents for contextual online searches

In combination with ranking of results within and between facets, this would assist users to
focus in on datasets from topics they are particularly interested in.

6. CONCLUSIONS

This paper has described a design for distributed agents that can be coordinated to solve
complex, contextual search problems based on a textual query. A case study was developed
to test its use with a spatial query problem requiring multiple processing stages and data
sources. This initial test showed promise for simplifying the task of finding spatial data from
text queries by using a combination of search agents. Embedding specialised syntax and
contextual requirements within agents was shown to reduce the amount of expert knowledge
required by users of a simple query interface, who would otherwise need to manually solve a
multi-stage problem based on online spatial data and service formats.

7. ACKNOWLEDGEMENTS

The research reported in this paper is supported by the Australian Primary Health Care
Research Institute (APHCRI), which is supported by a grant from the Australian Government
Department of Health. The information and opinions contained in it do not necessarily reflect
the views or policy of the Australian Primary Health Care Research Institute or the Australian
Government Department of Health. The Cooperative Research Centre for Spatial Information
has supported this work, whose activities were funded by the Australian Commonwealth
Cooperative Research Centres Programme.

8. REFERENCES

Adams, B., and McKenzie, G., 2013. Inferring Thematic Places from Spatially Referenced Natural
Language Descriptions. In Sui, D.Z., Elwood, S., and Goodchild, M.F., editors,
Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory
and Practice. Springer, Dordrecht. 201-221.

Cilibrasi, R.L., and Vitanyi, P.M.B., 2007. The Google Similarity Distance. IEEE Transactions on
Knowledge and Data Engineering. 19(3): 370-383.

Dong, H., Hussain, F.K., and Chang, E., 2008. A Survey in Semantic Search Technologies. Second
IEEE International Conference on Digital Ecosystems and Technologies, Phitsanulok Thailand,
26-29 February.

Gabrilovich, E., and Markovitch, S., 2009. Wikipedia-based semantic interpretation for natural
language processing. Journal of Artificial Intelligence Research. 34:443-498.

Huang, W., and Webster, D., 2004. Enabling context-aware agents to understand semantic resources
on the WWW and the semantic web. IEEE/WIC/ACM International Conference on Web
Intelligence, 138-144.

Li, Z., Lee, K. C. K., Zheng, B., Lee, W.-C., Lee, D. L., and Wang, X., 2011. IR-tree: An efficient
index for geographic document search. IEEE Transactions on Knowledge and Data
Engineering, 23(4): 585-599.

Medelyan, O., Milne, D., Legg, C., and Witten, I.H., 2009. Mining meaning from Wikipedia.
International Journal of Human-Computer Studies. 67(9): 716-754.

385

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

Rybinski, M., and Aldana-Montes, J.F., 2014. Calculating semantic relatedness for biomedical use in
a knowledge-poor environment. BMC Bioinformatics, 15(S2).

Tian, Y., and Huang, M., 2012. Enhance discovery and retrieval of geospatial data using SOA and
semantic web technologies. Expert Systems with Applications, 39(16):12522-12535

Yue, P., Di, L., Yang, W., Yu, G., and Zhao, P. Semantics-based automatic composition of geospatial
web service chains. Computers and Geosciences, 33(5):649-665.

Zhao, P., Foerster, T., and Peng, Y., 2012. The Geoprocessing Web. Computers and Geosciences,
47:3-12.

Zhao, T., Zhang, C., Wei, M., and Peng, Z.-R., 2008. Ontology-Based Geospatial Data Query and
Integration. Geographic Information Science: 5th International Conference, Park City UT
USA, September 23-26. 370-392.

Zhang, Z., Gentile, A.L., and Ciravegna, F., 2012. Recent advances in methods of lexical semantic
relatedness - a survey. Natural Language Engineering, 19(4):411-479.

386

	Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings
	2015

	Distributed Agents For Contextual Online Searches
	Elizabeth-Kate Gulland
	Simon Moncrieff
	Geoff West
	Recommended Citation

	Distributed Agents For Contextual Online Searches

