University of Massachusetts Amherst ScholarWorks@UMass Amherst

Cranberry Chart Book - Management Guide

Cranberry Station Outreach and Public Service Activities

3-30-2018

2018-2020 Chart Book: Resistance Management

Martha Sylvia UMass Cranberry Station, martys@umass.edu

Katherine Ghantous UMass Amherst, kghantou@umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/cranchart Part of the <u>Agriculture Commons</u>

Sylvia, Martha and Ghantous, Katherine, "2018-2020 Chart Book: Resistance Management" (2018). Cranberry Chart Book -Management Guide. 259.

Retrieved from https://scholarworks.umass.edu/cranchart/259

This Teaching is brought to you for free and open access by the Cranberry Station Outreach and Public Service Activities at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Cranberry Chart Book - Management Guide by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

RESISTANCE MANAGEMENT 2018 - 2020

Prepared by Martha M. Sylvia and Katherine M. Ghantous

Pesticide resistance is **an inheritable** (genetic) characteristic of a pest that makes it less sensitive to a pesticide and can occur in **all** types of pests (weeds, insects, fungi, etc.). Repeated use of the same pesticide (or pesticides with the same mode of action) over time kills pests that are susceptible to the pesticide and leaves behind individuals that are less sensitive. These then reproduce and pass on the genes that let them survive pesticide exposure to their offspring. The goal in resistance management is to <u>not</u> repeatedly use compounds that fall within the same group. Resistance management may include alternating products with different modes of action or limiting the total number of applications per season.

International groups have been founded to foster a cooperative approach to resistance management. They have assigned group numbers to pesticides to help growers make decisions on how to rotate pesticides. They are based on mode of action – how and where the chemicals in the pesticide work on the target.

In an effort to manage resistance with our pesticides, most labels now come with a "group" number assigned to them. The group number is specific for each type of pesticide (e.g., Group 1 insecticides have no relation to Group 1 herbicides). The following 3 pages show the groupings for our cranberry pesticides. Some active ingredients are available under several different product names, and different active ingredients have the same mode of action. When rotating pesticides for resistance management, use the **group number** as your guide and NOT the product name or active ingredient.

The group number is located on the first page of the label, and is usually displayed similarly to this example:

GROUP

INSECTICIDE

Insecticide Resistance Action Committee (IRAC) (http://www.irac-online.org/)

The Insecticide Resistance Action Committee (IRAC) has been formed to assemble the information for insecticides. For cranberry, organophosphates and neonicotinoids have the most compounds within their group. We are reliant on several compounds in these groupings. As long as growers remember to alternate between groupings and not repeat same mode-of-action compounds over and over, we should be able to keep newer compounds viable for decades. See Cranberry Insecticides by grouping on the next page.

5

Fungicide Resistance Action Committee (FRAC) (http://www.frac.info/home)

The group that advises for fungicide resistance is the Fungicide Resistance Action Committee (FRAC). Their goal is to prolong the effectiveness of fungicides that are likely to encounter resistance problems. For cranberry, Ridomil and Abound are fungicides that are at high risk for resistance development, while Indar and Proline are at medium risk. They should not be used repeatedly and should be carefully alternated with other fungicides from other groupings. See Cranberry Fungicides by grouping on following pages.

Herbicide Resistance Action Committee (HRAC) (http://www.hracglobal.com/pages/Home.aspx)

The Herbicide Resistance Action Committee and The Weed Science Society of America (WSSA) have both developed similar classification systems of herbicides. WSSA uses numbers instead of letters to designate the categories. A key step in resistance management is to minimize the continuous use of herbicides with the same mode of action through rotations and combinations of products. One of the purposes of these classification systems is to make it easier for farmers and farm advisors to understand which herbicides share the same mode of action without having to actually know the biochemical basis.

In cranberry, our biggest concern for developing resistance is our reliance on Callisto. Be sure to rotate other compounds into your herbicide schedule. Do not treat the same bog with Callisto year after year. See Cranberry Herbicides by grouping on following pages.

RESISTANCE MANAGEMENT 9

IRAC GROUP	TRADE NAME	ACTIVE INGREDIENT	MODE OF ACTION	CHEMICAL FAMILY	
	Diazinon	diazinon			
1	Imidan	phosmet		Organophosphates and carbamates	
	Lorsban	chlorpyrifos	Acetylcholine esterase inhibitor		
	Orthene	acephate			
	Sevin	carbaryl			
3	Pyganic	pyrethrin	Sodium channel modulators	Pyrethrins	
	Actara	thiamethoxam			
	Admire (+others)	imidacloprid		Neonicotinoids	
4 A	Assail	acetamiprid	Nicotinic acetylcholine		
	Belay	clothianidin	receptor competitive modulators		
	Scorpion	dinotefuran	modulators		
4 C	Closer	sulfoxaflor		Sulfoximines	
5	Delegate	spinetoram	Nicotinic Acetylcholine	Spinosyns	
5	Entrust	spinosad	receptor allosteric activators		
11	Dipel Xentari Biobit	Bacillus thuringiensis	Microbial disruptors of insect midgut membranes	Bacillus thuringiensis	
15	Rimon	novaluron	Inhibitors of chitin biosynthesis	Benzoylureas	
18	Confirm Intrepid	tebufenozide methoxyfenozide	Ecdysone agonists / molting disruptors	Diacylhydrazines	
21	Nexter	pyridaben	Mitochondrial complex / electron transport inhibitor	Meti acaracides	
22	Avaunt	indoxacarb	Voltage-dependent sodium channel blockers	Oxadiazines	
23	Oberon	spiromesifen	Inhibitors of acetyl CoA	Tetramic acid derivatives	
	Movento	spirotetramat	carboxylase		
28	Altacor	chlorantraniliprole	Ryanodine receptor modulators	Diamides	

Insecticide Resistance Action Committee (IRAC) Grouping for cranberry insecticides

10 RESISTANCE MANAGEMENT

FRAC GROUP	TRADE NAME	COMMON NAME	MODE OF ACTION	GROUP NAME	CHEMICAL GROUP	Resistance Development Risk
4	Metastar Ridomil, Ultra Flourish	mefenoxam metalaxyl	A1: RNA polymerase I	PA – fungicides (PhenylAmides)	acylalanines	High Risk
11	Abound Aftershock, Evito	azoxystrobin fluoxastrobin	C3: cytochrome bc1 at Qo site	QoI-fungicides Strobilurins	methoxy- acrylates dihydro- dioxazines	High Risk (Single site fungicide)
3	Indar Proline	fenbuconazole prothioconazole	G1: c14- demethylase in sterol biosynthesis	DMI-fungicides (DeMethylation I	triazoles (nhibitors)	Medium Risk (Single site fungicide)
19	OSO Ph-D	Polyoxin D zinc salt	H4: chitin synthase	polyoxins	peptidyl pyrimidine nucleoside	Medium Risk
33	Aliette Legion Alude, Confine Fosphite, Fungi-Phite, K-Phite, Oxiphos Phiticide, Phostr ProPhyt, Rampa Reliant, Reveille	ol, salts	 Unknown	phosphonates	ethyl phosphonates	Low Risk Multi-site fungicide
M1	Badge, Champ, Copper, Kentan, Kocide, MasterCop, Nordox, NuCop, Top Cop	copper (salts)	M1: Multi-site contact activity	inorganic	inorganic	Low Risk Multi-site fungicide
M3	Ferbam Dithane, Manzate, Penncozeb, Roper	ferbam mancozebs	M3: Multi-site contact activity	dithiocarbamates EBDC's (Ethylene bis dith	dithiocarbamates io carbamate)	Low Risk Multi-site fungicide
M5	Bravo, Chloronil, Echo Equus, Initiate,	chlorothalonil	M5: Multi-site contact activity	chloronitriles	chloronitriles	Low Risk Multi-site fungicide

Fungicide Resistance Action Committee (FRAC) Grouping for cranberry fungicides

RESISTANCE MANAGEMENT 11

Herbicide Resistance Action Committee (HRAC) Grouping for cranberry herbicides Group numbering from Weed Science Society of America (WSSA) at right

HRAC GROUP	TRADE NAME	ACTIVE INGREDIENT	MODE OF ACTION	CHEMICAL FAMILY	WSSA GROUP	
Α	Select, Intensity Poast	clethodim sethoxydim	Inhibition of acetyl CoA carboxylase (ACCase)	Cyclohexanedione 'DIMs'	1	
C1	Simazine	simazine	Inhibition of photosynthesis at photosystem II	Triazine	5	
F1	Evital	norflurazon	Bleaching: Inhibition of carotenoid biosynthesis at the phytoene desaturase step (PDS)	Pyridazinone	12	
F2	Callisto, Explorer, and others	mesotrione	Bleaching: Inhibition of 4-hydroxyphenyl- pyruvate-dioxygenase (4-HPPD)	Triketone	27	
G	Roundup	glyphosate	Inhibition of EPSP synthase	Glysine	9	
К3	Devrinol	napropramide	Inhibition of VLCFAs (Inhibition of cell division)	Acetamide	15	
	Casoron		Inhibition of cell wall	Nitrile	20	
L	Quinstar	quinclorac	(cellulose) synthesis	Quinoline carboxylic acid	26	
	Quinstar	quinclorac		Quinoline carboxylic acid	4	
0	2,4-D, Weedar 64	2,4-D	Action like indole acetic acid (synthetic auxins)	Phenoxy-carboxylic acid		
	Stinger, Spur	clopyralid	· · · ·	Pyridine carboxylic acid		