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ABSTRACT 

OBSERVING THE MOLECULAR BASIS OF THIN FILAMENT ACTIVATION 

WITH A THREE BEAD LASER TRAP ASSAY 

 

FEBRUARY 2018 

THOMAS J. LONGYEAR, B.S., UNIVERSITY OF ALABAMA HUNTSVILLE 

M.S., UNIVERSITY OF MASSACHUSETTS 

Ph.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Edward P. Debold 

 Muscle contracts after calcium (Ca++) is released into the muscle cell, resulting 

from a cascade of events which result in myosin, the molecular motor of muscle, to 

produce force and motion. Myosin cyclically binds to a regulated thin filament, using the 

chemical energy of ATP to produce force and motion. Perturbations in muscle, such as a 

build-up of metabolic by-products or point mutations in key contractile proteins, can 

inhibit these functions in both skeletal and cardiac muscle either acutely or chronically. 

Despite the many years we have studied skeletal and cardiac muscle, we still do not have 

a clear picture of the effect of these perturbations at the molecular level. Indeed, we do 

not even have a clear picture of how muscle is activated at the molecular level. Such an 

understanding would provide a foundation for future work, and aid our understanding of 

perturbations such as muscle fatigue or point mutations. Recent advances in biophysical 

techniques have allowed us to directly observe both single myosin and small ensembles 

of myosin interacting with an actin filament. We build off this previous work by 

examining 1) a single myosin molecule interacting with a regulated actin thin filament, 

and 2) small ensembles of myosin working together to pull on a regulated thin filament. 

We set out to directly determine how Ca++ and myosin activate the thin filament and thus 
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muscle. Our approach to directly observe these molecular phenomena across 

physiological Ca++ levels as well as high ATP concentrations is novel. The first goal of 

this work was to examine how 1) a single myosin interacts with a regulated thin filament 

and 2) how a small ensemble of myosins work together to generate force and motion in a 

Ca++ dependent manner as they interact with a regulated thin filament. The findings build 

on previous work using similar techniques, but are rich in data and provide a more 

physiological viewpoint. The second goal of this work was to examine a particular 

mutation that leads to hypertrophic cardiomyopathy. The current evidence suggests that 

this mutation alters both thin filament dynamics and myosin kinetics. This mutation was 

thus chosen not only to add to our understanding of this particular mutation in hopes of 

developing a therapeutic, but also to provide insight into the role of thin filament 

activation and myosin dynamics in hopes of better understanding muscle contraction 

overall. With our experiments, supplemented with a mathematical model, we have de-

convolved the role of Ca++ and myosin in thin filament activation, and developed a model 

of muscle activation from the single molecule up to the scale of a cell.  
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CHAPTER 1 

INTRODUCTION 

  For over 100 years, the machinery and mechanism for muscle contraction has 

been studied. Despite this long history, there are many unresolved questions, particularly 

on the molecular level. How a single myosin molecule interacts with a regulated actin 

filament (also called a ‘regulated thin filament’) is unknown. Further, how a small 

ensemble of myosins work together to bind to a regulated actin filament to produce force 

and motion is not clear. Considering in vivo muscle is structured so that a small ensemble 

of myosins interact with a regulated thin filament, experiments that can directly observe 

these conditions would be extremely valuable. We know that during a muscle 

contraction, calcium (Ca++) is released into the muscle cell, leading to partial activation of 

the regulated thin filament. Myosin can then strongly bind to the thin filament, leading to 

complete activation. However, the details of this thin filament activation are unclear. The 

relative contribution of Ca++ and myosin to thin filament activation is of particular 

interest if we are to better understand the molecular processes of muscle. The complete 

understanding of thin filament activation is applicable to many conditions, including 

submaximal Ca++, muscle fatigue, or point mutations.  

 Muscle fatigue is defined as a transient decrease in the generation of force and/or 

velocity in response to exercise (32, 38). Muscle fatigue has fundamental implications for 

exercise physiology, but is also a debilitating symptom of heart failure, which limits 

physical activity and negatively impacts the patient’s prognosis (43, 99). Despite the 

importance and history of muscle fatigue, the etiology of fatigue is not fully understood. 

A major hurdle to our understanding is our inability to observe molecular phenomena that 
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cause muscle fatigue. In fact, the inability to observe molecular phenomena has hindered 

our understanding of the molecular machinery of muscle even under normal conditions, 

let alone fatigue like conditions. Before further examining the etiology of fatigue, a better 

understand how the molecular machinery of muscle works under normal conditions 

would be of great benefit. A major goal of this dissertation was to provide insight into the 

molecular details of muscle contraction, and lay a foundation for future work the examine 

the molecular details of muscle fatigue. 

 Macroscale experiments that include human or animal participants, whole muscle, 

and even single muscle fibers have been informative, but are unable to provide 

information on the molecular details of muscle function, and thus muscle fatigue. Despite 

a long history of study, only in the last 20 years have we been able to directly examine 

muscle structure and function at the single molecule level (37). With new techniques now 

in hand, such as the laser trap assay, a better understanding of muscle function on the 

molecular level can be obtained. We can now examine the role of myosin and the 

regulatory proteins during muscle activation.  

What follows is a description of our current understanding of the molecular 

machinery of muscle, including myosin and the regulated thin filament. In addition, we 

will discuss how this machinery and its function leads to macroscopic observations, and 

how these observations change with perturbations such as fatigue or mutations in key 

contractile proteins. Finally, we will discuss experiments that can be performed that 

would address our questions about myosin’s function and thin filament activation under 

normal conditions, as well as under conditions with specific perturbations.   
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At the molecular level, muscle contraction is driven by myosin, which is the 

molecular motor in muscle. Myosin is an ATPase, converting the chemical energy of 

ATP into mechanical work. Within a muscle fiber, myosin molecules are organized into a 

thick filaments and are able to bind to the thin filament, composed of actin. The myosin 

molecules cyclically bind to the thin filament, producing force and motion with each 

binding event. This cycle starts when myosin binds to actin and generates a 

“powerstroke” of approximately 10 nm (figure 1.1, step 1) (25, 37, 119). Myosin then 

releases one of the ATP hydrolysis products, inorganic phosphate (Pi), into the cytosol, 

and this release is in close temporal proximity to this powerstroke (5, 20, 33). Some 

hypothesize that myosin then goes through an isomerization (26, 106), where there is 

some slight structural change without a biochemical change (step 2) (21, 26, 106). 

Myosin then releases ADP into the cytosol (step 3) and an ATP molecule will then bind 

to myosin, causing dissociation of myosin and actin (step 4). Myosin will hydrolyze the 

ATP (step 5) and the cycle repeats; this cycle is known as the “crossbridge cycle”. Each 

cycle generates an approximate 10 nm displacement. Thus, the faster myosin can move 

Figure 1.1 Model of the crossbridge cycle. During skeletal muscle contraction, myosin strongly binds to actin, 

releases Pi, and generates a powerstroke (step 1). Myosin then goes through an isomerization (with no 

biochemical change, step 2) and then releases ADP (step 3). ATP then binds to myosin, causing actomyosin 

dissociation (step 4). Myosin then hydrolyzes ATP (step 5) and the cycle repeats. It is possible that acidosis slows 

each of these steps. 
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through the cycle, the more displacement will be generated in a given time, and therefore 

more velocity is generated. Because myosin is the molecular motor of muscle, the speed 

at which the crossbridge cycle occurs is the direct cause of muscle contraction velocity. 

In addition, the force muscle produces is the product of the number of myosin’s attached 

to the regulated thin filament and how much force each myosin produces.  

In order to fully understand the crossbridge cycle, we need to know how the 

myosins interact with regulated actin, as is the case in vivo. Our understanding should 

include not only rested conditions, but also conditions observed during fatigue in vivo. 

These fatigue conditions can alter myosin’s function, resulting in changes in thin filament 

activation. Previous work has shown that specific changes within the muscle that occur 

during fatigue (13, 23, 64) lead to a reduction in force and velocity, most likely by 

altering myosin’s crossbridge cycle. For example, reducing the pH from 7.0 to 6.2 led to 

a decrease in force by 3-14%, velocity by 10-30%, and power by 34% (63, 67, 88). 

However, which step(s) of the crossbridge cycle are affected by acidosis is unclear. ATP 

hydrolysis, myosin’s strong binding to the thin filament, and/or ADP release may be 

altered; however, this has not been directly observed (25, 82, 100, 105). In addition, there 

is evidence that acidosis alters myosin’s force generating capacity (82). Previous work in 

single muscle fibers has suggested that a decrease in pH from 7.0 to 6.2 leads to a 

decrease in stiffness by approximately 25% (82). However, these data were collected 

with single muscle fibers (which contain billions of myosin molecules) at below 

physiological temperatures (10 or 15° C). Such experiments with billions of myosin 

molecules don’t provide direct insight into the effects of acidosis on myosin’s function, 

and temperature has been shown to have a significant impact on myosin’s on-rate as well 
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as the effect of acidosis (95, 96, 137). Experiments with a single myosin molecule at 

near-physiological temperatures (30° C) can be performed with a laser trap assay to 

address this. This assay can be used to not only understand the molecular details of 

muscle under normal conditions, but also under fatigue-like conditions. Experiments 

exploring fatigue can be performed in future work once we have a better picture of how 

myosin works under normal conditions.  

Clearly, myosin plays a key role in muscle’s function, and specific perturbations 

that alter muscle output are due to direct effects on myosin. Additional key players 

include the regulatory proteins, troponin (Tn) and tropomyosin (Tm). The interaction 

between myosin and actin is regulated by Ca++ binding to troponin. This Ca++ binding 

will lead to a chain of events, involving structural and dynamic changes in troponin, 

tropomyosin, myosin and actin, eventually leading to muscle contraction. Troponin 

consists of three subunits: the Ca++ binding subunit, troponin C (TnC), the inhibitory 

subunit, which is responsible for inhibiting contraction during muscle relaxation, troponin 

I (TnI), and the tropomyosin binding subunit, troponin T (TnT). Ca++ binding to TnC 

leads to slight structural changes the TnC structure, where a hydrophobic patch is 

exposed on the N-terminus. The C-terminus of TnI, which plays the crucial role of 

binding to actin and keeping the regulatory proteins in place during relaxation and 

preventing actomyosin binding, will relieve itself of this duty by releasing actin and 

binding to the exposed hydrophobic patch. With only minor forces keeping tropomyosin 

on actin, tropomyosin is now free to slide over the actin surface, which reveals myosin 
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binding sites on actin (see figure 1.2). 

 

Figure 1.2. Cartoon of TnI at low and high calcium. a) With no calcium bound to troponin C, troponin I stays 

bound to actin, keeping tropomyosin in the blocked state. b) Upon calcium binding, troponin I detaches from 

actin and binds to troponin C, allowing tropomyosin to move freely about the actin surface.  

The function of regulatory proteins is crucial; minor changes in Ca++ 

concentrations can lead to large changes in troponin and tropomyosin’s position on actin, 

and thus can lead to large changes in muscle force. Therefore, perturbations that alter 

Ca++ binding to troponin or that alter troponin’s function can have significant 

implications. For example, mutations in troponin can lead to cardiomyopathies by 

presumably altering these Ca++-dependent motions. In addition, during muscle fatigue, 

Ca++ levels decrease (71) and positively charged hydrogen ions may compete with Ca++ 

for binding to troponin (88, 93). Both mechanisms can lead to a drastic reduction in 

muscle output. The precise molecular mechanisms are unknown.  

Prior to Ca++ release, tropomyosin is in the “blocked” state, where tropomyosin 

physically blocks actomyosin binding. Upon Ca++ binding to troponin, tropomyosin is 

moved into the “closed” state, where tropomyosin’s position fluctuates across actin’s 

surface and binding sites are transiently available to myosin. Once in the closed state, 

tropomyosin is pushed into the “open” state upon myosin binding. This premise, known 

as the three state model, is strongly supported by biochemical experiments (72, 81, 118), 
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in vitro experiments (29, 62), protein structures (19, 98, 108, 122, 125), and mathematical 

models (126). Thus, both Ca++ binding to troponin and myosin binding to actin are 

critical to thin filament activation, where thin filament activation is a measure of how 

available the myosin binding sites on actin are. As stated earlier, perturbations such as 

troponin mutations or fatigue-like conditions can alter muscle output. In the three-state 

model, acidosis may block Ca++ binding to troponin, potentially keeping tropomyosin in 

the blocked state. This would result in less actomyosin binding and thus less muscle 

output. This reduced binding not only affects each myosin, but can also affect 

neighboring myosin due to the cooperative nature of myosin binding. 

A key component of thin 

filament activation is the cooperative 

binding of myosin molecules to the 

regulated thin filament. Once one 

myosin strongly binds to actin and 

pushes tropomyosin into the open 

state, other myosin molecules can 

more easily bind to actin. Cooperativity 

can be seen graphically in the pCa-force 

and pCa-velocity relationships, an example of which is shown in figure 1.3. In this figure, 

the x-axis is pCa, which represents the negative log of Ca++ (pCa 4 is high Ca++, pCa 7 is 

relatively low Ca++). Force output is very low at low Ca++ levels, but as Ca++ increases, a 

drastic increase in force occurs. As more Ca++ is present, the regulatory proteins can more 

readily move out of the blocked state, and myosin can bind. Clearly, both Ca++ and 
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steep, suggesting high cooperativity. 
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myosin play a crucial role in thin filament activation, but is one more important than the 

other? The precise role of each of these players in thin filament activation and 

cooperativity are not completely understood. Understanding these roles is significant to 

both skeletal and cardiac muscle because during muscle activation, the physiological 

Ca++ concentration usually lies within the steep portion of the pCa-force relationship. 

Small changes in Ca++ can lead to large changes in myosin binding and subsequent force 

production. Further, how activation and cooperativity are altered by acidosis and other 

metabolites produced during fatigue is unclear, though evidence exists that acidosis 

affects these parameters (22, 24, 88, 93, 133, 135). Therefore, understanding the roles of 

myosin and Ca++ under normal conditions is imperative so that we can better understand 

the molecular details of fatigue in subsequent experiments. A key goal of this 

dissertation was to determine the role of myosin and Ca++ in thin filament 

activation. This was achieved with the state-or-the-art laser trap assay that allows 

direct observation of single myosin and myosin ensembles generating force. By 

directly observing the binding of a single myosin or an ensemble of myosin to a 

regulated thin filament while controlling the level of Ca++, we de-convolved the role 

of both myosin and Ca++ in activation. 

With a better understanding of how myosin and the regulatory proteins lead to 

thin filament activation, we will be able to understand how specific perturbations affect 

thin filament activation, as well as cooperativity and the resulting pCa-force relationship. 

For example, mutant troponins can lead to changes in these measures. The mutations that 

lead to muscle dysfunction are typically found in key regions of troponin. One key region 

is the Ca++ binding pocket. Obviously, a mutation here could alter Ca++ binding and 
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subsequent thin filament activation. Another key region is the inhibitory region, which 

binds to actin and prevents tropomyosin from moving and exposing actomyosin binding 

sites. A mutation in this region could allow tropomyosin to expose actomyosin binding 

sites in the absence of Ca++. One example of this is a mutation called R146G. This 

mutation is associated with hypertrophic cardiomyopathy and seems to allow actomyosin 

binding in the absence of Ca++ (34, 70, 114, 129). Unfortunately, the precise mechanism 

R146G’s action is unknown. More precise techniques are required to understand its effect 

on thin filament activation and potentially help the patients with this mutation. A second 

key goal of this dissertation was to examine how R146G has its effects on myosin 

kinetics and regulated thin filament activation. 

To obtain a better understanding of thin filament activation, experiments on the 

molecular level that can examine a single myosin’s ability to interact with the thin 

filament are crucial. Further, experiments that mimic physiological conditions by 

examining how a small ensemble of myosin work together to activate the thin filament 

Figure 1.4. Cartoon of the 3-bead assay. Myosin is randomly oriented on the microscope slide surface, 

occasionally located on a pedestal bead. A bead-filament-bead assembly, trapped by laser light, is put in close 

vicinity to the pedestal so single molecule interactions can be observed and measured. Figure courtesy of Mike 

Woodward. 
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could bridge the gap between our current understanding of single myosin molecule 

kinetics and single muscle fiber experiments. This can be achieved with the 3-bead laser 

trap assay, where two beads, which are trapped by laser light, hold a single actin filament 

taught, while a single myosin sitting on a pedestal bead binds to the actin filament (figure 

1.4). This technique, with millisecond time and nanometer spatial resolution, allows us to 

directly observe a single molecule interaction, giving us displacement, duration of 

attachment, and binding frequency of individual actomyosin interactions. This technique 

can also be used to examine how multiple myosins pull on a single actin filament 

cooperatively to generate force.  

 In addition to collecting novel information on thin filament activation, a key 

outcome from future work is to be able to use our knowledge of the molecular details to 

understand how specific perturbations lead to dysfunction. In addition to setting the 

foundation for examining fatigue, the knowledge gained in this work can set the 

foundation for examining mutations that cause disease. Our understanding of the 

molecular details of normal, wildtype proteins can help us construct models for 

mutations, especially those that cause cardiomyopathies.  

The expectation for this dissertation was to create a better understanding of 

muscle on the molecular level and begin applying that knowledge to specific 

perturbations. One perturbation that we have gained interest in is the R146G mutation in 

TnI. This mutation was chosen because it is known to cause cardiomyopathy (60, 65), 

because of its crucial location in TnI (36, 113, 115), and because the evidence is 

inconclusive. Though this mutation has been studied previously, there is still little 

consensus on its effect. For example, some have shown that the R146G negatively affects 
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force, while others have seen no effect (70, 114, 129, 132). More puzzling is the effect 

this mutation has on the Ca++ dependent production of force and velocity: previous data 

has shown that force and velocity are reduced at high Ca++ compared to wildtype Tn, but 

force and velocity are increased at low Ca++ (12, 60, 69, 70, 114, 129, 132). The 

molecular mechanisms that lead to these odd phenomena are not well understood. 

Experiments that examine both thin filament activation as well as myosin kinetics in the 

presence of this mutation are necessary to gain a full mechanistic understanding of this 

mutation. By manipulating conditions in an in vitro environment, we can gain novel 

insight into how this mutation causes dysfunction. Future work can then use our 

understanding of the molecular details of muscle contraction to ameliorate the negative 

effects of cardiomyopathies.   

 Overall, the goal of this dissertation was to use state-of-the-art single molecule 

techniques to better understand regulated thin filament activation. In recent years, many 

experiments have been performed with either single muscle fibers which contain billions 

of myosin or with single myosin molecules interacting with an unregulated thin filament. 

The current dissertation bridges the gap between these two methods by incorporating 

regulated thin filaments with single, small ensemble, and large ensembles of myosin. 

This work lays the foundation for future work examining perturbations that cause muscle 

fatigue. Another key goal was to better understand how a cardiomyopathy mutation in 

troponin leads to functional changes. These outcomes give us a better understanding of 

the molecular details of muscle contraction and help us apply our knowledge to attenuate 

the negative effects of cardiomyopathy mutations.  
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Hypotheses 

Hypothesis 1: Both Ca++ and myosin play crucial roles in thin filament activation.  

A) During single molecule experiments in the 3-bead assay, myosin’s binding to 

the regulated thin filament will be Ca++ dependent. 

a. The frequency of binding will be reduced as Ca++ levels are reduced. 

b. The displacement generated upon myosin binding will not be Ca++ 

dependent. 

B) During experiments with small ensembles of myosin in the 3-bead assay, the 

force generated will be Ca++ dependent and will show elements of 

cooperativity. 

a. Many events will be recorded with various forces, and the distributions 

will shift as Ca++ is decreased where force and event frequency will 

decrease. 

b. The distributions will show cooperativity by containing many events 

with high force. This cooperative action will be observed by direct 

observation of moderate forces even at low to moderate calcium (pCa 

6-7).  

i. This suggests that once one myosin binds, many others bind as 

well, leading to a distribution of forces with more high forces 

than low forces. 

C) During experiments with large ensembles of myosin in an in vitro motility 

assay, the velocity generated will be dependent on both ATP, which directly 

influences the number of myosin bound, and Ca++ concentrations. 
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a. Under conditions of low ATP and low Ca++, velocity will be observed, 

suggesting that myosin in rigor can activate the thin filament in the 

absence of Ca++. 

b. This suggests that both myosin and Ca++ play a role in thin filament 

activation. Under low ATP and low Ca++, activation is driven by 

myosins that are strongly bound in a rigor state, while high ATP and 

high Ca++ leads to contributions from both strongly bound myosin and 

Ca++. 

Hypothesis 2: The R146G mutation in troponin I disrupts the normal pCa-velocity 

relationship by altering multiple steps of the crossbridge cycle.    

A) During pCa-velocity experiments, the R146G mutation will lead to enhanced 

velocity under low Ca++ conditions but reduced velocity under high Ca++ 

conditions. 

a. This will lead to a reduced Hill coefficient, which suggests a reduction in 

cooperativity.  

b. The mutation will also cause an increase in the Ca++ sensitivity, as 

determined by the pCa50. 

B) During duty cycle experiments, the R146G mutation will cause an increase in the 

duty cycle. 

a. This will suggest that the R146G affects myosin kinetics, either increasing 

the rate of the strong binding step or slowing the rate of ADP release. The 

most likely steps altered are strong binding and ADP release.  
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C) During ATP-velocity experiments, the R146 mutation will slow velocity at any 

given ATP level, suggesting that ADP release is slowed in the presence of the 

R146G mutation.  
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CHAPTER 2 

 

LITERATURE REVIEW 

The Crossbridge Cycle 

Myosin uses energy from ATP hydrolysis to cyclically bind to actin and produce 

force and motion. This cyclical binding is commonly referred to as the crossbridge cycle. 

When a muscle is in a resting state, most myosin are in a ‘cocked’ state, with the myosin 

head ready to bind to actin and release its hydrolysis products, ADP and Pi. Upon muscle 

activation, Ca++ binds to troponin and the regulatory proteins allow myosin to strongly 

bind to actin. When this occurs, myosin releases Pi, generates force, and produces an 

approximate 10 nm displacement of actin, all in a matter of a few milliseconds (37). 

Myosin continues to produce force as long as it is strongly bound to actin, the duration of 

which is referred to as “time-on” (ton). During this strongly bound state, there is evidence 

that myosin isomerizes with ADP still bound (26, 106). Myosin then releases ADP and 

binds an ATP molecule, which causes dissociation of myosin and actin. From here, 

myosin can hydrolyze this ATP molecule, which re-cocks the myosin head, and the 

crossbridge cycle can begin again. 

The crossbridge cycle affects force and velocity  

To discuss myosin’s function, we must discuss what limits myosin’s function and 

its subsequent force and velocity production. The force generated by a muscle fiber is the 

product of the number of myosin molecules in that fiber strongly bound to actin 

multiplied by the force per myosin molecule (58, 59). Therefore, the longer myosin stays 

attached to actin (i.e., ton) relative to the time off of actin (toff), the more myosin 

molecules will be bound at any given time, increasing the force produced. Based on this, 
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an increased rate in attachment and a decreased rate of detachment would lead to more 

myosin bound and thus more force. Experiments performed in the laser trap assay have 

shown that specific biochemical steps are force dependent, such as ADP release (121). 

The more force a given myosin is producing, the longer myosin would take to release 

ADP. This provides a mechanochemical explanation for prolonged attachment and high 

force production. Velocity, on the other hand, is assumed to be limited by detachment 

(59, 128), that is, velocity is equal to the displacement generated by myosin divided by 

the time myosin spends strongly bound to actin (59). The faster myosin can detach, the 

faster a muscle will contract. This model agrees well with data suggesting that ADP 

release, an event that occurs with myosin bound to actin, is the biochemical step that 

limits velocity (91). Simply, force is dependent on myosin being bound to the actin 

filament, while velocity is dependent on the rate of detachment from the actin filament. 

This juxtaposition is the basis for the inverse relationship of force and velocity. This 

relationship was shown in seminal work by A.V. Hill (55) in whole muscle. Evidence 

that myosin is responsible for this action was demonstrated with the laser trap assay, 

where a small ensemble of myosin was able to reproduce the force-velocity relationship 

(27). 

Effect of metabolites on the crossbridge cycle 

Changes to the concentration of specific metabolites can affect the kinetics of the 

crossbridge cycle. Some of these metabolites have been suspects for muscle fatigue. This 

includes ATP, inorganic phosphate (Pi), and acidosis. 
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ATP 

A reduction in ATP was once considered a culprit of fatigue. As ATP 

concentrations are reduced, the rigor lifetime of a myosin crossbridge increases, which 

would slow velocity. Current estimates put ATP levels around 5 mM in fresh muscle, and 

as low as 1 mM in severely fatigued muscle (2). However, 1 mM is more than sufficient. 

The concentration of ATP that leads to half-maximal binding of myosin, also known as 

the Km, is approximately 5 uM. Therefore, a decrease to 1 mM would still allow 

sufficient ATP-myosin binding, and would not have a significant effect on myosin’s 

function.   

Inorganic Phosphate (Pi) 

 Another major culprit of muscle fatigue is inorganic phosphate (Pi). Even small 

amounts of Pi (5 mM) can negatively impact force (18, 20, 28), though some have 

postulated that concentrations can reach as high as 30 mM during fatigue (13, 23, 134). Pi 

release and force generation have been examined extensively, as Pi release is closely 

associated with force generation and are hard to tease apart. One current hypothesis is 

that Pi rebinds to actomyosin, inducing dissociation between actin and myosin and thus 

limiting force production. This hypothesis was validated with single molecule 

experiments in the laser trap assay recently (28).  

Acidosis 

Finally, acidosis is likely to be the most studied culprit for muscle fatigue. 

Acidosis has been proposed to affect more than one step of the crossbridge cycle. 

Surprisingly, there is relatively little evidence showing which kinetic step is altered. 

Recent work has shown force to decline 10-18% and velocity to decline by up to 70% 
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(63, 67, 88). For this to occur, specific steps of the crossbridge cycle must be slowed. 

Based on the steps that limit force and velocity, three steps are likely slowed: 1) the 

strong binding, force-generating step, 2) ADP release, and 3) ATP hydrolysis.  

 The first potential step acidosis may alter is myosin’s strong binding to actin. 

Insightful release and re-stretch experiments performed in single muscle fibers suggested 

that strong binding was slowed (83). In fact, later work suggested that the acidosis-

induced changes observed in both force and velocity could be explained by this one 

step’s rate (105). Additional work comparing the change in force and ATPase as a 

function of pH also suggested that the rate of attachment is slowed as pH is reduced 

(100). One technique that could address the rate of strong binding is the single molecule 

laser trap assay. In this assay, individual binding events between myosin and the thin 

filament can be directly observed. The rate of strong binding can be determined by 

recording the number of events over time and determining the binding frequency. This 

binding frequency can be measured in the presence or absence of acidosis and the effect 

of acidosis on strong binding can be observed and quantified.  

The second kinetic step that could be altered by acidosis is ADP release. There is 

strong evidence that ADP release is slowed by acidosis, where reducing the pH from 7.4 

to 6.4 increased the lifetime of a single actomyosin bond 3-fold (25). This was directly 

observed in the laser trap assay, where the displacement and binding lifetime of a single 

myosin molecule interacting with a single filament can be directly observed.  

Finally, the third step likely to be altered by acidosis is ATP hydrolysis. The 

single molecule experiments performed by Debold et al. (25) suggested that ATP 

hydrolysis was slowed by acidosis. This was suggested based on the average 
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displacement observed for each powerstroke under various conditions: at low ATP (1 

µM), the average displacement was only 2 nm, but this was increased to 6 nm at 10 µM 

ATP and returned to a normal 10 nm at 1 mM ATP. The authors argue that acidosis does 

not alter the size of the powerstroke, because the powerstroke size returned to 10 nm at 

high ATP. Rather, they suggest that ATP hydrolysis is slowed. The logic is as follows: up 

ATP binding, myosin and actin dissociate (step 4, figure 1). However, if ATP hydrolysis 

is slowed, myosin may release ATP and bind to actin, forming a strong bond but 

producing no powerstroke. Thus, in the laser trap assay, an actomyosin binding event 

would be detected but no displacement generated. If such events happened frequently, the 

average displacement of all events would be skewed toward values much less than 10 

nm, as observed. As ATP concentrations increase to 10 µM and 1 mM, myosin could 

release ATP, but a new ATP could quickly take its place, and the crossbridge cycle 

would move forward.  

 Recent work from our group (26, 76) has teased apart which crossbridge steps 

acidosis alters. In the presence of acidosis, we observed a slowing of thin filament 

velocity, which was augmented in the presence of Pi. We postulated that acidosis slows a 

step during ton (possibly the AM.ADP state), and Pi rebinds to this step, causing 

dissociation of actomyosin. This agrees well with a detachment-limited model of 

velocity, where a faster dissociation (caused by Pi) would attenuate acidosis’ effect on 

velocity. We further probed this by measuring velocity in the presence of ADP and Pi. 

Interestingly, Pi could not attenuate the negative effects of ADP on velocity. We 

concluded that there are two myosin-ADP states: AM’ADP and AM.ADP, the transition 

of which is slowed by acidosis. Further, we concluded that Pi can rebind to the AM’ADP 
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state, causing 

dissociation and thus 

limiting acidosis’ 

effects on velocity. 

However, the addition 

of ADP leads to an 

increase in the 

AM.ADP state, a state 

that Pi cannot rebind to and thus cannot affect (see Figure 3.1). Further experiments with 

2-deoxy-ATP (dATP), an ATP analog, showed that dATP can mitigate the effects of 

acidosis in the presence or absence of Pi. We concluded that acidosis must slow the 

weak-to-strong transition, while dATP attenuates this effect. Indeed, previous work has 

suggested that dATP increases the weak-to-strong transition rate (101, 102).  

Though we have made strides toward understanding the effects of acidosis, a 

clearer picture can be obtained by dissecting each step of the crossbridge cycle. Indeed, 

single molecule experiments are necessary to directly observe and measure the steps of 

the crossbridge cycle. One example of the power of single molecule experiments is the 

results obtained from Debold et al. (25) which directly measured that the rate of ADP 

release is reduced in the presence of acidosis, in disagreement with inferences made from 

single fiber data. Additional experiments that could be done to make the conditions more 

physiological would be to measure the rate of certain kinetic steps in the presence of 

regulatory proteins. Finally, if ATP hydrolysis is slowed in the presence of acidosis is 

hard to determine. Debold et al. suggests this is possible, and solution kinetics suggest 

Figure 2.1. Action of Pi rebinding to actomyosin. Pi can rebind to the AM'ADP 

state, but not the AM.ADP state. Acidosis slows the AM’ADP to AM.ADP 

transition. Pi can rebind to this state, causing dissociation of actomyosin and 

thus attenuate acidosis’ effect on velocity. The addition of ADP increases the 

AM.ADP state, a state to which Pi cannot rebind and cannot attenuate velocity. 
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that myosin can release ATP and rebind to actin (107). If any step in the crossbridge is 

slowed by acidosis, myosin’s overall rate of ATP hydrolysis, measured as the ATP 

consumed per second, should decline as the pH is reduced. Interestingly, ATPase 

experiments have been inconclusive, as some actually suggest an increase in ATPase rate 

as pH decreases (100), some show no change (7, 8) while others suggest a 10% decrease 

(109). Clearly, experiments that can tease apart the individual steps of the crossbridge are 

necessary to characterize acidosis’ full effects. 

Acidosis may not only affect myosin’s kinetic steps, but also the force each 

myosin can produce. This possibility has been hypothesized previously based on single 

muscle fiber experiments (82, 100, 105). Some of the evidence is based on assumptions 

of myosin kinetics based on single fiber measurements (100, 105), while Metzger and 

Moss (82) provided convincing evidence of a decrease in force per crossbridge by 

observing a decrease in fiber stiffness relative to the force production of the fiber (82). In 

these experiments, the crossbridges were held in rigor by excluding ATP from the fiber 

bathing solution, and then the fiber was exposed to fast, sinusoidal changes in length so 

that both force and stiffness could be measured. From these experiments, one could 

conclude that force per crossbridge is decreased in the presence of acidosis. One 

confounding factor of these observations is that the changes in stiffness observed with 

acidosis are assumed to have occurred due to alterations in myosin’s mechanical 

characteristics, an assumption that ignores the fact that other proteins within a muscle 

fiber play crucial roles in fiber structure and stiffness. For example, titin is a large protein 

in muscle fibers that passively produces stiffness when a fiber is stretched and this 

stiffness is subject to the concentration of particular molecules, such as Ca++ (73). Titin 
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and other molecules are also sensitive to acidosis and could also therefore lead to the 

observed change in stiffness. To tease apart the direct effect on myosin, experiments that 

measure the strength of the crossbridge in the presence and absence of acidosis are 

necessary. Using a laser trap assay, others have performed such experiments, but only in 

the absence of acidosis (89, 90). Here, once a single actomyosin crossbridge was formed 

in the absence of ATP, the actin filament was pulled to apply a resistive load to the 

myosin molecule. Because the laser trap acts as a spring, the farther the assembly is 

pulled the more force is applied to the myosin, and the force at which the actomyosin 

bond ruptures is recorded. These experiments are therefore feasible to do and could 

provide evidence of the effect of acidosis on the force per crossbridge. If acidosis reduces 

the force per crossbridge, the actomyosin bond should rupture at lower forces than in the 

absence of acidosis. Again, this would provide a direct observation and quantification of 

one of the putative effects of acidosis on myosin function.  

 To summarize our current understanding of the crossbridge cycle, myosin is the 

molecular motor in muscle that cyclically binds to actin to produce force and motion. The 

faster myosin moves through the crossbridge cycle, the faster muscle will contract, and 

the more myosin bind to the thin filament, the more force is generated. Despite what we 

know about myosin’s crossbridge cycle, we do not have a complete picture of how the 

regulatory proteins and Ca++ affect myosin kinetics. We also don’t know how multiple 

myosins work together to activate the thin filament. What follows is an explanation of the 

thin filament regulatory proteins, how they regulate actomyosin binding, and how the thin 

filament is activated. We then describe how specific perturbations affect this activation. 
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Finally, we discuss what gaps exist in our knowledge, and possible experiments that 

could help us fill those gaps.  

Thin Filament Regulatory Proteins 

 

  Thin filament activation is required for a muscle to produce force and motion. 

During muscle activation, Ca++ is released into the cytosol of the muscle cell and allowed 

to bind to troponin. This leads to a slight structural movement of tropomyosin, a 

filamentous protein wrapped around actin. Together, troponin and tropomyosin are the 

regulatory proteins, so called because they regulate myosin’s ability to bind to actin. 

During muscle activation, the shift in tropomyosin exposes myosin binding sites on actin, 

allowing myosin to strongly bind to the thin filament and subsequently produce force and 

motion.  

Troponin has three subunits: the Ca++ binding subunit (TnC), the inhibitory 

subunit that binds to actin (TnI), and a subunit that is bound to tropomyosin (TnT). TnC 

is shaped like a dumbbell with eight major 

helices, labeled A-H (figure 2.2). The first 

four of the helices, A-D, are near the N-

terminus and make up one of the ends of 

the dumbbell. The N-terminus is 

responsible for binding Ca++ during 

activation which subsequently causes a 

subtle movement of the helices B and C 

where they ‘swing’ away from the helices 

Figure 2.2. Structure of TnC. Helices are labeled A-H, 

from N-terminus to C-terminus. The subtle movement 

of the N-terminus is a crucial part of thin filament 

activation. From Herzberg and James 1985 (54). 
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A and D. This movement of the B and C helices exposes a hydrophobic patch on TnC 

where TnI can bind.  

TnI does not inhibit actomyosin binding directly; rather, TnI anchors tropomyosin 

over myosin-binding sites on actin with its long C-terminus tail binding to actin. The C-

terminus tail has two 

particular segments 

crucial for its function: 

the inhibitory sequence 

that binds to actin 

(residues 96-116) and the 

regulatory sequence (also called ‘switch’ sequence) that binds to TnC upon Ca++ 

activation (116-131) (44). Upon Ca++ binding and the subsequent movement within TnC, 

the regulatory sequence swings up and binds to the hydrophobic patch on TnC (figure 

2.3). With the C-terminus of TnI now detached from actin, tropomyosin is no longer 

anchored to actin and can move on the actin surface, which can expose myosin binding 

sites. In summary, the intricate motions of TnC and TnI control tropomyosin movement 

which subsequently dictates myosin strong binding and thus the activation of the thin 

filament. 

The function of TnC and TnI may be altered during muscle fatigue. During 

muscle fatigue, Ca++ levels may drop. In a rested, unfatigued muscle, Ca++ levels can be 

high enough to saturate troponin. However, as fatigue ensues, the pCa level can decline 

to approximately pCa 6 (71). This concentration is not adequate to saturate troponin and 

may lead to submaximal forces. In addition, acidosis may impede the function of TnC 

Figure 2.3. Structure of TnI. The C-terminus of Troponin I binds to actin in 

the absence of Ca++, but binds to TnC in the presence of Ca++. Figure from 

Vinogradova 2005 (123). 
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and TnI. To tease apart which troponin subunit is most altered, chimeras of troponin were 

created, where troponin subunits from both cardiac and skeletal fibers are isolated and 

then mixed. For example, one chimera created in these experiments is TnC from cardiac 

fibers combined with TnI from skeletal fibers. The results from these experiments 

suggested that both troponin subunits are effected by acidosis, but TnC seemed to be the 

most sensitive (6, 30, 86, 93). Further work showed that the first 41 residues of both 

cardiac and skeletal TnC are responsible for this sensitivity (30). Further evidence of the 

effect of acidosis on TnC was provided by isolating TnC and examining its ability to bind 

Ca++ in the presence or absence of acidosis. The percentage of Ca++ bound to troponin 

was measured at various Ca++ concentrations, and acidosis led to less Ca++ binding across 

these Ca++ concentrations (93). Thus, an acidosis-induced reduction in thin filament 

activation likely occurs due to direct effects of acidosis on TnC. Considering that the first 

41 amino acids play a crucial role in TnC function, in the presence of acidosis, the 

hydrogen ions may compete with Ca++ for the Ca++ binding sites on TnC (7, 8, 35).  

  Despite the evidence to suggest that acidosis predominantly affects TnC, some 

data shows that the effect on TnI is more important (22, 24, 131, 133). Cardiac Tn is 

more sensitive to acidosis than filaments with skeletal Tn, shown by a larger shift in the 

pCa-force relationship (86). More specifically, slow skeletal fibers are less sensitive to 

changes in pH, and this difference was hypothesized to be due to differences in TnI. 

Experiments showed that replacing cardiac TnI with slow skeletal TnI resulted in an 

attenuation of the effect of pH on cardiac fibers (131). By examining the amino acid 

sequence of these TnI isoforms, the authors focused on one particular amino acid that 

was different in the C-terminus. This amino acid is located at the 132nd residue on 
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skeletal TnI and the 164th on cardiac TnC, which means this residue is located in the 

inhibitory region of TnI, a crucial part of the subunit that binds to TnC’s hydrophobic 

pocket when the Ca++ is bound. Therefore, this is an area that plays a large role in the 

protein’s function. To test this, TnI was engineered where this one amino acid was 

switched in both TnI isoforms and found that this caused slow skeletal fibers to be more 

sensitive to acidosis (133) while cardiac fibers were much less sensitive to acidosis (22). 

Interestingly, this one residue cannot account for all of the difference in acidosis 

sensitivity across fiber type. This can be ascertained by carefully examining the TnI 

amino acid sequence for slow skeletal, fast skeletal and cardiac fiber types. Both slow 

and fast skeletal TnI have this ‘acidosis resistant’ residue, yet fast skeletal TnI is 

significantly more sensitive to acidosis than slow skeletal TnI. Thus, this one residue 

does not save fast skeletal TnI, and thus other residues or structures in Tn must account 

for this acidosis sensitivity. Further work is necessary to find which residues are 

responsible for these differences. Regardless of the precise mechanism, these chimera 

and single point mutation experiments have provided the framework as to how the effects 

of acidosis can be attenuated. 

Ca++ Activation of the Thin Filament 

 Ca++ activation dictates force and velocity production. During a maximal 

contraction in a fresh, unfatigued skeletal muscle, Ca++ levels are relatively high: almost 

all of the troponins will have Ca++ bound at any given moment, assuming a binding 

constant for Ca++-Tn of ~ 0.5 µM (93). This allows tropomyosin to move freely on the 

actin surface, and allows myosin to bind to the thin filament. However, there are some 

important cases where Ca++ levels aren’t at maximum levels. One example is during 
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muscle fatigue, where during prolonged intense contractions, Ca++ levels in the cytosol 

drop (3, 130). This leads to a decrease in filament activation and thus a decrease force 

and velocity. Another example of submaximal Ca++ levels during contraction are those 

experienced in cardiac muscle. In each cycle of contraction and relaxation that occurs 

with a heartbeat, maximal Ca++ levels are never reached. This means that during 

successive heartbeats, the Ca++ concentration quickly slides up and down the steep 

portion of the pCa-force relationship. As shown before, a typical pCa-dependent 

relationship is shown in figure 1.3.  

These data are fit to the Hill equation, shown here: 

𝑦 = min + 
max − min

1 + 10log(𝑝𝐶𝑎50−𝑝𝐶𝑎)𝑛
 

Where ‘min’ equals the minimum velocity, ‘max’ is the maximum velocity, ‘n’ is the Hill 

coefficient, and pCa50 is the amount of Ca++ necessary to reach half-maximal velocity.   

The first major outcome is the pCa50. The Ca++ concentration required to elicit 

half-maximal velocity or force is termed pCa50 and is a measure of Ca++ sensitivity. A 

lower pCa50 suggests more Ca++ is necessary to reach a given velocity or force; 

conversely, a higher pCa50 suggests less Ca++ is necessary. Ca++ sensitivity is important 

considering how steep the pCa-velocity and pCa-force relationship are: subtle changes in 

the Ca++ concentration can drastically change work output of a muscle. Perturbations 

within the muscle cell, drastically alter this relationship, where much more Ca++ is 

necessary to reach a given force output (88). A possible method to examine the effect of 

such perturbations on Ca++ sensitivity is to use the laser trap assay to directly observe 

myosin interact with a regulated thin filament across a range of Ca++ levels. This can also 

be done with a small ensemble of myosin interacting with one regulated actin filament. 
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This would recapitulate in vivo muscle, as many myosins work together to pull on a 

regulated actin filament.   

The second major outcome from a pCa-force relationship is the cooperativity of 

myosin molecules. The Hill coefficient, n, is an indication of this cooperativity. When n > 

1, binding is said to be cooperative, where one binding event accelerates the rate of 

subsequent binding events (45). In the case of the contractile proteins, this suggests that 

one myosin binding event facilitates subsequent myosin binding. Cooperativity has four 

main mechanisms: 1) coupling between the two Ca++ binding sites on fast skeletal TnC, 

2) coupling between Ca++ binding sites down the thin filament, 3) myosin strong binding 

inducing Ca++ binding to TnC, and 4) myosin strong binding inducing movement of 

tropomyosin into an open state so other myosin can more easily (44).  

There is some evidence for the first mechanism contributing to cooperativity, 

though not by much. There is evidence that the two Ca++ binding sites on fast skeletal 

TnC bind cooperatively, leading to a Hill coefficient of 1.2 (46). This mechanism isn’t 

possible in cardiac TnC, which only has one Ca++ binding site. Interestingly, if skeletal 

TnC is added to cardiac thin filaments, cooperativity is observed (4). Regardless of this 

cooperativity, the first mechanism of cooperativity is not enough to explain the highly 

cooperative action observed in fibers.  

There is also evidence for the second mechanism, where Tn along the thin 

filament are able to cooperatively bind Ca++. By using fluorescent probes on Tn, Ca++ 

was shown to bind cooperatively down the thin filament (46, 50). Other experiments 

suggested this mechanism of cooperativity by performing partial extractions of TnC and 

observing cooperativity decrease (10, 87).  
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Like the first two mechanisms, the third mechanism likely plays a small role, but 

there is evidence that myosin binding can cooperatively increase Ca++ binding to Tn, 

Experiments using fluorescent probes on Tn (50) suggest that Ca++ binding to Tn is 

influenced by myosin. Other experiments have tested this hypothesis using myosin 

modified with BDM, which keeps myosin in a weakly bound state (93). However, some 

have suggested that only rigor myosin have this effect, which leads to the question if this 

mechanism would occur under physiological conditions (11, 39).  

The fourth mechanism is most likely to have the biggest effect in generating 

cooperativity and thus Hill coefficients greater than 1.5. This has been demonstrated 

multiple times by either decreasing ATP or by increasing ADP (40, 48, 56, 104). The 

former would increase rigor myosin, while the latter would increase M.ADP myosin, 

both of which can strongly bind to the regulated thin filament and help neighboring 

myosin to bind. Similarly, NEM modified myosin were used to activate the thin filament 

(111). Additional evidence for the fourth mechanism comes from experiments with 

partial TnC extractions: by removing TnC, the tropomyosin stays in the blocked state and 

prevents myosin from communicating. Finally, creative experiments were done with 

fluorescent S1 myosin, which were observed binding to a native myofibril. S1 bound to 

the overlap region (of the thick and thin filament) four times more than the nonoverlap 

region, suggesting that the myosin in the thick filament helped the fluorescent S1 bind to 

the overlap region. These experiments were done with both rigor and M.ADP S1 under 

high Ca++ and low S1 conditions. To further support myosin-myosin cooperativity, as S1 

was increased in this experiment, the S1 would bind to the nonoverlap region in highly 

cooperative manner (112). Thus, there is a large amount of evidence to suggest that 
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myosin-myosin cooperativity is the biggest contributor to the highly cooperative nature 

of the pCa-force relationship.  

 How cooperativity occurs is a dynamic and complex process and has been 

difficult to characterize. Indeed, recent innovative approaches (29) and sophisticated 

mathematical models (42, 84, 126) have tried to describe this phenomena quantitatively. 

Why is it difficult to quantify and characterize cooperativity? This is because 

cooperativity involves both elements of time and space, where myosin binding to actin is 

short-lived (as short as 2 ms) and thus only activates the filament for a very short period, 

and will only facilitate binding of other myosins that are nearby. Why is myosin 

necessary to activate the thin filament? Previous work (52) suggested that tropomyosin 

worked like a switch that could either be open, allowing myosin binding, or blocked, 

preventing myosin binding. An alternative hypothesis suggests that tropomyosin explores 

three states: blocked, closed, and open. In both models, tropomyosin blocks actomyosin 

binding sites in the absence of Ca++. In the latter model, called the three-state model, Ca++ 

binding does not cause tropomyosin to completely open the actomyosin binding sites; 

rather, it only slightly exposes them, and so this state is called the closed state. Finally, 

when a myosin binds to actin, myosin pushes the tropomyosin to the open state. An 

important note is that tropomyosin is dynamic, and that even in the absence of Ca++ 

tropomyosin has a finite probability of being in the open state. For example, previous 

work has quantified this probability, showing that even in the presence of Ca++, 

tropomyosin is in the closed state 75% of the time while it is in the open state 98% of the 

time when myosin binds to actin (45, 81). This three state model is further supported by 
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biochemical experiments (72, 81, 118), in vitro motility assay (62), fiber studies (111), 

modeling (62, 81), and structural studies (19, 98, 108, 122, 125). Clearly, actomyosin 

binding plays a crucial role in thin filament activation, but how does this effect other 

myosin molecules? When one myosin pushes tropomyosin into the open state, this state is 

propagated down the thin filament, where other actin monomers now have their binding 

sites more exposed. To 

understand cooperativity, the 

distance down the filament that 

tropomyosin movement is 

detected is a crucial measure. 

This, of course, depends on how 

rigid tropomyosin is: if 

tropomyosin is rigid like a metal 

rod, when one myosin binds to 

actin the whole tropomyosin structure should be pushed to the open state. On the other 

hand, if tropomyosin is soft and flexible, the open state may not even propagate down the 

tropomyosin molecule for the next myosin. In reality, the data suggests that tropomyosin 

is semi-rigid: experiments using the laser trap assay have shown that one myosin binding 

can facilitate another that is approximately 110 nm away (62). However, other work has 

shown that tropomyosin may be more flexible than previously thought, as determined by 

its persistence length (77). Persistence length is a common measure of the stiffness of 

filamentous proteins, where pieces of the beam that are closer together than the 

persistence length are correlated and represented as part of a semi-rigid rod, while pieces 

Figure 2.4. Cartoon of the 3-state model of thin filament 

activation. Actin (light gray) and tropomyosin (dark gray) in the 

blocked (B), closed (C), and open (D) state. Areas on actin where 

myosin binds weakly (green) and strongly (red) are highlighted. 

Figure from Gordon et al. 2001 (45). 

    



32 

 

farther apart than this threshold are not correlated. Previous findings suggest that 

tropomyosin’s persistence length anywhere from 40-500 nm (62, 77, 80, 97, 103, 122). 

Such various values make determining how far cooperativity is propagated down the thin 

filament quite difficult. Furthermore, neither the term ‘persistence length’ or ‘cooperative 

length’ capture the physiological complexity of cooperativity. Are all myosins within this 

distance treated equally? For example, if the cooperative length was 100 nm, do both the 

myosin 10 nm away and the myosin 90 nm away increase their chances of strong binding 

to the thin filament? Or is the probability of a second myosin binding increased if it is 

closer to the first myosin that is bound? Sophisticated mathematical models of thin 

filament activation suggest the latter (126, 127), but experimental data with small 

ensembles of myosin are necessary to confirm this, especially in the presence of 

submaximal Ca++ levels. Such experiments would provide crucial information on how 

both Ca++ and myosin strong binding play a role in thin filament activation. Additional 

experiments in the presence of acidosis can explore this effect on cooperativity. 

 To successfully model thin filament activation and subsequent muscle output, a 

universal model must 1) take into consideration many sets of data and be able to match 

the data, 2) explain and match data across all scales of muscle, from the whole organ to 

the single myosin, 3) be within the limits of current computational power, and, of course, 

4) explain data across different activation conditions, such as various Ca++ levels, various 

myosin concentrations, and various metabolite concentrations, such as ATP, Pi, etc. 

 Some models use Monte Carlo simulations to predict behavior on a sarcomere 

level (14). This model is able to describe activation, even at low Ca++ levels (1). 

Unfortunately, Monte Carlo simulations are computationally heavy, and can only model 
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small parts of muscle (in this case, one thin filament). Further, this model has not been 

tested in its ability to explain whole muscle findings or data with metabolic perturbations.  

 Other models are designed to explain whole muscle findings using molecular 

inputs. For example, Tanner et al. developed a model that recapitulates the lattice 

structure of muscle (116). They argue that this 3D model is better than a comparative 2D 

model. Though informative, this model has also not been tested with metabolic 

perturbations. In addition, a minor critique is that rate constants used in the paper come 

from three different research groups. These rate constants were determined from 

myofibril or muscle fiber data. Though reliable, these data are not determined through 

direct observation. On the other hand, data collected from assay such as the laser trap 

assay are from direct observation and can provide the most reliable picture of the actions 

of thin filament activation on the molecular level.  

 Though many models exist, the model that seems to fit all of our criteria is created 

by Walcott (126). This model has been tested with many sets of data across the scale of 

muscle, especially with single molecule and small ensemble data sets (28, 62, 127). A 

large benefit of this model is that this model uses findings from a specific cohort of 

researchers (28, 62, 128) which ensures fidelity. This model uses the more computer 

friendly partial differential equations (PDEs) to perform calculations, as opposed to 

Monte Carlo simulations, which, while useful, can be computationally heavy because 

they aim to characterize each molecule’s behavior at any given moment. Finally, and 

possibly most important, this model can make predictions across all muscle scales, from 

the single myosin molecule up to whole muscle.  
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The R146G Mutation 

A major goal of this work is to better characterize thin filament activation so that 

we can apply that knowledge to muscle fatigue or diseases caused by point mutations. A 

key way the knowledge can be applied is to compare the molecular details of activation 

under normal conditions to situations that arise with mutated proteins. This is particularly 

relevant to cardiac muscle, where a single point mutation can disrupt normal activation, 

leading to abnormal force production and many times leading to lethal cardiomyopathies 

(79). The most common mutations that lead to such drastic outcomes occur in the 

sarcomere, including myosin, myosin binding protein C, tropomyosin, or troponin (79). 

While the many common mutation sites within these three proteins are actively being 

studied, one in particular, the R146G mutation in TnI, has been a quagmire and may 

affect both myosin kinetics and Ca++ binding dynamics (12, 34, 60, 69, 70, 75, 114, 129, 

132, 138). Considering this, we felt this particular mutation was worth examining further. 

Cardiac Troponin Structure 

Cardiac troponin is slightly different than the skeletal isoform discussed earlier. 

The two major differences are that cardiac troponin C has only one Ca++ binding site on 

the N-terminal, and that cardiac troponin I has 30 more amino acids in the N-terminal. 

These 30 more amino acids cause a shift in the homologous structures. For example, the 

inhibitory region of skeletal troponin I is located near amino acids 96-116, while the 

inhibitory region of cardiac troponin I is located near amino acids 126-146. These places 

our mutation of interest within the inhibitory region of cardiac troponin I. This particular 

mutation involves a switch from a relatively large, charged arginine to the small, 

hydrophobic glycine. Exactly how this alters the structure of TnI is difficult to say. As 
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some have pointed out, many cardiomyopathic mutations are clustered in flexible regions 

of proteins, which makes obtaining structural data with cryo-EM or crystallography quite 

difficutl (12). This flexibility may lead to the mutation’s negative effects on myosin and 

thin filament activation.  

Effect of R146 on Myosin 

Interestingly, the R146 mutation seems to affect myosin’s function, even at 

maximal Ca++ activation. At maximal Ca++, myosin binding is expected to be the limiting 

factor in force production (41). Yet, with this mutation, there is evidence that force is 

reduced at maximal Ca++ (70, 129). Interestingly, these results are equivocal, where 

others have shown no significant decline in force (114, 132). The discrepancy may be due 

to differences in expression of the R146G mutation across transgenic experiments. James 

et al showed that differences in expression level can alter the phenotype (60). 

Specifically, mice that expressed a larger percentage of R146G relative to wild-type 

troponin had a lower survival rate. The cause of the observed reduced force in (70, 129) 

is difficult to explain, considering high Ca++ levels should fully activate troponin and 

tropomyosin, and any limit in force would be due to a limit in myosin kinetics or 

mechanics. Indeed, some have proposed that the R146G alters myosin’s crossbridge force 

(129). This is surprising, as TnI interacting with or altering myosin’s function is 

unexpected. Others have found that the cause and effect relationship is different: using 

FRET, Zhou (138) measured the Ca++ dependence of the TnC-TnI interaction in both 

wild-type and R146G filaments, and found that the presence of S1 myosin induced a 

large shift in the pCa50 in mutant filaments but not in wild-type. These data suggest that 

S1 somehow influences TnC-TnI dynamics in the presence of the R146G mutation.  



36 

 

In addition to a decline in force, the mutation causes a decline in ATPase activity 

at maximal Ca++ (70, 114), though others have found no decline in this measure (34, 

129). The discrepancy in results does not seem to be due to differences in methods, 

considering Lang et al. 2002 and Elliot et al. 2000 both used reconstituted thin filaments 

in solution.  

Finally, the R146 mutation has been shown to reduce peak velocity at maximal 

Ca++ in a motility assay (12) but not in fiber assay from transgenic mice (60). Here, the 

difference could be attributed to the overall percentage of R146G troponin. In a motility 

assay, the percentage of any given protein can be easily controlled (in this case, 100% of 

the troponin in the regulated thin filaments was mutated) while transgenic models rarely 

achieve 100% inoculation. Though the percentages achieved in James 2000 (40-80%) are 

a better representation of the expression levels in patients with this cardiomyopathy, the 

decline in motility shown in Brunet et al. provides insight into how this mutation affects 

force and motion. Brunet et al. propose a model where the R146G mutation contributes to 

a very flexible TnI subunit. The result is incomplete inhibition of actomyosin binding in 

the absence of Ca++ and incomplete activation upon Ca++ binding, suggesting the 

mutation does not affect myosin directly.  

Effect of R146 on Thin Filament Activation 

The more obvious effect of a mutation in troponin is the effect on Ca++ sensitivity. 

Indeed, the R146G mutation leads to an increase in the Ca++ sensitivity, indicated by an 

increase in the pCa50, in ATPase measures either in solution (34, 114) or in isometric 

fibers (129). Similar shifts in the pCa50 have been found in isometric force measures of 

fibers from transgenic mice, transfected mice, and in fibers following a Tn exchange that 
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contained the R146G mutation (60, 70, 114, 129, 132). However, there is data showing 

that the R146G mutation has no effect on force in transgenic mice or following Tn 

exchange (69). Finally, the shift in Ca++ sensitivity has recently been seen in the pCa-

velocity relationship as well (12). In addition to finding an increase in Ca++ sensitivity, 

many have found that the R146G mutation is not sufficient to completely inhibit ATPase 

at low Ca++ (34, 70) nor is it sufficient to completely prevent force production (69, 70, 

114, 129).  

What can explain the overall findings for the R146G mutation? How does this 

mutation leads to enhanced ATPase and force at low Ca++ but reduced ATPase and force 

at high Ca++? One model suggests that the R146G mutation leads to weaker bonds to both 

actin (34) and to TnC (75). A weaker bond to actin under low Ca++ conditions would 

increase the probability of TnI detaching from actin, allowing tropomyosin to move on 

the actin surface and eventually will lead to a higher probability of myosin binding to 

actin. A weaker bond to TnC, on the other hand, would lead to a lower probability of TnI 

binding to TnC upon Ca++ activation. This may suggest that TnI is moving freely or TnI 

may still be bound to actin, despite the presence of Ca++. Another possibility is that the 

mutated TnI interacts with myosin under high Ca++ conditions. As stated earlier, this 

interaction seems unlikely but there is evidence to suggest that the mutated TnI affects 

myosin’s crossbridge force. If this TnI-myosin interaction is possible, the mutated TnI 

may not only myosin’s mechanics, but also its kinetics. More specifically, experiments 

examining the effect of the mutation on myosin’s on-rate as well as myosin’s duty cycle 

would add to our understanding of this mutation. While determining the precise structure 
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and dynamics of R146G TnI is very difficult, determining how the mutation affects 

myosin kinetics can be easily examined in an in vitro motility assay.  
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CHAPTER 3 

METHODS 

To achieve the aims of this project, the laser trap assay and the in vitro motility 

assay were used. As alluded to before, in vivo studies as well as single muscle fiber and 

motility experiments have led to our current understanding of working muscle. Though 

informative, more precise techniques are needed to understand the molecular basis of thin 

filament activation and muscle contraction. To achieve this, the laser trap can be used to 

examine the molecular details of the contractile proteins. Single muscle fibers contain 

billions of myosin molecules as well as a complex array of other proteins, but the laser 

trap assay allows for the direct observation of a single myosin molecule interacting with a 

single actin filament. Here, we can directly observe specific steps of the crossbridge 

cycle, a feat not achievable with muscle fibers. The laser trap assay can be used to better 

understand actomyosin binding kinetics, force production of single myosin molecules, 

and activation of the regulated thin filament (5, 15, 25, 29, 37, 62, 121). The laser trap 

assay was used to directly observe, on the nanometer and millisecond scale, the binding 

and force-producing capacity of an individual and small ensembles of myosin. 

Using this assay, we first examined the effects of Ca++ on a single myosin’s 

ability to bind to a regulated thin filament. We measured the binding events per second as 

well as each event’s duration. Second, we examined how a small ensemble of myosin 

interact with a regulated thin filament. We directly observed the how a small ensemble of 

myosin work together in a cooperative fashion to pull on the actin filament to generate 

force and motion in a Ca++ dependent manner. These experiments enabled us to 

recapitulate the pCa-force relationship on the molecular level. In addition, this particular 
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experiment was one of the best representations of in vivo muscle because of our use of a 

small ensemble at relatively high (100 µM) ATP concentrations.  

The in vitro motility assay is designed to observe unloaded velocity of actin 

filaments as they are propelled by myosin in a variety of conditions. In our experiments, 

we manipulated ATP and Ca++ and measure the resulting velocity. This technique, called 

a “rigor activation” assay, will provided insight into thin filament activation. This is 

because Ca++ affects regulatory protein dynamics, while ATP affects myosin’s kinetics, 

in particular, how long myosin stays bound to actin in the rigor state. Because both Ca++ 

and myosin strong binding play a role in thin filament activation, this assay provides 

insight into the dynamics of each.  

We also used the in vitro motility assay to examine the effects of a particular 

troponin mutation, R146G, on thin filament activation and myosin kinetics. To examine 

these effects, we first measured unloaded velocity in a Ca++ dependent manner and 

generated a pCa-velocity relationship. We then performed a duty cycle experiment, 

where the number of myosin heads available to the regulated thin filament was 

manipulated and the velocity of each filament was measured. These data were then fit to 

a duty cycle equation (120):  

𝑉 = 𝑉𝑚𝑎𝑥 ∗ (1 − (1 − 𝑓)𝑁) 

to determine the percentage of time myosin is strongly bound to the filament. In 

this equation, V is the measure velocity of a filament, Vmax is the maximum velocity, f is 

the duty ratio, or the percentage of time myosin is strongly bound to actin, and N is the 

number of myosin heads interacting with the filament. As V changes as a function of N, 

and the data can be fit, where Vmax and f are determined by the fit. Finally, we then 
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manipulated ATP in a motility assay to examine if the R146G mutation alters myosin’s 

ADP-release rate, which directly affects myosin’s on-time. 

Overall, the proposed experiments have allowed a better understanding of the 

molecular details of thin filament activation. The experiments also provide insight into 

how thin filament activation is altered by troponin mutations. This will set a foundation 

for future work that can examine this mutation and others that lead to cardiomyopathies 

and the development of therapeutics to combat the negative effects associated with the 

mutations.  

Laser Trap Assay 

Background 

 

The laser trap assay was used to directly observe either single myosin or a small 

ensemble of myosin generate force and motion by interacting with a thin filament. To do 

this, a powerful, densely focused beam of light traps two 1 μm glass beads which are then 

attached to each end of a thin filament. This bead-filament-bead set up, or “dumbbell” set 

Figure 3.1. Cartoon of the 3-bead assay. Myosin is randomly oriented on the microscope slide surface, 

occasionally located on a pedestal bead. A bead-filament-bead assembly, trapped by laser light, is put in close 

vicinity to the pedestal so single molecule interactions can be observed and measured. Figure courtesy of Mike 

Woodward. 
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up, is positioned near a 3 μm bead on the microscope slide surface that is sparsely coated 

with myosin (figure 3.1). This set up enables one myosin molecule or an ensemble of 

myosin molecules to interact with the actin filament. As myosin pulls on the thin 

filament, the position of one bead is detected by a quadrant photodiode, which can 

discern nanometer and millisecond motions, and the force exerted on the filament by the 

myosin can be calculated.  

Hardware and Software 

The optical light path used to form the laser trap is very similar to that previously 

described (28) with minor changes. Briefly, a 5 W, infrared (1090 nm) laser beam (SPI 

Lasers, Santa Clara, CA) is timeshared between two locations at 10 kHz using two 

orthogonally (x and y) oriented acousto-optic deflectors (AODs) (DTD-274HA6, Intra 

Action, Bellwood, IL). An AOD serves to deflect a beam of light as a function of the 

radiofrequency transmitted through the medium. By altering the frequency, the beam of 

light and thus the trapped bead can be steered. The AOD is driven by a custom-built 

digital controller (Elliot Scientific, Hertfordshire, United Kingdom) that interfaces with a 

personal computer via a field-programmable gate array card (PCI-7830R, National 

Instruments, Austin, TX) and custom software developed using the real-time module of 

LabView version 8.6 (National Instruments).  

Displacements of one of the trapped beads were determined by imaging the 

interference pattern of the bead onto a quadrant photodiode (QD) (G6849, Hamamatsu 

Photonics, Hamamatsu City, Japan) conjugate with the back focal plane of the condenser 

(32). This displacement signal was digitized via a National Instruments data acquisition 

module (USB 9162) and collected at 5 kHz. Coarse movements of the microscope stage 
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were made using a manual micrometer-driven stage with a capacitive servo-feedback 

piezoelectric substage (Nano-Bio200, Mad City Labs, Madison, WI) that can generate 

nanometer movements for fine control. The fluorescent thin filament was then visualized 

using an intensified CCD camera (Stanford Photonics, Palo Alto, CA) while 

simultaneously visualizing the silica beads in bright field using a CCD camera, which 

interfaced with the PC. 

Trap Stiffness Calibration 

The force of the laser light applied to a 1 µm bead behaves as a simple linear 

spring, where F = k * x, where F is the force, k is the spring constant of the trap (or 

stiffness) and x is the distance the bead is from the center of the trap. The stiffness of our 

optical trap was determined two different ways: the equipartition method and the power 

spectral density method. The equipartition method relies on the relationship between 

thermal energy and the spring energy. The thermal energy for one-dimensional diffusion 

is ½kBT, where kB is the Boltzmann constant and T is the temperature of the 

environment. The spring energy of a bead in an optical trap is ½kx2, where x2 is the 

variance in the bead’s position. Therefore, we can derive: 

𝑘𝑡𝑟𝑎𝑝 =
𝑘𝐵 ∗  𝑇

𝑥2
 

We measured the variance of the bead’s position and determine the stiffness of the trap. 

To confirm our calculations, we used the power spectrum density. For a sphere in 

solution, the drag coefficient, γ, is calculated as: 

𝛾 = 6 ∗ 𝜋 ∗  𝑛 ∗ 𝑟 

Where n is the viscosity of the solution and r is the radius of the bead. The power spectral 

density gives the function: 
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𝐹(𝑡) =
𝑘𝐵 ∗ 𝑇

2 ∗ 𝜋2 ∗ 𝛾 ∗ (𝑓2 + 𝑓𝑐2)
  

Where fc is the corner frequency, which is equal to: 

𝑓𝑐 =  
𝑘𝑡𝑟𝑎𝑝

2 ∗  𝜋 ∗ 𝛾
 

And thus, the stiffness of the trap, ktrap, can be calculated.  

Proteins 

Whole myosin and actin were purified from chicken pectoralis muscle based on 

previous methods (78, 92). SDS gels and High Performance Liquid Chromatography 

(HPLC), tools used to separate proteins by size and charge, demonstrated the high purity 

of the proteins. Myosin was stored in glycerol (50% v/v) at -20°C for up to 1 year. The 

purified actin filaments were fluorescently labeled and stabilized with TRITC/phalloidin 

and coated with biotin and stored at 4°C. Wild-type skeletal troponin was purchased (Life 

Diagnostics, West Chester PA), while troponin variants will be generously provided by 

our collaborator Dr. Tomo Kobayahsi at the University of Illinois. Dr. Tomo Kobayashi 

prepared and provided troponin as described here. Recombinant mouse cardiac TnI, TnC, 

and TnT was inserted into pET3d vector and expressed using BL21(DE3) cells. 

Expression of the correct sequence was confirmed by DNA sequencing. The subunits 

were purified, reconstituted, and frozen in liquid nitrogen. The troponin variants were 

divided into single experiment sized aliquots, snap frozen in liquid nitrogen, and stored at 

-80°C until the day of the experiment.  

Solutions 

On the day of an experiment, the purified chicken pectoralis myosin was diluted 

to 200 μg/mL in myosin buffer (300 mM KCl, 25 mM Imidazole, 1 mM EGTA, 4 mM 



45 

 

MgCl2, 1 mM DTT). An equimolar concentration of purified chicken pectoralis actin was 

added to this solution, in addition to 1 mM ATP. This solution was centrifuged at 

400,000 g for 20 minutes to separate live myosin from ‘dead-head’ myosin that cannot 

hydrolyze ATP. The ‘dead-head’ myosin bind to the actin and pellet, while the live 

myosin stays in solution. This solution was extracted and diluted so the myosin was at a 

final concentration of 0.1 µg/mL for single molecule experiments or 10 µg/mL for 

experiments with small myosin ensembles.  

To create reconstituted regulated thin filaments, on the day of an experiment 1 

µM actin was mixed with 0.25 µM troponin and 0.25 µM tropomyosin and allowed to 

incubate for 3 hours. This solution was then diluted to bring the actin concentration to 10 

nM. Full reconstitution and thus full regulation was confirmed by performing an in vitro 

motility assay with 100 µg/mL myosin and the regulated filaments at pCa 10. After the 3-

hour incubation, the actin was diluted in a low salt actin buffer (25 mM KCl, 25 mM 

Imidazole, 1 mM EGTA, 4 mM MgCl2, 1 mM DTT) to 10 nM. BSA was diluted in actin 

buffer to 0.5 mg/mL. The 1 µm trapping beads were incubated with 0.5 mg/mL 

neutravidin and allowed to incubate for 3 hours. After 3 hours, the beads were diluted in 

actin buffer and sonicated to remove excess neutravidin that did not bind tightly to the 1 

µm beads. This washing process was repeated and the beads were then diluted in 500 µL 

of actin buffer.  

The final buffer for the laser trap assay was composed of actin buffer with 

experiment-specific additions. For pCa-force experiments, a calculated amount of Ca++ 

was added to reach a specific Ca++ concentration and 100 µM of ATP was used. For 

single molecule binding experiments that examine on and off rates, 10 µM of ATP will 
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be used. For all experiments, the ionic strength was held constant at 95 mM by adjusting 

the amount of KCl added to the final buffer. The pH of the final buffer was set to 7.4. 

Buffer recipes will be determined using a computer algorithm with known chemical 

binding constants, with adjustments for temperature, pH and ionic strength (WinMaxC) 

(52). All final buffers contained an oxygen scavenger system (1725 mg glucose, 75 mg 

glucose oxidase, and 14 mg catalase) to prevent photobleaching of the actin filaments.  

Laser Trap Assay Protocol 

 Myosin was added to the flow cell and allowed to bind to the nitrocellulose-

coated surface for 2 minutes. BSA was flowed in and allowed to incubate for 5 minutes 

to ensure actin does not attach to the nitrocellulose surface. While this incubation occurs, 

the neutravidin beads were sonicated to break apart any coagulation. 3 µL of the beads 

were added to 181 μL of final buffer. This aliquot was vortexed to ensure a homogenous 

mixture of beads. 8 μL of the 10 nM labeled actin and 4 µL of each regulatory protein at 

5 µM was added to this final buffer. The flow cell was placed on the microscope. Finally, 

the final buffer was added to the flow cell. 

 In the flow cell, we trapped 2 of the 1 µm beads. A labeled, regulated, biotin 

coated actin filament was secured between these two glass beads. Once a bead-actin-bead 

complex was assembled in the laser trap, the filament was pulled taught, with a 

pretension of 4 pN. The complex was lowered to a 3 µm bead coated with myosin. As the 

QD determines the position of one of the neutravidin beads, actomyosin activity can be 

observed. Actomyosin activity is confirmed by a directional displacement of the bead 

from the laser trap, as determined by the QD. Once activity is observed, a 5 second 

recording was taken. 
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Data Analysis 

The positional data of the 1 µm bead was measured in mV, which was converted 

to nanometers after an internal calibration. For the data collected with a small myosin 

ensemble, the data was then converted to forces, measured in pN, by multiplying the 

nanometer displacements by the stiffness of the laser trap. In this way, we determined the 

force produced by a small myosin ensemble.  

To objectively detect single molecule events, an analysis called the Page method 

was used (66). Essentially, this method looks for a decrease in variance in the signal, 

which occurs when myosin strongly 

binds to actin. If this decrease in 

variance lasts long enough, the 

program detects it as an event. More 

specifically, the original signal is 

corrected to zero. The program then 

examines each point and calculates 

the probability of the data point 

being part of an event based on how 

far the point is from zero. If the 

probability is relatively high, a value is 

added to a cumulative sum, whereas each 

succeeding point that has a high probability 

will also add to the sum. Once this sum reaches a pre-determined threshold, the program 

Figure 3.2. Example of the Page method. Single 

molecule recordings were examined using the Page 

Method. A sliding window is used to determine the 

variance of the window. A low variance will lead to a 

cumulative sum. An event is counted once the 

cumulative sum reaches a predetermined threshold. 
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recognizes the data points to be part of an event. A sample trace and the corresponding 

cumulative sum is shown in figure 3.2.  

For force measurements with small myosin ensembles, each recording was 

analyzed with a custom Matlab computer program. A brief description of the program is 

as follows: first, the program examines all the data and determines the baseline of the 

trace, where myosin and the thin filament are not bound. The program then examines 

each data point in the file, checking if it is at least 8 nm above the baseline. The 8 nm 

threshold is based on previous literature suggesting that when myosin binds to actin, it 

generates a powerstroke that is at least 8 nm (15, 119). Therefore, this is the first criteria 

to see if myosin has bound to actin. This minimum 8 nm displacement must occur for 10 

consecutive milliseconds for the program to determine that a binding event has occurred. 

The 10-millisecond criterion is based on the expected duration of a single myosin-actin 

interaction. This interaction is dependent on the length of the actin-myosin-ADP state and 

the myosin-actin rigor state. Assuming an ADP release rate of 100 to 350 per second (5, 

128) and an ATP binding rate of 2 to 7 x106 * s-1 * M-1 (5, 91), approximately half of the 

single myosin-actin binding events should last 10 ms or longer at our experimental 

conditions of 100 µM ATP. Once the program determines that an event has occurred, the 

time at which the event began is determined. In addition, if this is not the first event in the 

recording, the program calculates how much time has passed since the previous event 

ended. This is a useful measure that provides insight into the binding frequency, a 

measure that is expected to change under the various conditions tested, particularly the 

different Ca++ concentrations. Finally, when the event has ended, determined when the 

recording has dropped back down to baseline, the duration of the event is calculated. In 
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addition, the program examines the event and finds the 10 ms region that contains the 

highest average mV signal. This average is then converted to pN and this peak force is 

recorded. Thus, overall, the program can determine when an event occurs during a 

recording, and then determines the duration and peak force of each event.  

 Some of our experimental conditions, including single myosin molecule 

experiments or conditions with low Ca++ (pCa 9), required a different analysis strategy. 

Under these conditions observing distinct single myosin-actin binding events in the 

recording is difficult. However, actomyosin 

binding significantly reduces the noise in the 

force recording (figure 3.3). This occurs due 

to the stiffness of the myosin-actin bound, 

which reduces the movement of the actin 

filament and thus the detected 1 µm bead. 

Again, an in-house Matlab program will 

examine the force recordings to determine 

when an event has occurred. This program is very similar to the one used for myosin 

ensembles, except instead of using an 8 nm displacement as a criterion, we will use a 

70% drop in the variance of the signal. This cut-off was determined based on our current 

estimates of the myosin-actin stiffness of 0.3 pN/nm and the expected decrease in the 

variance based on this stiffness. Further, preliminary experiments have shown that this 

threshold works well, as data recordings showed events, while control recordings (ones 

where a recording was collected with the dumbbell set up positioned away from a 3 µm 

pedestal bead and therefore where no myosin-actin binding could occur) showed no 

Figure 3.3. Example of capturing events with 

Brownian motion. During a recording, the signal of 

the 1um bead is noisy (n) but during a myosin-

actin binding event (e) the variance drops 

significantly. Figure from Veigel and Molloy (121). 



50 

 

events. Though force measurements were not taken with this program, the duration and 

time between can be measured as before. Therefore, we can gain insight into the on and 

off rate of a single myosin molecule under many different conditions.  

A critical measure for laser 

trap experiments is the height of 

the dumbbell set up relative to the 

pedestal bead. Knowing that the 

thin filament is close enough to the 

pedestal bead to allow myosin 

binding is important as this can 

affect the frequency of myosin 

binding; this value must be 

consistent from one condition to 

another. Therefore, during a 

recording we recorded a bright field image of the 3 µm bead. The height of the dumbbell 

set up was determined by analyzing the airy disc diffraction pattern of the 3 µm bead. 

This analysis can be used to determine axial position of micrometer particles (136). We 

have applied this technique to our microscope and took approximately 30 images at 

known heights, from 2.5 µm to 4.5 µm, and established a linear relationship between the 

airy disc radius and its height (figure 3.4). These heights were recorded by driving the 3D 

piezoelectric stage with nanometer resolution. A custom Matlab program was then 

written to calculate future images based on our standard curve. Testing the model with 

additional images at known heights showed that the model was accurate within 100 nm. 

Figure 3.4. Determination of trap height. Top: Images taken of 

the 3 µm pedestal bead at different heights in the laser trap 

assay using a brightfield camera. Bottom: Calculating the airy 

disc created by the pedestal bead shows that the radius is 

linearly related to the z-position in the laser trap.  
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Our data collected at high Ca++ shows that heights up to 3.5 µm above the surface allow 

actomyosin binding, but heights above this do not. As stated earlier, some conditions 

resulted in very discrete and scarce events. Therefore, some data recordings may show no 

events at all, but if the corresponding height is within 3.0 to 3.5 µm, the data recording 

was considered in the final analysis. Conversely, if the file is collected above 3.5 µm, the 

data recordings were discarded.  

Statistical Analyses 

 Histograms were generated for all experiments performed with a small ensemble 

of myosin, showing the relative frequency of forces, durations, or time between events. 

These measures were not normally distributed (28) and therefore a nonparametric 

Kruskal-Wallis analysis of variance was performed to identify significant differences 

across conditions, with differences identified using the method of Dunn (31).  

For our experiments examining on and off rates of single myosin binding events we used 

a one-way ANOVA comparing the different pCa concentrations. All statistical 

procedures will be performed in SigmaPlot v11.0 (Systat Software, San Jose, CA) with 

the alpha level set at p < 0.05. 

Mathematical Model 

 A major goal of this dissertation was 

to deconvolve the role of Ca++ and myosin 

strong binding during thin filament 

activation. To do this, we compared our 

single molecule binding results with our 

small ensemble results using a mathematical 

Figure 3.5. Cartoon of the 4-state kinetic model. 

Myosin transitions from a weakly bound state (1) to a 

strongly bound state (2). It then releases ADP, 

entering a rigor state (3). ATP binds to myosin, 

causing actomyosin dissociation (4). 
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model. This mathematical model incorporates a four-state kinetic model of the 

crossbridge cycle (figure 3.5), with global and local coupling. Here, global coupling 

refers to myosin molecules that affect each other’s kinetics through the thin filament. For 

example, as a leading myosin pulls on the actin filament, a trailing myosin will feel this 

pull, release ADP and subsequently release actin. This load-sensitivity of myosin is well 

documented (47, 110, 121). Local coupling refers to myosin’s ability to influence 

neighboring myosin and their ability to bind to the thin filament. The model employs a 

flexible chain model, where tropomyosin is treated as a flexible chain that can be 

distorted by myosin strong binding. The model depends on two key parameters: ε(Ca++), 

the single myosin molecule transition from weak to strong binding as a function of Ca++ 

relative to the weak to strong transition rate in the absence of the regulatory proteins, and 

ℓ, the coupling distance, such that two myosin within this distance that are strongly 

bound to the thin filament completely activate the area of the filament between them, but 

act independently if they are separated by a distance greater than ℓ. The model has fit 

data from multiple scales, including single molecule, small ensemble, and motility data 

(28, 126-128). In previous work, this model has assigned ℓ to equal 400 nm. Note that 

this is not the same as the cooperative unit length, as ℓ only implies partial activation. For 

example, in this model, unattached myosin that are close to a strongly bound myosin are 

much more likely to bind than myosin that are farther away (but still within 400 nm). We 

assumed that this ℓ is independent of Ca++.  

 The parameter ε is defined with the following equation: 

ε = ε𝑚𝑖𝑛
1−𝜃 ∗ ε𝑚𝑎𝑥

 𝜃  
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where θ is the fraction of Tn bound to Ca++. This equation relates troponin’s binding of 

Ca++ to myosin’s ability to bind strongly to the thin filament. From previous work, we 

have estimated εmin to be 0.006 and εmax to be 0.5 (126). This equation is cleverly 

designed: if θ is near its maximum of 1, εmin goes to 1 while εmax goes to 0.5. Completing 

the equation results in ε = 0.5, suggesting that even in saturating Ca++, myosin only binds 

half as well to regulated actin as it does to unregulated actin. Conversely, when Ca++ is 

low, εmin goes to 0.006 while εmax goes to 1, so that completing the equation would result 

in ε = 0.006. Thus, myosin’s ability to bind to regulated actin can be mathematically 

modeled using the myosin binding rate to unregulated actin and θ, the fraction of 

Troponins bound with Ca++.  

We assume that Tn binding to Ca++ is fit by Michaelis-Menten and is determined 

by the equation:  

θ =  
[𝐶𝑎++]

𝐾 + [𝐶𝑎++]
 

Considering our assumptions, the only parameter that determines ε(Ca++) is K, TnC’s 

affinity to Ca++.  

In Vitro Motility Assay 

Background 

In the in vitro motility assay, a nitrocellulose-coated coverslip is secured to a glass 

microscope slide, creating a ‘flowcell’. Isolated myosin in solution is pipetted into the 

flowcell and adhered to the nitrocellulose. Fluorescent actin filaments are then flowed in, 

and the myosin on the surface can strongly bind to filaments (figure 3.6). When 

regulatory proteins are used, they are flowed in and allowed to incubate with the actin for 

seven minutes to ensure complete reconstitution of thin filaments (17, 57). Finally, the 
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motility buffer is added, with the appropriate pH and Ca++ conditions, as well as ATP to 

drive crossbridge cycling.  

The fluorescent filaments are visualized as myosin propels them across the 

surface. The filament movement can be observed and recorded, and the velocities can be 

determined by measuring the distance traveled and the frame rate of the recording 

camera.  

 

Figure 3.6. Cartoon of in vitro motility assay. Schematic of actin filaments (white) moving a surface of myosin 

molecules (orange). Figure courtesy of Mike Woodward. 

The hardware and software, proteins, solutions, and assay are all similar to or 

encompassed by those of the laser trap assay. What follows is a brief description of the 

assay with key differences from the laser trap assay discussed.  

Proteins 

All proteins used in the motility assay are exactly the same as described above.  

Solutions 

 Like the laser trap assay, myosin was ridded of dead heads and diluted, this time 

to 100 µg/mL for most experiments (the duty cycle requires a range from 5 to 100 

µg/mL). The final buffer was the same as before except 1% methylcellulose was added, a 

crowding agent that keeps filaments near the myosin-coated surface, and 2 mM ATP. On 
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the day of the experiment, actin was diluted to 10 nM as before, but this time in the 

absence the regulatory proteins, which was incorporated directly in the flowcell. The day 

of the experiment, troponin and tropomyosin was diluted to 0.75 μM and 0.25 μM, 

respectively, and mixed in AB with additional KCl. Further, 100 nm excess troponin and 

tropomyosin was added to the motility buffer to ensure complete regulation of the thin 

filaments (17, 57). For the large ensemble experiments, both ATP and Ca++ were 

manipulated in the motility buffer. For the pCa-velocity experiments comparing wild-

type and R146G troponin, the Ca++ was manipulated. For the ATP experiments, the ATP 

concentration was manipulated for both the wild-type and the R146G mutation.  

In Vitro Motility Assay 

 As before, myosin was added to the flowcell followed by BSA, which was 

allowed to incubate for one minute. After one minute, vortexed unlabeled actin is flowed 

in, which is another preventative measure against any ‘dead-head’ myosin. All myosin 

will bind to the unlabeled actin, but after ATP is added 30 seconds later, the live myosin 

will dissociate from the unlabeled actin. Additional ATP was added to ensure all live 

myosin have released the unlabeled actin. Labeled actin was then added and allowed to 

bind to the myosin for one minute. Labeled actin was again added, and incubated for 

another minute. The regulatory proteins were then added and allowed to incubate with the 

labeled actin for at least seven minutes. Finally, the motility buffer with the appropriate 

level of Ca++ and ATP was added.  

Hardware and Software 

Labeled actin velocity was visualized with an ICCD camera (XR/MEGA-10EX™ 

S30, Stanford Photonics Inc. Palo Alto, CA). This camera is attached to a Nikon Eclipse 
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Ti® inverted microscope with a 100x, oil-coupled, 1.4NA objective. Video frames were 

acquired through an Epix-LVDS frame grabber (Epix, Inc., Buffalo Grove, IL) and 

controlled using Piper Control™ software (Stanford Photonics, Inc. Palo Alto, CA). 

TRITC filters (Thor Labs, Newton, NJ) are incorporated into the optical path to excite 

and visualize the filament on the ICCD camera. The flowcell was maintained at 30°C 

with an objective temperature controller (20/20 Technologies Inc. Wilmington, NC). For 

each flowcell, three videos of different fields were recorded to get a sufficient sample of 

filament velocity, at 10 frames per second for 30 seconds. 

Regulated Thin Filament Velocity Analysis 

 Each video was analyzed using the ImageJ plugin WRMTRK, which skeletonizes 

each filament and determines distance traveled per unit time. This program tracks the 

filaments that fit the chosen parameters and output an average velocity for each field. Our 

parameters are as follows: to be considered moving, a filament must be at least 0.5 μm 

long and travel for at least three seconds. 

 Each experimental condition was performed at least three times. Each video 

typically captures 50-150 filaments. For the pCa-velocity measures, the data for each 

troponin variant was fit to the Hill equation to generate parameters (pCa50, Hill 

coefficient) for inferential statistics. Goodness-of-fit was determined with the R2 value. 

Significant differences in the Hill coefficient and the pCa50 were determined in a one-way 

ANOVA. For the duty cycle experiments, the data were fit to equation  

V = Vmax * (1 - (1 – f)N)  

where V is velocity, f is duty ratio, N is number of myosin heads (120). The major 

output, f, was statistically compared between the wild-type and R146G mutation by 
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comparing the value and the standard error to the fit. Similarly, the ATP experiments 

were fit to an exponential and the Km was statistically compared between the wild-type 

and R146G mutation by comparing the value and the standard error.  
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CHAPTER 4 

RESULTS 

We characterized thin filament regulation on the molecular level by directly 

observing single molecule interactions between myosin and a regulated thin filament in a 

three-bead laser trap assay. This is the first time, to our knowledge, that single myosin 

binding has been detected with a regulated thin filament in the three-bead laser trap 

assay. With a single myosin, our main measure was frequency of binding, which 

increased as Ca++ levels were increased. We then observed a small ensemble of myosin 

interact with a regulated thin filament and measured force, duration, and the time 

between events. The measurement of force, duration, and binding frequency of a small 

ensemble of myosin interacting with a regulated thin filament is a novel achievement and 

is a key step in bridging the gap in our understanding of single myosin kinetics to single 

fiber and whole muscle actions. Again, our measures were a function of Ca++, where 

force and duration increased and the time between events decreased as Ca++ was 

increased. Finally, we measured velocity as a function of Ca++ and ATP. In these 

experiments, high Ca++ produced velocities that follow a typical Michaelis-Menten 

relationship, while at low Ca++ there exists an ideal ATP level to initiate velocity and thus 

thin filament activation. In addition to our measures for thin filament activation, we 

tested the R146G Tn mutation in the in vitro motility assay. Our pCa-velocity results 

agree well with previous pCa-force and pCa-ATPase data, showing an increase in Ca++ 

sensitivity. We then teased out details of myosin’s kinetics, where the mutant was shown 

to reduce myosin’s duty cycle and reduce myosin’s ADP release rate.  
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Effect of Ca++ on Single Myosin Binding 

 We first tested the effect of Ca++ on thin filament activation by measuring the rate 

of binding between a single myosin and a regulated thin filament in the three-bead laser 

trap assay. At pCa 4, the binding rate was 0.85 events per second, and this rate slightly 

increased to 1.11 at pCa 5, but then dropped to 0.45 at pCa 6 and then 0.23 at pCa 7 

(table 1). Binding events were not detected at pCa 9, despite over 100 recordings totaling 

more than 9 minutes. Therefore, we have included a value for pCa 9 published previously 

for comparative purposes (62). These data are summarized in table 1. Sample traces show 

either many events (pCa 4) or very few events (pCa 7) depending on the Ca++ 

concentration (figure 4.1). The rates achieved at pCa 4 and 5 are about half of rates 

achieved with an unregulated thin filament (2.2 events per second), in agreement with 

other work that has examined single molecules interacting with a regulated thin filament 

(29).  

 In our experimental set up, placing the thin filament above the 3 µm mogul so that 

myosin can bind is crucial. If the filament is too high in the experimental chamber, 

myosin will not be able to reach the filament. To be sure that our low binding frequency 

at low Ca++ was not simply due to this experimental error, we measured the height of the 

actin filament under different Ca++ concentrations. This was done by taking an image of 

the 3 µm bead and using the airy disk to determine height. We found that the height 

across conditions was not significantly different (figure 4.2). We also found that the step 

size and attachment time of binding events were not significantly different across pCa 

levels (figure 4.3 and 4.4) 
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Effect of Ca++ on Binding of a Small Ensemble of Myosin  

 We then tested the effect of Ca++ on the ability of a small ensemble of myosin to 

bind to and generate force against a regulated thin filament in the three-bead laser trap 

assay. These experiments could shed light upon cooperativity in muscle, where one 

myosin’s binding to actin increases the probability of a nearby myosin binding. Based on 

our myosin concentration and estimates of myosin availability, we suspect 6 to 8 myosin 

heads were available to bind to the regulated thin filament (27). Hundreds of events were 

recorded and plotted in a histogram (figure 4.5). At pCa 5, a wide distribution of forces 

was generated, from 0.2 to 10.8 pN, suggesting that an event can be composed of either a 

single head binding and releasing, multiple heads binding and then releasing, or multiple 

heads binding, cycling multiple times, and then releasing. As the Ca++ was reduced to 

pCa 6, 6.5, and 7 the peak forces decreased to 9.4, 5.0, and 2.8 pN, respectively. An 

analysis of the data using the non-parametric Kruskall-Wallis ANOVA followed by 

Dunn’s post hoc tests found no significant difference between pCa 5 and pCa 6, but did 

see a difference between pCa 6 and pCa 6.5 as well as pCa 7. The comparisons are 

summarized in table 4.2. The duration of events also had a broad distribution and 

decreased with reduced Ca++ levels, coinciding with the force values (figure 4.6). Indeed, 

the relationship between force and event duration form a linear relationship (figure 4.7).  

 In addition to measuring force and duration of each event, we also measured the 

time between events (figure 4.8). This information provides insight into the strong 

binding of the first myosin molecule. We prefer the measure of time between events over 

binding frequency with the small ensemble data. This is because an “event” with small 

myosin ensembles can include many actomyosin interactions, especially those events that 
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produce large forces. Therefore, the time between events can provide insight into the rate 

of binding of the first myosin molecule at the start of any event, regardless of the event’s 

peak force and duration. At pCa 5 the distribution of time between events was dominated 

by short times: approximately half of the time another event occurs within 100 ms. As the 

Ca++ is reduced, this percentage drops, and at pCa 7 often more than a second would pass 

before another event occurred. As the Ca++ was reduced to pCa 9, events became very 

infrequent, where the time between events was often 5 seconds or more. We were able to 

use the event duration data with the time between events data to calculate the percentage 

of time where at least one myosin head was strongly bound. At pCa 5, this value was 

31%, but it decreased to 10% and 2% at pCa 6 and 7, respectively.  

Effect of Ca++ and ATP on Binding of a Large Ensemble of Myosin  

 Finally, we performed the in vitro motility assay with regulated thin filaments and 

measured velocity as a function of Ca++ and ATP (figure 4.9). This method can provide 

insight into the importance and role of Ca++ and myosin in thin filament activation. At 

ATP levels <60 µM, the filaments were motile and the velocity was not different across 

pCa levels. The most logical explanation for velocity at low ATP is thin filament 

activation through myosin rigor binding. One myosin binding pushes the tropomyosin 

into open state, revealing additional myosin binding sites on actin nearby. The activation 

here is slightly different than that which occurs under physiological conditions because 

the ATP is low. Because the ATP concentration is low, the initial myosin binding event 

lasts a considerable amount of time, providing ample time for nearby myosin molecules 

to bind to the regulated thin filament. Thus, rigor activation occurs at an ATP 

concentration where heads are bound long enough to enable nearby myosins to bind, but 
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short enough to allow processive movement. As the ATP was increased, however, the 

velocities diverged in a Ca++ dependent manner. For example, at pCa 9, filaments ceased 

to move, but at pCa 4 the filaments approached maximum velocity. The peak velocity for 

each pCa level was widely distributed, with the largest difference between successive 

Ca++ concentrations existing between pCa 6.5 and pCa 7.  

Mathematical Model 

 The mathematical model can be used to determine TnC’s affinity for Ca++ in all 

three experiments (single molecule, small ensemble, large ensemble). We can also test 

the model to determine if a coupling distance of 400 nm is appropriate. The single 

molecule experiments don’t have coupling, and therefore provide a clear picture of the 

role of Ca++ on myosin’s weak to strong transition rate. The rates we observed were very 

low (~1 event per second) compared to the transition rate observed in solution (~40/s) 

(68, 94). This is most likely due to fluctuations in the thin filaments position relative the 

single myosin molecules and not an effect on the myosin’s kinetics per se. When 

correcting for this, the data are well fit by our model (figure 4.10) (see equations in 

Methods: Mathematical Model), and generate a value for K of 0.216 ± 0.055 µM.  

 The small ensemble experiments have both Ca++ and myosin strong binding 

activation. Here, we can use the model to separate the effects of these two activators, as 

well as test the model’s assumption of a local coupling distance of 400 nm. To do this, 

we simulated data to match the raw the data. The model was able to reasonably replicate 

the data (figure 4.11). We varied K to in the model to best replicate the raw data. This 

resulted in K = 0.199 ± 0.044 µM. This lines up well with our previous estimate of K = 

0.216 ± 0.055 from the single molecule data.  
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 To further test the model, we collected data with large ensembles with motility 

experiments. This leads to strong local coupling, as the concentration of myosin was 100 

µg/mL. In such conditions, myosin can activate the thin filament through strong binding, 

even at low Ca++. This is achieved by reducing the ATP levels and thus prolonging the 

strongly bound rigor state of myosin. Such conditions allow one strongly bound myosin 

to push tropomyosin, allowing neighboring myosin to strongly bind as well. In the 

absence of Ca++, we found that rigor myosin were able to activate the thin filament and 

increase velocity as a function of ATP. We found that for low Ca++ conditions (pCa 9), 

60 µM ATP was a critical point, where velocity decreased as ATP was increased beyond 

60 µM. This agrees well with previous data (62). We tested the role of strong binding 

activation by repeating these experiments with different Ca++ concentrations. We found 

that 60 µM was a critical point for many other Ca++ concentrations. We used the model to 

match the experimental data (figure 4.12). We determined values of ε to optimize the fit 

of the data. The data were well fit by equations (1) and (2), and generated a value for K = 

0.217 ± 0.034 µM. 

The estimate of ε along with the fits are surprisingly similar to the fits generated 

for the single molecule and small ensemble data. The model is able to explain thin 

filament activation across many levels, and is able to tease apart the role of Ca++ and 

myosin strong binding on thin filament activation.  

R146G Mutation 

 In addition to examining thin filament activation with wild type regulatory 

proteins, we examined the effect of a cardiomyopathy-inducing mutated troponin. This 

particular mutation has proven to be a difficult to understand due to the lack of consensus 
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of the mutation’s effect as well as the odd result that the mutation seems to not only 

affect myosin’s on-rate but also other steps of the crossbridge cycle (we expect troponin 

to affect myosin’s weak to strong transition, but not other steps such as ADP release or 

ATP binding). To address this, we measured the velocity of regulated thin filaments in 

the in vitro motility assay either in the presence or absence of the mutant. 

The Effect of the R146G Mutation on pCa-Velocity 

 Our first test was to examine the mutant’s effect on the pCa-velocity relationship 

(figure 4.13). Under high Ca++ concentrations, the filaments with the R146G mutation are 

moving but are significantly slower than filaments with wild-type troponin. However, 

under low Ca++ conditions, filaments with the mutation move significantly faster than 

wild-type. Similar findings have been found with force measurements in muscle fibers 

(69, 70, 114, 129). The reduced velocity under high Ca++ conditions and the relative 

increase in velocity under low Ca++ conditions may explain the data’s poor fit to the Hill 

equation. The wild type is well fit with the Hill equation (R2 = 0.97), however, the mutant 

is poorly fit (R2 = 0.31). The results also show a leftward shift in the curve and a 

subsequent increase in the pCa50, suggesting earlier activation with the mutation. This 

result is in agreement with many (12, 34, 70, 114, 129), but not all (69), of the previous 

studies examining this mutation’s effect on Ca++ sensitivity in force and ATPase 

measurements.  

The Effect of the R146 Mutation on duty cycle 

 To identify the mechanism of the R146G mutation, we measured the velocity of 

thin filaments in a duty cycle motility assay. In this motility assay, the myosin 

concentration is manipulated and the resulting velocities are fit to the duty cycle equation 
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(see Methods: Regulated Thin Filament Velocity Analysis) (120).  This assay gives an 

estimate of the percentage of myosin heads bound to the regulated thin filament at any 

given moment. The increase in the pCa50 suggest that the mutant would increase the duty 

cycle, however, our results show a slight decrease in duty cycle in the presence of the 

mutation, from 1.81% to 1.39% (figure 4.14). Our results also showed a reduced velocity, 

even at maximum myosin concentration, from 4.63 ± 0.15 µm/s with the wild-type to 

2.49 ± 0.11 µm/s with the mutant. To be sure that this didn’t affect our duty cycle result, 

we normalized the duty cycle results; this however, did not change the outcome. A 

possible explanation for the pCa-velocity and duty cycle results is that the R146 mutant 

slows ADP release, leading to slower maximal velocities but higher velocity at low Ca++, 

in addition to dramatically reducing myosin’s on-rate. If the on-rate is slowed 

significantly more than the ADP release rate, the overall effect would be a reduction in 

the duty cycle, as we observed.  

The effect of the R146G Mutation on ADP release 

 To further explore the effect of the mutant on myosin’s kinetics, we measured 

regulated thin filament velocity as a function of ATP concertation (figure 4.16). These 

data were fit to a Michaelis-Menten relationship and the parameters are shown in Table 

4.3. Again, the maximum velocity was reduced in the presence of mutation relative to the 

wild type, decreasing from 4.54 ± 0.13 µm/s to 2.56 ± 0.06 µm/s. To examine ADP 

release rate, the data was converted to time on (ton), which is the displacement generated 

by 1 myosin head, assumed to be 10 nm (d=10 nm), divided by the velocity of the thin 

filament (ton = d / V). The ton data can then be used to estimate ADP lifetime and rigor 

lifetime, assuming that ton is made up entirely of ADP lifetime at saturating ATP and that 
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ton = the time of the ADP lifetime plus the time of rigor where myosin is waiting for ATP 

to induce actomyosin dissociation (ton = t-ADP + trigor). Our results show a reduction in the 

ADP release rate in the presence of the mutation (figure 4.17, table 4.3), decreasing from 

401.3 s-1 with the wild type to 248.4 s-1 with the mutant.  
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CHAPTER 5 

DISCUSSION 

With our first set of experiments, we were able to examine thin filament 

activation and tease apart the role of Ca++ and myosin strong binding. Our first set of 

experiments give us a better understanding of thin filament activation under normal 

conditions, and we hope to use this knowledge to examine perturbations, such as acute 

changes in metabolites or chronic mutations in key muscle proteins. In our second set of 

experiments, we examined a specific mutation in troponin that is associated with 

cardiomyopathy.  

Thin Filament Activation 

 According to the 3-state model (81), thin filament activation requires both Ca++ 

binding to Tn as well as myosin strong binding to the thin filament. However, the role 

that each of these play in activation are unclear. Some have suggested that strong binding 

doesn’t play a crucial role under physiological ATP levels (41). Others have suggested 

that myosin’s weak to strong binding transition is Ca++ independent (16). To better 

understand the significance of each mechanism, we directly observed single molecules, 

small ensembles, and large ensembles of myosin bind to actin under a spectrum of Ca++ 

concentrations. This is the first time, to our knowledge, that force and motion of single 

and small ensembles of myosin have been directly observed under such a wide range of 

Ca++ concentrations. Such experiments give us a bottom-up view of thin filament 

activation and can help us tease apart the role of Ca++ and strong myosin binding. 

Single Molecule Binding 
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 Single myosin binding to a single thin filament was observed in the laser trap at 

various Ca++ levels. As Ca++ is reduced, binding events became less frequent, declining 

from 0.85/s at pCa 4 down to 0.02/s at pCa 9. This data agrees with models that suggest 

Ca++ affects myosin’s weak to strong binding transition and disagrees with models that 

suggest Ca++ alters other kinetic steps, such as phosphate release (16). Our data and 

model do also do not support the notion that Ca++ has an allosteric effect on the thin 

filament which controls myosin binding (16, 53, 117).  

 Even at saturating Ca++, the binding frequency was only 0.85/s, more than half the 

binding frequency observed with an unregulated actin filament (2.2/s). Similar findings 

have been obtained in a landing assay, where the ability of S1 myosin to land on a Ca++-

activated thin filament was reduced compared to an unregulated actin filament (29). 

Mathematical models have included this, suggesting that there is still an energy barrier 

that myosin must overcome, even at saturating Ca++ (126, 127). Solution experiments 

have also shown that ATPase is inhibited at low S1 myosin concentrations in the 

presence of regulatory proteins and saturating Ca++ (72). 

 Under the conditions of the laser trap, the thin filament is placed close to the top 

of the 3 µm myosin-coated mogul. In this experiment, the height is crucial: filament 

heights above 3.5 µm or below 3.0 will result in either no binding or unproductive 

binding between either actin and myosin or actin and the surface of the mogul. 

Differences in height across Ca++ concentrations could lead confounding results. To 

ensure our single molecule binding was indeed Ca++ dependent and not due to 

experimental error in height, an image of the mogul was captured during data collection 

and analyzed after the experiment. Any recordings collected out of our range of 3.0 to 3.5 
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µm was disregarded. We found that the height of the thin filament was not significantly 

different from pCa 4 to pCa 9 (figure 4.2) 

Myosin Ensembles 

 Our single molecule binding frequency data could be fit to a pCa curve. Though 

the fit is good (figure 4.10), the Hill coefficient is low (1.4 ± 0.3)This does not agree well 

with pCa-force curves, which can show Hill coefficients up to 6 (9). Our low Hill 

coefficient confirms that some cooperativity exists even in the absence of multiple 

myosin. Cooperativity can occur in four main ways: 1) coupling between the two Ca++ 

binding sites on fast skeletal TnC, 2) coupling between Ca++ binding sites down the thin 

filament, 3) myosin strong binding inducing Ca++ binding to TnC, and 4) myosin strong 

binding inducing movement of tropomyosin into an open state so other myosin can more 

easily bind (44). The first two mechanisms may play a role, but can only produce Hill 

coefficients up to 1.2 or 1.5, respectively (46). Though these mechanisms contribute, they 

do not seem to be the main mechanism(s) of the cooperativity observed in thin filament 

activation. Mechanism (4), where myosin strong binding induces other neighboring 

myosins to strongly bind, could play a larger role than other mechanisms. Indeed, the 

importance of strong myosin binding has been demonstrated with NEM myosin, which 

strongly bind to actin but do not release. Experiments have shown that rigor or NEM 

myosin are capable of activating a thin filament (49, 111). Experiments with fluorescent 

probes in fibers (112) have compared the overlap region to the nonoverlap region and 

showed that endogenous myosin binding leads to S1 binding in the overlap region, but 

not in the nonoverlap region. Though many examples exist to demonstrate strong-binding 

cooperativity, some question the physiological relevance of this mechanism (41). This 
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concern is valid, as these previous experiments were done at very low ATP, much lower 

than physiological levels. Recent work has shown that Tn and Tm dynamics are much 

faster than myosin kinetics, suggesting that myosin strong binding would not play a large 

role in activation (41).  

By using a small ensemble of myosin in the laser trap at 100 µM ATP, we could 

examine the role of myosin strong binding under near-physiological conditions. This 

ATP concentration is up to 1,000x typical myosin strong binding experiments. Further, 

with this ATP concentration, we would expect short but detectable (10 ms) binding 

durations per each myosin. At high Ca++, the myosin ensembles produced a wide 

distribution of forces. Interestingly, most of the events produces low force (1-2 pN), 

though some binding events went as high as 11 pN. As Ca++ was reduced, these larger 

forces disappeared. For example, the highest force produced at pCa 7 was 3 pN, and pCa 

9 produced events that looked like single molecule events.  

To further examine the role of Ca++ and strong binding myosin in activating the 

thin filament, we performed motility experiments while manipulating Ca++ and ATP. 

Previous work has shown that at high Ca++, motility velocities are well described by a 

Michaelis-Menten relationship as ATP is increased. However, at low Ca++, velocity rises 

up until ~60 µM ATP, and then slowly declines (62). We build off of this previous work 

by examining the effect of a wide range of Ca++ levels, from pCa 9 to pCa 4. Our data 

confirm that 60 µM is a critical ATP concentration.  

Mathematical Model 

To separate the effects of Ca++ and myosin strong binding, we compared our data 

to a mathematical model. The model was able to replicate the experimental data well at 
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all levels (single molecule, small ensemble, large ensemble). Impressively, the model 

generated values for the Tn- Ca++ binding affinity that are extremely similar across all 

three levels. In addition, the model was able to tease apart the role of Ca++ and myosin 

strong binding. Using the model, we were able to extrapolate force generation as if each 

myosin molecule acted independently (i.e., no myosin strong binding activation or 

cooperativity. The resulting pCa-force curve had a low Hill coefficient (1.4 ± 0.3) and 

low pCa50 value (5.96). Even if we 

tried to shift the curve to line up 

with pCa-force data collected in 

fibers, the curve is still not steep 

enough to match these data. 

However, once myosin strong 

binding activation is added into the 

model, the model is able to 

recapitulate a typical pCa-force 

curve. The model recapitulates data generated from single muscle fibers (85), with a Hill 

efficient of 1.7 ± 0.2 and a pCa50 of 6.81 (figure 5.1). Therefore, myosin strong binding 

activation is necessary to describe experimental data.  

The model predicts myosin are locally coupled if they are within 400 nm of each 

other. In the model, if two strongly bound myosin are within this range, then the thin 

filament is activated between the two myosins. Further, if one myosin is strongly bound, 

the probability of a neighboring myosin also binding is increased. This probability is 

affected by how close the second myosin is: the closer the second myosin is to the first 

Figure 5.1. pCa-force relationship for single molecule data and 

our model. We fit our single molecule binding data to a pCa 

curve. This curve is shallow and shifted to the right compared 

to pCa-force data from fibers. The model incorporates 

cooperativity, and can therefore duplicate experimental data 

with an appropriate Hill coefficient and pCa50.  
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myosin, the higher the increase in probability of the second myosin binding.  An 

important note is that this length of 

400 nm (ℓ) is not the same as the 

cooperative unit length (µ), as ℓ 

implies only partial activation. In 

other words, an increase in the 

attachment rate would be 

miniscule 400 nm from the point 

of first attachment because the 

function drops off rapidly away 

from the site of first attachment. 

Assuming tropomyosin is a 

flexible chain, we feel that ℓ better 

captures the effect of strongly bound myosin, and the model better encapsulates myosin 

strong binding activation compared to models that use the cooperative unit. Further, the 

cooperative unit length has been hard to determine, with ranges from 40 nm to 500 nm 

(62, 74, 77, 80, 97, 103, 122). Meanwhile, ℓ has been determined to be 400 nm. Indeed, 

previous experiments have led to this conclusion (127), and our current results support 

this distance. In fact, for the model to fit our data, a coupling length of 400 ± 100 nm was 

not only sufficient but necessary. Thus, our data confirm the model’s prediction of the 

coupling length between myosin, regardless of the number of myosin present.  

Based on the myosin concentration used and the geometry of the experimental 

setup (in particular, the use of a 3 µm bead as a pedestal for myosin), we expect ~7 

Figure 5.2. Depiction of the mathematical model. Top: two 

myosin activate the region between them (red). Regions with only 

one myosin bound (white) lead to partial activation for a distance. 

Middle: model of tropomyosin’s position, depending on myosin 

strong binding. Bottom: probability (ka) of neighboring myosin 

binding.  
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myosin molecules could interact with the thin filament (27, 51). The mathematical model 

we used suggests that 14-22 myosin were available. We attempted to reconcile this 

difference by using TIRF to quantify the number of myosin in a given area, and compare 

this value to the area on the 3 µm pedestal that would provide myosin the ability to bind 

to thin filament. Unfortunately, there was much variability in this experiment. Regardless 

of the exact number of myosin, the myosin molecules would have had to at least 

communicate over a distance of 36 nm. This assumes that the 3 µm pedestal bead 

provides a ~500 nm region where myosin can reach the thin filament. If 14 myosin were 

evenly spaced out on this 500 nm region, they would be 36 nm apart, on average. If the 

number of myosin was closer to 7, they would be 71 nm apart, on average. Thus, 

cooperativity observed in our experiments is likely not due to cooperative binding of 

myosin within a regulatory unit, but rather due to cooperative binding of myosin beyond 

their own regulatory unit. This concept is confirmed by our data, as the local coupling 

length in the model is 400 nm. 

Limitations 

The performed experiments do not go without limitations. Future experiments can 

provide more detail into the molecular mechanisms of thin filament activation with 

improvements on the current experiments. The first limitation is the use of 100 µM ATP. 

We chose this concentration because it allows us to detect many binding events. Higher 

concentrations could lead to events that occur so quickly that our system would not detect 

it (>5 ms). On the other hand, we wanted to ensure that myosin was in the form of 

ADP.Pi, and not ADP or rigor. We are confident, based on the ATP binding constant of 

myosin, that we achieved our goal.  
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The second limitation is the random configuration of myosin on the 3 µm mogul. 

To better recapitulate muscle in vivo, future experiments could use reconstituted thick 

filaments. Such filaments can be designed to not only duplicate the spacing of myosin in 

vivo, but could also be manipulated to add extra myosin or take myosin away. A nice 

feature would be the ability to count the myosin interacting with the actin filament. This 

could be done possibly by dual color microscopy, where the actin and myosin are labeled 

with different color fluorophores.  

The third limitation is the shape of the 3 µm mogul. The curved surface of the 3 

µm mogul leads to particular phenomena, such as different binding rates of the first and 

second myosin during a small ensemble run. Future experiments could examine a flat 

pedestal instead of round one. Maybe even more important is the ability to control the 

thin filament in the Z-axis. Current microscopes provide feedback to maintain the height 

of the experimental set up, but many do not have nm resolution.  

R146G Mutation 

  

 Of the three subunits of troponin, the inhibitory region, TnI, is responsible for 

binding to actin in the absence of Ca++ and subsequently keeping tropomyosin in the 

blocked state. Upon Ca++ binding, TnI detaches from actin and binds to TnC, allowing 

tropomyosin to move freely over the actin surface. A key part of TnI’s function is the 

inhibitory region, which spans residues 96-116 on skeletal TnI and 126-146 on cardiac 

TnI, and is responsible for binding to actin in the absence of Ca++. This places our 

mutation of interest, R146G, just within this key inhibitory region.  

 The data for this mutant are equivocal for many measurements. Some have found 

that force is reduced in the presence of the mutant at maximal Ca++ (70, 129), but others 
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have not seen this (114, 132). Similarly, some have found that ATPase is reduced (70, 

114), but others have not seen this (34, 129), and some have seen that velocity is reduced 

in motility (12), but not in fibers (60). The results make it difficult to say clearly if this 

mutant has an effect at all on peak force, ATPase, or velocity. However, most work 

agrees that there is a shift in the pCa50 across ATPase, force, and velocity measures (12, 

60, 70, 114, 129, 132). 

 We have collected data in agreement with previous findings. Under maximal Ca++ 

conditions, we see a ~46% reduction in velocity. We also see a leftward shift in the pCa-

velocity relationship. To try to tease apart the mechanism behind this, we examined the 

ADP release rate and the duty ratio. We found that the duty ratio decreased ~22%, from 

1.8 to 1.4%. In separate experiments, we found that the ADP release rate was reduced by 

~38%. What follows is set of possible explanation for these phenomena.  

 The observed decrease in velocity, even in the presence of maximal Ca++, is in 

agreement with previous findings. The reduced velocity can happen if myosin’s kinetics 

are altered. One of myosin’s kinetic steps that may be slowed is the weak to strong 

transition. This is the step that the regulatory proteins control, and the R146G mutant may 

impede myosin’s weak to strong transition more than the wild-type Tn. Previous data (29, 

126, 127) and our data presented here suggest that the weak to strong transition rate is 

reduced in the presence of regulatory proteins, even at maximal Ca++. The mutant may 

exacerbate this reduction. The structural mechanism could be that the mutant TnI, rather 

than binding to TnC at maximal Ca++, stays attached to actin, keeping tropomyosin in the 

blocked state. Some of the TnI molecules may come off of actin, but a high enough 

percentage may stay bound to actin, preventing complete thin filament activation. To test 
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whether the myosin’s weak to strong transition was limited, we performed duty cycle 

experiments. In these experiments, velocity is measured as a function of myosin 

concentration. The data can be fit to the duty cycle equation to determine the percentage 

of myosin molecules bound at any given time. The presence of the mutant induced a 

reduction in the duty cycle from 1.8 to 1.4%. These duty cycles are relatively low 

compared to previous measures, but a relative comparison would imply that myosin 

spend less time on actin in the presence of the mutant. This could be due to a reduction in 

the weak to strong transition rate.  

 Alternatively, the reduction in velocity could be due to a reduced ADP release 

rate. Our duty cycle experiments would suggest that this step is not the culprit, as a 

reduced ADP release rate would prolong myosin’s time attached to actin and thus 

increase the duty ratio. This would be in disagreement with our findings. To be sure, we 

completed experiments to calculate the ADP release rate by measuring velocity as a 

funciton of ATP. We assume that the mutant does not affect the ATP binding constant of 

rigor myosin. When we fit these velocity-ATP data, we found that the ADP release rate 

was indeed reduced in the presence of the mutant. Based on the duty cycle experiments, 

the reduction in ADP release rate was not expected but is still possible: both the weak to 

strong transition rate and the ADP release rate may be slowed, but the former is slowed to 

a greater extent than the latter. This would lead to reduced velocity as well as a reduced 

duty cycle.  

 How the weak to strong transition could be altered by a Tn mutant may be easy to 

explain, how the Tn mutant would alter ADP release is unclear. The Tn mutant may 

interact with myosin and can alter its kinetics. Though this is possible based on the 
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proximity of myosin to the regulatory proteins, this Tn-myosin interaction seems 

unlikely, considering TnI can only reach two of the seven actin monomers in a regulatory 

unit, and would thus only be able to affect myosin if the myosin was bound to those actin 

monomers. Recent investigations have made progress in examining the interactions of 

myosin-thin filament residues using cryo-EM (124, 125), but currently lack the ability to 

characterize the loose C-terminal of TnI. 

 To further complicate matters, we found, in agreement with previous work, that 

the mutant induces a leftward shift in the pCa-velocity relationship. This would seem to 

complicate the story, as a leftward shift isn’t expected when myosin’s on-rate is slowed. 

However, a reduced ADP release rate may contribute to strong binding activation. The 

longer myosin stays bound to actin, the higher the probability of a neighboring myosin 

binding as well.   

 The pCa-velocity relationship in the presence of the mutant is not fit well 

(R=.307). Indeed, the difference in velocity between low Ca++ and high Ca++ is only 1 

µm/s. It seems that the mutant isn’t very sensitive to Ca++ at all. Others have shown that 

peak velocity or ATPase is reduced at maximal Ca++ compared to wild type, yet the thin 

filaments with the mutant are not able to completely inhibit ATPase activity. Assuming a 

three-state model of regulation, the vast majority (~99%) of myosin binding sites on actin 

should be blocked. However, the R146G mutation may limit TnI’s ability to bind to actin, 

allowing tropomyosin to move freely around the closed state and increasing myosin’s 

probability of binding to actin. Conversely, the mutated TnI may not bind to TnC as well 

as the wild-type during maximal Ca++ activation. Thus, thin filaments in the presence of 

the R146G mutation fluctuate between blocked, closed and open, regardless of Ca++, and 



78 

 

the distribution of these three states is not strongly dependent on Ca++ compared to wild-

type proteins. Others have confirmed this idea, suggesting that the R146G mutant 

stabilizes the closed position (61). Determining the precise distribution of open, closed, 

and blocked from our data is not possible, but future work examining single molecule and 

small ensembles in the laser trap, along with mathematical modeling, could provide 

insight.  

 Future work could examine how this mutant (and other mutants) affect single 

myosin molecule binding as well as other kinetic steps. This can be done using the laser 

trap assay. Our current findings suggest that both the weak to strong transition as well as 

ADP release are slowed in the presence of R146G. A single molecule laser trap assay 

would be able to directly observe this behavior. It would then be possible to examine how 

this single molecule behavior affects a small ensemble of myosin in producing force and 

motion. Further, these measures can be examined over a range of Ca++ concentrations, 

which would provide insight into the leftward shift in the pCa-velocity relationship.  
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TABLES AND FIGURES 

 
 

Table 4.1: Events per Second for Single 

Molecule Binding Events 

pCa Events per Second 

4 0.85 

5 1.11 

6 0.45 

7 0.23 

  9* 0.01 

*pCa 9 was published by Kad 2005 (62) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3: Fit parameters for R146G data  

Measure WT R146G 

Vmax (µm/s) 4.54 ± 0.13 2.56 ± 0.06* 

Km (µM) 264 ± 33 132 ± 17 

ADP Lifetime (s) 0.0024 0.0040* 

ADP Release Rate (s-1) 410.29 248.37* 

 
 
 
 
 

Table 4.2: Significant Differences of Ensemble Forces 

between Ca++ Concentration 

  Comparison   

Significant 

Difference 

    

pCa 5 vs. pCa 6 No 

pCa 5 vs. 

pCa 

6.5 Yes 

pCa 5 vs. pCa 7 Yes 

pCa 6 vs. 

pCa 

6.5  Yes 

pCa 6 vs. pCa 7 Yes 

pCa 6.5  vs. pCa 7 Yes 
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Figure 4.1. Sample traces of single molecule binding events at pCa 4 (left) and pCa 7 (right). Single 
molecule binding events became less frequent as Ca++ was reduced. 

 
 
 

 
Figure 4.2. Height of a regulated thin filament in the single molecule laser trap assay. The height of the RTF 
was not significantly different from pCa 4 to pCa 9. 
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Figure 4.3. Step size in single molecule experiments. The step size was not significantly different across 

pCa levels. 

 

 
Figure 4.4. Attachment time during single molecule experiments. The attachment time was not significantly 
different across pCa levels. 
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Figure 4.5. Force Histograms for each pCa. Events were most frequent and most likely to produce 
high forces at pCa 5. Event frequency and peak force declined as Ca++ was reduced. Events were 
extremely rare at pCa 9, as shown by the inset.  

 
 
 
 

 
Figure 4.6. Histogram of Event Duration for each pCa. At pCa 5, events lasted for hundreds of 
milliseconds, but duration declined as Ca++ was reduced. Despite the high myosin concentration, 
events at pCa 9 typically lasted less than 15 ms.  

Ev
en

t 
Fr

eq
u

en
cy

 (
s-1

)

Force (pN)
0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.00

0.01

0.02

0.03

0.04

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

pCa 9

pCa 6 pCa 6.5pCa 5

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

pCa 7

0 100 200 300 400 500

0.0

0.5

1.0

1.5

2.0

0 100 200 300 400 500

0.0

0.5

1.0

1.5

2.0

0 100 200 300 400 500

0.0

0.5

2.0

Ev
en

t 
Fr

eq
u

en
cy

 (
s-1

)

Duration(ms)

10 12 14 16 18 20

0.00

0.01

0.02

0.03

0.04

0.05

0 100 200 300 400 500

0.0

0.5

1.0

1.5

2.0

pCa 9

pCa 6 pCa 6.5pCa 5

0 100 200 300 400 500

0.0

0.5

1.0

1.5

2.0

pCa 7



83 

 

 
 

 
Figure 4.7. Relationship between Force and Duration at pCa5. As the myosin ensemble generated force, the 

event duration was prolonged. 

 

 
Figure 4.8. Time between events at each pCa. At pCa 5, events occurred in repid succession. However, as 

Ca++ was reduced, events became less frequent. At pCa 9, the time between events was many seconds.  
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Figure 4.9. Velocity of regulated thin filaments as a function of Ca++ and ATP in an in vitro motility assay. At 
pCa 4, velocity follows a typical Michaelis Menten relationship. However, at pCa 9, there exists an ideal ATP 
level to generate maximum velocity. The velocity depends not only on actomyosin binding sites availability, 
which is partially dictated by Ca++, and myosin on-time, which is dictated by ATP binding. 

 

 
Figure 4.10. Comparing our single molecule data to the mathematical model. The single molecule binding 

rate directly measured was well fit by the mathematical model. 

 
 

V
R

T
F

(µ
m

. s
-1

)

ATP (µM)

0 200 400 600 800 1000

0

1

2

3

4

5

6

7
pCa 4 

pCa 5

pCa 6 

pCa 6.5 

pCa 7 

pCa 9 



85 

 

 
 
 
 

 
Figure 4.11. Comparing our small ensemble data to the model. The force and on-time were converted to a 
relative frequency (gray bars) and are well fit by the mathematical model (red line). 

 
 
 
 
 

 
Figure 4.12. Comparing our large ensemble data to the model. The thin filament speed is well fit by the 
model, regardless of ATP and Ca++. 
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Figure 4.13. pCa-Velocity relationship generated in an in vitro motility assay. Wild-type (black) produced a 
typical sigmoidal curve, while the mutant (white) was poorly fit to the Hill equation due to low velocity at 
maximum Ca++ and elevated velocity at low Ca++. 
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Figure 4.14. Velocity as a function of available myosin heads in an in vitro motility assay. Also known as a 
duty cycle assay, the myosin concentration was manipulated and number of heads available was estimated 
using the data in Harris and Warshaw 1993 (51). The duty cycle was slightly lower with the mutant (1.39%, 
white) while the wild-type (black) was 1.81%. 

Number of Myosin Heads

0 100 200 300 400 500

V
R

T
F

 / 
V

R
T

F
M

a
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 
 
Figure 4.15. Same data as Figure 4.9, but shown here normalized to each Tn variant's peak velocity. This 

better shows how similar the duty cycle is between each condition. 
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Figure 4.16. Velocity of each Tn variant as a function of ATP. By measuring velocity as a function of ATP, 
we can calculate the ADP release rate (table 4.3) 

 

 
Figure 4.17. Using the same data in figure 4.11, we can calculate time on by measuring velocity and by 
assuming that myosin displaces actin 10 nm with each powerstroke. 
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