
Free and Open Source Software for Geospatial (FOSS4G)
Conference Proceedings

Volume 15 Seoul, South Korea Article 50

2015

Performance Analysis of MongoDB Vs. PostGIS/
PostGreSQL Databases For Line Intersection and
Point Containment Spatial Queries
sarthak agarwal
International Institute of Information Technology Hyderabad Gachibowli, Hyderabad, India

KS Rajan
International Institute of Information Technology Hyderabad Gachibowli, Hyderabad, India

Follow this and additional works at: https://scholarworks.umass.edu/foss4g

Part of the Geography Commons

This Paper is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Free and Open Source
Software for Geospatial (FOSS4G) Conference Proceedings by an authorized editor of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Recommended Citation
agarwal, sarthak and Rajan, KS (2015) "Performance Analysis of MongoDB Vs. PostGIS/PostGreSQL Databases For Line
Intersection and Point Containment Spatial Queries," Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings:
Vol. 15 , Article 50.
DOI: https://doi.org/10.7275/R5MG7MQG
Available at: https://scholarworks.umass.edu/foss4g/vol15/iss1/50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/220128648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/foss4g?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/foss4g?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/foss4g/vol15?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/foss4g/vol15/iss1/50?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/foss4g?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/354?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/foss4g/vol15/iss1/50?utm_source=scholarworks.umass.edu%2Ffoss4g%2Fvol15%2Fiss1%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Performance Analysis of MongoDB Vs. PostGIS/PostGreSQL Databases
For Line Intersection and Point Containment Spatial Queries

Sarthak Agarwal1 and KS Rajan2

1Lab for Spatial Informatics, International Institute of Information Technology
Gachibowli, Hyderabad 500032, India

Email: sarthak.a@research.iiit.ac.in
2Lab for Spatial Informatics, International Institute of Information Technology

Gachibowli, Hyderabad 500032, India
Email: rajan@iiit.ac.in

ABSTRACT

Relational databases have been around for a long time and Spatial databases have exploited this feature
for close to two decades. The recent past has seen the development of NoSQL non-relational databases, which
are now being adopted for spatial object storage and handling too. And this is gaining ground in the context of
increased shift towards GeoSpatial Web Services on both the Web and mobile platforms especially in the user-
centric services, where there is a need to improve the query response time. While SQL databases face scalability
and agility challenges and fail to take the advantage of the cheap memory and processing power available these
days, NoSQL databases can handle the rise in the data storage and frequency at which it is accessed and
processed - which are essential features needed in geospatial scenarios, which do not deal with a fixed
schema(geometry) and fixed data size.

This paper attempts to evaluate the performance of an existing NoSQL database 'MongoDB' with its
inbuilt spatial functions with that of a SQL database with spatial extension 'PostGIS' for two primitive spatial
problems - LineIntersection and Point Containment problem, across a range of datasets, with varying features
counts. For LineIntersection function, the dataset consisted of two independent layers of horizontal lines and
vertical lines with incremental lengths and their size varied from ten lines to million lines in each layer and
another dataset with two layers, one of random lines of variable size and shape and another layer of a single
line which is intersecting many lines of layer1. For Point Containment problem, the dataset consists of two
layers, one of polygons in space of different shape and size and another layer of random points in the space,
some inside the polygons and some outside.

All the data in the analysis was processed In-memory and no secondary memory was used. Initial results
suggest that MongoDB performs better by an average factor of 25x for Line Intersection Problem and 10x for
Point Containment Problem which increases exponentially as the data size increases in both indexed and non-
indexed operations. Given these results NoSQL databases may be better suited for simultaneous multiple-user
query systems including Web-GIS and mobile-GIS. Further studies are required to understand the full potential
of NoSQL databases across various geometries and spatial query types.

1. INTRODUCTION

Traditionally Databases were designed to structure and organize any form of data. But
as the database size increased and to optimize databases for Geo Spatial domain we use
Spatial Databases. Satellite images are one prominent example of spatial databases. To
extract spatial information from a satellite image it has to be processed with respect to a
spatial frame of reference. But satellites are not the only type of spatial databases. Maps are
also stored in spatial database.

Like other database systems Spatial databases have also relied on the Relational
databases to handle and manage spatial objects and their associated attribute information.
They have been of great value in cases where we have a defined structure of our schema,
including geometrical characteristics of the spatial objects. While these have been able to

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

37

store and manage very large datasets, their inherent need to pre-define its structure, database
schema, makes it difficult to remodel or change it as per the evolving need, especially in the
context of user-driven data collation and collaboration. In addition, in many spatial
applications we do not always have a fixed schema, there can be many geometries with
different shape and the requirements evolve as the data size increases depending on the case
scenario where relational Databases can limit the potential use or design of the solution.

While NoSQL is an umbrella term for a loosely defined class of non-relational
datastores and best described as 'Not only SQL'. Examples are Google's BigTable and
Amazon's Dynamo. The recent past has seen the development of NoSQL non-relational
databases, which are now being adopted for spatial object storage and handling too. And this
is gaining ground in the context of increased shift towards GeoSpatial Web Services on both
the Web and mobile platforms especially in the user-centric services, where there is a need to
improve the query response time, these databases can handle the rise in the data storage and
frequency at which it is accessed and processed - which are essential features needed in
geospatial scenarios, which do not deal with a fixed schema(geometry) and fixed data size.

Relational databases are not designed to function with distributed systems; combining
multiple tables across different computers is difficult and gives mostly a decrease in
performance while NoSQL are distributed databases which can be spread over multiple
servers and queried simultaneously. Relational databases are good for structured data. For
example, sales figures fit well in organized tables. Unstructured data, such as points and lines
over a network are not very suitable for a RDBMS, while NoSQL database systems are
schema less database systems where we can append any number of geometry columns in a
table and store multiple geometries within a same column in a table which is very essential
property with respect to spatial context.

NoSQL data stores may provide advantages over relational databases, but generally
lack the robustness of relational databases for those advantages. The aim of this paper is to
discover some advantages of a selected NoSQL data store as compared to a traditional
relational database when storing and querying spatial vector data.

This paper attempt to evaluate the performance of an existing NoSQL database and
SQL database with respect to LineIntersection problem and Point Containment problem
across a range of datasets. We here are interested in observing which data model performs
better with these problem in terms of time complexity without accounting for indexing of the
data.

LineIntersection query is the most popular spatial query in which we report the
Intersection between two spatial geometries. Geometries can be anything from a point to a
polygon. Line Intersection helps in routing as well as mapping various geometries. Suppose
we have to make a route from point A to point B ,then from every we point we will find out
the lines intersecting it to create a graph using this technique and apply our routing algorithm
on that graph.

Like Intersection, Point containment problem is also a very important and popular
spatial query problem which reports whether a given geometry lies inside another geometry
or not. This problem helps in modeling and analyzing spatial data over a area. For instance,
we want to report how the number of houses have changed over a time in a city by analyzing
the spatial data of that city. We can count the number of points(which represents each house
in this case) in the polygon(city) for all the years using point within a polygon problem.

A comparative study of performance analysis of MongoDB and PostGIS/PostGreSQL database systems

38

2. REVIEW OF SPATIAL DATABASES

Similar to traditional databases, Spatial databases were also written initially in RDBMS
but as technology evolved they are being now adapted to NoSQL .

2.1 RDBMS(PostGIS / PostgreSQL)

PostgreSQL is a powerful, object-relational database management system (ORDBMS).
It is released under a BSD-style license and is thus free and open source software. PostGIS
adds support for geographic objects to the PostgreSQL object-relational database. The
interface language of the PostgreSQL database is the standard SQL, which allows for inserts,
updates and queries of data stored in relational tables. Data operations for PostgreSQL are
created in SQL.

For several decades, the most common data storage model for geographic data and
associated attribute data has been the relational data model.

The functions in PostGIS can be put into following 5 categories.

• Management: Functions that manage information about spatial tables and PostGIS
administration.

• Conversion: Functions that convert between geometries and external data formats.
• Retrieval: Functions that retrieve properties and measurements of a geometry.
• Comparison: Functions that compare two geometries with respect to their spatial

relation.
• Generation: Functions that generate new geometries from others

Management depends on other features of a database. Conversion and Retrieval are
relatively simple and they only rely on the data format. An example could be to answer
"what's the area of my current state?" Comparison and Generation are about geometry
relationships, which is the hardest part.

2.2 B. NoSQL (MongoDB)

MongoDB is a document oriented datastore. It is written in C++ and its main focus
lies on high performance and retaining some friendly properties of SQL.

Currently, MongoDB uses GeoJSON objects to store spatial geometries. GeoJSON is
an open-source specification for the JSON- formatting of shapes in a coordinate space. The
GeoJSON spec is used in the geospatial community and there is growing library support in
most popular languages.

Each GeoJSON document (or sub document) is generally composed of two fields:

1. Type – the shape being represented, which informs a GeoJSON reader how to
interpret the “coordinates” field.

2. Coordinates – an array of points, the specific arrangement of which is determined by
“type” field.

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

39

Overview of MongoDB’s current implementation

• There are multiple geospatial indexes per collection in MongoDB- 2d, 2dsphere and
geoHaystack

• Data can be imported from CSV files by converting it into GeoJSON objects.
• However MongoDB does not support R-trees.

Currently in MongoDB, containment and intersection tests are supported for both flat
and spherical geometries. Sorting by distance is supported too. This is because these
operations are the most popular operational queries for a modern application. They meet most
requirements of typical location based applications.

3. COMPARATIVE ANALYSIS OF SPATIAL FUNCTIONS

Each of the implementation of spatial databases has a different approach for handling
geometries.

3.1 Geometry / Flat Shape

PostGIS supports various operations for geometry , while MongoDB only supports
storing points and containment / intersection queries with box/circle/polygon. 2d index is
designed to speed up this case. Although it is possible to leverage open source libraries like
GEOS, MongoDb don't plan to expand the features for flat geometry, because most LBS
applications work with GPS data, which nicely fits with spherical model.

3.1 Geography / Spherical Shape

MongoDB supports storing and querying spherical shapes in GeoJSON. 2dsphere index
is for this case. PostGIS only supports containment / intersection natively, which are
supported by MongoDB as well. Distance between two objects is also supported in PostGIS.

4. DATASETS

For this analysis the dataset was custom generated.

4.1 Line Intersection

The Line Intersection problem works for any geometry in the space and report whether
or not that geometry is being intersected by some other geometry. This problem is very
important in real time scenarios for example - we want to know on which side of the road are
we and also to avoid accidents we need intersection of various geometries. So we generated
several synthetic datasets keeping in mind worst case scenarios.

The dataset consisted of two independent layers of horizontal lines and vertical lines
with incremental lengths and their size varied from ten lines to ten million lines in each layer.
Each line intersects at least one line in the other layer with some lines intersecting multiple
lines. The above dataset emulates most of the real time cases with worst case scenarios. All
the data in the analysis was processed using In-memory and no secondary memory was used.

A comparative study of performance analysis of MongoDB and PostGIS/PostGreSQL database systems

40

4.2 Point Containment Problem

Like the previous problem Point Containment problem also works for any geometry
and reports whether the given geometry is completely inside another geometry or not. This is
a very important and popular problem with respect to spatial databases. It is useful in the
domain of map generations, modeling, analyzing spatial data over a area for example we
want to report how the number of houses have changed over a time in a city by analyzing the
spatial data of that city. We can count the number of points(which represents each house in
this case) in the polygon(city) for all the years using point within a polygon problem.

The dataset consisted of two independent layers, one of horizontal lines of incremental

length and the size of the layer varied from 10 lines to 10 million lines. Another layer
consisted of square boxes of different perimeter scattered both sequentially and randomly
over the space with few lines completely inside the box, few intersecting the box and few
completely outside the box. All the data in the analysis was processed using In-memory and
no secondary memory was used.

5. PERFORMANCE

Tests were run on both of the database systems with same datasets one with Index and
other without index. The time recorded are in seconds for both indexed and non-indexed
analysis which are mentioned in table 1 below.

5.1 Line Intersection

Table 1. Time vs Intersection Table

No. of
Intersections

MongoDB PostGIS

Non-
Index

Index
Non-
Index

Index

21 1 1 1.546 9.721

1875 18 20 88.695 48.461

195691 185 190 13364.596 1963.123

< (1000*1000) 4093 3140 >1500000 172048

Figure 1. Graph of Intersections vs time (for all implementations)

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

41

5.2 Point Containment Problem

Table 1. Points within a polygon vs Time for all implementation.

No of Points
Within

Mongo
Non-Index

Mongo
Index

PostGIS
Non-Index

PostGIS
Index

5002 6.75 7.75 52.95 54.97

5471 12 12 85.422 77.508

17004 20.8 24 142.53 158.76

45999 27.66 27.33 160.02 168.23

46008 50 51 675.33 631.556

122006 51.667 53.33 1339.23 1110.42

122016 96 99 2783.66 2609.47

204024 99.667 106 3991.564 3121.11223

298.23 125 112 - -

Figure 1. Graph of Point within Vs Time

6. RESULTS

Firstly the performance was analyzed without indexing any geometry and time was
observed which suggests that MongoDB performs better as the datasize increases whereas
PostGIS fails at very large datasets and time complexity increases exponentially. But after
indexing the geometries performance of both the database engine improved by a substantial
factor.

A comparative study of performance analysis of MongoDB and PostGIS/PostGreSQL database systems

42

If we observe the results above we will notice that indexed datasets performs better

than non indexed dataset and PostGIS time increases exponentially as size of dataset
increases whereas MongoDB still performs within some bounds.

7. DISCUSSIONS AND CONCLUSIONS

The above analysis was necessary to evaluate the performance of NoSQL with respect
to spatial databases and to tell whether NoSQL performs better than SQL in our current
scenario. These results suggest that MongoDB performs better by an average factor of 25x
which increases exponentially as the data size increases in both indexed and non-indexed
operations for both LineIntersection and Point Containment problem. Given these results
NoSQL databases may be better stated for simultaneous multiple-user query systems
including Web-GIS and mobile-GIS.

This implies that non-relational databases are more suited to the multi-user query
systems and has the potential to be implemented in servers with limited computational power.
Further studies are required to identify its appropriateness and incorporate a range of spatial
algorithms within non-relational databases. In future we are planning on expanding our study
to other spatial query functions as well as spatial algorithms such as shortest problem to
evaluate the performance of NoSQL on such platforms.

8. ACKNOWLEDGMENT

We would like to acknowledge the responses and interactions with MongoDB
developers through emails which helped during this research project.

9. REFERENCES

References in the text should follow the standard format (Brown, 1997). As Brown
(1997) suggested, they should be in the format shown immediately below. References are in
11 pt type.

Journal titles should be in full. Journal and book titles should be italicised. Multiple
authors should all be listed.
Baas, B. Quak, W. Van Oosterom, P. De By, NoSQL spatial: Neo4j versus PostGIS

Cláudio de Souza Baptista, Maxwell Guimarães de Oliveira ,Tiago Eduardo da Silva. Using OGC
Services to Interoperate Spatial Data Stored in SQL and NoSQL Databases

Dr. Johannes Scholz, TU Vienna, Gusshausstr. Coping with Dynamic, Unstructured Data Sets –
NoSQL: a buzzword or a savior?

Zhifeng Xiao, Yimin Liu. Remote sensing image database based on NOSQL database.

http://nosql.mypopescu.com/post/300199706/geo-nosql-couchdb-mongodb-tokyo-cabinet

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

43

http://nosql.mypopescu.com/post/300199706/geo-nosql-couchdb-mongodb-tokyo-cabinet

Geographical Weighted Regression Model for Improved Near-shore Water
Depth Estimation from Multispectral Imagery

Poliyapram Vinayaraj1 , Venkatesh Raghavan1 and Shinji Masumoto2
1Media Center, Osaka City University

3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
2 Graduate School of Science, Osaka City University, Japan

Email: vinay223333@gmail.com

ABSTRACT

There is often a need for making a high-resolution or a complete bathymetric map based on sparse point
measurements of water depth. The common practice of previous studies has been to calibrate a single global
depth regression model for an entire image. The performance of conventional global models is limited when the
bottom type and water quality vary spatially within the scene. For a more accurate and robust water-depth
mapping, this study proposes a regression model for a geographical region or local area rather than using a
global regression model. Here , two different methods were discussed according to the availability of reference
depth data to ensure the accuracy of the Geographical Weighted Regression (GWR) model. The entire data
analysis workflow was carried out using GRASS GIS Version 7.0.1. GWR is seen to be effective in addressing
the problem introduced by heterogeneity of the bottom type and provide better bathymetric estimates in near
coastal waters. The study was carried out at Puerto Rico, Northeastern Caribbean Sea. High spatial resolution
(RapidEye) and Medium spatial resolution (Landsat 8) images were used to estimate the depth. in order to
calibrate and evaluate estimated depth, collected high accuracy LiDAR depth data (4m resolution) provided by
NOAA. Comparison of results indicates that the GWR model improves the depth estimation significantly. The
maximum depth calculated by this methid is 20 meter. In order to estimate the accuracy of the results in terms
of quantitative analysis have been carried out by R,R2 and RMSE. The results reveal the significant
improvements by GWR model than Global model from both Landsat 8 [GWR model (R=0.97,R2=0.93
,RMSE=1.41m), Global model (R=0.88,R2=0.78 ,RMSE=2.63m)]and RapidEye [GWR model (R=0.97,R2=0.93
,RMSE=1.34m), Global model (R=0.88,R2=0.78 ,RMSE=2.60)] data.

1. INTRODUCTION

Accurate and high-resolution bathymetric data are a necessity for a wide range of
coastal oceanographic research, but become particularly critical in predictive modeling
approaches for the proactive management of impacts on near-shore. Mapping shallow water
depth data from ships by Sonar is a quite an expensive task. Many shallow water areas are not
accessible by hydrographic ships due to rocks, coral reefs or simply due to inaccessibility by
boats due to shallow depth of the water. Airborne Light Detection and Ranging (LiDAR) can
provide complete and accurate bathymetric measurements in shallow areas, but availability of
this technology is currently limited and also involves significant cost. Thus, alternative
method to estimate high resolution depth data need to be devised and validate. Until now,
several algorithms have been proposed to estimate bathymetry from single band [5] and
multispectral bands (Lyzenga, 2006, Stoffle, 1991 and Stumpf, 2004). The multispectral
algorithms were commonly practiced to estimate good accuracy depth estimates by
addressing the problem introduced by heterogeneous bottom type. Therefore this study was
carried out to investigate depth estimation from multispectral imagery by conventional global
regression and Geographically Weighted Regression (GWR) model.

2. MATERIALS AND METHODOLOGY

The study was carried out at Puerto Rico, northeastern Caribbean Sea. Two different
satellite data were collected in order to test the algorithm with high and moderate spatial

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

44

resolution data (RapidEye and Landsat 8). RapidEye data has 12-bit radiometric resolution
and 5 meter spatial resolution. Even though the Landsat 8 data also has 12-bit radiometric
resolution, it provides 30m spatial resolution. In order to calibrate and evaluate estimated
depth, collected high accuracy LiDAR depth data (4m resolution) provided by NOAA
(https://catalog.data.gov/dataset/). Five spectral bands collected from Landsat data are used
for depth estimation (visible band (0.43-0.67µm)and Near-infra red band (0.85-0.88µm)) and
Short wave infrared band is effectively used for correction as shown in equation 1. In the case
of RapidEye data four visible bands (0.44-0.73µm) were used for estimation and Near
infrared band (0.76-0.85µm) used for correction as shown in equation 1.
2.1 Pre-proccesing

 The radiance observed from space using a visible light sensor over optically
shallow water primarily consists of four components: atmospheric scattering component (path
radiance), surface reflection component, in-water volume scattering component, and bottom
reflection component. Primarily, a correction method is applied remove atmospheric
scattering component, surface reflection component and in-water volume scattering
component to retrieve only the bottom reflection component which is linearly related to depth
Kanno, 2012). The correction algorithm (shown below) is a modification to the Kanno et al.,
2012.

 X(λ)i = log [(L λ i -α0 - α1 LλIR)/Lλ i] (1)

Where, X(λ) i is the log transformed corrected band i, L λi is the radiance of band i, α0,
α1 are the coefficients, LλIR is the radiance of infrared band. More detailed description
about the algorithm is given in (Vinayaraj et al., 2014). Here, LλIR was the infrared band
used to correct the atmosphere, water surface and water column reflectance. The wavelengths
used for correction of Landsat 8 and RapidEye images are 1.57-1.65 µm and 0.76 – 0.85 µm
respectively. The previous study (Vinayaraj et al., 2014) reveals that short wave infrared
band is better to correct the radiance than near infrared band. Since the RapidEye image does
not have a short-wave infrared band Near infrared band (0.76–0.85 µm) has been used for
correction process.
2.2 Depth estimation

The two different method applied in this study are the conventional global regression
model and GWR model.

2.2.1 Global regression model
The conventional regression models are a common practice by several authors (Kanno,

2012 and Lyaenga, 2006) in order to address the heterogeneity by bottom type and water
quality. It is a simple multiple linear regression where, multispectral bands were taken as
independent variables. The equation is shown below,

h=β0+β1X(λ)1+β2X(λ)2+…….+βnX(λ)m (2)

Where, h is the estimated depth, β0 and βn are the intercept and slope derived from the
multiple regression. X(λ)n is the log transformed bands (derivation is shown in equation (1)).
The conventional global regression model uses a single set of coefficients (β0, βn) for the
whole image.

2.2.1 GWR model
 To address the inadequacy of the global bathymetric inversion model, we apply the

GWR model that was originally was proposed by (Brunsdon, 1996) for improved depth

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

45

retrieval in complex and heterogeneous near coastal environments. The spatial non-
stationarity in the image scene was addressed by this method. Similar to the kernel
regression method, the GWR model uses a window to define the local neighborhood. Kernel
size was decided according to the density of the reference depth and pixel size of the satellite
imagery used. The equation is denoted as follows,

 hj=β0j+β1jX(λ)1j+β2jX(λ)2j+…….+βnjX(λ)mj
(3)

Where, j is the respective pixel, therefore coefficients for each pixel (j) was derived by
assigning a fixed bandwidth. The bandwidth represents the size of the kernel used for
regression. The pixels closer to the kernel center were assigned higher weights. The script
called "r.gwr" available in GRASS GIS Version 7.0.0. was used to calculate GWR model.

3. DATA ANALYSIS
Data analysis in this research is carried out by considering the reference depth at

different level in such a way that the different cases of common availability of reference
depth could be addressed. Meaning that commonly available reference depth data are of two
types, one is high-resolution echo sounder or airborne LiDARs available for a small region
and the second one is low resolution data extracted from bathymtric charts. The reference
depth used in this study for depth estimation analysis was derived from LiDAR survey. Study
consider these scenarios of reference depth availability and evaluate the performance of both
GWR model and Global model in order to estimate the near-shore depth from Landsat 8 and
RapidEye images. Scenario 1 is to estimate depth from randomly distributed reference depth
points, scenario 2 is to estimate the depth from 300 meter interval reference depth points,
scenario 3 is to estimate depth from 600 meter interval reference depth points and scenario 4
is to estimate (extrapolate) depth from reference depth point available at small area to a
complete near-shore (<=20m depth) region covering by the image scene. This scenario 4 is
basically a new method proposed by this study to estimate the bottom class based coefficients
and derive depth where no reference depth available. By using maximum likelihood analysis
bottom classification of the study area is carried out and six classes were derived. Then,
coefficients for each class is determined by averaging the coefficients derived from GWR
model from each classes. Further, these class based coefficients are used extrapolate the
depth from small region to all study area where no reference depth available. Here onwards,
scenario numbers mentioned above are used to describe results in each case.

4. RESULT AND DISCUSSION

Previous studies have been observed (Vinayaraj et al., 2014) that the global model is
not efficient to address the non-stationarity in the near-shore due to the difference bottom
type and water quality. Also observed that global model using single coefficients derived
from each band cannot be sufficient to address the difference in the reflectance of each band.
Hence, this study utilize the efficacy of GWR model in addressing the non-stationarity
(Brunsdon, 1996) to near-shore water depth estimation algorithm. Here, four different
scenarios were tested to evaluate performance of the GWR model and compare the derived
results with different scenarios were carried out. The minimum and maximum of the
reference depth value used for calibration of algorithms was set to 1m and 20m respectively.
The minimum set as 1m in order to avoid error would have occurred due to tidal variation
between data sets processed. The evaluation tests of the estimated results are carried out by
using randomly selected data which were not included in the calibration or estimation
process.

Scenario 1: Randomly selected 60,000 and 10,000 reference depth points were selected

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

46

and used for calibration and coefficient determination from RapidEye and Landsat 8 data
respectively. Scenario 1 was carried out to examine the efficacy of GWR model in estimating
depth in near-shore waters.

Table 1. Results of evaluation of depth estimates derived from Landsat 8 and RapidEye
data at Scenario 1

Satellite data Global model GWR model

R R2 RMSE
(m)

R R2 RMSE
(m)

Landsat 8 0.88 0.78 2.63 0.97 0.93 1.41

RapidEye 0.88 0.78 2.48 0.97 0.93 1.34

A B

C D

E F

Figure 1. Evaluation of estimated depth derived from Landsat 8 and RapidEye data
with reference depth for Scenario 1. Scatter plot of Landsat 8 (Global (A), GWR(B)),
scatter plot of RapidEye (Global (C), GWR(D)) and profile of drawn on Landsat 8 (E)

and RapidEye (F).
The results shown in Table 1 derived from both Landsat and RapidEye demonstrate the

efficacy of GWR model. The comparative study has shown that GWR model improves the
accuracy of the estimation significantly than the conventional global model. A bi-variate
scatter plot shown in Figure1 and demonstrate the strong linear relationship with reference
depth in GWR than and global model. Profile of the depth estimate also suggest that GWR

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

47

profile is closer to the reference depth than global model.

Scenario 2: reference depth points were collected at an interval of 300 meter between
the neighboring pixel for both Landsat 8 and RapidEye. 1750 were used to estimate the depth
by both GWR model and global model and evaluated. The result of evaluation tests shown in
Table 2 suggests that the GWR model significantly improve the accuracy even though less
number of reference depth available. In Figure 2, bi-variate scatter plot of GWR is showing
strong linear relationship with reference depth than global model. Figure 2 shows the profile
of the depth estimates, demonstrate that GWR model more synchronize with reference depth
than global model.

Table 2. Results of evaluation of depth estimates derived from Landsat 8 and RapidEye
data at Scenario 2

Satellite data Global model GWR model

R R2 RMSE
(m)

R R2 RMSE
(m)

Landsat 8 0.88 0.78 2.63 0.96 0.91 1.72

RapidEye 0.89 0.78 2.51 0.95 0.91 1.61

A B

C D

E F

Figure 2. Evaluation of estimated depth derived from Landsat 8 and RapidEye data
with reference depth for Scenario 2. Scatter plot of Landsat 8 (Global (A), GWR(B)),

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

48

scatter plot of RapidEye (Global (C), GWR(D)) and profile of drawn on Landsat 8 (E)
and RapidEye (F).

Scenario 3: reference depth points were collected at an interval of 600 meter between
the neighboring pixel for both Landsat 8 and RapidEye. Only 450 reference depth points
were sufficient to cover all the study area. Even though the counts of reference depth points
very less and interval between the neighboring pixels are far, the evaluation of the results
showing that the GWR model is providing better estimates (Table 3). Bi-variate scatter plot
in Figure 3 also show that GWR model estimates has strong linear relationship with reference
depth. Observation carried out by a profile in Figure 3 (E, F) also indicate the improvement
in accuracy of GWR model.

Table 3. Results of evaluation of depth estimates derived from Landsat 8 and RapidEye
data at Scenario 3

Satellite data Global model GWR model

R R2 RMSE
(m)

R R2 RMSE
(m)

Landsat 8 0.88 0.78 2.62 0.94 0.88 1.91

RapidEye 0.88 0.78 2.48 0.93 0.87 1.87

A B

C D

E F

Figure 3. Evaluation of estimated depth derived from Landsat 8 and RapidEye data
with reference depth for Scenario 3. Scatter plot of Landsat 8 (Global (A), GWR(B)),

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

49

scatter plot of RapidEye (Global (C), GWR(D)) and profile of drawn on Landsat 8 (E)
and RapidEye (F).

Table 4. Results of evaluation of depth estimates derived from Landsat 8 and RapidEye
data at Scenario 4

Satellite data Global model GWR model

R R2 RMSE
(m)

R R2 RMSE
(m)

Landsat 8 0.83 0.68 3.49 0.87 0.75 2.86

RapidEye 0.88 0.78 2.60 0.90 0.81 2.26

A B

C D

E F

Figure 4. Evaluation of estimated depth derived from Landsat 8 and RapidEye data
with reference depth for Scenario 4. Scatter plot of Landsat 8 (Global (A), GWR(B)),
scatter plot of RapidEye (Global (C), GWR(D)) and profile of drawn on Landsat 8 (E)

and RapidEye (F).

Scenario 4: The randomly distributed 20000 reference depth points for RapidEye and
3300 for Landsat 8 were collected from small area to extrapolate/estimate depth for entire
study area even where no reference depth depth available. The method proposed by this study

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

50

is efficient to extrapolate depth from bottom class based coefficients. The comparative
quantitative analysis shown in the Table 4 indicate that results are better than global model in
terms of R, R2 and RMSE. Figure 4 (B, D) is showing strong linear relationship with
reference depth than global model (A, C). Even though the quantitative analysis and bivariate
scatter plot shows improvement in accuracy of GWR model, profile of the GWR model is not
showing such improvements than global model.

Many previous studies have demonstrated that optical remote sensing imagery can be
employed to derive water depth estimates. The widely used approach is to calibrate one
global inversion model for the entire image scene and then apply the same inversion model to
every image pixel for bottom depth retrieval. The intention of the study was to explore the
efficacy of GWR model in addressing spatial non-stationarity in the near-shore water region
in order to estimate water depth. The evaluation of the results derived by four different
scenarios shows significant improvements in both quantitative and qualitative terms. The
results provided by GWR model in Scenario 1, Scenario 2 and Scenario 3 shows the
significant improvement over global model. In case of Scenario 4, a method originally
proposed in this study is also providing better accuracy results in terms of quantitative
analysis than global model. But the comparative study carried out by profile (Figure 4 (E, F)
is showing that the results has to be improved further. Therefore the further research will be
focused to estimate optimal number of bottom classes for improved depth estimation.

8. REFERENCES

Brunsdon, A. C., Fotheringham, S., and Charlton, E. M., 1996. Geographically Weighted
Regression: A Method for Exploring Spatial Nonstationarity, Geographical Analysis, 28 (2),
pp. 283-297.

Lyzenga, D. R., Malinas, N. R., and Tanis,F. J., 2006. Multispectral bathymetry using a simple
physically based algorithm, IEEE Transaction on Geoscience and Remote Sensing., 44(8),
2251–2259.

Stoffle R. W., and Halmo,D. B., 1991.Satellite monitoring of coastal marine ecosystems: A case from
the Dominican Republic, Consortium for Integrated Earth Science Information Network
(CIESIN). Sagin aw, Michigan.

Stumpf, R. P., Holderied, K., and Sinclair, M., 2004. Determination of water depth with high-
resolution satellite imagery over variable bottom types. Limnology and Oceanography., 48 (2),
547–556

Vinayaraj, P., Raghavan,V., Masumoto, S., Johnson, G., and Manessa, M. D. M., 2014. Investigation
of algorithm to estimate shallow water bathymetry from Landsat-8 images, International
symposium on Geinformatics for Spatial-Infrastructure in Earth and Allied Sciences GIS-
IDEAS, Vietnam, 465-470,

FOSS4G Seoul, South Korea | September 14th – 19th , 2015

51

	Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings
	2015

	Performance Analysis of MongoDB Vs. PostGIS/PostGreSQL Databases For Line Intersection and Point Containment Spatial Queries
	sarthak agarwal
	KS Rajan
	Recommended Citation

	Performance Analysis of MongoDB Vs. PostGIS/PostGreSQL Databases For Line Intersection and Point Containment Spatial Queries

