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ABSTRACT

SUPPORTING SCIENTIFIC ANALYTICS UNDER DATA
UNCERTAINTY AND QUERY UNCERTAINTY

FEBRUARY 2018

LIPING PENG

B.Sc., HARBIN INSTITUTE OF TECHNOLOGY

M.Sc., HARBIN INSTITUTE OF TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Yanlei Diao

Data management is becoming increasingly important in many applications, in particular,

in large scientific databases where (1) data can be naturally modeled by continuous random

variables, and (2) queries can involve complex predicates and/or be difficult for users to

express explicitly. My thesis work aims to provide efficient support to both the “data

uncertainty” and the “query uncertainty”.

When data is uncertain, an important class of queries requires query answers to be

returned if their existence probabilities pass a threshold. I start with optimizing such

threshold query processing for continuous uncertain data in the relational model by (i)

expediting selections by reducing dimensionality of integration and using faster filters, (ii)

expediting joins using new indexes on uncertain data, and (iii) optimizing a query plan

using a dynamic, per-tuple based approach. Evaluation results using real-world data and

v



benchmark queries show the accuracy and efficiency of my techniques and the dynamic query

planning has over 50% performance gains in most cases over a state-of-the-art threshold

query optimizer and is very close to the optimal planning in all cases.

Next I address uncertain data management in the array model, which has gained popu-

larity for scientific data processing recently due to performance benefits. I define the formal

semantics of array operations on uncertain data involving both value uncertainty within

individual tuples and position uncertainty regarding where a tuple should belong in an array

given uncertain dimension attributes, and propose a suite of storage and evaluation strategies

for array operators, with a focus on a novel scheme that bounds the overhead of querying

by strategically placing a few replicas of the tuples with large variances. Evaluation results

show that for common workloads, my best-performing techniques outperform baselines up

to 1 to 2 orders of magnitude while incurring only small storage overhead.

Finally, to bridge the increasing gap between the fast growth of data and the limited

human ability to comprehend data and help the user retrieve high-value content from

data more effectively, I propose to build interactive data exploration as a new database

service, using an approach called “explore-by-example”. To build an effective system,

my work is grounded in a rigorous SVM-based active learning framework and focuses on

the following three problems: (i) accuracy-based and convergence-based stopping criteria,

(ii) expediting example acquisition in each iteration, and (iii) expediting the final result

retrieval. Evaluation results using real-world data and query patterns show that my system

significantly outperforms state-of-the-art systems in accuracy (18x accuracy improvement

for 4-dimensional workloads) while achieving desired efficiency for interactive exploration

(2 to 5 seconds per iteration).
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CHAPTER 1

INTRODUCTION

1.1 Overview

Data management problems are crucial in large-scale scientific applications such as

severe weather monitoring [58, 98], computational astrophysics [92], and asteroid threat

detection [29]. Recent studies [29, 91, 92] show that almost all scientific data are noisy

and uncertain. Take the massive astrophysical surveys as an example: The observations are

inherently noisy as the objects can be too dim to be recognized in the captured images, and

repeated observations of objects are made to derive continuous probability distributions for

uncertain attributes, e.g., the location and luminosity of objects, in the data cooking process.

Such surveys are expected to enable real-time detection of transient events and anomalies

as well as long-term tracking of objects of interest. Therefore, capturing uncertainty in

data processing, from data input to query output, has become a key issue in scientific data

management.

Besides “data uncertainty” described above, “query uncertainty” has also become a

data management issue in large-scale scientific applications. For example, in the face

of an extremely large scientific database, such as the Large Synoptic Survey Telescope

(LSST) [63] and the Sloan Digital Sky Survey (SDSS) [92], a user may not be able to

express her data interests precisely and there is a strong need to support “interactive data

exploration” which can navigate users through a subspace in large-scale scientific data sets

and retrieve data relevant to the user interest.

To address both data uncertainty and query uncertainty, I propose novel techniques to

provide efficient query processing for the following three problems: data uncertainty in
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the relational model (Section 1.2), data uncertainty in the array model (Section 1.3), and

interactive data exploration (Section 1.4). The challenges of and our contributions towards

each problem are elaborated in the next three sections.

1.2 Supporting Data Uncertainty in Relational Databases

The SDSS benchmark [92] shows the following characteristics of the uncertain data

management problem:

Continuous uncertain data. Most attributes that resulted from scientific measurements

or their data cooking processes are uncertain. These attributes are naturally modeled

by continuous random variables. Gaussian distributions are the most commonly used

distributions [91, 92] while more complex distributions such as asymmetric and bimodal

distributions can be useful in special domains such as tornado detection [98]. As a concrete

example, the Galaxy table in the SDSS archive has 297 attributes, out of which 151 attributes

are uncertain. We illustrate the schema of the SDSS data set in Table 1.1.

name type description
OBJ ID bigint SDSS identifier with [run, ..., field, obj]
... ...
(rowc, rowc err) real (row center position, error term)
(colc, colc err) real (column center position, error term)
(q u, qErr u ) real (stokes Q parameter, error term)
(u u, uErr u ) real (stokes U parameter, error term)
(ra, dec, ra err, real (right ascension, declination, error in ra,
dec err, ra dec corr) error in dec, ra/dec correlation)
... ...

Table 1.1: Schema of the Galaxy table in the Sloan Digital Sky Survey (SDSS). Attributes
in italics are uncertain.

Complex selection and join predicates. An important class of queries employs a Select-

From-Where SQL block using a wide variety of predicates. Let us consider the following

two queries from the SDSS benchmark [92], where the attributes in the lower case are

uncertain attributes:
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Q1: SELECT *
FROM Galaxy G
WHERE G.r < 22
AND G.q r2+G.u r2 > 0.25;

Q2: SELECT *
FROM Galaxy AS G1, Galaxy AS G2
WHERE G1.OBJ ID < G2.OBJ ID
AND |(G1.u-G1.g)-(G2.u-G2.g)| < 0.05
AND |(G1.g-G1.r)-(G2.g-G2.r)| < 0.05
AND (G1.rowc-G2.rowc)2+(G1.colc-G2.colc)2<1E4;

Queries Q1 and Q2 involve four types of predicates: (i) predicates on deterministic

attributes, (ii) range predicates on a single uncertain attribute, e.g., the first selection

predicate in Q1; (iii) multivariate linear predicates on uncertain attributes, e.g., the second

and third join predicates in Q2; (iv) multivariate quadratic predicates on uncertain attributes,

e.g., the last selection predicate in Q1 and the last join predicate in Q2. Each query can have

an arbitrary mix of these types of predicates.

Efficient processing of threshold queries. Given uncertainty of input data, the user would

want to retrieve query answers of high confidence, reflected by high existence probabilities

of these answers. A common practice is that the user specifies a threshold so that only

those tuples whose existence probabilities pass the threshold are finally returned. In many

scenarios, such threshold queries need to be processed efficiently, for instance, in near

real-time to detect dynamic features, transient events, and anomalous behaviors, or with

short delay to support interactive analysis where scientists issue explorative queries and

wait for quick answers online.

In Chapter 2, we address efficient threshold query processing on continuous uncertain

data. We support selection-join-projection queries with a threshold on the existence proba-

bilities of query answers. We propose to optimize such query processing using a suite of
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new techniques grounded in statistical theory and a new design of the query optimizer. Our

contributions include:

Selections (Section 2.2): Selections with complex predicates on continuous uncertain

data often involve high-dimensional integrals such as with Q1 and Q2. In this work, we

propose optimizations to reduce dimensionality of integration. We further develop fast filters

for a wide range of predicates which efficiently compute an upper bound of the probability

that a tuple satisfies the predicates. Hence, these filters can be used to prune tuples quickly.

Joins (Section 2.3): Joins on continuous uncertain data have traditionally used the

strategy of a cross-product followed by a selection. This strategy can be highly inefficient as

it may generate a large number of intermediate tuples. A join index can potentially prune

many intermediate tuples. However, the design of a join index for continuous uncertain data

is challenging because the index not only stores continuous distributions, but also takes a

search condition based on the distribution from the probing tuple, which is not deterministic,

and returns all candidates that can potentially produce join results that pass the threshold

filter. The (only) relevant type of join index [23, 24] is based on primitive statistical results

and has limited filtering power. We propose several new indexes based on much stronger

statistical results and support a range of join predicates.

Query optimization (Section 2.4). Query optimization for continuous uncertain data

fundamentally differs from traditional query optimization because selectivity becomes a

property of each tuple that carries a distribution. Depending on the attribute distribution, the

optimal plan for one tuple can be bad for another tuple. This change dictates per-tuple based

query planning. Furthermore, in data stream systems the selectivity of operators cannot

be estimated until the tuple arrives, and the selectivity of post-join operators cannot be

estimated until the join results with new joint distributions are produced. Hence, selectivity

estimation and query planning need to be performed during query execution. We design a

query optimizer that supports such dynamic, per-tuple based planning at a low cost.
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Evaluation (Section 2.5). Using real data and benchmark queries from SDSS, we demon-

strate the accuracy and efficiency of our join indexes, selection filters, and optimization

technique. Our results further demonstrate remarkable performance gains over the state-

of-the-art X-BOUND join indexes [23, 24] and optimizer for threshold queries [73]:(i) For

selective queries, the devised filters can drop many non-viable tuples with negligible time

cost compared to expensive integration cost. In our experiments on 2-dimensional queries,

the performance gain is up to 66x for rectangular queries and 400x for circular queries.

(ii) Our indexes on continuous uncertain data modeled by Gaussian distributions returns

exactly the true match, which offers 1.4x∼7.1x performance gain over X-BOUND in the

stream setting and 14x∼570x gain in the disk setting. (iii) Our query planner gets over 50%

performance gains over the state-of-the-art query planner in most cases and is very close to

the optimal planning in all cases.

1.3 Supporting Data Uncertainty in Array Databases

For supporting scientific applications, relational technology has proven useful in some

applications like SDSS [92]. However, there is a recent realization that most scientific

data naturally reside in multi-dimensional arrays rather than relations. This is because

most scientific data are produced to characterize physical phenomena that rely heavily

on the notions of “adjacency” and “neighborhood” in a multi-dimensional space. Hence,

array databases have recently been developed for scientific data processing [18, 29, 90].

Besides convenient expression of array operations, array databases also offer remarkable

performance benefits over relational databases [88]. In particular, the new chunk-based

storage scheme enables better alignment of logical locality (i.e., objects close in the logical

array) and physical locality (i.e., objects close to each other are likely to be stored in the

same chunk). Since many array operations exploit logical locality of data, e.g., finding

objects close to a location, their associated physical locality can lead to significant I/O

savings.
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The increasing popularity of array data management has significant implications on un-

certain data management: Recent work on multidimensional arrays [43, 42] has considered

the case that a tuple belongs to a specific cell of an array and some of its value attributes

are uncertain, which is referred to as the “value uncertainty”. On the other hand, a more

complicated case arises when the attributes chosen to be the dimensions of an array are

uncertain. For example, the x-y positions of an object in the Sloan Digital Sky Survey

(SDSS) [92] naturally serve as the dimensions of the array, but they are uncertain and

characterized by a bivariate Gaussian distribution. As such, the uncertain location of an

object can cause its tuple to belong to multiple cells in the array, referred to as the “position

uncertainty”. SciDB, a leading effort on array databases, has acknowledged this issue in

real-world applications but leaves the solution to future work [90]. Existing indexes for

uncertain data can be built on array databases but can still incur high I/O cost, as we will

show later in Chapter 3.

In Chapter 3, we provide a thorough treatment to uncertain data management in array

databases. We focus on continuous uncertain data because they are a natural fit for scientific

data and harder to support than discrete uncertain data due to the difficulty in enumerating

the possible values. We assume that tuples are loaded into an array database in a batched,

append-only fashion, which is common in scientific applications [18, 90], and each tuple has

obtained a (joint) distribution for uncertain attributes through a scientific cooking process,

as described above. We then address two key questions: (i) What are the intended answers

of array operations on uncertain data that may involve both position and value uncertainty?

(ii) What are the storage and evaluation methods for efficient array operations on continuous

uncertain data?

Given position uncertainty, naive solutions would replicate a tuple in every possible

location in the array, or store the tuple once in a default location but to answer a query,

search as widely as the entire array to retrieve all the tuples that satisfy the query with a

high probability. These solutions incur both high I/O cost to read numerous tuples, and
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high CPU cost to validate retrieved tuples by computing their probabilities. Hence, the

challenge in addressing position uncertainty lies in finding a storage and evaluation strategy

that minimizes both I/O and CPU costs while returning all tuples that satisfy the query with

a required probability. We address these challenges by strategically treating tuples with

uncertain dimension attributes via (limited) replication in storage, which allows us to fully

exploit the locality benefit of array databases and bound the overhead of querying. More

specifically, our contributions include:

Semantics (Section 3.1). We define the formal semantics of array operations on uncertain

data involving both position and value uncertainty. We show that Subarray and Structure-

Join are the two most important array operations that involve position uncertainty; many

other array operations can be transformed into (one of) these two.

Subarray (Section 3.2). We provide native support for its operation on arrays with

uncertain dimension attributes. We propose a number of storage and evaluation schemes

to deal with position uncertainty. In particular, we focus on a novel scheme, called store-

multiple, that bounds the overhead of querying by strategically placing a few replicas for the

tuples with large variances, which would otherwise make the query region grow very large.

We also augment store-multiple with a detailed cost model and use it to configure storage

for best performance under various workloads.

Structure-Join (Section 3.3). We propose a new evaluation strategy, called the subarray-

based join (SBJ), which works without a pre-built index and employs tight conditions for

running repeated subarray queries on the inner array of the join, as well as a detailed cost

model for configuring the storage for best performance.

Evaluation (Section 3.4). We evaluate our techniques using both synthetic workloads

and SDSS. For Subarray, store-multiple outperforms other alternatives due to the bounded

overhead of querying and optimized storage based on the cost model. For Structure-Join, our

SBJ outperforms existing join methods due to the tight conditions for probing the inner array

and optimization based on the cost model. Our case study shows that for SDSS datasets,
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the storage overhead of store-multiple is rather small: over 79% tuples have only 1 copy

and over 92% tuples have at most 3 copies (considering that 3 is the common number for

replication in today’s big data systems). In addition, our best techniques outperform those

based on state-of-the-art indexes by 1.7x to 4.3x for Subarray and 1 to 2 orders of magnitude

for Structure-Join.

1.4 Explore-by-Example for Interactive Data Exploration

Today data is being generated at an unprecedented rate, so much that 90% of the

data in the world has been created in the past two years1. However, the human ability to

comprehend data remains as limited as before. As such, the Big Data era is presenting us

with an increasing gap between the growth of data and the human ability to comprehend

data. Consequently, there has been a growing demand of data management tools that can

bridge this gap and help the user retrieve high-value content from data more effectively.

To respond to such needs, we build a new database service for interactive exploration

in a framework called “explore-by-example”. In this service, the database system requests

user feedback on strategically collected database samples through a series of “conversations”

(or iterations). In each iteration, the user characterizes a database sample as relevant or

irrelevant to her interest. The user feedback is incorporated into the system to build a user

interest model. The model is then used in the next iteration to steer the user towards a new

area in the data space, and further improved using the user label of a new sample from that

area. Eventually, the model characterizing the relevant objects is turned into a user interest

query that will retrieve all relevant objects from the database. This service can be used to

support two types of applications:

Ad-Hoc Exploration: Consider an example that a novice scientist comes to explore a

large sky survey database such as SDSS [92]. She may not be able to express her data

1See a recent survey at https://www-01.ibm.com/software/data/bigdata/
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interest precisely. Instead, she may prefer to navigate through a region of the sky, see a few

samples of sky objects, provide yes or no feedback, and ask the database system to find

more objects relevant to her interest. Such Ad-hoc exploration tasks are constrained by the

amount of feedback that a user is willing to provide. Instead of requiring 100% accuracy of

the user interest model, they often prefer a quick improvement of the accuracy with the first

few dozens of samples that the user has reviewed.

Precise Exploration: In this setting, the user is engaged in a long-term conversation

with the database system with explicit or implicit feedback on database objects. Systematic

reviews are an example of a comprehensive assessment of the totality of evidence to address

a question such as the effect of a treatment at a given time on mortality. Such reviews

involve repeated querying of the clinical trial database and classifying the retrieved trials as

relevant or not; some may take a year to complete. System-aided exploration that records

user-reviewed trials continually may derive a model of the relevant trials more quickly than

manual exploration by the user.

Across both applications the performance goals of explore-by-example include: (a) Ac-

curacy: the system must maximize the accuracy of the user interest model with a limited

amount of user feedback, or minimize the total user feedback needed to achieve a high

accuracy level. (b) Interactive performance: the time cost in each iteration of exploration

must be kept under a few seconds as the user may be waiting online for the next sample to

review.

Our framework closely integrates model learning (from labeled examples thus far), space

exploration (deciding new data areas to explore), and efficient example acquisition and final

result retrieval (from large underlying databases). We choose Support Vector Machines

(SVMs) to build the classification model because they can handle both linear and non-linear

patterns. For space exploration, active learning theory is particularly helpful in deciding

which database example, across all unlabeled objects in the database, for the user to label

next in order to quickly improve the model accuracy. Recent active learning for SVM [16]
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proposed to choose the example closest to the decision boundary of the current SVM model.

Grounded on the SVM active learning theory, we made the following contributions in

Chapter 4:

Optimizing SVM active learning for convex queries (Section 4.2). We develop a new

algorithm which focuses on a common class of user interest queries with a convex shape

in the data space. For such queries, we propose a novel algorithm, called TSM, which

augments SVM active learning theory with a polytope-based partitioning function of the

data space. TSM reduces user labeling from using active learning theory alone, which means

achieving at least the same accuracy with a smaller number of user-labeled examples.

Stopping Criteria (Section 4.2). We propose the following two stopping criteria.

(1) Accuracy-based: Besides improving the accuracy over SVM learning, TSM also enables

us to prove a monotonically increasing lower bound of F1-score over iterations. This is

the first formal result on the model accuracy based on F1-score without requiring a user-

labeled test set, to the best of our knowledge, and enables either the system to develop

an accuracy-based stopping criterion in the precise exploration scenario, or the user to

decide on termination based on a quantitive estimate in the ad-hoc exploration scenario.

(2) Convergence-based: For general query patterns, we capture the model change rate and

the trend of this measure over recent iterations. It allows the system to provide a qualitative

statement of whether the model has exhibited the trend for convergence.

Optimizations on retrieval (Section 4.3). We devise novel decision-tree based approxi-

mation to reduce the time cost of retrieving the most uncertain example from the database

and an index-based optimization to reduce the running time of the final query to retrieve all

relevant objects.

Evaluation (Section 4.4). Evaluation using real datasets and queries from Sloan Digital

Sky Survey [92] shows the following results: (1) For convex queries, our TSM algorithm

shown to offer a lower-bound for F1-score, and reduce the user labeling effort. On 2-

dimensional workloads, when TSM is applied, the user only needs to label 20% of the
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examples needed using traditional active learning without the TSM technique to achieve

the same accuracy. On 4-dimensional workloads, the number is 80%. This means that if

the database system offers query templates for the user to choose, then for known convex

templates, it can choose TSM for the above benefits. (2) For general queries, our change

rate metric can be used to detect model convergence. (3) We further compared our system

to two state-of-the-art systems for explore-by-example, AIDE [34, 35] and LifeJoin [26].

Our system significantly outperforms these two in accuracy when the user interest involves

4 dimensions or above, considering both ad-hoc exploration (with limited, say 100, user

labeled samples) and precise exploration (with up to 500 user labeled samples), while

maintaining the per-iteration time within 2 to 5 seconds and the final retrieval time within a

few minutes.

1.5 Thesis Organization

As is mentioned earlier, due to the intrinsic uncertainty in the measurements in scientific

applications as well as in other data management applications, we address the problem of

supporting data uncertainty in the relational model and in the array model in Chapter 2 and

Chapter 3. In Chapter 4, we solve the problem of supporting query uncertainty when users

cannot explicitly express his interests but are able to provide a binary judgement to each

point in the data space. In Chapter 5, we summarize this thesis and discuss furture research

directions.
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CHAPTER 2

SUPPORTING DATA UNCERTAINTY IN RELATIONAL
DATABASES

In this chapter, we address efficient threshold query processing on uncertain data mod-

eled by continuous random variables. We support selection-join-projection queries with a

threshold on the existence probabilities of query answers. We start with our data model

(Section 2.1), and next propose a suite of new techniques grounded in statistical theory to

optimize selections (Section 2.2) and joins (Section 2.3), and finally design a query optimizer

(Section 2.4) that supports dynamic, per-tuple based planning at a low cost.

2.1 Background

In this section, we present a data model for probabilistic query processing on continuous

uncertain data. This model provides a technical context for our discussion in later sections.

Probability distributions. A Gaussian Mixture Model (GMM) describes a probability

distribution using a convex combination of Gaussian distributions. A multivariate Gaussian

Mixture Model (multivariate GMM) naturally follows from the definition of multivariate

Gaussian distributions. They are formally defined as follows:

Definition 1. A Gaussian Mixture Model (GMM) for a continuous random variable X is a

mixture of m Gaussian variables X1, X2, · · · , Xm. The probability density function (pdf) of

X is:

fX(x) =
m

∑
i=1

pi fXi(x),

fXi(x) =
1

σi
√

2π
e
− (x−µi)

2

2σ2
i (Xi ∼ N(µi, σ2

i )),
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where 0 ≤ pi ≤ 1, ∑m
i=1 pi = 1, and each mixture component is a Gaussian distribution

with mean µi and variance σ2
i .

Definition 2. A multivariate Gaussian Mixture Model (multivariate GMM) for a random

vector X naturally follows from the definition of multivariate Gaussian distributions:

fX(x) =
m

∑
i=1

pi fXi(x),

fXi(x) =
1

(2π)k/2|Σi|1/2 e−
1
2 (x−µi)

TΣ−1
i (x−µi) (Xi∼N(µi, Σi)),

where k is the random vector size, and each mixture component is a k-variate Gaussian with

mean µi and covariance matrix Σi.

GMMs offer two key benefits to uncertain data management: First, theoretical results

have shown that GMMs can approximate any continuous distribution arbitrarily well [44].

Hence, they are suitable for modeling complex real-world distributions. Second, GMMs al-

low efficient computation of relational operators based on Gaussian properties and advanced

statistical theory as shown in our prior work [98] and later sections in this chapter.

Data model. We consider an input data set that follows the schema Ad ∪ Ap. The

attributes in Ad are deterministic attributes, like those in traditional databases. The attributes

in Ap are continuous-valued uncertain attributes, such as the location of an object and

the luminosity of a star. In each tuple, Ap is modeled by a vector of continuous random

variables, X, that has a joint pdf, fAp(x). According to the schema, Ap can be partitioned

into independent groups of correlated attributes. Each group of correlated attributes can be

modeled by a (multivariate) GMM denoted by f j(xj). Then the joint distribution for Ap

can be written as ∏j f j(xj). For simplicity, we use A to refer to uncertain attributes when

our discussion focuses on uncertain attributes only. To address inter-tuple correlation in our

data model, we adopt the use of history to capture dependencies among attribute sets as

a result of prior database operations [86]. The history, H, of an attribute set is defined as

follows: (1) For a newly inserted tuple t, H(t.A) = t.A. (2) If a new set of attributes, t̄.Ā,
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is derived from multiple attribute sets, {ti.Ai|i = 1, 2, . . .}, via a database operation, then

H(t̄.Ā) = ∪H(ti.Ai). That is, the history of the new attribute set includes the base pdf’s

that can be used to derive the joint pdf of this set of attributes. Finally, if two attribute sets

intersect, they become correlated. Then a joint distribution of the two sets can be computed

from their histories to capture correlation.

2.2 Optimizing Threshold Selection

In this section, we consider probabilistic threshold selections over a relation on a set of

continuous uncertain attributes. Our goal is to support efficient evaluation of such selections,

especially when they contain complex predicates.

Definition 3 (Probabilistic Threshold Selection). A probabilistic threshold selection, σθ,λ,

over a relation T is defined as:

σθ,λ(T) = {t | Pr[Rθ(X)] ≥ λ, t ∈ T} ,

where θ is the selection condition on continuous uncertain attributes A, λ is the probability

threshold, and Rθ is the selection region defined as {a|a ∈ R|A| ∧ θ(a) = true}. For each

tuple t, X is the random vector for t.A, and Pr[Rθ(X)] is the probability for X to satisfy the

selection condition, i.e., Pr[Rθ(X)] =
∫

Rθ
fX(x)dx.

A basic evaluation strategy for the selection follows the definition above, using an

integral of the joint attribute distribution fX for each tuple. For instance, the WHERE clause

in Q2 (in Section 1.2) specifies a condition θ involving ten uncertain attributes. Assume

that a cross-product is first performed. Then the selection with condition θ involves a

ten-dimensional integral for each tuple.

An improvement is to factorize this integral into lower dimension integrals based on in-

dependence [86]. Suppose that the schema indicates that the uncertain attribute set A can be

partitioned into attribute groups that are independent of each other. Denote this partitioning
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using a set system S = {A1, A2, . . . AG}. Then consider each predicate in the condition θ:

if the predicate involves attributes from different groups, merge these groups into one. After

doing so for all predicates, we obtain a new set system S′ = {A′1, A′2, . . . A′G′}. Now we

can rewrite the big integral as the product of the integrals for the attribute groups in S′. Revisit

Q2. The SDSS schema shows that S = {{G1.u}, {G1.g}, {G1.r}, {G1.rowc, G1.colc},
{G2.u}, {G2.g}, {G2.r}, {G2.rowc, G2.colc}}. The predicates in WHERE yields S′ =

{{G1.u, G1.g, G1.r, G2.u, G2.g, G2.r}, {G1.rowc, G1.colc, G2.rowc, G2.colc}}. Hence for

each tuple, we will perform a 6-dimensional integral plus a 4-dimensional integral.

As can be seen, the basic evaluation approach can be expensive or even intractable when

the integral has a high dimensionality and a complex shape of the selection region. In this

section, we propose two classes of optimization techniques grounded in statistical theory:

the first class reduces the dimensionality of integration, while the second class efficiently

filters (most of) tuples whose probabilities fall below the threshold without using integrals.

2.2.1 Reducing Dimensionality of Integration

We first propose to reduce the dimensionality of integration by leveraging the following

result [75]:

Linear Transformation: Let X ∼ Nk(µ, Σ). For a given l × k matrix B of constants and a

l-dimensional vector b of constants, Y = BX + b ∼ Nl(Bµ + b, BΣBT).

The result states that a linear transformation of multivariate normal random vector still has a

multivariate normal distribution. It is natural to extend linear transformation to a GMM: we

simply perform a linear transformation of each mixture component separately.

To apply the above result, given a selection condition θ, we define a transformed selection

region R′θ = {y|y=Bx+b ∧ x∈Rθ}. If there exists a transformation matrix Bl×k (l < k)

such that Pr[Rθ(X)]=Pr[R′θ(Y)], we can reduce the dimensionality of integration, i.e.,

∫
Rθ

fX(x)dx = Pr[Rθ(X)] = Pr[R′θ(Y)] =
∫

R′θ
fY(y)dy. (2.1)
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Given a condition θ on a set of continuous uncertain attributes, we can construct B and

b by taking the following steps: (1) Partition attributes into independent groups based on the

schema and θ, as described at the beginning of the section. (2) For each group of attributes,

define a random vector X. Find maximum linear subexpressions relevant to X from θ, and

denote them using a new vector Y. Rewrite each variable in Y as the product of a row vector

and X, plus a constant. Let B be the matrix that contains all the row vectors and b be the

column vector that contains all the constants. (3) If B does not have full row rank, remove

rows from B, one at a time, until it has full row rank. Remove elements from b accordingly.

Below we show the correctness of the procedure.

Denote the matrix returned as Bl×k. Since it has full row rank, l≤ k. If l < k, we can

apply Eq. (2.1) to transform the integration from the space for X to that for Y; If l= k, linear

transformation does not help to reduce the dimensionality of integration.

Example 2.2.1. For Q2, we obtain two independent groups of attributes after step (1),

which is the factorization described at the beginning of the section. In step (2), let us

consider the first group: S′1 ={G1.u, G1.g, G1.r, G2.u, G2.g, G2.r}. Let X be the random

vector for S′1. There are two maximum linear subexpressions in θ for S′1. Let y1 =

(G1.u−G1.g)−(G2.u−G2.g), y2 = (G1.g−G1.r)−(G2.g−G2.r). Then, we have:

Y=

y1

y2

=

1 −1 0 −1 1 0

0 1 −1 0 −1 1

X+

0

0

=BX+b

Since B has full row rank, step (3) is omitted. We can get the pdf of Y using linear

transformation from X. Finally based on Eq (2.1), the integral dimensionality is reduced

from 6 to 2:

∫
· · ·

∫
Rθ

6

∏
i=1

(
fXi(xi)dxi

)
=

0.05∫
−0.05

0.05∫
−0.05

fY(y1, y2)dy1 dy2
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2.2.2 A Filtering Framework without Integrals

Although linear transformation can improve performance by decreasing the dimension-

ality of integration, it still requires the use of one integral for each tuple. In this section, we

propose a filter operator, σ̃, that computes an upper bound (p̃) of the true probability (p) that

a tuple satisfies the selection condition without using integrals. When such upper bounds

are tight enough, most tuples that fail to pass the threshold selection can be removed by the

filter p̃ < λ. In (rare) cases that p < λ ≤ p̃, the original selection operator (σ) with exact

integration is needed to compute the true probability. Hence, a key issue in designing the

filter is how to derive a tight upper bound at a cost much lower than the integration cost.

2.2.2.1 A General Filtering Technique

We first propose a general filtering technique that leverages the multidimensional Cheby-

shev’s inequality, and explores its relationship with a selection region in a high-dimensional

space. Let X be a k-dimensional random vector with expectation µ and covariance matrix Σ.

If Σ is an invertible matrix, then for any real number a > 0, multidimensional Chebyshev’s

inequality states that:

Pr[(X− µ)TΣ−1(X− µ) > a2] ≤ k
a2 . (2.2)

To leverage the above result, we transform threshold selection evaluation into a geometric

problem. Besides the predicate region Rθ ⊆ Rk from Definition 3, we also define a

geometric region specific to each given random vector X of size k and a threshold λ:

Definition 4 (Chebyshev region). A Chebyshev region Rλ(X) for a given λ and a random

vector X with mean µ and variance Σ is:

Rλ(X) = {x | (x− µ)TΣ−1(x− µ) <
k
λ
}. (2.3)
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Figure 2.1: Illustration of the predicate region (shaded in gray) and a tuple’s chebyshev
region (shaded in stripes).

Geometrically, the Chebyshev region is an ellipse (in R2) or ellipsoid (in Rk where

k ≥ 3) centered at µ. According to Eq. (2.2), we can see that Pr[Rλ(X)] > 1− λ. That is,

for the random vector X, the Chebyshev region covers the probability mass of more than

1− λ. Therefore, when the Chebyshev region Rλ(X) for a given tuple does not overlap

with the predicate region Rθ, it is easy to bound the probability mass of this tuple in the

predicate region: Pr[Rθ(X)] ≤ 1− Pr[Rλ(X)] < λ. We can then safely filter the tuple. As

such, the threshold selection problem is transformed into the geometric problem of judging

whether the predicate region and a tuple’s Chebyshev region are disjoint in a k-dimensional

space.

Example 2.2.2. For a bivariate random vector X with mean µ and covariance Σ, the

Chebyshev region is a region bounded by an ellipse centering at µ, shown as the areas

shaded in stripes in Figure 2.1(a) and Figure 2.1(b). The predicate “q r2+u r2>0.25”

in Q1 is marked by the grey area outside the circle with center (0, 0) and radius 0.5 in

Figure 2.1(a). The predicate region of “|u|<0.2 and |g|<0.2” is a square shown by the

grey area in Figure 2.1(b).

Detecting disjoint regions. The Rθ and Rλ(X) regions are disjoint in the space Rk if

they satisfy two conditions: (1) the center of Rλ(X), which is µ, falls outside of Rθ; (2) the

boundary of Rθ is outside Rλ(X). When Rθ has a simple shape, e.g., a rectangle as shown
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in Figure 2.1(b), condition (2) is satisfied if none of the edges intersects with the boundary

of Rλ(X) and the center of Rθ lies outside Rλ(X). Generally, to test condition (2), we can

minimize (X− µ)TΣ−1(X− µ) on Rθ. If the minimum is larger than k/λ, condition (2)

is satisfied. While constrained optimization in general can be a difficult problem, in many

common cases it can be solved efficiently. For example, when the region Rθ is an intersection

of ellipsoids, the constrained optimization becomes the so called Quadratically Constrained

Quadratic Program (QCQP), which can be solved as easily as the linear programs [17].

When the boundary of Rθ can be readily defined by equalities, the minimization can be done

on the boundary and solved using the Lagrange multiplier. For example, when Rθ is an

ellipsoid, the Lagrange multiplier leads to a system of linear equations.

In summary, for those common predicates whose regions are of simple shapes or whose

boundary can be defined by linear or quadratic equalities, our general technique based on

the multidimensional Chebyshev’s inequality can provide efficient filtering.

2.2.2.2 Fast Filters for Common Predicates

For several common types of predicates, we can devise fast filters for threshold selection

evaluation by exploiting known statistical results. Consider the following predicates on the

attribute set A:

1. One-dimensional: |A| = 1, Rθ =
⋃n

i=1(ai, bi), where ai > bi−1. An example is

“ra2 > 1” , whose selection region can be written as (−∞,−1) ∪ (1,+∞).

2. Multi-dimensional quadratic forms: |A|>1, Rθ ={a|aTΛa op δ}, where Λ is an

|A|-dimensional symmetric matrix, op is “>” or “<”. An example is “q r2+u r2>

0.25” in Q1, where Λ is the identity matrix.

3. Predicates that can be reduced to category (1) or (2) above by applying linear trans-

formation. Consider “|(G1.u−G1.g)−(G2.u−G2.g)| < 0.05” in Q2. By letting

z=(G1.u−G1.g)−(G2.u−G2.g), we have “|z|<0.05”, which belongs to category

(1). Next consider “(G1.rowc−G2.rowc)2+(G1.colc−G2.colc)2<4E6” in Q2. With
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z1=G1.rowc−G2.rowc and z2=G1.colc−G2.colc, we have “z2
1+z2

2<4E6”, which

belongs to category (2).

One-dimensional predicates. We exploit the following statistical results to devise fast

filters.

Markov’s inequality states that for a random variable X, Pr[|X|≥ a]≤E|X|/a for any

real number a > 0. It can be applied to predicates Rθ =
⋃n

i=1(ai, bi), if the point 0 does

not lie in the predicate region (otherwise we will get a trivial upper bound of value 1). We

consider three cases that apply Markov’s inequality based on the different relationships

between the point 0 and the predicate region:

• 0< a1: Pr[Rθ(X)] < Pr[(a1,+∞)] ≤ E|X|/a1

• bn<0: Pr[Rθ(X)] < Pr[(−∞, bn)] ≤ −E|X|/bn

• bi−1<0< ai: Pr[Rθ(X)] < Pr[(−∞, bi−1)]+Pr[(ai,+∞)]≤ E|X|/min{−bi−1, ai}

The distribution of |X| can be computed as follows: When X follows a GMM with

m components, each identified by parameters (pi, µi, σ2
i ), we have E|X| = ∑m

i=1 piE|Xi|,
where E|Xi| = σi

√
2/π exp(−µ2

i /
(
2σ2

i )
)
+ µi

(
1− 2Φ(−µi/σi)

)
and Φ is the cdf of a

standard normal distribution.

Chebyshev’s inequality and Cantelli’s inequality: Chebyshev’s inequality states that

for a random variable X with expected value µ and standard deviation σ, Pr[|X − µ| ≥
aσ] ≤ 1/a2 for any real number a > 0. Cantelli’s inequality, known as the one-sided

version of Chebyshev’s inequality, provides a tighter bound on each side of the distribution:

Pr[X ≥ µ+aσ] ≤ 1/(1+a2), Pr[X ≤ µ−aσ] ≤ 1/(1+a2). Both inequalities can be

applied to predicates
⋃n

i=1(ai, bi) if µ does not reside in the predicate region. Again, we

consider three cases below. In the first two cases, Cantelli’s inequality gives a tighter upper

bound. In the third last case, we need to compute upper bounds using both inequalities and

choose the smaller one.
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• µ< a1: Pr[Rθ(X)]<Pr[(a1,+∞)]≤ σ2

σ2 + (a1 − µ)2

• bn<µ: Pr[Rθ(X)]<Pr[(−∞, bn)]≤
σ2

σ2 + (µ− bn)2

• bi−1<µ<ai: Pr[Rθ(X)]<Pr[(−∞, bi−1)]+Pr[(ai,+∞)]≤

min
{

σ2

(min{µ−bi−1,ai−µ})2 ,
σ2

σ2+(µ−bi−1)2 +
σ2

σ2+(ai−µ)2

}
Multi-dimensional quadratic forms. If X follows a GMM, its quadratic form XTΛX

yields a new random variable for which we can compute the mean and variance. This allows

us to apply Chebyshev’s inequality and Cantelli’s inequality similarly as above.

More specifically, if X follows a GMM, its quadratic form XTΛX yields a new random

variable. We first derive the new distribution as follows: For X ∼ N(µ, Σ), we have

E[XTΛX] = tr[ΛΣ] + µTΛµ

Var[XTΛX] = 2tr[ΛΣΛΣ] + 4µTΛΣΛµ,

where tr[·] denotes the trace of a matrix.

For X follows a GMM with m components, each identified by (pi, µi, Σi) (i = 1 · · ·m),

E[XTΛX]=
m

∑
i=1

piE[XT
i ΛXi]

Var[XTΛX]=E
[(

XTΛX
)2
]
−
(

E[XTΛX]
)2

=
m

∑
i=1

piE
[(

XT
i ΛXi

)2
]
−
(

E[XTΛX]
)2

=
m

∑
i=1

pi

(
Var[XT

i ΛXi]+
(
E[XT

i ΛXi]
)2
)
−
(
E[XTΛX]

)2

Now suppose that the quadratic form XTΛX yields a new random variable with mean µ0

and variance σ2
0 . This allows us to apply Chebyshev’s inequality and Cantelli’s inequality as

before. However, in the case of comparing a quadratic form with a constant, the predicate
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contains only one interval: either (−∞, δ) or (δ,+∞). Hence, when u0 lies outside the

predicate region, Cantelli’s inequality always gives a tighter bound. Formally,

• If the predicate region is XTΛX < δ, when δ < µ0:

Pr[Rθ(X)] ≤ σ2
0 /
(
σ2

0 + (µ0 − δ)2)
• If the predicate region is XTΛX > δ, when δ > µ0:

Pr[Rθ(X)] ≤ σ2
0 /
(

σ2
0 + (δ− µ0)

2
)

2.3 Optimizing Threshold Join

In this section, we consider probabilistic threshold joins of relation R and relation S on

a set of continuous uncertain join attributes.

Definition 5 (Probabilistic Threshold Join). A probabilistic thre- shold join of R and S on

continuous uncertain attributes A is:

Ronθ,λS = {(r, s) | Pr[Rθ(Xr, Xs)] ≥ λ, r ∈ R, s ∈ S} ,

where θ is the join predicate, λ is the probability threshold, Xr and Xs are the random

vectors for r.A and s.A, Rθ is the predicate region in R2|A|, and Pr[Rθ(Xr, Xs)] is the

probability for Xr and Xs to satisfy the join condition.

When the input relations R and S are independent, Pr[Rθ(Xr, Xs)]=
∫∫

Rθ
fXr(xr) fXs(xs)dxrdxs.

If R and S tuples are correlated, we can compute the joint distribution using history [86].

A default evaluation strategy for the threshold join R onθ,λ S is to perform a cross-

product R× S followed by a threshold selection with the condition θ(R.A, S.A) and the

threshold λ. The cross-product can create a large number of intermediate tuples, hence

highly inefficient. In this section, we propose new join indexes to implement a filtered

cross-product, denoted by R×θ,λ S, which returns a superset of true join results but a subset
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of the cross-product results. Then R onθ,λ S = σθ,λ(R×θ,λ S), that is, the true join results

are produced by further applying a threshold selection.

Designing a join index for continuous random variables is much more difficult than its

counterpart for deterministic values. Consider R onR.A−S.A<δ S, and we want to build an

index on S. First, the design of the join index needs to answer two questions: (1) what is the

search key of the index? (2) given a R tuple, how do we form a query region over the index?

In a traditional database, S.A has a deterministic value and naturally forms the search key of

the index. Given a R tuple, the join predicate is instantiated with R.A = v, which naturally

yields a query region, S.A > v− δ, on the index. Now consider the join where R.A and

S.A are random variables and each follows a distribution. To build an index on S.A, it is

not clear which aspects of the distribution of S.A can be used as the index key, and given an

R tuple, how we use the distribution of R.A to form the query region over the index.

Second, the index for probabilistic threshold join needs to take into account the proba-

bility threshold λ. For each tuple r in R, probing the index should return all those tuples s

in S that can possibly satisfy Pr[Rθ(Xr, Xs)] ≥ λ, called candidate tuples. In other words,

we want to ignore other tuples s̃ for which we know for sure Pr[Rθ(Xr, Xs̃)] < λ, hence

improving performance.

Our main idea is that if we can find a necessary condition for Pr[Rθ(Xr, Xs)] ≥ λ, then

the negation of the necessary condition identifies all those tuples s̃ that can be ignored in

the index lookup. To improve the index’s filtering power, we seek necessary and sufficient

conditions if possible, or necessary conditions that are “tight” enough. Furthermore, to have

real utility for index design, the necessary condition has to meet two requirements: (1) In

the necessary condition, the quantities concerning S can be used to form the search key of a

common index structure such as an R-tree [10]; (2) Given an R tuple, after the necessary

condition is instantiated with all the quantities concerning R, it should yield a query region

that can be easily tested for overlap with the index entries.
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Existing join indexes for continuous uncertain attributes [23, 24] make simplifying

assumptions about attribute distributions, and use a “loose” necessary condition in index

design, resulting in poor performance as we will show in Section 2.5. Below we derive

tighter necessary conditions for common join predicates, including a necessary and sufficient

condition, and develop new indexes based on them.

2.3.1 Band Join of General Distributions

We start with the simple case of a single join attribute. A band join uses the predicate

“a < R.A− S.A < b”. Given a tuple r from relation R, we use Xr to denote the random

variable of its join attribute, which follows a univariate GMM. Similarly, Xs denotes the

random variable for the join attribute in an s tuple, again following a GMM. We denote the

mean, variance, and pdf of Xt using µt, σ2
t , fµt,σ2

t
(xt), respectively (t = r, s).

As shown in Section 2.2.1, the linear transformation Z = Xr−Xs can transform the

original band-shaped integral region into a single interval:

Pr[a<Z = (Xr − Xs)<b] =
∫ b

a
fµr−µs,σ2

r +σ2
s
(z)dz.

For a single variable Z, the following theorem provides a necessary condition for Pr[a <

Z < b] ≥ λ.

Theorem 2.3.1. Given a range [a, b], if a random variable Z with mean µ and vari-

ance σ2 satisfies the condition Pr[a < Z < b] ≥ λ, then µ + σ
√
(1− λ)/λ ≥ a and

µ− σ
√
(1− λ)/λ ≤ b.

Since Z=Xr−Xs∼N(µ, σ2), plug µ=µr−µs, σ2 =σ2
r +σ2

s back to the inequalities

in the theorem. Then we obtain a necessary condition for Pr[a<Xr−Xs<b] ≥ λ:

µr − µs +

√
1− λ

λ
(σ2

r + σ2
s ) ≥ a, (2.4a)

µr − µs −
√

1− λ

λ
(σ2

r + σ2
s ) ≤ b. (2.4b)
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Index Construction and retrieval. We now design an index on the S relation to provide

efficient support for the filtered cross product R×a<R.A−S.A<b, λ S. In Eq. (2.4a) and (2.4b),

µs and σ2
s are the quantities from relation S. We use them to form the search key of an

index: for each tuple s, we insert the pair (µs, σ2
s ) together with the tuple id into an R-tree

index [10]. This index essentially indexes points in a two-dimensional space in the leaf

nodes and groups them into minimum bounding rectangles in non-leaf nodes. All existing

R-tree construction methods can be used.

For each probing tuple r, the query region is naturally formed by instantiating µr and

σ2
r in Eq. (2.4a) and (2.4b). However, this query region has a nonstandard shape, so we re-

implement the overlap method in the R-tree, which returns True when a minimum bounding

rectangle in a tree node, denoted by RI , overlaps with the query region, denoted by RQ. Let

(x, y) denote the search key of the index, that is, x = µs and y = σ2
s . Then RI is a rectangle

[x1, x2; y1, y2]. The query region RQ has two conditions. By setting x = µs and y = σ2
s in

Eq. (2.4a), we can rewrite the first condition as:

RQ1: (1)x≤µr−a, or

(2)x>µr−a and y≥λ(x−µr+a)2/(1−λ)−σ2
r .

It is not hard to see that RI overlaps with the union of region (1) and region (2) in RQ1 if its

upper left vertex (x1, y2) lies in either region. We can rewrite the second condition from

Eq. (2.4b) and develop the test condition in a similar way.

2.3.2 Band Join of Gaussian Distributions

We next consider the most common distributions, Gaussian distributions, for continu-

ous random variables. The known Gaussian properties allow us to find a sufficient and

necessary condition and hence design an index with better filtering power.

Theorem 2.3.2. Given a range [a, b], a normally distributed random variable Z ∼ N(µ, σ2)

satisfies the condition Pr[a < Z < b] ≥ λ iff there exists an α ∈ (0, 1−λ) such that
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Figure 2.2: Two cases when R′I and Ω overlap.

a−Φ−1(α)σ ≤ µ ≤ b−Φ−1(λ + α)σ, where Φ−1 is the inverse of the standard normal

cdf (also called the quantile function).

Given a range [a, b] and a threshold λ, Theorem 2.3.2 essentially identifies all normally

distributed random variables, i.e., all the (µ, σ) pairs, that satisfy Pr[a<Z<b] ≥ λ. Let Ω

denote this collection of (µ, σ). Formally,

Ω(a, b, λ)=
⋃

0≤α≤1−λ

{
(µ, σ) | a−Φ−1(α)σ ≤ µ ≤ b−Φ−1(λ+α)σ

}
(2.5)

The Ω region will play a key role in the index design, in particular, representing the

query region. The shaded region in Figure 2.2 shows the shape of Ω when λ = 0.7, where

the x and y axes denote µ and σ, respectively. In general, λ controls the shape of Ω, and the

a and b values determine the stretch along both dimensions.

Index Construction and retrieval. We next present a new index that exploits the above

sufficient and necessary condition and thus returns only the true matches for each probing

tuple. Recall that the join predicate is “a<R.A−S.A<b”, and Xr and Xs denote the join

attribute of a r tuple and an s tuple. As in Section 2.3.1, we build an R-tree index on S.A:

we take the mean µs and variance σ2
s of the variable Xs for each tuple and insert them as a

pair to the R-tree.

Given each probing tuple r, we next design the query region over the R-tree. As before,

consider two variables Xr and Xs, and let Z = Xr − Xs. Eq. (2.5) has defined all possible
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distributions of Z that would satisfy Pr[a < Z < b] ≥ λ. Now plug µ = µr − µs and

σ = σ2
r + σ2

s into Eq. (2.5). Since for a particular probing tuple r, µr and σr are simply

constants, Eq. (2.5) naturally yields a query region over all the distributions (µs, σ2
s ) in the

R-tree.

Given the query region, the next task is to design the “overlap” routine that directs

the search in the R-tree by comparing the query region (RQ) with the minimum bounding

rectangles (RI) in each non-leaf node of the tree. However, the above query region has

a complex shape and hence it is slow to test the overlap between RQ and RI . The first

technique we use is to transform both RQ and RI to a different domain through a mapping.

Letting (x, y) = (µs, σ2
s ) be the search key of the index, the mapping F has:

x′ = µr − x and y′ =
√

σ2
r + y

Each rectangle in the index RI = [x1, x2; y1, y2] is transformed to:

R′I =
[

ur − x2, ur − x1;
√

σ2
r + y1,

√
σ2

r + y2

]

Finally, the query region becomes:

R′Q =
⋃

0≤α≤1−λ

{
(x′, y′) | a−Φ−1(α)y′ ≤ x′≤ b−Φ−1(λ+α)y′

}
,

which is exactly Ω. It is also known RI and RQ overlap if and only if R′I and R′Q overlap

because F is a one-to-one mapping.

Now our task becomes testing the overlap between R′I and R′Q = Ω (Eq. (2.5)). For

ease of explanation, simply describe the index entry R′I as [µ1, µ2; σ1, σ2].

First, we show that Ω 6⊂ R′I: Since σ is the standard deviation of a random variable Z,

σ ≥ 0. In the extreme case when σ = 0, Z is reduced to a constant, so σmin = 0, where
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σmin is the minimum value of σ in Ω. For a valid search key, it is impossible that σ1 < 0, so

Ω 6⊂ R′I .

Given that Ω 6⊂ R′I , testing whether R′I and Ω overlaps is the same as to test whether

there exists a point (µ0, σ0) on the edges of R′I , such that (µ0, σ0) ∈ Ω.

Define a function g(µ, σ) = Φ
(

b−µ
σ

)
−Φ

(
a−µ

σ

)
, where Φ is the cdf of the standard

normal distribution. It is straightforward to see that (µ, σ) ∈ Ω iff g(µ, σ) ≥ λ. Then the

problem is again transformed to checking whether the maximum value of g(µ, σ) on edges

of R′I , denoted as gmax, is no less than λ.

Without loss of generality, let us consider one edge of R′I , defined as Eσ1 = {(µ, σ) | µ1 ≤
µ ≤ µ2, σ = σ1}. The goal is to find gmax for all points on Eσ1 . Let g′(µ) = g(µ, σ1) =

Φ
(

b−µ
σ1

)
− Φ

(
a−µ
σ1

)
. By taking the derivative w.r.t. µ and setting it to be 0, we get

φ
(

b−µ
σ1

)
= φ

(
a−µ
σ1

)
, where φ is the pdf of the standard normal distribution. Accord-

ing to the symmetry of the standard normal distribution, g′(µ) has an extreme value at

µ = (a + b)/2. Then gmax can be gained as follows:

gmax =

max
{

g′(µ1), g′(µ2), g′
( a+b

2

)}
if µ1 < a+b

2 < µ2

max
{

g′(µ1), g′(µ2)
}

otherwise

Similar analysis can be made for other edges of R′I .

An optimization. According to the above discussion, for each index entry R′I , we find

the maximum value of g(µ, σ) on its edges and check whether it is no less than λ. A further

optimization would be to find the circumscribed rectangle (minimum bounding box) of Ω,

denoted as MBRΩ = [µmin, µmax; σmin, σmax]: if R′I does not overlap with MBRΩ, it is

guaranteed that it does not overlap with Ω either. Below we show how to find µmin, µmax,

σmin and σmax.
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We have already showed that σmin=0. When λ≥0.51, ∀α∈ [0, 1−λ], Φ−1(α)≤0 and

Φ−1(λ+α)≥0. Then a≤ a−Φ−1(α)σ≤µ≤b−Φ−1(λ+α)σ ≤ b. And we get µmin= a

and µmax = b, both obtained when σ = 0. Finally in order to find σmax, we write out the

expression of any point (µ, σ) on the boundary of Ω as:


µ =

aΦ−1(λ + α)− bΦ−1(α)

Φ−1(λ + α)−Φ−1(α)

σ =
b− a

Φ−1(λ + α)−Φ−1(α)

Let ∂σ/∂α = 0, we have φ(Φ−1(λ + α)) = φ(Φ−1(α)), where φ is the pdf of the

standard normal distribution. Then α = (1+λ)/2 and finally we get

σmax =
b− a

Φ−1(1+λ
2 )−Φ−1(1−λ

2 )
.

Overlap routine design

Step 1 If R′I does not overlap with MBRΩ, return FALSE.

Step 2 Find gmax for points on the edges of R′I , if gmax < λ, return FALSE; otherwise,

return TRUE.

2.3.3 Additional Join Indexes

We also provide join indexes for (1) band joins of multivariate GMMs, (2) other joins

using linear predicates, and (3) proximity joins using Euclidean distance.

Extension of Band Joins to multivariate GMMs. When we have multiple join at-

tributes A, the band join involves conjunctive predicates that each is a 1-dim range predicate.

It is easy to see that

Pr[∧|A|i=1(ai<R.Ai−S.Ai <bi)]≤min
i
{Pr[ai<R.Ai−S.Ai <bi]}.

1We focus on cases when λ ≥ 0.5, as it is more desirable in real applications.
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A necessary condition for Pr[
∧|A|

i=1(ai <R.Ai−S.Ai < bi)] ≥ λ is Pr[ai <R.Ai−S.Ai <

bi] ≥ λ for all i. This transforms the join of multivariate GMMs (or Gaussians) into multiple

joins of univariate GMMs (or Gaussians). So we build an index for each join attribute in

S. For a probing tuple r, all join indexes need to be retrieved, and a tuple s is a candidate

match if it is returned by all the indexes.

Other Joins with Linear Predicates and General Distributions. We also support join

predicates that are the “opposite” of band joins, e.g., “|R.A−S.A|> δ”. Such predicates

can be useful for detecting a sudden dramatic change of the value of an attribute, e.g., the

brightness of a star. We offer a necessary condition for such joins and build a join index

accordingly. We can still apply linear transformation Z=Xr−Xs. Then we can prove the

following statement by contradiction based on Chebyshev’s inequality:

Theorem 2.3.3. For a random variable Z with mean µ and variance σ2, if Pr[|Z| > δ] ≥ λ,

then δ ≤ |µ| − σ√
λ

.

Plugging µ = µr − µs, σ2 = σ2
r + σ2

s back, we can get the necessary condition for

Pr[|r.A− s.A| > δ] ≥ λ as follows:

δ ≤ |µr − µs| −
√

σ2
r + σ2

s
λ

. (2.6)

Define the search key to be x = µs and y = µ2
s −

σ2
s

λ
, then Eq. (2.6) can be broken into

two cases: 
x < µr − δ

y− 2(µr − δ)x ≥ −(µr − δ)2 +
σ2

r
λ

(2.7)

or 
x > µr + δ

y− 2(µr + δ)x ≥ −(µr + δ)2 +
σ2

r
λ

(2.8)

The index is still an R-tree and the query region is defined by inequalities in Eq. (2.7)

and (2.8).
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Distance Join of General Distributions. We next consider join predicates that involve

the Euclidean distance between two sets of attributes R.A and S.A:

D(R.A, S.A) =
√

∑|A|i=1(R.Ai − S.Ai)2 < δ

Then the probabilistic threshold join is R onD(R.A,S.A)<δ, λ S. Such joins are commonly

used to check proximity of objects, e.g., two stars that are within 30 arcseconds of each

other in query Q2.

Proximity joins can be supported using our techniques for band joins. When |A|=1, the

join predicate can be rewritten to “−δ<R.A−S.A<δ”, and thus can be directly supported

as a band join. When |A| > 1, we seek an upper bound of Pr[D(R.A, S.A) < δ]. We

know that if the Euclidean distance between R.A and S.A is less than δ, then the Manhattan

distance between R.A and S.A is less than δ in each dimension. So, Pr[D(R.A, S.A)<

δ] < Pr[
∧|A|

i=1(−δ < r.Ai−s.Ai < δ)]. This allows us to use indexes for band joins of

multivariate GMMs or Gaussians for distance joins.

2.4 Per-tuple Based Planning

We next discuss threshold query processing that takes a selection-join-projection query

and returns tuples that satisfy the query with a probability over the threshold λ (i.e., their

tuple existence probabilities > λ). A naive approach would be to perform probabilistic

query processing as in earlier work and then apply the threshold filter at the end of the

processing, wasting a lot of computation on nonviable answers. To prune nonviable answers

early, we push the threshold λ earlier to each relational operator in the query plan, and apply

our techniques from the previous sections as follows:

R onθ,λ S = σθ,λ(R×θ,λ S), σθ,λ(T) = σθ,λ(σ̃θ,λ(T)),

where R ×θ,λ S is the filtered cross product using a join index (Section 2.3), σ̃θ,λ(T) is

the fast filter that prunes tuples with a relaxed condition (Section 2.2.2), and σθ,λ(T) is
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the exact selection that evaluates the condition using integrals but possibly with reduced

dimensionality (Section 2.2.1). For continuous uncertain attributes, projections do not

involve duplicate elimination because there does not exist an finite set of values to project

onto. Hence, projections do not change tuple existence probabilities and are not further

discussed in this work.

Tuple Selectivity
id r q r u r r < 24 q r2 + u r2 > 0.25
1 N(27.0, 2.2) N(1.2, 2.2) N(0.1, 1.1) 0.08 0.95
2 N(21.6, 0.1) N(0.1, 0.1) N(−0.1, 0.1) 1 1.74× 10−4

Table 2.1: Illustration of per-tuple based selectivity with Q1 and two tuples: each tuple has
three normally distributed attributes, r, q r, and u r; for each predicate in Q1, these tuples
have different selectivities.

Besides our techniques for joins and selections separately, there remains a query opti-

mization issue: What is the most efficient way to arrange filtered cross products, fast filters

for selections, and exact selections in a query plan? We consider both the cost and selectivity

of operators as in a traditional query optimizer. However, several key differences exist in the

new context: (1) Due to the use of integrals, exact selections can have high costs and should

be treated as “expensive predicates”. (2) The selectivity of an operator captures its filtering

power on the input data. Under attribute uncertainty, selectivity needs to be defined on a

per-tuple basis. (3) The above property further implies that the optimal order of evaluating

operators also varies on a per-tuple basis.

Example 2.4.1. Consider Q1 and two tuples t1, t2 in Table 2.1. For predicate θ1 :“r<24”,

let X1
r and X2

r be the random variables for t1.r and t2.r correspondingly. X1
r ∼ N(27, 2.2),

so Pr[X1
r < 24] = 0.08; X2

r ∼ N(21.6, 0.1) and Pr[X2
r < 24] ≈ 1. So t1 has a much

lower probability of satisfying θ1, hence more likely to be filtered. To the contrary, for

predicate θ2 :“q r2+u r2>0.25”, t2 has a much lower probability to pass θ2 than t1. Thus,

the optimal evaluation order is θ1 followed by θ2 for t1, and the reverse for t2.
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Due to the above reasons, we advocate a per-tuple, dynamic query optimization approach

with the following features: (1) A query plan is determined for each tuple rather than a

whole set. (2) The query plan arranges all operators based on both cost and selectivity.

(3) Such planning is performed at a low cost for each tuple. Traditional query optimizers

consider a static query plan for a set of tuples [20], hence not suitable for our problem. Data

stream systems [7, 13] can adapt query plans dynamically but only estimate selectivity for a

set of tuples and lack support of uncertain attributes. Recent work on probabilistic threshold

query optimization establishes algebraic equivalence for query optimization, but still uses

static query plans and further ignores operator costs in query planning [73].

In the rest of this section, we detail our new query optimization approach. We focus on

the data stream setting: like in existing systems [7], some streams can have indexes built

on while other streams are used to probe these indexes. We assume that the decision of

which indexes to build has been made separately and focus on query optimization only. Our

approach can be applied to stored data by viewing the result of a file scan as a data stream.

To begin with, we define the selectivity, denoted by Γ, of a selection on each tuple t and

the selectivity of a filtered cross product between a probing tuple t and a set S:

Γσ
θ,λ(t) = Pr[Rθ(Xt)], Γ×θ,λ(t, S) =

num. true matches from S
|S|

Query optimization requires the knowledge of both cost and selectivity of each operator.

Our approach combines offline measurements of unit operation costs, which depend only on

the types of predicates, and online selectivity estimation, which depends on the attribute

distribution in each tuple.

2.4.1 Cost and Selectivity Estimation

The unit operation in an exact selection is an integral. The integration cost depends on

the dimensionality of integration and the shape of the selection region. For instance, we can

benchmark 1-dimensional integrals on intervals, 2-dimensional integrals on rectangles and
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circles, and higher-dimensional integrals on hyper-rectangles and circles. Regarding the

filters for selection, if they use known inequalities, then they have negligible costs. Filters

that use optimization techniques such as the Lagrange multiplier may have a non-trivial

cost, which can again be measured offline based on the types of predicates. Finally, the unit

operation in a filtered cross product is to retrieve a match from the index for each probing

tuple. Its cost can be estimated based on the height of the tree and the cost of the overlap

test at each level of the tree.

We then define the selectivity, denoted by Γ, of a selection on each tuple t and the

selectivity of a filtered cross product between a probing tuple t and a set S:

Γσ
θ,λ(t) = Pr[Rθ(Xt)], Γ×θ,λ(t, S) =

num. true matches from S
|S|

The selectivity of an operator can be estimated only when a tuple arrives with its attribute

distribution. For a selection, we estimate its selectivity for a tuple, Γσ
θ,λ(t), by taking the

average of its upper and lower bounds. Recall that we showed many upper bounds derived

from statistical inequalities in Section 2.2. Actually we can also obtain lower bounds

using appropriate inequalities. For instance, given a one-dimensional range predicate (a, b),

Markov’s inequality can be applied when 0 ∈ (a, b) and yields a lower bound on the

selectivity. Chebyshev’s and Cantelli’s inequalities can be applied similarly. Finally, to

estimate the selectivity of a filtered cross product for a probing tuple, our current solution

is to perform the index lookup to count the matches but without retrieving the complete

tuples.

2.4.2 Online Query Planning and Execution

In our approach, online query planning and execution for each tuple interleaves selectivity

estimation and ordering of operators in iterations. This is because while we can estimate

the selectivity of predicates on a base tuple r, we cannot estimate the selectivity of the join

predicate on r and s until the tuple including r and s is produced with the new joint attribute
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Figure 2.3: Illustration of tuple-based query planning.

distribution. Moreover, we cannot afford to perform an exhaustive search of the global

optimal plan as in earlier work [20] due to per-tuple based planning. Therefore, we break

a query into several blocks that each involve at most one join. For each query block, we

repeat the following steps:

Step 1: Estimate selectivities of selections. We take all predicates specified on an input

tuple t, and group these predicates into independent groups as described at the beginning

of Section 2.2. For each independent group of predicates θi, we then allocate a selection

operator σi(t). We estimate the selectivity of each selection by taking the average of its

lower and upper bounds.

Step 2: Rank and execute filters and selections. We expand each selection with

all possible filters: σi(t) = σi(σ̃ij(· · · σ̃i1(t))). If there exist fast filters based on known

statistical inequalities, we apply all of them as they have negligible costs; otherwise, we

apply the filter using constraint optimization. We rank filters and selections in ascending

order of selectivity over cost. Filters are ranked before the corresponding selection if they

have a lower cost; otherwise, they are unnecessary and should be removed from the plan.
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Then we execute the filters and selections in order. The tuple starts with the existence

probability Ep = 1 and a query threshold λq. A selection with the predicate θ reduces the

tuple existence probability to E′p =Ep ·Pr[Rθ(Xt)]. A filter estimates an upper bound Ẽ′p.

The tuple is dropped whenever E′p<λq or Ẽ′p<λq.

Step 3: Choose a relation to join with. For all relations that have not been joined with

t, we probe all available indexes and count the number of matches of t from each index. We

then multiply the number of matches with the cost of an index lookup, and finally choose the

join index that yields the smallest value of the product. If we have exhausted join indexes,

we simply choose the relation with the smallest size and use a full scan as the access method.

Step 4: Execute the (filtered) cross product. Once we have chosen to join the tuple

t with an relation S, we execute the filtered cross product using the index on S if existent,

or a cross product using a file scan on S. Once a new tuple t′ is emitted, we mark all join

predicates relevant to t′ as selection predicates, and repeat the above four steps for the next

query block.

Example 2.4.2. Figure 2.3 shows the planning for tuple t1 from relation R. t1 has to pass

three selection predicates, a join with relation S with three join predicates, and a join with

relation T with two join predicates. These predicates and their estimated costs are shown in

the shaded rows of the tables. In step 1, the selectivities of three selections are entered into

the top table. In step 2, the selections are ranked with θ2 first, then θ1, and finally θ3 (the

filters are not shown in this example). In step 3, we choose the join with S using the second

predicate because there is a join index and the expected cost of retrieving matches is the

lowest. In step 4, tuple t1 is paired with three matches from the join index. The three new

tuples are sent back to the to-process pool for further processing. For these tuples, the join

predicates associated with S become selection predicates, while those associated with T

remain as join predicates.
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2.5 Experimental Evaluation

In this section, we evaluate our threshold query processing and optimization techniques.

To demonstrate our performance benefits, we compare to the state-of-the-art techniques for

indexing continuous uncertain data [23, 24] and for optimizing threshold queries [73]. Our

evaluation uses real data and queries from the Sloan Digital Sky Survey (SDSS) [92]. The

released data archive takes about 1GB. For experiments on selections and joins, we used the

Star table, which has 57328 tuples and each column of uncertain attribute is about 1MB. We

consider Q1 and Q2 for experiments on query planning, both of which involve the Galaxy

table with 91249 tuples.

2.5.1 Techniques for Optimizing Selections

Expt 1: We first evaluate our general filtering technique described in Section 2.2.2.1.

We consider a selection “100< rowc<100 + δ and 100< colc<100 + δ”, which selects

stars located in a square region anchored at the lower left vertex (100, 100) and with side

length δ. We can directly test the overlap between the selection region and each tuple’s

Chebyshev region due to their regular shapes.

We first set the threshold λ = 0.7 and varied δ from 200 to 2000, which approximately

covers selectivities from 0% to 100%. We report the time cost per tuple for evaluating the

selection with and without filters (baseline) in Figure 2.4(a). The baseline has a constant

high cost because it computes a 2-dimensional integral for each tuple, no matter what δ value

is given. In contrast, using our filter the per tuple cost is very low for small δ values because

most tuples can be filtered without computing integrals. As δ grows, more tuples pass the

filter and invoke integrals for exact evaluation. The two curves meet when δ = 2000 and

98% tuples satisfy the predicate.

Expt 2: We also evaluate the effectiveness of the fast filters from Section 2.2.2.2. Since

they have negligible costs, we focus on how tight their upper bounds are, i.e., their filtering

power. We here use synthetic data with various controlled properties in microbenchmarks.
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Figure 2.4: Experimental results for selections.

Consider predicates on a single attribute (Category 1 in Section 2.2.2.2): (i) a< x<b,

(ii) a1< x<b1 or a2< x<b2. To have workloads with controlled properties, we generated

synthetic data where the mean and variance of the normal distribution for each tuple are

randomly chosen from (-50,50) and (0,10) respectively. For the predicate (i), the Cantelli

filter always gives a tighter upper bound than the Chebyshev filter, so we only compare

Markov with Cantelli and use the exact probability as the baseline. We set the interval

length to be 10 and vary the starting point of the interval from -150 to 150. As shown in

Figure 2.4(b), Cantelli’s upper bound is much tighter than Markov and close to the exact

probability, which agrees with known statistical results. For predicate (ii), we compare

all three filters as they may have tradeoffs. From Figure 2.4(c), we observe similar trends
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as before. In addition, the upper bounds by the Chebyshev filter lie in between those by

Markov and Cantelli on the average (though for specific tuples, the order of the filters may

be otherwise).

We next consider predicates in a quadratic form: “x2+y2<δ2” (Category 2). We used a

synthetic trace with attributes x and y whose mean and variance are uniformly distributed

in (0,100) and (0,10) respectively. We compared the Cantelli filter which transforms the

quadratic form to a single random variable, with the general multi-dimensional filter that

uses the Lagrange multiplier for constraint optimization (for this predicate, there is a fast

solver). We varied δ from 10 to 100. Figure 2.4(d) shows that both the Cantelli filter and

general filter capture the trend of the exact probability and offer tight bounds, with Cantelli

being slightly better. They are both over 400x faster than integration, hence good choices

for quadratic predicates.

2.5.2 Techniques for Optimizing Joins

We implemented a state of the art join index on continuous uncertain attributes [24, 23],

called X-BOUND join index. It is based on a “loose” necessary condition for the join

predicate to be true, hence resulting in poor performance as we demonstrate soon. Below

we describe it in more details:

Definition 6 (x-bound). For a random variable Y with density function f and domain [l, u],

given 0 ≤ x ≤ 1, the x-bound of a distribution consists of two values, called left-x-bound

(lx) and right-x-bound (ux), where
∫ lx

l f (y)dy = x and
∫ u

ux
f (y)dy = x.

Consider Ronθ,λS, a necessary condition for Pr[|Xr−Xs|≤δ] ≥ λ extracted from [23]

is us,λ ≥ lr − δ and ls,λ ≤ ur + δ, where (lr, ur) is the domain of Xr, ls,λ and us,λ are the

left-λ-bound and right-λ-bound for Xs. Assume an join index is built on S. Given λ, for

each tuple s, insert the search key (ls,λ, us,λ) into an R-tree. When a probing tuple r arrives,

the query region is {(ls,λ, us,λ) | ls,λ ≤ ur + δ, us,λ ≥ lr − δ}.
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Figure 2.5: Experimental results for joins.
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For a probing tuple r with domain (−∞,+∞), the above necessary condition has

no power in guiding the search of (ls,λ, us,λ). We modify the domain of a normally dis-

tributed random variable to be (µ− 5σ, µ + 5σ), and modify the domain of a GMM to be

(F−1(0.00001), F−1(0.99999)), where F−1 is the inverse cdf of the random variable.

Expt3: Band Join of Gaussians. We first study the filtering power and efficiency of our

index for Gaussians, called GJ for short, and x-bound. We consider a join “|R.u− S.u| < δ”

with the threshold λ = 0.7 and varied δ.

We first evaluate the join in the stream setting: A tumbling window of size W is

applied to both R and S inputs; each window contains a set of tuples. An index is built

in-memory on the current window of S. Each tuple in the current R window probes the

index after it is constructed. The retrieved (r, s) pairs are finally validated for true matches

by computing an integral of the joint distribution. Hence, there are three cost components

in this windowed join: index construction, index lookup, and validation using integrals.

We observe consistently that the validation step is the dominating cost as integration is

indeed very expensive. Below we report results using W =500 (other W sizes reveal similar

trends).

Figure 2.5(a) shows the number of candidates returned by our GJ index and the index

as well as the number of true matches. We can see that GJ returns exactly the true match

set because it uses a sufficient and necessary condition for the join predicate. In contrast,

the x-bound index returns much more candidates. The difference becomes smaller as δ

increases, because more tuples become true matches; when δ = 100, almost all tuples in the

indexed relation are true matches. Figure 2.5(b) shows the efficiency of the two indexes. GJ

significantly outperforms because there is no need to validate the candidates returned from

the index.

We then evaluate the join in a disk setting, where indexes are pre-computed and stored

on disk. Due to the limited size of the real data, we replicated it to 500MB with 28 million

tuples. The R-tree took 1.3GB while the memory size was set to 1GB in our Java system.

41



Since indexes are pre-constructed, their construction costs are not reported. Figure 2.5(c)

shows the number of candidates for each probing tuple. While the trend appears similar to

that in the stream setting, the absolute number for the y-axis is much larger. This determines

the drastic difference between GJ and in time cost shown in Figure 2.5(d). This difference

comes from both the validation cost and the I/O cost as returns many false positives.

Expt 4: Band Join of GMMs We then evaluate our join index for general distributions

modeled as GMMs (called GMJ for short) and compare to . As the SDSS uses Gaussians

only, we generated a synthetic trace of GMMs for this experiment. The attribute u in each

tuple has two Gaussian components; the coefficient, mean and variance of each component

are uniformly drawn from (0,1), (0, 100), and (0,10) respectively. We report the results

using the stream setting with W=500. As Figure 2.5(e) shows, both indexes return more

candidates than the true matches because they are both based on necessary conditions for the

join predicate. But GMJ is always better than until they meet at δ=100, where the selectivity

is near 100%, because uses a “looser” condition . Since validation is the dominating cost,

the time cost follows the same trend as the number of candidates in Figure 2.5(e).

2.5.3 Per-tuple Based Planning and Execution

We finally evaluate our dynamic per-tuple planning technique on Q1 and Q2. We

compare it with static query planning [73], where a fixed plan is chosen for each query

based on the selectivities of predicates over the entire data set—we give such full knowledge

to the static query optimizer, hence showing its best performance. Query Q1 uses two

predicates: θ1 : r < δ1; θ2 : q r2 + u r2 > δ2
2 . Query Q2 uses two join predicates:

θ3 : |(G1.u−G1.g)−(G2.u−G2.g)| < δ3 and |(G1.g−G1.r)−(G2.g−G2.r)| < δ3;

θ4 : (G1.rowc−G2.rowc)2 +(G1.colc−G2.colc)2 < δ2
4 . We design two query templates

based on Q1 and Q2 on the Galaxy view in SDSS and show them in Figure 2.6. Basically

all tuples will be routed to the quick filters whenever the filters can be applied and there is

no specific order of applying filters, as their costs are all very low. After that, the dynamic
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δ1 δ2 δ3 δ4

Value 20 22 24 0.2 0.5 1 0.5 1 2 400 800 1600
Selectivity(%) 8.3 61.9 95.9 44.3 14.5 6.9 40.1 81.7 99.4 45.4 83.7 100

Table 2.2: Selectivity for different δi(i = 1 · · · 4).

optimizer decides the order of evaluating exact selection predicates, shown by a box in

Figure 2.6. We vary the parameters δ1 and δ2 to control selectivities of predicates for Q1

and δ3 and δ4 for Q2, which affects planning.

σθ2

σθ1

σθ2

σθ1

G

~

~

σθ4

σθ3

σθ4

σθ3

~

~

Xθ4,λ

G1 G2
Q1 Q2

Figure 2.6: Plan space in dynamic planning for Q1 and Q2.

Given various values of δi, the selectivity of each predicate averaged over the entire data

set is shown in Table 2.2. The static query plan is decided by ordering predicates with

lowest selectivity first.

Expt 5: We first consider Q1 and vary δ1 and δ2. Table 2.3 shows the time cost per

tuple for static, dynamic and optimal planning. The optimal planning loads the optimal plan

for each tuple (generated offline) into memory before it runs. The plan space for dynamic

planning is shown in Figure 2.6. Our dynamic query planning outperforms the static one

in all cases, with over 50% gains in most cases and is very close to the optimal planning.

The reasons are three-fold: (1) Each tuple is routed based on its distribution and resulting

selectivities of predicates. A tuple may be sent to a predicate that is overall not selective but

has a larger chance to filter this tuple. (2) The predicate cost is taken into consideration. It is
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δ1 δ2 static static dynamic performance optimal
order time (ms) time (ms) gain time (ms)

20 0.2 [1 2] 0.6 0.181 70% 0.177
20 0.5 [1 2] 0.6 0.068 89% 0.067
20 1 [2 1] 9.6 0.050 99% 0.048
22 0.2 [2 1] 18.2 7.216 60% 7.007
22 0.5 [2 1] 13.9 1.515 89% 1.482
22 1 [2 1] 9.6 0.351 96% 0.348
24 0.2 [2 1] 18.2 15.613 14% 15.287
24 0.5 [2 1] 14.4 6.390 56% 6.334
24 1 [2 1] 9.6 2.264 76% 2.236

Table 2.3: Static planning vs Dynamic planning for Q1.

δ3 δ4 static static dynamic performance
order time (s) time (s) gain

0.5 400 [3 4] 28.0 4.25 85%
0.5 800 [3 4] 80.1 12.1 85%
0.5 1600 [3 4] 142 22.9 84%
1 400 [4 3] 149 16.7 89%
1 800 [3 4] 105 49.3 53%
1 1600 [3 4] 187 97.2 48%
2 400 [4 3] 160 72.1 55%
2 800 [4 3] 486 217 55%
2 1600 [3 4] 487 432 11%

Table 2.4: Static planning vs Dynamic planning for Q2.

possible for a tuple to be routed to a predicate with only a modest chance to filter the tuple

but has a very low cost. (3) Our fast filters can drop tuples earlier at a lower cost than using

the exact integration to evaluate predicates.

Expt 6: We next consider Q2 and vary δ3 and δ4. For this query, a join index is

constructed for G2 on the “rowc” and “colc” attributes for each window of size W. Table 2.4

shows the time cost of joining W tuples from the input G1 with W tuples from G2.

To evaluate the join predicates θ3 and θ4, all tuples need to be routed to probe the (only)

join index first. Moreover, the evaluation costs of δ3 and δ4 are close due to the use of

2-dimensional integrals after linear transformation. The dynamic planning is better than the

static one in all cases due to the reasons mentioned previously. As we increase δ3 and δ4,

44



more tuples satisfy both predicates. So the difference between the two schemes decreases

and is mainly due to the benefit of using fast filters. There are several other interesting

observations: (1) When δ3 = 0.5, the static optimizer always evaluates θ3 first; the dynamic

optimizer tends to choose θ3 for most tuples as well. This is because for each tuple, most

candidates returned by our index are true matches, then the selectivity of each pair of

probing tuple and its candidate w.r.t. θ4 will be estimated to be very close to 1. Since both

optimizers route tuples to θ3 as we increase δ4, our improvement is mainly gained by the

benefit of using fast filters. (2) When δ3 = 1 and δ4 = 400, the static optimizer evaluates

θ4 first, which is not a wise choice, because as mentioned above, most candidates returned

by the index are true matches, then the evaluation of θ4 can only filter very few tuples, and

most tuples will be passed on to θ3 next. In contrast, the dynamic optimizer tends to route

tuples to θ3 as discussed above and fewer tuples will be passed on to θ4. (3) When δ3 = 2

and δ4 = 1600, according to the statistics, 80% of tuples satisfy both predicates and the

difference between the two planning schemes reduce. The reason for the performance gain

is mainly because the dynamic optimizer makes decision based on the content of the tuple

and our filters can drop some tuples early.

2.6 Related Work

Most work on probabilistic databases models uncertain data using discrete random

variables and evaluates queries based on the possible worlds semantics where a probabilistic

database is defined as a probability distribution over numerous possible databases and a

query on a probabilistic database returns a probability distribution of the query results on all

possible databases.(e.g., [11, 30, 101]). Recent work has argued for using new techniques

natural to continuous random variables [91], and showed significant performance gains

of such techniques over discretization or Monte Carlo simulation for evaluating relational

operators [98] and for ranking [61]. CLARO [96, 98] and ORION [73, 86] are two state-of-

the-art systems that provide native support of queries on continuous uncertain data (without
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using discretization or sampling). CLARO proposes a GMM based model and algorithms

to compute attribute distributions and tuple existence probabilities for inclusion in query

answers. However, it does not consider the threshold in query processing; a naive extension

that applies the threshold filter at the end of query processing wastes a lot of computation on

nonviable answers. ORION has general evaluation strategies for selection-projection-join

queries, but uses heuristics for equivalent plans only based on the selectivity and hence lacks

optimizations of queries with complex predicates such as those in Q1 and Q2. Furthermore,

its query optimizer uses simple static query plans for any tuples with any distributions and

results in inefficient execution, which we show in Section 2.5.

2.7 Conclusions

We presented techniques to optimize threshold query processing on continuous uncertain

data by (i) expediting selections by reducing dimensionality of integration and using faster

filters, (ii) expediting joins using new indexes, and (iii) using dynamic, per-tuple based

planning that considers both cost and selectivity of operators. Results using the SDSS

benchmark show that: (i) For selective queries, the devised filters can drop many non-viable

tuples with negligible time cost compared to expensive integration cost. In our experiments

on 2-dimensional queries, the performance gain is up to 66x for rectangular queries and 400x

for circular queries. (ii) Our indexes on continuous uncertain data modeled by Gaussian

distributions returns exactly the true match, which offers 1.4x∼7.1x performance gain over

X-BOUND in the stream setting and 14x∼570x gain in the disk setting. (iii) Our dynamic,

per-tuple-based query planner gets over 50% performance gains over the state-of-the-art

query planner in most cases and is very close to the optimal planning in all cases.
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CHAPTER 3

SUPPORTING DATA UNCERTAINTY IN ARRAY DATABASES

In this chapter, we still focus on the same type of query as in Chapter 2, i.e., threshold

selection-projection-join queries on uncertain data modeled by continuous random variables,

but in array databases which has gained popularity for scientific data processing recently

due to performance benefits over relational databases.

3.1 Array Model and Algebra

In this section, we provide background on the array model and array algebra proposed

recently [18, 89]. Furthermore, we extend the array model to accommodate uncertain data

and formally define the semantics of array algebra under the uncertain data model.

3.1.1 Array Data Model

Background on the Array Model. An array database contains a collection of arrays.

Each array is represented as A(Dd; Vm), where Dd denotes the d dimension attributes that

define the array, and Vm denotes m value attributes. We sometimes also use the shorthand,

Ad, to denote a d-dimensional array. Consider an example in the Digital Sky Survey domain:

A2(x loc, y loc; luminosity, color) defines a two-dimensional array with two dimension

attributes (x loc, y loc) and value attributes (luminosity, color). If a dimension attribute is

discrete-valued, the model requires a linear ordering of its values. If a dimension attribute is

continuous-valued instead, a user-defined mapping function M (e.g., the floor function) is

assumed available for discretizing the domain into an ordered set of values. These ordered

values are used as the index values in a given dimension, where the number of index values

is determined by the domain size and the user function M.
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In an array Ad, a unique combination of the index values of the d dimensions defines a

cell. Array cells are addressed by the index values of dimensions, e.g., a single cell addressed

by A[1, 2], or multiple cells by A[2 :6, 1 :4]. Since multiple values of a dimension attribute

can be mapped to the same index value, a cell can contain multiple tuples. Tuples include

the value attributes and in the continuous case, the dimension attributes as well since the

attribute values offer differ from the index values. To draw an analogy with the relational

model, we can translate Ad to a relation R(D1, . . . , Dd, V1, . . . , Vm) by treating dimension

attributes as regular value attributes and storing tuples in no particular order.

An Array Model for Uncertain Data. We next extend the array model to accommodate

uncertain data. When array data are uncertain, the dimension attributes can be uncertain (e.g.,

the x-y locations of a galaxy follow a bivariate Gaussian distribution); the value attributes

can be uncertain (e.g., the luminosity of a galaxy follows a Gaussian); or both groups of

attributes can be uncertain.

Uncertainty of value attributes, referred to as value uncertainty, is easy to support: we

store a (joint) probability distribution of the uncertain value attributes, instead of fixed

values, in each tuple.

Uncertainty of dimension attributes is harder to support because a dimension attribute

with multiple possible values can cause a tuple to belong to multiple cells in an array,

referred to as position uncertainty. Consider a tuple t with uncertain dimension attributes.

When the tuple position follows a (joint) discrete distribution, it can be stored in the cells

corresponding to the possible values in the distribution. When the position follows a (joint)

continuous distribution, instead, enumerating all values in the distribution is not possible.

Hence, we define the tuple’s possible range Rt as a hyper-rectangle within which the tuple

existence probability is (approximately) 1. More specifically, we can construct Rt by taking

t’s marginal distribution, fi, of each uncertain dimension. For example, if fi is a uniform

distribution U(a, b), the possible range is simply [a, b] and the existence probability within

this range is 1. If fi is a normal distribution N(µ, σ), the possible range (µ−3σ, µ+3σ)
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achieves a probability 0.997. If fi is an arbitrary distribution with mean µ and standard

deviation σ, we can define the possible range to be (µ− kσ, µ + kσ) with a sufficiently

large k chosen based on Chebyshev’s inequality. As convention in this work, we always

“round up” the possible region Rt to the boundary of cells, i.e., to be the smallest set of cells

that contain Rt.

In this work, we focus on the position uncertainty which has not been sufficiently

addressed before. Our solution is compatible with existing techniques on value uncertainty

because we aim to retrieve all tuples that overlap with a query region on the dimension

attributes with a required probability (formally defined below). Once such tuples are

returned as a set, uncertain value attributes can be handled by any techniques for relational

databases [71, 93].

Example 3.1.1. Figure 3.1 shows an array, A(x loc, y loc; luminosity), where continuous

uncertain attributes, x loc and y loc, are dimension attributes, and discretized by the f loor

function for the index values. Tuple t0 has fixed values for x loc and y loc and hence

belongs to a single cell. Tuple t1, however, has a bivariate Gaussian distribution. Therefore,

although its mean value is in cell A[1, 2], with a significant probability it can reside in any

cell in a possible range, A[0 :5, 0 :3], marked by the red box in the figure. Similarly, t2 also

has a possible range, A[2 :6, 1 :4], due to uncertain x loc and y loc. Note that Figure 3.1

is only a partial view of an array for illustration purposes. The full view of the logical array

does not necessarily starts with (0, 0) and can be unbounded. The top-right corner in

Figure 3.1 shows the corresponding relation of array A in the relational model.

3.1.2 Array Algebra

For multidimensional arrays, SciQL [56, 105] and the Array Query Language (AQL) [80]

are two popular high-level declarative languages, while the Array Functional language

(AFL) [80] is a functional language with a list of array operators. Since our work focuses on

query processing, below we survey directly the operators in AFL. As those operators are
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t1: possible range A[0..5,0..4]

t2: possible range A[2..6,1..4]

Figure 3.1: Array A with dimension attributes, x loc and y loc, and the value attribute
luminosity, all of which can be uncertain.

proposed for tuples with deterministic values, we also extend their semantics to work under

the uncertain data model, as shown in the following two categories.

Value-based operators operate only on the value attributes of tuples. An example is Filter,

which applies predicates to the value attributes of tuples stored in the array. Another

example is Project, which projects out some value attributes from existing tuples. Since the

above operators operate only on the value attributes of tuples, their semantics of uncertain

data processing under the array model is the same as the semantics under the relational

model; The semantics of the latter is already defined in previous work [97].

Structure-based operators operate on dimension attributes and optionally on value attributes

as well. The common ones include:

(1) Subarray takes an array A and a condition θ on the dimension attributes, and re-

turns a new array with the tuples that satisfy the condition θ. Revisit our example array.

Subarray(A, 1.5 ≤ x loc ≤ 3.3 and 2.1 ≤ y loc ≤ 4.8)) will first retrieve tuples from

the array block A[1 : 3, 2 : 4], and then filter those tuples based on the precise condition,

1.5 ≤ x loc ≤ 3.3 and 2.1 ≤ y loc ≤ 4.8. The output array always has the same di-

mensions as the input, but usually fewer cells and tuples. Subarray can be translated into

selection in relational algebra, i.e., Subarray(A, θ) ≡ σθ(RA), where RA is the relational

representation of the array.
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When the dimension attributes addressed in the condition θ are uncertain, Subarray is

semantically equivalent to selection on the uncertain dimension attributes in the relational

setting. Hence, we have the following definition:

Definition 7 (Probabilistic Subarray). Given an array Ad, condition θ on uncertain dimen-

sion attributes, and a user-specified probability threshold λ ∈ (0, 1), Subarray(A, θ, λ)

returns an array Bd where the cell B[i1, . . . , id] contains each tuple t from A[i1, . . . , id]

that satisfies the condition θ with a probability at least λ, i.e.,
∫

θ ft(x)dx ≥ λ, where ft(x)

is the tuple’s probability density function on the the uncertain dimension attributes.

Revisiting the above example, Subarray(A, 1.5 ≤ x loc≤ 3.3 and 2.1 ≤ y loc ≤ 4.8).

When x loc and y loc are uncertain, we can no longer restrict the search to only the block

A[1 : 3, 2 : 4]. It is because tuples that belong to other cells, e.g., A[1, 5], may satisfy the

Subarray condition with a probability larger than λ. Based on the formal semantics, the

entire array needs to be searched.

(2) Structure-Join (SJoin) in the array model takes as input an array Ad, a second array Bd

of the same dimensionality, and a join condition θ. SJoin(A, B, θ) returns an array C2d,

where the cell C[i1, · · · , id, id+1, · · · , i2d] contains the result of θ-join between the tuples

in A[i1, · · · , id] and the tuples in B[id+1, · · · , i2d]. The equivalent expression in relational

algebra is, RA onθ RB, where RA and RB are the relational representations of A and B.

The join condition, θ, has a few common forms: (1) If the dimension attributes are

discrete-valued, θ usually specifies equality comparison on the dimension attributes, as

in the AFL proposal [80].1 (2) If the dimension attributes are continuous-valued, equi-

join is seldom used. Instead, θ takes a form of proximity join. A common form is linear

proximity (a.k.a. l1-distance) join, |A.di −B.di| < δ for each dimension attribute di. The

1In this case, the output array, C = SJoin(A, B, θ), can be simplified to have the same dimension-
ality as A and B, where each cell C[i1, . . . , id] contains the result of A[i1, . . . , id] onθ B[i1, . . . , id].
This definition is consistent with equi-join in relational algebra where only one copy of the common
join attributes is retained.
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join condition essentially defines a band region for each pair of join attributes. As noted

earlier, we focus on continuous uncertain data in this work and hence proximity join in later

technical sections.

Next we consider the case that the continuous dimension attributes of arrays A and

B are uncertain. While the tuples have default positions in the array based on their mean

values, they may belong to multiple cells with non-zero probabilities. In the face of position

uncertainty, the join between A and B must return all pairs of tuples that satisfy the join

condition θ with a significant probability. To do so, we leverage the semantics of cross-

product in the above SJoin definition, which involves pairing each cell in A with each cell

in B and then pairing the tuples within those cells. More specifically, we define probabilistic

Structure-Join as follows:

Definition 8 (Probabilistic Structure-Join). Given Ad and Bd, a join condition θ, and

a probability threshold λ, SJoin(A,B, θ, λ) returns an array C2d where C[i1, · · · , id,

id+1, · · · , i2d] contains the result of probabilistic θ-join, A[i1, · · ·, id]onθ,λ B[id+1, · · ·, i2d]

= {(t1, t2)|t1∈A[i1, · · ·, id], t2 ∈ B[id+1, · · ·, i2d],
∫∫

θ ft1(x) · ft2(y)dxdy ≥ λ}, where

ft1(x) and ft2(y) are the probability density functions for t1 and t2, respectively.

(3) Regrid-Aggregation partitions an input array into non-overlapping blocks, and for each

block, applies an aggregate function to all the tuples in the block. The output array has

one cell for each block which contains the aggregate value computed. It can be viewed as

repeated application of the Subarray operation to extract each block and then to compute the

aggregate within each block.

When the dimension attributes are uncertain, one can use the Probabilistic Subarray

operator to extract the tuples that belong to each block with non-zero probabilities (a superset

of those that are physically stored in the block). Note that even if a tuple belongs to a block

with a small probability, if its aggregate attribute has a large value, it can still contribute a

modest value, which is the product of its attribute value and existence probability, to the
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aggregate. Hence, the probability threshold for tuple existence in Subarray should be set to

0 in theory, or a small value in practice.

(4) GroupBy-Aggregation takes three arguments including an input array Ad, a list of

grouping dimensions Gd1 , where d1 ≤ d, and an aggregate function. Again, it can be

viewed as repeated application of Subarray to construct array blocks corresponding to the

groups and then computing the aggregate within each block.

As shown above, Subarray and Structure-Join are the two most important primitives

in array algebra. Hence, we focus on efficient implementation of them under position

uncertainty in in the rest of the work.

3.2 Native Support for Subarray

In this section, we focus on the Subarray operator under position uncertainty. More

specifically, we focus on Subarray(A, θ, λ), where θ =
∧d

i=1(ai ≤ A.di ≤ bi) defines

a hyper-rectangle in the d-dimensional space. In our work, other predicate shapes are

supported by first relaxing them to a hyper-rectangle and then validating them using exact

integration.

Since Subarray is equivalent to selection in relational algebra, there are two options

for implementation: The first option is to translate Subarray to selection in the relational

setting. When the dimension attributes are uncertain, to avoid scanning all tuples in the

database, existing work has built various indexes based on statistical quantities such as

quantiles [21, 22, 93] and moments [71] of tuple distributions. However, these indexes may

not be effective when the filtering power is low and can trigger many index I/O’s, as we

will show in Section 3.4. The second option is to build native support of Subarray in array

databases where logical and physical localities are aligned. For instance, Subarray that

exploits logical locality of data, e.g., looking for adjacent array cells from a point, may need

to retrieve only a few relevant physical storage units called chunks. This effect of exploiting
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Figure 3.2: Alternative storage and evaluation strategies for tuples with uncertain dimension
attributes.
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physical locality in an array database is similar to using a clustered primary index on the

tuples in a relational database, but without having to build the index.

Hence, in this work we focus on native support of array operations on uncertain data.

The task is challenging due to position uncertainty: each tuple can belong to multiple cells

with non-zero probabilities and such cells form the tuple’s “possible range” as defined in

Section 3.1.1. The evaluation of Subarray takes two steps: (1) I/O step: the cells that store

any tuple whose possible range overlaps with the query region are read from disk. (2) CPU

step: the exact existence probability in the query region is computed for each retrieved tuple

based on its distribution and compared with the probability threshold. Basically, the first

step ensures that no true results are missed and the second step guarantees that only the true

results are returned. We aim to reduce both the number of chunks loaded (I/O cost), and the

number of costly integrations to compute tuple probabilities (CPU cost) for all the tuples in

the loaded chunks.

3.2.1 Storage and Evaluation Schemes

Below we propose a few schemes with the guarantee that tuple t can be retrieved if its

possible range overlaps with a query region.

Store-All: One solution is to store a copy of the tuple in each cell of the tuple’s possible

range. Figure 3.2(a) depicts the storage of two tuples, t1 and t2, where t1 is replicated in

its possible range A[0:5, 0:3] (including the red and yellow cells), and t2 is replicated in

A[2:6, 1:4] (the green and yellow cells), with the overlap region marked in yellow. A query

region, A[2:2, 3:3], is marked by a solid blue box in Figure 3.2(b). A major advantage of

this scheme is that we can execute the query region directly on the array, without any missed

results. The disadvantages include possibly high storage overheads and high I/O costs in

querying because each logical cell may contain many physical chunks to store the replicated

tuples.
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Store-Mean: To reduce storage overheads, we next consider storing a tuple only once

based on the mean values of its dimension attributes. However, directly running Subarray

on such storage will lead to missed results: tuples whose mean values are outside the query

region but whose possible ranges overlap with the region will be missed. To fix the problem,

the query region must be expanded. For ease of composition, given a region Q we define

C(Q) to be the minimum set of cells that cover Q.

Definition 9 (Expanded Query Region). Given a hyper-rectangle query region Q, its ex-

panded query region Q̃ is a super hyper-rectangle Q̃ (⊇ Q) such that any tuple whose

possible range overlaps with Q has at least one copy stored in C(Q̃).

It is easy to see that reading all cells in C(Q̃) in the I/O step can avoid missed results.

However, the size of Q̃ varies with the storage scheme. For store-all, the expanded query

region Q̃ = Q covers the least number of cells. For store-mean, without any auxiliary

information, Q̃ should cover the whole array in the worst case. To constrain Q̃, we can

augment each cell with upper and lower bounds for each dimension, indicating the distance

to travel along each dimension in order to find all tuples that could belong to that cell—we

call these bounds the upper and lower fences for expanding the query region from this cell.

This way, the storage overhead is limited to two integers per dimension per cell. Figure 3.2(c)

shows the storage layout for tuples t1 and t2. Figure 3.2(d) shows that the query region (the

solid blue box) covers a single cell A[2, 3]. The fences for the x dimension, (−1, 3), means

that at query time, from this cell we need to walk one step to the left and three steps to the

right, while the fences for the y dimension, (−1, 1), indicates walking one step up and one

step down. After walking on both dimensions, the expanded query region, marked by a

dashed blue box, covers cell A[1, 2] to retrieve tuple t1 and cell A[5, 4] to retrieve t2.

To generate fences, whenever a new tuple is inserted into a cell C in the array based

on its mean value, we identify every other cell C̄ in the tuple’s possible range, compute its

distance from the cell C, then expand C̄’s fences if they do not cover the computed distance.

At query time, for each cell contained in the query region, we expand it using the upper and
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lower fences, and take the union of all these expansions to produce a complete expanded

query region.

The advantage of this strategy is small storage overhead in each cell, i.e., only two fences

for each dimension, in contrast to store-all . However, the issue is that the expanded query

region can grow very large, containing both relevant and irrelevant tuples, which will incur

both high I/O cost for fetching all the tuples and high CPU cost for validating them using

costly integration based on the precise Subarray condition.

Store-Multiple: Finally, we propose a scheme that employs limited replication of tuples

and guarantees that from any cell in a tuple’s possible range, walking at most k cells (steps)

along each dimension is able to find a copy of the tuple. We call k the step size. Below

we define an expanded query region for store-multiple and prove its optimality under this

storage scheme.

Proposition 3.2.1. Consider an array Ad under store-multiple with a step size config-

uration 〈k1, k2, · · · , kd〉 and a query region Q : (ai, bi) on each dimension i. Then

Q̃ : (ai−kisi, bi+kisi), where si is the length of cell, is a valid expanded query region

and requires to read the least number of cells on A.

Proof. We first prove that Q̃ is a valid expanded query region, i.e., for any tuple t with

possible range Rt ∩ Q 6= φ, t will have at least a copy stored in C(Q̃). Denote the cell

A[x1, x2, . . . , xd] as A[x] and a range of cells A[x1 : y1, x2 : y2, . . . , xd : yd] as A[x : y] for

short. Since Rt ∩Q 6= φ, there exists a cell A[o] ∈ C(Rt) ∩ C(Q). It is easy to see that

for any cell A[x] ∈ C(Q), A[x−k : x+k] ⊆ C(Q̃). Hence A[o−k : o+k] ⊆ C(Q̃).

According to the definition of store-multiple, given A[o] ∈ C(Rt), there must exist one cell

in A[o−k : o+k] that stores a copy of t. Then t will have at least a copy stored in C(Q̃).

We next prove that reading a strict subset of C(Q̃) can miss results. Assume cell

A[õ] ∈ C(Q̃) is not read. Apparently, there exists a cell A[o] ∈ C(Q) such that A[õ] ∈
A[o−k : o+k]. Consider a tuple t with its possible range to be just the single cell A[o].
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Then storing only one copy of t in cell A[õ] satisfies the definition of store-multiple. Since

A[o] ∈ C(Q), tuple t can be a true result, but it will be missed as cell A[õ] is not read.

Store-multiple overcomes the shortcomings of the previous two schemes: First, its

controlled expansion of the query region, by k cells, is particularly helpful when some

tuples have large variances and hence large possible ranges. In other schemes, tuples of

large variances will cause them to be replicated in numerous cells (store-all) or cause the

query region to be expanded based on the largest tuple variance in a wide neighborhood

(store-mean). Second, store-multiple offers the flexibility to configure the parameter k for

different workloads to achieve best performance, as we shall show shortly. It is also worth

noting that store-multiple subsumes both store-all and store-mean: it becomes store-all

when k = 0, and approximates store-mean (without fences) when k is big enough to cover

the largest possible range among all tuples.

Figure 3.2(e) shows such storage with k=1, where tuple t1 is stored in four cells and

t2 in another four cells. We can verify that from each cell in t1’s possible region (the red

rectangle), we need to walk only one step along both dimensions to find a copy of t1. The

same guarantee holds for t2. Figure 3.2(f) shows a query region matching the cell A[2, 3],

marked by the solid blue box, and the expanded region A[1 : 3, 2 : 4] using k = 1, marked

by the dashed blue box.

Since store-multiple uses limited replication to constrain the expanded query region

caused by tuples with large possible ranges, duplicate removal, a standard database technique,

can be applied at the end of Subarray evaluation to remove duplicates. As an optimization

for selective queries (which is the common case), the CPU step runs duplicate removal using

an in-memory hash table to avoid repeated integrations for copies of the same tuple.

So far we have introduced the store-multiple storage and the Subarray evaluation under

store-multiple. Two questions still remain: First, the way to store tuples while guaranteeing

the step size k is not unique, leading to different degrees of replication of a tuple. How do

we find the best layout of tuples under the step size k configuration? Second, given a dataset
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and typical query workloads, how do we choose the best configuration of k for optimal

performance? We address these two issues in Section 3.2.2 and Section 3.2.3, respectively.

3.2.2 Tuple Layout under Store-Multiple

Consider the tuple layout in a d-dimensional array Ad stored using store-multiple with a

step size configuration 〈k1, k2, · · ·, kd〉. This means that from any cell in the tuple’s possible

range, walking ki cells in both directions on the i-th dimension, for 1 ≤ i ≤ d, guarantees

to find a copy of the tuple. Finding the best way to store tuple copies amounts to a coverage

problem, as we define below.

Definition 10 (Covering Cell). Given a d-dimensional array Ad under store-multiple

with a step size configuration 〈k1, k2, · · ·, kd〉, the covering range of the walk from a cell

A[x1, x2, · · ·, xd] is A[x1 − k1 : x1 + k1, · · · , xd − kd : xd + kd]. We also say each cell in

A[x1−k1 : x1 + k1, · · · , xd − kd : xd + kd] is “covered” by the cell A[x1, x2, · · ·, xd].

Definition 11 (Covering Set). A given set of cells C is covered by a (discrete) set of cells S

if and only if each cell in C is covered by at least one cell in S; S is called the covering set

of C.

Definition 12 (Problem of Tuple Copy Layout). Given a tuple t, find the minimum covering

set S of its possible range C(Rt) = A[l1 : u1, l2 : u2, · · · , ld : ud] so that placing one copy

of t in each cell in S is a valid layout under store-multiple with the step size configuration

〈k1, k2, · · · , kd〉. That is, walking ki steps from any cell in C(Rt) along all dimensions is

able to find a copy of t.
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We address the problem by first showing the lower bound of the size of a covering set,

as shown in the following proposition.

Proposition 3.2.2. Given an array Ad under store-multiple with a step size configuration

〈k1, k2, · · · , kd〉, if tuple t’s possible range is C(Rt) = A[l1 : u1, l2 : u2, · · · , ld : ud], at

least ∏d
i=1 (b(ui−li) /(2ki + 1)c+ 1) cells are needed to cover C(Rt).

Proof. We can pick a subset of cells from the region C(Rt) = A[l1 : u1, l2 : u2, · · · , ld :

ud] as follows: C′ = {A[x1, x2, · · · , xd]| ∀i ∈ {1, 2, . . . , d}, xi = li + pi(2ki + 1) and

li ≤ xi ≤ ui, where pi ∈ {0} ∪N}. Obviously, the size of the set of picked cells |C′| is

∏d
i=1 (b(ui − li)/ (2ki + 1)c+ 1). Based on Definition 11, if we can prove that at least

|S′| cells are already needed just to cover C′, then at least |C′| cells are needed to cover the

superset C(Rt).

Let us assume a cell A[x1, x2, · · · , xd] ∈ C′ is covered by (the walk from) a cell

A[y1, y2, · · · , yd]. This means yi−ki ≤ xi ≤ yi+ki on any dimension i. For any cell

A[x′1, x′2, · · · , x′d] ∈ C′−{A[x1, x2, · · · , xd]}, there exists a dimension j such that xj 6=
x′j. Without loss of generality, assume x′j = xj + pj(2k j + 1) where pj ∈ N. Then

x′j ≥ yj − k j + pj(2k j + 1) > yj + k j, which means A[x′1, x′2, · · · , x′d] does not fall in

the covering range of A[y1, y2, · · · , yd]. Therefore, no two cells in C′ can be covered by

the same cell. In other words, at least |C′| cells are needed in order to cover C′. Then to

cover C(Rt), a superset of C′, at least |C′| = ∏d
i=1 (b(ui − li)/(2ki + 1)c+ 1) cells are

needed.

Note that in the worst case, Proposition 3.2.2 may suggest an explosion of the number

of cells (and tuple replicas in those cells) to cover a tuple’s possible range. In practice, most

real-world datasets have 2 to 3 dimensions to reflect our physical space, and the majority

of tuples have some degree of concentration in the location distribution. Take SDSS for

example. When the cell size is set to 1, the possible ranges of most tuples on dimension

attributes (rowc, colc) are within 2.5×2.5 cells on average. According to Proposition 3.2.2,
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Figure 3.4: Tuple copy distribution and validation under store-multiple.

one copy is enough for most tuples for store-multiple with k = 1, the same as store-mean

and 1/9 of store-all. We will show how to choose an appropriate step size configuration in

Section 3.2.3.

Given the lower bound on the size, we next consider how to distribute the covering set,

i.e., the cells with tuple copies, to achieve this lower bound. To maximize the union of the

covering ranges of those tuple copies, we can store them in evenly-spaced cells: on the

i-th dimension where the possible range is li, ui, the first copy is stored at li + ki and the

other copies are stored 2ki cells away from each other. Figure 3.4(a) shows such distribution

of tuple copies in a two-dimensional array when k1 = k2 = 2. The tuple’s possible range

consists of all the cells within the solid boundary and requires at least 9 copies to be placed.

The layout of 9 copies is shown by the shaded cells (ignore the red color for now). However,

three copies are stored outside the tuple’s possible range, which will increase the chance

of reading irrelevant copies when a query region falls outside the tuple’s possible range. It

is thus desirable to store all copies of a tuple inside its possible range. In our work, when

a tuple needs only one copy on the i-th dimension, we store it at the center of its possible

range, i.e., b(li+ui)/2c; when it needs more copies, we store the first copy at li+ki, the

last copy at ui−ki, and the others (if any) are evenly spaced in between, as shown by the
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red cells in the figure. Thus we still use the minimum number of copies to cover the tuple’s

possible range.

3.2.3 Cost Model of Subarray under Store-Multiple

We next propose a cost model for Subarray under the store-multiple scheme and use

the model to find the optimal step size configuration. The symbols used in the model are

summarized in Table 3.1. Like in SciDB [18], a cell is a logical unit in an array while a

chunk is a physical storage unit as well as the I/O unit; tuples in a logical cell can be stored

in one or multiple chunks. The chunk size in the real-world applications varies a lot and

can be very skewed, e.g., the chunks for the Automatic Identification System data have a

median size of 924B, with a standard deviation of 232MB [36]. Depending on the chunk

size, a cell, which is the logical unit, can contain multiple chunks and multiple cells can

be packed into one chunk as well. There is no universally optimal chunk size. Selective

queries can benefit from a relatively small chunk size by reducing the overhead of reading

unnecessary data. On the other hand, a big chunk size can potentially reduce the random

seeks for non-selective queries. For both reasons, we do not make explicit assumptions on

the chunk size. We believe the choice of the chunk size will not change our main results that

are based on the design of logical structure. By default, we use the standard page size as the

chunk size.

For Subarray evaluation under store-multiple, the I/O cost consists of the seek and

transfer time of chunks in the expanded query region, while the CPU cost is the product of

the number of tuples to be validated and the validation cost per tuple. For simplicity, we

assume that the centers of tuples’ possible ranges are uniformly distributed over the whole

array. We also begin by assuming that all tuples’ possible ranges have the same size, pri,

on the i-th dimension. These assumptions can be relaxed, as we explain at the end of the

section.
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symbol description
T number of tuples
b number of bytes per tuple

pri length of a tuple’s possible range on the i-th dimension
d dimensionality of an array
c chunk size (the I/O unit) in bytes
si length of each cell on the i-th dimension
ni number of cells on the i-th dimension
qi query region size on the i-th dimension
ki step size on the i-th dimension

Table 3.1: Notation in modeling and analysis.

I/O Cost: To capture I/O cost, we focus on a key factor, the number of chunks in the

expanded query region.

Let us first compute the number of cells with which a tuple’s possible range overlaps

on the i-th dimension. Obviously this depends on the alignment of the possible range and

the cells along this dimension, as shown in Figure 3.3. We can chop the possible range

into dpri/sie segments, where the first dpri/sie − 1 segments have length si and the last

segment has length r = pri − (dpri/sie − 1) si. Depending on the starting position of the

possible range in the first cell, it can overlap with different numbers of cells: when the

starting position is in [0, si − r], it overlaps with dpri/sie cells; when the starting position is

in (si − r, si), it overlaps with dpri/sie+ 1 cells. Then the expected number of cells with

which the possible range [li, ui] overlaps is

si − r
si

⌈
pri

si

⌉
+

r
si

(⌈
pri

si

⌉
+ 1
)
=

pri

si
+ 1 (3.1)

Calculated in a similar way, the number of cells that overlap with the query region Q

on the i-th dimension is qi/si + 1, and the number for the expanded query region Q̃ is

qi/si + 1 + 2ki.

We next model the number of chunks in the expanded query region Q̃. It is the product

of the number of cells in Q̃ and the average number of chunks per cell. To compute the latter,
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we first write ui − li + 1 = pri/si + 1 based on Eq.(3.1), and plug it into Proposition 3.2.2

to derive the number of copies per tuple tcopies:

tcopies =
d

∏
i=1

(⌊
pri/si

2ki + 1

⌋
+ 1
)

. (3.2)

Then the average number of chunks per cell Cchunks is the total number of tuple copies

divided by the number of cells in the array and then by the number of tuples a chunk can

hold, i.e., bc/bc:
Cchunks = T · tcopies

/ d

∏
i=1

ni

/
bc/bc . (3.3)

Multiplying Cchunks with the number of cells in Q̃, ∏d
i=1(qi/si + 1 + 2ki), we get the

number of chunks in Q̃, denoted as Q̃chunks:

Q̃chunks = Cchunks ·
d

∏
i=1

(
qi

si
+1+2ki

)
. (3.4)

CPU Cost: To capture CPU cost, we model the number of tuples to be validated, Tval.

Given an expanded query region Q̃, a tuple is retrieved for validation as long as it has one

copy stored in Q̃. Let us define the validation region, V, to be the set of cells where the

centers of the possible ranges of to-be-validated tuples reside, and model the number of

cells in V first. Consider the i-th dimension of the array: (1) When ki is large enough that

every tuple only needs one copy to cover its possible range, V = Q̃, with (qi/si+1+2ki)

cells. (2) When ki is small so that all tuples have more than one copy, V ⊃ Q̃, as shown by

Figure 3.4(b) with one of the furthest tuples that needs to be validated: the tuple’s possible

range is the red box; it has a copy in Q̃ but its center of the possible range, marked by a

black dot, lies outside Q̃. To get V, we need to further expand Q̃ by the distance between

the green and blue dashed lines in Figure 3.4(b), denoted as ∆ = d(pri/si+1)/2e−(ki+1)

cells, along each direction of dimension i. Expanding Q̃ along both directions, V has
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(qi/si+1+2ki) + 2∆ ≈ (qi/si+1+pri/si) cells on the i-th dimension. Summarizing the

two cases and multiplying the size of V with the average number of tuples per cell, we have:

Tval = T
/ d

∏
i=1

ni ·
d

∏
i=1

(
qi

si
+1+ zi

)
, (3.5)

where zi =2ki when pri/si <2ki+1 and zi = pri/si otherwise.

Finally we combine the I/O and CPU costs by plugging in unit cost measurements,

including the seek and transfer time per chunk and per tuple validation time using integration.

A Generalized Model. We next relax two assumptions made previously in our model:

(1) When tuples have different possible range sizes, we can group tuples based on the

possible range size. The runtime of a query will be a weighted sum of runtime over each

group of tuples, where the number of tuples per group serves as the weight; (2) When tuples

are not evenly distributed in the domain, we can feed statistics of tuples’ mean positions

and the query position into our model to get a more accurate estimate: instead of using

T/Πd
i=1ni, which is the average number of tuples per cell, we can use the number of tuples

in each cell of the query. In practice, we can collect above-mentioned statistics when a

batch of tuples comes in. For instance, SDSS [92] updates the scanned image of the sky on

a nightly basis and can build the statistics as a nightly observation is being produced. If

domain knowledge shows that the statistics do not change drastically from day to day, we

can also re-use statistics collected in the past.

Implementation. Given the cost model and basic statistics of tuples’ possible range

sizes and query sizes, at data loading time we estimate the costs of representative queries by

running our model for a wide range of step size configurations (which runs once and fast),

and choose the configuration that offers the best performance. The step size should only be

updated when it is believed that the statistics have changed dramatically.

Our implementation follows the append-only and columnar storage design as used in

SciDB [18]. To illustrate, we show the storage of three tuples, colored in yellow, red and

green respectively, in Figure 3.5, which each have two dimension attributes, (x loc, y loc),
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Figure 3.5: Implementation details

and one value attribute, luminosity. The logical structure of the array is determined by

applying a user-defined discretization function, e.g., f loor, on the dimension attributes, so

that the cells along each dimension attribute have integer index values. In real applications,

the discretization function is usually the unit of some metrics, e.g. centimeter or meter

for length. We will discuss the selection of the unit when we introduce physical storage

later. Given a new batch of tuples, the insertion routine takes two steps (which can be easily

modified to support tuple insertion one-at-a-time):

1. Placement in the logical array: The insertion routine first iterates over the tuples.

Based on the values of a tuple’s dimension attributes and the storage-scheme in use (e.g.,
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store-mean or store-multiple), it determines which logical cell(s) the tuple belongs to. At

the end, each logical cell obtains a list of tuples to insert into.

2. Vertical partitioning and chunking: In physical storage, attributes of tuples are

vertically partitioned and written to multiple arrays that share the same logical structure.

In our implementation, the dimension attributes are stored in one array as they are usually

queried together, which we call the dimension attribute array, and each value attribute is

stored in its own array, called the value attribute array. Figure 3.5(B) shows the storage

of three tuples in two arrays of the same logical structure, one for the dimension attributes

(x loc,y loc) and the other for the value attribute luminosity.

In the second step of the insertion routine, we iterate over the logical cells. For each

logical cell and its associated tuples, we partition the attributes of tuples into the dimension

attribute array and value attribute arrays. In a (dimension or value) attribute array, each

cell stores tuple attributes in a series of chunks (which is the physical storage unit). Since

each non-empty cell has at least one chunk, when the length of each cell is too small, most

cells’ physical chunks will not be well-utilized. On the other hand, the cell length being

so large that each cell has a lot of chunks is not appropriate when most queries are of high

precision requirement (i.e., only a small portion of the chunks contain true query results). In

real applications, we could follow heuristics like 70% of the physical chunks are half-full.

Note that the cell id and the insertion order of a tuple in a cell are the same across all the

attribute arrays. This allows us to easily reconstruct the tuple with all relevant attributes

in query processing, which is a standard technique in column databases. For example, in

Figure 3.5(B), tuple t2 is the first tuple in cell [5, 4], and its (x loc,y loc) values and the

luminosity value are stored as the first item in chunk 3 and chunk 4, respectively.

There is system metadata that records the first chunk, illustrated by the dashed arrows in

Figure 3.5(B), and the last chunk for each cell. Each chunk has a chunk header and stores

multiple tuples. The chunk header consists of the address of the next overflow chunk (if any)

with a default value -1, the number of tuples in the current chunk and a pointer to the free
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space in the current chunk. In Figure 3.5(B), cell location[1, 2] has more than one chunks

and the luminosity value of tuple t1 is stored in the second chunk.

Indexes can be built on top of each attribute array (usually only on the copy of a tuple at

the mean position). Each entry in the leaf nodes stores the chunk id and insertion order of

the corresponding tuple in that cell. As shown in Figure 3.5(C), there is one index on (x loc,

y loc) and another on luminosity, and the entries for tuple t2 in the indexes store the chunk

id 3 and 4, respectively, with the same insertion order 1. Given a query on the dimension

attributes (a focus of this paper), the index on the dimension attribute array can be used to

identify relevant tuples. If the query requires other attributes to be accessed or returned, the

additional attributes of those tuples are fetched from other attribute arrays, using standard

operations in column databases.

3.3 Support for Structure-Join

In this section, we focus on the Structure-Join operator under position uncertainty. More

specifically, we focus on linear proximity (a.k.a. l1-distance) join, i.e., SJoin(Ad, Bd, θ, λ)

where θ =
∧d

i=1|A.di−B.di|<δ. Non-linear proximity join based on Euclidean distance,

e.g., θ = ∑i(A.di−B.di)
2<δ2, can be first relaxed to linear proximity join, and then

followed by additional filtering using exact integration based on θ. More complex predicates

are further discussed below.

In real applications, the domain experts design the data cooking process and select the

dimension attributes. Depending on the selected dimension attributes, the positions of tuples

may not be modeled in the Cartesian coordinate system. However, once the domain experts

choose the dimension attributes and the function to discretize each dimension attribute into

index values, the logical structure of the array is determined as we define in Section 3.1.

Our store-multiple scheme takes the logical structure of the array as input and decides to

place the (limited) tuple replicas with even spacing within the logical structure of the array,
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not within the actual physical space. As such, it does not need to make an assumption of the

coordinate system, and is not restricted to the Cartesian coordinate system only.

Support of SDSS: Consider objects in SDSS. The attributes, (rowc, colc), are the row

and column center positions, which can serve as dimension attributes. In addition, the

attributes, (ra, dec), for the right-ascension and declination in the spherical coordinate

system can also be used as dimension attributes.

To compute neighbor pairs of objects in SDSS, a basic approach is to write the predicate

as “|A.ra−B.ra|< r ∧ |A.dec−B.dec|< r” as shown in [45]. This is a Structure-Join

of array A and B on dimension ra and dec within a “band” width r. It can be directly

supported under the store-multiple scheme, as discussed in Section 3.3.

In coordinate systems other than the Cartesian, query predicates can also become more

complex. Revisit the above example. Since the sphere is round, if the scientists require

a more accurate evaluation, the predicate on ra needs to be corrected, for the fact that

the right-ascension is “compressed” by cos(dec) as it moves away from the equator, to

|A.ra−B.ra|< r/| cos(A.dec) + ε| [45]. For this specific predicate, during the evaluation

of the join, as we read each cell in the outer array A, based on the range of dec it covers, we

can relax the predicate by plugging in the bounds of cos(A.dec). Then the only difference

to the Structure-Join in Section 3.3 is that instead of having a fixed band width δ for all

the outer cells, each outer cell will have its own band width computed based on the dec

range it covers. The subarray-based joins can be executed with a modest change. Finally

the retrieved tuples will be validated against the accurate predicate. For predicates that are

not able or hard to be relaxed to a Subarray or a Structure-Join, to apply our techniques, a

backup solution is to convert the original coordinate system to a new one where predicates

can be directly written as or easily relaxed to them. The conversion between common

coordinate systems is well studied and beyond the scope of this paper.

The default evaluation strategy, as stated in Definition 8, creates all pairs of tuples from

the two input arrays and evaluates an integral for each pair of tuples, which is prohibitively
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expensive. To improve performance, existing indexes for relational databases [24, 23, 71]

can be built on top of the store-mean scheme. As we will show in Section 3.4.3, such index-

based evaluation can incur many index and data I/O’s. Here we propose a new evaluation

strategy, called subarray-based join (SBJ), which does not require a pre-built index, as well

as model-based optimization to achieve best performance.

3.3.1 Subarray-based Join

The index-based join requires pre-built indexes, which may not always be available, and

can consume excessive memory due to the use of the tuple-level mapping. We next present

a new evaluation strategy of Structure-Join, called subarray-based join (SBJ).

Similar to block nested loops joins, Structure-Join can be transformed into iterative

Subarray operations on the inner array, for each block of the outer array. Assume that the

smaller array, A, is the outer. For each cell CA, we do the following: (1) Load it into

memory, form a subarray condition θCA
on the inner array B, and run the Subarray query

on B. (2) Pair tuples in CA with those tuples retrieved by Subarray on B. (3) The final

validation phase computes the exact probability for each tuple pair (tA, tB) to satisfy the

join condition and compares it with the threshold λ. We describe the subarray condition

θCA
and the full algorithm in Section 3.3.1.1 and present a cost model for optimization in

Section 3.3.2.

3.3.1.1 Subarray Conditions and the SBJ Algorithm

Similar to block nested loops joins, Structure-Join can be transformed into iterative

Subarray operations on the inner array. Assume that the smaller array, A, is the outer. The

basic idea is that for each outer cell CA, we form a subarray condition θCA
on the inner array

B, run the Subarray query on B to retrieve relevant tuples, and finally pair the A tuples and

B tuples for exact evaluation using integration. For best performance, the subarray condition

θCA
for each outer cell CA must produce all join results while being as tight as possible.
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Figure 3.6: Illurstraion of p̃ = p̃1 + p̃2 + p̃3.

Below we propose several necessary conditions for linear proximity join that guarantee to

return all join results.

Given a tuple tA, let
(

ldi
tA

, udi
tA

)
denote the lower and upper bounds of its possible range

on dimension i. Similarly, we have
(

ldi
tB

, udi
tB

)
for tuple tB. Then we have:

Proposition 3.3.1. For any tuple pair (tA, tB) returned by SJoin(Ad, Bd,
∧d

i=1|A.di−
B.di|<δ, λ), the intervals

(
ldi
tA
−δ, udi

tA
+δ
)

and
(

ldi
tB

, udi
tB

)
overlap on each dimension i

(i = 1, . . . , d).

In Section 3.1.1, we define a tuple’s possible range as a hyper-rectangle within which

the tuple existence probability is (approximately) 1. Before we prove Proposition 3.3.1, let

us define it formally.

Definition 13 (Possible Range). For a tuple whose dimension attributes are modeled by a

joint distribution f (x), its possible range on dimension i is (li, ui) such that
∫ li
−∞ f (xi)dxi =

ε/2 and
∫ +∞

ui
f (xi)dxi=ε/2, where f (xi) is the marginal distribution of f (x) on dimen-

sion i and ε is 0 or a sufficiently small positive number.

For queries considered in this paper, the query threshold λ should be (much) greater

than ε. Below we prove Proposition 3.3.1.

Proof. We prove by contradiction. Consider a tuple pair (tA, tB) returned by SJoin. As-

sume that there exists a dimension di where
(

ldi
tA
−δ, udi

tA
+δ
)

and
(

ldi
tB

, udi
tB

)
do not
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overlap, i.e., ldi
tA
−δ > udi

tB
or udi

tA
+δ < ldi

tB
. Without loss of generality, let us assume

ldi
tA
−δ>udi

tB
. Below we focus on computing probability p =

∫∫
θ ftA

(x) ftB
(y)dxdy where

the integration domain θ is {(x, y)| ∧d
i=1|xi−yi| < δ}. We start with finding an upper

bound. Relaxing the join condition by only considering dimension di, we have:

p<
∫∫

|xi−yi|<δ

ftA
(x) ftB

(y)dxdy =
∫∫

|xi−yi|<δ

ftA.di(xi) ftB.di(yi)dxidyi.

It means the probability for (tA, tB) to satisfy the join predicate is upper bounded by the

probability for their values on dimension di to satisfy the join predicate on dimension di,

denoted as p̃. The integration domain is colored in Figure 3.6 and partitioned into three

parts. Denote the probability mass of each partition as p̃1, p̃2 and p̃3 respectively. Below we

derive the upper bound for each of them by applying the assumption.

p̃1 =
∫ l

di
tA
−δ

−∞
ftB.di(yi)

(∫ yi+δ

yi−δ
ftA.di(xi)dxi

)
dyi

<
∫ l

di
tA
−δ

−∞
ftB.di(yi)

(∫ l
di
tA

−∞
ftA.di(xi)dxi

)
dyi

=
ε

2

∫ l
di
tA
−δ

−∞
ftB.di(yi)dyi <

ε

2

p̃2 =
∫ l

di
tA

+δ

l
di
tA
−δ

ftB.di(yi)

(∫ l
di
tA

yi−δ
ftA.di(xi)dxi

)
dyi

<
∫ +∞

u
di
tB

ftB.di(yi)

(∫ l
di
tA

−∞
ftA.di(xi)dxi

)
dyi

=
ε

2

∫ +∞

u
di
tB

ftB.di(yi)dyi =
ε

2
· ε

2
=

ε2

4
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p̃3 =
∫ +∞

l
di
tA

ftA.di(xi)

(∫ xi+δ

xi−δ
ftB.di(yi)dyi

)
dxi

<
∫ +∞

l
di
tA

ftA.di(xi)

(∫ +∞

u
di
tB

ftB.di(yi)dyi

)
dxi

=
ε

2

∫ +∞

l
di
tA

ftA.di(xi)dxi =
ε

2

(
1− ε

2

)
=

ε

2
− ε2

4

Finally we have p < p̃ = p̃1 + p̃2 + p̃3 = ε < λ, which means (tA, tB) can never be in

the join result. Then we reach a contradiction and thus the assumption is wrong.

The proposition states a way to find a superset of the join answers: for each tuple tA

from A, expand its possible range by δ on each dimension, denoted by ItA
, then pair tA

with all tuples tB from B whose possible ranges overlap with ItA
.

When A is stored using store-mean, we use the above result to form a subarray condition

on B, for each cell CA ∈ A. The next proposition shows how to do so, i.e., by relaxing the

condition using the minimum lower bound and maximum upper bound of possible ranges of

all tuples in CA.

Proposition 3.3.2 (Subarray for Store-mean). Consider SJoin(Ad, Bd,
∧d

i=1|A.di−B.di|<
δ, λ) when A is under store-mean. For a cell CA, a subarray condition θCA

that returns all

join results is:
d∧

i=1

min
tA∈CA

ldi
tA
−δ<B.di < max

tA∈CA

udi
tA
+δ.

When A is stored using store-multiple, we do not need to relax the join condition as

aggressively, e.g., to accommodate the largest possible ranges of the tuples. Instead, we can

bound the relaxation using the step size of A and δ. Given the step size 〈k1, k2, · · · , kd〉 of

array A, we define some notation:

• The value range of cell CA on dimension di is (ldi
CA

, udi
CA

).

• For any cell CA=A[x1, . . . , xd], two cells bound the expansion from CA by the step

size of A, denoted as C−
A
=A[x1− k1, . . . , xd − kd] and C+

A
=A[x1 + k1, . . . , xd +

kd].
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Then the following proposition states that for each cell CA, the subarray condition on the

inner array B can be formed by expanding CA by the step size of A and then by δ, which

are both bounded.

Proposition 3.3.3 (Subarray for Store-multiple). Consider

SJoin(Ad, Bd,
∧d

i=1|A.di−B.di|<δ, λ) when A is under store-multiple. For cell CA, a

subarray condition θCA
that returns all join results is:

d∧
i=1

ldi
C−

A

− δ < B.di < udi
C+

A

+ δ.

Proof. Let StA
denote the set of cells that store a copy of tA, i.e., StA

= {CA|tA∈CA}.
Below we first prove that

(
ldi
tA

, udi
tA

)
⊆⋃CA∈StA

(
ldi
C−

A

, udi
C+

A

)
: When tA needs only one

copy to cover its possible range on dimension di, assume the copy is stored at CA, then(
ldi
tA

, udi
tA

)
⊆
(

ldi
C−

A

, udi
C+

A

)
because otherwise it needs at least two copies. When tA has

more than one copy on dimension di, according to Section 3.2.2, the first copy and the

last copy are stored ki cells away from the lower and upper bounds of tA’s possible range

respectively, depicted by Figure 3.4(a). So ldi
tA

= min
CA∈StA

ldi
C−

A

and udi
tA

= max
CA∈StA

udi
C+

A

, i.e.,(
ldi
tA

, udi
tA

)
=
⋃

CA∈StA

(
ldi
C−

A

, udi
C+

A

)
. Combining the two cases, we have

(
ldi
tA

, udi
tA

)
⊆

⋃
CA∈StA

(
ldi
C−

A

, udi
C+

A

)
. Then for any tuple tB, if its possible range

(
ldi
tB

, udi
tB

)
overlaps with(

ldi
tA
−δ, udi

tA
+δ
)

, which is a necessary condition for tB being a true match of tA according

to Proposition 3.3.1, it must also overlap with
⋃

CA∈StA

(
ldi
C−

A

−δ, udi
C+

A

+δ

)
. This means that

tB will be returned by at least one of the subarray queries formed for all cells in StA
, say

Subarray(B, θCA0
, λ). In this way, we guarantee that no result can be missed.

We now present subarray-based join (SBJ) in Algorithm 1 and illustrate it with Figure 3.7.

The algorithm processes one block of the outer at a time (Line 1 in Algorithm 1; marked as

Step 1 in Figure 3.7, with a red block followed by a green block of A). For each cell CA

in the current block, the algorithm forms a Subarray query and runs it on the inner array
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Figure 3.7: Illustration of subarray-based join.

B (Line 5; Step 2). We call the B cells returned by the Subarray query for each CA the

candidate cells of CA. Since the candidate cells of different outer cells may overlap, as

an optimization to save I/O, the algorithm maintains the union of the candidate cells of all

outer cells in the current block (Line 7), in {CB} in Figure 3.7. To avoid nonviable pairs of

tuples, the algorithm maintains a hash map that maps a cell CB to only those A cells whose

candidate cells include CB, i.e., the mapping structure in Figure 3.7 (Line 7; Step 3). Then

the algorithm reads relevant cells of B and pairs tuples accordingly (Line 8-12; Step 4). As

optimization, It applies quick filters with negligible costs to the paired tuples to reduce later

CPU cost. It finally does validation using the join condition and removes duplicates (Line

13-14; Step 5).

3.3.2 A Cost Model for Optimization

Next we build a cost model for SBJ under the store-multiple scheme, which can be used

to find the optimal step size during data loading given basic data statistics. We use the

symbols in Table 3.1 with subscripts to distinguish inner and outer arrays.
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Algorithm 1 Subarray-based Join (SBJ)
1: for each read block RA in A do
2: toRead.clear(); map.clear();
3: for each cell CA in RA do
4: loadToMemory(CA);
5: Q← formQueryRegion(CA); S← Subarray(B, Q);
6: for each cell CB in S do
7: toRead.add(CB); map.get(CB).add(CA);
8: for each cell CB in toRead do
9: loadToMemory(CB);

10: for each cell CA in map.get(CB) do
11: for each tuple tA in CA do
12: for each tuple tB in CB do
13: filter(tA, tB); validate(tA, tB);
14: removeDuplicates();

I/O cost: We model the numbers of A and B chunks read in I/O and later translate them

to seek and transfer times. First consider the outer array A. Its number of chunks, denoted

by ||A||, is the total number of tuple copies, denoted by |A|, divided by the number of

tuple copies per chunk. Based on Eq. (3.2) in Section 3.2.3, we have:

|A| = TA

d

∏
i=1

(⌊
prA,i/sA,i

2kA,i + 1

⌋
+ 1
)

, ||A|| = |A|/ bc/bAc .

Now consider the inner array B. Each cell in B may be read multiple times as it can

exist in the results of Subarray queries formed from different A blocks. Hence, the I/O

cost for reading B is the product of (1) the number of A blocks, αRA
, (2) the number of B

cells to read per A block, denoted by βRA
, and (3) the number of chunks per B cell, ||CB||.

Below we model each of them in order.

We first model αRA
. Assume that a memory quota of K chunks is given to the A block

and its mapping with B blocks (shown in Figure 3.7). Then the number of cells in each A

block, nRA
, is K/(||CA||+ ||MCA

||), where ||CA|| is the number of chunks per A cell

and ||MCA
|| is the number of chunks for the mapping entries per A cell. We have that

||CA|| = ||A||
/ d

∏
i=1

nA,i.
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According to Proposition 3.3.3, the subarray condition formed for cell CA expands CA

by A’s step size and then by δ, so the length of the Subarray query on dimension di is

(1 + 2kA,i)sA,i + 2δ. It amounts to ((1 + 2kA,i)sA,i + 2δ) /sB,i + 1 cells in the B array

according to Eq. (3.1). When running this query on B, the number of candidate cells of CA,

i.e., cells in the expanded query region, is:

βCA
=

d

∏
i=1

(
(1 + 2kA,i)sA,i + 2δ

sB,i
+ 1 + 2kB,i

)
(3.6)

Assuming that each mapping entry has bmap bytes, we have:

||MCA
|| = βCA

· bmap

c
.

We then get the number of A blocks as the total number of cells divided by the number

of cells in each RA block:

αRA
=

∏d
i=1 nA,i

nRA

=
(||CA||+ ||MCA

||)∏d
i=1 nA,i

K

We next model the second factor, βRA
. For the current read block RA, we take the union

of B cells returned by the Subarray query formed for each A cell. This union is equivalent

to the set of B cells returned by a single Subarray query formed for the entire read block

RA. Hence, similar to Eq. (3.6), we can get βRA
as follows:

βRA
=

d

∏
i=1

 (n
1
d

RA
+ 2kA,i)sA,i + 2δ

sB,i
+ 1 + 2kB,i

 .

We can get the last factor ||CB|| in the same way as ||CA||.
CPU cost: The CPU cost is the product of the number of tuple pairs to be validated,

which we will model below, and the validation cost per tuple pair. According to our
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algorithm, tuples in each cell CA are paired with the tuples in CA’s candidate cells and all

such tuple pairs need to be validated. Therefore, the number of tuple pairs is the product of

(1) the number of tuple copies in A, (2) the number of candidate cells per A cell, and (3)

the number of tuple copies per B cell. Using Eq. (3.6), we compute the product as:

|A| ·
d

∏
i=1

(
(1 + 2kA,i)sA,i + 2δ

sB,i
+ 1 + 2kB,i

)
· |B|

∏d
i=1 nB,i

Finally, the combined IO and CPU model allows us to find the optimal step sizes for

inner and outer arrays if SJoin is the key workload. Statistics needed are the distribution of

tuples’ possible ranges and common distance values in joins. Collecting such statistics is a

common task of the query optimizer and we can leverage a large body of work on relational

DBMS’s in our work.

3.4 Experimental Evaluation

We evaluate our techniques for Subarray and Structure-Join using both a wide range of

synthetic workloads with controlled properties and the Sloan Digital Sky Survey (SDSS) [92].

3.4.1 Experimental Setup

SDSS Datasets. Consider queries on dimension attributes (rowc, colc) in SDSS. SDSS

treats them as independent attributes and does not provide any correlation coefficient between

them. SDSS describes each dimension attribute using a Gaussian distribution, N(µ, σ).

Here, µ is specified by the value of attribute rowc (or colc) and determines where the center

of a tuple’s possible range is located; σ is specified by the value of attribute rowcErr (or

colcErr) and determines how wide a tuple’s possible range is along dimension rowc (or

colc). Without loss of generality, we consider a tuple’s possible range per dimension to be

µ± 3σ. The distributions of rowcErr and colcErr are very similar. A tuple’s possible range

along both dimension rowc and colc is 2.5 on average.
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Parameter Default Other
Value Values

Data dimensionality 2 3
Dµ, distribution of µ uniform (U ) normal (N )
Sσ, scale factor of σ 1 16, 100

Query q, query range / domain 1% 0.01%, 0.1%, 10%
λ, probability threshold 0.9 0.01

Table 3.2: Parameters in Subarray experiments.

Synthetic Datasets. Our synthetic datasets of dimensionalities 1, 2 and 3 (which are the

most common in scientific applications) are generated based on the statistics of (rowc, colc)

in SDSS. The parameters of synthetic datasets are summarized in Table 3.2. All the datasets

have 2M tuples stored in around 60000 cells of size 1. In order to study the effect of the

validation (i.e., integration) cost, different from SDSS datasets, here we generate tuples

with correlated dimension attributes; the CPU cost per integration for correlated attributes

is much higher than that for independent attributes because it increases exponentially

in dimensionality. Like in SDSS, each tuple is described by a (multivariate) Gaussian

distribution.2 We generate µ values using the distribution, Dµ, which is set to either a

uniform distribution over the domain or a Gaussian distribution with more tuples clustered

at the center. To obtain datasets with various average possible range sizes, we collect the top

10 frequent σ values in SDSS and rescale the possible range size (which is determined by σ)

in SDSS by a factor denoted as Sσ. For example, to generates a 2D dataset with Sσ =16, σ

values collected from SDSS are rescaled by a factor of 4 per dimension. We generate one

dataset for each combination of data parameter configurations.

Our evaluation starts with our own techniques, and later in the SDSS case study also

compares to state-of-the-art index schemes for uncertain data, G-index [71] and U-index [24,

2Other distributions will not change our reported results because: (1) the I/O cost does not vary
with the distribution and is only affected by the possible range size; (2) the CPU cost depends on
the integration cost which can vary with the distribution, but we have already included a range of
integration costs using multivariate distributions.

79



����

����

����

����

����

����

� � � � � �� �� �� ���

�
��

��
��

��

���������

��

���

(a) Workload (2D,U , 1; 1%, 0.9)
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(b) Workload (2D,U , 100; 1%, 0.9)

Figure 3.8: Cost breakdown of Subarray with varied step sizes for various workloads.

93], and baseline methods such as Block Nested Loops Join. Our experiments were run on

two identical servers, each with Intel(R) Xeon(R) CPU 5160 @3.00GHz, 8GB memory,

JVM 1.7.0 on CentOS 6.4.

3.4.2 Evaluation of Our Subarray Techniques

We configure Subarray queries using the parameters in Table 3.2: We vary the query

size, q, between 0.01% and 10% of the domain. The threshold, λ, prunes tuples based on

the existence probability. Usually the user wants the tuples with high existence probabilities;

we use λ=0.9 to represent this workload. We also tested λ=0.01 (e.g., needed if there is an

aggregate after Subarray). The evaluation of Subarray includes both the I/O step and the

CPU step. We optimize the CPU step by first running fast filters [71] with negligible costs

before computing the expensive integral for the exact existence probability of each retrieved

tuple. Memory is set to be 10% of the data size. We first use synthetic data with controlled

properties in this set of experiments.

Expt 1: Cost Breakdown. Our store-multiple scheme has a parameter, step size k, which

determines both the degree of replication and query expansion. We start by showing how

the Subarray processing cost changes as k varies. Figure 3.8(a) shows results for the default
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(b) Workload (2D,U , 100; 1%, 0.01)
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(c) Workload (2D,U , 100; 10%, 0.9)
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(d) Workload (3D,U , 1; 1%, 0.9)

Figure 3.9: Cost breakdown of Subarray with varied step sizes for various workloads.

workload, (2D, Dµ=U , Sσ=1; q=1%, λ=0.9), while Figure 3.8(b) shows results for Sσ=100,

with an enlarged average possible range size and magnified trends. The overall trends are:

(1) The I/O cost first decreases and then increases with the step size. I/O is determined

by both the number of cells in the expanded query region and the number of chunks per cell.

When k is small, which means more aggressive replication of tuples, the expanded query

region is small, but the number of chunks per cell is large and has a stronger impact on I/O.

As k grows larger, fewer tuples are replicated, so each cell is smaller. But the expanded

query region becomes very wide and affects I/O cost more. So the optimal I/O cost appears

in the middle of the spectrum of k.

(2) The CPU cost does not change with the step size when the probability threshold λ is

high. The CPU cost depends on the number of tuples that passed the quick filter and need
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to be validated using expensive integration. Figure 3.9(a) shows the number of tuples that

pass the filter. When λ is sufficiently high, ≥ 0.1 in this figure, the filter can drop most

irrelevant tuples, so the number of tuples after filtering does not change with the step size, or

the number of tuples retrieved from storage. We examined the filter’s effect using multiple

datasets and our observation is consistent.

To further study the effect of λ and q, we tune their values from Figure 3.8(b) one at a

time: we change λ from 0.9 to 0.01 and show the cost breakdown in Figure 3.9(b); we also

change q from 1% to 10% in Figure 3.9(c). Finally Figure 3.9(d) shows the cost breakdown

for a 3D workload. It can be seen from these plots that, between CPU cost and I/O cost,

which is dominating depends on many factors, including λ (by comparing Figure 3.8(b) and

Figure 3.9(b)), the system constants like the per integration cost (by comparing Figure 3.8(a)

and Figure 3.9(d)), and the step size configuration (by comparing bars within each plot). It

is challenging to find the optimal optimal step size: we observe that the optimal step size

shifts right when the average possible range increases (by comparing Figure 3.8(a) and

3.8(b)); it shifts left when λ is very small or the per integration cost is high, and it increases

with the query region size.

Expt 2: Model Accuracy. We next use the cost model in Section 3.2.3 to determine the step

size when loading data into an array. We assume that the user can provide basic statistics

including the σ distribution in the data and common Subarray sizes. We denote the optimal

step size k∗, and the step size returned by our model k̃. We measure the performance loss of

our model, (Cost(k̃)− Cost(k∗))/Cost(k∗). When tuples’ mean values, µ, are normally

distributed around the center of the array, the center of the query region matters as the data

density varies. For such datasets, we pick 3×3 query regions for 2D datasets and 2×2×2

for 3D datasets that evenly scattered over the array, and report on the average.

Table 3.2 shows 144 combinations of parameters. Our model returns the optimal step size

(i.e., no performance loss) in 89.6% of workloads when the tuples’ µ values are uniformly

distributed and in 83.3% of workloads when the tuples’ µ values are normally distributed.
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(b) Compare store-all, store-mean, and
store-multiple for (2D,U , 100; q%, 0.9)
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(c) Compare store-all, store-mean, and
store-multiple for (2D,U , 100; q%, 0.01)

Figure 3.10: Evaluation results of Subarray on synthetic datasets.

In those cases when our model selects a suboptimal step size, the average performance loss

is 2.72%, which shows that our model is effective in configuring the store-multiple scheme.

Expt 3: Comparing Schemes. We now use the step size returned by the model to configure

store-multiple and compare it to store-all and store-mean with fences for Subarray evaluation.

The results are shown in a log scale in Figure 3.10(a)-3.10(c) for different workloads. Each

plot shows four queries with different query region sizes.

In all cases, store-multiple works the best. In comparison, when all tuples have small

possible ranges, the three storage schemes do not differ much because store-all incurs

only a small storage overhead and the expanded query region for store-mean is also very

constrained, as shown in Figure 3.10(a). However, for datasets when Sσ = 100, store-
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Sσ λ Optimal step size Model step size Performance loss

1
0.9 〈2〉;〈4〉 〈4〉;〈4〉 5.3%
0.01 〈2〉;〈2〉 〈2〉;〈2〉 0%

16
0.9 〈8〉;〈8〉 〈8〉;〈16〉 3.6%
0.01 〈8〉;〈8〉 〈8〉;〈8〉 0%

100
0.9 〈16〉;〈32〉 〈16〉;〈32〉 0%
0.01 〈8〉;〈8〉 〈16〉;〈16〉 0%

Table 3.3: SBJ Model Accuracy when δ = 1%

all often incurs tremendous storage overheads and I/O costs in querying, as shown in

Figure 3.10(b) and 3.10(c). Moreover, store-multiple outperforms store-mean considerably

when the query region q is small, e.g., q<1%, which is the common case, due to a more

constrained expanded query region. When q grows larger, e.g., q=10%, their difference is

reduced because the optimal step size of store-multiple tends to be larger. This means that

infrequent replication of tuples works fine if q is large, and most tuples have only one copy

under store-multiple, similar to store-mean.

3.4.3 Evaluation of Structure-Join

We next consider the Structure-Join where both the inner and outer arrays are loaded

from the same dataset. We start with 1D Structure-Join, SJoin (A1, A2, |A1.x−A2.x|
< δ, λ), of 100,000 tuples, mainly chosen for efficiency reasons. (Later, our case study

considers 2D Structure-Join on SDSS datasets with up to 90 million tuples.) We use a recent

index on continuous uncertain data [71] as an in-memory filter whenever possible. This

index returns only true matches for 1D joins, so validation is not needed for 1D joins. The

memory size is 10% of the data size.

Expt 4: Subarray-Based Join (SBJ). We fix δ to 1% of the domain. SBJ incurs the I/O cost

for running repeated Subarray queries on the inner array, and the CPU cost for filtering [71].

We find that allocating most memory to the outer block and its mapping structure works the

best and use this scheme in all experiments below.
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(a) SBJ with varied step sizes for workload
(U , 100; 1%, 0.9)
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(b) Compare SBJ and BNLJ for workloads
(U , Sσ = (1, 16, 100); 1%, 0.9)
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(c) Compare SBJ and BNLJ for workloads
(U , Sσ = (1, 16, 100); 1%, 0.01)

Figure 3.11: Evaluation results Structure-Join on synthetic datasets.

We first demonstrate that SBJ’s performance is sensitive to the storage scheme. Fig-

ure 3.11(a) shows various combinations of the outer step size, kout, and inner step size, kin,

with λ=0.9. Each line represents a fixed value of kout, and the x-axis varies values of kin,

with the optimal inner step size circled. There are two main trends: (1) For a fixed kout, the

optimal inner step size k∗in is in the middle of its spectrum. As explained in Expt 1, the inner

I/O first decreases and then increases with its step size. (2) Once kin is fixed, the optimal

k∗out also occurs in the middle (e.g., k∗out=16), because it achieves the best tradeoff between

(a) pairing and filtering costs for the same outer tuple, which decreases with larger kout, and

(b) the number of candidate cells to consider, which increases with kout due to the enlarged

expanded subarray region.
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Next we show that the cost model in Section 3.3.2 can predicate the performance of SBJ

so that given basic statistics, we can use it to choose the optimal step size configuration

during data loading (if SJoin is known to be the key workload). We again use the performance

loss to evaluate the model accuracy. The results are shown in Table 3.3, where 〈kout〉; 〈kin〉
denotes the outer and inner step sizes. The model returns the optimal step sizes in most

cases and the overall performance loss is within 6% (if any).

Expt 5: Comparison of Join Algorithms. We now use the step size returned by the model

to configure subarray-based join (SBJ), and compare it to a baseline, block nested loops

join (BNLJ) where both inner and outer arrays are stored using store-mean. Figure 3.11(b)

and Figure 3.11(c) show the results when the tuples’ possible range sizes are scaled up, for

the probability threshold λ=0.9 and λ=0.01, respectively: 1) For all datasets tested, SBJ

outperforms BNLJ, e.g., 46.3% better when λ=0.9 and 91.3% better when λ=0.01. This is

because SBJ does not incur much storage overhead and can effectively limit the number of

inner cells to read, as opposed to reading the entire inner array, for each outer block. Hence,

SBJ saves both I/Os on the inner array and the CPU cost by reducing the number of tuples

to be filtered. 2) SBJ’s performance is not sensitive to large variance tuples when λ=0.9, but

shows an increase in cost when λ=0.01, because many more tuples will be returned as join

results.

3.4.4 A Case Study using SDSS

We next perform a case study using SDSS datasets and queries. We collect SDSS

datasets with 1.89 to 90 million tuples, with the total database size ranging from 295MB

to 24GB. Each dataset consists of tuples in a subregion of the next bigger dataset. We use

(rowc, colc) as dimension attributes. Since they are treated as independent attributes in

SDSS, the CPU cost per validation is much reduced from a 2-dimensional integration to two

1-dimensional integrations. Hence, I/O cost dominates in this study. Memory is set to be

10% of the data size.
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(a) Subarray on SDSS (λ=0.9, varied q)
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(b) Structure-Join on SDSS (δ = 1, λ =
0.9)

Figure 3.12: Case study on SDSS datasets.

We evaluate our techniques for Subarray and Structure-Join against two state-of-the-art

indexes for uncertain data, G-index [71] and U-index [24, 93].

G-index is designed for uncertain data modeled by (multivariate) Gaussian distributions. It

consists of n two-dimensional R-trees for n-dimensional datasets, one R-tree per dimension.

In each tree, tuples are clustered based on the mean and variance of the corresponding

dimension, rather than the mean values of all dimensions. For datasets with n = 1, G-

index returns exactly the true matches; for datasets with n > 1, the intersection of the

candidates retrieved by all n R-trees forms a superset of the true matches. Note that G-

index has great filtering power after the intersection, but each single tree actually touches

many leaf nodes because it is not aware of the constraints on other dimensions. The above
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Datasets (tuples) 1.89M 10.3M 30.2M 90M
Memory 29.5MB 163MB 806.6MB 2.4GB

Cache size (4K pages) 7174 39631 196167 607012

U-index non-leaf 5256 28722 83388 242217
leaf 98062 535182 1561376 4515894

G-index non-leaf 1332 7176 20858 62038
leaf 70469 384988 1123279 3350078

Table 3.4: Cache size and node counts for different datasets.

Datasets Store-mean Store-all Store-multiple U-index G-index
1.89M 85MB 178MB 89MB 404MB 282MB
10.3M 479MB 1.2GB 569MB 2.2GB 1.5GB
30.2M 1.4GB 4.5GB 1.8GB 6.3GB 4.4GB
90M 3.8GB 14GB 4.5GB 19G 13.2GB

Table 3.5: Storage comparison of SDSS datasets on (rowc, colc).

discussion suggests that G-index is not suitable for the I/O-bound query processing on

multi-dimensional datasets. This analysis is also validated in Experiment 7.

U-index is a variant of R-tree on multi-dimensional uncertain data (e.g., x loc and y loc),

with each node storing statistical information (i.e., probabilistically constrained rectangles

and side lengths) to facilitate queries on uncertain data.

The page size is 4KB, which allows a fanout of 78 for G-index and 30 for U-index when

U-catalog size is 3 (suggested in [93]). Table 3.4 shows, for each dataset, the number of

index nodes that can be cached in memory, as well as a breakdown of non-leaf and leaf

nodes. We see that all non-leaf nodes can be cached in memory.

Expt 6: Storage. We first compare our storage schemes with alternative indexing schemes.

Table 3.5 shows the disk space that each data structure on the dimension attributes takes. We

see that store-multiple configured with step size 〈1, 1〉 by our cost model incurs much less

storage cost than the index schemes, and it approximates store-mean (which has the smallest

possible storage cost) but with much better performance, as shown below. Specifically, over

79% tuples have only 1 copy and over 92% tuples have at most 3 copies.
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Expt 7: Subarray. We first evaluate subarray queries on (rowc, colc) with varied query

size q and probability threshold λ=0.9, using the SDSS dataset with 1.89M tuples. All

non-leaf nodes are prefetched into memory. Since each subarray query hits a region of the

array uniformly at random, we do not consider the effect of caching of leaf nodes here.

The results are shown in Figure 3.12(a). (1) Comparison to results of synthetic data: The

comparison among storage schemes is similar to Figure 3.10(a), except that store-mean

with fences is orders of magnitude slower than other schemes when q ≤ 1%, and is 7 times

slower than store-multiple when q=10%. This is because its expanded query region almost

covers the entire array due to the existence of very large variance tuples (e.g., 2039.782), and

such tuples’ σ values are not in the top 10 frequent values we used to generate our synthetic

datasets. The absolute values are much less than those in Figure 3.10(a) because the two

dimension attributes in SDSS are independent and the per validation cost is much less than

that for correlated attributes. (2) Comparison to index-based methods: store-multiple is 1.7

- 4.3 times faster than U-index and 8.3 - 18.3 times faster than G-index, because it finds

a good tradeoff between the tuple replication and query expansion. In contrast, probing

on-disk indexes incurs tremendous leaf I/Os due to the nature of multi-path search in R-tree

based indexes. Based on our profiling numbers, when we vary q from 0.01% to 10%, the

accessed child nodes averaged over all non-leaf nodes are in the range of (10.33%, 52.93%)

for U-index and (22.13%, 66.29%) for G-index.

We further show the I/O cost, measured in page counts, incurred in the SDSS case

study. The page counts in Experiment 6 and Experiment 7 are shown in Figure 3.13. The

observations are consistent with Figure 3.12(a) and Figure 3.12(b) because the I/O cost

dominates. These observations suggest that building R-tree based indexes for dimension

attributes on top of arrays can not easily offer performance benefits because the dimension

attributes in arrays naturally serve as the clustered indexes without having to pay the index

I/Os.
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(a) Subarray on SDSS when λ=0.9 with varied q
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(b) Structure-Join on SDSS when δ=1 and
λ=0.9

Figure 3.13: I/O counts of Subarray and Structure-Join on SDSS datasets.

Expt 8: Structure-join. We finally consider a query used in SDSS’s sample query set to

find neighboring objects:

SELECT R.objID, R.rowc, R.colc, R.psfMag u,
R.psfMag g, R.psfMag r, R.psfMag i, R.psfMag z,
R.extinction u, R.extinction g, R.extinction r,
R.extinction i, R.extinction z, S.objID, S.rowc,
S.psfMag u, S.psfMag g, S.psfMag r, S.psfMag i,
S.psfMag z, S.extinction u, S.extinction g,
S.extinction r, S.extinction i, S.extinction z

FROM PhotoObj 0 as R, PhotoObj as S
WHERE R.rowc>a1 and R.rowc<b1 and R.colc>a2

and R.colc<b2 and |R.rowc-S.rowc|<1
and |R.colc-S.colc|<1
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It is a join of two arrays on dimension attributes (rowc and colc) and selects 10 value

attributes from each with astronomical meanings to further evaluate whether each neigh-

boring pair meets certain criteria. As typical of SDSS queries, a predicate is posed on the

outer array such that a subset of it (i.e., a small patch of the sky) is joined with the inner.

The probability threshold is 0.9. We evaluate all the join algorithms using the same outer

array but four inner arrays with different sizes to test scalability.

Since structure-join repeatedly probes the inner array or the index on the inner, caching

plays an important role. Our memory setting, 10% of the data size including all dimension

and value attributes in the query, is enough to hold all non-leaf nodes, as shown in Table. 3.4.

For IBJ, as many non-leaf nodes as the memory allows are pre-fetched, and the remaining

memory is used as an LRU cache of both the leaf nodes and inner array chunks. For 2D

datasets, G-index triggers more index I/Os than U-index as shown in Expt 7, and hence is

omitted in the study below. The results are shown in Figure 3.12(b), with one group of bars

per join algorithm and bars in each group representing different sizes of the inner array.

(1) Comparison to Index Join: IBJ with U-index works poorly, 1 to 2 orders of magnitude

worse than SBJ. Based on profiling results for 1.89M tuples, the index I/O dominates.

With store-mean, the large-variance tuples lead to large range queries on the inner and

most (even all) of the leaf nodes are accessed. With the (rare) existence of such tuples, the

average number of U-index leaf nodes accessed per outer tuple is 38.9. Further, such tuples

destroy the locality of caching for the same reason. For the 76830 outer tuples, with a 91.2%

cache hit rate, the amount of leaf I/Os is already 263498, more than 10 times worse than

SBJ. In contrast, store-multiple addresses large variance tuples with replication and finds a

good tradeoff between tuple replication and query expansion. In addition, SBJ puts a tight

predicate on the inner array to read relevant inner cells, and utilizes the memory to form

blocks of outer tuples so that many of them can share the inner I/Os. As such, SBJ largely

preserves the data locality that the array database provides for the access to dimension

attributes. To verity this, we compared SBJ with an ideal case where each relevant inner
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chunk (i.e., containing the join candidates for some outer tuple) is visited exactly once. SBJ

approximates the ideal case with 1.6x-2x I/Os.

(2) Comparison to BNLJ: The difference between SBJ and BNLJ is magnified as BNLJ

scans the whole inner array for each outer block, which is much bigger in SDSS than the

synthetic datasets.

(3) Scalability: SBJ scales the best among the three. For the same outer block and the

same δ, the subarray region formed using Proposition 3.3.3 is exactly the same. However,

bigger datasets have more tuples with large possible ranges and increased chance of having

tuple copies in formed subarray regions, which results in a modest increase of the cost.

3.5 Related Work

Most relevant techniques have been discussed in earlier sections. Below, we survey

several broader areas.

Probabilistic processing under the array model. Recent work [43] observes that corre-

lations in array data are mostly restricted to local areas and proposes a unified model for

modeling both correlated data and physical storage. Monte Carlo processing has also been

studied for join and sampling for uncertain array data [42]. As stated earlier, this line of

work focuses on only value uncertainty in array data but not position uncertainty, i.e., it does

not consider the fact that uncertain attributes can be used as dimension attributes.

Probabilistic relational databases. There is a large body of work on probabilistic databases

in the relational setting, which addresses the semantics (e.g., [30, 5, 97]) and efficient

query processing (e.g., [82, 101, 71, 11]). Systems such as ORION [21, 22, 24, 23] and

CLARO [71, 97] support uncertain data modeled by continuous random variables, which

fit most scientific data. These techniques can be applied in our system to handle value

uncertainty.

Of particular relevance to our work on position uncertainty is indexing and storing

multi-dimensional uncertain data, including earlier work in ORION [21, 24] and more
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recent work [93, 57, 41, 71]. They can be leveraged in array databases as well, but can

trigger many index I/O’s (as we showed in Section 2.5) and may not be effective when the

filtering power is low. In contrast, we aim to provide native support in the array model,

where logical and physical localities are better-aligned and the effect of exploiting physical

locality is similar to using a clustered primary index on the tuples in a relational database,

but without having to build the index.

Other indexes [15, 1, 78, 4, 3] are designed for similarity and nearest-neighbor queries,

not directly applicable to our work. [69] uses secondary storage to record query lineage

and efficiently compute tuple existence probabilities, but their focus is on discrete random

variables in the relational model, not on continuous random variables in the array model.

Redundant storage for efficient query processing. Also related is the work on using

redundant storage for answering point enclosure and range queries in an I/O efficient

way [81, 50, 6, 103]. To map to that work, we can translate our subarray query in two steps:

First, find all tuples whose possible ranges (bounding boxes of tuples’ distributions) intersect

the query rectangle, which however cannot be simply solved by point enclosure and range

queries [6]. Second, compute the existence probabilities of candidate tuples and validate

them against a probability threshold, which is CPU-intensive and not considered in prior

work (while our work does).

Spatial databases. Most prior work on spatial databases [93, 28, 39, 99] use the relational

model. In contrast, array databases differ by using a new chunk-based storage scheme that

allows objects logically close in an array to be likely to be stored in the same physical chunk,

a key property that our work leverages for performance.

3.6 Conclusions

To address the new challenge posed by position uncertainty in array databases, we

proposed a number of storage and evaluation schemes for Subarray, in particular, the store-

multiple scheme, and building on that, the subarray-based join (SBJ) for Structure-Join.
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Our case study on real-world workloads shows that for Subarray, store-multiple is 1.7x-

4.3x faster than a state-of-the-art index, U-index, and for Structure-Join, SBJ is 1 to 2 orders

of magnitude faster than U-index based join. Such improvement does not require pre-built

indexes and comes with very limited storage overhead: for real datasets, over 79% tuples

have only 1 copy and over 92% tuples have at most 3 copies (considering that 3 is the

common number for replication in today’s big data systems).
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CHAPTER 4

EXPLORE-BY-EXAMPLE FOR INTERACTIVE DATA
EXPLORATION

In previous chapters, we have discussed handling data uncertainty in both relational

databases and array databases. In this chapter, we focus on the problem of “query un-

certainty” to bridge the increasing gap between the growth of data and the human ability

to comprehend data. To help the user retrieve high-value content from large amount of

data effectively under query uncertainty, we propose a new database service for interactive

exploration in a framework called “explore-by-example”. In this service, the database system

requests user feedback on strategically collected database examples through a series of

“conversations” (or iterations). In each iteration, the user characterizes a database sample

as relevant or irrelevant to her interest. The user feedback is incorporated into the system

to build a user interest model. The model is then used in the next iteration to steer the user

towards a new area in the data space, and further improved using the user label of a new

sample from that area. Eventually, the model characterizing the relevant objects is turned

into a user interest query that will retrieve all relevant objects from the database.

We present a new active learning algorithm for a common class of user interest queries

with a convex shape in Section 4.2. Then, we propose two stopping criteria in the itervative

exploration process in Section 4.2. We further improve the efficiency to retreive the most

uncertain example and the final result in Section 4.3. Finally, we evaluate our techniques in

Section 4.4.
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Figure 4.1: System architecture for explore by example.

4.1 Background

In this section, we begin by reviewing our system designed for example-by-example. We

then present background on the SVM classification model and basic active learning theory.

4.1.1 System Overview

Our data exploration system is depicted in Figure 4.1. The main concepts and modules

are described as follows.

Data space. When a user comes to explore a database, she is presented with the database

schema for browsing. Based on her best understanding of the (implicit) exploration goal,

she may opt to choose a set of attributes, {Di}, i = 1, . . . , d, from a table for consideration1.

These attributes form a superset of the relevant attributes that will be eventually discovered

to characterize the true user interest, but it is the task of the system to discover those relevant

attributes. Let us consider the projection of the underlying table to {Di}, and pivot the

projected table such as each Di becomes a dimension and the projected tuples are mapped

to points in this d-dimensional space – the resulting space is called a data space where the

user exploration will take place.

1If these attributes come from different base tables, we assume that there is a materialized view
that stores the related join results in a single table.
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Initial examples. To bootstrap data exploration, the user is asked to give an initial

positive example and an initial negative example to illustrate her interest. If the user does

not have such examples at hand, the system can run an initial sampling algorithm over the

data space, as proposed in prior work [34, 62], to help the user find such examples. Since

the initial sampling problem has been studied before, our work in this paper focuses on data

exploration after such initial examples are identified.

Iterative feedback, learning, and exploration. The iterative exploration process starts

with a given positive sample set and a negative sample set, initially each of size one. These

samples are called labeled samples. In each iteration, the labeled samples are used as the

training set of a classification model that characterizes the user interest (user interest model).

Before the model reaches convergence or a user-specified accuracy level, the model is used

next to navigate the user further in the data space (space exploration). In particular, it is used

to identify a promising data area to be considered further and to retrieve the next sample from

this area to display to the user. In the next iteration, the user labels this sample as positive

or negative – such feedback can be collected explicitly through a graphical interface [33],

or implicitly based on whether a user clicks on the sample for reviewing or how long she

examines the sample.2 The newly labeled sample is added to an existing labeled sample set,

and the above process repeats.

Convergence and final retrieval. At each iteration, our system assesses the current

classification model to decide whether more exploration iterations are needed. The process

is terminated when the model has exhibited the trend of convergence, or the accuracy of

the model reaches a user-defined threshold. At this point, the classification model for its

positive class is translated to a query which will retrieve from the database all the objects

characterized as relevant. As can be seen, in our work the user interest is characterized by a

2This topic is in the purview of human-computer interaction and hence is beyond the scope of this
paper, which focuses on uncertainty sampling.
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classification model, which is eventually translated to a database query. Therefore, we use

the terms, “user interest”, “classification model”, and “query”, interchangeably.

Our work differs from prior work in several aspects. First, the state-of-the-art system

on explore-by-example, AIDE [34, 35], used decision trees to build a classification model

due to the natural descriptive power of the learned model. However, this approach cannot

handle complex user interests characterized by non-linear patterns in the data space. To

approximate the circle pattern, AIDE may need to use dozens of range predicates connected

by logical and and or operators, and require the user to label many samples to achieve high

accuracy. Therefore, in this work we choose Support Vector Machines (SVMs) to build the

classification model because they can handle both linear and non-linear patterns.

Second, active learning theory [16] has suggested choosing the example closest to the

decision boundary of the SVM model in each iteration of exploration. In this work we

leverage SVM active learning theory to select examples shown to the user. However, existing

implementations either scan the entire database [26], which is prohibitively expensive for a

large database, or resort to random sampling [16], which cannot strike a balance between

accuracy and efficiency. In addition, most active learning work lacks provable results on

accuracy at a given iteration of exploration [94, 79]. Recent theoretical work offers provable

bounds on classification errors [19, 38, 47, 48, 49], which treat positive and negative classes

equally and hence are not practical for use. It is because the true user interest over a large

database often amounts to a highly selective query. To learn a classification model for

the query, we must emphasize the errors related to the objects in the positive class, i.e.,

the answers returned by the query. Consider a user interest query with 1% selectivity. A

classifier that classifies all database objects to the negative class has a low error rate of 1%,

but fails to return any relevant objects to the user. For this reason, we choose F1-score as

a proper accuracy measure for database exploration because it emphasizes the accuracy

regarding the positive class. Active learning theory lacks formal convergence results for this

measure.
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4.1.2 Support Vector Machines

Since non-linear predicates are prevalent in scientific applications and location-based

searches, we seek to support user interests involving both linear and non-linear predicates.

In this work, we adopt Support Vector Machines (SVM) to build the classification model.

SVM is a linear classifier that makes a classification decision based on the value of a linear

combination of the dimensions of the data space. To support non-linear patterns in the

data space, it uses the kernel method to map the user labeled samples into a much higher

dimensional space, called the feature space, where linear separation can be achieved. In this

work we use the Gaussian kernel, and denote the decision boundary in the feature space as

L.

For classification, the learning algorithm for SVM takes a set of training examples in the

data space, each labeled using one of the two output classes, and builds a binary classifier

that assigns labels for the new test examples in the same space. SVM is a linear classifier in

the sense that it makes a classification decision based on the value of a linear combination of

an example’s characteristics. Interestingly, the algorithm works not only when the training

examples from different classes are linearly separable in the data space, but also when they

are not. In the latter case, the examples will be mapped into a much higher-dimensional

space called the feature space, where linear separation can be achieved. Among the many

hyperplanes that linearly separate the examples from different classes either in the data space

or in the feature space, the one with the largest distance to the nearest (mapped) examples

is returned by the algorithm as the decision boundary. In general, the larger the margin

the lower the generalization error of the classifier. Therefore, SVMs are also called large

margin classifiers.

Formally, the decision boundary in the feature space can be described as

y(x) = ωTφ(x) + b = 0, (4.1)
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where x denotes a point in the data space and φ(x) is its mapped value in the feature

space. We can select two hyperplanes parallel to the decision boundary such that there

are no examples between them, and then try to maximize their distance. Without loss of

generality, we select ωTφ(x) + b = 1 and ωTφ(x) + b = −1, the distance between which

is 2
||ω|| , and we can state the constraints that ωTφ(x) + b ≥ 1 for all positive examples and

ωTφ(x) + b ≤ −1 for all negative examples. Maximizing the distance 2
||ω|| is equivalent to

minimizing ||ω||, or 1
2 ||ω||2 for mathematical convenience without changing the solution

for ω and b. Putting it all together, we have the following optimization problem:

minimize
ω,b

1
2
||ω||2

subject to ȳi(ω
Tφ(xi) + b) ≥ 1 i = 1, . . . , n.

(4.2)

where ȳi is the true label of a training point xi. The above is an optimization problem with

a convex quadratic objective and only linear constraints. It can be solved using quadratic

programming (QP) and the solution gives us the optimal margin classifier.

To ensure linear separation of training examples, sometimes feature spaces may have an

exponential or even infinite number of dimensions, which would make it seem impossible to

provide efficient computation [84]. The main theory of SVMs states that one can solve the

dual, which is derived by introducing Lagrange multipliers αi, in lieu of the primal problem.

The dual optimization problem is a maximization problem with parameters being the αi’s:

maximize
α

n

∑
i=1

αiȳi −
1
2

n

∑
i,j=1

αiαjφ(xi)
Tφ(xj)

subject to
n

∑
i=1

αi = 0

(4.3)

It can be derived that the αi’s are zero except for the support vectors, defined to be the

training examples that are on the margin. We do not show the derivation of the dual problem
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and its solution here due to space constraints, but one important intermediate formula that

was derived previously and will be used for our later derivation is:

ω =
n

∑
i=1

αiφ(xi) = ∑
φ(xi)∈S

αiφ(xi) (4.4)

where S refers to the set of support vectors. Plugging Eq. (4.4) to Eq (4.1), the decision

boundary can be rewritten as

y(x) = ∑
φ(xi)∈S

αiφ(xi)
Tφ(x) + b. (4.5)

Now the decision boundary requires merely the inner product between φ(x) and each

support vector φ(xi).

Another benefit of the dual problem relates to the so-called Kernel trick. Given a mapping

φ, a kernel is defined to be K(xi, xj) = φ(xi)
Tφ(xj). Any proposed kernel function must

be validated by Mercer’s theorem [65]. Most notably, K(xi, xj) can be inexpensive to

calculate because it applies to the variables in the data space, even when φ(x) may be very

expensive to calculate due to a high dimensionality. In this case, SVMs can be learned

without ever having to explicitly find or represent vectors φ(x).

Commonly used kernels include the linear kernel, polynomial kernel, and Gaussian

kernel (a.k.a., radial basis function kernel). Without prior knowledge of what the user interest

may be, the Gaussian kernel is considered more flexible than the linear or polynomial kernels,

hence used in this work. The Gaussian kernel is defined as: KG(xi, xj) = exp(−γ||xi −
xj||2). The feature space of the Gaussian kernel is known to be of an infinite number of

dimensions [87].

4.1.3 Active Learning for SVM

Our problem of dynamically seeking the next sample to label from a large database of

unlabeled objects is closely related to active learning. The active learning framework for
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Algorithm 2 A Basic Framework for SVM Active Learning
Input: database D

1: Dinit ←initialSampling(D)
2: Dlabeled ← getUserLabel(Dinit)
3: Dunlabeled ← D \ Dinit
4: model ← trainSVM(Dlabeled)
5: while !isTerminated() do
6: x← getNextToLabel(model, Dunlabeled)
7: {x′} ←getUserLabel({x})
8: Dlabeled ← Dlabeled ∪ {x′}
9: Dunlabeled ← Dunlabeled \ {x}

10: model ← trainSVM(Dlabeled)
11: finalRetrieval(model, D)

SVM has a simple structure as shown in Algorithm 2. It starts with initial sampling and

proceeds to space exploration in an iterative fashion. In both phases, users are asked to

provide labels of retrieved samples (line 2 and line 7). The key focus of active learning is at

line 6: to identify at each iteration, the next sample to label to quickly improve the accuracy

of the current SVM model. Recent active learning theory [16] proposed to choose in each

iteration the example closest to the current decision boundary, that is, minx f (φ(x),L),
where x refers to any point in the data space, φ(x) is its mapping to the feature space, and f

is the distance function in the feature space.

Our work follows the same framework and uses the above theory to meet the “most

uncertain” requirement of uncertainty sampling. However, our work instantiates this frame-

work with new sampling algorithms to also meet the efficiency and convergence require-

ments. In particular, we propose new algorithms that address getNextToLabel() and

isTerminated() together in Section 4.2, and a series of optimizations for getNextToLabel()

and finalRetrieval() in Section 4.3.

4.2 New Sampling Algorithms

In this section, we present two uncertainty sampling algorithms that provide rigorous

yet practical results on the convergence of the user interest model.
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4.2.1 Algorithm for Convex Queries

Our first algorithm focuses on a common class of user interest queries that have a convex

shape in the data space. For this class of queries, we seek to design a sampling algorithm that

is more efficient than a direct implementation of SVM active learning theory (Algorithm 2),

and further enables formal provable results on F1-score as the accuracy measure of the SVM

classification model in a given iteration in exploration.3

Formally, F1-score is evaluated on a test set Dtest = {(xi, yi)}, where xi denotes a

database object and yi denotes its label according to the classification model. Then F1-score

is defined as:

F1-score = 2 · precision · recall
precision + recall

,

where precision is the fraction of points returned by the model (query on Dtest) that are

positive, and recall is the fraction of positive points in Dtest that are returned by the model.

However, capturing F1-score in our uncertainty sampling procedure is difficult because

we do not have such a labeled test, set Dtest, available. We cannot afford to ask the user to

label more to produce one since the user labor is an important concern. The challenge here

is how to provide any accuracy information related to F1-score with limited labeled points

and abundant unlabeled ones.

The key idea is, at each iteration we try to use all available labeled examples, denoted

as Dlabeled, to building a partitioning function of the data space. This function divides the

data space into the positive region (any point inside which is guaranteed to be positive),

the negative region (any point inside which is guaranteed to be negative) and the uncertain

region. We define the evaluation set Deval as the projection of Dtest without labels yi’s.

Then for each data point in Deval, depending on which region it falls into, Deval can be

partitioned into three sets accordingly, denoted as D+, D− and Du. We can compute a

metric from the number of data points in the three sets and prove that it is a lower bound

3Our solution to this class also provides a foundation for extension to a more general case of a
union of convex shapes.

103



of F1-score evaluated on Dtest. As more labeled examples being provided, we have more

knowledge about the uncertain region, so part of the uncertain region will convert to either

the positive or the negative region in later iterations. Accordingly, some data points can be

moved from Du to either D+ or D−. Eventually, with enough training data, the uncertain

region shrinks to the minimum, Du = ∅, and the positive region converges to the query

region.

4.2.1.1 Algorithm with Exact Lower Bound of F1-score

We start with a formal definition of the partitioning function, Ψ, of a data space based

on the three regions mentioned above. We then introduce a metric built on this partitioning

function, called the three-set metric (TSM), and an algorithm that incorporates Ψ and the

TSM metric to active learning. We finally present a theorem stating that the TSM metric

captures the lower bound of F1-score.

1. Partitioning Function and Metric. The following definitions and propositions

depend on the assumption that the query region Q is convex, which means that any point

on the line segment connecting two points x1 ∈ Q and x2 ∈ Q is also in Q. When Q

consists of multiple disjoint convex regions which makes itself not convex, we can initiate

one exploration task per region and the metric applies to each task.

Definition 14 (Positive Region). Denote the examples that have been labeled as “positive”

as e+i , i = 1, . . . , n+. The convex hull of ∪n+

i=1e+i , i.e., the smallest convex set that contains

∪n+

i=1e+i , is called the positive region, denoted as R+.

It is known that the convex hull of a finite number of points is a convex polytope [46]. For

example, the green triangle in Figure 4.2 and the green pentagon in Figure 4.3 are the positive

regions formed by three and five positive examples, respectively, in a two-dimensional space.

We can prove the following property of the positive region:

Proposition 4.2.1. All points in the positive region R+ are positive.
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Figure 4.2: Illustration of a positive region (green) with three positive samples, and a
negative region (red) with two positive examples and one negative example in 2D space.
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Figure 4.3: Illustration of positive region (green) and negative region (red) with five positive
examples and five negative examples in two-dimensional space.

Proof. Since (1) e+i ∈ Q for i = 1, . . . , n+, (2) R+ is the smallest convex set that contains

∪n+

i=1e+i , and (3) Q is convex, we can derive that R+ ⊆ Q, which means all points in R+

are guaranteed to be positive.

Definition 15 (Negative Region). For a negative example e−i , we can define a corresponding

negative region R−i such that the line segment connecting any point x ∈ R−i and e−i does not

overlap with the positive region R+, but the ray that starts from x ∈ R−i and passes through

e−i will overlap with R+. More formally, R−i = {x|xe−i ∩ R+ = ∅ ∧
−→
xe−i ∩ R+ 6= ∅}.

Given n− negative examples, the negative region R− is the union of the negative region for

each negative example, i.e., R− = ∪n−
i=1R−i .
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From the definition, we know that R−i is a convex cone generated by the conical

combination of the vectors from the positive examples to the given negative example, i.e.,
−−→
e+j e−i (j = 1, . . . , n+). Further constrained by the bounds of the data space, each negative

region becomes a convex polytope. For example, the red triangle in Figure 4.2 and five red

polygons in Figure 4.3 are the negative regions in a two-dimensional space. We can prove

the following property of the negative region:

Proposition 4.2.2. All points in the negative region R− are negative.

Proof. Let us first prove that all points in each R−i are negative. Suppose that some point

x0 ∈ R−i is positive. According to the definition of R−i ,
−−→
x0e−i ∩ R+ 6= ∅, which means

we can find a point x1 such that x1 ∈ R+ and x1 ∈
−−→
x0e−i . Then e−i is on the line segment

connecting two positive points x0 and x1. This contradicts the convex query assumption.

Hence the supposition is false and all points in R−i are negative. Since R− is just a union of

all R−i ’s, all points in R− are negative as well.

Definition 16 (Uncertain Region). Denote the data space as Rd, the uncertain region

Ru = Rd − R+ − R−.

Basically Ru is the remaining region, e.g., the white area in Figure 4.2 and Figure 4.3.

As mentioned earlier, as more examples being labeled, part of the uncertain region will be

converted to either the positive region or the negative region and eventually the uncertain

region will shrink to an empty set.

With the three types of regions defined, we can define the three-set metric as follows:

Definition 17 (Three-set Metric). Denote D+ = Deval ∩ R+, D− = Deval ∩ R−, Du =

Deval ∩ Ru, and |S| means the size of set S. At a specific iteration of exploration, the

three-set metric is defined to be |D+|
|D+|+|Du| .

2. Algorithm. Next we present how to build the TSM metric in the iterative exploration

process in Algorithm 3. The input is the database D, evaluating dataset Deval (which could
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Algorithm 3 SVM Active Learning with TSM for Convex Queries
Input: database D, evaluation set Deval , accuracy requirement λ

1: R+ ← ∅, R− ← ∅
// initial sampling:

2: Dinit ←initialSampling(D)
3: Dlabeled ← getUserLabel(Dinit)
4: Dunlabeled ← D \ Dinit

// estimate accuracy of initial sampling:
5: for x ∈ Dlabeled do
6: (R+, R−)← updateRegion(R+, R−, x)
7: (D+, D−, Du)← updateEvalData(R+, R−, ∅, ∅, Deval)
8: accu← estAccuracy(D+, D−, Du)
9: model ← train(Dlabeled)

// space exploration:
10: while accu < λ and !isTerminated() do
11: x← getNextToLabel(model, Dunlabeled)
12: if x ∈ R+ then
13: x′ ← (x, 1)
14: else if x ∈ R− then
15: x′ ← (x,−1)
16: else
17: {x′} ←getUserLabel({x})

// estimate current accuracy:
18: (R+, R−)← updateRegion(R+, R−, x)
19: (D+, D−, Du)← updateEvalData(R+, R−, D+, D−, Du)
20: accu← estAccuracy(D+, D−, Du)
21: Dlabeled ← Dlabeled ∪ {x′}
22: Dunlabeled ← Dunlabeled \ {x}
23: model ← train(Dlabeled)
24: finalRetrieval(model, D)

be any unlabeled dataset including the database D), and a user-defined accuracy threshold

λ. First, we initialize R+ and R− as empty sets (line 1). Then, initial sampling is performed

(line 2) and the obtained examples are labeled by users (line 3). We keep track of the labeled

and unlabeled samples using Dlabeled and Dunlabeled. Based on the labeled examples, the

regions can be incrementally updated (line 5-6) and hence the corresponding sub-partitions

of Deval are updated (line 7). The accuracy is then evaluated according to Definition 17 (line

8) and a model is trained based on the labeled initial samples (line 9). The process next goes

into the iterative exploration until the accuracy requirement is met or the user decides to stop
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Algorithm 4 updateEvalData Incrementally update the partitions of Deval

Input: positive and negative region (R+, R−). positive, negative and uncertain class of the
evaluation dataset (D+, D−, Du).

1: for x ∈ Du do
2: if x ∈ R+ then
3: D+ ← D+ ∪ {x}, Du ← Du \ {x}
4: else if x ∈ R− then
5: D− ← D− ∪ {x}, Du ← Du \ {x}
6: return (D+, D−, Du)

the process (line 10). In each iteration, an unlabeled data point with the closest distance to

the decision boundary is acquired. If the data point is in R+ or R−, which means its label is

known without involving the user, it is labeled automatically (line 12-15). Such examples do

not add information to R+ and R− and hence do not change D+, D−, Du and the three-set

metric. Otherwise, the data point is labeled by the user (line 17) and the metric is updated

(line 18-20). At the end of each iteration, the selected data point is moved from Dunlabeled

to Dlabeled (line 21-22) and a new model is trained (line 23).

There are a few procedures involved in Algorithm 3. Here we emphasize those related

to the three-set metric: In updateRegion, the regions are updated based on the literature

in computational geometry [8]. In updateEvalData, the partitions of Deval can be

incrementally updated as shown in Algorithm 4, which tests if a data example belongs to the

positive or negative region based on its polytope definition. In estAccuracy, the metric

is computed according to Definition 17.

3. Lower Bound of F1-score. With a good understanding of how the metric works in

the exploration process, we now present our main theorem.

Theorem 4.2.1. The three-set metric evaluated on Deval captures a lower bound of the

F1-score if evaluated on Dtest.

Proof. At any iteration i, Deval can be partitioned into D+, D− and Du. Recall that Deval

is a projection of Dtest without the labels. We know for certain that the labels for all points
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in D+ (or D−) are positive (or negative) in Dtest according to Proposition 4.2.1, 4.2.2 and

the definition of D+ and D− in Definition 17; only the labels for points in Du are uncertain.

Let us assume that p% points in Du are predicted as positive by the SVM model trained

at Line 23 of Algorithm 3. Denote the set of points as Du+. Then |Du+| = p% · |Du| and

we can write the precision and recall of the trained SVM model as

precision =
|D+|+ |Du+ ∩Q|
|D+|+ |Du+| =

|D+|+ |Du+ ∩Q|
|D+|+ p% · |Du|

≥ |D+|
|D+|+ |Du|

recall =
|D+|+ |Du+ ∩Q|
|D+|+ |Du ∩Q| ≥

|D+|
|D+|+ |Du|

F1-score is the harmonic mean of precision and recall. So F1-score is lower-bounded by

|D+|/(|D+|+ |Du|).

The three-set metric has several key advantages. First, it provides an exact lower bound

of F1-score throughout the exploration process and works for any evaluation set Deval

Second, the metric is monotonic in the sense that points in the uncertain region before may

be in the positive or negative region later, and the metric converges to 1 when Du = ∅.

The monotonicity means that if the metric is above the desired accuracy threshold at some

iteration, it is guaranteed to be greater than the threshold in later iterations, so we can safely

stop the exploration. Monotonicity also enables incremental computation: at iteration i + 1,

we only need to check the points in the uncertain region at iteration i and see if they belong

to the positive or negative region of iteration i + 1.

Besides the lower-bound on F1-score, the TSM algorithm has several advantages over a

direct implementation of active learning theory (Algorithm 2): The TSM algorithm internally

maintains a positive sample set and a negative set based on its partitioning function of the

data space, and avoids asking the user to label the retrieved sample if it is known to belong
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to its positive or negative sample set. From the user’s perspective, the convergence has

expedited because the same accuracy can be achieved by labeling fewer samples. The

performance benefits of this optimization can be significant as we show in the evaluation. In

addition, since TSM works for any evaluation set Deval in the data space, which can be set

to the entire database or a smaller sample set (used in our approximate bound as described

shortly).

4.2.1.2 Approximate Lower Bound of the Metric

When Deval is too large, we may refer to a sampling technique to reduce the time to

evaluate the three-set metric. Let p and q be the true proportions of the positive and negative

data in Deval, i.e., p = |D+|/|Deval| and q = |D−|/|Deval|. Then the three-set metric is

b =
p

1− q
. Let p̂ and q̂ be the observed proportions of the positive and negative samples

in a random draw of n samples from Deval, and let Xn =
p̂

1− q̂
. Our goal is to find the

smallest sample size n such that the estimation error of the exact three-set metric is less than

δ with probability no less than λ. That is,

Pr(|Xn − b| < δ) ≥ λ.

The following theorem will help us find the lower bound of n.

Theorem 4.2.2. supε‖Pr(
√

n|Xn − b|<ε)−
(

2Φ(
ε(1− q)√

p(1− p− q)
)−1

)
‖ = O(1/

√
n)

for any ε, where Φ is the cumulative distribution function of the standard Normal distribu-

tion.

Proof. Since (np̂, nq̂)T follows Multinomial(n, p, q, 1− p− q), the vector converges to

the bivariate Normal distribution when n increases according to the Central Limit Theorem.

Specifically,

√
n


 p̂

q̂

−
p

q


 D−→ N


0

0

 , Σ
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where Σ =

 p −pq

−pq q

 .

Define v = (p, q)T, v̂ = ( p̂, q̂)T, and g(v) =
p

1− q
. Then b = g(v) and X = g(v̂).

According to the Delta method [27]

supε‖Pr(
√

n|Xn − b| < ε)−
∫ ε

−ε
φσ2(t)dt‖ = O(1/

√
n)

where φ is the density function of the Normal distribution with mean zero and variance

σ2 = (∂g(v)/∂v)TΣ(∂g(v)/∂v) = p(1− p− q)/(1− q)2. Therefore, the theorem is

proved.

With the above theorem, we approximate the sample size such that

2Φ(

√
nδ(1− q)√

p(1− p− q)
)− 1 ≥ λ.

Since p(1− p− q)/(1− q)2 ≤ 1/4, it is sufficient for n to satisfy 2Φ(2
√

nδ)− 1 ≥ λ

and therefore n ≥
(

Φ−1
(

λ+1
2

))2
/(4δ2).

4.2.2 Algorithm for General Queries

For general query patterns, our second algorithm augments SVM active learning theory

with techniques for capturing the model change rate and the trend of convergence based on

this measure.

To begin the discussion, we summarize our notations for SVM as follows, while the

details on SVM are given in Section 4.1.2: denote x as a point in the data space, φ as the

mapping function from the data space to the feature space, K as the kernel function where

K(xi, xj) = φ(xi)
Tφ(xj); the SVM model can be uniquely identified using either ω and b

in the primal form, or α and b in the dual form.

To capture the model change rate, the starting point of our algorithm design is the follow-

ing observation: with the Gaussian kernel, all the points in the data space Rd will be mapped
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Figure 4.4: Two models (hyperplanes) in the 3-dimensional feature space (hypersphere).

onto a unit hypersphere in the feature space R f . This is because KG(x, x) = exp(−γ||x−
x||2) = exp(0) = 1. Then for the corresponding φG, we know φG(x)TφG(x) = 1, which

means all points in the data space are mapped to a unit hypersphere in the feature space. The

decision model at each iteration is a hyperplane that possibly cuts the multi-dimensional

ball into one positive hyper-spherical cap and one negative hyper-spherical cap. Figure 4.4

shows two decision models in the feature space in solid circles and the corresponding two

ω vectors pointing to the positive side of the model. Below, we formally define the model

change rate in the feature space.

Definition 18 (Model Change Rate). Denote Ci−1 and Ci as the positive hyper-spherical

caps at iteration i− 1 and i respectively. We define the difference between Ci−1 and Ci as

Di = (Ci \ Ci−1) ∪ (Ci−1 \ Ci) and the model change rate between iteration i− 1 and i

as A(Di)/A(S i), where S i is a unit sphere in i-dimensional space and A is the notation

for the surface area.

The rationale behind this definition is: Ci \ Ci−1 is the set of points in the feature space

that are predicted as negative at iteration i − 1 but positive at iteration i, and similarly,

Ci−1 \ Ci is the set of points that are predicted as positive at iteration i− 1 but negative at
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iteration i. Since all points in the data space are mapped to a hypersphere, we use the surface

area as the metric.

Closed-form expressions for the surface area of a hyper-spherical cap and that of a

hypersphere have been well-studied long ago. Recently, [59] has derived the surface area

of the intersection of two hyper-spherical caps given ωi−1 and bi−1 and ωi, bi. It is

straightforward to see that A(Di) = A(Ci−1) + A(Ci)− 2A(Ci−1 ∩ Ci). Therefore, in

order to compute the model change rate in the feature space, the remaining problem is to

obtain ω and b.

As mentioned earlier in Section 4.1.2, SVM is usually solved in the dual form rather than

the primal form. A typical SVM solver returns α’s and b as an SVM model, but Equation (4.4)

allows us to compute ω from αi’s and φ(xi)’s. Although φ(x) is intensionally bypassed

by the kernel trick, we can apply Cholesky Decomposition to the kernel matrix, which is

symmetric and strictly positive-definite for Gaussian kernel, and get a unique decomposition,

as formally described below.

Ki×i =


K(x1, x1) · · · K(x1, xi)

... . . . ...

K(xi, x1) · · · K(xi, xi)



=


φ(x1)

Tφ(x1) · · · φ(x1)
Tφ(xi)

... . . . ...

φ(xi)
Tφ(x1) · · · φ(xi)

Tφ(xi)



=


φ(x1)

T

...

φ(xi)
T


i×i

×
(

φ(x1), · · · , φ(xi)

)
i×i

Note that the kernel matrix of the Gaussian kernel always has full rank for distinct

examples, which means that the rank is increased by 1 every time a new example xi is

added and its projection and φ(xi) is independent of all previous examples’ projections
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Algorithm 5 Model Change Rate in the Feature Space
Input: labeled examples x1, . . . , xi and their coefficients α1, . . . , αi

5,
bi, ωi−1 and bi−1.

Output: the model change rate in the feature space at iteration i
1: Ki×i ←updateKernelMatrix(K(i−1)×(i−1), xi)
2: {φ(x1), . . . , φ(xi)} ←CholeskyDecomposition (Ki×i)
3: ωi ← ∑i

j=1 αjφ(xj)
4: ωi−1 ←append(ωi−1, 0)

// computations below are in i-dimensional space:
5: intersect←getIntersectionArea(ωi−1, bi−1, ωi, bi)
6: areai−1 ←getUnitSphericalCapArea(i, ωi−1, bi−1)
7: areai ←getUnitSphericalCapArea(i, ωi, bi)
8: change← areai−1 + areai − 2 · intersect
9: whole←getUnitSphereArea(i)

10: return change/whole

φ(x1), . . . , φ(xi−1) in the feature space. In other words, each example adds a new dimension

to the span4 of example’s projections. When computing the surface area difference of

two consecutive models ωi−1 and ωi, we add a zero to ωi−1 to make it of the same

dimensionality with ωi.

We summarize the procedure of computing the model change rate in the feature space

at iteration i in Algorithm 5. After we obtain the model change rate, we can just check

convergence using the long-established methods.

4.3 Optimizations

We further provide a suite of optimizations for uncertainty sampling, including those for

reducing the time cost of retrieving the most uncertain sample from the database, and for

reducing the time of running the final query over the database.

4It is well-known that the feature space of Gaussian kernel is infinite dimensional but the projec-
tions of finite examples span a finite dimensional subspace of the infinite dimensional space.
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(a)$

(b)$

Figure 4.5: Decision tree based approximation of the non-linear decision boundary in the
data space.

4.3.1 Sample Retrieval

A key performance goal in our work is to limit the cost of each iteration, including

retrieving the most uncertain sample to label next, within a few seconds. Recent research [16]

proposed to choose the sample closest to the current decision boundary of the SVM. However,

finding the sample closest to the decision boundary from a large database is costly. Pre-

computation to store the distance of each tuple to the decision boundary is not possible

because the boundary changes in each iteration. As a result, existing implementations either

pay the cost to scan the database, or sacrifice convergence by resorting to random sampling

and among the random samples, choosing the one closest to the decision boundary.

Optimizing the retrieval of the most uncertain sample is challenging because the sample

closest to the decision boundary is defined in the feature space, while sample retrieval is

performed in the data space. There is no reverse mapping from the feature space to the

data space. Below, we propose a decision tree based optimization for the sample retrieval

problem without scanning the entire database.

Decision Tree Based Approximation. The classification boundary in the data space

can be of arbitrary shapes, hence hard to be interpreted but can be approximated by the union

of many disjunctive hyper-rectangles. As shown in Figure 4.5(a), the classification boundary

is a solid black curve that cuts the data space into two regions: one filled with green positive
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Algorithm 6 Decision Tree Based Approximation
1: Define a band that encloses the current SVM decision boundary.
2: Prepare a training dataset of synthetic grid points such that the points in the band are positive

and otherwise are negative.
3: Feed the dataset to a decision-tree algorithm and train a decision tree.
4: Translate the leaves returned by the decision tree into a SQL query and send it to the backend

database.
5: From all the results of the query, return the one that is closest to the SVM decision boundary as

the sample to be used in the next iteration.

points and one with red negative points. The black curve can be approximated by the blue

boxes in Figure 4.5(b). Each hyper-rectangle is a conjunction of conditions on (a subset

of) dimensions in the data space, just like the leaves returned by the decision tree learning

algorithm. This inspires us to leverage decision trees to approximate the classification

boundary in the data space.

We summarize the main steps in Algorithm 6. Let us define the decision boundary

(function) in the feature space as:

y(x) = ωTφ(x) + b = 0 (4.6)

where x as a point in the data space, φ as the mapping function from the data space to the

feature space, and ω is the weight vector.

In step 1, we define a band in the data space as {x| y(x) ∈ [−δ, δ]}. In step 2, we

enumerate synthetic grid points in the data space to find those residing in the band (positive

points) and outside the band (negative points). In Step 3, we feed these points to build a

decision tree on the data space dimensions. We then turn the decision tree to a database

query (step 4) and among its output, find the exmple closest to the SVM decision boundary

(step 5).

4.3.2 Final Result Retrieval

Once the exploration terminates upon convergence or by the user request, we obtain an

SVM model as represented in Equation 4.6. The ultimate goal is to find all tuples in the
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database D with positive predictions by this model, i.e., x such that x ∈ D and y(x) > 0.

To expedite the retrieval of the final results, we propose to build R-tree as the index over the

database, and perform a top-down search in a depth-first fashion.

Branch and Bound. The unique aspect of the R-tree search is a solver-based branch

and bound approach. Each R-tree node offers a hyper-rectangle as a minimum bounding

box of all the data points reachable from this node. With an explicit decision function, y(x)

in Equation 4.6, we can compute an upper bound of y(x) without visiting the descendent

nodes. Instead, we can obtain it by solving the following constraint optimization problem.

max
x

y(x)

s.t. aj ≤ x(j) ≤ bj, j = 1, . . . , d.
(4.7)

where [aj, bj] is the range of the tree node on the j-th dimension and x(j) is the value of

x on the j-th dimension. If the upper bound is already smaller than 0, we can prune the

entire subtree rooted at this node. Since the positive results tend to be clustered and mark

only a small portion of the database in practice, with such index structure, we may gain a

significant improvement over scanning the entire database and running the model on each

tuple.

4.4 Experimental Evaluation

We have implemented all of our proposed techniques in a Java-based prototype for

data exploration, which connects to a PostgreSQL database. In this section, we evaluate

our techniques in terms of accuracy (using the F1-score), convergence rate (the number

of user labeled samples needed to reach an accuracy level), and efficiency (the execution

time in each iteration and in final query retrieval). We also compare our system to two

state-of-the-art systems on explore-by-example, AIDE [34, 35] and LifeJoin [26], as well as

specific sampling methods from active learning [16].
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Attributes Query template Selectivity

(rowc,colc)

Q1.1: rowc > 662.5 and rowc < 702.5 and colc > 991.5 and colc < 1053.5 0.1%
Q1.2: rowc > 617.5 and rowc < 747.5 and colc > 925 and colc < 1120 0.97%
Q1.3: rowc > 480 and rowc < 885 and colc > 719 and colc < 1326 9.43%
Q2.1: (rowc− 682.5)2 + (colc− 1022.5)2 < 292 0.1%
Q2.2: (rowc− 682.5)2 + (colc− 1022.5)2 < 902 0.98%
Q2.3: (rowc− 682.5)2 + (colc− 1022.5)2 < 2802 9.43%

(ra,dec)
Q3.1: ra > 190 and ra < 200 and dec > 53 and dec < 57 0.1%
Q3.2: ra > 180 and ra < 210 and dec > 50 and dec < 60 0.95%
Q3.3: ra > 150 and ra < 240 and dec > 40 and dec < 70 10.24%

(rowc,colc) 4-dimensional queries as a combination of the above (rowc,colc) and varied
+ (ra,dec) (ra,dec) queries, e.g., Q2.2 + Q3.2

Table 4.1: Query templates (selectivity is reported on 1% dataset with 1,918,287 tuples)

Figure 4.6: (ra, dec) distribution

Datasets: We evaluate our techniques using the “PhotoObjAll” table, which contains 510

attributes, from the Sloan Digital Sky Survey (SDSS) with data release 86. The table contains

the full photo metric catalog quantities for SDSS imaging, one entry per detection. We

downloaded around 192 million tuples. For experiment purposes, we generated tables by

random sampling the base table with different sampling ratios, 0.03%, 1%, 10%. After

loading to PostgreSQL, the sizes were 300MB, 9991MB, and 98GB, respectively. B+ tree

indexes on the key attribute objid were pre-built to facilitate example (i.e., tuple) retrieval.

Since data exploration usually operates on a sampled dataset that fits in memory, we used

the 1% dataset, which is the largest that fits in memory, as our default data exploration space.

6http://www.sdss3.org/dr8/
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User Interest Queries: We extracted a set of queries from the SDSS query release 8 to

represent true user interests7, as shown in Table 4.1. These user interest queries allow

us to run simulation of user exploration sessions: we precompute the answer set of each

query, then run a data exploration session as described in the previous sections; during each

iteration, when the active learning algorithm presents a new sample to be labeled, we consult

the query answer set to decide whether to give a positive or negative label.

When choosing queries in our experiments, we consider the following factors : (1)

pattern: queries can be linear or non-linear, (2) varied query selectivities, and (3) varied

query dimensionalities. The queries are summarized in Table 4.1: On (rowc, colc), i.e.,

the row and column center positions, data are roughly evenly distributed, and we have

two groups of queries, one for the linear pattern (Q1) and one for the non-linear (Q2).

On (ra, dec), i.e., the right-ascension and declination in the spherical coordinate system,

represent workloads with skewed data (see Figure 4.6). Within each group, we consider

three selectivities: 0.1%, 1% and 10%, which we believe covers the general settings in real

applications. We combine queries on (rowc, colc) and (ra, dec) to obtain 4-dimensional

queries with varied selectivities, e.g., combining Q2.2 on (rowc, colc) and Q3.3 on (ra, dec)

will result in a query on (rowc, colc, ra, dec) with selectivity 0.1%.

We conduct 10 runs for each query and in each run, one positive sample and one negative

sample that are randomly selected will be fed to the system as initial samples.

Servers: Our experiments were run on five identical servers, each with 12-cores, 2× Intel(R)

Xeon(R) CPU X5650 @2.66GHz, 64GB memory, JVM 1.7.0 on CentOS 6.6.

4.4.1 Sample Retrieval Methods

We first use the general active learning framework (without making convex assumptions)

and evaluate our sample retrieval methods, the decision tree and solver methods ([72]), for

finding the sample closest to the SVM decision boundary in each iteration. For comparison,

7http://skyserver.sdss.org/dr8/en/help/docs/realquery.asp
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(d) Q3.1 Accuracy

Figure 4.7: The accuracy and response time of various example acquisition methods on
various workloads.

we also include the best sampling method reported for active learning [16]. This method

retrieves a fixed number L of random samples at each iteration and among them chooses

the one closest to the decision boundary, denoted as x∗. L is chosen under the condition

that x∗ is among the top p% closest instances in the original dataset with probability q. We

varied L from 500 to 50,000, whose corresponding p% and q values are (1%, 0.993) and

(0.01%, 0.993). We call these methods “random-top-500” to “random-top-50k”. We made

consistent observations that for queries with selectivity 1% and 10%, all techniques have

marginal difference in terms of accuracy. Therefore, we show the results for queries with

0.1%, considered as harder queries, in Figure 4.7 and 4.8.

Expt 1 (rowc, colc): First consider Figure 4.7(b) and 4.7(c), both for Q2.1 with a

nonlinear pattern in Table 4.1. We can see that random-top-500 is much less accurate
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(b) Q2.2+Q3.2 Speed

Figure 4.8: The accuracy and response time of various example acquisition methods on
various workloads.

compared to random-top-50000, especially in early iterations. This is because for highly-

selective queries, it is hard to hit a good and informative sample among a set of only 500

samples. However, random-top-500 only takes 0.25 second per iteration while random-top-

50k takes around 25 seconds due to much more samples retrieved from the database per

iteration. The accuracy of the decision tree method and the solver method lies in between,

closer to random-top-500k. The time per iteration is around 2 seconds for the solver method

and does not increase with iterations; the average time of the decision tree method is 2.86

seconds over the first 200 iterations but increases fast after some point. Overall, the solver

method finds the best tradeoff between accuracy and response time. The accuracy

trends of various methods for Q1.1 with the linear pattern are very similar, as shown in

Figure 4.7(a). We omit the time plot for the same reason.

Expt 2 (ra, dec): Since the decision-tree-based method is always observed inferior to the

solver method, we omit it in the following experiments. Figure 4.7(d) shows the accuracy

result of Q3.1, which is on a skewed dataset. The solver method still approximates well

random-top-50k, especially in the early iterations, while the response time stays slow, very

similar to Figure 4.7(c).
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Expt 3 (rowc, colc, ra, dec): We next combine the rowc-colc query of 1% selectivity

with a ra-dec query of 1% selectivity. As Figure 4.8(a) and Figure 4.8(b) show, the solver

method approximates random-top-50k for accuracy and random-top-500 for response time,

hence achieving a good tradeoff between them.

4.4.2 Uncertainty Sampling for Convex Queries

We next consider the convex properties of queries. We compare our uncertainty sampling

algorithm, Algorithm 3, to default active learning work, Algorithm 2, for any given example

retrieval method. These algorithms are labeled as “TSM on” and “TSM off” in Figure 4.9

and 4.10. The x-axis is the iteration (conversation) number; at each iteration, the user

provides a label for one example. The system is automatically terminated after 500 examples

labeled either by the user or TSM.

Expt 4: Accuracy for Q2.1 with different example retrieval methods are shown in

Figure 4.9(a)-4.9(c). At any iteration, TSM has a better accuracy than the baseline active

learning algorithm; the F1-score of the latter does not even reach 0.99 with 500 iterations

while TSM only requires around 200-300 iterations to obtain at least 0.99 F1-score. Overall,

with TSM turned on, the user is expected to label much fewer examples while achiev-

ing higher accuracy. The reasons are: (1) TSM keeps track of regions (i.e., the positive

and negative regions) where labels are certain based on the existing labeled examples, and

only requires the user to label an example if it falls in the uncertain region. As exploration

proceeds, TSM requires less user labeling because the uncertain region shrinks over time.

(2) SVM itself can make wrong predictions for points in the positive and negative regions,

while TSM will not (see Proposition 4.2.1 and 4.2.2), which is guaranteed to bring a better

accuracy. Accuracy for a four-dimensional query combining Q2.2 and Q3.2 is shown in

Figure 4.9(d). Compared with Q2.1, the increase in the dimensionality makes it harder to

form effective certain regions for TSM, so TSM does not help to label any example retrieved

by the solver method in early iterations and the F1-score is almost identical. But eventually
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(a) Q2.1 with random-top-500
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(c) Q2.1 with solver
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(d) Q2.2+Q3.2 with solver

Figure 4.9: Model accuracy with TSM turned on and off for various workload.

the user only needs to label around 400 examples, which is a 20% reduction on the user

effort. It is worth noting that our TSM technique works with any retrieval methods.

Expt 5: We next study the effectiveness of the lower bound given by TSM. We compute

both the exact lower bound and the approximate lower bound based on 165888 samples. The

results on Q2.1 is shown in Figure 4.10(a). It can be seen that the blue and red lines are very

close and both are indeed lower bounds for the black line. There is a gap between the truth

and the lower bound but eventually the lower bound converge to the true F1-score: when

the true F1-score is 0.99, the lower bound is around 0.96. The same observation is made

in Q1.1. The results on Q2.2+Q3.2 is shown in Figure 4.10(b). The lower bound provided

by TSM is not as tight as that for the 2-dimensional workload, as we discussed in the last

8Derived from Theorem 4.2.2 when λ = 0.99 and δ = 0.01.
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(a) Q2.1 with solver
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(b) Q2.2+Q3.2 with random-top-50000

Figure 4.10: The effectiveness of lower bound provided by TSM.
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Figure 4.11: The time cost of turning on TSM.

experiment. For d-dimensional workloads, each polytope needs at least d + 1 examples to

form and each, so it requires a lot more labeled examples for larger d in order to shrink the

uncertain region.

Expt 6: The response time per iteration for Q2.1 with TSM turned on and off is shown

in Figure 4.11. With TSM on, we do see overheads. The overhead increases with iteration

because as exploration proceeds, TSM will have better knowledge about the query so it can

help the user to label more samples and feed the labeled samples to the learning module.

We can also see that with the approximation the running time is much reduced without

sacrificing the accuracy according to Figure 4.10(a).
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4.4.3 Model Change Rate

Expt 7: In Section 4.2.2, we define model change rate based on the surface area in

the feature space. In this experiment, we compare it with other choices on both two-

dimensional workload (Q2.1) and four-dimensional workload (Q2.2+Q3.2). In Figure 4.12,

we considered the following alternatives with ωi and ωi+1 being the ω’s in two consecu-

tive iterations: ||ωi+1−ωi||/(||ωi+1||+ ||ωi||), (||ωi+1|| − ||ωi||)/(||ωi+1||+ ||ωi||),
and ||(ωi+1/||ωi+1|| − ωi/||ωi||)||/2, denoted as VD (vector difference), MD (mode

difference) and UVD (unit vector difference), respectively. Note that all four metrics are in

[0, 1]. As we can see from the plot, our surface-area-based model change rate fluctuates less

(Figure 4.12(a) and Figure 4.12(c)) than the other three. Less fluctuation is desirable when

selecting a metrics for detecting model convergence. The threshold for surface-area-based

metric should be set much lower than others as it decreases faster (Figure 4.12(b) and

Figure 4.12(d)). With an appropriate threshold, model change rate defined on surface area is

the best metrics among the four to detect model convergence.

4.4.4 Compare to Alternative Systems

We finally compare our system to two alternative systems for explore-by-example.

(1) AIDE [34, 35] uses decision trees as the classification model. If a query pattern is

non-linear, it uses a disjunction of conjunctive linear predicates (or a collection of hyper-

rectangles in the data space) to approximate the pattern. We obtained the source code from

the authors. (2) LifeJoin [26] reports a method, named “hybrid”, as its best performing

method. At each iteration, this method uses all the labeled samples to train a collection of

weak-learners (error-free regarding the training data), extracts basic predicates from these

learners, and train a linear SVM over these predicates. Then the linear SVM is used to

seek the next sample for labeling, which is the one closest to the SVM boundary. The final

retrieval method collects the support vectors of the final SVM, uses it as a training set to

build a decision tree, and converts the positive class of the decision tree to a query to retrieve
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(d) Q2.2+Q3.2 log-scale

Figure 4.12: Model change rate defined on different metrics.

all the objects. We reimplemented the LifeJoin with two modifications: we used Random

Forest (RF) with overfitted decision trees to build the weak learns as RF is a better known

approach than a program synthesizer for this purpose, and we used our sample retrieval

method to find the one closest to the SVM boundary, avoiding scanning the entire dataset.

We tried to make parameters consistent with those recommended in the paper, including

the number of weak learners used (10) and the number of basic features (on the order of

hundreds). We run all experiments up to 500 user-labeled samples.

Figure 4.13 shows the results for both 2D and 4D workloads. The main observations

are: (1) For the 2D nonlinear query (Q2.1), our system and AIDE are similar, while LifeJoin

is significantly worse in both accuracy and per-iteration time. (2) For the 4D query that

combines linear and nonlinear predicates (Q2.2+Q3.2), the accuracy of AIDE and LifeJoin
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(d) Q2.2+Q3.2 Time

Figure 4.13: Compare our system to AIDE and LifeJoin in accuracy and per-iteration time
for 2D and 4D query workloads.

drops to below 10%, while our system achieves 85% with the per-iteration time within a few

seconds. (3) Our per iteration time is consistently around two seconds for Q2.1 and slowly

increases to five seconds for Q2.2+Q3.2. In contrast, AIDE fluctuates over the course for

both workloads; LifeJoin increases to 15 seconds quickly for Q2.1 and does not quite work

for Q2.2+Q3.2 so per iteration is consistently below two seconds.

Finally, Table 4.2 shows the final result retrieval after 500 iterations and compares the

three systems in both accuracy and running time. Again, LifeJoin suffers from low accuracy,

using either its decision-tree based final retrieval method or running the SVM model over the

database (in parentheses). AIDE loses accuracy for workloads beyond 2D. AIDE’s model

can be transformed into SQL queries, so the final result retrieval is generally very fast. Its

accuracy on Q1.1 is the best as Q1.1 is a linear pattern query, which is not challenging for

127



Query Metrics LifeJoin AIDE Ours (B&B)

Q1.1
F-score (%) 7.13 (45.12) 95.8 88.0
retrieval time (s) 0.683 0.013 79.7

Q2.1
F-score (%) 48.81 (58.76) 86.5 93.9
retrieval time (s) 0.338 0.018 104.3

Q2.2+Q3.2
F-score (%) 0.02 (0.007) 4.6 84.9
retrieval time (s) 2.575 0.088 207.2

Query Metrics Ours (scan) Ours (B&B, 20x) Ours (scan, 20x)

Q1.1
F-score (%) 88.0 88.06 88.1
retrieval time (s) 1009.2 314.75 20184.9

Q2.1
F-score (%) 92.3 93.15 93.15
retrieval time (s) 1023.8 340.73 20481.2

Q2.2+Q3.2
F-score (%) 84.6 81.34 81.34
retrieval time (s) 1039.7 942.02 20794.1

Table 4.2: Compare to AIDE and LifeJoin for the final retrieval (after 500 iterations).

its decision-tree based sample retrieval. However, it loses to our system on non-linear 2D

query and 4D query. Our system with branch-and-bound final result retrieval maintains

high accuracy while having a modest final retrieval time of a few minutes. We also tested

scalability on 20x data. As shown in the table, branch-and-bound retrieval scales sub-linearly

due to the tree structure and early branch pruning while scanning scales linearly.

4.5 Related Work

Data Exploration. Faceted search iteratively recommends query attributes for drilling

down into structured databases, but the user is often asked to provide attribute values until

the desired tuple(s) are returned [76, 77, 55] or provides an“interestingness” measure and

its threshold [32]. Semantic windows [54] are pre-defined multidimensional shape-based

and content-based predicates that a user can explore. Its utility is restricted to the case that

such patterns exactly suit the user interest. To speed up interactive exploration, adaptive

tree indexes are built [108] on parts of the data that the user has actually queried, rather

than on all the data upfront. The work [67] specifically focuses on iterative “linear algebra

programs” and proposes techniques based on matrix factorization to make incremental
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view maintenance substantially cheaper than re-evaluation. Most recent work has proposed

a model to interpret the variability of likely queries in a workload [37], and dynamic

prefetching of data tiles for interactive visualization [9].

Query by Example is a specific framework for data exploration. Earlier work on QBE

focused on a visualization front-end that aims to minimize the user effort to learn the SQL

syntax [51, 64, 70, 107]. Recent work [66] proposes exemplar queries which treat a query

as a sample from the desired result set and retrieve other tuples based on similarity metrics,

but for graph data only. The work [85] considers data warehouses with complex schemas

and aims to learn the minimal project-join queries from a few example tuples efficiently. It

does not consider selection with complex predicates, which is the main focus of our work.

The work [53] helps users construct join queries for exploring relational databases, and [60]

does so by asking the user to determine whether a given output table is the result of her

intended query on a given input database. These works are relevant yet orthogonal to our

active learning based approach.

Query formulation has been surveyed in [25]. The closest to our work is LifeJoin [26],

which we described and compared in our performance study. Query By Output (QBO) [95]

takes the output of some query on a database, and aims to construct an alternative query

such that running these two queries on the database are instance-equivalent. Das Sarma et

al. [31] studied the complexity of finding a query that describes the relationships between

a database and an existing view. Dataplay [2] provides a graphical interface for users to

directly construct and manipulate query trees, assuming that users already have knowledge

about quantified queries. In [104], the user is asked to provide both the input and output

relations, with a small number of sample tuples in each, in order to synthesize a SQL query

consistent with the sample tuples. In summary, our work takes an active-learning approach

with new sampling algorithms and theory on convergence.

Active Learning. [94, 83] provide a theoretical motivation on selecting which examples

to request next using the notion of a version space.The main idea is to select instances
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whose corresponding hyperplanes in parameter space split the current version space into

two equal parts as much as possible hence achieve the fastest convergence. However, the

convergence speed is unknown. Related to our work is a lower bound on the probability of

misclassification error on the unlabeled training set based on a large deviation theory [19].

However, the calculation of the lower bound relies on user labeling of an additional sampled

subset from the unlabeled pool, which is not required in our work. A recent set of papers [38,

47, 48, 49] offered probabilistic bounds for the classification error and sample complexity.

Our work differs from these in that 1) we focus on F1-score, which suits selective user

interest queries (imbalanced classes in classification), 2) our lower bound is deterministic.

Note that different performance metrics (F measure versus classification error) lead to

different relative performances of the active learning methods. Since the user interest

exploration is naturally an imbalanced problem, i.e., the true user interest query selects way

less than 50% database objects, F measure is a more suitable measure because it emphasizes

the accuracy regarding the positive class (i.e., objects in the query answer set). Recent

work [74] focuses on preference learning by pairwise comparison on structured entities. It

uses linear SVM and the way to select the next example is similar to [94].

There are also a set of stopping criteria proposed for active learning. Schohn and

Cohn [79] developed a heuristic stopping rule that labeling stops when the examples in the

margin of the SVM have all been labeled. It does not give any indication of classification

error at convergence. Four simple stopping criteria based on confidence estimation over the

unlabeled data pool and the label consistency between consecutive training rounds of active

learning have been presented [106]. Fu and Yang use as the stopping criterion a measure on

whether SVM’s separating hyperplane lies in a low density region [40]. Vlachos defines

the confidence of the SVM classifier as the sum of the decision margins for the instances of

a test set and stops the active learning process when the confidence reaches its peak [100].

Recent work in NLP [14] compares successive model predictions on a set of examples

that do not need to be labeled and choose a proper set size as well as a cut-off value on
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a measure of “agreement” . Another study [68] focuses on the committee-based active

learning and proposes to stop active learning when the Selection Agreement (decision on the

most informative example selected for the next iteration) is no less than the Validation Set

Agreement (decision on the validation of the current classifier on an unannotated dataset).

The above techniques are based on various heuristics, while our work provides stronger

results, namely, provable lower bounds on the F1 accuracy measure, and uses the lower

bound as the stopping criteria for active learning.

4.6 Conclusion

In this chapter, we presented the design of a new database service for data exploration by

example. We devised new uncertainty sampling algorithms with formal results, and a series

of optimizations to improve performance. Our main results are: (1) For convex patterns, our

TSM algorithm is proved and experimentally tested to offer a lower-bound for F1-score, and

reduces the user labeling effort. On 2-dimensional workloads, when TSM is applied, the user

only needs to label 20% of the examples needed using traditional active learning without the

TSM technique to achieve the same accuracy. On 4-dimensional workloads, the number is

80%. We also devise an approximation technique to reduce the overhead of applying TSM

hence can provide interactive experience for users. Although TSM assumes convex query

pattern and no-noise labeling and only works significantly well with low dimensionality,

it is worth noting that TSM works with any sample retrieval method and provides a good

foundation for follow-on work which has successfully relaxed the convex assumption and

factorized a high-dimensional exploration problem into a collection of low-dimensional

problems. (2) For general workloads, we define model change rate based on surface area

difference in the feature space, which can be integrated into detecting model convergence.

(3) We propose a series of optimizations, namely, decision-tree-based sample retrieval and

branch-and-bound method for final result retrieval, to improve performance. (4) Our system
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significantly outperforms AIDE and LifeJoin, two alternative systems, in accuracy while

achieving desired efficiency for interactive exploration.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Thesis Summary

Data management problems are crucial in large-scale scientific applications, where

uncertainty presents in both data and user queries. In this thesis, I have proposed novel

techniques to provide efficient query processing for the following three problems: data

uncertainty in the relational model, data uncertainty in the array model, and data exploration

by example under query uncertainty.

Data Uncertainty in Relational Databases. I proposed techniques to optimize proba-

bilistic threshold query processing on continuous uncertain data by (i) expediting selections

by reducing dimensionality of integration and using faster filters, (ii) expediting joins using

new indexes, and (iii) using dynamic, per-tuple based planning that considers both cost and

selectivity of operators. Results using the SDSS benchmark show significant performance

gains over a state-of-the-art indexing technique and its threshold query optimizer.

Data Uncertainty in Array Databases. I proposed a number of storage and evaluation

schemes for the Subarray operator, in particular, the store-multiple scheme, and building

on that, the subarray-based join (SBJ) for the Structure-Join operator. The case study on

real-world workloads shows that for Subarray, store-multiple is 1.7x- 4.3x faster than a

state-of-the-art index, U-index, and for Structure-Join, SBJ is 1 to 2 orders of magnitude

faster than U-index based join. Such improvement does not require pre-built indexes and

comes with very limited storage overhead: for real datasets, over 79% tuples have only 1

copy and over 92% tuples have at most 3 copies (considering that 3 is the common number

for replication in today’s big data systems).
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Data Exploration by Example. I proposed the design of a new database service for

data exploration by examples. The main results include: (1) the three-set metric for convex

queries can reduce the user labeling effort and lower-bound the F1-score hence can be used

as an accuracy-based system stopping criterion, (2) the change rate metric can be generally

applied to detect model convergence over iterations and is therefore another practical system

stopping criterion, (3) the solver-based approximation expedites the example acquisition

while still providing a high-quality example for labeling in each iteration, (4) the efficiency

of the final result retrieval is much improved by applying indexes, and (5) the new system

significantly outperforms AIDE and LifeJoin, two alternative systems, in accuracy while

achieving desired efficiency for interactive exploration.

5.2 Future Work

There are some other exciting directions related to the topics of this thesis for further

study.

Noisy User Feedback. Over the course of data exploration, a user may provide inaccu-

rate feedback. The current TSM approach permanently converts part of the uncertain region

in the data space to a positive region or a negative region based on each single feedback.

In order to yield an accurate model, a detector of inaccurate region conversion could be

added. A possible direction is to choose data points in previously converted regions, and

ask additional user feedback of the data points. The additional feedback can serve for two

purposes: (1) Detect an inaccurate user feedback by conflicts in user interest, and (2) correct

a user feedback with high confidence based on majority voting. An interesting problem

to solve is how to choose minimum additional data points to effectively detect and correct

inaccurate feedback. Besides inaccurate user feedback, changing in user interest also poses

an issue. A similar detector could be used to detect interest changes of the previous feedback.

However, how to take time as a factor in feedback correction to capture the most recent user

interest remains an open problem.
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Dimensionality Reduction. Data exploration starts with all possible relevant attributes.

Such high dimensionality requires more user feedback to generate an accurate model. As

more user feedback are collected in the interactive process, opportunities to identify and

prune irrelevant attributes can be further explored in future work.

Semi-supervised Learning. The current data exploration approach adopts supervised

learning over user feedback. When user interest aligns with the clustering properties of

data, adopting semi-supervised learning techniques can utilize unlabeled data to learn user

interest more quickly.

Combining Data Uncertainty and Query Uncertainty. In the presence of both data

uncertainty and query uncertainty, some high-level questions remain open to answer and

I will discuss in two cases: (1) When user interest is the same across all possible worlds,

some existing work on training a classifier on uncertain data [12, 102, 52] applies. How do

we integrate data uncertainty with active learning and our TSM technique? (2) When user

interest varies with different possible worlds, it is a problem of higher complexity. Those

are challenging problems to solve in future work.
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