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ABSTRACT 

ORIGINS AND SEASONAL VARIATION OF DISINFECTION BYPRODUCT 

PRECURSORS 

 

FEBRUARY 2018 

 

RAN ZHAO, B.S., SHANDONG UNIVERSITY 

 

M.S., SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor David A. Reckhow 

 

 

Disinfection byproducts (DBPs) are formed from the disinfectant (e.g., chlorine) 

reacting with components of natural organic matter (NOM) in water drawn from surface 

water supplies, and are considered as the cause of potential serious human health 

problems. DBP precursors originate in large reservoirs from at least three types of 

sources: (1) watershed or allochthonous, (2) algal or autochthonous, and (3) bottom 

sediments or benthic. The properties of the NOM and the DBP precursor content of that 

NOM are unique to each source. Knowledge about the relative importance of these three 

sources would be valuable for addressing the reasons for the natural variability in DBP 

precursor occurrence and in managing source waters for the purpose of minimizing DBP 

precursors.   

The first objective of this dissertation was to use temporal and spatial water 

quality data from a drinking water reservoir to shed light on autochthonous and benthic 

sources of NOM and DBP precursors.  Cannonsville Reservoir (NY) was chosen for this 

work due to its well documented water quality.  To achieve this goal, we developed a 

series of 2-dimensional contour plots that bring clarity to benthic and near surface (algal) 
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processes on water quality.  Combining conventional water quality parameters with DBP 

precursor analysis facilitates a more comprehensive understanding of limnological factors 

that define DBP precursor levels.  These data were compared with properties of NOM 

and related natural biochemical parameters.  From this analysis, we conclude that algal-

dominated NOM contributes disproportionately to DHAN formation, whereas watershed-

dominated NOM is especially rich in THAA and THM precursors as well as UV 

absorbing substances.  The sediment-dominated precursor behaved like a mix of the other 

two, but generally resembled the watershed NOM most. 

The second objective of this dissertation was to identify the seasonal variation and 

spatial fate of DBP precursors in a drinking water system located in a temperate 

environment where seasonal variations of surface water quality and water temperature are 

considerable. The formation potential of trihalomethanes (THM), dihaloacetic acids 

(DHAA), and trihaloacetic acids (THAA), as well as their hydrophobicity, were 

examined with water samples collected monthly for a 12-month period in eight 

reservoirs. The hydrophobic NOM is positively correlated with air temperature of the 

watershed area whereas the hydrophilic NOM shows a reverse trend. Seasonal climate 

change (i.e., snowmelt and leaf-off) and microbial decomposition play an important role 

in variation of NOM fractions, as well as the DBP formation potentials. Generally, the 

THAA precursors are more hydrophobic and recalcitrant than THM precursors. However, 

the aged hydrophilic fraction also contributes substantively to the formation of THMs. 

NOM in spring contains more DHAA precursors, especially the hydrophilic fractions, 

which is probably linked to the algae growth in the reservoir epilimnion. 
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Organic matter released from plants is quite likely the most important fraction as 

potential DBP precursors, especially in heavily forested catchments. However, very few 

studies have been conducted on plant leachate as DBP precursors. The third objective of 

this dissertation was to characterize the organic matter that is released by plants, and 

examine their potentials to form DBPs under light, dark, and dark-with-biocide 

conditions. Eight-day leaching experiments were conducted for maple and oak leaf litter 

and pine needle litter. Samples were periodically removed for analysis of DOC, UV 

absorbance, and DBP precursor content. Significant concentrations of dissolved organic 

carbon (DOC) were leached from maple, oak, and pine samples. SUVA levels varied 

considerably among light and dark conditions, suggesting that photolysis has an effect on 

the breakdown of aromatic content. High levels of specific DBP formation potentials 

were found in leaf leachate. On average, the biodegraded organic matter formed one to 

two times higher specific DBP FP levels than the samples with biocide. Maple leaves had 

the highest yield of DOC and DBP, whereas pine needles had the lowest yield.   

The final objective of this dissertation was to determine the comparative 

significance of DBP (i.e., trihalomethanes, dihaloacetic acids, and trihaloacetic acids) 

precursors released from profundal sediments of a water supply impoundment under 

aerobic, hypoxic, and anaerobic conditions. Profundal sediments were collected from 

Cannonsville Reservoir and incubated under different percentage of dissolved oxygen 

(DO) saturation (0%, 10%, 20%, and 97%), then chlorinated in the laboratory. The results 

showed that sediments released increasing DBP precursors in decreasing DO conditions. 

From the XAD fractionation we concluded that the hydrophobic fraction in anaerobic 

degradation generally contained more DBP precursors than aerobic degradation. Finally, 
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the contribution of sediment released NOM to DBP formation was compared with algal 

cells and leaf leachate. Chloroform and trichloroacetic acid precursors were more 

prevalent in the plant leachate followed by the sediment and then the algal sources. The 

sediment-dominated precursor behaved like a mix of the other two. 
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CHAPTER 1  

INTRODUCTION 

Disinfection byproducts (DBPs) are formed from the disinfectant (e.g., chlorine) 

reacting with components of natural organic matter (NOM) in water drawn from surface 

water supplies, and are considered as the sources of serious human health problems. The 

concentration and properties of NOM in reservoirs are affected by both external sources 

(allochthonous) and internal algae growth (autochthonous). Resolution of the relative 

contributions of allochthonous and autochthonous DBP precursors in water supply 

reservoirs is valuable for guiding management decisions to improve or maintain water 

quality (Stepczuk et al., 1998b; Bukaveckas et al., 2007). Internal production of 

precursors is the result of autochthonous formation of dissolved and particulate NOM, 

coupled directly or indirectly with primary production (Stepczuk et al., 1998b; Plummer 

and Edzwald, 2001; Nguyen et al., 2005; Chen et al., 2008; Hong et al., 2008; Huang et 

al., 2009; Fang et al., 2010; Lui et al., 2011). As an internal organic matter source in 

reservoir, algae have long been recognized as DBP precursors (Trehy et al., 1986; 

Plummer and Edzwald, 1998; Nguyen et al., 2005; Hong, et al., 2008). Allochthonous 

DBP precursors in reservoirs are derived mostly from terrestrial vegetation from the 

drainage basin, and are commonly brought to the water supply system through tributaries 

during runoff events (Stepczuk et al., 1998a; Pomes et al., 1999; Kraus et al., 2010; 

Beggs and Summers, 2011; Hua et al., 2014; Wang et al., 2015). External organic matter 

consists of identifiable materials (e.g., polysaccharides and proteins, simple sugars and 

small acids) and non-identifiable materials, such as humic substances from soil. Humic 

substances as DBP precursors have been studied for decades (Singer, 1999; Chang et al., 
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2001; Liang and Singer, 2003; Nikolaou et al., 2004; Hua and Reckhow, 2007). 

However, these naturally-occurring organic substances are a major source of 

allochthonous natural organic matter (NOM) in surface waters, which are more complex 

and diverse than autochthonous NOM, and have yet to be fully understood.  

NOM is a complex mixture of heterogeneous organic compounds which includes 

hundreds or thousands of distinct chemical species (Croue, et al., 2000a). It is valuable to 

isolate NOM into a limited set of categories (fractions) by their homogeneous 

composition and properties (e.g., hydrophobicity), then characterize the fraction of NOM. 

Understanding the hydrophobicity of precursors provides knowledge of DBP formation 

as a function of precursor hydrophobicity, which may help drinking water utilities 

optimize treatment systems to remove those fractions associated with high DBP yields. 

The identification, characterization, and quantification of distinct sources of DBP 

precursors have been documented by several studies (e.g., Stepczuk et al., 1998; Effler et 

al., 1998; Palmstrom et al., 1988; Martin et al., 1993), however, investigation of origins 

of DBP precursors and their seasonal behavior has received only limited research 

attention. It is helpful to identify the seasonal pattern of precursor origins in water supply 

impoundments and their effect on precursor behavior. Moreover, the seasonal variation of 

precursor hydrophobicity has rarely been studied, and is informative for the development 

of predictive models. The goal of this work is to characterize the organic matter that is 

released by leaf and pine litters as DBP precursors, and also investigate the effect of light 

exposure and biodegradation on this process. 

Substances leached from plants are quite likely the most important fraction as 

potential DBP precursors, especially in heavily forested catchments, and include a great 
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diversity of materials (Tukey, 1970). Cellulose and lignin materials from plant structural 

constituents make up the largest source of allochthonous humic compounds (Wetzel, 

2001). The complex compounds undergo a series of decomposition stages. High 

concentrations of humic substances can be found in upper soil horizons because of the 

breakdown of surface plant material (Thurman, 1985; Wetzel, 2001). Much has been 

learned about the sources, transport, and degradation of plant material in the aquatic 

environment. However, very few studies have been conducted on the fate and transport of 

DBP precursors originated from these allochthonous sources. 

Sediments could also potentially act as a historical sink for humic precursors 

(Bloesch, 1995; Effler et al., 1998). Dissolved organic carbon released from sediments 

has been considered as the potential sources of DBP precursors for a long time (Uhler 

and Means, 1985; Martin et al., 1993). It is possible that release of sediment precursor 

could be influenced by dissolved oxygen (DO) conditions (Martin, et al., 1993). 

However, prior research does not provide insight to the characterization of sediment 

precursors, nor does it compare the properties of sediment precursor (more recalcitrant) 

with fresh watershed precursors (more labile). It is valuable to quantify and qualify DBP 

precursors released from sediments under various degradation conditions (e.g., different 

DO), and to compare the sediment precursors with precursors released from leaf leachate. 
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CHAPTER 2  

SEASONAL VARIATION OF DISINFECTION BYPRODUCTS 

PRECURSORS IN A LARGE WATER SUPPLY 

2.1 Introduction 

Disinfection byproducts (DBP) are formed from the reaction of a disinfectant 

(e.g., chlorine) with components of natural organic matter (NOM) in water.  Many of the 

DBPs are of concern to human health, and as a result, the USEPA has established 

regulations on two representative groups, the trihalomethanes (THMs) and haloacetic 

acids (HAAs). Organic matter in reservoirs originates from different aquatic and 

terrestrial sources.  Therefore, NOM in different water bodies has distinct composition 

and properties, and it produces different concentrations and types of DBPs during 

chlorination. Identifying the origins of DBP precursors is fundamental to the 

development of an effective watershed management strategy and reliable mechanistic 

mathematical models for DBP formation (Effler and Bader, 1995; Chapra, 1997; 

Hamilton and Schladow, 1997). It is also important for understanding impacts of seasons 

and climate change on DBPs, since factors such as snow-melt, leaf-off and temperature 

driven microbial metabolism can be key determinants in NOM export (Thurman, 1985). 

Allochthonous DBP precursors are mostly derived from terrestrial vegetation and 

their microbial degradation products, and their transport to reservoirs primarily occurs 

during runoff events (Stepczuk et al., 1998a; Wetzel, 2001; Findlay and Sinsabaugh, 

2003). Internal production of DBP precursors in reservoirs is the result of autochthonous 

formation of dissolved and particulate organic matter, coupled directly or indirectly with 

primary production (Stepczuk et al., 1998b). Previous investigations of organic matter 

cycling in the water column have highlighted the redistribution of organic matter between 
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solid and solution phases through sediment resuspension and the organic matter released 

as a consequence of resuspension-induced desorption (Uhler and Means, 1985; Martin et 

al., 1993; Bloesch, 1995; Effler et al., 1998; Cantwell et al., 2002; Komada et al., 2002; 

Eggleton and Thomas, 2004; Yang et al., 2008; Hong et al., 2013). Dissolved organic 

carbon (DOC) released from sediments can also be considered as an important source of 

DBP precursors (Uhler and Means, 1985; Martin et al., 1993; Effler et al., 1998; Effler 

and Matthews, 2004; Hong et al., 2013). The laboratory characterization and 

quantification of DBP precursors from different origins has been documented by several 

studies (e.g., Palmstrom et al., 1988; Martin et al., 1993; Hong et al., 2008), however, the 

field investigation of the origins of DBP precursors and their seasonal behavior have 

received only limited attention by researchers.  

Correlations between the concentration of autochthonous organic matter and 

indicators of primary productivity (e.g., chlorophyll-α) have been widely documented 

(Walker, 1983; Wetzel 2001). Phosphorus, as the least abundant but most critical 

nutritional component of most phytoplankton, has been reported to be strongly associated 

with algal growth in lake photic zones (Vollenweider, 1968; Carlson, 1977; Smith, 1979; 

Parks and Baker, 1997; Carpenter et al., 1998; Correll, 1998; Wetzel, 2001). 

Furthermore, the concentration of total organic carbon (TOC) was found to be positively 

correlated with total phosphorous (TP) in 38 U.S. lakes and reservoirs (Walker, 1983). As 

the principal internal source of organic matter in surface water, algae have long been 

recognized as potential DBP precursors. The high content of amino acids and proteins in 

algal extracellular and intracellular organic matter is likely responsible for high yields of 

THMs and dichloroacetonitriles (DHANs) in chlorinated eutrophic waters (Trehy et al., 



 

 6 

1986; Plummer and Edzwald 1998; Nguyen et al., 2005). Moreover, algal derived 

proteins were found to contain more haloacetic acid (HAA) precursors than lipids and 

carbohydrates.  Others have reported that algae cells are richer in dichloroacetic acid 

(DCAA) precursors on a per-carbon basis compared with humic and fulvic acids (Hong, 

et al., 2008). However, specific yields of THMs and trihaloacetic acids (TCAA) from 

humic acids and fulvic acids were higher than those from algal cells (Hong, et al., 2008).  

Dissolved organic matter in surface water consists of identifiable materials (i.e., 

polysaccharides and proteins, simple sugars and small acids) and non-identifiable 

materials, such as humic substances from soil. The dissolved humic and fulvic acids have 

clearly recognizable lignin components which are the major constituents in terrestrial 

vascular plants (Wetzel, 2001). It has been shown that lignin phenols produce more 

TCAA than chloroform and DCAA as compared to bulk humic substances (Hua et al., 

2014).  

Another potential reservoir of DBP precursors is particulate organic matter.  The 

partitioning of organic matter between aqueous phase (pore water, overlying water) and 

solid phase (sediment, suspended particulate matter and biota) is highly affected by 

hydrodynamics, biogeochemical process, and environmental conditions (redox, pH, 

salinity, and temperature; Samiullah, 1990; Saulnier and Mucci, 2000; Cantwell et al., 

2002). DOC in pore water is released to the water column during sediment resuspension, 

and additional organic carbon can be released through re-equilibration from the mineral-

bound fraction in the resuspended sediment (Komada and Reimers, 2001). Sediment 

resuspension is a normal process that occurs with dimictic lakes during spring and fall 

circulation (Wetzel, 2001). Two basic zones of resuspension in lakes have been identified: 
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a shallow zone that can be directly influenced by wave action, and a deeper area that is 

associated primarily with internal seiches (Bloesch et al., 1995). Substantial drawdown 

was another reason for substantial sediment resuspension in reservoirs (Effler et al., 

1998). It has been shown that sediments can be the source of significant THM precursors, 

and littoral sediments (<1 m depth) produce more THMs than profundal sediments (>10 

m, Martin et al., 1993). However, to our knowledge, no studies have been conducted that 

directly compare the relative flux of precursors originating from watershed sources, 

sediments, and algal biomass at a single study site. Knowledge about the relative 

importance of these three sources would be valuable for addressing the reasons for the 

natural variability in DBP precursor occurrence and in managing source waters for the 

purpose of minimizing DBP precursors. 

The purpose of this study is to use temporal and spatial water quality data from a 

drinking water reservoir to shed light on autochthonous and benthic sources of NOM and 

DBP precursors.  Cannonsville Reservoir was chosen for this work due to its well 

documented water quality.  To achieve this goal, we developed a series of 2-dimensional 

contour plots that bring clarity to benthic and near surface (algal) processes on water 

quality.  Combining conventional water quality parameters with DBP precursor analysis 

facilitates a more comprehensive understanding of limnological factors that define DBP 

precursor levels.  
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2.2 Materials and Methods 

2.2.1 Site Description 

 
Figure 2.1: Reservoir Monitoring Sites of Cannonsville Reservoir, showing six 

sampling locations (from NYCDEP, 2009 Watershed Water Quality Monitoring 

Plan). 

 

Cannonsville Reservoir is a Y-shaped reservoir located in Delaware County, New 

York. The dam of Cannonsville Reservoir (Latitude 42 02’ 46’’, Longitude 75 22’ 24’’) 

is 5 km downstream from the confluence of the West Branch Delaware River (WBDR) 

and Trout Creek (Figure 2.1), and the beds of these two streams form the two arms of the 

reservoir. The reservoir is the third largest in the New York City water supply system. 

The crest capacity is 373×106 m3, and the surface area is 19.3×106 m2. The maximum 

depth is about 49 m near the dam (Wood, 1979). Water leaves the reservoir by the 

following pathways: 1) over the dam spillway when the water level exceeds the crest 

elevation; 2) through drinking water withdraws (at depth of 10, 20 and 37 m below the 

spillway elevation); 3) into the downstream portion of the WBDR. The reservoir’s 

watershed, located in the northwestern Catskill section of the Appalachian plateau, drains 

a 1178 km2 area. It spans surface elevations from 350 m above sea level at the dam to a 
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maximum of 1010 m above sea level, with an average slope of 20% (Stepczuk et al., 

1998a). The underlying bedrock is made up of consolidated sandstone, siltstone and 

shales, covered by gravel, sand, unconsolidated fill and clay (Effler and Bader, 1998). 

WBDR is the principal tributary of Cannonsville Reservoir that contributes about 79% of 

the inflow to the reservoir and drains a 928 km2 watershed. Trout Creek contributes 5% 

of the inflow and drains a 58 km2 watershed, and the remainder consists of smaller 

tributaries and direct inflow (Owens et al., 1998b). There are seven wastewater treatment 

plants sited in the Cannonsville watershed region, discharging 1.2×106 m3 per day 

(Lloyd and Principle, 2006). Vegetative cover is approximately 93.9% of the watershed 

area (85.2% forestland, 5.5% brush land, and 3.2% grass land; Lloyd and Principle, 

2006). Wetlands comprise 1.6% of the watershed. Agriculture use is most prevalent along 

the watershed’s tributaries. Nutrient loading from agricultural runoff and WWTPs was 

identified as the main source of nutrients feeding algal blooms in the early 1990s, and 

Cannonsville Reservoir was in relatively poor condition compared with other reservoirs 

in the NYC water supply system. The NY Department of Environmental Protection 

(DEP) then initiated several management actions to reduce the amount of nutrient-rich 

runoff, including WWTP upgrades, septic system remediation and replacement, and 

watershed agricultural programs (Strickland and Rush, 2011). 

2.2.2 Limnological Monitoring Program 

NYCDEP conducts a monthly limnology monitoring program from mid-April to 

December on its Catskill-Delaware system reservoirs including field measurements 

(dissolved oxygen, pH and temperature) and chemical/biological laboratory analyses 

(dissolved organic carbon, phosphorous, and nitrogen). Six monitoring sites on the main 



 

 10 

arm of the Cannonsville Reservoir are monitored (Figure 2.1) among which Site 4 

(4WDC) is at mid-channel across from the intake chamber. Limnology samples are 

collected at three or four depths, extending from 3m under the surface to 2m above the 

sediments. WBDR daily inflow data are collected by United States Geologic Survey 

(USGS, 15km upstream of Walton, NY). 

2.2.3 Laboratory Analyses for DBP precursors 

Water samples were collected monthly from Site 4 in 2007 and 2013, and were 

kept in cold room (4 ºC) until needed. All samples were treated at bench-scale in the 

UMass EWRE laboratory.  Total and dissolved organic carbon were measured by the 

high-temperature combustion method based on Standard Methods 5310 (APHA, AWWA 

and WEF, 1998) using a Shimadzu TOC-VCPH Total Organic Carbon Analyzer 

(Shimadzu Scientific Instruments, Columbia, Md.). Samples for DOC analysis were 

filtered through 0.45 micron Whatman GF/F glass fiber filters. UV-visible absorbance 

spectra were measured on all filtered samples using an Agilent 8453 spectrophotometer. 

Specific UV absorbance (SUVA) is calculated as the UV absorbance at 254 nm per meter 

normalized to 1 mg/L DOC.  

All water samples were chlorinated in 300mL chlorine demand-free, glass-

stoppered bottles and buffered at pH 7 with 0.5mM sodium phosphate. The chlorine 

doses were determined based on a target chlorine residual of 4±1mg Cl2 /L after 7 days. A 

stock solution of sodium hypochlorite (Fisher Scientific, Fairlawn, NJ) was standardized 

daily by the DPD ferrous titrimetric method according to Standard Methods 4500-Cl F 

(APHA, AWWA, and WEF, 1998). Samples were stored headspace-free at 20 ºC in the 

dark for 168 h (7days). Then, all samples were quenched with ammonium chloride or 
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sodium sulfite and partitioned for subsequent analysis of DBPs. Four THMs (CHCl3, 

CHBrCl2, CHBr2Cl, and CHBr3), three dihaloacetonitriles (dichloro-, bromochloro-, and 

dibromoacetonitriles), two haloketones (dichloro- and trichloropropanone), and 

chloropicrin were quantified by liquid-liquid extraction followed by gas chromatography 

with electron capture detection (GC/ECD). This method was closely aligned with USEPA 

method 551.1. THM standards were prepared from a halogenated volatiles mix stock 

solution (Supelco Inc., Bellefonte, PA.). Pentane was used as the extracting solvent, and 

1,2-dibromopropane was used as an internal standard. Nine HAAs (monochloro-, 

nonobromo-, dichloro-, bromochloro-, dibromo-, bromodichloro-, dibromochloro-, 

trichloro-, and tribromoacetic acid) were analyzed by liquid-liquid extraction in 

accordance with USEPA Method 552.2. HAA standards were prepared in methyl-tert-

buryl-ether (MTBE) from a halogenated acetic acids mix (Supelco Inc., Bellefonte, PA.). 

MTBE was used as the extracting solvent, and 1,2-dibromopropane was the internal 

standard. Extracted samples were measured using an Agilent 6890 gas chromatograph 

equipped with a linearized 63Ni electron capture detector and a J&W DB-5 column for 

THMs (J&W DB-1 column for HAAs). The carrier gas was ultra-high purity nitrogen. 
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2.3 Results and Discussion 

2.3.1 Temporal and Spatial Patterns of Limnological Features, 2007 

 

 
Figure 2.2: Time Series for Cannonsville Reservoir for 2007 and 2013: a) flowrate 

(measured 15 km upstream of WBDR at Walton, NY); b) Chlorophyll α, measured 

at site 4, at a depth of 3 m 

 

 

 

 

 

 

 

a) 

b) 
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Figure 2.3: Depth and time distribution of limnological data in Cannonsville 

Reservoir Site 4, 2007 (white dots indicate the sampling sites of DBP analysis): a) 

Temperature; b) pH; c) % saturation of DO; d) Turbidity; e) TOC; f) DOC; g) 

NOx; h) TP; i) Organic nitrogen.    

  

 

  

g) h) 

i) 
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The period from May to September in 2007 is characterized by a lack of 

substantial runoff events (Figure 2.2a). Significant reservoir drawdown occurred in 2007 

as a result of the low inflow. Site 4 of Cannonsville Reservoir, approximate 1km 

upstream from the confluence of the WBDR and Trout Creek, is adjacent to the intake 

chamber, where water is transferred into Rondout Reservoir through the West Delaware 

Tunnel. The water surface elevation (WSE) of Site 4 decreased 14m from nearly full 

(361m above the sea level) in mid-April to its lowest point in mid-October during the 

major drawdown. Thermal stratification (Figure 2.3a) lasted from June to October. 

Surface water warmed rapidly through mid-June with a maximum vertical gradient (15 

ºC) in early September. The epilimnion was generally 7m in depth during the summer of 

2007, with the highest temperature (24 ºC) in mid-August. The hypolimnion, which lies 

below the thermocline, warmed at a lower rate reaching a maximum temperature of 17.6 

ºC in early October.  Warming of the hypolimnion was enhanced in 2007 due to reservoir 

drawdown. Inflow of WBDR from Site 6 was even warmer during summer stratification, 

introducing allochthonous NOM into the epilimnion of Site 4. In spring and fall, 

temperature gradients were lost as the reservoir was completely mixed.   

The 2007 data show evidence of primary productivity and autochthonous 

generation of precursors in the epilimnion.  First, near-surface supersaturation of 

dissolved oxygen (DO) was observed in warm weather (spring, summer, and early fall), a 

common observation attributable to autotrophic photosynthesis (i.e., algae growth; Figure 

2.3c). Several high TP concentrations (Figure 2.3h) were also observed in the epilimnion 

which reflect the growth of phytoplankton. These were associated with corresponding 

high Chlorophyll α concentrations (Figure 2.2b) in September and November.  In contrast 
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the relatively low concentration of TP in July probably indicated phosphorus limitation of 

primary production, and this is supported by low chlorophyll α (Chl α) concentrations 

measured at that same site (July, Figure 2.2b). Note that the relative concentrations of 

phosphorus to inorganic nitrogen (NOx) are well below the Redfield Ratio (Wetzel, 2001) 

for all seasons and depths (Figure 2.3g), supporting the notion that this reservoir is 

phosphorus limited. Another indicator of primary productivity is the summer-fall increase 

in epilimnetic pH (Figure 2.3b).  This is also a well-known phenomenon resulting from 

photosynthetic consumption of carbon dioxide (Wetzel, 2001). The key outcome is a 

modest increase in epilimnetic TOC for the August to October period (Figure 2.3f).  It’s 

interesting that no increase in DOC or turbidity are evident for the same space and 

location.  We interpret this as an indication of low levels of algal growth that are a bit too 

subtle for the rather non-specific and insensitive organic carbon and turbidity parameters, 

but still could be significant regarding DBP precursor production.The 2007 data also 

show signs of benthic processes that can inform DBP precursor studies.  Turbidity 

profiles (Figure 2.3d) showed a clear increase near the bottom in late summer and during 

fall turnover when the WSE was lowest. The measurement of turbidity has been used as a 

surrogate for re-suspension of bottom sediment in many studies (Gippel, 1989; Bloesch, 

1995; Suk et al., 1998; Effler and Mattews, 2004; Cozar et al., 2005 Chung et al., 2009).  

Hypoxia (DO < 30% of saturation) was noted and it lasted for nearly two months in the 

hypolimnion during summer stratification when the WSE was lowest in 2007.  Along 

with the increase in turbidity are an apparent release of phosphorus (Figure 2.3h), a drop 

in oxygen concentration (Figure 2.3c) and subtle increases in both TOC (Figure 2.3e) and 

DOC (Figure 2.3f).  This all suggests release of reduced substance from the pore water 
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and suspended sediments (Hupfer and Lewandowski, 2008; Wetzel, 2001) along with 

some solubilization of organic matter. 

 In summary, without allochthonous input of organic carbon (i.e., essentially no 

runoff events), seasonal increases in epilimnetic organic carbon could be attributed to 

primary productivity. Similarly, seasonal increases in hypolimnetic organic carbon seem 

associated with release from sediments. 

2.3.2 Temporal and Spatial Patterns of Limnological Features, 2013 

The year 2013 was substantially different from 2007, as there were six major rain 

events (Figure 2.2a) between April and November (i.e., in April, June, mid-August to 

early September, and late November) and far less drawdown. The largest runoff event in 

2013 was in early June (150 m3/s). The average water level of site 4 in 2013 was 

approximately 4 meters higher than in 2007. The WSE at Site 4 was nearly its maximum 

(359m) in spring and decreased progressively to 352m in early November.  

Despite the substantial difference in runoff and storage, some of the same points 

noted for 2007 are observable again in 2013.  First, the evidence for algal activity and 

autochthonous organic carbon production is clear.  Increases in pH, and DO are noted at 

the surface (Figures 2.4b and 2.4c), especially shortly after major increases in flow 

(compare with Figure 2.2a).  A similar increase in organic nitrogen (Figure 2.4h) is seen 

which probably occurs at the expense of inorganic nitrogen.  Chlorophyll α levels reach a 

maximum in September (Figure 2.2b).  Accompanying these changes are large increases 

in epilimnetic DOC (Figure 2.4e).  However, considering the higher runoff in 2013, it’s 

quite likely that most of the increase in DOC is due to allochthonous organic matter.  It 
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also appears that some of that additional DOC may have contributed to loss of DO in the 

lower regions of the epilimnion. 

Release of benthic DOC and reduced substances is also evident in 2013.  Not only 

is there a strong hypolimnetic hypoxia (Figure 2.3c), but there is also substantial release 

of phosphorus and organic nitrogen (Figures 2.4f and 2.4h).  Accordingly, the DOC 

increases in the hypolimnion, even beyond the level in the epilimnion (Figure 2.4e). 
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a) b) 

c) d) 

e) f) 



 

 20 

 

Figure 2.4: Depth-time distribution of limnological indicators in Cannonsville of Site 

4, 2013 (white dots indicate the sampling sites of DBP analysis): a)Temperature; b) 

pH; c) % saturation of DO; d) Turbidity; e) DOC; f) TP; g) NOx; i) Organic 

nitrogen. 

 

2.3.3 Spatial Pattern of NOM and Limnology Parameters  

Longitudinal and vertical profiles of monthly DOC and turbidity in 2007 are 

presented in Figure 2.5 and Figure 2.6, respectively. Runoff in late April resulted in an 

increase in DOC concentration at all depths in the upstream transition zone.  In the 

lacustrine zone, the longitudinal gradient of DOC along the main axis progressively 

changed into vertical gradients during the period of summer stratification.  Signs of 

stratification became evident near the dam as early as May, and in the region of 4WDC 

during the September period.  DOC was too low and poorly resolved in June-August to 

see obvious differences across the vertical temperature gradients.  As previously noted 

this was an exceptionally dry period.  Thus, the longitudinal turbidity profiles show very 

low levels, and only start to increase in the transition zone in August.  This hypolimnetic 

increase in turbidity is quit pronounced in September and diminishes again in October.  

This may be due to some advective transport of suspended matter in the riverine zone 

g) h) 
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(e.g., Thornton et al., 1990), perhaps supplemented by some sediment release, both of 

which could be exacerbated by the extreme drawdown. 

In 2013, there was not the large April inflow that had been observed in 2007.  

Instead, the largest flows came in late May. As a result, heavy allochthonous 

contributions of DOC were not seen until June and later (Figure 2.7).  2013 year shows 

similar elevated levels of turbidity and DOC in the hypolimnion in late summer and early 

fall as in 2007.  However, the absolute magnitude of the turbidies is lower than it was 

during the heavy drawdown in 2007 (i.e., 10 NTU, vs 30 NTU).  In contrast, the late 

summer hypolimnetic DOC in 2013 was higher than in 2007, as it was probably from a 

combination of allochthonous and benthic organic carbon. 

Table 2.1 Dominant source of DBP precursors in Site 4 of Cannonsville Reservoir 

for each survey in 2007 and 2013  

Date Dominant NOM 

source 

May, 2007 Watershed 

June, 2007 Algae 

July, 2007 Algae 

June, 2013 Watershed 

July, 2013 Watershed 

August, 2013 Sediment 

September, 2013 Sediment 

October, 2013 Watershed 

 

 

  



 

 22 

 
 

4
W

D
C

 

2
W

D
C

 

1
W

D
C

 

5
W

D
C

 



 

 23 

 
Figure 2.5: Longitudinal and vertical profiles of monthly DOC, 2007 
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Figure 2.6: Longitudinal and vertical profiles of monthly turbidity, 2007 
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Figure 2.7: Longitudinal and vertical profiles of monthly DOC, 2013 
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Figure 2.8: Longitudinal and vertical profiles of monthly turbidity, 2013 

2.3.4 Analysis of DBP Precursors from Different Origins 

Water samples were collected monthly from withdraw locations at two depths 

(indicated in Figure 2.3 and Figure 2.4 with white dots). Each sample was also analyzed 

for organic carbon and related NOM parameters.  As discussed above, we view NOM in 

Cannonsville Reservoir as originating from three types of sources: (1) watershed or 

allochthonous, (2) algal or autochthonous, and (3) lake sediments or benthic.  In order to 

understand the flux and characteristics of NOM from each source, it would be necessary 

to formulate and validate full system models for NOM in the reservoir, or conduct 

laboratory studies of all of the relevant environmental processes and compartments.  Both 

are far beyond the scope of this current study, and indeed, to our knowledge, neither has 

been done to date with any large water system.  Instead we aspire to partially de-

convolute the separate properties of NOM from these three origins by comparing our 

most distinct “end members”.  These have been listed in Table 2.1, and they include 4 

dominated by watershed sources, 2 by algal sources and 2 by sediment sources.  The 
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NOM-based properties for each are grouped by dominant source and presented in Figures 

2.9 and 2.10, below. 

The concentrations of particulate organic carbon (POC) were relatively constant 

in 2013 (mean = 0.31 mg/L), with over 80% of the epilimnetic TOC present in the 

dissolved form (i.e., DOC) in Cannonsville Reservoir. In 2007, the reduced runoff led to 

lower concentrations of POC (mean = 0.1 mg/L).  The median DOC in the sediment-

dominated samples (1.69 mg/L) was the greatest (Figure 2.9a) followed by those 

dominated by watershed sources (1.55 mg/L) and algae sources (1.35 mg/L). Specific UV 

absorbance (SUVA) showed the same hierarchy (Figure 2.9b).  The intensive parameter, 

SUVA, is considered an indicator of aromatic content in organic matter (e.g., Reckhow et 

al., 1990). Not surprisingly, watershed and sediment dominated DOC, exhibited higher 

SUVA values (2.54 and 2.59 L/mg·m, Figure 2.9b), whereas algae dominated NOM 

exhibited the lowest mean SUVA (1.9 L/mg·m).  This supports the contention that algal 

biomass is rich in hydrophilic materials (Croue et al., 2000), especially proteins and 

carbohydrates. In contrast, allochthonous NOM contains residues from terrestrial plants 

that can have substantial lignin and tannin components.  This also suggested that NOM in 

the sediments of Cannonsville Reservoir may be mostly derived from plant detritus rather 

than algal biomass, and sediments could potentially act as a historical sink for DBP 

precursors. 

The box and whisker plots in Figure 2.10 are all based on DBP analysis of the 

Cannonsville Reservoir samples.  In Figures 2.10a and 2.10c, the values are graphed in 

absolute concentration units.  For the other two (Figure 2.10b and 2.10d), the data have 



 

 31 

been normalized to a 1 mg-C/L concentration so that they are intensive parameters, 

unaffected by the DOC concentrations. 

 

Figure 2.9: Boxplot of DOC and SUVA. a) DOC concentration; b) Specific UV254 

 

Figure 2.10: Boxplot of DBP and Specific DBP. a) DBP formation potential; b) 

specific DBP formation potential per carbon; c) DHAN formation potential; d) 

specific DHAN formation potential per carbon. A: algae; W: watershed; S: sediment 

 

a) b) 

a) b) 

c) d) 
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Chloroform (CHCl3) was by far the most prevalent species of THM, at 92% and 

94% of the total THMs in 2007 and 2013, respectively. The other groups are similarly 

dominated by the fully-chlorinated species.  This is because concentrations of bromide 

are quite low in Cannonsville Reservoir and as a result, little bromine becomes 

incorporated into the DBPs. 

Regardless of whether one considers the extensive or intensive measures, algal 

dominated waters produce less THM than those dominated by watershed or sediment 

sources (Figures 2.10a and 2.10b).  Dihaloacetic acid (DHAA) precursors seem to be 

more prevalent in the algal and watershed sources than the sediment sources.  Finally, the 

trihaloacetic acid (THAA) precursor are slightly more prevalent in the watershed sources 

followed by the sediment and then the algal sources.  These relative hierarchies tend to 

match expectations based on DBP precursor analysis on some laboratory-derived end 

members.  For example, purified lignin and lignin monomers have been shown to be 

especially rich in THAA precursor, but not in precursors for DCAA and THMs (e.g., Hua 

et al., 2014).  Since lignin is an anticipated component of watershed NOM, but not algal 

NOM, the THAA results are in agreement with this train of logic.  The dihaloacetonitrile 

(DHAN) data are also supported by model studies.  Algal cells are known to have higher 

abundance of proteins and amino acids than terrestrial plants.  In general, nitrogen to 

carbon ratios from algal cultures are higher than those from terrestrial plant leachate.  In 

particular, aspartic acid residues are well-known DHAN precursor and DHAN formation 

tests have shown higher formation from algal cells than from aquatic humic substances 

(e.g., Fang et al., 2010).  Thus, the association between algal-dominated NOM and 

DHAN precursor is easily rationalized on a chemical basis.   Unfortunately, we have less 
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definitive data from the literature concerning other model end members.  However, if one 

accepts that terrestrial or benthic NOM is closer in its characteristics to aquatic humic 

substances than algal NOM, we can draw from that vast literature.  Several researchers 

have shown that chloroform yields from humic and fulvic acids (42.5 – 56.9 µg/mg-C) 

are higher than yields from algal-derived organic matter (35.9 µg/mg-C; Reckhow et al., 

1990; Hong et al., 2008).  When considering DCAA the reverse may be true.   Precursor 

yields from algal cells (29.0 µg/mg-C) have been found to be higher than for fulvic acid 

(18.6 µg/mg-C; Hong et al., 2008; Reckhow et al., 1990). 

2.4 Conclusion 

Disinfection byproduct (DBP) precursors originate in large reservoirs from at 

least three types of types of sources: (1) watershed or allochthonous, (2) algal or 

autochthonous, and (3) bottom sediments or benthic.  The properties of the NOM and the 

DBP precursor content of that NOM is unique to each source.  In this study, we used 

standard limnological parameters to identify samples from one of the NYC reservoirs that 

have end-member characteristics.  These samples were analyzed in laboratory tests for 

their DBP precursor content.  These data were compared with known properties of NOM 

and related natural biochemical parameters.  From this analysis, we conclude that algal-

dominated NOM contributes disproportionately to DHAN formation, whereas watershed-

dominated NOM is especially rich in THAA and THM precursors as well as UV 

absorbing substances.  The sediment-dominated precursor behaved like a mix of the other 

two, but generally resembled the watershed NOM most. 
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CHAPTER 3  

THE SPATIAL AND TEMPORAL DISTRIBUTION OF DBP 

PRECURSORS CLASSIFIED BY LEVEL OF HYDROPHOBIC 

BEHAVIOR 

3.1 Introduction 

Natural organic matter (NOM) reacts quickly with aqueous chlorine to form 

disinfection byproducts (DBPs), and these compounds have been associated with various 

human cancers and reproductive problems (Hwang and Jaakkola, 2003). Trihalomethanes 

(THMs) and haloacetic acids (HAAs) are two regulated groups of DBPs. Chloroform was 

first considered to be carcinogenic by the U.S. National Cancer Institute in 1976. Other 

DBP compounds, such as dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), 

were then found to have carcinogenic properties (NTP, 1985, 1987, 1989; Bull et al., 

1990). The US EPA Stage 1 Disinfectants and Disinfection Byproducts Rule (Stage 1 

DBPR), established in 1998, included maximum contaminant levels of 80 µg/L for total 

THMs, and 60 µg/L for five HAAs based on a system water running average. Later, a 

tightening requirement (the Stage 2 DBPR) for these two groups of DBPs was established 

in 2006. Stage 2 focuses on locations with high DBP concentrations, resulting in stricter 

limits for many utilities of all sizes. To optimize management strategy and minimize the 

concentration of DBPs in water supplies, it is helpful to understand the behavior of DBP 

precursors (e.g., Palmstrom et al., 1988; Matilainen and Sillanpaa, 2010). It is also 

important to understand the impacts of seasons and climate change, since factors such as 

snow-melt, leaf-off and temperature driven microbial metabolism can be key 

determinants in NOM export.   
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NOM is a complex mixture of heterogeneous organic compounds that includes 

hundreds or thousands of distinct chemical species (Croue, et al., 2000a). It is desirable to 

isolate NOM into a limited set of categories (fractions) by their homogeneous 

composition and properties and then characterize the different groups of NOM. One 

common approach is isolating the mixture by differing hydrophobic behavior (e.g., 

hydrophobic, mesophilic, and hydrophilic) based on adsorption on synthetic resins (e.g., 

XAD-8 and XAD-4; Aiken et al., 1992; Malcolm and MacCarthy, 1992; Croue et al., 

2000a; Hua and Reckhow, 2007). Previous studies suggested that the hydrophilic fraction 

contain more aliphatic carbon (e.g., carboxylic acids and carbohydrates) and 

biodegradable nitrogenous compounds (e.g., amino acids, amino sugars, and proteins), 

and the hydrophobic fraction primarily consists of humic and fulvic acids which are rich 

in aromatic carbon, phenolic structures, and conjugated double bonds (Aiken et al., 1992; 

Croue et al., 2000a). It has been documented by several studies that NOM hydrophobicity 

significantly affects their DBP formation potentials (Croue et al., 2000b; Kitis et al., 

2002; Liang and Singer, 2003; Hua and Reckhow, 2007). In general, hydrophobic NOM 

is found to be a more important source of DBP precursors (Hua and Reckhow, 2007). 

However, hydrophilic NOM also contributes substantially to the formation of DBPs. 

These characteristics of DBP precursors are affected remarkably by watershed microbial 

activities, therefore, it is sensitive to seasonal climate changes, especially temperature and 

rainfall patterns (Guggenberger and Zech, 1994; Scott et al., 1998; Kalbitz et al., 2000; 

Aitkenhead-Peterson et al., 2004). It thus becomes important to improve the 

documentation and understanding of the seasonal variations of DBPs in temperate areas. 

Not only because they may imply the variations in human exposure to the contaminants 
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on a seasonal basis, the following development on treatment strategies also worthwhile. 

However, most of the available data on the topic involves very low sampling frequencies, 

and the seasonality of hydrophobicity fractions as DBP precursors has not been 

scrutinized thoroughly. Prior studies do not permit an appropriate analysis of the seasonal 

changes in theses DBP compounds in drinking water supply systems.  

The main purpose of this research is to study the occurrence of the two regulated 

groups of DBPs – THMs and HAAs – in drinking water supplies with an emphasis on 

their seasonal evolution. Water samples were collected throughout a 12-month period in 

up-, intermediate, and down-stream reservoirs of the New York City water supply 

system. The samples were characterized by means of XAD fractionation (Leenheer 1981; 

Aiken and Leenheer, 1993), and the DBP formation potentials from different NOM 

fractions were compared.  

3.2 Materials and Methods 

3.2.1 Site Description 

This study includes eight reservoirs (Cannonsville, Pepacton, Neversink, 

Rondout, Schoharie, Ashokan, Kensico and West Branch) of the New York City supply 

system that supply drinking water to 9 million people in the NYC area. Schoharie 

Reservoir is located in the Catskill Mountains of southeastern New York, approximately 

190 km from New York City (Gelda and Effler, 2007). The main tributary drains about 

314 square miles of watershed (Mehaffey et al., 2005). This is an upstream reservoir in 

the Catskill system, as water withdrawn travels through Ashokan and Kensico reservoirs 

before delivery to NYC. Water in Delaware River drains from 1010 square miles of 
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watershed into three upstream Delaware reservoirs (Cannonsville, Pepacton and 

Neversink). The upstream Delaware reservoirs supply Rondout reservoir; water then 

leaves Rondout and travels to West Branch Reservoir. Water from West Branch then 

flows through the Delaware Aqueduct to the Kensico Reservoir, where it mixes with 

Catskill Water. As such, West Branch and Kensico are considered as terminal, rather than 

collecting, reservoirs. Their watershed supplies just 2% or less of the total water volume 

entering the reservoirs. The Croton Watershed’s drainage basin is about 33 square miles, 

and includes 7% farmland, 66% forestland, and 13% developed lands (more 

anthropogenically impacted area compared to the Catskill/Delaware watershed). The 

Catskill/Delaware watersheds consist of 92% forest land, approximately 6% agricultural 

land, and 1% developed lands (Anandhi et al., 2013). These watersheds are dominated by 

northern hardwood trees including maple, birch and beech. Other less abundant species 

present are white/red pine, hemlock, elm, and ash (VanValkenburg, 1996). 

3.2.2 Sample Collection 

Samples of 2L each were collected on a monthly basis from January 2013 – 

December 2013 from the intake chamber at each reservoir and shipped overnight to 

UMass laboratories. All samples were collected in cleaned 2-L borosilicate glass bottles 

with PTFE-lined septum caps (serum bottles with red caps). The bottles and ice-packs 

were transported in coolers with foam cushioning. All sampling bottles were acid washed 

and extensively rinsed with deionized or reverse osmosis water prior to the sampling trip. 

Once on site, the sampling line was completely flushed prior to collecting the first 

sample. Bottles were rinsed with the sample at the time of collection. One additional 1L 
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bottle filled with Milli Q water was transported together with the sampling bottles as the 

field blank. The samples and blank were kept in a cold room (4 ºC) until needed.   

3.2.3 XAD-8/4 Resin Extraction 

The hydrophobicity of NOM was determined using XAD-8 and XAD-4 resins 

(Rohm and Haas Company, Philadelphia, PA) based on a method developed by Aiken et 

al. (1992). The column distribution coefficient (k′) of both resins was kept at 50 for all 

waters. Water samples were acidified to pH 2 using hydrochloric acid and then first 

passed through XAD-8 resin. The remaining XAD-8 effluent was then passed through 

XAD-4 resin (Rohm and Haas, Philadelphia, PA). Effluent from the XAD-4 resin was 

collected, and this was referred to as the hydrophilic fraction. The fractions referred to as 

hydrophobic and mesophilic organic compounds were retained by XAD-8 and XAD-4 

resins, respectively, and sodium hydroxide (NaOH, 0.1N) solution was used to back elute 

these fractions in reverse direction. The pH of the three fractions was adjusted to 7 using 

sulfuric acid or sodium hydroxide, and the volume of all fractions was adjusted to the 

initial sample volume.  

3.2.4 Chlorination Procedures  

Chlorine doses were determined based on a target chlorine residual of 4±1mg Cl2 

/L after a 7-day incubation at a temperature of 20 ºC. The field blanks used a dose of 

4.2mg Cl2 /L. Samples were buffered at pH 7 with 0.5M phosphate buffer solution. 

Chlorination was conducted in 300mL glass-stoppered bottles. A stock solution of 

sodium hypochlorite (Fisher Scientific, Fairlawn, NJ) was standardized by the DPD 

ferrous titrimetric method according to Standard Methods 4500-Cl F (APHA, AWWA, 
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and WEF, 1998). After being dosed with chlorine, samples were stored headspace-free at 

20 ºC in the dark for 168 h (7days). Then, all samples were quenched and partitioned for 

subsequent analysis of DBPs.  

3.2.5 Analytical Methods 

Total and dissolved organic carbon (TOC and DOC) were measured by the high-

temperature combustion method based on Standard Methods 5310 (APHA, AWWA and 

WEF, 1998). A Shimadzu TOC-VCPH Total Organic Carbon Analyzer (Shimadzu 

Scientific Instruments, Columbia, Md.) was used for these measurements at UMass. 

Samples for DOC analysis were filtered through 0.45 micron Whatman GF/F glass fiber 

filters. The pH of all samples was adjusted to pH 2 before TOC and DOC measurements. 

A concentration of 10 mg/L potassium hydrogen phthalate was used as a calibration 

standard. The UV-visible absorbance spectrum was measured for all waters prior to 

treatment with disinfectants. Samples were filtered through 0.45 micron Whatman GF/F 

glass fiber filters. Filtered sample was placed in the 1cm cuvette and measured using an 

Agilent 8453 spectrophotometer. Specific UV absorbance (SUVA) is calculated as the 

UV absorbance at 254 nm normalized to 1 mg/L DOC and then multiplied by 100. The 

liquid-liquid extraction, gas chromatography procedure for the analysis of trihalomethane 

(THM) in this research is closely aligned with USEPA method 551.1. The THM standard 

stock solution was prepared from USEPA halogenated volatiles mix stock solution 

(Supelco Inc., Bellefonte, PA.). Pentane was used as the extracting solvent and 1,2-

dibromopropane was used as an internal standard. Stock solutions were stored at -4°C. 

Extracted samples were measured using an Agilent 6890 gas chromatograph equipped 

with a linearized 63Ni electron capture detector and Agilent J&W DB-5 column. The 
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carrier gas was nitrogen of ultra-high purity. Haloacetic acid analysis was performed in 

accordance with USEPA Method 552.2. The HAA standard stock solution was prepared 

in methyl-tert-buryl-ether (MTBE) from USEPA Halogenated Acetic Acids Mix 

(Supelco Inc., Bellefonte, PA.). MTBE was used as the extracting solvent and 1,2-

dibromopropane was used as an internal standard. All stock solutions were stored at -4°C. 

Extracted samples were measured by Agilent 6890 gas chromatograph equipped with a 

linearized 63Ni electron capture detector and Agilent J&W DB-1 column. The carrier gas 

was ultra-high purity nitrogen.  

3.3 Results and Discussion 

3.3.1 Characteristics of Raw Water 

The average values of TOC and SUVA254 of the hydrophobic, hydrophilic, and 

mesophilic fractions are summarized in Table 3.1. Relatively high and variable TOC and 

SUVA254 in Schoharie were probably linked to the most part steep, and deep lacustrine 

clays underlie much of the Schoharie watershed surface that may impact water clarity by 

minor disturbances (Soil and District, 2013). It is found that, in NYC reservoir system, 

hydrophobic compounds are the most abundant of the XAD partition-based groups (over 

51% in total TOC; Table 3.1), which is in good agreement with the overall median 

percentage (56%) of hydrophobic acids in dissolved organic matter (DOM) from fresh 

waters (Perdue and Ritchie, 2003). It is also supported by the previous studies that the 

sum of the median percentages of humic acids and fulvic acids in fresh waters DOM is 

60% (Aiken et al., 1992; Aiken and Leenheer, 1993). Monthly rain events were 

characterized by USGS in 2013 for NYC reservoirs. The allochthonous organic matter 
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was probably the primary TOC loading to NYC reservoirs, which are mainly derived 

from canopy leaching and soil litter decomposition.  

The hydrophobic fractions exhibit consistently higher SUVA values than the 

corresponding hydrophilic and mesophilic (Table 3.1), which is in line with previous 

forest floor leaching studies. The hydrophilic fractions were found to be largely 

composed of carbohydrates (e.g., Orem and Hatcher, 1987; Kaiser et al., 2001), whereas 

the hydrophobic fractions were characterized by large proportions of UV absorbing 

compounds (e.g., aromatic compounds) and smaller abundances of carbohydrates 

(Guggenberger et al., 1994; Kaiser et al., 2001).  

3.3.2 Seasonal Variation of NOM Hydrophobicity  

 
Figure 3.1: Seasonal variation (n=8; solid line: median; dashed line: mean) of 

hydrophilic TOC percentage (a) and hydrophobic TOC percentage (b) with daily 

highest and lowest temperatures (°C); seasonal variation (n=8; solid line: median; 

dashed line: mean) of hydrophilic SUVA (c) and hydrophobic SUVA (d).  

b) Hydrophobic TOC Percentage a) Hydrophilic TOC Percentage 

c) Hydrophilic SUVA d) Hydrophobic SUVA 
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Table 3.1 Characteristics of NOM hydrophobicity fractions (average ± standard deviation) prior to chlorination 

(n=12months).  

Source 

Hydrophilic Fraction   Hydrophobic Fraction   Mesophilic Fraction 

TOC 

(mg/L) 
  

SUVA254  

(L/mg-m) 
  

TOC      

(mg/L) 
  

SUVA254  

(L/mg-m) 
  

TOC     

(mg/L) 
  

SUVA254  

(L/mg-m) 

Cannonsville 0.6 ± 0.4  1.4 ± 0.5  1.1 ± 0.7  3.3 ± 2.3  0.7 ± 0.6  2.6 ± 1.1 

Neversink 0.8 ± 0.9  2.6 ± 1.9  1.5 ± 1.2  3.5 ± 2.0  0.4 ± 0.2  3.1 ± 1.5 

Pepacton 0.4 ± 0.2  1.7 ± 1.0  0.9 ± 0.3  2.6 ± 1.2  0.5 ± 0.2  2.4 ± 1.2 

Schoharie 1.1 ± 2.1  2.0 ± 1.2  1.3 ± 0.4  3.8 ± 2.7  0.7 ± 0.4  2.3 ± 1.1 

Ashokan 0.8 ± 1.7  2.2 ± 2.1  0.9 ± 0.4  2.8 ± 1.7  0.4 ± 0.2  2.2 ± 1.5 

Rondout 0.5 ± 0.4  2.0 ± 1.4  1.0 ± 0.3  2.9 ± 1.6  0.6 ± 0.4  2.3 ± 1.6 

Kensico 0.4 ± 0.2  2.3 ± 1.4  1.0 ± 0.4  2.9 ± 1.6  0.4 ± 0.2  2.4 ± 1.9 

West Branch 0.5 ± 0.4  2.2 ± 0.9  1.3 ± 0.5  2.7 ± 1.1  0.6 ± 0.4  2.5 ± 1.1 
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The proportions of hydrophobic and hydrophilic fractions in TOC are presented 

using the box-and-whisker plots in Figure 3.1a and 3.1b with mean values of daily 

maximum and minimum air temperatures presented in dashed lines. The air temperatures 

were monitored by USGS at locations in Catskill, Delaware, and Croton watersheds. The 

proportions of hydrophobic and hydrophilic fractions in TOC are also presented in the 

supporting information Figure A.1 and A.2.  

The results show that the hydrophobic fraction in reservoirs is positively 

correlated with the air temperature in watershed area (Figure 3.1b) while the hydrophilic 

TOC shows a reverse trend (Figure 3.1a). Temperature is an indicator of seasonal climate 

change (snowmelt and leaf-off) in the watershed area, as well as a factor regulating the 

microbial production of NOM (e.g., Bourbonniere, 1989; Kalbitz et al., 2000; Wetzel, 

2001). The increases of the hydrophilic fractions in winter and early spring (Figure 3.1a) 

are probably caused by the disruption and subsequent leaching of fresh microbial and 

plant debris upon contact with water from precipitation or snow-melt. Similar increases 

of hydrophilic compounds during the cold season have been observed for percolation 

water of forest soils (Dai et al., 1996; Hongve 1999; Kaiser et al., 2001), especially after 

drastic changes of environmental conditions such as drying or freezing (Christ and David 

1994; Guggenberger et al., 1998).   

On the other hand, decomposition rates, which remove NOM from soils or waters, 

decrease in cold seasons but increase in warm seasons. Thus the labile hydrophilic 

fractions, preferentially used by microbes (Orem and Hatcher, 1987; Dai et al., 1996; 

Kaiser and Zech, 1997; Kaiser et al., 2001; Massaccesi et al., 2013), decreased rapidly in 

warm seasons (Figure 3.1a). The hydrophobic fractions consist of recalcitrant compounds 
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(e.g., Kalbitz et al., 2003; Marschner et al., 2008), and are consequently stable in warm 

seasons (Figure 3.1b). Another increase of the hydrophobic fraction occurred in the fall 

(Figure 3.1b). This may probably result from the leaf-off in October and November and 

subsequent leaching of fresh leaf litter in the NYC watershed.  

The hydrophobic fractions contained more UV absorbing content than the 

hydrophilic fractions in winter and spring, however, their characteristics were relatively 

similar in summer and fall (Figure 3.1c and 3.1d; Figure A.3 and A.4). This may be 

mainly regulated by the decomposition rates of UV absorbing content. The 

decomposition of aromatic components is significantly inhibited by low temperature 

(Evans, 1963). For example, lignin accumulation was observed by Li et al. (2016) during 

the snow cover period for litter soil layer. Then lignin and phenolic structures in 

hydrophobic fractions were degraded and converted into hydrophilic fraction when 

temperature increased (e.g., Sørensen, 1962; Rutigliano et al., 1996; Austin and Ballaré, 

2010).  

3.3.3 Seasonal Patterns of Precursor Hydrophobicity 

Table 3.2 Characteristics of seasonal water quality parameters (average ± standard 

deviation) during the period under study (Spring: March-May; Summer: June-

August; Fall: September-November; Winter: December-February; n=24) 

  Spring   Summer   Fall   Winter 

TOC (mg/L) 2.2 ± 0.6  1.9 ± 0.4  1.7 ± 0.3  1.7 ± 0.3 

DOC (mg/L) 1.7 ± 0.6  1.5 ± 0.3  1.4 ± 0.2  1.3 ± 0.3 

SUVA254 (L/mg·m) 2.0 ± 0.5  2.6 ± 0.6  2.5 ± 0.3  2.7 ± 0.8 

THM FP (µg/mg-C) 42.3 ± 12.4  53.2 ± 9.0  50.7 ± 5.9  59.1 ± 8.3 

DHAA FP (µg/mg-C) 31.9 ± 7.5  27.0 ± 10.0  14.9 ± 1.6  17.3 ± 12.6 

THAA FP (µg/mg-C) 44.2 ± 17.6   48.1 ± 15.6   35.4 ± 6.6   39.7 ± 17.1 
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The seasonal characteristics of raw water during the period under investigation 

are presented in Table 3.2. Among the four THMs (CHCl3, CHBrCl2, CHBr2Cl, and 

CHBr3), bromoform was the only product not detectable (values lower than the detection 

limit) in the measured samples whereas chloroform was identified as the predominant 

compound (over 95% of THM). Among HAAs, dichloroacetic acids (DCAA) and 

trichloroacetic acids (TCAA) represent 98% and 97% of DHAA (i.e., dichloro-, 

bromochloro-, and dibromoacetic acid) and THAA (i.e., bromodichloro-, dibromochloro-, 

trichloro-, and tribromoacetic acid) respectively. All DBP concentrations (µg/L) have 

been normalized to a 1 mg-C/L concentration so that they are intensive parameters, 

unaffected by actual TOC concentrations.  

Monthly measured DBP precursors are plotted for four seasons in Figure 3.2; 

spring (March-May), summer (June-August); fall (September-November), and winter 

(December-February). Figure 3.2 presents the seasonal patterns of intensive THM, 

DHAA, and THAA formation potentials in three partition-based groups using bar plots. 

The hydrophobic NOM was the predominant fraction in bulk water (Table 3.1), and its 

characteristics considerably affect the raw water properties. For example, the higher 

THM yields from hydrophobic fractions in winter (Figure 3.2a; Figure A.6) result in 

higher THM yields from bulk water in winter (Table 3.2). Similar seasonal differences in 

THM yields were found in other temperate environments (i.e., Europe and Japan) 

documented in raw surface water studies (Goslan et al., 2002; Imai, et al., 2003). 

However, reverse results were observed in treated waters in a distribution system where 

THM levels in summer and fall were two to five times higher than average concentrations 

measured in winter (Garcia-Villanova et al., 1997; Chen and Weisel, 1998; Rodriguez et 
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al., 2004). The possible explanation may be that the hydrophilic fractions in raw water 

have greater influence on the quality of treated waters as they are less amenable to be 

removed through conventional coagulation process (Matilainen et al., 2010; Ghernaout, 

2014). And they were found to yield more THMs in summer (Figure 3.2a; Figure A.5).  

 
Figure 3.2: Seasonal patterns of DBP yields in three hydrophobicity fractions (HiF: 

hydrophilic fractrion, n=24; MiF: mesophilic fraction, n=24; HoF: hydrophobic 

fraction, n=24). The error bars represent the standard deviation of all reservoirs in 

three month period. 

 

Evidence shows that hydrophobic NOM was rich in THAA precursors while 

hydrophilic NOM was rich in DHAA precursors (Figure 3.2b and 3.2c). This observation 

has been discussed in previous studies. Hua and Reckhow (2007) found that hydrophilic 

a) 

c) 

b) 
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and low molecular weight (MW) components tend to be more significant DHAA 

precursors, and hydrophobic and high MW components are significant THAA precursors. 

Recently, lignin phenols are reported to be more important as TCAA precursors than as 

chloroform and DCAA precursors (Hua et al., 2014). Instead, watershed sources derived 

from terrestrial plants were not considered to be the predominant NOM sources for 

DHAA precursors. Other researchers found that the algae derived organic matter 

produces greater amount of DHAA during chlorination than humic or fulvic acids (e.g., 

Hong et al., 2008).  

Figure 3.2 presents seasonal variations of the DBP precursors derived from 

different hydrophobicity groups. We suggest that the NOM in cold season (fall and 

winter) is mostly composed of freshly-flushed organic matter, in another word, more 

labile components, primarily attributed to leaf-off and slow biodegradation rate under low 

temperature. NOM in warm season (spring and summer) was more decomposed and 

more recalcitrant. These recalcitrant components are suggested to be quite reactive with 

chlorine and produce large amounts of DBPs (especially THAA; Table 3.2) during 

chlorination due to high electron density in the aromatic rings (Larson and Rockwell, 

1979; Boyce and Hornig, 1983). The seasonal increases of THAA and THM in summer 

and winter, respectively, characterize the more recalcitrant property of hydrophobic 

THAA precursors (Figure 3.2a and 3.2c). A similar hierarchy was characterized for the 

bulk water (Table 3.2). Furthermore, the hydrophilic fractions yield more THM and 

THAA in summer and fall. It seems that the hydrophilic THAA precursors were more 

labile than hydrophilic THM precursors. Moreover, as discussed above, the hydrophobic 

fractions may be converted into hydrophilic fractions in summer, and some active 
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reacting structures that form more THMs may have been transferred into the hydrophilic 

fractions. All three fractions contained more DHAA precursors in spring (Figure 3.2b). 

This may be caused by an algal bloom in the spring in the epilimnion of reservoirs where 

we collected the water samples, and these hydrophilic fractions tend to form more DHAA 

during chlorination.  

3.3.4 Locational Variations of DBP Precursors 

 
Figure 3.3: Seasonal patterns of intensive DBP concentration in three 

hydrophobicity fractions (HiF: hydrophilic fractrion; MiF: mesophilic fraction; 

HoF: hydrophobic fraction) from upstream reservoirs (U; n=12): Cannonsville, 

Neversink, Pepacton, and Schoharie; intermediate reservoirs (I; n=6): Ashokan and 

Rondout; and downstream reservoirs (D; n=6): Kensico and West Branch. The 

error bars represent the standard deviation of each reservoir in three month period. 
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Seasonal patterns of intensive DBP concentrations in up-, intermediate, and 

down-stream reservoirs are presented in Figure 3.3. Only the hydrophilic fractions show 

locational variations; the other fractions were relatively stable (Figure 3.3). This result is 

probably attributed to the most unsteady characteristics of hydrophilic NOM, which may 

change rapidly during transport from upstream to downstream. The hydrophilic fraction 

in summer was most recalcitrant and contained considerable amounts of DBP precursors 

in the intermediate reservoirs compared to others. The labile hydrophilic fractions (i.e., in 

fall) yielded more DBP precursors in downstream reservoirs, followed by the 

intermediate, then upstream reservoirs. Thus, to reduce the DBP precursors in water 

treatment plant, suitable sources could be considered based on the analysis above.  

A three-way analysis of variance (ANOVA) test was performed on the DBP 

formation potential analysis, with season, location, and hydrophobicity as three factors. It 

is found that season is significantly related to DHAA concentration (P-value: 0.032). The 

interaction of season and hydrophobicity is significantly related to DHAA and THAA 

concentrations (P-value: 0.021 and 0.00095). The interaction of location, season, and 

hydrophobicity is significantly related to THAA concentration (P-value: 0.030). 

3.4 Conclusion 

This investigation permitted the generation of a portrait of the THM, DHAA, and 

THAA formation in eight reservoirs located in a temperate environment where seasonal 

variations of surface water quality and water temperature are considerable. The 

hydrophobic TOC in reservoir waters were positively correlated with air temperature of 

the watershed area whereas the hydrophilic TOC shows a reverse trend. The seasonal 
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climate change (i.e., snowmelt and leaf-off) and microbial decomposition play an 

important role in the variations of NOM fractions, as well as the yields of DBPs. 

Generally, the THAA precursors are more hydrophobic than THM precursors, and the 

DHAA precursors were most hydrophilic. Recalcitrant hydrophobic NOM in summer 

was very reactive with chlorine and yielded the most amount of THAAs on annual basis. 

The THM precursors are less recalcitrant. Reservoir waters in spring contained more 

DHAA precursors than other seasons, which is probably correlated with the algae growth 

in the epilimnion.   
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CHAPTER 4  

PLANT LEACHATE AS POTENTIAL DBP PRECURSORS 

4.1 Introduction 

Disinfectants such as chlorine react with organic matter to generate disinfection 

byproducts (DBPs), which could be potentially hazardous to human health if the water is 

a public water supply (e.g., Hwang and Jaakkola, 2003). Organic matter released from 

plants is quite likely the most important fraction as potential DBP precursors, especially 

in heavily forested catchments. The connection between land cover and NOM generation 

is at least partly related to leaching of organic material from plant matter. These 

naturally-occurring organic substances are a major source of allochthonous natural 

organic matter (NOM) in surface waters, which are more complex and diverse than 

autochthonous NOM, and have yet to be fully understood.  

It has generally been accepted that as a result of immersion in stream water, 

allochthonous litter displays a pronounced loss of mass of up to 30-50% within the first 

few days due to leaching of water soluble substances (Petersen and Cummins, 1974; 

Webster and Benfield, 1986; France et al., 1997). Several investigators have shown a 

positive correlation between the amount of water-soluble substances in the litter and leaf 

leachate decomposition during the first months (e.g., Nykvist, 1959; Reckhow et al., 

2008). Substances leached from plants include a great diversity of materials (Tukey, 

1970). Cellulose and lignin materials from plant structural constituents make up the 

largest source of allochthonous humic compounds (Wetzel, 2001). The complex 

compounds undergo a series of decomposition stages. High concentrations of humic can 
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be found in upper soil horizons as a result of the breakdown of surface plant material 

(Thurman, 1985; Wetzel, 2001).  

Much has been learned about the sources, transport, and degradation of plant 

material in the aquatic environment. However, very few studies have been conducted on 

the fate and transport of DBP precursors originated from these allochthonous sources. 

This research characterizes the organic matter that is released by leaf and needle litters 

from maple, oak, and pine trees. In order to investigate the effect of light exposure and 

biodegradation on DBP precursors, we examine the potentials of their leachate to form 

DBPs under light, dark, and dark-with-biocide conditions.  

4.2 Materials and Methods 

4.2.1 Leaf Leaching Studies 

Oak and maple leaves and pine needles were collected from the top of the leaf 

pack in Mount Sugarloaf, MA in August, which contained leaves from the previous 

season’s litterfall. The three-species collected were red maple (A. rubrum), white oak (Q. 

alba), and white pine (P. strobus). All samples were kept in zip lock bags at 4°C before 

use. Five bottles are prepared for each leaf type (three amber bottles and two clear 

bottles). Amber bottles were protected from light by surrounding the bottle with 

aluminum foil. Two replicates were used for light and dark samples. Samples containing 

biocide were dosed with 1mg/L Sodium Azide. For each bottle, one gram (dry weight) of 

leaf samples were soaked in 800 mL artificial lake water (0.1587 g NaHCO3, 0.0992 g 

MgSO4, 0.0992 g CaSO4, 0.0066 g KCl per liter Milli-Q Water). Leaves were dried in an 

oven at 50°C for 24 hours before being weighed. Moisture contents of the maple and oak 
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leaves and pine needles were 34.2, 17.9, and 23.1% respectively. During leaching, 

samples were kept at 20±2°C in a constant temperature incubator which is lighted with 

four 30 watt fluorescent lamps (GRO-LUX). Samples were aerated with zero-grade air 

(21% oxygen, 79% nitrogen, Airgas, PA). Samples were leached for 8 days, and UV254 

and DOC measurements were periodically recorded on days 1, 3, 5, and 8. At the end of 

the leaching phase, the water from all twelve 1L bottles was decanted from the leaves, 

filtered through 0.45μm glass fiber filters and prepared for bench scale chlorination and 

DBP formation potential analysis. 

4.2.2 Chlorination Procedures 

The chlorine doses were determined based on target chlorine residual as 4±1mg 

Cl2 /L after 7-day incubation at the temperature of 20 ºC. The field blanks used a dose of 

4.2mg Cl2 /L. Samples were buffered at pH 7 with 0.5M phosphate buffer solution. 

Chlorination was conducted in 300mL glass-stoppered bottles. A stock solution of 

sodium hypochlorite (Fisher Scientific, Fairlawn, NJ) was standardized by DPD ferrous 

titrimetric method according to Standard Methods 4500-Cl F (APHA, AWWA, and 

WEF, 1998). After being dosed with chlorine, samples were stored headspace-free at 20 

ºC in the dark for 168 h (7days). 

4.2.3 Analytical Methods 

Dissolved organic carbon (DOC) was measured by the high-temperature 

combustion method based on Standard Methods 5310 (APHA, AWWA and WEF, 1998). 

A Shimadzu TOC-VCPH Total Organic Carbon Analyzer (Shimadzu Scientific 

Instruments, Columbia, Md.) was used for these measurements at UMass. Samples for 
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DOC analysis were filtered through 0.45 micron Whatman GF/F glass fiber filters. The 

pH of all samples was adjusted to pH 2 before DOC measurements. The concentration of 

10 mg/L potassium hydrogen phthalate was used as calibration standard. The UV-visible 

absorbance spectrum was measured for all waters prior to treatment with disinfectants. 

Samples were filtered through 0.45 micron Whatman GF/F glass fiber filters. The filtered 

sample was placed in the 1cm cuvette and measured by Agilent 8453 spectrophotometer. 

Specific UV absorbance (SUVA) is defined as the UV absorbance of a sample at a 

specific wavelength normalized by dissolved organic carbon (DOC) concentration. The 

liquid-liquid extraction, gas chromatography procedure for the analysis of trihalomethane 

(THM) in this research is closely aligned with USEPA method 551.1. The THM standard 

stock solution was prepared from USEPA halogenated volatiles mix stock solution 

(Supelco Inc., Bellefonte, PA.), which contains eleven species. Pentane was used as the 

extracting solvent and 1,2-dibromopropane was used as an internal standard. Stock 

solutions were stored at -4°C. Extracted samples were measured by Agilent 6890 gas 

chromatograph equipped with a linearized 63Ni electron capture detector and Agilent 

J&W DB-5 column. The carrier gas is nitrogen with ultra-high purity. Haloacetic acid 

analysis was performed in accordance with USEPA Method 552.2. The HAA standard 

stock solution was prepared in methyl-tert-buryl-ether (MTBE) from USEPA 

Halogenated Acetic Acids Mix (Supelco Inc., Bellefonte, PA.), which consisted of nine 

species. MTBE was used as the extracting solvent and 1,2-dibromopropane was used as 

an internal standard. All stock solutions were stored at -4°C. Extracted samples were 

measured by Agilent 6890 gas chromatograph equipped with a linearized 63Ni electron 
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capture detector and Agilent J&W DB-1 column. The carrier gas is ultra-high purity 

nitrogen. 

4.3 Results and Discussion 

4.3.1 Characteristics of DOC Released from Leaf Litter 

 

 

Figure 4.1 Release of DOC. a) Maple leaves; b) Oak leaves; c) Pine needles; vertical 

bars represent 95% confidence levels. 

 

Figure 4.2 Specific UV absorbance. a) Maple leaves; b) Oak leaves; c) Pine needles; 

vertical bars represent 95% confidence levels.  

 

The results of the leaching of maple and oak leaves, and pine needles are 

presented in Figure 4.1. All three leaf types were leached under three different 

b) a) c) 

a) b) c) 
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conditions: dark, dark-with-biocide, and light. For all leaf types, the highest DOC was 

observed in dark-with-biocide condition. Then the maple leaves leached more DOC 

under dark condition (Figure 4.1a), whereas the pine needles show reverse result (Figure 

4.1c). Figure 4.2 shows the slightly increasing trend of SUVA254 values with time in all 

samples. Samples in dark bottles had the highest SUVA254 followed by light condition 

and then the dark-with-biocide condition.  

All leaf types exhibited extensive carbon lost due to biodegradation, and 40 to 

75% of TOC was lost within eight days (Figure 4.1). The previous literatures show that 

the organic matter from leaves is rapidly consumed by microorganisms (Wetzel, 2001; 

Thurman, 2012). Up to 45% of deciduous litter leachate degrades in the first week, and 

30% after seven weeks (Hongve, 1999). The low-molecular-weight (MW) compounds 

initially present in fresh leachate are easily consumed by microbes, utilizing up to 54% of 

DOC within three days (Meyer, 1990).  

The DOC from the maple leaves presents higher SUVA254 values than from the 

oak and pine samples (Figure 4.2). This indicates that the maple leaves released more 

aromatic humics, whereas oak leaves leached a mixture of hydrophobic and hydrophilic 

organic matter and pine needles released primarily non-humic materials. McArthur and 

Richardson (2002) found that among tree species, deciduous species leached more than 

twice the amount of phenolics than coniferous species. A higher concentration of water-

soluble phenolics from deciduous litter than from coniferous species was also observed 

by Kuiters and Sarink (1986). The decomposition of aromatic humic is much slower, but 

photolytic processes alter the chemical composition of soluble high molecular weight 

humics and improve their bioavailability. 
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Photochemical modification of organic macromolecules can result in major 

alterations in chemical composition and bioavailability (Wetzel, 2001). Decreases of 

SUVA254 values were observed from the leaf types that were exposed to light (Figure 

4.2), which is in agreement with the results of photodegradation of highly conjugated and 

aromatic compounds (Judd et al., 2007; Helms et al., 2008). Previous research has shown 

that humic macromolecules with high molecular weight are largely degraded during 

irradiation (due to bond cleavage and/or disaggregation) resulting in the generation of 

volatile fatty acids and related simple compounds that serve as excellent substrates for 

bacterial degradation (Wetzel, 2001; Helms et al., 2008). Similar results have been 

observed by many laboratory studies of plant matter leaching processes that incorporated 

light exposure. Fellman et al. (2013) found that the decrease in SUVA254 following 

irradiation was negligible for fresh litter but significant for DOC leachate collected from 

four-month old litter.  

4.3.2 DBP Formation Potentials of Leaf Leachate 

The results of DBP formation potentials are presented in Figure 4.3. For all three 

leaf types, the DBP formation potentials have been normalized by the DOC concentration 

so that they are intensive yield parameters. The fully-chlorinated species, i.e., chloroform 

(CHCl3), dichloroacetic acid (DCAA), and trichloroacetic acid (TCAA), were the most 

abundant species of THM, dihaloacetic acid (DHAA), and trihaloacetic acid (THAA), at 

98%, 98%, and 99% of the total concentrations, respectively. 

The specific DBP concentrations with biocide were lower than those without 

biocide (Figure 4.3). This suggests that the NOM responsible for DBP formation from 

plants may be highly resistant to short-term biodegradation. Reckhow et al. (2008) found 
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that 81-day biodegradation caused a large increase in SUVA254 along with the DBP 

formation potentials in leaf leachate. Large quantities of low-UV-absorbing material 

present in the leachate was probably degraded to carbon dioxide or perhaps condensed to 

form highly recalcitrant humic-like material. This caused considerable increases in 

specific DBP formation potentials.   

 

Figure 4.3 Disinfection byproduct formation potential for last day of incubation. a) 

Maple leaves; b) Oak leaves; c) Pine needles; vertical bars represent 95% 

confidence levels. 

 

The maple and oak leaf leachates (Figure 4.3a and 4.3b) had higher DBP 

formation potentials than pine needle leachate (Figure 4.3c). Previous study found maple 

leaves contained substantial amounts of condensed tannins, phenolic components, and 

galloyl glucoses, whereas oak leaves contained almost exclusively condensed tannins 

(Kahkonen et al., 1999). The phenolic components in oak leaves and pine needles were 

30% and 45% less than those in maple leaves (Kahkonen et al., 1999; Barbehenn et al., 

2006). These phenolic components, especially lignin phenols, are important DBP 

precursors (Hua et al., 2016). Model lignin phenols generally contained higher TCAA 

precursors than chloroform and DCAA during chlorination (Hua et al., 2016), which may 

explain the higher specific concentrations of TCAA and chloroform in the current study.   

a) b) c) 
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4.4 Conclusion 

During the eight-day maple and oak leaves leaching experiment, and pine needles, 

significant concentrations of DOC were leached into water under light, dark, and dark-

with-biocide conditions. SUVA levels varied considerably between light and dark 

conditions, suggesting that the photolysis has an effect on the breakdown of aromatic 

content. High levels of specific DBP formation potentials were formed in leaf leachate. 

On average, the biodegraded organic matter formed higher specific DBP levels than the 

samples with biocide. Maple leaves had the highest yield of DOC and DBP precursors, 

whereas pine needles had the lowest yield.   
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CHAPTER 5  

RESERVOIR SEDIMENTS AS POTENTIAL SOURCES OF 

TRIHALOMETHANE AND HALOACETIC ACID PRECURSORS 

5.1 Introduction 

Naturally-occurring organic substances, which constitutes a large fraction of the 

organic matter in water supplies, was a major source of disinfection byproduct (DBP) 

precursors. Many of the DBPs are of concern to human health, and as a result, the 

USEPA has established regulations for two representative groups, the trihalomethanes 

(THMs) and haloacetic acids (HAAs). In order to control the DBP precursors from 

sources, it is important to identify and characterize their origins. The allochthonous and 

autochthonous DBP precursors derived from watershed and algae sources, respectively, 

have been documented by several studies (e.g., Stepczuk et al., 1998; Hong et al., 2008). 

Organic matter released from sediments can also be considered as an important source of 

DBP precursors (Uhler and Means, 1985; Martin et al., 1993; Hong et al., 2013).  

Aquatic macrophytes, algae and terrestrial sources are significant sources of 

organic matter sedimented from water column to sediment (Uhler and Means, 1985; 

Wetzel, 2001). Sedimentary organic carbon in pore water and soil fraction can be 

released into the overlying water column under undisturbed and disturbed conditions 

(e.g., Bloesch 1995; Effler et al., 1998; Komada and Reimers, 2001; Eggleton and 

Thomas, 2004; Effler and Matthews, 2004). In reservoir sediments, a significant 

proportion of DOC is disassociated from soil particles and stored in pore water which 

readily disperses into overlying water column during sediment resuspension (Eggleton 

and Thomas, 2004). Previous investigations of organic matter cycling in water column 

have highlighted the redistribution of organic matter between solid and solution phases 
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through sediment and organic matter release as a consequence of resuspension-induced 

desorption (Uhler and Means, 1985; Martin et al., 1993; Bloesch, 1995; Eggleton and 

Thomas, 2004; Yang et al., 2008; Hong et al., 2013). The behavior of organic matter 

partitioning between aqueous (pore water, overlying water) and solid phase (sediment, 

suspended particulate matter and biota) is highly affected by hydrodynamics, 

biogeochemical process, and environmental conditions (redox, pH, salinity, and 

temperature; Samiullah, 1990; Saulnier and Mucci, 2000; Cantwell et al., 2002). It is 

found that turbulence on sediments is a major effect that causes rapid DOC release from 

pore water (Effler et al., 1998; Cantwell et al., 2002; Komada et al., 2002). Sediment 

resuspension is documented as an annual cycle in dimictic lakes during spring and fall 

circulation (Wetzel, 2001). The process occurs when bottom shear exceeds a critical shear 

stress which is sufficient to overcome the cohesion of bottom sediments. Two basic zones 

of resuspension in lakes have been identified by Bloesch (1995): shallow zones that can 

be directly influenced by wave action, and turbulence in deeper areas that are associated 

primarily with internal seiches. Substantial drawdown is another reason that has been 

documented to cause turbulence on sediments in reservoir (Effler et al., 1998).  

When developing the insight and quantitative models, it is important to consider 

sediments as potential source of DBP precursors. Sediments collected from littoral and 

profundal zone release different but significant amounts of THM precursors, which are 

both affected by ambient concentrations of dissolved oxygen (Martin et al., 1993). The 

components of sediment are very site specific. Sediments from reservoirs in South China 

were mostly derived from algal biomass due to a considerably high concentration of 

algae (Hong et al., 2013). This differs from the normal understanding of sediments, 
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which views them as sinks of humic substances (e.g., Wetzel, 2001). However, to our 

knowledge, no study has been conducted that directly compares the precursors 

originating from plant leaching, sediments, and algal cells under similar laboratory 

conditions. Knowledge about the relative importance of these three sources would be 

valuable in drinking water management for the purpose of minimizing DBP precursors.  

The purpose of this study is to determine the comparative significance of DBP 

(i.e., trihalomethanes, dihaloacetic acids, and trihaloacetic acids) precursors released from 

profundal sediments of a water supply impoundment under aerobic, hypoxic, and 

anaerobic conditions. Finally, the contribution of DOC released from sediment in DBP 

formation was compared with those from algal cells and leaf leachate.   

5.2 Materials and Methods 

5.2.1 Sample Collection and Sediment Incubation 

Cannonsville Reservoir, a eutrophic water supply reservoir for New York City, 

was chosen for this work due to its well documented water quality. Sediment samples 

were collected from a profundal site nearest to the intake chamber (average depth: 20m) 

with an Eckman dredge, and were mixed to obtain one homogeneous sample. One 

hundred gram sediment samples were transferred to each of 12 (8 for sediment incubation 

and 4 for control without sediments) wide-mouth amber 2.5L glass bottles (Thermo 

Scientific, MA). Two liters of artificial lake water (0.1587g NaHCO3, 0.0992 g MgSO4, 

0.0992 g CaSO4, 0.0066 g KCl per liter Milli-Q Water) were added to each bottle. All the 

chemicals were ACS grade. The sediment organic content in each bottle was 3.9g/L. The 

bottles were kept in the dark at 20±2°C. Four levels of dissolved oxygen (DO) 
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concentrations were chosen for this study: 0, 10, 20, and 97% saturation of DO, and two 

replicates for each DO level. Zero grade compressed air (Airgas, PA) was bubbled into 

samples at a rate (determined from preliminary experiments) that minimized sediment 

disturbance yet maintained oxic conditions to maintained DO concentration at 8.6±0.1 

mg/L for 97% of DO saturation. Anoxic (DO concentration at 0.1±0.1 mg/L, 0% 

saturation of DO) were maintained by bubbling nitrogen of ultra-high purity (Airgas, PA) 

into bottles. The 10 and 20% saturation of DO were maintained by bubbling both DO and 

nitrogen. Sediments settled for 3 hours before initial TOC samples were taken. Sampling 

for chlorination occurred every second day and the final samples were collected on Day 

26. Samples for XAD fractionation were collected in Day 1, Day 8, and Day 26. All the 

samples were diluted 4 times with MQ water before future analysis, and the 

concentrations of each analyte were adjusted to the concentrations in the initial volume to 

eliminate the impact of volume reduction due to sampling on the accuracy of the results.  

After 26 days of incubation, sediments were filtered by GF/F glass fiber filter, 

then stored in amber bottle under 4°C. The organic content of incubated sediments was 

tested. Incubated sediments were also chlorinated with particle to Milli-Q water ratio of 

400mg/310mL, and their DBP formation potentials were measured. The DBP precursors 

in sediment particles were calculated based on DBP formation per oven-dry solid weight.  

5.2.2 Sediment Characterization 

The organic content of homogenous sample was determined by placing 20 g of 

sediment in pre-weighted and pre-dried aluminum pans, drying at 103°C to constant 

weight and ashing at 500°C until constant weight was again obtained. Percent organic 
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matter was calculated from loss of oven-dry weight following combustion. The organic 

content in sediments from Cannonsville Reservoir is 7.8g per 100g of dry solids.  

5.2.3 XAD-8/4 Resin Extraction  

The hydrophobicity of the NOM was determined using XAD-8 and XAD-4 resins 

(Rohm and Haas Company, Philadelphia, PA) based on a method developed by Aiken et 

al. (1992). The column distribution coefficient (k′) of both resins was kept at 50 for all 

waters. Water samples were acidified to pH 2 using hydrochloric acid and then first 

passed through XAD-8 resin. The remaining XAD-8 effluent was then passed through 

XAD-4 resin (Rohm and Haas, Philadelphia, PA). Effluent from XAD-4 resin was 

collected, and this was referred to as the hydrophilic fraction. The fractions referred to as 

hydrophobic and mesophilic organic compounds were retained by XAD-8 and XAD-4 

resins, respectively, and sodium hydroxide (NaOH, 0.1N) solution was used to back elute 

these fractions in reverse direction. The pH of the three fractions was adjusted to 7 using 

sulfuric acid or sodium hydroxide, and the volume of all fractions was adjusted to the 

initial sample volume.  

5.2.4 Chlorination Procedures  

Chlorine doses were determined based on target chlorine residual as 4±1mg Cl2 /L 

after 7-day incubation at the temperature of 20 ºC. The field blanks used a dose of 4.2mg 

Cl2 /L. Samples were buffered at pH 7 with 0.5M phosphate buffer solution. Chlorination 

was conducted in 300mL glass-stoppered bottles. A stock solution of sodium 

hypochlorite (Fisher Scientific, Fairlawn, NJ) was standardized by DPD ferrous 

titrimetric method according to Standard Methods 4500-Cl F (APHA, AWWA, and 
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WEF, 1998). After being dosed with chlorine, samples were stored headspace-free at 20 

ºC in the dark for 168 h (7days).  

5.2.5 Analytical Methods  

Total and dissolved organic carbon was measured by the high-temperature 

combustion method based on Standard Methods 5310 (APHA, AWWA and WEF, 1998). 

A Shimadzu TOC-VCPH Total Organic Carbon Analyzer (Shimadzu Scientific 

Instruments, Columbia, Md.) was used for these measurements at UMass. Samples for 

DOC analysis were filtered through 0.45 micron Whatman GF/F glass fiber filters. The 

pH of all samples was adjusted to pH 2 before TOC and DOC measurements. The 

concentration of 10 mg/L potassium hydrogen phthalate was used as calibration standard. 

The UV-visible absorbance spectrum was measured for all waters prior to treatment with 

disinfectants. Samples were filtered through 0.45 micron Whatman GF/F glass fiber 

filters. Filtered sample was placed in the 1cm cuvette and measured by Agilent 8453 

spectrophotometer. Specific UV absorbance (SUVA) is defined as the UV absorbance of 

a sample at a specific wavelength normalized by dissolved organic carbon (DOC) 

concentration. The liquid-liquid extraction, gas chromatography procedure for the 

analysis of trihalomethane (THM) in this research is closely aligned with USEPA method 

551.1. The THM standard stock solution was prepared from USEPA halogenated 

volatiles mix stock solution (Supelco Inc., Bellefonte, PA.), which contains eleven 

species. Pentane was used as the extracting solvent and 1,2-dibromopropane was used as 

an internal standard. Stock solutions were stored at -4°C. Extracted samples were 

measured by Agilent 6890 gas chromatograph equipped with a linearized 63Ni electron 

capture detector and Agilent J&W DB-5 column. The carrier gas is nitrogen with ultra-



 

 66 

high purity. Haloacetic acid analysis was performed in accordance with USEPA Method 

552.2. The HAA standard stock solution was prepared in methyl-tert-buryl-ether (MTBE) 

from USEPA Halogenated Acetic Acids Mix (Supelco Inc., Bellefonte, PA.), which 

consisted of nine species. MTBE was used as the extracting solvent and 1,2-

dibromopropane was used as an internal standard. All stock solutions were stored at -4°C. 

Extracted samples were measured by Agilent 6890 gas chromatograph equipped with a 

linearized 63Ni electron capture detector and Agilent J&W DB-1 column. The carrier gas 

is ultra-high purity nitrogen. 

5.3 Results and Discussion 

5.3.1 Characteristics of DOC Released 

 

Figure 5.1 Release of DOC from sediments and SUVA254 under 0, 10, 20, 97% 
saturation of DO. a) DOC; b) SUVA254 

 

The pilot study of 26-day incubation showed that the sediments released 

increasing amounts of DOC as the DO content decreased (Figure 5.1a). The proportion of 

organic content in sediment solids at the end of the experiment were positively correlated 
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with the DO concentration (Table 5.1). These results show that the absence of DO 

accelerated the release of organic matter from the sediments. This may be due to rapid 

DOC desorption from mineral surfaces at low redox potentials in anaerobic condition 

(0% saturation of DO, Koelmans and Prevo, 2003), and supplemented by a slower 

anaerobic decomposition rate (Kristensen et al., 1995). Previous evidence showed that 

iron(III) oxides can be reduced into dissolved form of iron(II) by anaerobic bacteria 

(Nealson, 1982), and the reduction of Mn(III, IV) to dissolved Mn(II) can also occur in 

anaerobic conditions (Stumm, 1992). As a result, a release of organic compounds that 

absorbed onto oxide mineral surfaces occurs in the absence of DO condition. Previous 

work showed that aerobic decomposition of organic compounds (occurred with 97% 

saturation of DO) was about 10 times faster than for anaerobic condition, especially when 

structural components (e.g., lignin and complex lipids) become a dominant fraction of the 

particulate remains in sediments (Benner et al., 1984; Ding and Sun, 2005). This result 

supports the finding that UV absorbing substances accumulated in the anaerobic water 

(Figure 5.1b).  

Table 5.1 Characteristics of incubated and raw sediments (after 26 days of 

incubation) 

% saturation 

of DO 

organic 

content 

THM,   

µg/mg-solid 

DHAA,    

µg/mg-solid 

THAA,    

µg/mg-solid 

0% 7.5% 2.05 0.31 0.39 

10% 7.6% 2.15 0.66 1.61 

20% 7.7% 2.23 0.63 1.81 

97% 7.9% 2.25 1.66 1.97 

raw* 8.0% 2.74 0.50 1.52 
 

Under anaerobic conditions, the hydrophobic fractions exhibited a slower release 

rate than hydrophilic fractions, and the proportion of hydrophobic fraction in TOC is in 
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the range of 28 – 40% (Figure 5.2a). This is similar the hydrophobic proportion under the 

aerobic condition (30 – 44%; Figure 5.2b). However, these are lower than the sum of the 

median percentages of hydrophobic fractions in dissolved organic matter from fresh 

water (63%; Perdue and Ritchie, 2003). Sediments are known to be a historic sink of 

aquatic macrophytes, algae, and terrestrial sources (Uhler and Means, 1985; Bloesch, 

1995; Effler et al., 1998; Wetzel, 2001). The relatively high proportion of hydrophilic 

components in total TOC (Figure 5.2) may be caused by the substantial algae growth in 

Cannonsville Reservoir, as its eutrophic status was documented by historic data (Effler et 

al., 1998; Effler and Matthews, 2004). 

 

Figure 5.2 Characteristics of hydrophobicity released from sediments. a) anaerobic 

(0% saturation); b) aerobic (97% saturation). 

 

After 26 days of incubation, the TOC of hydrophobic, mesophilic, and 

hydrophilic fractions under aerobic condition is 63%, 60%, and 58% lower than those in 

anaerobic environment (Figure 5.2). We interpret this is as caused by the variation of 

microbial degradation rate for each component. Under anaerobic condition, the 

hydrophobic compounds were more recalcitrant followed by the mesophilic and then the 

hydrophilic fractions. This is supported by the previous studies showed that hydrophilic 
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fractions were most biodegradable under anaerobic condition, and the hydrophobic 

components (humic substances, lignin residues, and plant-based phenolic compounds) are 

far less biodegradable (e.g., Benner et al., 1984; Thurman, 1985; Croue et al., 2000; Ding 

and Sun, 2005).  

5.3.2 Release of DBP Precursors 

 
 

Figure 5.3 Release of DBPs from sediment leachate 

 

Figure 5.3 presents the DBP formation potential results for the organic matter 

released from sediments under anaerobic (0% DO saturation), hypoxic (10 and 20% DO 

saturation = 0.9 - 1.8 mg/L DO concentration), and aerobic (97% DO saturation) 

conditions, where a threshold DO concentration of 2 mg/L has usually been chosen by 

researchers to define hypoxia because benthic dewelling organisms are strongly affected 

by oxygen concentrations lower than 2mg/L (Diaz and Rosenberg, 1995; Conley et al., 
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2002; Spietz et al., 2015). In Figure 5.3a, 5.3b, and 5.3c, the values are graphed in 

absolute concentration units. For the other three (Figure 5.3d, 5.3e, and 5.3f), the DBP 

formation potentials have been normalized to a 1 mg-C/L concentration so that they are 

intensive parameters which unaffected by actual DOC concentrations. The fully-

chlorinated species, i.e., chloroform (CHCl3), dichloroacetic acid (DCAA), and 

trichloroacetic acid (TCAA), were the most abundant species of THM, DHAA, and 

THAA, at 97%, 96%, and 99% of the total concentrations, respectively. This is because 

concentrations of bromide are quite low in Cannonsville Reservoir, and as a result, little 

bromine becomes incorporated into the DBPs.  

Regardless of whether one considers the extensive or intensive measures, 

sediments produced greater DBP precursors under anaerobic condition than those in 

presence of free oxygen. This could be attributed to the substantive production of methyl 

groups during metanogenesis process in anaerobic degradation. Previous study showed 

that methanogenesis is the predominant step for organic matter dissimilation in profundal 

sediments of eutrophic lakes during stratification (i.e., DO depletion, Lovley and Klug, 

1982). As prevalent intermediate in methanogenesis (e.g., Evans, 1963; Molongoski and 

Klug, 1980), methyl groups, especially methyl keto and methoxyl, have been found to be 

important THM, THAA, and DHAA precursors (Morris and Baum, 1978; Hua and 

Reckhow, 2008; Hua et al., 2014). Hua et al. (2014) found that the methyl keto group 

produced the highest chloroform, at 2-10 fold more than other phenol structures. The 

reaction mechanism involves an electrophilic addition of a chlorine atom to the 𝛼-carbon 

of an enolizable carbonyl compound. The subsequent halogenation at the 𝛼-carbon and 

hydrolysis yield chloroform (Morris and Baum, 1978). Furthermore, Table 5.1 shows 
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lowest DBP production per unit weight of solids under anaerobic condition. This 

indicates that the release of DBP precursors was enhanced during DO depletion. In 

addition, the intensive measures for the hypoxic and aerobic conditions were quite similar 

(Figure 5.3d, 5.3e, and 5.3f). It suggests that the reactivity of NOM released under 

hypoxic and aerobic conditions were similar. The hydrolysis decomposition is still the 

dominant degradation pathways in hypoxic settings, although the aerobic respiration is 

diminished (Middelburg and Levin, 2009).  

THAA precursors are more prevalent in sediment leachate followed by the THM 

and then the DHAA precursors (Figure 5.3). These relative hierarchies tend to match 

expectations based on DBP precursor analysis on some laboratory-derived end members. 

For example, terpenoid and lignin are slowly biodegraded in streams and lakes, then are 

observed to accumulate in sediments (Ishiwatari and Uzaki, 1987; Giri et al., 2015). 

These aged components have been shown to be especially rich in THAA and THM 

precursors (e.g., Reckhow et al., 2008; Mitch et al., 2009; Hua et al., 2014).  

In summary, it is worthwhile to take into consideration that an anaerobic 

condition in overlying waters above the profundal sediments was prevalent in the 

hypolimnion during summer stratification, and this can cause several water quality 

concerns including phosphorus release (Wetzel, 2001) and the previously noted DBP 

precursor release.  

5.3.3 Characteristics of DBP Precursors 

The intensive DBP formation potentials of hydrophobic, mesophilic, and hydrophilic 

fractions are shown in Figure 5.4. Dashed lines exhibit the maximum and minimum range 

of DBP yields in the epilimnion water of the Cannonsville Reservoir. Hydrophobic 
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THAA and THM precursors were more prevalent in sediments than in epilimnion water 

(Figure 5.4a and 5.4b). This may be due to high THM and THAA formation in the aged 

hydrophobic fraction.  

 

Figure 5.4 Characteristics of hydrophobicity of DBP precursors (dashed line: 

maximum and minimum range of specific DBP formation of Cannonsville 

Reservoir).  

 

Hydrophobic fraction in anaerobic condition generally contained more DBP 

precursors than aerobic degradation (Figure 5.4a, 5.4b, and 5.4c), whereas the DBP yields 

in mesophilic and hydrophilic fraction were more fluctuating (Figure 5.4d, 5.4e, 5.4f, 

5.4g, 5.4h, and 5.4i). The variation is probably caused by the unsteady characteristics of 
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hydrophilic and mesophilic, especially the latter, which could be in the transition form 

from hydrophobic to hydrophilic during biodegradation. It is worth noting that the 

anaerobic hydrophilic fraction contained more THM precursors than the aerobic 

hydrophilic fraction (Figure 5.4g), whereas their THAA and DHAA specific formation 

potentials were relatively similar (Figure 5.4h and 5.4i). More attention should be paid to 

the hydrophilic content of NOM in source waters since this NOM fraction is not 

amenable to removal by coagulation but can still produce appreciable amounts of DBPs.  

5.3.4 Contribution of Sediment Leachate to DBP Precursors 

 
Figure 5.5 DBP formation upon chlorination of organic compounds derived from 

plant leachate, sediment leachate, and algal cells. A*: Algae (Hong et al., 2008); S: 

Sediments; P: Plants. (Data from plant and sediment leachate were both collected 

after 8 days of incubation, chlorination at pH=7, reaction temperature =20ºC, Cl2 

contact time = 7days. Algal data were corrected based on data collected by Hong et 

al., 2008, chlorination at pH =7, reaction temperature =20ºC, Cl2 contact time = 

3days.) 
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We view NOM in a water impoundment as originating from three types of 

sources: 1) watershed or allochthonous, 2) algal or autochthonous, and 3) lake sediments 

or benthic. In order to understand the characteristics of NOM from each source, this study 

compares the DBP formation potentials from these three origins. Data are shown in 

Figure 5.5 and Table A.1, and include 3 species of leaf leachates representing watershed 

sources, 4 sediment leachates, and 3 species of algal cells. Data from plant and sediment 

leachate were both collected after 8 days of incubation, chlorination at pH=7, reaction 

temperature =20ºC, Cl2 contact time = 7 days. Algal data were corrected based on data 

collected by Hong et al., 2008, chlorination at pH =7, reaction temperature =20ºC, Cl2 

contact time = 3 days. A model1 was employed to control the difference between 

chlorination time. All measured DBP levels were adjusted to that which would be 

expected from a standard chemical environment, where only the organic precursor 

content (quality or characteristics) affects the specific yields. The values of specific DBP 

formation potential for leaf leaching were averages of leaf incubation in light and dark 

conditions after 8 days. Maple, oak, and pine were chosen because they were the major 

species of the Cannonsville watershed’s timberland (over 56% of watershed land cover; 

Hall et al., 2008). Algal DBP data from Hong et al. (2008) were used for chosen because 

they were generated under the similar chlorination conditions as the leaching 

experiments.  

The results show that chloroform and TCAA precursors are more prevalent in the 

plant leachate followed by the sediment and then the algal sources (Figure 5.5). This was 

                                                 
1 DBP =  𝑎(𝐵𝑟 + 𝑏)𝑐(𝑝𝐻 + 𝑑)𝑒(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟 + 𝑓)𝑔(𝐶𝑙2𝑑𝑜𝑠𝑒)ℎ(𝑡𝑖𝑚𝑒)𝑖 (Reckhow et 

al., 2008 pp.45). The model parameters were shown in Table A.2.  
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not unexpected as the lignin is an anticipated component of plant tissues, but not algal 

NOM. Purified lignin and lignin monomers have been shown to be especially rich in 

TCAA precursors (e.g., Hua et al., 2016). The organic matter released from sediments 

could be a historic mixed deposit of algae and terrestrial sources, therefore, the formation 

potentials of DBPs were in the middle of these two sources. Several researchers have 

shown that TCAA yields from leaf leachate (39-140 µg/mg-C; Reckhow et al., 2008) are 

higher than yields from algal organic matter (21.5-39.5 µg/mg-C; Plummer and Edzwald, 

2001). In contrast, DCAA yields from algal cells were higher than yields from leaf 

leachate.  

5.4 Conclusion 

Profundal sediments from Cannonsville Reservoir released increasing levels of DBP 

precursors as DO levels decreased. Therefore, the hypolimnion DO deficit during 

summer stratification becomes a more important water quality concern, not only because 

it results in NOM release, but also a release of obviously higher DBP precursors per unit 

organic carbon. From the XAD fractionation and chlorination of each fraction, we 

conclude that hydrophobic fraction in sediment leachate is especially rich in THAA and 

THM precursors compared with watershed-dominated NOM. The sediment released 

precursor behaved like a mix of the algal and leaf released precursors.   
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CHAPTER 6  

CONCLUSIONS 

It is helpful to identify the seasonal pattern of DBP precursor origins in water 

supply impoundments and its effects on precursor behavior. The seasonal variation of 

precursor hydrophobicity has rarely been studied, and is informative for the development 

of predictive models. Furthermore, the resolution of the relative contributions of the three 

types of DBP precursor sources (watershed or allochthonous, algal or autochthonous, and 

bottom sediments or benthic) is valuable for guiding management decisions to improve or 

maintain water quality. 

The summary of the major findings is: 

1. Algal-dominated NOM contributes disproportionately to DHAN formation, 

whereas watershed-dominated NOM is especially rich in THAA and THM 

precursors as well as UV absorbing substances.  The sediment-dominated 

precursor behaved like a mix of the other two, but generally resembled the 

watershed NOM most. 

2. Hydrophobic TOC in reservoir waters was positively correlated with air 

temperature of the watershed area whereas the hydrophilic TOC shows a 

reverse trend. Recalcitrant hydrophobic NOM in summer was very reactive 

with chlorine and yielded the most amount of THAAs on annual basis. The 

THM precursors are less recalcitrant. Reservoir waters in spring contained 

more DHAA precursors than other seasons, which is probably correlated with 

the algae growth in the epilimnion.  
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3. Photolysis has an effect on the breakdown of the aromatic content in leaf 

leachate. Recalcitrant organic matter contained more DBP precursors than 

labile NOM in maple, oak, and pine leaf leachate. Maple leaves had the 

highest yield of DOC and DBP precursors, whereas pine needles had the 

lowest yield.   

4. Profundal sediments released increasing DBP precursors as DO levels 

decreased. Hydrophobic fraction in sediment leachate is especially rich in 

THAA and THM precursors compared with the watershed-dominated NOM.  

Identifying the origins and understanding the behavior of DBP precursors is 

fundamental to the development of effective management. Therefore, more efforts should 

be made to build a mechanistic model for DBPs drinking water supply based on the 

physical and chemical parameters and DBP concentrations. More research needs to be 

conducted to investigate the speciation distribution of the DBPs in different climatic 

zones. More detailed research should be conducted to investigate the formation, 

conversion, and degradation of DBP precursors under different seasonal and spatial 

conditions.  
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APPENDIX 

SUPPORTING INFORMATION 

 

Figure A. 1 Monthly variation of percent of hydrophilic TOC from eight reservoirs 

 
Figure A. 2 Monthly variation of percent of hydrophobic TOC from eight reservoirs  
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Figure A. 3 Monthly variation of hydrophilic SUVA from eight reservoirs  

 

 
Figure A. 4 Monthly variation of hydrophobic SUVA from eight reservoirs  
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Figure A. 5 Monthly variation of hydrophilic STHM from eight reservoirs  

 
Figure A. 6 Monthly variation of hydrophobic STHM from eight reservoirs  
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Figure A. 7 Monthly variation of hydrophilic SDHAA from eight reservoirs  

 

 
Figure A. 8 Monthly variation of hydrophobic SDHAA from eight reservoirs  

 

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12

SD
H

A
A

, u
g/

m
g-

C

Month

Ashokan Cannonsville Kensico Neversink

Pepacton Rondout Schoharie West Branch

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12

SD
H

A
A

, u
g/

m
g-

C

Month

Ashokan Cannonsville Kensico Neversink

Pepacton Rondout Schoharie West Branch



 

 82 

 
Figure A. 9 Monthly variation of hydrophilic STHAA from eight reservoirs 

 

 

 

 
Figure A. 10 Monthly variation of hydrophobic STHAA from eight reservoirs  
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Table A. 1 DBP formation upon chlorination of organic compounds derived from 

plant leachate, sediment leachate, and algal cells. (Data from plant and sediment 

leachate were both collected after 8 days of incubation, chlorination at pH=7, 

reaction temperature =20ºC, Cl2 contact time = 7days; Algal data were adapted 

form data collected by Hong et al., 2008, chlorination at pH =7, reaction 

temperature =20ºC, Cl2 contact time = 3days) 

    CHCl3 DCAA TCAA 

NOM origin  Specific  µg/mg-C µg/mg-C µg/mg-C 

plant Oak leaf-dark 136.5 66.7 140.3 

plant Oak leaf-light 138.3 61.9 133.6 

plant Oak leaf-dark-biocide 65.0 35.0 84.9 

plant Maple leaf-dark 146.8 35.1 122.2 

plant Maple leaf-light 150.6 62.5 187.0 

plant Maple leaf-dark-biocide 68.7 33.7 96.7 

plant Pine needle-dark 114.1 39.6 92.1 

plant Pine needle-light 102.3 30.0 69.1 

plant Pine needle-dark-biocide 81.5 29.7 65.4 

sediment anaerobic (0% sat.) 68.0 35.1 69.6 

sediment hypoxic (10% sat.) 62.3 33.7 51.9 

sediment hypoxic (20% sat.) 67.3 34.4 52.9 

sediment aerobic (97% sat.) 65.2 27.8 64.4 

algal cell* blue-green algal* 32.6 39.2 45.1 

algal cell* green algal* 42.3 33.8 38.6 

algal cell* diatom* 59.6 28.7 21.7 

* Hong et al. (2008)        

 

 

Table A. 2 Model parameters used to adjust DBP yields (Reckhow et al., 2008) 

  Bromide (ug/L) pH Temperature (C) 

Chlorine 

dose 

(mg/L) 

Time 

(hr) 

DBP 

group 

Offset 

b 

Exponent 

c 

Offse

t d 

Exponen

t e 

Offse

t f 

Exponen

t g 

Exponen

t h 

Exponen

t i 

TTHM 1 0.036 -2.6 0.715 0 0.791 0.272 0.261 

THAA 1 0.036 0 -1.495 0 0.307 0.378 0.188 

DHAA 1 0.036 0 0.259 0 0.377 0.346 0.186 
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