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ABSTRACT 

HABITAT SELECTION, CONNECTIVITY, AND POPULATION GENETICS OF A 

TIMBER RATTLESNAKE (CROTALUS HORRIDUS) METAPOPULATION IN 

SOUTHWESTERN MASSACHUSETTS AND NEW ENGLAND 

FEBRUARY 2018 

ANNE G. STENGLE, A.S., HOLYOKE COMMUNITY COLLEGE 

B.S., UNIVERSITY OF MASSACHUSETTS, AMHERST 

PH.D., UNIVERSITY OF MASSACHUSETTS, AMHERST 

Directed By: DR. PAUL R. SIEVERT 

 

 

 Timber Rattlesnake suffered significant range reduction in the past few centuries. 

Here, I studied the demographics, movement patterns and habitat use of a metapopulation 

in Berkshire County, Massachusetts and population genetics of northeastern populations. 

The metapopulation was split into four subpopulations, based on geographic distance and 

genetic distance. Differences in gender and color morph (yellow and black) ratios were 

analyzed by subpopulation. Population size estimates were done for each subpopulation 

and for the metapopulation. Body condition index (BCI) was compared between 

individuals exhibiting signs of snake fungal disease (SFD) and with those not exhibiting 

symptoms.  A total of 185 individuals was marked, with 32 recaptures, and a 65:35 

(male:female) sex ratio. There was no difference in sex ratio by subpopulation (P = 0.23). 

Color morph did vary significantly among subpopulations (P < 0.0001) with yellow 

being the dominant color in three subpopulations. SFD was observed in 10.3% of 

individuals, all males. Three of the infected males were radio-tracked and exhibited 
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healing of lesions with each shed. There was no difference in BCI of individuals due to 

lesion presence. Six cases of mortality were observed, (three had radiotransmitters) with 

one predation, one human kill, and four of unknown causes.  

Movement patterns can be influenced by many factors, e.g. resource needs that 

change throughout the year, reproductive condition, and disease. Using radiotelemetry I 

investigated variation in home range size, 95% kernel density estimates, and maximum 

distance from a source den. Gravid females moved significantly less often, and used 

significantly smaller ranges than males and non-gravid females. Individuals used smaller 

ranges and moved less often during the shedding season than during the active season, 

supporting a hypothesis that individuals moved farther and more frequently while 

foraging and mate searching. SFD presence did not affect any movement parameters.  

Home range size did not vary annually; however, individuals tracked for 4-5 years 

appeared to use different foraging areas each year, often returning to previously used 

areas in following years. The results presented here identify key spatial areas, such as 

basking and foraging areas, for this metapopulation. Habitat selections provide a basis if 

future management strategies (e.g. headstarting neonates and translocation) are 

implemented using individuals from this region which should use the same or similar 

areas for management plans. 

Habitat needs often depend on behavior (e.g. foraging, mate searching, gestating), 

and can vary seasonally and with health condition. I investigated intraspecific variation 

with regard to health status and sex (male and non-gravid female) using classification tree 

(CART) analysis, as well as yearly and seasonal variation compared to random available 

habitat measures using paired logistic regression. Snake fungal disease (SFD) presence 
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and sex were not correlated with habitat selection. Overall, individuals preferred areas of 

increased rock cover, decreased canopy cover, lower slope, and increased vegetative 

cover compared to available random sites. Individuals preferred rock outcrops under open 

canopies during the shedding season, and used open forested areas with high vegetation 

cover and tree density during the active season. This population is located in one of the 

largest intact areas of old growth forest in New England, whereas populations in the 

region inhabiting other areas where the habitat has been severely altered by humans offer 

difficult management options.  

Understanding how genetic variation is distributed within and among populations 

of a species produces a basis to make conservation management recommendations. 

Peripheral populations often have lower genetic diversity than core populations and may 

need artificial gene flow for future population persistence. I quantified the genetic 

diversity in 16 peripheral Timber Rattlesnake populations in the northeast using 13 

microsatellite loci. These populations were all within the peripheral extent of the species’ 

northeastern range, with several located in the core area of the range in eastern New York 

and the Appalachian Mountains. Populations were highly differentiated from each other 

(mean FST = 0.175). There was no correlation between genetic distance and geographic 

distance (R = -0.0878, P = 0.67). Seven population level clusters were detected (K = 7), 

all of which corresponded to single peripheral populations, and suggesting that genetic 

drift has led to population differentiation. Elevated influence of drift is likely the result of 

regional loss of over 50% of the rattlesnake population in the past few centuries. Within 

the largest New England area of occurrence, there appears to be a metapopulation 

structure, with gene flow among nearby den regions. For future population persistence, 
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assisted gene flow or ‘genetic rescue’ might provide a viable management action for the 

most-at-risk populations. If assisted gene flow is implemented, results presented here 

should serve as a guide for determining which populations are genetically diverse enough 

to serve as the best donor populations for imperiled populations.  
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CHAPTER 1 

POPULATION DEMOGRAPHICS OF A METAPOPULATION OF TIMBER 

RATTLESNAKES IN WESTERN MASSACHUSSETTS  

 

1.1 Abstract 

The Timber Rattlesnake has suffered significant range reduction in the past few 

centuries. Here I studied the demographics of a metapopulation in Berkshire County, 

Massachusetts. The metapopulation was split into four subpopulations, based on 

geographic distance and genetic distance (cF Chap 4). Differences due to sex and color 

morph (yellow and black) ratios were analyzed by subpopulation. Population size was 

estimated for each subpopulation and for the metapopulation. Body condition index 

(BCI) was compared with individuals exhibiting signs of snake fungal disease (SFD) with 

those not exhibiting SFD.  A total of 185 individuals was marked, with 32 recaptures. 

There was no difference in sex ratio (65:35) by subpopulation (p = 0.23) whereas color 

morph did vary among subpopulations (p < 0.0001) with yellow being the dominant color 

in three subpopulations. Lesions were observed in 10.3% of individuals, all male. Three 

were radiotracked (of Chap 2) and continued to show healing of lesions with each shed. 

There was no difference in BCI of individuals due to SFD lesion presence. Six cases of 

mortality were observed in the field, with one due to predation, one to human kill, and 

four of unknown causes.  

 

1.2 Introduction 
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Rare species often face many anthropogenic challenges: habitat loss, range 

fragmentation, and human exploitation.  Legal protection, followed by habitat restoration 

and protection, is often the first step taken in conserving rare species.  This approach can 

secure needed resources for the remaining individuals in the population, but may not 

result in an adequate population base for further growth.  Pressures that may inhibit 

population growth include mortality due to increased predation or disease.  These factors 

can have especially large effects on long-lived species that are slow to reach sexual 

maturity and reproduce infrequently.  Therefore, it may be possible to protect habitat for 

a current population, to prevent decreases in the population, and to result loss of genetic 

variation caused by inbreeding depression. 

Resources both biotic and abiotic needed by a species can restrict the habitat 

patches that are available to a population.  If these resources are rare, local populations 

may exhibit a high degree of philopatry towards them. This effect restricts local 

populations’ geographical ranges, possibly isolating them from other local populations.  

Connectivity among these local populations, creating metapopulation interactions, is 

required to maintain genetic variability and provide opportunities for repatriation in areas 

where a subpopulation has been extirpated (Wade and McCauley, 1988).  Gene flow is 

maintained by individual dispersal or the exchange of genetic material through matings 

between individuals of separate local populations.  These factors counteract the 

deleterious effects of isolation and small population sizes that lead to inbreeding or 

extinction (Allendorf and Luikart, 2006).  Allopatric populations can genetically diverge 

without deleterious effects due to ecological barriers (Whiteley et al., 2004). However, 

the increasing degree of anthropogenic-caused isolation (e.g. bisecting summer and 
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winter habitat) may produce deleterious effects to small populations that require access to 

scarce resources. 

Protecting and managing habitats are commonly used techniques in conservation 

biology.  Some approaches used to enhance population growth include closing trails and 

sensitive areas seasonally, providing public education on rare species, or using game 

wardens to protect sites.  Unfortunately, these methods may not always be politically or 

financially possible if habitat corridors cannot be protected between subpopulations; thus 

genetic diversity may still decrease.  In such cases, it may be necessary to increase 

genetic diversity artificially via genetic rescue. Other approaches include population 

supplementation, captive breeding, and translocaing individuals.  For all of these methods 

it is necessary to have an understanding of the genetic and population structure of the 

affected populations to determine appropriate donor and recipient populations.  

A critical limiting resource for many non-migratory ectotherms is overwintering 

habitat, which is especially true for the Timber Rattlesnake (Crotalus horridus) which 

exhibit a high degree of philopatry towards communal den sites, or hibernacula, in the 

northern parts of its range (Brown, 1993).  These hibernacula are disintictive habitat 

features, typically south-southwest facing talus slopes with access to subterranean 

crevices (Brown, 1993, Browning et al., 2005).  Local populations are centered on these 

hibernacula, and when they are clustered together, the population exhibits a 

metapopulation structure, with each hibernaculum acting as a subpopulation (Clark, 

2008).  Connectivity between subpopulations is needed to maintain genetic diversity.  

Radiotelemetry data show that male Timber Rattlesnakes travel long distances in search 

of females and that individual snakes invariably return to their maternal hibernaculum 
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throughout their long lifespans (Brown, 1993).  Recent genetic work has demonstrated 

that male mate searching facilitates genetic exchange within a Timber Rattlesnake 

metapopulation, without individuals actually migrating to other local populations (Clark, 

et al., 2008).  

The Timber Rattlesnake (Crotalus horridus, Linnaeus, 1758) has been declining 

throughout its range over the past few centuries (Brown, 1993).  Facing many of the same 

threats as other rare species, including habitat loss and intentional eradication, this 

species also faces a possible new disease pathogen that results in facial lesions (McBride 

et al., 2015).  In the central part of its range in the Appalachians, the species still exists in 

relatively large numbers, but many of the peripheral populations in the northeast have 

been extirpated in the past century (Martin et al., 2008).  Historically in New England, 

the species existed in large metapopulations, as it currently does in the Appalachians, but 

all remaining populations in New England are now dramatically smaller and isolated 

from each (Furman, 2007).  Recent population genetic studies of Timber Rattlesnakes 

indicate that in healthy populations there is exchange of genes among subpopulations 

(Clark et al., 2008, Bushar et al., 1998) but where subpopulations become isolated, 

genetic diversity declines rapidly (Clark et al., 2011).  In larger metapopulations found in 

continuous habitat, there is less genetic differentiation among den sites (Anderson, 2010), 

and high genetic diversity for the metapopulation as a whole. 

The Timber Rattlesnake is listed as ‘Endangered’ under the Massachusetts 

Endangered Species Act (MESA; M.G.L c. 131A; CMR 10.00) and protected in all New 

England states; however, many of the existing populations are declining (Tyning, 1991). 

In Massachusetts the species was likely historically ubiquitous and now only exists in 
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five isolated populations, four of which are surrounded by urbanization (Tyning, 2005), 

and one population apparently exists at a size likely less than 10 individuals (B. Butler, 

pers comm, 2014). Only one of these populations, located in the Berkshire Taconic 

Range of southwestern Massachusetts, exhibits a metapopulation with subpopulations 

located at different den sites, thus representing probable historic pattern.  

Recently there have been observations of an increased frequency of facial lesions 

in an isolated population of Timber Rattlesnakes in New Hampshire (Clark et al., 2011).  

In other New England populations of Timber Rattlesnakes, a new fungal species has been 

described from lesions with a similar appearance (Rajeetv et al., 2009; McBride et al., 

2015).  The same fungus has been found in Massasauga Rattlesnakes (Sistrurus 

catenatus) in Illinois, where three of four infected individuals died in captivity (Allender 

et al., 2011), although severity and frequency of these lesions now seems to be declining 

(Allender et al., 2013).  The fungus may be either a primary or secondary pathogen, and 

is likely correlated with increased precipitation at some sites (Clark et al., 2011).  

Historically, it is believed that most regional and local Timber Rattlesnake 

populations throughout their range from northern Florida to Maine existed as 

metapopulations with connected subpopulations and few natural barriers. Glacial events 

have produced naturally isolated populations in glacial refugia, mainly at the northern 

edge of the range (Tyning, 2005). Populations across the geographic range have been 

further isolated due in part to hibernaculum separation within metapopulations caused by 

habitat fragmentation and persecution (Brown, 1993). Timber Rattlesnake populations 

are viewed as having have declined significantly over the past 200 years (Stechert, 1982; 

Brown, 1993) as evidenced by their extirpation in Maine, Rhode Island, and Ontario, and 
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their current listing as endangered in Connecticut, Massachusetts, New Hampshire, and 

Vermont, among other states. Intentional killings and community harvests resulted in a 

great decline of this species (Furman, 2007).  Bounties were paid for killed specimens by 

most New England states from the 1890s through the 1960s and 1970s (Palmer, 2004; 

Furman, 2007).  New Hampshire has only one documented remaining population, with a 

census size estimate of less than 50 individuals (Clark et al, 2011), although one 

individual, Frank Young, collected hundreds from the state for bounties through the 

1960s (Young, 1963).  In New York, where the species is more prevalent than in New 

England, one bounty hunter reportedly turned in more than 5,000 rattlesnakes for bounty 

throughout his career, ending with the state ceasing the bounty in 1973 (Furman, 2007).  

Current estimates suggest that New York State now contains only 7,000-10,000 

rattlesnakes (R. Stechert, pers. comm.).  Snakes were also harvested in the 1800s to 

render snake oil, with one report of two men in Warren County, New York, harvesting 

1,104 individuals in three days (Furman, 2007).  Other more modern causes of decline 

include population fragmentation, habitat loss, and increased mortality due to roads.  

Although illegal, malicious killings do still occur in all New England states (T. French 

pers. comm., B. Butler, pers. comm.). 

Conservation actions needed to remedy and reverse current decline must take into 

consideration the year-long habitat needs of local populations, their connectivity to other 

den sites (e.g. local populations), and the minimum values of demographic parameters 

required for a stable or growing metapopulation. Habitat needs of Timber Rattlesnakes 

include the main focal feature, the den site for overwintering, in addition to surrounding 

habitats for birthing, basking, and foraging.  Den sites are frequently found on south, 
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southeast, or southwest facing rocky slopes where snakes are believed to move through 

crevices in order to reach subterranean crevices (Petersen and Fritsch, 1970).  Birthing 

rookeries are typically found within 200m of a den site, have little canopy cover, and are 

found on steep south or west-facing rocky slopes (Brown, 1991; Reinert, 1984; Tyning, 

2005).  These areas are critical to gravid females occupying these sites from spring 

emergence until giving birth in late summer (in Massachusetts from late August through 

September).  Additional habitat critical to adults, used by both males and non-gravid 

females, are basking sites and areas used for foraging.  Spatially, males typically use 

areas that are larger than those used by non-gravid females (Brown et al., 1982; Tyning, 

2004), and both categories select sites that have higher canopy cover (Reinert and 

Zappalorti, 1988).  Because of their small size and secretive nature, little is known about 

the habitat selection of neonates (or young of the year) snakes, but they typically disperse 

away from the birthing site at about 10 days of age, and then follow the cent trail of their 

mother to her den site for the winter (Brown and MacLean, 1983; Reinert and Zappalorti, 

1988; Cobb et al., 2005). 

Fragmentation of Timber Rattlesnake habitat negatively influences 

metapopulations by blocking gene flow between the component den sites (Bushar et al., 

1998; Clark et al., 2008; Clark et al., 2010), the increasing adult mortality rates (Aldridge 

and Brown, 1995), and modifying the behavior of individual animals (Brown, 1993).  

Gene flow between local populations rarely occurs by direct exchange of individuals 

between den sites due to the high natal philopatry of this species (W.S. Brown, R. 

Stechert, pers. comm.).  Instead, indirect gene flow occurs as a result of males from 

different den sites mating with females at basking sites scattered between hibernacula 
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(Bushar et al., 1998; Clark et al., 2008).  Fragmentation of habitat can interrupt this 

indirect flow of genes by preventing mixing of animals at shared basking locations, and 

thus may lead to inbreeding depression (Clark et al., 2010).  In addition to restricting 

gene flow, habitat fragmentation can lead to increased adult mortality, especially for 

males due to more frequent crossing of roads, and direct interactions with humans 

(Aldridge and Brown, 1995). For a highly K-selected species, such as Timber 

Rattlesnakes increases in adult mortality rates may quickly endanger local populations 

(Brown, 1991; Aldridge and Brown, 1995). Finally, habitat fragmentation can lead to 

humans contacting Timber Rattlesnakes more frequently, as urbanization and recreational 

use encroaches on their habitat, thus changing the habitat use of individual snakes 

(Brown, 1993).  Changes in habitat use may lead to decreased prey capture by snakes, 

and therefore reduced energy intake and growth of individuals (Beaupre et al., 2017). 

Here I describe the population demographics of a Timber Rattlesnake population 

in Berkshire County, Massachusetts. Differences in color morph ratios and sex ratios are 

compared among different den (subpopulation) sites, and with regard to gender and snake 

fungal disease (SFD) presence. Differences in body condition for snakes with and 

without SFD are analyzed. Population estimates for each subpopulation are provided. 

Average ingress and egress dates are reported and analyzed for potential difference due to 

SFD. Mortality observations are reported. Information from this study and others are used 

for population viability analysis to determine the probability of extinction for this 

metapopulation over the next 100 years. 

These observations will guide management decisions in the future, particularly 

how SFD affects the population. These results are compared to other studies in the 
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region, and indicate how population demographics may affect in this population. By 

providing subpopulation size estimates, the subpopulation with the smallest size can be 

identified and recommended for future management to protect it. Sex ratio and SFD 

occurrence could affect the reproductive success of a subpopulation, and if, greatly 

skewed, additional management may be required. 

 

1.3 Materials and Methods 

1.3.1 Study Area 

The southern Berkshire Taconic region is part of the Berkshire Plateau, in the 

southwestern corner of Massachusetts, adjacent to both New York and Connecticut. The 

Timber Rattlesnake target population extends into the New York’s Taconic State Park.  

The area is heavily trafficked by humans, with the Appalachian Trail running through it, 

along with dozens of public camping areas.  The town of Mt. Washington, 

Massachusetts, contains 57.9 km2 of land and 167 residents, and has the lowest human 

population density in the state, with 5.8 people per square mile (United States Census 

Bureau, 2008). Much of the land in the town and surrounding areas is owned by state 

agencies.   The Mt. Everett State Forest on the eastern edge of Mt. Washington is 5.5 km2 

in area, with the Appalachian Trail transecting it. The Mt. Washington State Forest on the 

western edge of town is composed of 16.87 km2 and 50 km of trails, and is bounded on 

the west by the adjacent New York Taconic state park (20.23 km2), which borders 

western Mt. Washington.  This area includes Bash Bish Falls, a popular tourist attraction.  

On the northern end of town is the Jug End State Reservation, which is managed both by 

the Massachusetts Department of Conservation and Recreation and the Fisheries and 
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Wildlife Department and is comprised of 4.69 km2.  Nearby is a 2.94 km2 parcel owned 

and managed by The Nature Conservancy. White tailed deer and wild turkey hunting is 

seasonally allowed only within the Taconic State Park in New York, and only on private 

property in Massachusetts, with consent of the landowner. 

 Much of this region was clear-cut in the late 1700s to mid 1800s to provide 

charcoal fuel for nearby iron forges. The area within the Mt. Everett State Forest is one of 

the largest areas of old-growth forest in New England (Davis, 1996).  The area consists of 

mostly northern hardwood forest species, with Eastern hemlock (Tsuga canadensis), 

American beech (Fagus grandifolia), American chestnut (Castanea dentata), striped 

maple (Acer pensylvanicum) and American hazelnut (Corylus americana). Dominant 

shrubs include mountain laurel (Kalmia latifolia), scrub oak (Quercus ilicifolia), and low 

bush blueberry (Vaccinium angustifolium).  Bedrock geology is primarily granite, 

phyllite, and quartzite. The average elevation for the region is about 609 m, with Mt. 

Everett reaching 793 m.  

The Mt. Washington population of Timber Rattlesnakes is the largest known 

population in Massachusetts (Tyning, 1991).  The study area consists of two parallel 

north-south mountain ridges, with several locations containing historic rattlesnake den 

sites.  Private homes, cultivated fields, and protected lands dominate the area, with two 

main town roads bisecting the site. These roads have low traffic, with one being a dirt 

road.  Historic records of Timber Rattlesnakes in this region include reports and 

collections by Raymond L. Ditmars (1936), and the Whitbeck family from the mid-1800s 

to the present.  A notorious poacher is known to have taken a minimum of forty adults as 

recently as the 1970s (R. Stechert, pers. comm.) from a single den.  Current residents 
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annually report rattlesnakes on town roads, yards and school grounds (T. Tyning and E. 

Tilinghast, pers. comm.b).  

 

1.3.2 Study Species 

The Timber Rattlesnake (Crotalus horridus) was first officially described by 

Linnaeus (1758) and ranges throughout much of the eastern United States (Fig 1.1), but 

historically had a much broader range (Fig 1.2).  Historically C. horridus was classified 

as containing two subspecies, the Northern Timber Rattlesnake (Crotalus horridus 

horridus), and in southern coastal areas, the Canebrake Rattlesnake (Crotalus horridus 

atricaudatus) (Gloyd, 1940).  Recent genetic research demonstrates no evidence 

supporting a taxonomic subdivision (Clark et al., 2003), despite coloration and behavioral 

differences. 

In northern populations, female reproduction typically begins at about 8 years of 

age, with many females only birthing once every 3-5 years (Brown, 1993). Litter sizes 

range from 8-12 offspring (Brown, 2016).  The offspring are philopatric to their mother’s 

den, scent trailing her back to the den after the first shed, about 7-10 days post birth 

(Brown, 1993).  Active maternal care has been documented in a closely related species, 

Arizona Black rattlesnake (Crotalus cerberus) (Amarello et al. 2011), and has been 

observed in C. horridus in captivity (L. Perrotti, pers. comm.). Long-term studies in 

northern New York show that this species has a natural life span in excess of 40 years 

(Brown, 2016). 

Across its range, the species inhabits very different habitat types, from Coastal 

Plain woodlands to mountainous deciduous forest (Odum, 1979).  In the northeast the 
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species prefers old-growth forest, but upland forested mountains of various community 

types are used.  The snake’s diet consists mainly of mice (Peromyscus spp.), voles 

(Microtus spp.), and eastern chipmunks (Tamias striatus), although the diet differs 

geographically (Clark et al., 2003). Southern populations have even exhibited possible 

different prey selection, and therefore different habitats selectioned, based on sex 

(Waldron et al., 2006). One MA population heavily affected by urbanization and 

deforestation appears to consume more avian prey then other MA populations (A. 

Stengle, unpub data) indicating that this species may be plastic with respect to prey 

selection based on availability.  

 

1.3.3 Sampling and Marking 

Visual searches of previously known den areas were conducted during spring 

emergence and fall ingress, and basking sites (NHESP, MA, T. Tying, pers. comm.) from 

May 2009 to October 2014. Radiotelemetry (cF Chap 2) of some individuals led to 

discovering several new areas within den sites and finding more individuals throughout 

the summer opportunistically. Based on geographic distances between dens (average 6.08 

km), radiotelemetry data (cF Chap 2) and genetic distances (cF Chap 4) the population 

was considered to be a metapopulation, comprising of four distinct denning areas (noted 

as MBER1-MBER4). A map of the den areas is not provided due to potential human 

pressures on this metapopulation. 

Snakes were handled using appropriate equipment (e.g. tongs, hook, tubes, 

bagging system [Midwest Tongs, Inc, Greenwood, MO]), to increase safety for both 

snake and researcher. Measurements of ventral scale counts, snout-vent length (SVL, 
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cm), tail length (cm), weight (g), and number of rattle segments were done in the field at 

the site of capture. If the animal was not receiving a transmitter, it was then immediately 

released. If the animal was receiving a radio transmitter, these measurements were taken 

during the implantation procedure. Sex was determined by tail lengths, subcaudal ventral 

scale counts, or cloacal probing (Schaefer, 1934, Brown, 2008). For females reproductive 

condition (gravid, postpartum, non-gravid) was assessed by presence of lateral folds (post 

partum), increased swelling in the posterior abdominal area, and weight gain (gravid) or 

normal body condition (Brown, 2016). Each snake received a passive integrated 

transponder tag (PIT tag, Biomark, Boise, Idaho), injected subcutaneously approximately 

8 cm lateral and anterior to the cloaca, using a 12-gauge sterile syringe.    

All individuals were scored for presence or absence of evident skin lesions 

indicating disease, and if present, lesions were usually photographed.  Individuals 

weighing over 200 g in 2013-2014 are included in the Roger Williams Park Zoo (RWPZ) 

RCN Health Survey (McBride et al. in rev.) of this species. This study describes possible 

disease agents, disease frequencies in populations throughout New England, and 

assessing overall health by examining standard blood values, heavy metal exposure, and 

paramyxovirus exposure.  Snakes with a poor prognosis (e.g. low body weight, 

listlessness, or severe facial deformity), were treated before release, as recommended by 

the veterinary staff at RWPZ.  If an individual with lesions was encountered in the field a 

second time, its condition was recorded as having improved or declined in the interim.  

 

1.3.4 Analyses 
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 Population estimation was conducted assuming the metapopulation was closed, 

(i.e. lacking additions from reproductions or immigration) and using the package 

Rcapture (Rivest and Baillargeon, 2015) for R version 3.1.3 (R Development Core Team, 

2006) with the function closed. Each year was defined as one sampling period, although 

only individuals encountered in the immediate area of the den site were included in the 

model, occurring during ingress and egress of that year. Although new individuals were 

encountered while tracking throughout the year, to avoid any bias from radio-tracking if 

they were not located during ingress or egress they were not included in the abundance 

analysis. Variation in color morph frequencies and sex ratios among den sites were 

evaluated with Fisher’s exact test. 

 Population viability analysis (PVA) was done with program Vortex 10.0 (Lacy 

and Pollack, 2014), using the estimated mean, initial population size, and both bounds of 

the confidence interval. Species-specific parameters used were either results from this 

population study, or from previous studies (Table 1.1, Brown, 1993; Brown et al., 2007; 

Brown, 2016). Fifty iterations with a 100-year time span were run. Extinction was 

defined when only one sex remained. Inbreeding was included with the default settings of 

6.29 lethal equivalents and 50 percent due to recessive lethal alleles, with environmental 

concordance of reproduction and survival and a polygynous reproductive system. 

Survival by age class was assumed to be the same for both males and females, with no 

harvest or catastrophes. Carrying capacity at this site is unknown; K = 3,000 was chosen 

arbitrarily. If any parameters here were found to vary from published parameters, PVAs 

were run again with the published parameters, as well as with those found here. 
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 Body condition index (BCI) was calculated by the residual score from the general 

linear regression of log-transformed mass against the log transformed SVL (Weatherhead 

and Brown, 1996; Way and Mason, 2008). BCI was calculated separately for adults with 

and without lesions, and these states were compared using ANCOVA. BCI was expected 

to be lower for individuals with SFD. As the lesions typically are observed to affect 

major sensory organs, (eyes and pit organ) it was expected that foraging ability would be 

decreased. Also, snakes inoculated with disease typically show a fever response (Burns, 

1996), accompanied by more frequent basking. This effect would lead to an individual 

favoring basking habitat rather than foraging habitat, therefore feeding less often and 

having a lower BCI.   

 

1.4 Results 

1.4.1 Total Captures, Behavior, Color Morph, and Sex 

From May 2009 through October 2015, 185 individuals were marked, with 32 

recaptures (Table 1.2). No individual was captured more than three times. Of the 185 

individuals, there were 113 males, and 64 females, resulting in a 66:34 male:female sex 

ratio (for 8 neonates sex was not determined). Sex ratio did not vary significantly among 

subpopulations (p = 0.23, Fisher’s exact test). Color morph ratio varied significantly 

among subpopulations (den regions) (p < 0.0001, Fisher’s exact test), with three 

predominantly yellow, and one predominantly black (Table 1.3). Size estimates were not 

possible for individual den areas, due to low sample sizes. The overall population size 

was estimated at n = 995 (95% CI 560– 2114). Results from PVA indicated that this 

population has a probability of extinction of zero over the next 100 years, for n = 560, 
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995, and 2114, the mean and confidence bounds of the population with a 50:50 sex ratio 

(Fig. 1.3), as found in previous studies (Brown, 1993). Sex ratio, however, did differ 

from previous studies in the region and PVA of the three census sizes with the observed 

sex ratio (66:34) did increase the probability of extinction, with a probability of 

extinction of 0.04 for n = 560, 0.02 for n = 995, and 0.00 for n = 2114 (Fig. 1.4).  

The earliest observation of an individual was 5 April (2010), with the latest 25 

October (2010). Average date of individuals observed (n = 61) at the den during 

emergence was 7 May, with the latest observation of 30 May, excluding radio-implanted 

individuals. Average ingress date (n = 74) was 4 October with the earliest observation on 

16 September. The first shed typically occurred in June (range 5 June – 3 July), and 

second shed (if occurred) typically occurred in August (range 16 July – 29 August), with 

one additional observation on 16 September, 2013, at the den site. Breeding and courtship 

were observed between 14 July through 24 August. Foraging behavior, defined as the 

individual coiled alongside a log with the head resting on it (Reinert et al., 1984) was 

observed from 28 June through 11 September, with one additional observation on 22 

May, 2013. Both breeding and foraging behaviors were most frequently during the month 

of August.   

 

1.4.2 Reproductive Efforts 

 Few gravid females were observed during the study, although only birthing sites 

used by radio-tracked females were monitored. Three gravid females were observed, with 

one giving birth in 2009, one in 2009 and 2012, and one in 2011. The two in 2009 were 

from the same den, and returned to the den in September to give birth, after spending the 
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active season at two different birthing sites. Litter size could only be determined for the 

2011 female, as she was brought into captivity to Roger Williams Park Zoo, Providence, 

RI, so the offspring could be marked. The female gave birth 24 August, 2011, to n = 11 

offspring (6M:5F) with an average mass of 29.2g per neonate. The female was captured 

on 24 June, 2010, and appeared to be post partum, indicated by the presence of lateral 

folds (Brown, 2016), indicating that she also had birthed in 2009. The female that gave 

birth only in 2009 was radio-tracked through 2013, and did not become gravid again 

during this period. These limited data indicates that females can reproduce once every 2 

— 5+ years in this population. Methods used in the field using spring scales and snake 

bags were not accurate enough to determine average neonate size for other neonates 

encountered. 

 A radioed male was observed mating on 3 August, 2011, at MBER4. Mating was 

also observed at a basking area at MBER1 on 17 August, 2011 with a non-radioed pair. 

Male combat was observed at MBER1 on 2 August, 2011. A radioed male from MBER1 

was observed mate guarding on Aug 18, 2011, observed as a male following a female 

while she was pre-shed (Merrow and Auberton, 2005). The mate-guarding site was 

revisited on 26 August, 2011 and both snakes were not in the immediate area, but the 

male’s rattle string was found where the female had been coiled, indicating that vigorous 

activity had occurred, thus courtship and/or mating was assumed. Courtship was 

observed on 29 July, 2011 at MBER3 between a radioed male and a female that had been 

marked previously in 2010 at a basking site.  

 

1.4.3 Radio Failures and Expulsions  
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One male was tracked starting 3 May, 2010 and was last observed on 16 July, 

2010 before the signal disappeared. My initial assumption was that the radio had failed 

until only the radio was found 3.35 km west of the snake’s last relocation on 16 July, 

2010. A conclusion was that the individual had perished, and scavengers had moved the 

radio was not confirmed when the following spring (on 8 May, 2011) the individual was 

recaptured emerging from the den. Its incision was completely healed, and a new radio 

was implanted. I assumed that the snake expelled the radiotransmitter through the 

gastrointestinal tract. Another male was tracked beginning on 15 May, 2009 and its radio 

was subsequently located on 24 August, 2009. A seven-segment rattle was located next to 

the radio, so it was inferred that the male was at this location when its radio was expelled. 

Another male’s signal was lost after 25 September, 2009. The male was relocated on 6 

August, 2011 while courting another radioed female. The failed radio (still inside this 

male) was replaced with a new one. One male tracked from 2009 to 2010 when the signal 

died during the 2010 wintering season, was located, after entering the den. This male 

exhibited severe lesions that were improved greatly after shedding the previous season 

(Fig 1.5). All four males were located in the MBER3 population. A female was tracked 

from 17 September, 2011 through 23 August, 2011, when only the radio was found, in 

MBER1 with the last prior location on 12 August, 2013. The status of this snake is 

unknown; her radio was located in an area consistent with her prior movement path when 

tracked returning to the den.   

 

1.4.4 Mortality 



 19 

 Six deaths were directly observed during the study (Table 1.4). More males were 

found dead, although sex was not a significant effect (X = 0.199, p = 0.656). One male 

tracked from 2009 to 2013 was found as a partial skeleton on 20 November, 2013, with 

its last observed relocation on 25 September, 2013. One female was located at a basking 

area on 6 June, 2011, and subsequently was located there two more times and finally 

found as a complete skeleton on 1 July, 2011. Both appeared healthy at their last known 

previous observed location, but cause of death is unknown, as only skeletons were 

located. Another radioed male tracked from 6 June, 2011 was found dead on 5 August, 

2012. When first observed, he exhibited lesions; however, the lesions were no longer 

present after his first shed (Fig 1.6). When located after death the hemipenes were found 

extroverted and a small hole in the skin in the lateral caudal area. The body was found 

near an illegal dirt bike trail, so initially it was concluded that the snake had been run 

over, but subsequent radiographs showed no broken bones; therefore cause of death is 

unknown. One male tracked from 2 May, 2011 was found killed by a Red Tailed-Hawk 

on 9 July, 2011. The individual was located at a basking site while the hawk was feeding 

on him, and the snake was still alive. All of these individuals were in the MBER1 

subpopulation. Two MBER3 females, one radioed throughout 2009 and the other from 

2009 until 2010, entered their dens, but they (and their radios) never emerged the 

following spring. A rattlesnake skeleton was also found at the den entrance in spring 

2010, but could not be identified. Another skeleton was found on Jul 19, 2012 in the 

middle of a trail in MBER4. It could not be identified, as no PIT tag was present in the 

leaf litter; however the rattle and skull were missing (despite the vertebral column and 

ribs being intact) so human killing is assumed.  
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1.4.5 Snake Fungal Disease 

 Fungal disease was observed in 19 individuals, a 10.3% population prevalence.  

Lesion presence differed by sex and was only observed in males (p = 0.00022, Fisher’s 

exact test). Three of these individuals were recaptured, with an additional three subjected 

to radiotelemetry (of Chap 2). Five, including both radioed individuals, later showed 

complete healing of lesions, although scarring was prominent (Fig 1.5-1.7).  Only the 

skeleton of the third was found 23 days after the last observation, at the basking site 

where the individual was previously in a pre-shed condition. As only the skeleton was 

found, identification was confirmed by locating the PIT tag but cause of death could not 

be determined. Lesions were observed more frequently earlier in the year, prior to the 

first shed, than later in the year (p = 0.0034, Fisher’s exact test), with only three of the 19 

having lesions that were discernible after the first annual shed. Snakes with and without 

lesions did not differ in average emergence date (t = 0.39, df = 13.59, p = 0.70).  Snakes 

with lesions had a later average ingress date, than snakes without lesions, (11 October 

and 4 Oct ober, respectively, t = 3.44, df = 6.03, p = 0.013). BCI did not differ between 

individuals with and without lesions (p = 0.44, Fig. 1.8). There were no known 

mortalities due to SFD presence in this population. 

 

1.5 Discussion 

1.5.1 Color Morph, Sex Ratio, and Population Size 

 The ratio of black to yellow morphs differed by den site. Difference in color 

morphs among subpopulations could be a result of genetic separation. The most isolated 
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population in New England exhibits only black morphs (Clark et al., 2011), and dens 

closer geographically have similar color ratios (W. Brown, pers. comm.). MBER1-3 had 

mostly yellow morphs, and MBER4 had mostly black morphs (Table 1.3). Geographic 

and genetic distance is greatest for MBER4 to the other subpopulations (of Chap 4), 

supporting the hypothesis of some genetic isolation among subpopulations within a 

metapopulation rather than resulting from exchange within. 

Three of the four subpopulations exhibited a male-skewed sex ratio, despite most 

studies of this species reporting a near 50:50 ratio (Brown, 1993). One den was 

predominantly male (MBER3), with only 21% of those marked being female. This 

disparity could be due to sample bias, i.e., males could be more prominent at basking and 

den areas, or it could indicate historic poaching of gravid females at birthing rookeries. 

With fewer females than males, such a bias could lead to a population decrease and 

inbreeding depression in the future; if an increase in probability of population extinction 

results from the skewed sex ratio (Fig. 1.3 and 1.4). As females only reproduce once 

every 3-5 years in this population, the effect could be significant. If there truly is a 

surplus of males, they would be good source population candidates for translocation, 

population supplementation or captive breeding for males, as losing a few males from 

this den site likely will have minimal effect on reproductive output. 

Analysis estimates an overall population size of N = 995 (95% CI 560 – 2114). 

This could be an overestimation, due to violations of the assumptions of the model: that 

all areas were sampled evenly across all sampling events, and that no mortality occurred 

during the sampling period. Not all dens were sampled every year, therefore not all 

individuals had an equal probability of detection. With the broad confidence interval 
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calculated, the point estimate cannot be assumed to be precise, estimate, although with 

the low end of the interval at 560 individuals, this indicates it’s the largest known 

population in MA, and a stable population. Population viability modeling for this 

population at the mean estimate and both bounds of the confidence interval resulted in a 

probability of extinction equal to 0.00. This suggests that although the broad confidence 

interval is difficult to interpret with regard to the actual census size, the population may 

be viewed as stable. 

 

1.5.2 Reproductive Effort 

 Courtship and mating were observed between 29 July and 18 August across all 

years. This is consistent with the breeding season for this species in the northeast (Brown, 

1993). The majority of females in the northeast often mate and reproduce on a triennial 

cycle (Brown, 2016). This metric is supported here with two females birthing in 2009, 

one of these two birthing again in 2012, the majority of matings observed in 2011, along 

with a postpartum female located in 2010 indicating she birthed in 2009 and birthed again 

in 2012. One female birthed in 2009, and did not do so again during the study through 

2013, also indicating the time span between births can be at least five years.  

 In the northeast with a limited foraging season, birthing is likely constrained by 

adequate foraging time and success in regaining the weight lost by gestating females 

(Brown, 2016). There could be great variation among areas chosen by females for 

foraging success and/or yearly prey availability, which would likely result in differences 

in reproductive frequency. Because this metapopulation is male skewed (males can mate 
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every year) and has a large estimated population size, it is unlikely that a lack of available 

males or the Allee effect is causing this variation in length between births.  

 

1.5.3 Radio Failure and Expulsion 

 Several radiotracking studies with snakes have found radios with no animal 

remains or explanation (C. Smith, T. Tyning, pers. comm., Fitch and Pisani, 2005.). 

Usually the;conclusion is that death intervened, likely due to a predator that consumed 

the body and either left the radio, or passes it through the predator’s gastrointestinal tract. 

Radio expulsions have been documented in some catfish species (Baras and Westerloppe, 

1999, Summerfelt and Mosier, 1984), but has been less frequently documented in snakes 

(Bryant et al., 2010). However Pearson and Shine (2002) reported frequently finding 

expelled radios in fecal matter in Carpet Pythons, indicating the radio was absorbed 

through the gastrointestinal tract and expelled with bowel movements. In my study lone 

radio were not found with fecal matter, but fecal matter could have eroded prior to 

location of the radios. The MBER1 female whose radio was found was never relocated, 

although the radio was relocated in a pathway consistent with her prior movements. 

Transmitter expulsion is consistent with a MBER1 female moving consistently east 

towards the den when the radio was found. The MBER3 male radio was found 3.35 km 

west of his last relocation when he was actively moving north, and the male was 

relocated the following year at the den radio expulsion occurred. His last relocation he 

was moving north, so how the radio was found far to the west is inexplicable. 

 The MBER3 site had more complications with radios than the other sites. One 

was a known radio expulsion, with the individual found lacking its radio the following 
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spring. Two individuals appeared to have radio failures, with one snake found two years 

later with the expired radio still inside, and the fourth being a likely expulsion. Only one 

other radio appeared to have been expelled in MBER1, possibly because the majority of 

radios were deployed at MBER3. 

 

1.5.4 Mortality 

 Red Tailed-Hawks are known prey on Timber Rattlesnakes in some areas (R. 

Stechert, N. Smith, pers. comm.) a finding also in the snakes studied here. A MBER1 

male preyed upon by a Red Tailed-Hawk is the only known case of predation observed in 

in this study and suggesting that predation is not a major threat of mortality in this 

population. For all other cases of mortality, there were no signs of predation (e.g. 

lacerations, puncture wounds) and cause of death could not be determined. In these cases 

where either the body or skeleton was found, predation is unlikely, because a possible 

predator would likely move the snake away from the last observed location. 

 Road mortality can have a major effect on mortality in a rattlesnake population 

(Clark et al., 2010) and Timber Rattlesnakes are more susceptible to road mortality than 

many other sympatric species (Andrews and Gibbons, 2005). This finding does not 

appear to be the case here. Road kills are not likely because there are few roads in area. 

Approximately 50% of the roads are dirt roads, which receive little traffic. Road 

mortality could become a concern, however if the area were to become more developed. 

 Two MBER3 females whose signal never left the den during emergence in 2009 

and 2010 cannot be judged positively as mortalities, as radio expulsion is possible. A 
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skeleton was found at the den entrance in the spring of 2009, but no radio or associated 

PIT tag was located, so it is unlikely this skeleton was that of a radioed female. 

 Male Timber Rattlesnakes have been observed to have a higher mortality rate 

attributed to their longer and more frequent movements in search of females during the 

breeding season (Brown and Aldridge, 2005). Moving more frequently and over greater 

distances exposes males more often to roads and predation. My observations show that 

the majority of mortalities were males, a finding consistent with a mating season 

hypothesis.  

 Mortality was most frequently observed at MBER1 (Table 1.4). One had minor 

lesions that resolved after its first shed a year prior to its death, and the cause of death 

was ruled as unknown, with the other two appeared healthy prior to death. The fourth 

mortality at this site was caused by predation. As the cause of the majority of these 

individuals is unknown, no definitive source of its increased mortality can identified.  

 

1.5.5 Snake Fungal Disease 

In this study only males exhibited fungal lesions, a finding that may indicate 

gender specific variation in disease susceptibility. This finding could be the result of male 

bias in this metapopulation, with a greater number of males than females, or there may be 

another factor leading to an increase in lesion rate in males. Lesions have been 

documented in female Timber Rattlesnakes in only one other study (McBride et al., 

2015), with two females, five males, and one of unknown sex being infected, and still 

suggesting lesions are more common in males. Increased susceptibility of males may be 

due to: 1.) reduced immune response to pathogens, 2.) a higher use of different habitats  
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3.) occupying larger spatial areas containing pathogens compared to females, 4.) or male 

aggressive behavior that leads to wounds that lead to secondary infections (as been 

observed in some species of snakes (e.g. Shine et al., 1981)). Other researchers have 

found that injuries in squamates increase with age, and are more common in males 

(Schoener and Schoener, 1980; Hudson, 1996), consistent with my finding of lesions 

only on adult males at the primary study site. Male C. horridus travel farther and more 

frequently than females (Brown, 1993), and also engage in combat with other males over 

females (Klauber, 1956). Combat behavior has been correlated with injury in male 

rattlesnakes (McGowen and Madison, 2008), and injury rates from male combat do 

increase with age and body size in other snake species (Tolson, 1992; Fearn et al., 2006). 

Prey animals can also cause injury to snakes during feeding (Klauber, 1956), but it is not 

known whether feeding injuries are more prevalent in males.  

Lesions were more common in the spring, (post emergence and preshed) 

compared to their appearance later in the year. This is consistent with the occurrence of 

hibernation blisters, which were documented by Fitch (1963) in racers, which occur more 

frequently in the spring, and are observed more frequently during years with increased 

precipitation (Fitch, 1963). This result could indicate that these lesions are not caused by 

a novel pathogen, but rather from a pathogen that has historically occurred in snake 

populations. Fungal lesions may not have a large effect on stable populations, but may 

more strongly affect small or declining populations as documented in NH where higher 

lesion prevalence prevailed in 2006, which was also the year that received the most 

precipitation in the previous 100 years (Clark et al., 2011). Clark et al. (2011) also 

suggest that inbreeding depression may lead to increased disease susceptibility, as has 
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been observed in other taxa (Savage and Zamudio, 2011). Clark et al. (2011) does not 

report a decrease in fitness, which is required to conclude inbreeding depression is 

occurring, and assumes inbreeding depression is occurring based on color morphologies 

only seen in this population. There is no photographic documentation provided to public 

demonstrating the observed changes in color morphology.  

Snakes with lesions did not differ in average emergence date, but did differ in 

average ingress date, as snakes with lesions moved into the dens later in the year. This 

could indicate that snakes with lesions basked around the den longer prior to ingress. The 

earliest and latest annual observations of individuals were also in the same year (2010) 

and these individuals did not have lesions. Variation in ingress-egress dates could also be 

accounted by annual weather variation. 

 

1.5.6 Management Implications 

Population estimates indicate that this is the largest extant population in 

Massachusetts, although some of the metapopulation dens in New York. The majority of 

the land that the population uses is protected by state parks in both states. Habitat in both 

states needs to continue to be protected if this metapopulation is to remain viable. 

Human traffic in den areas increased during the span of this study (T. Tyning, 

pers comm, A. Stengle, unpub data). Some individuals encountered were known 

poachers, while others claim to be visiting the area only to take photos. These human 

often manipulate the rattlesnakes for their photographs (R. Stechart, pers. comm.). Brown 

et al. (2007) noted an intimidation effect, defined as a behavioral inhibition among snakes 

that are manipulated, such that they prefer not to return to an area where a disturbance 
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occurred. This effect could lead to a change in behavior e.g. snakes ceasing to bask near 

the den or shifting to other basking areas. This effect was not quantified in the study, but 

in the final years of the study it became increasingly difficult to locate individuals at the 

den, despite decreased handling of the snakes by researchers in the final years. As most 

of these dens are located on state property, state agencies are advised to develop deterrent 

methods to reduce human traffic in these sensitive areas. Snakes in the study region do 

occasionally move through residential areas, where fortunately, the majority of residents 

looks favorably on the snakes and wish to protect them. Having a strong network of local 

individuals who are willing to remove rattlesnakes in residential areas has been essential 

to preserving a relationship of cooperation.  
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Figure 1.1. Current extant range of the Timber Rattlesnake (Crotalus horridus) in the 

United States. Dots represent locality records and shading shows presumed continuous 

distribution (Martin et al. 2008). 

 
  



 40 

Figure 1.2. Historic range of the Timber Rattlesnake ca. 8,000 years before present (a.) 

and 400 years before present (b.) from Martin (unpubl data). Different slash marks 

correspond to what was previously thought to be different subspecies at the time these 

maps were created, but more recent work confirms there is no subspecies differentiation 

taxonomically recognizable (Clark et al. 2003). 

a.) 

  
b.) 
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Table 1.1. Parameter estimates used for population viablity estimates using program Vortex for a Timber Rattlesnake population in 

Berkshire County, MA. 
Parameter Parameter Estimate Source 

Initial population size 995 This study 

Age of first offspring – F 7 years Brown, 2016 

Age of first offspring – M 6 years Brown, 1993 

Maximum lifespan 45 years Brown, unpubl 

data 

Maximum broods per year 1 Brown, 1993 

Maximum offspring per brood 14 Brown, 2016 

Sex ratio M:F 33:67 This study 

Maximum age of reproduction – F 50 Brown, 2016 

Maximum age of reproduction – M 45 Assumed 

Percent breeding adults – F 33% Brown, 1993, 2016 

SD percent breeding adults due to EV 0 Unknown value 

Mortality age 0 – 1 year 0.348 Brown et al., 2007 

SD of mortality age 0 – 1 year 0.1537 Brown et al., 2007 

Mortality age 2 -4 year 0.078 Brown et al., 2007 

SD of mortality age 2 – 4 year 0.0836 Brown et al., 2007 

Mortality age 5 and over 0.110 Brown et al., 2007 

SD of mortality age 5 and over 0.0365 Brown et al., 2007 
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Table 1.2. Meristic data for all Timber Rattlesnakes captured and recaptured from 2009-2015. Status indicates if the individual was a 

first capture (New), a recapture (Recap), or a radioed individual with years tracked given. Subpopulation (SubPop) is given as the 

MBER numbers listed in text. ID is the last five digits of the PIT tag number, with unmarked neonates (NEO) and adults (MARK), 

where a marker was applied to the rattle with no PIT tag. Lesion presence is noted as yes (Y) or no (N). Morph is abbreviated as 

yellow (Y) and black (B).  

ID Date Sex 

SVL 

(cm) Tail (cm) Total (cm) Mass (g) Ventrals Subcauds Morph SubPop Lesion Status 

C1204 5/15/09 M 106 10.4 116.4 1100 175 28 Y 2 Y 2009-2010 

47B77 5/15/09 F 102 7.5 109.5 779 171 23 Y 2 N 2009 

77228 5/15/09 F 87.5 6.5 94 679 168 21 B 2 N 2009-2011 

52D10 5/15/09 M 112.5 10.7 123.2 1679 163 24 Y 2 N 2009 

D4B47 5/15/09 M 112 9.8 121.8 1379 169 28 Y 2 N 2009-2013 

94B63 5/15/09 F 96.5 7.5 104 879 169 23 Y 2 N 2009-2013 

83B74 5/17/09 F 65 7.2 72.2 900 174 23 Y 2 N 2009-2013 

D340B 6/8/09 M 

 

13.5 

  

173 28 Y 2 N New 

B5342 8/6/09 M 124 10 134 1630.4 165 27 Y 1 N 2009-2013 

A3F16 9/19/09 M 110 11.3 121.3 

  

25 Y 1 N New 

56636 9/20/09 M 79 7 86  169 27 Y 2 N 2011-2013 

D1166 4/5/10 M 123 10.5 133.5 1631.8 168 24 Y 1 Y 2010-2013 

71518 5/3/10 M 106 9.3 115.3 1210 169 26 B 2 N 2010-2013 

02812 5/3/10 F  7.8   172 22 Y 2 N New 

56636 5/3/10 M       Y 2 N Recap 

53B6A 5/16/10 F 83.7 6.3 90 763.7 174 20 Y 2 N New 

53B6A 5/17/10 F 

      

Y 2 N New 

53B6A 5/20/10 F 

       

2 N Recap 

E5112 6/14/10 F 104.5 6.4 110.9 742 175 18 B 4 N 2010-2012 

D1514 6/15/10 M 103.5 7.8 111.3 1082 165 24 B 4 N 2010-2012 

46E3E 6/15/10 M 103 9.4 112.4 1182 167 24 B 4 N New 

53137 6/22/10 M 106 4.8 110.8 159.7 154 23 Y 2 N New 

90B05 6/23/10 M 113 9.4 124.4 1382 173 27 B 4 N 2010-2012 

D1166 6/29/10 M    1791 

 

 

 

1 Y Recap 

9627F 7/31/10 M 66 7 73 372 177 29 Y 2 N New 

97754 7/31/10 F 108 9.8 107.8 1381 168 24 Y 2 N New 
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8326B 8/3/10 M 115 9.2 124.5 1278 168 24 Y 4 N 2010-2012 

C370E 8/9/10 M 109 10.5 119.5 1250 166 25 B 4 N New 

C1166 9/4/10 M 121 9 130 2000 171 26 Y 2 N New 

B1F23 9/17/10 F 81 5.6 86.6 487 174 20 B 1 N 2011-2013 

B102E 10/8/10 M 118 10.4 128.4 1684 173 26 Y 4 N New 

02043 10/8/10 M 88 8.5 96.5 700 165 27 B 4 N New 

C2327 10/8/10 F 50 3.2 53.2 104 180 19 B 4 N New 

B635B 10/8/10 M 90 8.7 98.7 809 170 25 B 4 N New 

F551B 10/8/10 M 129 10.8 139.8 2000 173 27 B 4 N New 

NEO 10/8/10 F 33 2.3 35.3 24 173 18 

 

4 N New 

F303E 10/9/10 F 89.5 6.4 95.9 805 174 21 B 4 N New 

32C2D 10/18/10 M 92 8.3 100.3 697 165 25 

 

1 N New 

70323 10/25/10 M 109 9.2 118.2  170 25 B 4 N New 

48254 4/30/11 F 101 6.5 107.5 1075 159 20 B 1 N New 

47741 5/7/11 F 85 6.6 91.5 

 

177 21 B 4 N New 

73694 5/7/11 F 89 6 95 

 

173 16 Y 4 N New 

71518 5/8/11 M 

       

2 N Recap 

75074 5/8/11 F 70 5.3 75.3 

 

173 16 B 2 N New 

71357 5/9/11 M 64 5.8 69.8 

 

163 25 Y 3 N New 

47172 5/9/11 M 115 10 125 1725 167 22 Y 3 Y New 

48318 5/9/11 M 100 9 109 1175 170 23 Y 3 N New 

49661 5/9/11 F 86 6.2 92.2 

 

174 21 Y 3 N New 

51084 5/9/11 M 100 9.5 109.5 1125 168 24 Y 3 N New 

52070 5/9/11 F 83 5.5 88.5 717 172 19 Y 3 N New 

72712 5/9/11 F 68 5 73 265 167 19 Y 3 N New 

12716 5/9/11 M 122 10 132 1750 170 24 B 3 N New 

13663 5/9/11 M 134 10 144 2075 168 24 Y 3 N New 

16646 5/9/11 M 79 6 85 305 168 23 Y 3 N New 

18272 5/9/11 M 114 9.5 123.5 1625 170 19 Y 3 N New 

MARK 5/9/11 M 125 10 135 2165 170 25 Y 3 N New 

75146 5/12/11 M 108 9.4 117.4 1429 

 

25 B 1 Y 2011-2013 

49911 5/19/11 M 109.5 10.8 120.3 

  

26 Y 1 Y 2011-2012 

56636 5/19/11 M       Y 2 N Recap 
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75491 5/21/11 F 

   

405 176 23 Y 2 N New 

71693 5/31/11 M 106 10.5 116.5 1200 171 25 B 1 Y New 

97620 6/6/11 F 94 7 101 950 170 19 Y 1 N New 

98779 6/6/11 F 101 7 108 990 174 21 B 1 N New 

98924 6/6/11 M 115 9.8 124.8 1285 165 25 Y 1 N New 

99084 6/6/11 F 92 6.8 98.8 960 167 19 Y 1 N New 

71693 6/6/11 M     171 25 B 1 Y Recap 

71693 6/7/11 M     171 25 B 1 Y Recap 

98447 6/8/11 M 75 7.4  362 171 25 Y 1 N New 

71693 6/8/11 M     171 25 B 1 Y Recap 

98779 6/13/11 F     

 

 B 1 N Recap 

99084 6/13/11 F     

 

 Y 1 N Recap 

47802 6/15/11 M 118 9.9 

 

1555 172 25 B 4 N New 

B1F23 6/27/11 F 81.3 6 87.3 400 

  

B 1 N Recap 

49652 6/27/11 F 85 6 

 

732 171 20 Y 1 N New 

74986 6/27/11 M 96 8.5 

 

865 161 25 B 1 N New 

97540 7/1/11 F 86 6.8 

 

750 170 21 Y 1 N New 

97620 7/1/11 F 

      

Y 1 N Recap 

98214 7/1/11 F 83 6.5 

 

325 174 19 Y 1 N New 

71693 7/1/11 M 

    

171 25 B 1 Y Recap 

98212 7/5/11 F 96 7.5 

 

1095 185 19 B 4 N New 

98212 7/26/11 F 

   

1055 

  

B 4 N Recap 

02812 7/29/11 F       

 

2 N Recap 

98685 7/29/11 M 105 10 125 1680 170 24 B 4 N New 

97154 8/2/11 F 95 6.5 101.5 770 175 19 Y 1 N New 

98151 8/2/11 M 74 6.5 80.5 415 168 22 Y 1 N New 

98796 8/2/11 M 114 11 125 1440 162 25 Y 1 Y New 

98890 8/3/11 M 116 10 126 1580 166 22 B 4 N New 

98685 8/3/11 M 

      

B 4 N Recap 

98902 8/8/11 F 96.5 7 103.5 1015 178 22 Y 1 N New 

97134 8/17/11 F 88 8.1 97.1 735 176 23 B 1 N New 

97817 8/17/11 F 

      

B 1 N New 

98796 8/17/11 M 

      

Y 1 Y Recap 



 45 

98902 8/18/11 F 

      

Y 1 N Recap 

97663 8/24/11 M 115 10.7 125.7 1320 171 25 Y 2 N New 

98629 10/3/11 M 112 10.1 122.1 

 

169 25 Y 1 N New 

26342 10/3/11 M 27.5 2.8 30.3 24.1 172 26 B 1 N New 

26391 10/3/11 M 27 2.9 29.9 20.6 173 23 Y 1 N New 

74986 10/3/11 M 

      

B 1 N Recap 

97284 10/10/11 M 108 9.4 117.4 1460 170 25 B 4 N New 

97687 10/10/11 M 112 10.4 122.4 1535 169 26 Y 4 N New 

97901 10/10/11 M 73 5.7 78.7 255 168 26 Y 4 N New 

97927 10/10/11 M 116 10.4 126.4 1652 166 27 B 4 N New 

98194 10/10/11 M 72 6.9 78.9 370 168 26 Y 4 Y New 

98459 10/10/11 F 66 4.4 70.4 260 167 22 B 4 N New 

98763 10/10/11 M 102 8.6 110.6 1240 169 23 B 4 N New 

98868 10/10/11 M 115 11 126 

 

172 26 Y 4 Y New 

99010 10/10/11 M 116 10 126 1560 179 23 B 4 N New 

26347 10/10/11 M 32.5 2.7 35.2 

 

167 24 B 4 N New 

73694 10/10/11 F 

   

814 

 

16 Y 4 N Recap 

0164B 10/11/11 M 105 9.5 104.5 

 

172 25 B 4 N New 

F6D4B 10/11/11 M 107 10 117 1260 169 26 B 4 N New 

F757E 10/11/11 M 107 9.1 116.1 1530 169 24 B 4 N New 

0044D 10/11/11 F 72 5.2 77.5 380 167 20 B 4 N New 

47866 10/11/11 M 100 9.3 109.3 1280 167 25 B 4 N New 

52202 10/11/11 M 112 9.5 121.5 1405 162 25 B 4 N New 

10E30 10/11/11 F 83 5.2 88.2 465 171 19 B 4 N New 

A344D 10/11/11 F 102 7 109 920 172 23 B 4 N New 

26321 10/11/11 F 30 2.4 32.4 

 

172 20 B 4 N New 

61064 10/11/11 M 110 10 120 1205 163 25 Y 4 N New 

98873 10/12/11 M 85 8.4 93.4 405 162 25 B 4 N New 

97438 4/15/12 M 105 11.5 116.5 1290 182 26 Y 4 N New 

98210 4/15/12 M 107 10.1 117.1 

  

27 B 4 N New 

98743 4/15/12 M 121 12 135 1745 174 26 B 4 N New 

99011 4/15/12 M 118 8 126 

   

Y 4 N New 

98096 4/16/12 M 94 9.8 103.8 1155 168 27 Y 1 N New 
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98370 4/16/12 M 110 10.2 120.2 1920 167 24 B 1 N New 

98733 4/16/12 M 107 9.9 106.9 1255 168 23 B 1 Y New 

98993 4/16/12 M 90.5 9.4 99.9 680 170 26 Y 1 N New 

26414 5/7/12 F 30 2.2 32.2 20 172 21 N 1 N New 

48254 5/7/12 F 

   

320 

  

B 1 N Recap 

98603 5/11/12 F 83 6 89 370 171 20 Y 1 N New 

D340B 5/12/12 M 

 

 

   

 Y 2 Y Recap 

98316 5/12/12 F 73 5.2 78.2 320 170 19 Y 2 N New 

98733 5/17/12 M 

   

1180 

  

B 1 N Recap 

23646 5/17/12 M 57 4.8 61.8 175 168 24 B 1 N New 

23433 5/29/12 M 

     

25 Y 1 

 

New 

98924 6/10/12 M 

   

1555 

  

Y 1 N Recap 

26414 6/12/12 M 32.5 2.9 

  

174 23 

 

1 Y New 

23847 7/3/12 M 71 6.1 

 

250 166 23 B 1 N New 

23077 7/19/12 F 85 6.6 

 

740 165 20 B 4 N New 

23234 7/26/12 M 93 7.6 

 

800 173 22 Y 3 N 2012-2013 

98518 8/2/12 M 107 8.3 115.3 1040 173 27 Y 4 N New 

98368 8/6/12 M 89 8.5 

 

510 169 25 B 1 N New 

97148 8/17/12 M 102 10.2 112.2 1300 167 22 Y 3 N 2012-2013 

26323 8/24/12 M 32 2.6 34.6 32.9 

 

23 B 4 N New 

26328 8/24/12 F 32 2.2 34.2 27.2 

 

20 B 4 N New 

26358 8/24/12 M 32 2.7 34.7 29.4 

 

25 B 4 N New 

26360 8/24/12 M 32 2.9 34.9 29.4 

 

26 B 4 N New 

26363 8/24/12 M 32 3.1 35.1 30.8 

 

25 B 4 N New 

26364 8/24/12 F 32.5 2.4 34.9 26.4 

 

20 B 4 N New 

26374 8/24/12 F 28.3 2.2 30.3 28.3 

 

20 B 4 N New 

26382 8/24/12 M 32 2.9 34.9 28.5 

 

24 B 4 N New 

26386 8/24/12 M 33 2.5 35.5 29.2 

 

23 B 4 N New 

26399 8/24/12 F 30 2.4 30.4 

  

18 B 4 N New 

26405 8/24/12 F 33 2.3 35.3 29.7 

 

19 B 4 N New 

23812 9/6/12 F 92 7 99 800 175 22 Y 4 N New 

22336 9/27/12 M 114 10 124 1430 

 

25 B 4 N New 

22784 9/27/12 M 101 9 110 855 166 24 Y 4 N New 
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22902 9/27/12 M 102.8 9.2 112 1240 176 26 B 4 N New 

23442 9/27/12 F 58.7 3.8 62.5 220 177 19 B 4 N New 

23450 9/27/12 F 88.2 5.8 94 600 172 18 B 4 N New 

23715 9/27/12 M 115 9 124 1420 178 24 B 4 N New 

23798 9/27/12 M 74 3 77 255 170 26 B 4 N New 

23979 9/27/12 M 101 9.3 110.3 860 167 26 B 4 N New 

24160 9/27/12 M 90.5 7.5 98 645 165 23 Y 4 N New 

26324 9/27/12 F 40 2.5 42.5 

 

170 19 B 4 N New 

26415 9/27/12 F 30.5 2.5 33 

 

175 21 B 4 N New 

99084 9/29/12 F 

      

Y 1 N Recap 

22431 9/29/12 F 88 6 94 765 171 20 B 1 N New 

24027 9/30/12 M 33 2.7 35.7 

 

161 23 Y 1 N New 

97611 10/5/12 F 43.5 2.8 46.3 65 174 20 Y 4 N New 

21287 10/5/12 F 93 6.5 99.5 705 174 19 B 4 N New 

22348 10/5/12 F 55 4.2 59.2 125 171 18 B 4 N New 

23736 10/5/12 M 56 4.8 60.8 125 183 25 Y 4 N New 

26418 10/5/12 M 25.5 3.5 29 

 

168 24 Y 4 N New 

B102E 10/11/12 M 124 10.2 

 

1700 

  

Y 4 N Recap 

98229 10/11/12 F 41 2.9 43.9 

 

167 19 Y 4 N New 

23001 10/11/12 F 35 2.1 37.1 

 

174 22 B 4 N New 

23711 10/18/12 M 45 4.3 48.3 

 

167 24 Y 1 N New 

26383 10/18/12 F 34 2.5 36.5 

 

169 19 Y 1 N New 

22848 4/19/13 M 71.5 6 77.5 260 164 22 B 1 Y New 

99010 4/30/13 M 

   

1470 

  

B 4 N Recap 

22418 4/30/13 F 94 6.2 98.2 505 175 20 B 4 N New 

22427 5/3/13 F 93 6 99 670 171 19 Y 3 N New 

22452 5/3/13 M 117 10.2 127.2 1500 165 25 B 3 N New 

23815 5/4/13 M 120 11.1 131.1 1121 157 24 B 4 Y New 

24098 5/4/13 M 109 9.8 118.8 1350 177 24 B 4 N New 

98151 5/16/13 M 85 8.3 93.3 580 

   

1 N Recap 

22606 5/16/13 M 108 10.8 118.8 1450 163 23 B 1 N New 

23622 5/17/13 M 

   

1930 

  

B 3 Y New 

24547 5/22/13 F 87 6 93 555 167 18 B 2 N New 
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23983 5/28/13 M 120.2 10.2 130.2 1245 164 25 Y 1 Y New 

43081 7/14/13 M 104 8.3 112.3 1100 164 23 Y 2 N New 

97438 9/12/13 M 105 11.5 126.5 1280 

  

B 4 N Recap 

41666 9/12/13 M 91 8 99 645 163 23 B 4 N New 

42612 9/12/13 M 38.5 3.6 45.1 50 165 25 B 4 N New 

42844 9/20/13 F 79.5 6.5 86 440 171 20 Y 1 N New 

22696 9/20/13 F 52 4.6 56.5 225 175 20 B 4 N New 

41726 9/20/13 F 80 5 85 485 172 17 Y 4 N New 

41314 10/16/13 M 42 2.8 44.8 60 182 21 Y 1 N New 

42495 5/7/14 M 138 11.5 149.5 2035 

 

27 Y 3 Y New 

D340B 5/30/14 M 

   

1450 

  

Y 2 N Recap 

22301 6/21/14 M 70 7.5 77.5 345 

  

B 4 N New 

41731 6/21/14 M 97.5 8 105.5 820 

  

B 4 N New 

42141 6/21/14 M 65.2 5.3 68.5 130 

 

24 Y 4 Y New 

43197 6/21/14 M 68 5 73 130 

 

24 B 4 Y New 

99084 6/25/14 F 

   

700 

  

Y 1 N Recap 

marker 10/2/14 U       Y 2 N New 

13663 10/9/14 M 125 10 135 2000 168 24 Y 3 N Recap 

98796 10/9/14 M 112 12 124 1160 

 

25 Y 1 Y Recap 

00093 10/14/14 M 

      

Y 3 N New 

41866 10/17/14 M 55.5 5 60.5 180 

 

24 Y 1 Y New 

98993 9/22/15 M 

   

1000 

  

Y 1 N Recap 

41866 9/22/15 M 

   

350 

  

Y 1 N Recap 
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Figure 1.3. Population viability analysis of a Timber Rattlesnake population in Berkshire 

County, MA, using the mean estimated population size (a.) (n = 995) and confidence 

interval bounds (b.) (n = 560), (c.) (n = 2114) with a sex ratio of 50:50. Probability of 

extinction for all three scenarios was 0.00. 

a.) 

. 

b.) 

 
c.) 
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Figure 1.4. Population viability analysis of a Timber Rattlesnake population in Berkshire 

County, MA, using the mean estimated population size (a.) (n = 995) and confidence 

interval bounds (b.) (n = 560), (c.) (n = 2114) with a sex ratio of 66:34. Probability of 

extinction for all three scenarios was 0.02 (a.), 0.04 (b.) and 0.00 (c.). 

a.) 

 
b.) 

 
c.) 
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Table 1.3. Color morph (yellow:black), sex ratio (M:F), individuals with lesions present 

(percent) and number of males with lesions for each subpopulation. Sex and color morph 

was not possible to determine for all neonates. 

 

Subpopulation Color Morph 

Y:B 

Sex Ratio 

M:F 

Lesions (%) Lesion 

Male 

MBER1 30:17 30:17 21.3% (10) 10 

MBER2 20:4 11:12 4.1% (1) 1 

MBER3 16:3  15:4 15.7% (3) 3 

MBER4 20:68 57:31 5.7% (5) 5 

Total 86:86 113:64 10.3% (19) 19 
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Table 1.4. List of known mortalities, cause of death (if known) and site location for Timber Rattlesnakes in a Massachusetts 

metapopulation from 2009-2013 (*individuals with radio transmitters). Individuals listed are those that are confirmed dead and does 

not include radio failures or possible radio expulsions. 

  

Ind ID Site Sex First Date Date of Death Day Interval Cause of Death 

5342* MBER1 M 8/6/09 11/20/13 1567 Unk-skeleton 

1693 MBER1 F 6/6/11 7/1/11 25 Unk-skeleton (PIT tag found) 

5146* MBER1 M 6/6/11 8/15/12 433 Unk-whole body, no major injuries 

9911* MBER1 M 5/2/11 7/9/11 68 Red tailed hawk predation 

N/A MBER3 U N/A 5/3/10 N/A Unk-skeleton 

N/A MBER4 U N/A 7/19/12 N/A Human-skeleton found in trail 
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Figure 1.5. Male Timber Rattlesnake radiotracked in 2009 through 2010 at MBER3 

exhibiting facial lesions increasing in severity, and then decreasing in severity. Photos 

taken (a.) May, 2009 (b.) June, 2009 (c.) July, 2010 (photo credit: Chris Camacho) (d.) 

June, 2010 (e.) August, 2010. Photos represent condition after each shed. 

a.)         b.) 

   
c.)        d.) 

   
e.) 
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Figure 1.6. Male Timber Rattlesnake radio tracked in 2011 exhibiting lesions after 

emergence (a,b.) and after the first shed (c.). Photo a.) was taken in the lab during 

radiotransmitter implantation surgery, May, 2011, and photo b.) was taken in the field, 

June, 2011. Note the rostral swelling and disfiguration seen in (a. and b.) is not present in 

c.). 

a.) 

 
b.) 

c.)  
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Figure 1.7. Male Timber Rattlesnake radiotracked from 2009 through 2013 exhibiting 

lesion improvement, and eventual healing. This individual tested positive for SFD. 

Photos taken (a.) April, 2010 (b.) June, 2010 (c.) August, 2010 (pre-shed) (d.) August, 

2011 (e.) June, 2012.  

a.)      b.) 

   
c.)     d.) 

  
e.) 
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Figure 1.8. Body condition index (BCI), regression of log-n mass (g) and log-n snout 

vent length (SVL, cm) for Timber Rattlesnakes with and without lesions captured from 

2009-2014.
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CHAPTER 2 

 

MOVEMENTs AND SPATIAL BIOLOGY OF A TIMBER RATTLESNAKE 

METAPOPULATION IN WESTERN MASSACHUSETTS  

 

2.1 Abstract 

Movement patterns of a vertebrate species can be influenced by many factors, e.g. 

resource needs that change throughout the year, reproductive condition, and disease.. 

Here I used radiotelemetry to investigate variation in home range size, 95% kernel 

density estimates, and maximum distance from a den in a metapopulation of Timber 

Rattlesnakes (Crotalus horridus) in southeastern Massachusetts. Timber Rattlesnake 

gravid females moved significantly less, and used significantly smaller ranges than males 

and non-gravid females.  Individuals used smaller ranges and moved less often during the 

shedding season than during the active season, supporting a hypothesis that individuals 

move farther and more frequently while foraging and mate searching.  Snake Fungal 

Disease (SFD) presence did not affect any movement parameters.  Home range size did 

not vary annually, but individuals tracked for 4-5 years appeared to sometimes use 

different foraging areas each year, often returning to these areas in subsequent years. The 

results presented here identify key locations, such as basking and foraging areas, for a 

metapopulation. If future management strategies are implemented these results provide a 

basis for comparison to provide guidelines for using headstarted or translocated snakes to 

ensure that the management plan is successful.  
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2.2 Introduction 

Animals are known to use different types of habitat to obtain required resources 

for survival, foraging, birthing, and thermoregulation. Protecting these areas is required 

for many threatened and endangered species to insure their future persistence.  

Determining where these areas are located can be difficult, especially with species that 

use camouflage as their primary defense. Radiotelemetry is a useful tool for studying 

movement patterns and habitat usage of cryptic animals, such as snakes, especially in 

determining areas to protect, or potential barriers to movement, such as roads. 

Radiotelemetry proved useful in determining areas and habitat types to protect for the 

federally endangered Copperbelly Water Snake (Nerodia erythrogaster neglecta) (Roe et. 

al., 2003). Spatial movement patterns of individuals often vary yearly, or with 

reproductive condition and gender, as seen in southern populations of Timber 

(Canebrake) Rattlesnakes (Waldron et. al., 2006). Quantifying variation in habitat and 

spatial use from these predictors is required when evaluating areas that may be in need of 

protection. Understanding spatial requirements and movement patterns can be critical to 

conserving threatened and endangered species and populations of amphibians and 

reptiles.  

Radiotelemetry is often used in mitigation projects to determine whether an 

endangered species is using an area proposed for development. Species that have a low 

detectability rate call out for the most efficient way to determine whether the species is 

using a particular area of habitat. The Timber Rattlesnake and their habitat are protected 

in Massachusetts under the Massachusetts Endangered Species Act (MESA, 321 CMR 

10.18), so understanding spatial needs is critical to protecting the species and developing 
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a management plan. Timber Rattlesnake habitat in the northern extent of the species’ 

range consists of two primary aspects, the overwintering habitat (hibernaculum, or den) 

and the summer range area. Dens usually consist of rock or talus slopes, and typically are 

south-facing. Summer range typically consists of deciduous-coniferous forest, primarily 

for foraging and mate-searching (Brown, 1993). The results provided here will create 

guidelines for how much space is needed for one of the largest metapopulations in New 

England in order to guide land protection decisions for this and other populations. Spatial 

parameters will also identify areas that appear to be essential to a metapopulation (i.e. for 

denning areas, birthing, shedding). Although most of this region (ca. 83%) is protected 

land, individuals own private property at some of these areas used by the snakes. Results 

from this research will also provide guidelines for future headstarting and translocation 

efforts that may be proposed in the northeast region. Here, I examine the spatial needs of 

the state-endangered Timber Rattlesnake, a species that has been declining throughout its 

range over the past few centuries (Brown, 1993).   

I estimated home range size (with minimum convex polygon and 95% fixed 

Kernel Analysis), maximum distance moved from a den, and daily distance moved. 

These measures were evaluated as to how these varied with respect to year, reproductive 

condition, and Snake Fungal Disease (SFD) presence. SFD was identified initially by 

inspecting a snake, typically characterized by facial lesions (see Chapter 1 for complete 

description and disease history). Male and non-gravid female Timber Rattlesnakes 

typically have larger home ranges than gravid females (Brown, 1993, Reinert and 

Zappalorti, 1988). Individuals with SFD infections are expected to bask more frequently, 

and to exhibit a fever response (Burns, 1996), both of which might increase shedding 



 60 

frequency (Lorch et. al., 2015). Shedding more frequently facilities faster healing of SFD 

lesions (Lorch et. al., 2015). Typically there are basking areas near rattlesnake dens 

where individuals undergo shedding shortly after emergence. Individuals that were 

negatively affected by SFD are predicted to travel less frequently and cover distances, 

thereby remaining at these basking sites and also might expend less energy in the 

presence of SFD. 

 

2.3 Materials and Methods 

2.3.1 Study Area 

The southern Berkshire Taconic region in southwestern Massachusetts extends 

into adjacent New York and Connecticut. The area is approximately 60 km2, with an 

average elevation of about 600 m, and has one of the Northeast’s largest areas of old-

growth forest (Davis, 1996). The area consists of mostly northern hardwood species, 

dominated by Red Oak (Quercus rubra), Eastern Hemlock (Tsuga canadensis), Chestnut 

Oak (Quercus prinus), American beech (Fagus grandifolia), Striped Maple (Acer 

pensylvanicum), American Hazelnut (Corylus americana), and along with an occasional 

American Chestnut (Castanea dentata). Dominant shrubs include Mountain Laurel 

(Kalmia latifolia), Scrub Oak (Quercus ilicifolia), and Low Bush Blueberry (Vaccinium 

angustifolium).  Other features include small wetlands, bogs and natural ponds.  The area 

is primarily used for recreation (e.g. hiking, camping, geocaching), and has a low density 

of human residents (ca. 0.5 persons/km2). 

 

2.3.2 Radiotelemetry 
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Visual searches for Timber Rattlesnakes were conducted at known den areas 

during spring emergence and fall ingress, and at basking sites. Nineteen adult rattlesnakes 

(13 males, 6 females) were captured opportunistically during den and basking area 

surveys between 2009-2013, and these snakes were then implanted with tracking radio 

transmitters (see below). On average each snakes was tracked for two years, although 

three individuals were tracked over the entire study period (five years), and one was 

observed for four years. Measurements of ventral scale counts, snout-vent length (SVL, 

cm), tail length (cm), weight (g) and rattle segments were done on site and time of 

capture, if the animal was not receiving a transmitter. Subcaudal ventral scale counts, or 

cloacal probing (Schaefer, 1934), were used to determine sex. All snakes received a 

passive integrated transponder tag (PIT tag, Biomark, Boise Idaho) that was injected 

subcutaneously laterally approximately 8 cm anterior to the vent with a 12 gauge sterile 

syringe. Individuals were scored for presence or absence of SFD (lesions covering 

~>10% of the head region), and all lesions were photographed. Snakes were surgically 

implanted with Holohil SI-2T (13 g) transmitters (Holohil Systems Ltd., Carp, Ontario, 

Canada), weighing <5% of body mass following Blouin-Demers et al. (2000).  All 

surgical procedures were performed in the veterinary laboratory at Holyoke Community 

College, Holyoke, Massachusetts, and followed approved protocols of the University of 

Massachusetts Institutional Animal Care and Use Committee (#29-02-03R, and #2012-

0009). Snakes were kept in captivity and observed for at least 24 hours post-surgery, and 

released at their point of capture.  Snakes were subsequently relocated 1-2 times per week 

using a R-1000 (Communication Specialists, Inc., Orange, CA) telemetry receiver and 3-
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element Yagi antenna. GPS locations were recorded with a Garmin Oregon 550T 

(Garmin International, Inc, Olathe, KS) hand-held unit.   

 

2.3.3 Seasonal Variation 

Snake behaviors were placed into 5 categories: shedding, mating (includes 

copulation and courtship), foraging (classified by ambush posture, Reinert et al., 1984), 

transient (actively moving), and coiled/exposed (basking). The first shed occurred on 5 

June with the latest occurring on 3 July, including the entire time the eyes were opaque. 

The shedding season began once individuals moved away from the den and into the areas 

(basking sites) occupied during the first shed of the year (approximately 150 m from the 

den). After 3 July, individuals exhibited different and temporally overlapping behaviors, 

so foraging, breeding, and the second shedding event could not be subdivided into 

separate seasons. These behaviors occurred from 4 July to 11 September, after which 

individuals began returning to the den. This period is therefore referred to as the core 

active season. Gravid females were excluded from seasonal variation analyses since they 

were sedentary, using the same location during both the shedding and core active season. 

 

2.3.4 Movement Parameters 

Movement analyses were conducted for individuals tracked for at least one 

complete field season.  Home range size via minimum convex polygons (MCP), 

maximum distance from the den site, and average daily movement distance were 

analyzed using ARC View 10.2 and Geospatial Modeling Environment 0.7.1 (Beyer, 

2012). Fixed 95% Kernel Analysis (Worton, 1987, 1989), was analyzed using the 
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adehabitat package (Calenge, 2007) for R version 3.1.3 (R Development Core Team, 

2006). Maximum distance was the straight-line distance from the den to the farthest 

location.  Average daily movement distances were calculated by dividing total the 

distance moved between relocations by the number of days between relocations. Data 

from recaptured individuals without radios were used only if repeated relocations were 

made within the average time between measured telemetry relocations for radiotracked 

snakes.  

   

2.3.5 Analyses 

Statistical analyses were performed using R version 3.1.3 (R Development Core 

Team, 2006). I used a repeated measures two-factor ANOVA to account for multiple 

measures of home ranges (MCP and 95% Kernel), maximum distance from the den site 

and average daily distance moved, for the same individual across multiple years.  

Predictor variables included presence of SFD, reproductive condition, and year.  The 

analysis was pooled across all years to allow inclusion of differences between 

reproductive condition and SFD presence. Averages and standard errors for these values 

are given for reproductive condition and SFD presence by year.  

 

2.4 Results 

2.4.1 Home Range Variation-MCP and Kernel Density Estimates 

 Sex, including reproductive condition and SFD presence (only males were 

observed with lesions) did not have a significant effect on MCP (F1,12 = 0.38, p = 0.054, 
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F1,12 = 3.77, p = 0.55), or kernel density estimates (F1,12 = 2.236, p = 0.150, F1,12 = 0.214, 

p = 0.652). Gravid females had the smallest MCP and kernels (Table 2.1, Fig 2.1).  

Individuals that were followed for two or more seasons did not differ in MCP size 

(F1,11 = 0.56, p = 0.47) or kernel estimates (F1,11 = 0.56, p = 0.47) between years. Average 

and standard errors of MCP and kernel estimates by year are reported in Table 2.2. For 

individuals followed 4-5 years, there were some differences in areas chosen during the 

active season.  Males differed yearly in active areas chosen, often returning to the 

previous areas a few years later (Fig 2.2), but did not vary by movement parameters 

(Table 2.1).  Females typically used the same areas each year, except when gravid (Fig 

2.2). Two females followed for two gravid years each used the same birthing rookery in 

both years.  

 

2.4.2 Maximum Distance from Den 

 Maximum distance moved from the den was related to sex, with gravid females 

moving the shortest distance (F2,11 = 4.21, p = 0.041, Fig.2.3). SFD presence did not have 

an effect (F1,12 = 0.45, p = 0.584). Maximum distance moved from a den across sex and 

reproductive condition did not differ significantly across years (F1,11 = 0.38, p = 0.548) 

with average and standard errors reported in Table 2.2. The farthest distance of all 

individuals (males and females) was for a postpartum female, at 4.78 km (in 2010).  She 

also moved an extremely long distance when she was gravid, 3.42 km (in 2012), a 

distance likely accounting for a lack of significant effect. This female had the shortest 

timespan between gravid years, with a 3-year interval (2009 and 2012). and moved 

farther than average reported distances for this species (Brown, 1993). 
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Females followed for five years (n = 2) used the same areas each year when they 

were not gravid.  One gravid female switched rookeries in 2012. She was located at the 

same rookery she used in 2009 on 27 August, 2012. She was not approached and was 

observed from approximately 3 m away, to prevent undue disturbance. On 3 September, 

2012 she was found at a different rookery at a distance of 660.8 m from her 2009 

rookery. Males followed for 4 — 5 years appeared to use different areas during the active 

season, though there was some range overlap. Despite using different areas during the 

active season, males returned to the same core areas in subsequent years (Fig 2.2). These 

observations were only possible because I was able to collect locations for the same 

individuals over an unusually long period (5 years) as compared to other studies. 

 Only two individuals (1 male, 1 female) moved early in the active season directly 

south and downward from the mountain where the den is located (the same south-facing 

den [MBER3]). All others moved to higher elevation from the den, either east or north, 

depending on whether the den was west-or south-facing respectively. One such individual 

was an older female, as indicated by 16 rattle segments with no taper (likely 20+ years), 

who spent one summer in an early successional field. Another such individual was a male 

not included in this study, as he expelled his radio midway through the active season. 

Both individuals did move to a basking site for the first shed that was located south of the 

den. MBER3 was the only den that appeared to have a suitable basking area below the 

den. All other individuals that moved downward off the mountain did so by moving up 

and over the mountain range, to the east or north. Individuals at south-facing dens (3 den 

sites) typically moved north of the den during the active season. Individuals at west-

facing dens (4 den sites) moved east of the den during the active season.    
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2.4.3 Average Daily Movement Distance 

Daily movement distances were estimated for 614 pathways in 32 individuals, 

with an average of 11.8 days separating each relocation. There was no effect of SFD 

(F2,579 = 1.07, p = 0.309) or sex (F3,579 = 4.35, p = 0.128) on daily movement distances 

(Table  2.1). Individuals moved significantly shorter distances daily during the shedding 

season (24.36 m ± 2.17) than during the core active period (44.64 ± 4.75 m, p = 0.021, 

F2,579 = 6.65). In general, individuals moved away from the den after emergence, 

remained sedentary during shedding (peaking at week 27, Fig 2.4), and then dispersed 

during July and August (weeks 28 – 35, Fig 2.4). There was no effect of year on average 

daily distance moved (F1,567 = 0.015, p = 0.90, Table 2.2). Individuals were relocated 

having not moved from their previous location 48 times, events which mostly occurred 

during the shedding season, and in gravid years. 

 

2.5 Discussion 

The first radiotelemetry study of Timber Rattlesnakes was conducted by Fitch in 

1966 in Kansas (Fitch, 1999). At that time transmitters were forced into the snakes’ 

stomachs, and rarely lasted longer than a month before being egested. Snakes were found 

to have an average daily movement of 57.5 m. The snakes did not move on thirty percent 

of the days monitored. In Massachusetts, this lack of movement between relocations was 

not observed as frequently, although snakes here were not detected every day as in (of 

Fitch, 1999). Brown et. al. (1982) followed five individuals in New York, and 

documented that males travel farther than females, and that non-gravid females traveled 



 67 

farther than gravid females. Extensive movements have been seen after the first shed of 

the season, and snakes have transient routes after the active season; these movements 

represent migration from the core active area to the den (Reinert et. al., 1984, Reinert and 

Zappalorti, 1988, Waldron et. al., 2006).  Many studies of this species have found this 

trend over the entire species’ range (Reinert et al. 1984; Reinert and Zappalorti 1988; 

Waldron et. al. 2006), including this study, although in contrast to others, I found little 

variation in movement patterns related to reproductive condition.   

 

2.5.1 Home Range Variation and Kernel Density Estimates 

 Home range size did not vary significantly with reproductive condition, SFD 

presence, or year.  The lack of a reproduction-condition effect is at odds with most 

studies (Brown, 1993; Waldron et. al. 2006; Fitch, 1999), where males typically have 

been shown to have larger home ranges, and gravid females to have smaller home ranges 

than non-gravid females. My study population may truly differ from other sites, but it is 

also possible that I did not detect an effect due to my sample being heavily male-biased, 

and having one gravid female moving much farther than is reported in previous studies 

(Brown, 1993). The lack of SFD effect suggests that fungal lesions do not influence 

movements of individuals. If infected snakes did bask more, they would probably move 

less frequently and would remain at the basking site; therefore, infected snakes 

apparently did not bask more frequently (see Chapter 3 for further habitat analysis). 

 Movement direction from dens could prove useful in predictions for management 

in regions around unstudied dens, although it is likely that most snakes move upward 
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from the den to find suitable open basking areas, rather than the movement being driven 

by a specific cardinal direction. 

 

2.5.2 Maximum Distances and Daily Movements 

During the shedding season, individuals did not move as far as in the core active 

season. Individuals shed soon after emergence, and typically did so near the den area, and 

these shedding sites were typically in open rocky areas above the den site (Brown, 1993).  

It seems likely that individuals with SFD would be inclined to shed more frequently 

during the year to increase the healing process, thus limiting their movements. I did not 

observe this trend, therefore it seems that the observed fungal lesions did not influence 

shedding frequency, or movement patterns. For individuals followed for two or more 

seasons, maximum distance from the den and average daily distance moved did not vary 

among years. Females typically used the same foraging areas among years, but males 

typically used different areas each year. Males were often following the scents of females 

during the mating season, which could lead to the variation in foraging and second annual 

shedding areas (Brown, 1993).  

The reason there was no effect of sex and reproductive condition could be due to 

one gravid female switching rookeries in 2012 and another female (postpartum) having 

the greatest maximum distance from the den by any individual, traveling 4.78 km in 

2010, and 3.42 km in 2012 while gravid. Brown (1993) reports a maximum distance of 

3.7 km for non-gravid females.  These two females I recorded increased the variation and 

mean of the analyses, and their movements are probably why there was no difference in 

distance between males and non-gravid females.  
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2.5.3 Seasonal Variation 

 Individuals moved less often daily and used smaller areas during the shedding 

season compared to the core active season. This finding is consistent with the hypothesis 

that a majority of mate0searching and foraging occurs during the active season, and is 

also consistent with a Timber Rattlesnake study in South Carolina (Waldron et. al., 

2006). Most individuals in my area moved upslope from the den and remained in that 

higher area during the first shed. These shedding regions were either north of the den, 

(for south-facing dens) or east of the den (for west-facing dens). These directional 

movements are likely due to the available basking areas being above the den, rather than 

to a pre-determined cardinal directional movement. Also, most foraging areas appear to 

be above the basking areas, at the peak of the mountain, again suggesting snakes chose to 

move uphill to locate seasonal home range habitat. When they dispersed, individuals also 

congregated more often during the shedding season than during the active season, 

suggesting that these shedding areas are critical habitat areas that should be protected, as 

these sites are limited spatially because they usually are near the den sites. Thus, active 

season areas appear to be more flexible and individuals may be more resilient to natural 

disturbances in these core areas. Protecting rock outcrops above the dens should be a 

priority, and if increased canopy cover occurs through succession, habitat management, 

(e.g. cutting back the canopy or removing encroaching trees and shrubs) should be 

implemented to assure that these critical sites are available (Brown, 1993).   

 

2.5.4 Management Implications 
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Mapping seasonal spatial use of a species allows management practices to be 

implemented in a more effective way to protect areas that are critical to a population. In 

this metapopulation roads do not appear to be barriers as most are narrow and unpaved. 

Individuals typically moved uphill from their den, and roads are often located at lower 

elevations between mountains. Behavioral patterns observed here may apply to other, 

more urbanized, populations. For example, in areas with less available habitat, the focus 

should be on roads located north and east of den as possible sources of morality. In a 

more urbanized settings, where roads can act as a barrier (Clark et. al., 2010), closing 

such roads can be both a helpful act and a political problem, even if only done at night. 

Considering the observations here, however, I suggest that closing roads only during the 

active season (approximately July-August) might be effective. 

 The majority of individuals moved upslope after emerging from the dens. 

Therefore, protecting land at a higher elevation than the den should take priority over 

protecting areas below. Farthest distances moved from the den varied widely, and ideally 

the farthest distance would be used as a radius from the den to create an area of 

maximum protection. The farthest distance moved for this species was 7.2 km in New 

York (Brown, 1993), but protecting this much land around a den site may not be possible, 

especially since every Timber Rattlesnake den in Massachusetts is within 4.5 km of some 

type of urbanization. Mapping out areas of frequent use by the population with 

radiotelemetry studies is a more efficient way to determine which areas of habitat are 

used by a population and as critical to the species.   

Results reported here should be useful for future conservation efforts, as the 

Massachusetts Natural Heritage and Endangered Species Program explores the option of 
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captive breeding for the purpose of headstarting for population supplementation, as well 

as and re-introduction in two other smaller populations. Knowing what types of habitat 

are needed by an apparently stable population can reform future headstartings efforts 

evaluating these methods as to whether the introduced snakes are moving and using 

habitat in ways similar to those of this study, or if their movement and habitat choices are 

erratic, can suggest whether they are acclimating to their adopted population. One 

headstarting study by Conner et. al. (2003) in a Texas population reported that 

headstarted snakes had a 50% survival rate (range  44 — 77%) over the course of the 

study, and successful reproduction was observed. The range of survivorship is reported 

because they could not differentiate between radio failure vs. individuals leaving the field 

site. This range of survivorship is consistent with survivorship for wild born neonates 

reported for this species in a New York metapopulation (Brown et. al., 2007).  Snakes 

studied by Conner et. al. (2003) were able to locate dens as well as basking sites used by 

resident snakes. Reinert and Rupert (1999) support this, with a radiotelemetry study in 

New Jersey comparing movements and habitat use by adults translocated into a new 

population to the local adults. Translocated snakes at first made larger, more frequent 

movements than residents, but then settled into home ranges that did not differ in area 

from those of local adults. Translocation was also critical in saving an adder population 

suffering from inbreeding depression (Madsen, 1999). Although headstarting is not seen 

as necessary or desirable for this stable metapopulation, the results here can be helpful in 

evaluating these efforts in other populations.  Distances moved and home range sizes of 

native snakes will likely vary among populations, based on the available habitat, but 

overall patterns of short uphill movements during the shedding season, and larger 
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movements during the active season as observed here, could be informative when 

analyzing the movement patterns of headstarted and translocated individuals elsewhere. 

Without knowing the movement patterns of native snakes, any other movement patterns 

cannot be compared to translocated and headstarted snakes, and it therefore one cannot 

know if the introductions was successful.  
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Table 2.1. Mean movement variables measured for Timber Rattlesnakes from 2009 to 

2013 with regards to reproductive condition, gender, and SFD presence, with minimum 

convex polygon (MCP), kernel (95%), maximum distance from den site (Max Dist), and 

average daily distance moved (Daily Dist). Standard error is given in parentheses.   

 

 SFD absent SFD present 

 
Male 

(n = 22) 

Non-gravid Female 

 (n = 13) 

Gravid Female 

(n = 5) 

Male 

(n = 9) 

MCP 

(km2) 
0.87 (±0.14) 0.42 (±0.09) 0.06 (±0.04) 0.79 (±0.15) 

Kernel 

(ha) 
986.64(±233.17) 530.56(±178.03) 85.53(±39.67) 600.56(±188.93) 

Max Dist 

(km) 
2.18 (±0.16) 1.62 (±0.30) 1.29 (±0.72) 1.69 (±0.17) 

Daily Dist 

(m) 
45.74 (±4.74) 38.73 (±6.64) 11.78 (±3.35) 30.25 (±3.27) 
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Table 2.2. Mean movement variables measured for Timber Rattlesnakes from 2009 to 2013 with regards to reproductive condition, 

gender, and year, with minimum convex polygon (MCP), kernel (95%), maximum distance from den site (Max Dist), and average 

daily distance moved (Daily Dist). Standard error is in parentheses.    

 

 
Year Gender n MCP (km2) Kernel (ha) Max Dist (km) Daily Dist (m) 

2009 Male 4 0.329(±0.227) 322.72(±135.37) 1.451(±0.382) 9.35 (±2.05) 

  Female 1 0.719(n/a) 1188.43(n/a) 1.810(n/a) 81.34 (±28.57) 

 Gravid 3 0.0269(±0.004) 48.65(±20.68) 0.499(±0.320) 10.64 (±3.53) 

2010 Male 6 1.078(±0.313) 1372.00(±226.48) 2.275(±0.462) 13.37 (±7.80) 

  Female 4 0.393(±0.260) 656.18(±514.65) 1.968(±0.80) 28.83 (±5.27) 

2011 Male 8 0.796(±0.184) 937.82(±523.54) 2.171(±0.273) 32.44 (±4.24) 

  Female 3 0.375(±0.115) 240.03(±13.49) 1.425(±0.313) 48.15 (±25.86) 

 Gravid 1 0.208(n/a) n/a 3.418(n/a) n/a 

2012 Male 8 0.924(±0.235) 763.81(±388.64) 2.173(±0.119) 48.09 (±8.10) 

  Female 2 0.551(±121) 552.63(±284.24) 1.412(±0.292) 34.57 (±8.06) 

 Gravid 1 0.0363(n/a) 196.15(n/a) 0.758(n/a) 17.47 (±9.97) 

2013 Male 5 0.785(±0.148) 498.03(±136.15) 1.804(±0.149) 30.71 (±4.59) 

  Female 3 0.298(±0.216) 322.75(±89.67) 1.455(±0.198) 28.31 (±4.52) 
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Figure 2.1. Home range size, as measured by minimum convex polygon (MCP) 

associated with reproductive condition (F = non reproductive female, n = 13, G gravid 

female, n = 5,  M = male, n = 25 ) for Timber Rattlesnakes from 2009-2013.  
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Figure 2.2. Annual home range variation for three adult Timber Rattlesnakes tracked for 

at least four years. Shown are two males (a.) and (b.) and one female (c.). She was gravid 

in 2009 and 2012. Den sites are located where all polygons converge.
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Figure 2.3. Maximum distance (km) located from the den site for Timber Rattlesnakes 

tracked 2009-2013 associated with reproductive condition (F = non reproductive female, 

G = gravid female, M = male).
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Figure 2.4. Average daily movements for Timber Rattlesnakes from 2009-2013 plotted 

by week of the year. Arrow shows the shift from the shedding season to the active season.  

Actual shedding took place during weeks 24-27. 
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CHAPTER 3 

 

HABITAT SELECTION IN A TIMBER RATTLESNAKE POPULATION IN 

WESTERN MASSACHUSSETTS, AND EFFECTS OF DISEASE, GENDER, AND 

SEASONAL AND YEARLY VARIATION 

 

3.1 Abstract 

Habitat needs of snakes often depend on behavior (e.g. foraging, mate searching, 

gestating, shedding), and can vary seasonally and with health condition. Here, I 

investigate intraspecific variation in a Timber Rattlesnake (Crotalus horridus) population 

in western Massachusetts, with regard to health status and gender (male and non-gravid 

female) using classification tree (CART) analysis, and yearly and seasonal variation 

compared to random available habitat using paired logistic regression. Snake fungal 

disease (SFD) and sex were not correlated with habitat selection. Overall, individuals 

preferred areas of increased rock cover, decreased canopy cover, lower slope, and 

increased vegetative ground cover compared to available random sites. Individuals 

preferred rock outcrops under open canopies during the shedding season, and used more 

open forested areas with high vegetation cover and tree density during the active season. 

Because this population is located in one of the largest intact areas of old-growth forest 

remaining in New England, results can be used to guide management plans for 

populations in the region where the habitat has been altered or affected by humans.  

 

3.2 Introduction 

Protecting its habitat needs is critical to protecting any species, because animals 

often require different types of habitat for different behaviors (e.g. foraging, mate 



 83 

searching, gestating), and seasonal variation (Waldron et. al., 2006; Timmerman, 1995). 

Habitat needs may also vary by body size differences in sex, such as foraging in different 

habitat types for different species of prey based on size; for example Timber Rattlesnake 

(males are larger than females (Brown, 1993), habitats used could also vary depending on 

the health status of the individual (Madsen, 1984; Timmerman, 1995; Reinert and 

Zappalorti, 1988). Males and gravid females of many snake species exhibit different 

habitat preferences (Reinert, 1984a). A relationship between individual health and habitat 

use in snakes may also be expected, but remains largely unexplored (Reinert, 1993). In 

several North American snake species experimentally inoculated with pathogens (Burns 

et al., 1996; Funk, 2006), infected individuals chose warmer locations and actively raised 

their body temperatures. This behavioral response would likely cause a change in habitat 

use, as habitat selection is often influenced by thermoregulation (Blouin-Demers and 

Weatherhead, 2001). Basking sites typically consist of areas with increased rock 

coverage, open canopy, greater sun exposure, and less shrub vegetation (Brown, 1993). 

Individuals with snake fungal disease (SFD) have been observed basking more often than 

healthy individuals (McBride et al., 2015). SFD presence was defined as the physical 

appearance of the infected skin lesions that are typically characterized malformation, 

blisters or necrotic depressions (see Chapter 1 for complete description and disease 

history). Snakes also often shed more frequently when afflicted with SFD or injury 

(Lorch et. al., 2015). Individuals adversely affected by SFD would likely use these 

habitat types more frequently than apparently healthy individuals.  

The purpose of this study was to investigate intraspecific variation in a Timber 

Rattlesnake population in western Massachusetts, with regard to health status, gender, 
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and annual and seasonal variation compared to paired available random site not occupied 

by the individual. Many habitat models assume random points within the home range of 

an individual are available to the individual at all times, using approaches such as grid 

surveys (Arther et. al., 1996). This approach does not, however, analyze the habitat 

actually available to the individual at a given moment in time. By using random points 

paired to the individual’s location, on a spatial scale of reasonable distance traveled 

within a day, this assumption is avoided. Several outside variables are also eliminated, 

such as weather condition, time of day, and resource availability, all of which affect 

habitat selection on a daily temporal scale (Compton et. al., 2002).  

 The Timber Rattlesnake has been declining throughout its range over the past few 

centuries (Martin et. al. 2008). Its corresponding habitat is protected in Massachusetts 

under MESA (321 CMR 10.18). Therefore, understanding habitat needs is critical to 

protecting the species and developing management plans. Timber Rattlesnake habitats in 

the northern extent of the range consist of two primary components: (1) the overwintering 

habitat (hibernaculum, or den) and (2) the summer range area. The majority of Timber 

Rattlesnake habitat in Massachusetts is protected by various agencies (United States 

Fisheries and Wildlife, Massachusetts Department of Conservation and Recreation, New 

York Department of Environmental Conservation, The Nature Conservancy, the 

Massachusetts Audubon Society, and town municipalities.), and future development is 

unlikely. However, habitats can vary greatly across the few geographically constrained 

populations in Massachusetts, and by analyzing habitat selection in the largest, healthiest 

population in Massachusetts, more realistic management strategies can be suggested for  
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small and fragmented populations, and those where habitat has undergone anthropogenic 

change.  

 

3.3 Materials and Methods 

3.3.1 Study Area 

This study was conducted in the southern Berkshire Taconic region in 

southwestern Massachusetts, adjacent to both New York and Connecticut. The area is 

approximately 60 km2, with an average elevation of about 610 m, and has one of the 

Northeast’s largest areas of old growth forest (Davis, 1996). The area consists of mostly 

northern hardwood forest, dominated by Red Oak (Quercus rubra), Eastern Hemlock 

(Tsuga Canadensis), Chestnut Oak (Quercus prinus), American Beech (Fagus 

grandifolia), Striped Maple (Acer pensylvanicum), stands of American Hazelnut (Corylus 

americana) ,and occasional American chestnut (Castanea dentata). Dominant shrubs 

include Mountain Laurel (Kalmia latifolia), Scrub Oak (Quercus ilicifolia), and Low 

Bush Blueberry (Vaccinium angustifolium). Other features include small wetlands, bogs 

and natural ponds. The area is primarily used for recreation (i.e. hiking, camping, etc.), 

with approximately 0.5 permanent residents per km2. 

 

3.3.2 Radiotelemetry 

Visual searches for Timber Rattlesnakes were conducted at known den areas 

during spring emergences and fall ingress, and at basking sites previously mapped by the 

Massachusetts Natural Heritage and Endangered Species Program (MANHESP). 

Measurements of ventral scale counts, snout-vent length (SVL, cm), tail length (cm), 

weight (g) and rattle segment counts were done at the capture sites, if the animal was not 
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receiving a transmitter. Subcaudal ventral scale counts or cloacal probing (Schaefer, 

1934) determined sex. Each snake received a 128 Khz passive integrated transponder tag 

(PIT tag, Biomark, Boise Idaho), injected subcutaneously laterally approximately 8 cm 

anterior to the cloaca with a 12 gauge sterile syringe. Individuals were scored as SFD 

present if a lesion covered at least 10% of the facial area, and photographed. Nineteen 

individuals were selected for radiotransmitter implantation from July 2010 through 2013. 

Snakes were surgically implanted with Holohil SI-2T transmitters (Holohil Systems Ltd., 

Carp, Ontario, Canada), weighing <5% of body mass following Blouin-Demers et al. 

(2000). All surgical procedures were performed in the veterinary laboratory at Holyoke 

Community College, Holyoke MA, and followed approved protocols of the University of 

Massachusetts Institutional Animal Care and Use Committee (#29-02-03R, and #2012-

0009). Snakes were observed for at least 24 hours post surgery and released at the point 

of capture. All individuals appeared normal after the anesthesia wore off. Using a R-1000 

(Communication Specialists, Inc., Orange, CA) telemetry receiver and 3-element Yagi 

antenna, snakes were located once to twice weekly. GPS locations were recorded with a 

Garmin Oregon 550T (Garmin International, Inc, Olathe, KS) hand-held unit.  

 

3.3.3. Habitat Variable Measurements 

Eleven habitat variables were measured at each snake telemetry location (Table 

3.1), with the telemetry study described in Chapter 2. These variables were previously 

identified as important habitat selection variables to Timber Rattlesnakes by Reinert, 

(1984a.). The 11 variables were also measured at a paired random point, within 10-200 

paces (approximately 10-200 m) in a random direction from the snake. This is a 

reasonable estimation of the distance a snake might move within a day (Keller and 
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Heske, 2000). Direction and distance of the random point were determined with a random 

number generator. Habitat variables were only measured once individuals moved away 

from the den entrance (at least 150 m), to avoid biasing analyses with repeated locations 

at den sites. Aspect and slope were measured directly at the site where the individual was 

located, rather than using data extracted from GIS layers, with a compass and clinometer. 

Canopy openness was measured with a Model C densitometer (Forestry Suppliers, 

Jackson MS). Distances and heights were measured using a meter tape. Percentage 

vegetation, rock cover, and woody debris cover were estimated after measuring a 1 m 

radius area around from the individual’s location.  

 

3.3.4 Statistical Analyses 

 Statistical analyses were preformed using R version 3.1.3 (R Development Core 

Team, 2006). Slope aspect was cosine transformed so northern values = 1 and southern 

values = -1. Effect of SFD presence and gender on habitat use was evaluated first, and 

once no effect was found, individuals were pooled for further analyses.  

 

3.3.4.1 Snake Fungal Disease and Gender 

 A classification and regression tree (CART) was built to examine the effects of 

gender and SFD presence on habitat use using the R package cartware.R (Compton, 

2006). CART analysis has the advantage of being non-parametric and non-linear, which 

is often the case with environmental data. Classification used a tree-building algorithm 

based on the strongest predictor value for each “if-then” logical binary split. No gravid 

females exhibited SFD and were excluded due to low sample size (n = 12) from both the 

SFD-present and SFD-absent variables, and from the gender variation variables. This was 
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done because gravid females are known to use birthing rookeries for the entire year of 

gestation, not when when hibernating, or traveling to and from the den. These areas were 

defined as areas with more rock cover and less canopy then areas used by non-gravid 

females and males; thus including them in these analyses could bias the results, as males 

do not exhibit seasonal variation (Brown, 1993). CART analysis is also sensitive to 

extremely unbalanced sample sizes, and the values will result in false positive 

classifications (Cieslak and Chawla, 2008). There were four categories of classification 

used: (1) male-SFD absent; (2) male-SFD present; (3) non-gravid female-SFD absent; (4) 

non-gravid female-SFD present. The tree was trimmed using the 1-SE rule (Breiman et 

al. 1984), with 10-fold cross-validation and using the splitting index “gini”. Cohen’s 

kappa (Cohen, 1960) evaluated model classification rates, and a corrected classification 

above random was calculated using Monte Carlo resampling rates. To evaluate variable 

importance and effectiveness of splitting the data, a random forest approach with 1,000 

runs was used (Breiman, 2001).  

 

3.3.4.2 Selected vs. Random Sites 

Timber Rattlesnakes exhibit strong site fidelity and often only congregate during 

hibernation, shedding, and gestation (Brown, 1993; Martin, 2002), so all random sites are 

seldom available to all individuals. Paired logistic regression was used to analyze 

differences between chosen and available sites. Pairing the selected site with a random 

site eliminates the assumption that all random sites are available to all individuals. 

Matched-pairs logistic regression is more appropriate for analyzing paired data points 

than standard logistic regression (Breslow and Day, 1980, Hosmer and Lemeshow, 

1989). This nonparametric approach is robust to violations of assumption of normality, 
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which are often the case with ecological (specifically habitat use) data (Morrison et. al., 

2006). It is cautioned here that this approach is not a predictive model (Keating and 

Cherry, 2004), but explains only the strength of relationships of the variables at the 

selected site. Random values were subtracted from the present site values to fit the 

regression model using standard logistic regression to fit a response vector of all 1’s to a 

matrix of predictor variables with a constant term excluded. The final model was chosen 

using step-wise Akaike information criterion (AIC) deletion of variables from the model. 

To explore the relationship of contributing variables, a classification tree was built and 

trimmed using the 1-SE rule (Breiman et al. 1984). Cohen’s kappa (Cohen, 1960) was 

used to evaluate model classification rate, and correct classification above random was 

calculated using monte carlo resampling rates. A random forest approach was used to 

evaluate variable importance and the effect of splitting the data (Breiman, 2001).  

 

3.3.4.3 Seasonal Habitat Variation 

Snake behavior was divided into five categories: (1) shedding, (2) mating 

(includes copulation and courtship), (3) foraging (classified by ambush posture, Reinert 

et al., 1984), (4) transient (actively moving), (5) coiled and exposed. The timing of the 

first shed was consistent across individuals (5 June through 3 July). The second shed, 

breeding, transient, and foraging primarily occurred between 13 July and 11 September. 

Based on temporal overlap of behavioral observations other than the first shed, distinct 

behavioral seasons could not be separated, resulting in only two seasons. The shedding 

season began once individuals moved away from the den and into nearby areas occupied 

during the first shed (approximately 150 m). The core active season includes foraging, 

transient movements, mating, and the second shed, as all behaviors overlap during this 
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time period. The average date of 1 July demarcated the two behavioral seasons, though 

observations were included in the appropriate season if there was overlap around this date 

(± 2 days). Statistical methods used were the same as described for selected vs. random 

points. 

 

3.4 Results 

Habitat observations (n = 509) were recorded from 18 telemetry individuals and 

48 new and recaptured individuals. For two observations sex of the individual was 

unknown and these snakes were omitted from analyses of sex differences, but were 

included in all other analyses. Average values for all habitat variables (with standard 

errors) for all treatments are reported in Table 3.2. Canopy openness and slope were the 

leading predictor variables in all CART analyses. Across all tests, all individuals 

preferred more open canopy and lower slope throughout the year. 

 

3.4.1 Snake Fungal Disease and Gender 

One individual with SFD was biopsied in collaboration with a health survey 

conducted by Roger Williams Park Zoo, Providence, RI. The sample tested positive for 

Ophidiomyces ophiodiicola, the causative agent for SFD (Lorch et. al., 2015). Only one 

radiotracked female had SFD, and didn’t exhibit symptoms until after the study was 

completed, while all others were males (n = 3). Of the 509 observations across 22 

individuals, 376 were SFD-absent, and 133 SFD-present. Observations were for 170 non-

gravid females (n = 6), 325 males (n = 13), and 12 gravid females (n = 3). Gravid females 

were omitted from analyses due to low sample size. For SFD-present and SFD-absent 

analysis, a CART tree could not be created, as only one node was present, with no leaf 
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branches. This indicates that the model could not differentiate any of the habitat variables 

between snakes with SFD-present and SFD-absent, and results in an intercept only model 

(Table 3.3). Canopy openness and percentage rock coverage were higher for SFD-absent 

snakes, although not significantly (Table 3.2). This result was contrary to the hypothesis 

that SFD-present snakes would bask more frequently to increase their body temperature 

and shedding rate. With this result, SFD-present and SFD-absent groups were pooled for 

further sex, annual, and seasonal tests. Gravid females were observed here to use areas of 

increased rock cover and less canopy coverage than non-gravid females, males, and 

individuals with and without SFD (Table 3.2). 

 

3.4.2 Selected vs. Random Sites for Annual Variation 

Step-wise model selection of all (n = 509 treatments pooled) observations tested 

with AIC found that eight of the 11 original variables were useful in predicting selected 

sites compared to not used random sites (Table 3.4) throughout the year. These data 

indicate individuals preferred southern facing areas with a lower slope and open canopy 

as leading predictor variables. Individuals also preferred areas with either increased rock 

cover, and increased vegetation, or more woody brush cover (Table 3.5). CART analysis 

shows open canopy and lower slope as leading predictor values for a site selected by an 

individual (Table 3.3, Fig. 3.1), in addition to increased rock cover and vegetation cover. 

 

3.4.3 Selected vs. Random Sites for Seasonal Habitat Variation 

Due to low sample size, gravid females were not analyzed by season. The 

shedding season consisted of 194 locations (M = 123, F = 71). SFD-absent and SFD-

present groups and male and females were all used for seasonal variation analyses. Using 
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a step-wise model selection testing with AIC found that nine of the 11 original variables 

discriminated between used sites and random sites (Table 3.4) during the first shedding 

season. Open canopy, and increased vegetation and rock cover areas, are the most 

explanatory values during the shedding season (Table 3.5) as described by CART 

analysis (Table 3.3, Fig. 3.2).  

The active season consisted of 288 locations (M = 105, F = 183). During the 

active season, ten habitat variables were included in the final model selection (Table 3.4). 

During the active season open canopy, increased woody debris cover, and areas with 

fewer understory trees were preferred, as well as lower slope and southern aspect (Table 

3.5). CART analysis indicates open canopy and lower slope as leading predictors, with 

individuals also selecting areas farther from over story trees and having increased 

vegetation cover (Table 3.3, Fig.3.3).  

Open canopy and lower slope were the strongest predictor values for both 

seasons, though individuals selected more open canopy sites during the shed season. 

Rock cover was also greater during the shed season, consistent with known basking sites 

used while shedding (Brown, 1993). These results also suggest that during the active 

period, individuals use areas of open forest with farther distances from trees, compared to 

available random sites, despite often shedding a second time during this period.  

 

3.5 Discussion 

Timber Rattlesnakes in the Northeast typically prefer older growth forests, with 

dense vegetation ground cover when not basking (Reinert, 1984a; 1984b; Brown, 1993), 

traditionally described as: oak lands, oak-pine woods, or oak-laurel-poplar-chestnut hills 

(Wright and Wright, 1957). My results are consistent with these previous studies in the 
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Northeast, with preference (other than gravid females) for areas of increased vegetation 

cover, and canopy openness of less than 50% (Brown, 1993). Individuals had a strong 

fidelity toward basking, denning, and birthing sites (Martin, 2002; Brown, 1993). Reinert 

et al. (2011) demonstrated the repeated use of the same areas by individuals over several 

years, despite habitat alteration caused by logging that resulted in significant differences 

in vegetation cover and canopy closure in their study area in Pennsylvania. This suggests 

strong site fidelity throughout the year. Thus, determining what role microhabitat 

selection plays in site selection may not depend solely on actual habitat variables, chosen 

for measurement. 

 

3.5.1. Snake Fungal Disease Presence 

Lorch et al. (2015) found Corn Snakes (Pantherophis guttata) inoculated with 

Ophidiomyces ophiodiicola, the fungal causative agent of SFD, shed their skin more 

frequently and remained more exposed in a laboratory setting. Shedding and being more 

exposed, if applied to natural behavior, would result in an increase in the use of basking 

areas (categorized by more rocky areas with less canopy cover) in SFD-present snakes. 

This was not seen here; however, Lorch et al. (2015) repeatedly reinfected individuals, 

even after an individual appeared to overcome SFD. This extreme rate of reinfection 

likely would not represent a natural condition, and behavioral changes seen in these Corn 

Snakes cannot be applied to wild populations. In the current study individual Timber 

Rattlesnakes with SFD preferred areas of lower canopy openness and less rock cover, 

contradicting the hypothesis that they would use open basking areas more frequently 

(Lorch et al., 2015). 
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3.5.2 Habitat Selection, Sex and Reproductive Condition 

With many snake species, including Timber Rattlesnakes, there are often no 

detectable habitat selection differences between males and non-gravid females (Reinert 

and Zappalorti; 1988, Reinert, 1993), as seen with the results presented here. In contrast, 

to this, in coastal South Carolina, males and non-gravid females did occupy different 

forest types while foraging, with foraging males associated with hardwood bottoms and 

foraging females associated with pine hardwood forests. This result was attributed to 

foraging for different prey species of different sizes, as females are smaller than males 

(Waldron et. al., 2006; Brown, 1993). Males and females overlapped in hibernating and 

basking areas, consistent with other northeastern studies. Gravid females differed in 

habitat selection compared to non-gravid females and males (Reinert, 1984b; Keenlyne, 

1972) using areas of increased rock cover and canopy openness, and decreased shelter 

rock distance, reflecting the snakes’ selection of birthing rookery site (Reinert and 

Zappalorti, 1988; Brown, 1993). This pattern was observed here too, but is not included 

in my analyses due to low sample sizes (Table 3.2).  

 

3.5.3 Selected vs. Random Sites 

Overall, individuals preferred areas with open canopy, increased rock cover and 

surface vegetation, and lower slope compared to available random sites, consistent with 

previous studies (Reinert, 1984a, Reinert and Zappalorti, 1988). Slope was the most 

predictive variable in individual habitat selection across most analyses here. Many studies 

measure slope using GIS layers (Browning et al., 2005), which does not assess slope 

selection on the microhabitat scale, and therefore is not often the strongest predicative 
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variable. When using areas with steep regional slope, individuals in this study were often 

coiled in small flat areas, often of a size only the diameter of the coiled snake. Extracting 

slope from GIS layers in these situations would grossly overestimate the steepness of the 

slope of the area the individual is actually using.  

 

3.5.4 Seasonal Variation 

Timber Rattlesnakes in other parts of the species’ range exhibit seasonal variation 

in habitat use (Waldron et. al. 2006). A similar trend was observed in this study, although 

many behavioral categories overlapped temporally and could not be separated into as 

many distinct behavioral groups as was the case in South Carolina (Waldron et. al., 

2006). Instead, only this first shedding period and the active season were defined outside 

of hibernation as has been done with other northeastern snake species (Weatherhead and 

Charland, 1985) where more specific behavioral temporal breakdowns could not be 

made. During the first shedding season, individuals used areas of increased rock cover 

and higher canopy openness compared to random sites. Thirteen individuals were 

observed shedding a second time during the active season, with females receptive to 

breeding often exhibiting a pre-receptive shed, and all others either foraging or mate 

searching during this second shedding time. During the active season, individuals used 

more forested habitats than during the shedding season despite several individuals 

shedding a second time during the active season. Second sheds occurred in forested areas, 

rather than the rocky outcrops used during the first shedding season. This could be due to 

warmer environmental temperatures during the second shedding period of the active 

season, and if rock outcrops are too hot during the warmest part of the summer. Prey 

availability is greater in more forested areas, which is also likely to be driving this trend 
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toward forested habitat use during the active season. During the first shedding season, the 

rock outcrops that are used are often near and above the dens (Brown, 1993) and 

individuals are in closer proximity to each other than during the active season. 

Competition for prey and mates likely drives individuals away from these high-density 

areas, and leads to movements that are more frequent and with increased habitat 

variation. 

It is not fully understood how snakes navigate through their environment, 

although chemical cues and light appear to provid strong directional cues (Lawson et. al. 

1991; Landreth, 1973; Brown and MacLean, 1983; Noble and Clausan, 1936). However, 

blinded snakes appear to navigate just as well as their normal sighted conspecifics 

(Smith, 2002; Bonnet et al., 1999). Reinert (2011) found individuals tracked before and 

after logging used the same areas and migration routes despite major changes in the 

habitat. This finding suggests that they are not solely using immediate habitat cues (i.e. 

light exposure, chemosensory) to reach desired locations, and may be resistant to some 

habitat alterations. Garter snakes have responded to geomagnetic cues (Smith, 2002), and 

this is likely a key factor in navigation in other snake taxa, including Timber 

Rattlesnakes.  

This species exists in a variety of ecosystems throughout its range that vary in 

vegetation species composition and structure, e.g. southern coastal plain forests, 

northeastern old-growth forests. Comparing this species across two different habitat 

types, Reinert (1993) concluded that although the ecosystems appear very different, 

Timber Rattlesnakes were using the structure of the habitat in similar manners, as when, 

for example canopy closure and fallen log cover were very similar at snake locations at 
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both sites. The habitat values here are also similar to those compared by Reinert (1993). 

Reinert (1993) studied populations in New Jersey, still within the northeast, however the 

populations studied here is primarily old-growth forest, also a different ecosystem from 

the two studied by Reinert (1993). Results here support Reinert’s (1993) conclusion that 

ecosystem types inhabited by this species may vary, individuals all select the same 

microhabitat.   

 

3.5.5 Management Implications 

The preference during the shedding season towards rock outcrops with open 

canopy suggests habitat management plans should assure that the canopy stays open in 

these areas. Basking areas used during the shedding season had the most significant effect 

of habitat variables compared to all other factors. Canopy clearing through the action of 

cutting down encroaching vegetation, would maintain these areas, but may need to be 

performed on a routine basis, as vegetation more rapidly rebound after removal. These 

results can be applied to other populations. For example, in an eastern Massachusetts 

population, eastern white pine (Pinus strobus) quickly fills in rock outcrops (N. Smith, 

pers comm.; A. Stengle, unpubl data). These sites are typically above a den (Chap 2, A. 

Stengle, unpubl data), and could similarly be identified in other populations with visual 

surveys, without radiotelemetry. Where den sites are known and the timing of the 

shedding season is very predictable, individuals congregate in high density and can be 

monitored directly. 

 The preference during the active season for large tracks of open forest with dense 

low vegetation forest is critical for Timber Rattlesnakes. Management strategies should 

aim to protect uninterrupted tracks of forest, particularly north or east of mountainous 
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dens, depending on whether the den is south, or west-facing (respectively), as based on 

movement patterns analyzed (cf. Chapter 2). These results can be applied, again, to an 

endangered eastern Massachusetts population, where over-population of white tailed deer 

(Odocoileus virginianus) that is 6.5 times higher than the state-wide average, has led to a 

serious decrease in understory vegetation (Massachusetts Department of Conservation 

and Recreation, 2015), thus limiting the availability of this habitat type. Recent efforts by 

Massachusetts Department of Conservation and Recreation (DCR) to decrease deer 

numbers will likely benefit the local rattlesnake population, as the individuals in the 

eastern Massachusetts population appear to be using the habitat very differently from 

those at my study site (A. Stengle, unpubl data). 

 Reinert’s (2011) study demonstrating a lack of effect of logging on Timber 

Rattlesnake behavior, and my study population having been historically exposed to 

logging, suggests that some populations do tolerate some degree of habitat disturbance. 

Within my Berkshire county study site, two known wildfires caused by lightning strikes, 

occurred within the past ten years (A. Stengle, pers obsv, S. Winters, pers comm). One 

opened up a basking area often used by the snakes in this study. This may suggest that 

not only is habitat disturbance tolerated, but that it is required to some degree to maintain 

the viability of the community, as has been noted in southern populations of this species 

(Beaupre and Douglas, 2012). In the Berkshire area, fortunately the habitat surrounding 

basking areas is forested and undisturbed by humans.  
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Table 3.1. Description of habitat variables, and abbreviations used in analyses for Timber Rattlesnakes (Crotalus horridus) measured 

from 2010-2013 in Berkshire County, Massachusetts. 

 

Habitat Variable Abbreviation Description 

Canopy openness(%) Canopy Canopy closure opening using spherical densitometer 

Distance to over story trees (m) Otree Distance to nearest over story tree (>7.5 cm dbh and 2 m ht) 

Distance to understory trees (m) Utree Distance to nearest understory tree (<7.5 cm dbh) 

     Surface vegetation cover (%)     VegCover    Ground cover vegetation within 1 m2 

Vegetation height (m) VegHeight Vegetation height of understory within 1 m2 

Surface rock cover (%) RockCover Rock cover within 1 m2 

Distance to rocks (m) RockDist Distance to nearest rock >5 cm diameter 

Surface fallen log cover (%) LogCover Fallen log cover within 1 m2 

Distance to log (m) LogDist Distance to nearest fallen log >5 cm diameter 

Slope (°) Slope Surface slope at exact location using clinometer 

Aspect (°) Aspect Surface aspect at exact location using compass 

Cosine Aspect AspectCOS Cosine transformation of aspect 



 107 

Table 3.2. Average habitat values for all categories of all individual Timber Rattlesnakes tracked from 2010-2013 with regards to 

Snake Fungal Disease (SFD) presence and absence; gender and reproductive condition, Female (non-gravid), Gravid, and Male; 

Yearly present and Yearly paired random (absent) locations; shed season present and shed season paired random (absent) locations; 

active season present and active season paired random (absent) locations. See Table 3.1 for variable definitions.  

 n (ind) n (loc) Canopy Slope VegCover VegHeight LogDist LogCover 

SFD Absent 55 376 25.75 6.25 42.45 0.50 2.43 18.11 

SFD Present 12 133 21.80 7.16 38.98 0.45 1.67 20.76 

Female 25 170 25.97 7.30 42.86 0.51 2.38 18.85 

Gravid 3 12 58.19 4.36 17.33 0.20 4.51 9.75 

Male 37 325 22.72 6.10 41.80 0.49 2.08 19.31 

Year Present 

Locations 74 509 24.71 6.48 41.55 0.49 2.23 18.85 

Year Random 

Locations 74 509 14.24 11.02 36.30 0.50 1.90 14.98 

Shed Present 76 194 29.94 7.22 42.54 0.44 2.52 17.14 

Shed Random 76 194 19.54 10.40 39.27 0.49 1.85 14.25 

Active Present 46 288 23.51 6.06 42.35 0.52 2.21 20.07 

Active Random 46 288 12.09 11.36 35.85 0.51 2.02 15.30 
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 n (ind) n (loc) RockDist RockCover Otree Utree Aspect AspectCOS 

SFD Absent 55 376 3.46 20.74 2.01 1.86 173.60 -0.36 

SFD Present 12 133 4.34 13.21 1.94 1.78 194.51 -0.32 

Female 25 170 2.94 25.37 1.88 1.94 175.70 -0.50 

Gravid 3 12 0.61 61.25 1.99 2.28 197.50 -0.82 

Male 37 325 4.22 13.46 2.04 1.77 179.82 -0.26 

Year Present 

Locations 74 509 3.69 18.64 1.99 1.84 179.21 -0.35 

Year Random 

Locations 74 509 3.53 9.49 2.14 1.59 181.62 -0.28 

Shed Present 76 194 3.09 24.18 2.31 2.20 188.54 -0.48 

Shed Random 76 194 3.33 8.67 3.15 1.68 177.01 -0.40 

Active Present 46 288 4.04 14.61 1.96 1.69 171.59 -0.24 

Active 

Random 46 288 3.64 9.95 1.48 1.50 184.71 -0.16 
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Table 3.3. Classification trees (CART) for each model evaluated for Timber Rattlesnakes (Crotalus horridus) radio-tracked 2010-

2013, based on habitat selection variation caused by SFD presence and gender and selected sites compared to paired random not used 

sites with regards to annual, shed season and active season variation.  

 

 

 

 

 

 

 

Model 

Leaves (using 

1-SE rule) Kappa 

Correct 

Classificatio

n Rate P Important Variables 

SFD/Sex node only 0 0 N/A N/A 

Yearly 6 0.417 70.95 <0.01 Canopy, Slope, Rock Cover, VegCover, Otree 

Shed 6 0.484 74.52 <0.01 Canopy, Slope,, RockCover, RockDist,Aspect 

Active 7 0.473 73.69 <0.01 Canopy, Slope, Otree, VegCover, 
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Table 3.4. Paired logistic regression model results using stepwise AIC model selection for yearly and seasonal habitat use.  

Yearly Logistic Regression 

   Model AIC Deviance DF 

Canopy+Slope+VegCover+VegHeight+LogCover+RockDist+RockCover+Aspect  319.67 303.67 364 

Canopy+Slope+VegCover+VegHeight+LogDist+LogCover+RockDist+RockCover+Aspect 320.72 302.72 363 

Canopy+Slope+VegCover+VegHeight+LogDist+LogCover+RockDist+RockCover+Utree+Aspect 322.14 302.14 362 

Canopy+Slope+VegCover+VegHeight+LogDist+LogCover+RockDist+RockCover+Otree+Utree+Aspect 324.11 302.11 361 

    Shed Season Logistic Regression 

   Model 

   Canopy+Slope+VegCover+VegHeight+LogCover+RockDist+RockCover+Utree+Aspect 125.33 107.53 155 

Canopy+Slope+VegCover+VegHeight+LogDist+LogCover+RockDist+RockCover+Utree+Aspect 126.52 106.52 154 

Canopy+Slope+VegCover+VegHeight+LogDist+LogCover+RockDist+RockCover+Otree+Utree+Aspect 128.27 106.27 153 

    Active Season Logistic Regression 

   Model 

   Canopy+Slope+VegCover+VegHeight+LogCover+RockDist+RockCover+Otree+Utree+Aspect 150.71 130.71 171 

Canopy+Slope+VegCover+VegHeight+LogDist+LogCover+RockDist+RockCover+Otree+Utree+Aspect 152.52 130.52 170 
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Table 3.5. Parameter estimates for difference between paired used and not used timber 

rattlesnakes using paired logistic regression. Sign of parameter estimate reflects the 

relationship of probability of snake presence to the variable.  

Yearly 

    

Residual Deviance 

 

Estimate SE z P 303.67 

Canopy 0.05 0.01 4.86 <0.00001 

 Slope -0.14 0.02 -7.04 <1.0E-12 

 VegCover 0.01 0.00 2.93 0.003 

 VegHeight -0.95 0.36 -2.66 0.008 

 LogCover 0.03 0.01 3.42 <0.001 

 RockDist 0.10 0.05 2.19 0.028 

 RockCover 0.03 0.01 4.05 <0.001 

 Aspect -0.51 0.22 -2.38 0.018 

 

      Shed Season 

     

 

Estimate SE z P 107.53 

Canopy 0.03 0.02 2.17 0.030 

 Slope -0.13 0.03 -4.13 <0.0001 

 VegCover 0.02 0.01 2.82 0.005 

 VegHeight -2.30 0.73 -3.16 0.002 

 LogCover 0.04 0.01 3.04 0.002 

 RockDist 0.17 0.09 1.88 0.060 

 RockCover 0.05 0.01 3.54 <0.0001 

 Utree 0.57 0.17 3.31 <0.001 

 Aspect -0.96 0.39 -2.48 0.013 

 

      Active Season 

     

 

Estimate SE z P 130.71 

Canopy 0.08 0.02 3.68 <0.001 

 Slope -0.17 0.04 -4.54 <0.00001 

 VegCover 0.01 0.01 1.06 0.288 

 VegHeight -0.76 0.61 -1.25 0.211 

 LogCover 0.04 0.02 1.97 0.049 

 RockDist 0.09 0.08 1.07 0.285 

 RockCover 0.01 0.01 0.78 0.433 

 Otree 0.24 0.19 1.29 0.201 

 Utree -0.25 0.15 -1.67 0.094 

 Aspect -0.23 0.35 -0.66 0.509 
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Figure 3.1. Yearly present and absent (paired random point) points of habitat use in 

Timber Rattlesnakes, excluding hibernation locations, using CART. 
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Figure 3.2. Shedding season present and absent points of habitat use in Timber 

Rattlesnakes, excluding hibernation locations, using CART. 
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Figure 3.3. Active season present and absent points of habitat use in Timber 

Rattlesnakes, excluding hibernation locations, using CART. 
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CHAPTER 4 

 

POPULATION GENETICS OF NORTHEASTERN TIMBER RATTLESNAKE 

POPULATIONS 

 

4.1 Abstract 

Understanding how genetic variation is distributed within and among populations of a 

species is widely used to make conservation management recommendations. Peripheral 

populations often have lower genetic diversity than core populations and may benefit from 

artificial gene flow for future population persistence. Using 13 microsatellite loci I quantified 

genetic diversity in 16 peripheral Timber Rattlesnake (Crotalus horridus) populations in the 

northeast, including all of the ten populations in New England. Most of these populations are 

all within the geographic periphery of the range, with some in the core area of the range in 

eastern New York and the Appalachian Mountains. Populations were highly differentiated 

from each other (mean FST = 0.175). There was no correlation between genetic distance and 

geographic distance (R = -0.0878, P = 0.67). Seven clusters of individuals were identified (K 

= 7), with each cluster corresponding to a geographic region. This finding suggests that 

genetic drift has led to population differentiation, and likely overwhelmed natural selection. 

Within the largest New England population, there appears to be a metapopulation structure, 

with gene flow among nearby den regions. For future population persistence, assisted gene 

flow or ‘genetic rescue’ might provide a viable management action for the most-at-risk 

populations. If assisted gene flow were to be implemented, results presented here should 
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serve as a guide for determining which populations are genetically diverse and large enough 

to serve as the best donor populations and which are most imperiled.  

 

4.2 Introduction 

Small and isolated populations are often susceptible to increased rates of extirpation 

(Blows and Hoffman, 2005). Genetic exchange among populations is required to maintain 

genetic diversity within subpopulations, along with evolutionary potential, or a population’s 

ability to evolutionarily respond to a changing environment (Wright, 1969; Slatkin, 1987). 

The rate of gene flow needed for diversity can be relatively low, as little as one migrant per 

generation in stable populations (Speith, 1974; Mills and Allendorf, 1996). Genetic exchange 

lowers the risk of inbreeding depression, defined as a decrease in individual fitness that 

occurs with matings among close relatives (Keller and Waller, 2002; Savage and Zamudio, 

2011; Spielman et al. 2004). Inbreeding depression is most likely to occur in small, isolated 

populations and can be associated with reduced population viability (Keller and Waller, 

2002). In this situation a stochastic event, such as introduction of a new disease pathogen, 

habitat loss, or climate change, could extirpate the population. This leads to an extinction 

vortex, where these negative effects work in a feedback loop in small populations, further 

reducing the population size (Brooks et. al., 2008). 

Within core areas of a species’ range, genetic diversity is often high and stable 

(Hoffman and Blows, 1994; Hampe and Petit, 2005) whereas peripheral populations are often 

isolated from each other and can be highly genetically divergent, exhibit lower genetic 

diversity, resulting from small effective population sizes and strong genetic drift (Safriel et 

al., 1994). In the periphery, the lower evolutionary potential, the ability of a population or 
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species to adapt to a future changing environment, increases the chance of extirpation due to 

stochastic events (Blows and Hoffman, 2005). However, these geographically proximate 

populations can be highly genetically divergent (Eckert et. al., 2008; Safriel et. al., 1994). 

Historically, when these peripheral populations were connected, their genetic pattern would 

likely have been similar to the populations in the core range. Isolated, peripheral populations 

present a conservation dilemma. One argument has been that isolated and genetically distinct 

populations should be protected as separate units and treated as separate MUs to avoid the 

risk of outbreeding depression, because the genetic differentiation among populations could 

be due to local adaptations. (Templeton, 1986; Thornhill, 1993). Alternatively, because 

isolated peripheral populations are more prone to genetic drift, observed differentiation is 

unlikely to be the result of local adaptation (Vucetich and Walte, 2003). Protecting these 

isolated population units individually will only continue to decrease genetic variation, as the 

effects of drift increase within each populations, a dilemma which has been referred to as 

‘managing drift’ (Coleman et al., 2013).  

Defining the population genetic structure of a species across its range can help guide 

conservation management (Ryder, 1986). This approach can be used to identify small and 

isolated populations. It can also be used to define conservation units below the species level 

(Moritz, 1994). Waples (1991) described these within-species units as evolutionarily 

significant units (ESUs) as population units reproductively isolated from other conspecific 

population units and representing important evolutionary legacies of the species, with 

evolutionary legacy referring to adaptive divergence. These geographic groups are 

recognized by the Federal Endangered Species Act, and are referred to as Distinct Population 

Segments (DPS) (USFW and NOAA, 1996). Within a DPS, there can be smaller groups of 
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populations, or Management Units (MU), which are groups of geographically nearby 

populations that exhibit gene flow among them (Mortiz, 1994; Palsboll et. al., 2006). 

Management Units do not differ in local adaptations, as compared to ESUs (Mortiz, 1994) 

but MUs are distinct different genetic groups of populations. 

Genetically diverse systems of populations increase the probability of species 

persistence. Many species exhibit metapopulation structures, defined as a system of 

subpopulations that are geographically in close by proximity and are connected by gene flow 

(Levins, 1970). Metapopulations tend to have higher resilience than large continuous 

genetically homogenous populations (Schindler et al., 2010). However, anthropogenic 

change can quickly isolate subpopulations within a metapopulation. Extirpation of these 

subpopulations can happen quickly after isolation, revealing the playing out of extinction 

vortices (Palomares, et. al., 2012).  

It is important to ensure that peripheral populations maintain adaptive potential 

(Safriel, et. al., 1994). Populations are often stable in the central core of the species’ range 

however, future climate change conditions could threaten the peripheral areas, already at risk 

from isolation, small population size and inbreeding depression. One management option that 

could help alleviate inbreeding depression and maintain adaptive potential in peripheral 

populations is genetic rescue, a form of assisted gene flow where individuals are translocated 

into an isolated population in an effort to restore fitness and genetic diversity (Madsen, et. al., 

1999). Genetic rescue appears to have beneficial fitness effects even when source and 

recipient populations have elevated levels of inbreeding (Heber, et. al., 2012). In the absence 

of attempts to restore gene flow, remaining isolated populations might become extinct even if 
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other non-gene flow management plans (e.g. habitat remediation) are implemented 

(Coleman, et. al., 2013).  

Most species in the northeastern United States first colonized the region after the end 

of the Wisconsin ice age during the Pleistocene, 11,700 years ago. Many species in this area 

are at their range peripheries (DeGraaf, 1983; DeGraaf and Yamasaki, 2000).  With historical 

species range expansion, which occurred after the end of the Wisconsin Ice Age, 

approximately 10,000 years ago, along with more recent anthropogenic fragmentation, many 

small and fragmented populations occur. Among reptiles the Timber Rattlesnake provides an 

example of this pattern. Its range covers most of the eastern United States, and there are 

genetically and phenologically distinct units within different geographical and environmental 

regions (Clark, et. at. 2003).  The core of this species’ range extends from Tennessee to 

Pennsylvania. The northeastern region of the species range is on the periphery of the species 

range (Brown, 1993). These peripheral populations tend to have low snake abundances in 

small populations distant from one another (Brown, 1993). In Timber Rattlesnake 

populations, population subdivision is associated with the den sites (Clark, et. al., 2008). 

Subpopulations tend to correspond to single den sites (Clark, et. al., 2008). Core areas (e.g. in 

Pennsylvania) tend to have high within-population genetic diversity and exhibit 

metapopulation structures associated with the number and spatial proximity of den sites 

(Bushar, et. al., 2015). In the Northeastern US, small and geographically distant populations 

tend to contain only one den site. These populations could be both genetically depauperate 

and highly genetically divergent. Isolated peripheral populations in the northeast often do not 

have enough non-fragmented habit available to sustain a metapopulation, with individuals 

from the different hibernacula not likely to overlap spatially during the early active season. 
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Without enough habitat available some small populations exist with only a single den site.  

These isolated populations are at greater risk of extirpation due to genetic drift and 

inbreeding depression (Wright, et. al., 2007). 

In this study, I used microsatellite loci to examine the genetic structures of 16 

northeastern Timber Rattlesnake populations from West Virginia to Vermont. I examined 

within-population genetic diversity and among populations. I estimated the potential risk of 

future inbreeding by estimating of the effective number of breeders and genetic 

distinctiveness. Within one subset of nearby populations for which demographic analyses 

have provided evidence of connectivity, I tested for evidence of metapopulation genetic 

structure. These results will determine whether the remaining northeastern populations 

should be managed as a single genetic unit (Martin, 2008), or as distinct genetic units that 

should be managed separately.  

 

4.3 Materials and Methods 

4.3.1 Sample Collection  

A total of 1,020 tissue samples were collected from 33 sites, including all ten 

remaining New England populations along with several populations in adjacent eastern New 

York, Virginia, Kansas and Pennsylvania in conjunction with other research efforts (from 

2009-2014). Samples of extirpated populations were included when available (Fig 4.1, Table 

4.1) including samples from historic Massachusetts’ collections (1880-2007) Populations 

with low sample sizes (n < 12) were excluded from analyses, to prevent bias due to low 

sample size, specifically with regards to allelic richness (Leberg, 2002), resulting in 16 

populations, that were used in statistical analyses. Populations are abbreviated by the first 
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letter of the state, followed by the first three letters of the county name. If there were multiple 

populations in a county, a number was added (Table 4.1). Further location specificity of sites 

is not provided to protect each population from poaching. Tissue samples, in the form of 2 

mm scale clips, were collected from each individual. The tissues were either stored in 95% 

ethanol or dried. Shed skins found opportunistically were also used in analyses. Larger 

muscle tissue samples were collected from individuals (n = 8), previously collected and 

stored frozen, from Massachusetts Wildlife (Westborough, Massachusetts). The Museum of 

Comparative Zoology (MCZ), Harvard, Massachusetts, provided 22 samples stored in 

ethanol.  

Samples were collected in collaboration with other projects including the following: 

Virginia (courtesy of W. H. Martin), Kansas, (courtesy of George Pisani), Massachusetts 

(courtesy of Tom Tyning, Kay Sadighi, Bill Hoffman, John Corey and Brett Trowbridge), 

New York (courtesy of Randy Stechert, Ed McGowan, William Brown, Ted Levin, and Matt 

Simon), Connecticut (courtesy of Dennis Quinn and Bob Fritsch) and Vermont (courtesy of 

Doug Blodgett and Kiley Briggs), with additional New England samples provided by Roger 

Williams Park Zoo (RWPZ), Providence, Rhode Island, in conjunction with their New 

England Timber Rattlesnake Health Survey, 2012-2014 (courtesy of Mike McBride). In 2012 

and 2013, four individuals were located where there is no known population in Rockingham 

County, New Hampshire, and treated as a separate unknown population (UNK). Thirty-four 

New Hampshire samples used by Clark, et. al. (2011) were provided (courtesy of Mike 

Marchand, New Hampshire Fish and Game Commission). Their study yielded 20 usable 

samples of the 34, and here I was able to amplify 29 of them. From 2011-2012, New 

Hampshire provided an additional 44 samples from their population in conjunction with an 
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ongoing study. Thirty samples were from the Adirondacks, New York, (courtesy of Matt 

Simon and William Brown), the same population also analyzed by Clark, et. al. (2008). The 

samples used here were collected after Clark, et. al. (2008) study, so it is unknown if any of 

the same individuals were sampled.  

 

4.3.2 DNA Amplification and Microsatellite Analyses  

The DNA extraction protocol followed King, et. al., (2005), with tissue samples 

incubated for 24 hr and shed skin samples for 48 hr prior to extraction, in cell lyses at 55°C. 

The eluted product was used as a template in Polymerase Chain Reactions (PCR). Seventeen 

microsatellites previously described for this species were amplified: Scu01, Scu05, Scu07, 

Scu11, Scu16, and Scu26 (Anderson 2006), CwA29, CwB6, CwB23, CwC24, and CwD15 

(Holycross et al. 2002), and 5A, 7-150, 5-183, 7-144, 7-87, and 3-155 (Vilarreal et al. 1996). 

PCR reactions were performed in 10 L reaction volumes using 5 L Qiagen multiplex 

buffer, 1L of primer mix, and 4 L of 50:50 dilution of extracted DNA product. The PCR 

temperature profile was 95°C for 5 min; 32 cycles of 94°C for 30 sec, 57°C, and 72°C for 1 

min; followed by a final 30 min extension at 60°C. An Applied Biosystems 3130xl capillary 

sequencer was used to amplify 1L of PCR product. Allele sizes were initially recorded 

using GENEMAPPER 3.0 (Applied Biosystems), and confirmed with GENEIOUS 

(Biomatters Limited). Individuals missing more than 50% of loci, after re-extraction and re-

amplification, were excluded from analyses. Of historic samples (n = 22), only 5 yielded 

usable genotypes. Samples stored prior to 1880 (n = 2) and after 1988 (n = 3) amplified well, 

while the remaining samples did not amplify due to prolonged storage in formalin. 
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4.3.3 Within-Population Diversity 

Duplicate genotypes were possible if a shed skin was collected from an individual 

that was previously or subsequently scale clipped at a different date. I used GIMLET 

(Valiere, 2003) to identify duplicate multi-locus genotypes that possibly represented samples 

taken from the same individual. Collection notes regarding age, sex, color phase, and 

location, were used to determine whether duplicate genotypes likely represented the same 

individual. When multiple samples were available from one litter of neonates, one individual 

was randomly chosen to represent the entire litter, to avoid sibling bias (Rodriguez-Ramilo, 

2012). When multiple neonate sheds were collected from the same communal rookery, 

COLONY 1.2 (Wang, 2004) was used to estimate the number of litters. 

FIS was calculated for each locus in each population to test for conformation to 

Hardy-Weinberg equilibrium proportions using GENEPOP 4.0.10 (Rousset, 2008). Loci 

repeatedly in violation of Hardy-Weinberg proportions across more than half of populations 

were excluded from further analyses. GENODIVE 2.0b22 (Meirmans and Van Tienderen, 

2004) was used to estimate the following allele frequencies: (1.) observed heterozygosity 

(HO), (2.) expected heterozygosity (HE), and (3.) mean within-population expected 

heterozygosity (HS) per locus and per population. Allelic richness (mean number of alleles 

scaled to the smallest sample size, n = 12), FIS, and FST were estimated using FSTAT 2.9.3.2 

(Goudet, 2001).  

Effective number of breeders (Nb) was calculated with LDNE 1.31 (Waples and Do, 

2008). This program gives an estimate for effective population size (Ne), but with species 

with overlapping generations Nb is often lower than Ne (Waples, et. al., 2013). Estimates 

obtained from mixed-aged samples are more correctly referred to as estimates of the effective 
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number of breeders (Nb) that gave rise to the cohorts included in a population sample, rather 

than effective population size per generation (Luikart, et. al., 2010), and are reported as such. 

A random mating model was used, with a minimum allele frequency cutoff (Pcrit) of 0.02, 

which tends to provide a balance between bias and precision (Waples and Do, 2008). The 

jackknife approach was used to calculate 95% confidence intervals.  

 

4.3.4 Among-Population Diversity 

Pairwise FST and F’ST values were calculated across all paired sampled populations 

for sample sizes greater than or equal to 12 with GENODIVE 2.0b22. Population genetic 

distinctiveness (mean population-specific FST, akin to “genetic uniqueness”; cF Coleman, et. 

al., 2013) was assessed by plotting, for each locus, the mean population-specific FST against 

allelic richness, expected heterozygosity, and mean number of alleles. Migration among 

populations is unlikely given the geographic distances among them, therefore FST 

coalescence analysis was not applied. A negative relationship between genetic distinctiveness 

parameters and mean population-specific FST  would indicate that populations with the lowest 

genetic diversities are also the populations with greatest mean genetic divergence from other 

populations, indicating genetic drift is largely responsible for the observed divergence. The 

relationship between genetic distance (population pairwise FST) and great circle geographic 

distance (isolation by distance, IBD) was analyzed with a Mantel test, using R version 3.1.3 

(R Development Core Team, 2015). Pairwise FST was transformed as FST/(1- FST) (Slatkin, et. 

al. 1995), and geographic distances (km) were log transformed.  

Geographic groupings of populations were analyzed with the Bayesian modeling 

approach implemented by STRUCTURE 2.3.1 (Pritchard, et. al., 2000), and discriminant 
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analysis of principal components (DAPC; Jombart, 2008) in populations with a sample size N 

≥ 12. Both the STRUCTURE and DAPC software packages were used because 

STRUCTURE can fail to identify complex spatial structures (Schwartz, et. al., 2007). To 

estimate the number of population clusters (K) with the highest log likelihood STRUCTURE 

analyses used 100,000 replicates, with 50,000 burn-in cycles. An admixture model was used, 

with correlated allele frequencies. Ten runs were performed for K = 1 to K = 20, the 

maximum number of populations sampled. Analysis did not include a prior location of origin 

for each individual, so analyses were not biased due to geographic location of the individual. 

I used STRUCTURE HARVESTER (Earl and von Hold, 2012) to visualize STRUCTURE 

results and I inferred the number of clusters (K) based on interpretation of the relationship of 

estimated log probability of the data (LnP(D)) with K. The program CLUMPP (Jakobsson 

and Rosenberg, 2007) was used to achieve permutations of all 10 iterations for each K, using 

the “greedy” algorithm. The program DISTRUCT version 1.1 (Rosenberg, 2004) was used to 

create bar plots for each value of K. Four individuals an unknown site in NH were included 

in STRUCTURE analyses, even though this ‘population’ has a sample size below the 

minimum cut off, because their population of origin is unknown. Genetically divergent 

populations with few representatives included in a STRUCTURE analysis can cause 

misleading results, however, in this case we suspected that the four unknown individuals 

originated from other wild populations I included in the analysis. There is no known 

population in Merimack County where the individuals were found, and snakes have only 

been observed in this area in 2012 and 2013. The state of New Hampshire also has 

individuals held in captivity from West Virginia and Pennsylvania (W.H. Martin, pers 

comm). I used assignment tests to further test for the origin of the four unknown individuals 
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from New Hampshire. I used GENECLASS version 1.0.02 (Piry, et al. 2004) to conduct 

assignment tests, using methods described by Rannala and Mountain (1997). All sampled 

populations were used as references, treating the individuals as unknown. Probability 

computation was not enabled, giving an assignment score for each individual.     

Genetic clustering by DAPC used successive K-means clusters in the find.cluster 

function with the R package adegenet (Jombart et al. 2010). The K with the lowest Bayesian 

Information Criterion (BIC) was considered the optimal number of clusters, using K = 1 — 

30, with ten runs for each K. The dapc function was executed using optimal grouping, 

retaining the Principal Components Analysis axes and explaining >90% of variation in the 

data.  

Radiotelemetry data (cF Chap 2) suggest the largest Massachusetts (MABER) 

population could be a metapopulation. Individuals from dens closer together overlapped 

spatially during the active season. Individuals at dens at a greater distance apart did not show 

spatial overlap during the active seasons, however all den sites are within the maximum 

known distance (7.2 km) traveled by other Timber Rattlesnake individuals in other 

northeastern regions (Brown, 1993). The telemetry data indicate that four possible 

subpopulations, with nine den sites total, are involved. Six of the den sites are all located 

within 1.22 km of each other, and movements of individuals here overlapped spatially to a 

large extent. Individuals from the other three dens did not overlap spatially with individuals 

from the remaining six dens. These four putative subpopulations, the group of six proximate 

dens, and three more distant dens, had distances ranging from 3.17 – 9.71 km (mean = 6.51 

km) between dens, with only low traffic (some dirt) roads and valleys separating them. I 
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examined individuals sampled in this sub-region separately with STRUCTUE, using the 

above parameters and tested K = 1 to K = 9. No location prior was included in analysis. 

 

4.4 Results 

4.4.1 DNA Amplification 

Eight samples were excluded as duplicates across three populations, MABER (n = 5), 

MANOR (n = 1), MAHAD1 (n = 2). These were likely to be from the same individuals of 

each site, because they were all sheds matching a tissue sample from the same site, and only 

one genotype from that individual was included Amplification from shed skins of all samples 

was successful in 398 of 400 cases (99.50%).   

Over all populations, an estimated seven litters were sampled across four populations 

(CTHAR, MANOR, MAHAD1, MAHAM). Timber Rattlesnakes in the northeast give birth 

to litters at communal sites, birthing rookeries, near the den, therefore if only the sheds of the 

neonates are found, they could be from multiple litters. Litter and mother identity (based on 

field observations) for three litters was known, as they were birthed in captivity at RWPZ, 

from the populations MANOR (2014) and two from MAHAM (2011 & 2013). Of the other 

four litters birthed in the wild in populations CTHAR and MAHAD1, both were estimated to 

be 2 litters per population. I retained one randomly selected individual per litter for 

subsequent analyses. After removing these individuals, 956 individuals remained.  

 

4.4.2 Within-Population Diversity 

 Four loci (CwA29, CwB6, CwC24 and Scu16) were excluded due to inconsistent 

success in amplification and strong evidence of violation of Hardy Weinberg proportions, 
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primarily because the presence of null alleles was likely, resulting with 13 loci for analyses. 

FIS testing of the remaining loci for conformation to Hardy-Weinberg equilibrium resulted in 

364 tests, with 127 significant (P < 0.05), with 18 expected by chance (α = 0.05). After table 

wide Bonferroni correction (α = 0.05), 31 tests remained significant, but were not eliminated 

because this is often seen in northeastern populations of this species, and eliminating these 

have previously not yielded a difference in results (Bushar, et. al., 2014). Significant linkage 

disequilibrium was detected in 121 of 1091 (11.1%) tests performed (P < 0.05), where 54.5 

were expected by chance (α = 0.05). Following table wide Bonferroni correction, 18 of the 

tests remained significant (Table 4.2). Average per population FIS ranged from 0.094-0.217. 

Mean allelic richness (AR) ranged from 1.9 - 5.8, scaled to N = 12. Average number of alleles 

per locus per population (A) ranged from 4.1 - 10.3. Effective number of breeders (Nb) varied 

greatly among populations, with point estimates ranging from 2.0 to 893.9 (Table 4.3). Two 

of the confidence intervals included infinity. Only two of the New England populations 

exhibited an Nb greater than 50 (MABER and VTRUT2). The population with the lowest Nb, 

NH, also exhibited the lowest genetic diversity.  

 

4.4.3 Genetic Differentiation Among Populations  

  Pairwise FST estimates were significant for all population pairs (171 tests), based on 

Fisher’s method. Overall FST was 0.173 (95 % CI 0.141 – 0.205). There were negative 

relationships between genetic diversity (A, HE and AR) and genetic distinctiveness (mean 

population-specific FST) and was not significant. For the regression of mean population-

specific FST on mean number of alleles, R2 =-0.416; P = 0.068. For the regression of mean 

population specific FST and mean heterozygosity, R2 = -0.789; P < 0.00001. For the 
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regression of mean population specific FST and mean allelic richness, R2 = -0.846; P < 0.0001 

(Fig 4.2). Population pair-wise FST and F’ST values are presented in table 4.4. There was no 

correlation between population pairwise genetic and geographic distances (Mantel test, R = -

0.325, P = 0.951). Variance in genetic differentiation was particularly pronounced at small 

geographic distances, with the highest FST values pertaining to pairs of nearby populations. 

For example, the two closest pairs of populations (<15km) had some of the highest pairwise 

FST values (Table 4.5, Fig 4.3).  

In the STRUCTURE analysis, K = 7 had the greatest support (Fig 4.4,4.5). LnP(D) 

increased with each increase in K value and plateaued after K = 8, and variance increased 

after K = 10. With K = 5, NH and MANOR each formed a separate cluster. VTRUT1, 

VTRUT2, and NYWAS clustered together, as did all the MABER subpopulations. At K = 5 

and K = 6, MAHAD1 and MAHAD2 fell into separate clusters. At K = 7 VTRUT1, 

MAHAD1, and MAHAD2 fell into separate clusters. The clusters of VTRUT1, VTRUT2, 

and NYWAS correspond to three geographically near populations in western Vermont and 

northeastern New York. Other distinct clusters did not appear to have distinct geographic 

relationships. 

For the DAPC analysis, examination of BIC did not provide a useful basis for 

inferring K. BIC continued to decrease with increasing K from K = 1 through 30 (Fig 4.6). 

For further DAPC analyses, K = 7 was used based on the STRUCTURE results. Results from 

DAPC were similar to STRUCTURE. The populations most distinct were the peripheral New 

England populations, NHNA, MANOR, MAHAD1, VTRUT1 and VTRUT2 (Fig 4.7), 

consistent with STRUCTURE results. In regions where populations were larger, (PACEN, 

VASHE, and most of New York) there was less evidence for population differentiation. The 
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New Hampshire population was the most genetically divergent with DAPC. This population 

also had the highest population specific FST values (mean FST = 0.401).  

 

4.4.5 Assignment Testing 

 The four individuals from a previously unknown Rockingham County, New 

Hampshire region do not assign to the single known New Hampshire population. Three of 

the four were assigned to the central Pennsylvania population (assignment scores = 99.56, 

99.88, and 94.98). The fourth individual was assigned to the Orange County New York 

population (assignment score = 96.29), which borders Pennsylvania (table 4.6). Subsequent 

scores for other populations ranged from 3.694 to 0.018, with none corresponding to the New 

Hampshire population or other geographically proximate populations.  

 

4.4.4 Metapopulation Genetic Structure 

253 individuals from the putative Massachusetts metapopulation (MABER), were 

sampled, from four potential subpopulations separated by valleys. Sample sizes were n = 

124, 20, 28 and 79. One of these regions contained multiple dens. STRUCTURE results, run 

separately on these subpopulations, provided greatest support for K = 4 (Fig. 4.8,4.9). 

LnP(D) increased with each increase in K value and plateaued after K = 5; variance increased 

after K = 5 (Fig. 4.8). With K = 3, the most geographically proximate MABER2 and 

MABER3 were clustered together, with MABER1 and MABER4 formed different clusters. 

K = 4 separated MABER2 and MABER3. K = 5 did not provide additional biologically 

meaningful clustering. 
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Estimated pairwise FST (mean = 0.081, range: 0.042-0.123) indicated that there was 

some genetic differentiation among the four subpopulations, with the least differentiation 

between the two most geographically proximate subpopulations (FST = 0.042). MABER1 was 

the most genetically differentiated from other den regions. MABER4, the largest site, was the 

least genetically differentiated. Point estimates of Nb varied from 3.7 to 83.7 (Table 4.3).  

 

4.5 Discussion 

4.5.1 DNA Amplification 

 DNA amplification from shed skins was very successful. Contrary to Bricker et al. 

(1996), storing skins at -20°C -80°C, did not appear to be necessary. They reported a lower 

success rate (93.94%, n =33) than that achieved here (99.50%, n = 400) even though the 

current samples were stored at room temperature for up to 20 years. One shed skin, collected 

by a private individual, was found in a mud puddle and then washed with dish detergent. 

Despite this treatment the sample still yielded usable DNA. I incubated skin samples for 48 

hours, much longer than the 30-minute incubation period of Bricker et al. (1996), and this 

probably led to more successful extraction.  

 

4.5.2 Hardy-Weinberg and Effective Number of Breeders 

Populations of Timber Rattlesnakes in the northeast often exhibit repeated Hardy-

Weinberg heterozygote deficits (Villareal, et. al., 1996; Clark, et. al.; 2008, Bushar, et. al., 

2014; Bushar, et. al., 2015). Deviations can be attributed to population substructure 

(Chakraborty and Jin, 1992), as seen with MABER, or may be attributed to the presence of 

null alleles (Callen, et. al., 1993). Population substructure occurs within some Timber 
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Rattlesnake populations (Clark, et. al., 2008). If deviations were solely due to population 

substructure, the majority of loci within a population would also deviate. Bushar, et. al. 

(2014) performed analyses with their original data set, and with loci adjusted for possible 

null alleles. Results from both of their analyses were similar, and these authors chose to 

include deviating loci in final analyses.  

All loci were polymorphic, though the 7-150 locus was fixed for a single allele with 

the exception of Kansas samples and one Virginia sample. This result is consistent with most 

other northeastern population genetic studies (Bushar, et. al. 1998). Villareal, et. al. (1996) 

found the locus to be polymorphic (A = 2) in eastern Pennsylvania (Berks County). I did not 

obtain samples in this area of Pennsylvania studied by Villareal, et. al. (1996), and it was 

monomorphic in the central Pennsylvania population sampled here. This locus was found to 

be polymorphic in Missouri, although low in allelic diversity compared to other loci 

(Anderson, 2010). This suggests this locus has an allele that is rare in the northeast but more 

common in western populations.  

Effective number of breeders overall was relatively low for most populations. NHNA 

and MAHAM have effective numbers of breeders of less than three. NHNA appears to have 

low relative genetic diversity, and MAHAM currently has fewer than 5 known individuals in 

the population. NYWAS is believed to be one of the largest populations in New York, and 

only has an Nb of 18.8 (CI: 12.7-30.3). This population exhibits only black morphs, instead of 

both color morphs, yellow and black. The only other population exhibiting one color is 

NHNA, and Clark, et. al. (2011) suggested this could be correlated with inbreeding and an 

increase in homozygosity. NYWAS has never been studied, so age structure and sex ratio are 

unknown, and if skewed, could cause a lower than expected Nb compared to census size. 
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NWAR is also a large population, with an Nb estimate of 893 with a very broad CI (45.9-

INF). Large estimates of Nb are often imprecise unless sample size approaches the true Nb 

(Ackerman, et. al. 2016). This population was more intensively sampled by Clark et al. 

(2008). These authors used a coalescent-based estimator (program MIGRATE) on 

individuals pooled across subpopulations to obtain effective size of 796 (CI: 452-1,020).  It is 

difficult to directly compare contemporary mixed-aged estimates of Nb with coalescent-based 

Ne , but both estimates are consistent with large effective size in this population. The four 

subpopulations in MABER had an Nb ranging from 3.7-83.7. MABER4 was the largest 

subpopulation sampled, with an Nb of 83.7. MABER3 had the lowest Nb, 3.7, and is skewed 

male, 80:20 (cF Chap 1), which is consistent with a low Nb if there are significantly fewer 

females than males. 

Franklin (1998) suggested that an effective size of 50 is needed for short-term 

population persistence, and 500 for long-term range wide persistence and retention of 

evolutionary potential. These guidelines, though heavily debated (Frankham, et. al. 2014, 

Allendorf and Jamieson, 2012), provide a useful starting point when ranking populations that 

may need more intensive management for future persistence. I did not estimate global Ne, to 

which the value of 500 applies. However, the single-sample Nb estimates can be compared to 

the value of 50, although Nb are often lower then Ne and are often biased low in samples with 

mixed age groups (Waples, 2014), therefore the cut-off of 50 should not be applied here as an 

absolute rule. As sample size approaches or exceeds the true value of Nb, the estimate for Nb, 

is more accurate (Ackerman, et. al. 2016). With this species in the northeast only 

approximately a third of the population successfully breeds each year on average (Brown, 

1993), therefore with the sample sizes provided with this study, the estimates of Nb provided 
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here should represent true Nb. Seven populations have effective number of breeders of less 

than 50.  

 

4.5.3. Genetic Differentiation Among All Populations 

Results of this analysis here suggest that differentiation among northeastern (New 

England and New York) populations is the result of genetic drift rather than local adaptation. 

Populations exhibited high population distinctiveness, as estimated with methods described 

by Coleman, et. al. (2013). The negative relationship between genetic distinctiveness 

(population-specific pairwise FST) and genetic diversity indicates that more distinct 

populations have lower genetic diversity, with fewer unique alleles (Coleman, et. al., 2013). 

The lack of isolation by distance was also consistent with strong genetic drift being 

responsible for population differentiation. There was no isolation by distance (IBD) 

relationship seen here among populations, despite some populations being geographically 

close enough for possible gene flow (<15 km, 3 pairs). Peripheral populations appeared to be 

most prone to genetic drift. Both STRUCTURE and DAPC revealed strong single population 

clusters of the most peripheral populations,, with greater interpopulation clustering of those 

closer to the core range. Some population pairwise FST values were high, with the 

geographically closest population pair (MAHAD1 and MAHAM) having one of the highest 

values. This suggests that gene flow is overwhelmed by drift even in geographically nearby 

populations.  

My results differ from those of previous population genetic studies of Timber 

Rattlesnakes (Clark, et. al., 2008; Bushar, et al., 1998; 2014; 2015; Anderson, 2010). These 

previous studies have found evidence for IBD, strong K clustering and high population 
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pairwise FST values of nearby populations. Highways, which are barriers to gene flow 

(Bushar, et. al. 2015; Clark, et. al. 2010; Andrews, 2008), separate all but one of the 

population pairs I examined. The lack of a positive correlation between population genetic 

differentiation and geographic distance contrasts with other Northeastern (New York, New 

Jersey and Pennslyvania) genetic studies of this species (Bushar, et. al. 2014; 1998; Clark, et. 

al. 2008). Genetic drift is less likely to have an effect in these areas, as they are larger 

populations closer to the core region where higher gene flow is likely.  

The data reported here can be compared to past efforts to define conservation units 

for Timber Rattlesnakes. Martin, et. al. (2008) proposed five range-wide Timber Rattlesnake 

management units (MUs) based on life history traits, morphology, and genetic variation 

(Clark et al., 2003). MUs were designated based on habitat variation and natural geographical 

barriers. Martin, et. al.’s (2008) MUs are equivalent to more generally defined evolutionarily 

significant units (ESU). The definition of ESU used here is a group of populations separated 

geographically, genetically differentiated at neutral markers, and having locally adapted traits 

caused by natural selection (Waples, 1991; 2005). Martin (2008) defined geographical 

subunits, which are equivalent to the more typical definition of MUs, that is, 

demographically independent and geographically separated subpopulations (Palsboll et al., 

2007). MUs tend to correspond to single subpopulations or sets of subpopulations with 

correlated demographic rates. The remaining New England populations are currently more 

genetically distinct from each other than those in Pennsylvania and New Jersey (Bushar, et 

al., 2014). My results suggest that each of the subpopulations in New England is likely a 

separate MU and New England might represent a single ESU.  However, definition of an 
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ESU would require additional evidence on possible adaptive divergence from other portions 

of the species’ range. 

Martin, et. al. (2008) described New England as one subunit (more commonly, and 

subsequently referred to as an MU). The remaining New England populations are currently 

more genetically distinct from each other than those in Pennsylvania and New Jersey 

(Bushar, et. al., 2014) despite a smaller spatial scale, this finding does not support Martin, et. 

al.’s (2008) suggestion of a single New England MU. Historically however, there was likely 

a single MU when now extirpated populations provided connectivity among extant 

populations. In the past few centuries this species has declined by over 50% (Furman, 2007) 

and the creation of anthropogenic barriers impede gene flow. I suggest that anthropogenic 

barriers are increasing the effects of drift, relative to adaptive divergence; therefore these 

results do not contradict Martin, et. al.’s (2008) suggestion of a single historic New England 

MU. With peripheral Northeast populations so genetically distinct from each other, 

protecting each populations’ genetic signature could lead to a decrease in overall genetic 

diversity for the region, as the effects of genetic drift will only increase in the future in these 

isolated populations (Coleman et. al. 2013). By protecting unique allele complexes resulting 

from drift and not natural selection, genotypes in future generations are limited to those 

produced by drift and this doesn’t protect the genetic diversity of the region. Populations that 

were historically connected would benefit from artificially introducing new genotypes with 

strategies such as genetic rescue (Coleman et. al. 2013).  

 

4.5.4. Genetic Differentiation and Diversity Among the Most Peripheral Populations 
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I identified populations most likely to be at risk from extirpation from small 

population effects such as inbreeding and loss of genetic diversity. NHNA was consistently 

an outlier, with respect to all tests of genetic diversity, and is most at risk for inbreeding 

depression. This population appears to have declined in abundance. Clark et. al. 2011 

sampled only 19 individuals from 2006-2010. Clark et. al. (2011) report not seeing some 

individuals for six years between recaptures, and conclude a fungal disease is depleting the 

population. It is common not to see individuals for this length of time, or even 20 years 

between relocations with intensive survey efforts (Brown, pers comm). From 2010-2011, an 

additional 43 adult individuals were sampled. This could indicate that the population size is 

increasing, however, this is unlikely in a four-year time span for a species that takes 6-8 years 

to reach sexual maturity. Alternatively the population may have been stable through this 

period, but sampling efforts have become more efficient or environmental conditions more 

favorable after 2010. Clark et. al. (2011) report above average precipitation during their 

sampling period, which would result in lower sampling success. Clark et. al. (2011) 

suggested that coloration patterns seen only in this population indicated of a high 

homozygosity, although this coloration does not appear to have had direct effects on 

individual fitness. Low genetic diversity, reduced population size, and possible inbreeding 

effects led Clark et. al. (2011) to recommend genetic rescue, defined as an increase in 

absolute population fitness (i.e. population growth rate), due to the introduction of new 

alleles (Tallmon et. al. 2004; Whiteley et. al. 2015), for this population.  

VTRUT2 and MAHAD1 were also genetically divergent, had low genetic diversity, 

and high genetic distinctiveness. These two populations may also be good candidates for 

genetic rescue. Nearby NYWAS might be the most suitable source of transplants for 



 138 

VTRUT2, and MAHAD2 for MAHAD1, in terms of minimizing risks of outbreeding 

depression, defined as when the hybrid progeny have a lower fitness, due to local adaptation 

to different environments (Lynch and Walsh, 1998).  

The MANOR population is geographically distant and even though I expected this 

population to be isolated from other sites, I observed high genetic diversity with the 

population’s HE 113.64% higher than average population HE, and an AR 104.58% higher 

than average population AR. Since 1965, five known adult rattlesnakes were released in the 

MANOR population by the state of Massachusetts (Smith, N. pers comm.). The transfer of 

these five snakes represents an unmonitored and unreplicated form of genetic rescue. The 

five individuals were confiscated by the state from private citizens keeping them illegally as 

pets. This introduction could be responsible for the high genetic diversity observed in 

MANOR. The mean generation interval for this species is 18 years (Martin, 2002), so the 

interval from 1965 to 2007 when samples were collected represents 2.3 generations. 

MANOR appears to have lower abundance than most New England populations (cF Chap1); 

but it is possible that abundance is larger than perceived. Individuals at this location are less 

visible, hiding more in leaf in litter, than other New England populations (Stengle, unpubl 

data), thus making sampling more difficult. This population has the third highest effective 

population size in New England, suggesting this population could be larger than originally 

thought, and stable at the current size. Seven MANOR dens are known but there is no 

evidence to support a metapopulation structure based on movement patterns (Stengle, unpubl 

data). Individuals from different dens typically overlapped spatially, and the distances 

between den sites are shorter then the maximum distance moved by a Timber Rattlesnake 

during one year (Brown, 1993; Stengle, unpubl data). Surrounded by urbanization, the 
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population has only approximately 1.6 km2 of available habitat, and has the highest number 

of individuals killed by automobiles in New England (Smith, N. pers comm.). Timber 

Rattlesnakes in the northeast often travel farther than 1.6 km in a given year, indicating this 

population is likely panmictic. Although this is a small population isolated by highways, the 

panmictic multiple den structure may be sustaining the population’s genetic diversity, 

whereas in NH, the population may suffer from inbreeding depression, with only a single den 

present. Because the MNOR population was never formally studied until 2014-2015 

(Stengle, unpubl data), it is not possible to compare population sizes before or after 

inadvertent genetic rescue occurred, and therefore I cannot state if this genetic rescue resulted 

in the high genetic diversity of this population. As the origins of the individuals released in 

the population are unknown, outbreeding depression cannot be ruled out, and even if 

outbreeding depression is occurring, this would still increase the current genetic diversity. 

Southern populations differ phenotypically, if these individuals were from these populations, 

there could be out breeding depression, or possibly not survived northeastern winters. 

Therefore the high levels of genetic diversity of the MANOR population should not be 

assumed to indicate a stable population, especially given the small area of habitat the 

population is restricted to.    

 

4.5.5. Assignment Test 

 The UNK individuals from New Hampshire assigned strongly to the Pennsylvania 

population. The collection site of these individuals was not provided by the state until one 

individual was located in a garage in Raymond, New Hampshire, 1 October, 2012, and 

broadcasted by the local news station. The state has not announced any captive breeding 
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projects for this species, however the New Hampshire Fish and Game Department possesses 

legally collected individuals from Pennsylvania and West Virginia for future potential 

captive breeding (Martin, W.; McCurly, K. pers comm). The individuals in this previously 

unknown site are not migrants from the known population, and do not appear to be from New 

England. It is possible that these four individuals represent a previously unknown population 

that is genetically similar to the Pennsylvania population. I consider this unlikely because 

there is no known historic record for the area, and New Hampshire Fish and Game, and 

others, have searched the state extensively looking for other populations. One other 

individual was located in the area in 2013 and not included in this study, but none 

subsequently. It is also important to note that assignment tests can be limited if the true 

population of origin of individuals is not among baseline populations examined (Piry et. al., 

2004). If the population of origin is not represented in the analyses, the individual(s) will be 

assigned weakly to one or multiple populations. Here, this was not the case, given the strong 

assignments of the UNK to Pennsylvania, the most likely explanation for these results is 

introduction by humans of snakes from Pennsylvania to New Hampshire. 

 

4.5.6. Metapopulation Genetic Differentiation  

Even though mark recapture data (cF Chap 1) and radiotelemetry data (cFChap 2) did 

not show overlapping of home ranges among subpopulations of MABER, there appears to be 

genetic exchange within subpopulations based on FST, STRUCTURE, and DAPC results. 

Distances between subpopulations were within the distances traveled by adult Timber 

Rattlesnakes in the northeast within the active season (Brown, 1993), with an average of 6.50 

km (range 3.13 – 9.51 km) between subpopulations. Observed heterozygosity was similar 
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across all subpopulations, exhibiting the same alleles, also suggesting regular gene flow 

among them. Valleys between regions could limit gene flow among subpopulations, 

consistent with other genetic studies in the Northeast, with metapopulations connected 

through suitable basking habitats between den areas (Bushar et. al., 1998; Clark et. al., 2008). 

Although roads separate most of the subpopulations in MABER, roads do not appear to be 

barriers to gene flow here, in contrast to other studies (Clark et. al. 2010; Bushar et. al. 2015). 

Roads at this site currently have little traffic; with approximately one road mortality per year 

(Whitbeck, D.; Matthews, R.; Tillinghast, E.; pers comm). It appears that small, low-traffic 

town roads pose no additional negative effects on gene flow, however an increase in traffic 

could cause them to became barriers in the future.  

Estimated effective number of breeders ranged from 3.7 to 83.7 within these four 

subpopulations. The largest subpopulation, MABER4, had the highest Nb. MABER3 has the 

lowest Nb, which could be due to a male skewed sex ratio (n = 16:4) likely from historic 

collecting of gravid females, which are more vulnerable at communal birthing rookeries 

(Brown, 1993). This species typically has an even sex ratio (Brown, 1993), and this uneven 

sex ratio does increase the probability of population extinction (cF Chap 1), so it may be 

beneficial to consider management plans aimed towards the protection and/or increasing the 

number of females. The MABER metapopulation is one of the largest in New England, and 

may be the only one exhibiting metapopulation structure. This region has little anthropogenic 

change compared to other populations and could serve as a model of historic genetic 

structure.  

 

4.5.7. Management Implications 



 142 

 Most genetic studies of Timber Rattlesnakes have argued for protection of separate 

populations (Bushar et. al., 2014; Clark et. al., 2003); however, in New England populations 

appear to be differentiated, but were likely historically one MU, and anthropogenic changes 

in the landscape have caused this differentiation, and not natural causes.  Because of their 

anthropogenic isolation from each other despite relative close proximity, genetic drift appears 

to be largely responsible for differentiation. Rather than keeping each New England 

population as a separate genetic unit, these populations would appear to benefit from 

artificial gene flow between them (Coleman et. al. 2013), as would have likely occurred 

historically when populations were connected and acting as a single MU.  

Genetic rescue may be the best management strategy for reducing the effects of 

genetic drift and inbreeding in isolated populations. Clark et. al. (2011) have recommended 

genetic rescue for New Hampshire. Genetic rescue appears to have helped forestall 

extirpation in populations of many species across many taxa, including the Sage Grouse, 

Florida Panther, and Mexican Wolf. Genetic rescue reversed the effects of inbreeding 

depression in an isolated European adder population (Madsen et. al. 1999). Here 20 males 

were transplanted into the rescue population for four breeding seasons and returned to their 

native population. This action increased fitness and genetic diversity. Unfortunately, the 

adder population is declining due to anthropogenic habitat alteration (Madsen and Ujvari 

2011), emphasizing the need for simultaneous habitat protection. It is unknown whether this 

method would work with New England Timber Rattlesnakes since transplanted individuals 

have been found to move more frequently and sporadically before settling into normal home 

ranges (Reinert et. al., 1999). In some New England populations, such as MANOR, 

individuals will encounter either large highways or urbanization within less than mile from 
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the den site, far less than the average distance traveled by an adult in larger more stable 

populations (Reinert et. al. 1999; Reinert et. al. 1988; Brown et. al. 1982). Individuals 

translocated into geographically small populations would have greater risks of road mortality 

then originally suggested by Reinert et. al. (1999). Properly monitoring genetic rescue via 

translocation would be labor intensive and require monitoring through radiotelemetry and 

ideally pedigree construction to test for fitness effects. With the Swedish adder population, 

sampling was so effective that all individuals could be relocated every year, and translocated 

males could be located without telemetry. An increase in genetic diversity could be detected 

in four years because adders reach reproductive age at four years and reproduce every other 

year (Madsen et. al., 2004). Timber Rattlesnakes in the northeast first reproduce at 6 -11 

years, and reproduce every three to five years (Martin, 2002; Madsen and Shine, 1992). 

Juveniles are more difficult to locate than adults (Brown, 1993) therefore it would likely be 

more than ten years before there is a detectable change in genetic diversity, assuming adult 

offspring from translocation breedings could be differentiated from native adults.  Future 

telemetry or mark re-capture studies could indicate survival, body condition, and 

reproduction (i.e. locating a gravid female) of translocated individuals in a shorter time 

period. 

Another approach to increasing genetic diversity across populations is captive 

breeding, which eliminates threats of increased of road mortality of translocated adults, as 

seen by Reinert et. al. (1999). Captive individuals could be returned to their native population 

to decrease negative effects on the native population. Future captive breeding could rely 

mostly on captive bred snakes that are not released and held in captivity, thus further 

reducing the effects on native populations. New alleles would need to be brought in 
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periodically. Individuals would be housed prior to breeding and while gestating, likely for 

several years. Captive breeding of several snake species has been practiced in the private pet 

trade for decades, though it has rarely been applied to conservation and reintroduction plans. 

Newborn offspring could be released after birth, or held in captivity for headstarting. 

Headstarting has mixed success with snakes (Conner et. al., 2003), with some studies 

suggesting that long periods in captivity decrease survival (Roe et. al., 2010; Blouin-Demers 

and Weatherhead, 2001). Due to long-term husbandry requirements captive breeding and 

headstarting are also labor and resource intensive. 

Artificial insemination of females from other populations may be less labor intensive 

and require less time in captivity. This could potentially be performed in the field, 

eliminating the need to remove snakes from the population. Road mortality would not be 

increased, as it might if translocations were conducted (Reinert et. al. 1999). This technique 

has been successful in the lab with other rattlesnake species (de Langlada et. al. 1994), 

although sperm were collected post mortem. Artificial insemination has been successful with 

other snake species without euthanasia (Mattson et. al. 2007). 

Whichever assisted gene exchange method is chosen, individuals from within the 

Northeastern MU (Martin et. al., 2008) should be used to avoid outbreeding depression, 

resulting in loss of local adaptation. Most New England populations are small and should not 

contribute individuals to other populations because this would lower census size of already 

small populations. However, genetic rescue can be successful with only a single or a few 

individuals (Vila et al., 2003; Zajitschek et. al., 2009) so a stable population could donate or 

loan a few males without risking population viability. Specifically, MABER3 has a very 

biased male sex ratio, likely causing the low effective populations size, and removing a few 
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males should have no negative effect. Overall, the New York populations appear to be the 

most genetically diverse, with higher overall census size (Stechert, R. pers comm), indicating 

stable eastern New York populations would be the well-suited donor populations if 

individuals are needed for New England. Long term genetic monitoring should continue, no 

matter which method is chosen. However, with this species’ low reproductive rate and long 

age to maturity, it could be 10 to 20 years before any change in genetic diversity is detected.  
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Figure 4.1. Map of Northeastern Timber Rattlesnake populations sampled, with larger 

circles represent larger connected metapopulations sampled.  
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Table 4.1. Population abbreviations of sampled Northeastern Timber Rattlesnake 

populations. 

Abbreviation State County 

CTHAR Connecticut Hartford 

CTLIT Connecticut Litchfield 

KSJEF Kansas Jefferson 

MAESS Massachusetts Essex 

MABER Massachusetts Berkshire 

MAHAD Massachusetts Hampden 

MAHAM Massachusetts Hampshire 

MANOR Massachusetts Norfolk 

NCBUN North Carolina Buncombe 

NYCHE New York Chemung 

NCMON North Carolina Montgomery 

NYWAS New York Washington 

NYDUT New York Duchess 

NYESS New York Essex 

NHNA New Hampshire N/A 

NJWAR New Jersey Warren 

NYORA New York Orange 

NYROC New York Rockland 

NYSUL New York Sullivan 

NYULS New York Ulster 

NYWAR New York Warren 

PACEN Pennsylvania Multiple, Central PA 

RINEW Rhode Island Newport 

SCCOL South Carolina Colleton 

VASHE Virginia Multiple –Shenandoah National Park 

VTRUT Vermont Rutland 
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Table 4.2.  For each locus the number of samples (N), number of alleles (A), observed heterozygosity (Ho), expected heterozygosity 

(HE), departure from Hardy-Weinberg (FIS), and the p-value associated with test for departure from Hardy Weinberg Equilibrium 

(HWE). Bold values represent significant departures from HWE before Bonferroni correction and grey highlighted cells indicate 

significant departures after Bonferroni correction.  Here the Berkshire County metapopulation is considered as one population. 

Population Locus 3-155 5-183 5A 7-144 7-150 7-87 CwB23 CwC24 CwD15 Scu01 Scu05 Scu07 Scu11 Scu26 

MABER1 N 75 79 79 79 79 78 79 74 79 78 75 79 75 78 

 A 5 4 6 4 1 4 11 18 2 4 9 4 9 6 

 Ho 0.31 0.25 0.44 0.44 - 0.27 0.56 0.52 0.16 0.10 0.42 0.01 0.49 0.49 

 HE 0.39 0.26 0.46 0.42 - 0.30 0.57 0.65 0.22 0.15 0.58 0.06 0.56 0.55 

 FIS 0.03 -0.07 0.20 0.33 - 0.20 0.24 0.08 0.002 0.43 0.43 -0.10 0.11 0.02 

 HWE 0.48 0.21 0.10 0.013 - 0.34 0.02 0.14 0.55 0.14 0.001 0.73 0.21 0.52 

MABER2 N 27 28 28 28 28 28 28 26 28 28 27 28 28 28 

 A 4 3 5 4 1 2 7 170.24 3 2 11 2 7 7 

 Ho 0.18 0.06 0.15 0.10 - 0.05 0.15 0.22 0.08 0.08 0.13 0.06 0.18 0.17 

 HE 0.19 0.06 0.19 0.15 - 0.06 0.20  0.08 0.14 0.22 0.05 0.20 0.17 

 FIS 0.21 0.05 0.05 -0.40 - 0.11 0.01 0.21 0.27 0.33 0.25 0.85 0.13 0.11 

 HWE 0.001 0.38 0.30 0.35 - 0.20 0.49 0.001 0.03 0.007 0.001 0.001 0.028 0.7 

MABER3 N 20 22 21 22 22 22 19 20 22 21 18 22 22 20 

 A 3 2 6 5 1 3 6 15 5 3 8 3 9 7 

 Ho 0.10 0.03 0.11 0.12 - 0.08 0.13 0.18 0.11 0.11 0.06 0.05 0.11 0.15 

 HE 0.10 0.05 0.12 0.15 - 0.09 0.16 0.18 0.13 0.11 0.15 0.06 0.19 0.16 

 FIS 0.02 0.34 0.07 0.23 - 0.15 0.18 0.03 0.0.21 -0.005 0.61 0.21 0.41 0.06 

 HWE 0.57 0.23 0.40 0.06 - 0.31 0.11 0.001 0.12 0.58 0.001 0.25 0.001 0.36 

MABER4 N 118 121 122 121 122 123 119 114 123 123 120 124 120 122 

 A 4 3 8 7 1 5 9 23 5 3 13 4 11 8 

 HO 0.64 0.09 0.73 0.81 - 0.57 0.69 0.91 0.56 0.56 0.78 0.04 0.85 0.79 

 HE 0.68 0.10 0.78 0.88 - 0.56 0.94 1.00 0.62 0.62 0.97 0.10 0.87 0.82 

 FIS 0.06 0.16 0.06 0.08 - -0.02 0.27 0.9 0.10 0.10 0.20 0.59 0.02 0.04 

 HWE 0.19 0.10 0.12 0.10 - 0.45 0.001 0.004 0.10 0.10 0.001 0.001 0.35 0.27 

MANOR N 93 105 104 107 106 103 100 84 106 105 
 

95 103 94 96 

 A 4 5 8 6 1 3 9 19 4 4 8 3 10 10 

 Ho 0.52 0.50 0.57 0.57 - 0.41 0.71 0.77 0.67 0.59 0.58 0.15 0.71 0.58 

 HE 0.54 0.56 0.72 0.73 - 0.45 0.80 0.89 0.72 0.68 0.81 0.14 0.75 0.63 

 FIS 0.04 0.10 0.21 0.22 - 0.10 0.11 0.12 0.07 0.13 0.28 -0.07 0.05 0.07 

 HWE 0.0000 0.0060 0.00000 0.00000 NA 0.4267 0.0016 0.0000 0.1345 0.0027 0.00000 1.00000 0.0009 0.0070 

CTHAR N 36 37 38 37 37 38 38 36 38 38 36 38 38 38 
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 A 3 2 5 5 1 5 7 17 3 3 8 4 8 7 

 Ho 0.42 0.08 0.55 0.62 - 0.42 0.63 0.75 0.58 0.63 0.53 0.21 0.87 0.63 

 HE 0.56 0.08 0.58 0.65 - 0.55 0.74 0.90 0.52 0.65 0.82 0.24 0.84 0.73 

 FIS 0.26 -0.03 0.05 0.04 - 0.24 0.15 0.17 -0.11 0.02 0.36 0.13 -0.04 0.14 

 HWE 0.1205 1.0000 0.3513 0.0188 NA 0.0084 0.0093 0.0000 0.9302 0.0782 0.0000 0.0012 0.1244 0.2203 

CTLIT N 13 11 13 12 12 13 13 13 13 13 13 13 13 13 

 A 3 3 6 8 1 3 7 12 4 3 10 2 9 5 

 Ho 0.31 0.09 0.62 0.54 - 0.62 0.77 0.85 0.54 0.62 0.62 0.38 0.85 0.62 

 HE 0.57 0.36 0.67 0.76 - 0.60 0.83 0.89 0.58 0.53 0.84 0.41 0.86 0.70 

 FIS 0.47 0.65 0.09 0.30 - -0.03 0.07 0.05 0.07 -0.18 0.27 0.06 0.01 0.13 

 HWE 0.0209 0.0488 0.3486 0.0058 NA 0.6388 0.0676 0.2702 0.0432 1.00000 0.0173 1.00000 0.0332 0.6461 

MAHAD1 N 52 55 54 55 55 54 
 

51 50 54 55 53 53 53 51 

 A 4 2 6 6 1 3 7 14 4 3 7 2 4 4 

 Ho 0.12 0.04 0.44 0.51 - 0.06 0.55 0.62 0.35 0.51 0.68 0.30 0.57 0.51 

 HE 0.13 0.04 0.62 0.65 - 0.16 0.67 0.66 0.34 0.64 0.82 0.28 0.60 0.53 

 FIS 0.11 -0.01 0.28 0.22 - 0.65 0.19 0.06 -0.03 0.20 0.17 -0.06 0.05 0.03 

 HWE 0.0226 1.0000 0.0000 0.0001 NA 0.0001 0.0445 0.0048 0.7105 0.0110 0.0000 1.0000 0.0002 0.0240 

KSJEF N 7 8 8 7 8 8 8 7 8 8 8 8 8 7 

 A 5 2 5 4 3 2 6 10 3 2 6 1 8 6 

 Ho 0.43 0.50 0.50 0.29 0.14 0.5 0.86 0.00 0.50 0.00 0.63 - 0.88 0.86 

 HE 0.76 0.40 0.60 0.71 0.52 0.5 0.90 1.00 0.54 1.00 0.80 - 0.83 0.81 

 FIS 0.45 -0.27 0.18 0.62 0.74 0.00 0.05 -0.06 0.08 1.00 0.23 - -0.07 -0.06 

 HWE 0.0127 1.0000 0.1213 0.0046 0.0757 NA 0.7496 0.3711 1.0000 0.0655 0.7256 NA 0.8443 0.0035 

NYBUN N 2 2 2 2 2 2 2 2 2 2 2 2 1 2 

 A 2 1 2 2 1 1 2 2 3 3 3 1 2 2 

 Ho 1.00 - 1.00 1.00 - - 1.00 1.00 1.00 1.00 1.00 - - 1.00 

 HE 0.67 - 0.67 0.67 - - 0.67 0.67 0.67 0.67 0.67 - - 0.67 

 FIS -1.00 - -1.00 -1.00 - - -1.00 -1.00 -1.00 -1.00 -1.00 - - -1.00 

 HWE 1.0000 NA 1.0000 1.0000 NA NA 1.0000 1.0000 1.0000 1.0000 1.0000 NA NA 1.0000 

NYWAS N 25 25 25 26 26 26 26 21 26 24 23 26 25 25 

 A 3 3 6 7 1 3 9 15 3 2 8 2 6 5 

 Ho 0.64 0.32 0.36 0.46 - 0.62 0.38 0.95 0.38 0.13 0.52 0.04 0.64 0.36 

 HE 0.65 0.55 0.47 0.63 - 0.60 0.56 0.93 0.32 0.12 0.79 0.11 0.73 0.70 

 FIS 0.01 0.42 0.24 0.27 - -0.02 0.32 -0.02 -0.19 -0.05 0.34 0.66 0.12 0.49 

 HWE 0.7237 0.0128 0.0531 0.0018 NA 0.5986 0.0017 0.0646 0.6324 1.0000 0.0023 0.0592 0.0713 0.0002 

NYESS N 1 3 3 3 3 3 3 3 3 3 3 3 3 3 

 A 2 1 2 2 1 3 2 3 1 1 3 1 2 2 

 Ho - - 0.00 0.33 - 0.66 0.66 0.33 - - 0.33 - 0.33 0.33 

 HE - - 0.53 0.33 - 0.53 0.53 0.73 - - 0.73 - 0.33 0.33 
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 FIS - - 1.00 0.00 - -0.33 -0.33 0.6 - - -.60 - 0.00 0.00 

 HWE NA NA 0.2008 1.0000 NA 1.0000 1.0000 0.1962 NA NA 0.2024 NA 1.0000 1.0000 

NHNA N 64 69 68 68 69 68 68 64 68 68 67 68 68 66 

 A 3 1 3 2 1 3 8 5 4 3 3 3 4 4 

 Ho 0.02 - 0.37 0.00 - 0.19 0.07 0.63 0.56 0.01 0.06 0.32 0.43 0.30 

 HE 0.05 - 0.43 0.03 - 0.20 0.13 0.55 0.48 0.04 0.01 0.51 0.44 0.46 

 FIS 0.66 - 0.15 1.00 - 0.05 0.43 -0.14 -0.16 0.67 0.75 0.37 0.04 0.34 

 HWE 0.0067 NA 0.1366 0.0074 NA 0.0121 0.0000 0.0098 0.0122 0.0083 0.0020 0.0000 0.0054 0.0000 

NYORA N 18 19 19 19 19 19 19 17 19 19 18 19 19 19 

 A 4 3 7 5 1 3 10 15 2 4 9 2 8 7 

 Ho 0.44 0.42 0.42 0.52 - 0.63 0.74 0.71 0.37 0.58 0.67 0.37 0.74 0.68 

 HE 0.65 0.50 0.54 0.75 - 0.54 0.86 0.94 0.37 0.62 0.78 0.31 0.84 0.77 

 FIS 0.32 0.16 0.24 0.30 - -0.18 0.15 0.25 0.01 0.06 0.15 -0.20 0.12 0.11 

 HWE 0.0252 0.7434 0.0391 0.0455 NA 0.4827 0.0136 0.0000 1.0000 0.3770 0.0160 1.0000 0.3786 0.0861 

NYROC N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

 A 3 3 3 2 1 2 4 7 2 2 5 2 6 4 

 Ho 0.50 0.50 0.50 0.50 - 0.50 1.00 0.75 0.25 0.25 0.50 0.25 1.00 0.75 

 HE 0.47 0.68 0.47 0.57 - 0.43 0.82 0.97 0.54 0.25 0.86 0.25 0.93 0.79 

 FIS -0.09 0.29 -0.09 0.14 - -0.20 -0.26 0.25 0.57 0.00 0.45 0.00 -0.09 0.05 

 HWE 1.0000 1.0000 1.0000 1.0000 NA 1.0000 1.0000 0.1531 0.4306 1.0000 0.0825 1.0000 1.0000 1.0000 

NYULS N 10 14 13 14 14 14 12 9 14 13 12 14 13 12 

 A 3 4 4 4 1 3 6 12 3 5 4 2 6 4 

 Ho 0.50 0.21 0.54 0.43 - 0.64 0.50 0.89 0.43 0.46 0.42 0.07 0.69 0.67 

 HE 0.54 0.33 0.74 0.47 - 0.65 0.77 0.95 0.37 0.62 0.49 0.20 0.74 0.69 

 FIS 0.08 0.35 0.28 0.09 - 0.01 0.36 0.07 -0.16 0.27 0.15 0.65 0.06 0.04 

 HWE 0.1835 0.0910 0.3676 0.2404 NA 0.5971 0.1656 0.5553 1.0000 0.1287 0.1884 0.1098 0.4157 1.0000 

NYWAR N 20 29 28 28 29 29 26 21 29 29 22 28 24 26 

 A 4 2 7 7 1 3 7 18 4 5 8 3 9 7 

 Ho 0.35 0.28 0.61 0.61 - 0.45 0.69 0.76 0.14 0.41 0.68 0.18 0.67 0.69 

 HE 0.68 0.33 0.80 0.84 - 0.54 0.77 0.95 0.34 0.53 0.78 0.23 0.80 0.71 

 FIS 0.49 0.18 0.25 0.27 - 0.17 0.11 0.20 0.59 0.22 0.13 0.22 0.16 0.21 

 HWE 0.0012 0.5629 0.1711 0.0021 NA 0.0978 0.0089 0.0034 0.0002 0.0167 0.0804 0.0320 0.1453 0.2045 

PACEN N 29 33 33 32 33 32 30 27 33 32 31 32 28 30 

 A 6 5 9 6 1 4 11 26 5 3 10 2 16 10 

 Ho 0.45 0.39 0.67 0.53 - 0.50 0.77 0.96 0.55 0.34 0.68 0.16 0.75 0.73 

 HE 0.75 0.38 0.82 0.79 - 0.60 0.79 0.95 0.64 0.50 0.86 0.15 0.83 0.85 

 FIS 0.41 -0.06 0.19 0.33 - 0.17 0.03 -0.01 0.15 0.31 0.19 -0.07 0.10 0.14 

 HWE 0.0012 0.3813 0.0352 0.0073 NA 0.3562 0.6462 0.7353 0.1863 0.0178 0.0671 1.0000 0.0850 0.0281 

RINEW N 2 2 1 2 2 2 2 2 2 2 1 2 2 1 
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 A 3 2 1 3 1 2 2 2 2 3 1 1 1 1 

 Ho 0.50 0.00 - 0.50 - 1.00 0.00 1.00 0.50 0.50 - - - - 

 HE 0.84 0.67 - 0.84 - 0.67 0.67 - 0.50 0.56 - - - - 

 FIS 0.50 1.00 - 0.50 - -1.00 1.00 - 0.00 0.50 - - - - 

 HWE 0.3667 0.3337 NA 0.3236 NA 1.0000 0.3366 NA 1.0000 0.3280 NA NA NA NA 

NYMON N 2 3 2 3 3 3 3 2 3 3 2 3 3 3 

 A 2 2 3 2 1 3 4 3 2 3 3 1 6 4 

 Ho 0.5 0.50 0.50 0.67 - 0.50 0.75 0.50 1.00 0.66 0.50 - 1.00 0.5 

 HE 0.50 0.50 0.84 0.53 - 0.73 0.65 0.84 0.60 0.73 0.84 - 1.00 0.65 

 FIS 0.00 0.00 0.50 -0.33 - 0.11 -0.20 0.50 -1.00 0.11 0.50 - 0.00 0.27 

 HWE NA NA 0.3276 1.0000 NA 1.0000 1.0000 0.3391 0.3996 1.0000 0.3377 NA 1.0000 0.4631 

MAHAD2 N 27 28 27 28 28 27 28 26 27 27 26 27 26 27 

 A 4 1 7 5 1 3 8 10 3 3 7 2 6 5 

 Ho 0.37 - 0.78 0.75 - 0.67 0.61 0.65 0.37 0.52 0.54 0.15 0.65 0.33 

 HE 0.58 - 0.78 0.70 - 0.67 0.74 0.71 0.37 0.53 0.74 0.14 0.65 0.43 

 FIS 0.36 - 0.00 -0.08 - 0.01 0.18 0.09 0.00 0.02 0.28 -0.06 0.00 0.23 

 HWE 0.0166 NA 0.0006 0.4096 NA 0.0283 0.0785 0.0085 0.1655 1.0000 0.0000 1.0000 0.0075 0.0002 

MAHAM N 19 17 19 19 18 19 18 17 19 19 17 18 18 5 

 A 5 2 4 7 1 4 6 4 4 5 9 2 5 18 

 Ho 0.36 0.36 0.63 0.53 - 0.21 0.44 0.65 0.58 0.32 0.76 0.00 0.50 0.78 

 HE 0.45 0.26 0.72 0.81 - 0.37 0.50 0.50 0.59 0.52 0.86 0.11 0.52 0.71 

 FIS 0.18 -0.14 0.12 0.36 - 0.44 0.11 -0.31 0.01 0.40 0.11 1.00 0.05 -0.10 

 HWE 0.1026 1.0000 0.0171 0.0031 NA 0.0073 0.0101 0.5923 0.0066 0.0024 0.0954 0.0278 0.1634 0.0260 

VASHE N 62 64 64 64 63 65 63 53 65 65 55 65 63 63 

 A 6 5 9 8 2 5 14 28 5 5 16 3 20 13 

 Ho 0.48 0.42 0.53 0.53 0.16 0.49 0.71 0.87 0.58 0.57 0.73 0.25 0.77 0.66 

 HE 0.60 0.52 0.78 0.71 0.16 0.57 0.87 0.95 0.63 0.53 0.90 0.36 0.93 0.84 

 FIS 0.20 0.17 0.33 0.25 0.00 0.13 0.0.18 0.07 0.07 -0.06 0.20 0.32 0.16 0.21 

 HWE 0.0525 0.20 0.0000 0.0000 1.00 0.0475 0.0000 0.1914 0.4278 0.0741 0.0000 0.0382 0.0000 0.0000 

VTRUT1 N 30 35 34 35 35 36 34 32 36 35 31 36 35 33 

 A 4 2 3 6 1 3 5 10 2 3 6 2 6 4 

 Ho 0.43 0.46 0.41 0.57 - 0.58 0.15 0.75 0.11 0.57 0.44 0.39 0.18 0.76 

 HE 0.63 0.50 0.34 0.71 - 0.64 0.34 0.73 0.115 0.52 0.58 0.51 0.48 0.73 

 FIS 0.32 0.09 -0.22 0.19 - 0.09 0.57 -0.03 0.29 -0.11 0.23 0.23 0.63 -0.06 

 HWE 0.0340 0.4626 0.4356 0.0944 NA 0.2817 0.0054 0.1911  0.7035 0.0175 0.1356 0.0000 0.1131 

VTRUT2 N 75 94 93 93 94 94 91 93 94 94 91 93 91 92 

 A 3 1 5 4 1 3 5 13 3 3 4 1 6 5 

 Ho 0.40 - 0.52 0.62 - 0.20 0.71 0.86 0.12 0.48 0.33 - 0.70 0.65 

 HE 0.52 - 0.57 0.65 - 0.22 0.76 0.82 0.11 0.38 0.33 - 0.74 0.68 
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 FIS 0.23 - 0.09 0.05 - 0.08 0.06 -0.05 -0.04 -0.25 -0.01 - 0.05 0.04 

 HWE 0.0124 NA 0.2829 0.0130 NA 0.0245 0.0049 0.5779 1.0000 0.0402 0.7572 NA 0.0866 0.3764 



 170 

Table 4.3. Population genetic parameter estimates for all populations sampled. Sample 

size (N), mean number of alleles per locus (A), allelic richness (AR), expected 

heterozygosity (HE), observed heterozygosity (HO), inbreeding coefficient (FIS), genetic 

divergence (FST), and effective population size (Nb) with 95% confidence intervals AR, 

FIS, and Nb are calculated for populations with n  > 10.  

 

 
Population N A AR HE HO FIS FST Nb 

NHNA 69 4.929 1.896 0.241 0.207 0.14 0.391 2 (1.3-3.1) 

MANOR 110 6.643 4.201 0.600 0.524 0.128 0.135 47.5  (36.2-64.2) 

MAHAD1 55 4.786 3.164 0.438 0.375 0.145 0.200 11  (6.4-17.8) 

MAHAM 19 4.500 3.723 0.495 0.433 0.125 0.202 2.2  (1.7-2.8) 

MAHAD2 28 4.571 3.495 0.504 0.456 0.094 0.166 9.2  (5.3-15.5) 

CTHAR 38 5.643 4.117 0.563 0.495 0.122 0.136 26.8 (16.3-50.7) 

CTLIT 13 5.429 4.800 0.614 0.532 0.134 0.097 6.4  (3.6-9.5) 

MABER1 79 6.071 3.640 0.481 0.414 0.139 0.107 29.5  (21.5-41.5) 

MABER2 28 5.428 4.061 0.509 0.418 0.178 0.310 23.7  (14.6-45.9) 

MABER4 124 7.429 4.077 0.533 0.477 0.106 0.236 83.7  (59.8-125.5) 

MABER3 22 5.428 4.367 0.574 0.459 0.201 0.209 3.7  (2.7-6.3) 

VTRUT1 39 3.714 3.065 0.499 0.425 0.148 0.221 25.6 (13.7-62.6) 

VTRUT2 94 4.071 3.190 0.413 0.399 0.034 0.212 107.9  (54.4-406.6) 

NYWAS 26 5.214 4.014 0.513 0.415 0.192 0.213 18.8  (12.7-30.3) 

NYWAR 29 6.071 4.656 0.594 0.465 0.217 0.145 893.9  (45.9-INF) 

NYULS 14 4.357 4.129 0.542 0.461 0.150 0.068 24.5  (9.6-INF) 

NYORA 19 5.714 4.568 0.607 0.521 0.142 0.153 43  (25.4-108.0) 

PACEN 33 8.143 5.408 0.635 0.534 0.159 0.111 60  (35.8-150.5) 

VASHE 65 
10.28

6 
5.750 0.659 0.546 0.170 0.092 184.1 (106.1-539.1) 

MAESS 1 1.1 NA NA NA NA NA NA 

SCCOL 1 1.429 NA NA NA NA NA NA 

NCBUN 2 1.714 NA 0.346 0.692 -1 NA 1.7 (-0.6-INF) 

RINEW 2 1.929 NA 0.667 0.333 0.5 0.500 1.6(-.8-INF 

NCYHE 3 2.786 NA 0.649 0.571 0.119 0.119 2.5(-1.7-INF) 

NYESS 3 1.786 NA 0.333 0.231 0.308 0.308 2.8(-3.1-INF) 

NYROC 4 3.286 NA 0.580 0.518 0.108 0.108 4(-22.9-INF) 

KSJEF 8 4.429 NA 0.579 0.469 0.189 NA 7.3(21.4-INF) 

Avg n > 10 33 5.879 4.017 0.528 0.4503 0.145 0.175 84.39 
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Table 4.4. FST and F’ST for population pairs of the Timber Rattlesnake in the Northeastern United States.  FST  is above the diagonal 

and F’ST is below the diagonal. 

 
NHNA MANOR MAHAD1 MAHAM MAHAD2 CTHAR CTLIT MABER VTRUT1 VTRUT2 NYWAS NYWAR NYULS NYORA PACEN VASHE 

NHNA 0 0.297 0.407 0.437 0.431 0.352 0.351 0.280 0.476 0.417 0.407 0.377 0.471 0.372 0.353 0.329 

MANOR 0.563 0 0.181 0.181 0.168 0.123 0.080 0.099 0.220 0.208 0.158 0.113 0.138 0.100 0.075 0.073 

MAHAD1 0.660 0.353 0 0.302 0.186 0.176 0.150 0.152 0.229 0.282 0.230 0.152 0.231 0.191 0.182 0.147 

MAHAM 0.710 0.371 0.532 0 0.225 0.172 0.178 0.152 0.280 0.281 0.249 0.135 0.168 0.164 0.131 0.145 

MAHAD2 0.714 0.349 0.327 0.424 0 0.122 0.134 0.146 0.233 0.253 0.208 0.104 0.150 0.126 0.129 0.108 

CTHAR 0.633 0.270 0.333 0.354 0.251 0 0.092 0.080 0.224 0.215 0.169 0.083 0.101 0.050 0.081 0.089 

CTLIT 0.618 0.160 0.277 0.368 0.276 0.209 0 0.049 0.185 0.134 0.096 0.046 0.073 0.064 0.054 0.025 

MABER 0.555 0.216 0.298 0.312 0.302 0.170 0.102 0 0.382 
 

0.188 0.125 0.062 0.077 0.057 0.052 0.065 

VARUT1 0.586 0.424 0.487 0.508 0.465 0.429 0.243 0.382 0 0.155 0.153 0.123 0.225 0.217 0.172 0.184 

VARUT2 0.696 0.420 0.376 0.474 0.399 0.407 0.329 0.295 0.385 0 0.088 0.124 0.210 0.196 0.171 0.157 

NYWAS 0.677 0.325 0.408 0.473 0.398 0.352 0.192 0.257 0.139 0.256 0 0.068 0.047 0.135 0.101 0.111 

NYWAR 0.651 0.234 0.270 0.249 0.192 0.170 0.069 0.129 0.212 0.208 0.114 0 0.047 0.051 0.037 0.058 

NYULS 0.764 0.269 0.398 0.289 0.269 0.202 0.123 0.154 0.351 0.375 0.269 0.037 0 0.073 0.057 0.079 

NYORA 0.662 0.216 0.365 0.345 0.265 0.111 0.151 0.122 0.387 0.393 0.283 0.090 0.132 0 0.040 0.040 

PACEN 0.650 0.162 0.357 0.276 0.275 0.186 0.117 0.114 0.348 0.318 0.211 0.060 0.093 0.086 0 0.037 

VTSHE 0.573 0.173 0.312 0.336 0.248 0.220 0.053 0.150 0.351 0.369 0.257 0.132 0.173 0.102 0.090 0 
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Figure 4.2. Two-dimensional plots comparing genetic diversity to genetic distinctiveness 

for northeastern Timber Rattlesnake populations. Two dimensional plots comparing 

genetic distinctiveness (mean population-specific FST) to three measures of within-

population genetic diversity: (a) average number of alleles per locus, (b) average number 

of alleles per locus, and (c) heterozygosity for all populations with sample sizes greater 

than 10 individuals. 
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Figure 4.3. Geographic distance (km) compared to genetic distance (FST/1-FST) for all 

Northeastern Timber Rattlesnake population pairs sampled (n = 20). Filled circles 

indicate the New Hampshire population, the most geographically isolated population.  
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Figure 4.4. An Evanno log likelihood probability plot depicting the change in the number 

of genetic clusters (K), for 20 Timber Rattlesnake populations, with K = 1 to 20, from 

STRUCTURE, a Bayesian analysis of population structure. 
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Figure 4.5. Proportion of the genome (Q) of each individual assigned by STRUCTURE to each population sample of northeastern 

Timber Rattlesnakes. Each column corresponds to an individual and a horizontal black bar separates sample locations.  Each cluster 

(K) corresponds to a separate color.  STRUCTURE plot results are shown for K = 5 (a), 6 (b), and 7 (c) for 20 populations.
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Figure 4.6 Value of Bayesian Information Criterion (BIC) versus the number of 

population clusters using discriminant analysis of principal components (DAPC) for K = 

1 to 30 for 20 Northeastern Timber Rattlesnake populations. 
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Figure 4.7. Discriminant analysis of principal components (DAPC) of the first two 

principal components for population clusters (K) for K = 7.  Twenty northeastern Timber 

Rattlesnake populations were sampled.  Distinct single population clusters are labeled, 

with all other assigning equally in clusters 5 and 6.
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Table 4.5. Pair wise population FST, above the diagonal, and Euclidian distance (km), below the diagonal, for Northeastern Timber 

Rattlesnake populations.  

 
NHNA MANOR MAHAD1 MAHAM MAHAD2 CTHAR CTLIT MABER VTRUT1 VTRUT2 NYWAS NYWAR NYULS NYORA PACEN VASHE 

NHNA 0 0.297 0.407 0.437 0.431 0.352 0.351 0.280 0.476 0.417 0.407 0.377 0.471 0.372 0.353 0.329 

MANOR 79.6 0 0.181 0.181 0.168 0.123 0.080 0.099 0.220 0.208 0.158 0.113 0.138 0.100 0.075 0.073 

MAHAD1 123.3 138.1 0 0.302 0.186 0.176 0.150 0.152 0.229 0.282 0.230 0.152 0.231 0.191 0.182 0.147 

MAHAM 113.2 133.5 12.7 0 0.225 0.172 0.178 0.152 0.280 0.281 0.249 0.135 0.168 0.164 0.131 0.145 

MAHAD2 132.4 150.2 12.4 19.6 0 0.122 0.134 0.146 0.233 0.253 0.208 0.104 0.150 0.126 0.129 0.108 

CTHAR 156.3 141.4 59.6 69.1 64.6 0 0.092 0.080 0.224 0.215 0.169 0.083 0.101 0.050 0.081 0.089 

CTLIT 202.5 209.3 77.7 87.2 68.2 80.3 0 0.049 0.185 0.134 0.096 0.046 0.073 0.064 0.054 0.025 

MABER 187.8 209.0 71.1 78.4 59.7 94.7 32.7 0 0.155 0.188 0.125 0.062 0.077 0.057 0.052 0.065 

VTRUT1 178.3 250.0 171.7 163.3 170.0 230.0 203.3 171.7 0 0.155 0.153 0.123 0.225 0.217 0.172 0.184 

VTRUT2 175.0 250.0 178.3 273.3 176.7 238.3 213.3 183.3 13.8 0 0.088 0.124 0.210 0.196 0.171 0.157 

NYWAS 183.5 259.8 184.5 175.2 179.0 244.5 216.5 185.0 13.3 15.0 0 0.068 0.047 0.135 0.101 0.111 

NYWAR 190.5 263.4 178.3 169.4 171.5 241.7 211.7 170.2 16.7 26.7 14.5 0 0.047 0.051 0.037 0.058 

NYULS 266.7 284.7 146.5 152.3 134.0 166.2 80.0 75.3 200.0 213.3 205.0 195.0 0 0.073 0.057 0.079 

NYORA 286.8 286.0 162.5 279.0 154.2 156.2 86.0 176.8 276.7 283.3 284.5 276.7 91.3 0 0.040 0.040 

PACEN 580.0 600.0 465.0 470.0 453.3 468.3 390.0 393.3 475.0 483.3 475.0 466.7 320.0 330.0 0.0 0.037 

VASHE 868.3 863.3 740.0 750.0 730.0 723.3 663.3 675.0 800.0 830.0 796.7 781.7 606.7 575.0 360.0 0 
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Table 4.6. Assignment testing results for four Timber Rattlesnakes sampled in New 

Hampshire of unknown population origin. Ordered populations represent the population 

is assigned to and relative score. 

Individual Population 1 Score 1 Population 2 Score 2 Population 3 Score 3 

1 PACEN 99.561 VASHE 0.4 MABER4 0.037 

2 PCAEN 99.884 NYULS 0.07 VASHE 0.045 

3 PACEN 94.982 VASHE 3.643 MABER3 1.278 

4 NYORA 96.287 PACEN 3.694 VASHE 0.018 
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Figure 4.8. Log likelihood probability plot of population clusters (K) values for a 

Massachusetts Timber Rattlesnake metapopulation (MBER), with K = 1 to 9, from 

STRUCTURE. 
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Figure 4.9. Proportion of the genome (Q) of each individual assigned by STRUCTURE 

to each population sample of northeastern Timber Rattlesnakes.  Each column 

corresponds to an individual and a horizontal black bar separates sample locations.  Each 

cluster (K) corresponds to a separate color. STRUCTURE plot of population clusters for 

K = 3 (a), 4 (b), and 5 (c), for a Massachusetts Timber Rattlesnake metapopulation.  

 
 

 

 



 184 

LITERATURE CITED 

Ackerman, M.W., B.K. Hand, R.K. Waples, G. Luikart, R.S. Waples, C.A. Steele, B.A. 

Garner, J. McCane, M.R. Campbell. 2016. Effective number of breeders from Sibship 

reconstruction: empirical evaluations using hatchery steelhead. Evolutionary Applications 

2017(10):146-160. 

 

Adams, R.I., M. Vellend. 2011. Species diversity of grasses promotes genotypic diversity 

of clover populations in simulated communities. Oikos 120:1584-1594. 

  Aldridge, R.D., W.S. Brown. 1995. Male reproductive cycle, age at maturity, and cost 

of reproduction in the Timber Rattlesnake (Crotalus horridus). Journal of Herpetology 29 

(3):399-407. 

 

Allender, M.C., M. Dreslik, S. Wylie, C. Phillips, D.B. Wylie, C. Maddox, M.A. 

Delaney, M.J. Kinsel. 2011. Chrysoporium sp. Infection in Eastern Massasauga 

Rattlesnakes (Sistrurus catenatus catenatus). Emerging Infectious Disease 17(12):2383-

2384. 

 

Allender, M.C., M.J. Dreslik, D.B. Wylie, S.J. Wylie, J.W. Scott, C.A. Phillips, C. 

Maddox, E.A. Driskell. 2013. Ongoing health assessment and prevalence of 

Chrysosporium in the Eastern Massasauga (Sistrurus catenatus catenatus). Copeia 1:97-

102. 

 

Allendorf, F.W., and G. Luikart. 2009. Conservation and the Genetics of Populations. 

Blackwell Publishing, Hoboken, New Jersey, 664p. 



 185 

 

Aldridge, R.D. and W.S. Brown. 1995. Male reproductive cycle, age at maturity, and cost 

of reproduction in the Timber Rattlesnake (Crotalus horridus). Journal of Herpetology 

29(3):399-407. 

 

Amarello, M., J.J. Smith, J. Slone. 2011. Family values: maternal care in rattlesnakes is 

more than mere attendance. Nature Proceedings Pub. Dec 7, 2011 

doi:10.1038/npre.2011.6671.1 

 

Anderson, C.D. Utility of a set of microsatellite primers developed for the Massasauga 

rattlesnake (Sistrurus catenatus) for population genetic studies of the timber rattlesnake 

(Crotalus horridus). Molecular Ecology 6(2):514-517. 

 

Anderson, C.D. 2010. Effects of movement and mating patterns on gene flow among 

overwintering hibernacula of the timber rattlesnake (Crotalus horridus). Copeia 2010:54-

61. 

 

Andrews, K.M., J.W. Gibbons, D.M. Jochimsen. 2008. Ecological effects of roads on 

amphibians and reptiles: a literature review. Pp. 121–143 In: Urban Herpetology. 

Mitchell, J.C., R.E. Jung Brown, and B. Bartholomew (Eds.). SSAR Books, Salt Lake 

City, UT. 

 

Arthur, S.M., B. F.J. Manly, L.L. McDonald, and G.W. Garner. 1996. Assessing habitat 



 186 

selection with availability changes. Ecology 77:215-227. 

 

Baras, E., L. Westerloppe. 1999. Transintestinal expulsion of surgically implanted tags 

by African Catfish Heterobranchus longifilis of variable size and age. Transactions of the 

American Fisheries Society 128 (1999): 737-746. 

 

Beaupre, S., and L.E. Douglas. 2012. Proceedings of the 4th fire in eastern oak forests 

conference:192-204. 

 

Beyer, H.L. 2012. Geospatial modeling environment (version 0.6.0.0) (software). URL: 

http://www.spatialecology.com/gme/gmedownload.htm. 

 

Blouin-Demers G., P.J. Weatherhead, C.M. Shilton, C.E. Parent, G.P. Brown. 2000. Use 

of inhalant anesthetics in three snake species. Contemporary Herpetology. 1:1-7. 

 

Blouin-Demers, G., and P.J. Weatherhead. 2001. Habitat use by black rat snakes (Elaphe 

obsolete obsoleta) in fragmented forests. Ecology 82:2882-2896. 

 

Blouin-Demers, G. and P.J. Weatherhead. 2001. An experimental test of the link between 

foraging, habitat selection and thermoregulation in black rat snakes Elaphe obsoleta 

obsoleta. Journal of Animal Ecology 70: 1006–1013. 

 

Blows, M.W., A.A. Hoffmann. 2005. A reassessment of limits to evolutionary change. 

http://www.spatialecology.com/gme/gmedownload.htm


 187 

Ecology 86:1371-1384. 

 

Bolnick, D.I., P. Amarasekare, M.S. Araújo, R. Bürger, J.M. Levine, M. Novak, V.H.W. 

Rudolf, S.J. Schreiber, M.C. Urban, D. Vasseur. 2011. Why intraspecific trait variation 

matters in community ecology. Trends in Ecology & Evolution 26:183–192. 

 

Bonnet, X., D. Bradshaw, R. Shine, D. Pearson. 1999. Why do snakes have eyes? The 

(non-) effect of blindness in island tiger snakes (Notechis scutatus). Behvioral Ecology 

and Sociology 46:267-272. 

 

Breiman, L., J.H. Friedman, R.A. Olshen, and C. G. Stone. 1984. Classification and 

Regression Trees. Wadsworth International Group, Belmont, California, USA. 

 

Breslow, N.E., and N.E. Day. 1980. Statistical methods in cancer research. Volume I: the 

analysis of case-control studies. International Agency for Research on Cancer, Lyon, 

France. 

 

Bricker, J., L.M. Bushar, H.K. Reinert, L. Gelbert.1996. Purification of high quality DNA 

from shed skin. Herpetological Review 27:133–134.  

 

Brooks, B.W., Sodhi, N.S., Bradshaw, C.J.A. 2008. Synergies among extinction drivers 

under global change. Trends in Ecology & Evolution 23:453-460. 

 



 188 

Brown, W.S., D.W. Pyle, K.R. Greene, J.B. Friedlaender. 1982. Movement and 

temperature relationships of timber rattlesnakes (Crotalus horridus) in northeastern New 

York. Journal of Herpetology 16:151-161. 

 

Brown, W.S., Pyle, D.W., Greene, K.R., and J.B. Friedlaender. 1982. Movements and 

temperature relationships of Timber Rattlesnakes (Crotalus horridus) in northeastern 

New York. Journal of Herpetology 16(2):151-161. 

 

Brown, W.S., and F.M. MacLean. 1983. Conspecific scent-trailing by newborn Timber 

Rattlesnakes, Crotalus horridus. Herpetologica 39(4):430-436. 

 

Brown, W.S. 1991. Female reproductive ecology in a northern population of the Timber 

Rattlesnake, Crotalus horridus. Herpetologica 47(1):101-115. 

 

Brown, W.S. 1993. Biology, Status, and Management of the Timber Rattlesnake 

(Crotalus horridus): A Guide for Conservation. Pp 84. Society for the Study of 

Amphibians and Reptiles. Lawrence, KS. 

 

Brown, W.S., M. Kery, J.E. Hines. 2007. Survival of Timber Rattlesnakes (Crotalus 

horridus) estimated by capture-recapture models in relation to age, sex, color morph, 

time and birthplace. Copeia 2007(3): 656-671. 

 



 189 

Brown, W.S. 2016. Lifetime reproduction in a northern metapopulation of Timber 

Rattlesnakes (Crotalus horridus). Herpetologica 72 (4):331-342. 

 

Browning, D.M., Beaupre, S.J., and L. Duncan. 2005. Using partitioned Mahalanobis 

D2(K) to formulate a GIS-based model of Timber Rattlesnake hibernacula. Journal of 

Wildlife Management 69(1):33-44. 

 

Bryant, G.L., P. Eden, P. De Tores, K.S. Warren. 2010. Improved procedure for 

implanting radiotransmitters in the coelomic cavity of snakes. Australian Veterinary 

Journal 88(11): 443-448. 

 

Burns, G., A. Ramos, A. Muchlinski.1996. Fever response in North American snakes. 

Journal of Herpetology 30:133–139.  

 

Bushar, L.M., H,K. Reinert, L. Gelbert. 1998. Genetic variation and gene flow with and 

between local populations of the timber rattlesnake (Crotalus horridus). Copeia 

1998:411-422. 

 

Bushar, L.M., C. Cecille, B. Aborde, S. Gao, M.V. Gonzalez, J.A. Hoffman, I.K. 

Massaro, A.H. Savitzky, H.K. Reinert. 2014. Genetic structure of timber rattlesnake 

(Crotalus horridus) populations: Physiographic influences and conservation implications. 

Copeia 2014:694-706. 

 



 190 

Bushar, L.M., N. Bhatt, M.C. Dunlop, C. Schocklin, M.A. Malloy, H.K. Reinert. 2015. 

Population isolation and genetic subdivision of timber rattlesnakes (Crotalus horridus) in 

the New Jersey Pine Barrens. Herpetologica 71:203-211. 

 

Calenge, C. 2007. Exploring habitat selection by wildlife with adehabitat. Journal of 

Statistical Software 22:1-19. 

 

Callen, D.F., A.D. Thompson, Y. Shen, H.A. Phillips, R.I. Richards, J C. Mulley, G.R. 

Sutherland. 1993. Incidence and origin of ‘‘null’’ alleles in the (AC)n microsatellite 

markers. The American Journal of Human Genetics 52:922–927. 

 

Chakraborty, R., L. Jin. 1992. Heterozygote deficiency, population substructure, and their 

implications in DNA fingerprinting. Human Genetics 88:267–272. 

Cieslak, D., and N. Chawla. 2008. Learning decision trees for unbalanced data. Machine 

Learning and Knowledge Discovery in Databases:241-256. 

 

Cila, C., A. Sundqvist, O. Flagstad, J. Seddon, S. Bjornerfeldt, I. Kojola, A. Casulli, H. 

Sand, P. Wabakken, H. Ellegren. 2003. Rescue of a severely bottlenecked wolf (Canis 

lupis) population by a single immigrant. Proceedings of the Royal Society of London 

270:91-97. 

 



 191 

Clark, R.W. 2002. Diet of the Timber Rattlesnake, Crotalus horridus. Journal of 

Herpetology 36(3):494-499. 

 

Clark, A.M., P.E. Moler, E.E. Possardt, A.H. Savitzky, W.S. Brown, B.W. Bowen. 2003. 

Phylogeography of the timber rattlesnake (Crotalus horridus) based on mtDNA 

sequences. Journal of Herpetology 37:145-154. 

 

Clark, R.W., W.S. Brown, R. Stechert, K.R. Zamudio. 2008. Integration individual 

behavior and landscape genetics: The population structure of timber rattlesnake 

hibernacula. Molecular Ecology 17: 719-730. 

 

Clark, R.W., W.S. Brown, R. Stechert, K.R. Zamudio. 2010. Roads, interrupted dispersal, 

and genetic diversity in timber rattlesnakes. Conservation Biology 24:1059-1069. 

 

Clark, R.W., N.M. Marchand, B.J. Clifford, R. Stechert, S. Stephens. 2011. Decline of an 

isolated timber rattlesnake (Crotalus horridus) population: Interactions between climate 

change, disease, and loss of genetic diversity. Biological Conservation 144:886-891. 

 

Cobb, V.A., Green, J. Worrall, T., Pruett, J. and B. Glorioso. 2005. Initial den location 

behavior in a litter of neonate Crotalus horridus (Timber Rattlesnake). Southeastern 

Naturalist 4(4):723-730. 

 

Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and 



 192 

Psychological Measurement 20: 37–46. 

 

Coleman, R.A., A.R. Weeks, A.A. Hoffman. 2013. Balancing genetic uniqueness and 

genetic variation in determining conservation and translocation strategies: A 

comprehensive case study of threatened dwarf galaxias, Galaxielly pusilla. Molecular 

Ecology 22:1820-1835. 

 

Compton, B.W., J.M. Rhymer, and M. McCollough. 2002. Habitat selection by wood 

turtles (Clemmys insculpta): an application of paired logistic regression. Ecology 83:833-

843. 

 

Compton, B.W. 2006. Cartware.R 

http://www.umass.edu/landeco/teaching/multivariate/labs/cartware.pdf 

 

Conner, K. J.D. Hartl. 2004. A Primer of Ecological Genetics. Sinauer Associates Inc. 

Sunderland MA, 304Pp. 

 

Conner, R.N., D.C. Rudolph, D. Saenz, R.R. Schaefer, S.J. Burgdorf. 2003. Growth rates 

and post-release survival of captive neonate Timber Rattlesnakes, Crotalus horridus. 

Herpetological Review. 34:314-317. 

 

Davis, M. B. 1996. Eastern Old Growth Forests: Prospects for Rediscovery and 

Recovery.  Island Press, Washington, DC. 



 193 

 

DeGraaf, R.M. 1983. Amphibians and Reptiles of New England: Habitats and Natural 

History. Pp 96. University of Massachusetts Press, Amherst, MA. 

 

DeGraaf, R.M., M. Yamasaki. 2000. New England Wildlife: Habitat, Natural History, 

and Distribution. Pp 496. University Press of New England, Lebanon, NH. 

 

DeGregorio, B.A., P.J. Weatherhead, T.D. Tuberville, J.H. Sperry. 2013. Time in 

captivity affects foraging behavior of ratsnakes: implications for translocation. 

Herpetological Conservation and Biology 8:581-590. 

 

De Langlada, F.G., S. Santos, I.L. Laporta-Ferreira. 1994. Tecinca de inseminacao 

artificial em Crotalus durissus terrificus (Viperidae-Crotalinae). Brazilian Journal of 

Veterinary Research and Animal Science 31(2):141-144. 

 

Dharamarajan, G., W. S. Beatty, and O. E. Rhodes. 2013. Heterozygote deficiencies 

caused by a Wahlund effect: dispelling unfounded expectations. The Journal of Wild- life 

Management 77:226–234. 

 

Ditmars, R.L. 1936. The Reptiles of North America. Doubleday, Doran and Company, 

New York, NY. Pp. 476. 

 



 194 

Earl, D.A., B.M. vonHoldt. 2012. STRUCTURE HARVESTER: a website and program 

for visualizing STRUCTURE output and implementing the Evanno method. 

Conservation Genetic Resources 4:359-361. 

 

Eckert, C.G., K.E. Samis, S.C. Lougheed. 2008. Genetic variation across species’ 

geographical ranges: the central-marginal hypothesis and beyond. Molecular Ecology. 

17:1170-1188. 

 

England P.R., J-M. Cornuet, P. Berthier, D.A. Tallmon, G. Luikart. 2006. Estimating 

effective population size from linkage disequilibrium: severe bias in small samples. 

Conservation Genetics. 7:303–308. 

 

Fearn, S., L. Schwarzkopf, R. Shine. 2006 Giant snakes in tropical forests: a field study 

of the Australian scrub python, Morelia kinghorni. Wildlife Res. 32:193–201. 

 

Fitch, H.S. 1963. Natural history of the racer (Coluber constrictor). University of Kansas 

Publications Museum of Natural History 15(8): 355-461. 

 

Fitch, H.S. 1999. A Kansas snake community: composition and changes over 50 years. 

Krieger Publishing Company, Malabar, Florida, Pp 165. 

 

Fitch, H.S., and G.R. Pisani. 2005. Disappearance of radio-monitored Timber 

Rattlesnakes. Journal of Kansas Herpetology 14:14-15. 



 195 

 

Frankham, R. 1995. Effective population size/adult population size ratios in wildlife: a 

review. Genetic Research 66:95-107. 

 

Frankham, R., C.J. Bradshaw, B.W. Brook. 2014. Genetics in conservation management 

revised recommendations for the 50/500 rules, Red List criteria and population viability 

analyses. Biological Conservation 170:56-63. 

 

Franklin, I.R., R. Frankham. 1998. How large must populations be to retain evolutionary 

potential? Animal Conservation 1:69-70. 

 

Funk, R.S. 2006. Snakes. Pp. 42–58. In Mader, D. R. (Ed.), Reptile Medicine and 

Surgery. Elsevier, Philadelphia, NJ. 

 

Furman, J. 2007. Timber Rattlesnakes in Vermont and New York: Biology, History, and 

the Fate of an Endangered Species. Pp 228. UPNE, Lebanon, NH. 

 

Gloyd, H.K. 1940. The Rattlesnakes, Genera Sistrurus and Crotalus. Society for the 

Study of Amphibians and Reptiles, KS. Pp 266. 

 

Goudet, J. 2001. FSTAT version 2.9.3, A program to estimate and test gene diversities 

and fixation indices. Lausanne University, Lausanne, Switzerland. 

 



 196 

Hampe, A., R.J. Petit. 2005. Conserving biodiversity under climate change: the rear edge 

matters. Ecology Letters 8: 461–467. 

 

Heber, S., A. Varsani, S. Kuhn, A. Girg, B. Kempenaers, J. Briskie. 2012. The genetic 

rescue of two bottlenecked South Island robin populations using translocations of inbred 

donors. Proceedings of the Royal Society B 12 Dec: DOI: 10.1098/rspb.2012.2228 

 

Hoffman, A.A., M.W. Blows. 1994. Species borders: ecological and evolutionary 

perspectives. Trends in Ecology and Evolution. 9:223-227. 

 

Holycross, A.T., Douglas, M.E., Higbee, J.R., Bogden, R.H., 2002. Isolation and 

characterization of microsatellite loci from a threatened rattlesnake (New Mexico Ridge-

nosed Rattlesnake, Crotalus willardi obscurus). Mol. Ecol. Notes 2, 537–539. 

 

Hosmer, D.W., and S. Lemeshow. 1989. Applied logistic regression. Wiley, New York, 

NY. 

 

Hudson, S. 1996. Natural toe loss in southeastern Australian skinks: implications for 

marking lizards by toe-clipping. Journal of Herpetology 30:106–110. 

 

Jakobsson, M., N.A. Rosenberg. 2007. CLUMPP: a cluster matching and permutation 

program for dealing with label switching and multimodality in analysis of population 

structure. Bioinformatics 23:1801-1806. 



 197 

 

Johnson, W.E., D.P. Onorato, M.E. Roelke, E. D. Land, M. Cunningham, R.C. Beldon, 

R. McBride, D. Jansen, M. Lotz, D. Shindle, J. Howard, D.E. Wildt, L.M. Penfold, J.A. 

Hostetler, M.K. Oli, S.J. O’Brien. 2010. Genetic Restoration of the Florida panther. 

Science 329:1641-1645. 

 

Jombart, T., S. Devillard, F. Balloux. 2010. Discriminant analysis of principal 

components: A new method for the analysis of genetically structured populations. BMC 

Genetics 11:94-109. 

 

Keating, K.A., and S. Cherry. 2004. Use and interpretation of logistic regression in 

habitat-selection studies. Journal of Wildlife Management. 68:774-789. 

 

Keenlyne, K.D. 1972. Sexual differences in feeding habits of Crotalus horridus horridus. 

Journal of Herpetology 6:234–237. 

 

Keller, W.L., and W.J. Heske. 2000. Habitat use by three species of snakes at the Middle 

Fork Fish and Wildlife Area, Illinois. Journal of Herpetology 34:558-564. 

 

Keller, L.F., D.M. Waller. 2002. Inbreeding effects in wild populations. Trends in 

Ecology and Evolution 17:230-241. 

 



 198 

Klauber, L.M. 1956. Rattlesnakes: Their Habits, Life Histories and Influence on 

Mankind. 2 vols., Univ. California Press, Berkeley, CA. Pp. 400. 

 

Kliman, R., B. Sheehy, J. Schultz. 2008. Genetic drift and effective population 

Size. Nature Education 1:3. 

 

King, T.L., M.S. Eackles, B.H. Letcher. 2005. Microsatellite DNA markers for the study 

of Atlantic salmon (Salmo salar) kinship, population structure, and mixed-fishery 

analyses. Molecular Ecology Notes. 5:130-132. 

 

Lacy, R.C., J.P. Pollak. 2014. Vortex: A stochastic simulation of the extinction process. 

Version 10.0. Chicago Zoological Society, Brookfield, Illinois. 

 

Landreth, H.F. 1973 Orientation and behavior of the rattlesnake, Crotalus atrox. Copeia 

1973:26–31. 

 

Lawson, P.A., and D. M. Secoy. 1991. The use of solar cues as migratory orientation 

guides by the plains garter snake, Thamnophis radix. Canadian Journal of Zoology 69: 

2700-2702. 

 

Levins, R. 1970. Extinction. Pp 77-107 In: Lectures on mathematics in the life sciences 

Vol 2. M. Gerstenhaber, (Ed). American Mathematical Society, Providence, RI. 

 



 199 

Linnaeus, C. 1758. Systema Naturae per Regna Tria Naturae, 10th ed. 824p. 

 

Lorch, J.M., J. Lankton, K. Werner, E.A. Falendysz, K. McCurley, and D.S. Blehert. 

2015. Experimental infection of snakes with Ophidiomyces ophiodiicola causes 

pathological changes that typify snake fungal disease. MBio 6:e01534-15. 

 

Luikart, G., N. Ryman, D.A. Tallmon, M.K. Schwartz, F.W. Allendorf. 2010. Estimation 

of census and effective population sizes: the increasing usefulness of DNA-based 

approaches. Conservation Genetics 11:355-373. 

 

Lynch, M. B. Walsh. 1998. Genetics and Analysis of Quantitative Traits. Sinauer 

Associates. Pp 980 Cary, NC. 

 

Madsen, T. 1984. Movements, home range size and habitat use of radio-tracked grass 

snakes (Natrix natrix) in southern Sweden. Copeia 1984:707–713. 

 

Madsen, T., R. Shine. 1992. Determinants of reproductive success in female Adders, 

Vipera berus. Oecologia 92:40-47. 

 

Madsen, T., B. Stille, R. Shine. 1996. Inbreeding depression in an isolated population of 

Adders (Vipera berus). Biological Conservation 75:113–118. 

 

Madsen, T., R. Shine, M. Olsson, H. Wittzell. 1999. Restoration of an inbred Adder 

http://taxonomicon.taxonomy.nl/Person.aspx?id=2951


 200 

population. Nature 402:34–35. 

 

Madsen, T., B. Ujvari, M. Olsson. 2004. Novel genes continue to enhance population 

growth in adders (Vipera berus). Biological Conservation 120:145-147. 

 

Madsen, T., B. Ujvari. 2011. The potential demise of a population of adders (Vipera 

berus) in Smygehuk, Sweden. Herpetological Conservation and Biology 6:72-74. 

 

Martin, W. H. 1992. The timber rattlesnake: its distribution and natural history. In: 

Conservation of the timber rattlesnake in the northeast. Tyning, T.F. (Ed). Massachusetts 

Audubon Society, Lincoln, MA. 

 

Martin, W. H. 2002. Life History constraints on the timber rattlesnake (Crotalus 

horridus) at its climatic limits. In: Biology of the Vipers. Schuett, G.W., M. Hoggren, 

M.E. Douglas, H. W. Greene (Eds). Eagle Mountain Publishing, LC. Eagle Mountain, 

UT. 

 

Martin, W.H., W.S. Brown, E. Possardt, J.B. Sealy. 2008. Biological variation, 

management units, and a conservation action plan for the timber rattlesnake (Crotalus 

horridus). Pp. 447-462 In: W.K. Hayes, K.R. Beaman, M.D. Cardwell, S.P. Bush, (Eds) 

The Biology of Rattlesnakes. Loma Linda University Press, Loma Linda, CA. 

 

Massachusetts Department of Conservation and Recreation, Massachusetts Division of 



 201 

Fisheries and Wildlife. 2015. Blue Hills State Reservation: deer management plan. 

Executive Office of Energy and Environmental Affairs, Commonwealth of 

Massachusetts. 

 

Mattson, K.J., A. De Vries, S.M. McGuire, J. Krebs, E.E. Louis, N.M. Loskutoff. 2007. 

Successful artificial insemination in the corn snake (Elaphe gutatta) using fresh and 

cooled seen. Zoological Biology 5:363-369. 

 

McBride, M.P., K.B. Wojick, T.A. Georoff, J. Kimbro, M.M. Garner, X. Wang, A.L. 

Childress, and J.F.X. Wellehan, Jr. 2015. Ophidiomyces ophiodiicola dermatitis in eight 

free-ranging Timber Rattlesnakes (Crotalus horridus) from Massachusetts. Journal of 

Zoo and Wildlife Medicine 46:86–94. 

 

McGowen, E.M., D.M. Madison. 2008. Timber Rattlesnake (Crotalus horridus) mating 

behavior in southeastern New York: female defense in a search-based mating system. Pp 

419-430. in Hayes, W,K., K.R. Beaman, M.D. Cardwell, S.P. Bush (eds) The Biology of 

Rattlesnakes. Loma Linda University Press, Loma Linda, California. 

 

Meirmans, P.G., P.H. Van Tienderen. 2004. GENOTYPE and GENODIVE: two 

programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology 

Notes. 4:.792-794. 

 



 202 

Merrow, J.S., T. Aubertin. 2005. Crotalus horridus (Timber Rattlesnake)-reproduction. 

Herpetological Review 36:192. 

 

Mills, L.S., Allendorf, F.W. 1996. The one-migrant-per-generation rule in conservation 

and management. Conservation Biology 10:1509-1518. 

 

Moritz, C. 1994. Defining ‘evolutionary significant units’ for conservation. Trends in 

Ecology and Evolution 9:373-375. 

 

Morrison, M.L., B.G. Marcot, and R.W. Mannan. 2006. Wildlife-Habitat Relationships. 

Island Press, Washington, D.C. Pp. 520.  

 

Nei, M., A. Chakravarti. 1977. Drift variances of FST and GST statistics obtained from a 

finite number of isolated populations. Theoretical Population Biology 11:307-325. 

 

Noble, G.K., and H.J. Clausen. 1936. The aggregation behavior of Storeria dekayi and 

other snakes, with especial reference to the sense organs involved. Ecological 

Monographs (1936): 269-316. 

 

Odum, R.A. 1979. The distribution and status of the New Jersey Timber Rattlesnake 

including an analysis of pine barrens populations. Bulletin of the New York 

Herpetological Society 15:27-35. 

 



 203 

Palmer, T. 2004. Landscape with Reptile: Rattlesnakes in an Urban World. The Lyons 

Press, Guilford, CT. Pp 340. 

 

Palsboll, P.J., M. Berube, F.W. Allendorf. 2007. Identification of management units 

using population genetic dat. Trends in Ecology 22:11-17. 

 

Pandey, M., O.P. Rajora. 2012. Genetic diversity and differentiation of core vs. 

peripheral populations of eastern white cedar, Thuja occidentalis (Cupressaceae). 

American Journal of Botany 99:690-699. 

 

Pearson, D.J., R. Shine. 2002. Expulsion of intraperitoneally-implanted radiotransmitters 

by Australian pythons. Herptological Review 33(4)261-263. 

 

Piry S, A. Alapetite, J.-M. Cornuet, D. Paetkau, L. Baudouin, A. Estoup. 2004. 

GeneClass2: a software for genetic assignment and first-generation migrant detection. 

Journal of Heredity 95:536-539. 

 

Palomares, F., J.A. Godoy, J.V. Lopez-Bao, A. Rodriguez, S. Roques, M. Casasmarce, E. 

Revilla, M. Delibes. 2012. Possible extinction vortex for a population of Iberian lynk on 

the verge of extirpation. Conservation Biology 26:689-697. 

 

Palsboll, P.J., M. Berube, F.W. Allendorf. 2007. Identification of management units 

using population genetic data. Trends in Ecology and Evolution 22:11-15. 



 204 

 

Piry, S., A. Alapetite, J.M. Cornuet, D. Paetkau, L. Baudouin, A. Estoup. 2004. Journal 

of Heredity 95(6):536-539. 

 

Pritchard, K., M. Stephens, P. Donnelly. 2000. Inference of population structure using 

multilocus genotype data. Genetics 155:945–959. 

 

Rannala B., J.L. Mountain. 1997. Detecting immigration by using multilocus genotypes. 

Proceedings of the National Academy of Science 94:9197-9221. 

 

R Development Core Team. 2006. R: a language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna. 

 

Rajeev, S., D. A. Sutton, B. L. Wickes, D. L. Miller, D. Giri, M. Van Meter, E. H. 

Thompson, M. G. Rinaldi, A. M. Romanelli, J. F. Cano, and J. Guarro. 2009. Isolation 

and characterization of a new fungal species, Chrysosporium ophiodiicola, from a 

mycotic granuloma of a Black Rat Snake (Elaphe obsoleta obsoleta). Journal of Clinical 

Microbiology 47:1264–1268. 

Reinert, H.K. 1984a. Habitat variation within sympatric snake populations. Ecology 

65:1673-1682.  

 

Reinert, H K. 1984b. Habitat separation between sympatric snake populations. Ecology 

65:478-486. 



 205 

 

 

Reinert, H.K., Cundall D., and L.M. Bushar. 1984. Foraging behavior of the Timber 

Rattlesnake, Crotalus horridus. Copeia 1984:976-981.  

 

Reinert, H.K., R.T. Zappalorti. 1988. Timber rattlesnakes (Crotalus horridus) of the Pine 

Barrens: Their movement patterns and habitat preference. Copeia 4:964-978. 

 

Reinert, H.K. 1993. Habitat selection in snakes. In R.E. Seigel, J.T. Collins (Eds.), 

Snakes: Ecology and Behavior. Pp. 201–240. McGraw-Hill, New York, NY. 

 

Reinert, H.K., R.R. Rupert. 1999. Impacts of translocation on behavior and survival of 

timber rattlesnakes (Crotalus horridus). Journal of Herpetology 33:45-61. 

 

Reinert, H. K., W.F. Munroe, C.E. Brennan, M.N. Rach, S. Pelesky, L.M. Bushar. 2011. 

Response of timber rattlesnakes to commercial logging operations. Journal of Wildlife 

Management 75: 19–29. 

 

Rivest, L.P., and Sophie Baillargeon. 2015. Package ‘Rcapture’ 

 

Rodriguez-Ramilo, S.T., J. Wang. 2012. The effect of close relatives on unsupervised 

Bayesian clustering algorithms in population genetic structure analysis. Molecular 

Ecology Resources 12(5):873-884. 



 206 

 

Roe, J.H., M.R. Frank, S.E. Gibson, O. Attum, B.A. Kingsbury. 2010. No place like 

home: an experimental comparison of reintroduction strategies using snakes. Journal of 

Applied Ecology. 47:1253-1261. 

 

Rogerlo, L.Z., K.F. Grego, W. Fernandes, S.S. Sant’Anna, M.A. de Barros Vaz Gularaes. 

2007. Semen collection and evaluation free-ranging Brazilian rattlesnakes (Crotalus 

durissus terrificus). Zoological Biology 26:155-160. 

 

Rosenberg, N.A. 2004. DISTRUCT: a program for the graphical display of population 

structure. Molecular Ecology Notes 4:137-138. 

 

Rousset, F. 2008. GENEPOP’007: a complete re-implementation of the GENEPOP 

software for Windows and Linux. Molecular Ecology Resources 8:103–106. 

 

Ryder, O.A. 1986. Species conservation and systematics: the dilemma of subspecies. 

Trends in Ecology and Evolution 1:9-10. 

 

Safriel, U.N, S.Volis, S. Kark. 1994. Core and peripheral populations and global climate 

change. Israel Journal of Plant Sciences 42:331-345. 

 

Savage, A.E., K.R. Zamudio. 2011. MHC genotypes associate with resistance to a frog-

killing fungus. PNAS 108:16705-16710. 



 207 

 

Schaefer, W.H. 1934. Diagnosis of sex in snakes. Copeia 1934:181. 

 

Schindler, D.E., R. Hilborn, B. Chasco, C.P. Boatright, T.P. Quinn, L.A. Rogers, M.S. 

Webster. 2010. Population diversity and the portfolio effect in an exploited species. 

Nature 465(7298(:609-612. 

 

Schoener, T.W., A.S. Schoener. 1980. Ecological and demographic correlates of injury 

rates is some Bahamian anolis lizards. Copeia 1980:839–850. 

 

Schwartz, M.K., G. Luikart, R.S. Waples. 2007. Genetic monitoring as a promising tool 

for conservation and management. Trends in Ecology 22:25-33. 

 

Shine, R., Grig, G.C., Shine, T.G., and P. Harlow. 1981. Mating and male combat in 

Australian blacksnakes, Pseudechis porphyriacus. Herpetologica 15(1):101-107. 

 

Slatking, M. 1995. A measure of population subdivision based on microsatellite allele 

frequencies. Genetics 139:457-462. 

 

Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 

236:787-792. 

 



 208 

Smith, D.E. 2002. Geomagnetic sensitivity and orientation in eastern garter snakes 

(Thamnophis sirtalis). Dissertations and Master's Theses (Campus Access). Paper 

AAI3053123.  http://digitalcommons.uri.edu/dissertations/AAI3053123. 

 

Speith, P.T. 1974. Gene flow and genetic differentiation. Genetics 78:961-965. 

 

Spielman, D., B.W. Brook, D.A. Briscoe, R. Frankham. 2004a. Does inbreeding and loss 

of genetic diversity decrease disease resistance? Conservation Genetics 5:439-448. 

 

Spielman, D., B.W. Brook, R. Frankham. 2004b. Most species are not driven to 

extinction before genetic factors impact them. PNAS 101:15261-15264. 

 

Summerfelt, R.C., D. Mosier. 1984. Surgically implanted dummy transmitters by 

Channel Catfish. Transactions of the American Fisheries Society 113(1984):760-766. 

 

Templeton, A.R. 1986. Coadaptation and outbreeding depression. Pg 105–116 in M. E. 

Soul´e, (ed). Conservation biology: the science of scarcity and diversity. Sinauer, 

Sunderland, MA. 

 

Thornhill, N. W., editor. 1993. The natural history of inbreeding and outbreeding: 

theoretical and empirical perspectives. University of Chicago Press, Chicago, IL. 

 

Timmerman, W. 1995. Home range, habitat use, and behavior of the eastern 



 209 

diamondback rattlesnake (Crotalus adamanteus) on the Ordway Preserve. Bulletin of the 

Florida Museum of Natural History 38:127–158. 

 

Tolson, P. J. 1992. The reproductive biology of the Neotropical boid genus Epicrates 

(Serpentes: Boidae). Pp. 165–178. in Hamlet, W. C. (ed.) Reproductive Biology of South 

American Vertebrates. Springer Nature. New York, NY. 

Tyning, T. F. (ed). 1991. Conservation of the Timber Rattlesnake in the Northeast. 

Massachusetts Audubon Society. Lincoln, MA. 

 

United States Census Bureau. "American FactFinder". Retrieved 01/31/2008. 

 

US Fish and Wildlife Service, National Oceanic and Atmospheric Administration. 1996. 

Policy regarding the recognition of distinct vertebrate population segments under the 

Endangered Species Act. 61 Federal Register 7 February 1996:4722-4725. 

 

Valiere, N. 2002. GIMLET: a computer program for analyzing genetic individual 

identification data. Molecular Ecology Notes. 2:377-379. 

 

Villarreal, X., J. Bricker, H.K. Reinert, L. Gelbert, L.M. Bushar. 1996. Microsatellite loci 

for use in population genetic analysis in the timber rattlesnake, Crotalus horridus. Journal 

of Heredity. 87(2):152-155. 

 

https://en.wikipedia.org/wiki/United_States_Census_Bureau
http://factfinder2.census.gov/


 210 

Vucetich, J.A., T.A. Waite. 2003. Spatial patterns of demography and genetic processes 

across the specie’s range: null hypotheses for landscape conservation genetics. 

Conservation Genetics 4:639-645. 

 

Wade, M.J., D.E. McCauley. 1988. Extinction and recolonization: Their effects on the 

genetic differentiation of local populations. Evolution 42(5):995-1005. 

 

Waldron, J.L., Lanham, J.D., and S.H. Bennett. 2006. Using behaviorally-based seasons to 

investigate canebrake rattlesnake (Crotalus horridus) movement patterns and habitat 

selection. Herpetologica 62(4):389-398. 

 

Wang, J.L. 2004. Sibship reconstruction from genetic data with typing errors. Genetics 

166:1963–1979. 

 

Waples, R.S. 1991. Definition of  ”species” under the endangered species act: application 

to pacific salmon. NOAA Technical Memorandum NMFS F/NWC-194: March. 

 

Waples, R.S. 2005. Genetic estimates of contempory effective population size: to what 

time periods do the estimates apply? Molecular Ecology 14(11):3335-3352. 

 

Waples, R.S., C. Do. 2008. LDNE: a program for estimating effective population size 

from data on linkage disequilibrium. Molecular Ecology Resourses 8(4):753-756. 

 

Waples, R.S., G. Luikart, J.R. Faulkner, D.A. Tallmon. 2013. Simple life history traits 



 211 

explain key effective population size ratios across diverse taxa. Proceedings of the Royal 

Society. 280(1768):1-9. 

 

Way, H.L., R.T. Mason. 2008. A combination of body condition measurements is more 

informative than conventional condition indices: Temporal variation in body condition and 

corticosterone in brown tree snakes (Boiga irregularis). General and Comparative 

Endocrinology. 155(3):607-612.  

 

Weatherhead, P.J., and M.B. Charland. 1985. Habitat selection in an Ontario population 

of the snake, Elaphe obsolete. Journal of Herpetology 19:12-19. 

 

Weatherhead, P.J., and G.P. Brown. 1996. Measurement versus estimation of condition in 

snakes. Canadian Journal of Zoology. 74:1617-1621. 

 

Whiteley, A.R., McGarigal, K., and M.K. Schwartz. 2014. Pronounced differences in genetic 

structure despite overall ecological similarity for two Ambystoma salamanders in the same 

landscape. Conservation Genetics 15(3):573-591. 

 

Worton, B.J. 1987. A review of models of home range for animal movement. Ecological 

Modeling 38:277-298. 

 

Worton, B.J. 1989. Kernel methods for estimating the utilization distribution in home-

range studies. Ecology 70(1):164-168. 

 



 212 

Wright, A.H. and A.A. Wright. 1957. Handbook of snakes of the United States and 

Canada. Comstock Publishing Association, Ithaca, NY.  

 

Wright, L.I., T. Tregenza, D.J. Hosken. 2007. Inbreeding, inbreeding depression and 

extinction. Conservation Genetics 9:833-843. 

 

Vila, C., A. Sundqvist, O. Flagstad, J. Seddon, S. Bjornerfeldt, I. Kojola, A. Casulli, H. 

Sand, P. Wabbaken, H. Ellegren. 2002. Rescue of a severely bottlenecked wolf (Canis 

lupus) population by a single immigrant. Proceedings of the Royal Society of London B 

270:91-97. 

 

Villarreal, X., J. Bricker, H.K. Reinert, L. Gelbert, L.M. Bushar. 1996. Isolation and 

characterization of microsatellite loci for use in population genetic analysis in the timber 

rattlesnake, Crotalus horridus. Journal of Heredity 87:152-155. 

 

Wang, J. 2009. A new method for estimating effective population size from a single 

sample of multilocus genotypes. Molecular Ecology 18:2148-2164 

Waples, R.S. 1995. Evolutionarily significant units and the conservation of biological 

diversity under the Endangered Species Act. American Fisheries Society Symposium 

17:8-27. 

 

Waples, R.S., C. Do. 2008. LDNE: a program for estimating effective population size 

from data on linkage disequilibrium. Molecular Ecology Resources 8:753–756. 



 213 

 

Waples, R.S., G. Luikart, J.R. Faulkner, D.A. Tallmon. 2013. Simple life history traits 

explain key effective population size ratios across diverse taxa. Proceedings of the Royal 

Society B 280:20131339. 

 

Wright, S. 1943. Isolation by distance. Genetics 28:114-138. 

 

Wright, S. 1969. Evolution and the genetics of populations. Vol II. The Theory of Gene 

Frequencies. University of Chicago Press, Chicago, I.L. 

 

Young, F. 1963. Something Else to Worry You-Rattlers: Getting to be a Real New 

Hampshire Menace. New Hampshire Sunday News, Manchester, NH 

 

Zajitschek S., F. Zajitschek, R.C. Brooks. 2009. Demographic costs of inbreeding 

revealed by sex-specific genetic rescue effects. BMC Evolutionary Biology 9:289-295 

 


	HABITAT SELECTION, CONNECTIVITY, AND POPULATION GENETICS OF A TIMBER RATTLESNAKE (CROTALUS HORRIDUS) METAPOPULATION IN SOUTHWESTERN MASSACHUSETTS AND NEW ENGLAND
	Recommended Citation

	OLE_LINK3
	OLE_LINK4
	OLE_LINK1
	OLE_LINK2

