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ABSTRACT 

THE MOLECULAR BASIS OF CASPASE-9 INACTIVATION 

BY PKA AND C-ABL KINASES 

FEBRUARY 2018 

BANYUHAY PANINGBATAN SERRANO, B.S., UNIVERSITY OF THE PHILIPPINES 

LOS BAÑOS 

M.S., UNIVERSITY OF THE PHILIPPINES LOS BAÑOS 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Jeanne A. Hardy 

 Caspases are the cysteine proteases that facilitate the fundamental pathway of 

programmed cell death or apoptosis. The activation and function of these powerful enzymes are 

tightly regulated to ensure the faithful execution of apoptosis and prevent untimely cell death. 

Many deadly human diseases such as cancer, neurodegeneration and autoimmune disorders have 

been associated with defective activation and faulty regulation of caspases. As such, caspases are 

considered as attractive drug targets, which when properly controlled, can lead to effective 

therapeutics for apoptosis-related diseases. Thus, comprehensive investigations of the structure, 

function and regulation of caspases are necessary to understand the complex mechanisms by 

which caspases are controlled in order to harness their potential for therapeutic purposes. This 

dissertation details the studies on the regulation of caspase-9 by phosphorylation mediated by the 

kinases PKA and c-Abl. Complementary approaches of biochemistry, structural biology and cell 

biology were utilized to elucidate the divergent mechanisms by which these kinases inhibit 

caspase-9 function. A critical residue was revealed to be a hotspot for inactivation upon PKA 

phosphorylation, utilizing two different mechanisms to silence caspase-9 activity. In addition, a 

novel site of phosphorylation by c-Abl that leads to inactivation was uncovered and is unique to 

caspase-9. These findings contribute to the growing information about caspases and kinases that 

will aid in the development of therapeutic strategies for apoptosis-related diseases.  
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CHAPTER I 

INTRODUCTION 

 

 Apoptosis or programmed cell death is a conserved cellular pathway that serves as a 

mechanism for multicellular organisms to undergo normal development, achieve homeostasis and 

protect itself from cells that are in excess, not in use, damaged and/or potentially harmful to the 

organism. At the center of this pathway are enzymes called caspases that coordinate the intricate 

cascade of reactions to faithfully execute apoptosis. As specialized proteases, caspases display 

exquisite specificity towards their substrates, altering substrate structure and function in an 

irreversible manner. By inactivating or otherwise altering the function of a circumscribed number 

of key substrates, caspases can control cell fate. Ultimately, it is the activity of the powerful 

caspases that is responsible for the morphological changes that the cell undergoes during 

apoptotic cell death. Because caspases play a crucial role in inducing cell death, their expression 

and activation must be subject to tight regulation in order to maintain the balance between cell 

death and survival. The long list of diseases associated with caspase dysfunction indicates the 

severe consequences of their inappropriate activation and improper or lack of regulation in the 

apoptotic pathways. Thus, caspases are considered to be attractive drug targets which, when 

properly harnessed can lead to effective therapeutics for apoptosis-related diseases.  

Apoptosis: Death for Survival 

 Apoptosis is central to the development and homeostasis of multicellular organisms. This 

irreversible pathway is sensitive to cellular signals that decide whether a cell must die or not. 

These death signals are then transduced via a series of biochemical reactions that commences in 

the activation of caspases that finally cleave specific intracellular protein substrates to start 

cellular destruction. Apoptosis is an active and deliberate kind of cell death, proceeding in an 

orderly and efficient manner. This tight and precise control manifests in its perhaps most distinct 

feature, which is the ability of cells undergoing apoptosis to avoid eliciting inflammatory 
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responses, keeping neighboring cells intact. Morphological changes following apoptosis include 

chromatin condensation, DNA fragmentation, cell shrinkage and membrane blebbing. The dying 

cell is then rapidly eliminated by phagocytosis without prompting inflammation in the 

surrounding areas. 

 The proper execution of apoptosis is critical to cellular and tissue homeostasis. Defects in 

its regulation have been implicated in a plethora of life-threatening diseases. Insufficient and 

suppressed apoptosis is considered a classic hallmark in many types of cancer, autoimmune 

disorders and persistent viral infections. In contrast, degenerative diseases that destroy cells such 

as Alzheimer’s, Huntington’s, as well as ischemia resulting from stroke and post-menopausal 

osteoporosis are known to exhibit an excessive degree of apoptosis. (reviews1–4). The ability to 

modulate cell death and survival is thus recognized for its immense therapeutic potential. In the 

past few decades key participants in the apoptotic pathways have been identified and extensively 

interrogated as potential targets for regulating apoptosis.  

The Apoptotic Pathways 

 Depending on the nature of death signal that the cell receives, there are two pathways by 

which apoptosis can proceed - the extrinsic, or death receptor pathway, and the intrinsic, or 

mitochondrial pathway (Figure 1). The two pathways converge with the activation of the 

executioner caspases, which ultimately cut hundreds of their specific protein targets to amplify 

the cascade of cellular destruction. 

 In the extrinsic pathway, ligand binding of tumor necrosis factor (TNF) family such as 

Fas, and TNF-related apoptosis-inducing ligand (TRAIL) ligands causes these death receptors to 

cluster and recruit an adaptor protein Fas-associated death domain (FADD) and multiple 

procaspase-8 molecules, forming a death-inducing signaling complex (DISC). The DISC serves 

as a platform to increase the local concentration of procaspase-8 molecules, allowing its trans-

processing and activation. Once active, caspase-8 cleaves and activates procaspases -3, -6 and -7 

(reviews 5,6). 



 3 

 

The intrinsic or mitochondrial pathway is activated as a response to cellular stress such as DNA 

damage, toxins, hypoxia and activation of oncogenes, causing the outer mitochondrial membrane 

to be compromised. This allows cytochrome c to leak out of the mitochondria into the cytosol 

where it forms a heptameric complex with the apoptotic protease activation factor-1 (Apaf-1). 

This platform then recruits procaspase-9 molecules form the apoptosome assembly7,8 where 

caspase-9 molecules are activated. Highly active caspase-9 then becomes incredibly efficient in 

cleaving and activating the executioner caspases,9 which in turn amplify the downstream 

apoptotic signals. Although it seems that the two pathways are distinct from each other, crosstalk 

does occur, resulting in feedback loops between pathways, as well as serving as linkages that 

redirect caspases to participate in other signaling pathways.  

 
Figure 1.1. The Apoptotic pathways. 
The extrinsic pathway is activated by death ligand-binding, such as FasL or TNF-α, while the intrinsic 
pathway is induced by mitochondrial stress such as DNA damage, hypoxia or build-up of reactive 
oxygen species. Upstream caspases or initiators, caspase-8 and/or caspase-9 mediate the extrinsic and 
intrinsic pathways, respectively. Both pathways converge with the activation of downstream or 
executioner caspases -3, -6 and -7, thereby committing the cell to its demolition. 
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Caspases: The Core of the Apoptotic Machinery 

 Caspases are considered to constitute the core of the apoptotic machinery. Depending on 

where they act in the apoptotic pathways, caspases are classified as either initiators, which 

operate upstream such as caspases -2, -8 and -9, or executioners such as caspases -3, -6 and -7, 

which facilitate downstream cleavage of hundreds of substrates in the apoptotic cascade10,11 

(Figure 1.1). Caspases are essentially molecular scissors that derive their name from the cysteine 

active site residue that they utilize in their chemistry and from their specificity to cleave after 

specific aspartate residues found within a defined recognition sequence. All caspases contain the 

catalytic dyad of a cysteine thiol and a neighboring histidine imidazole to perform hydrolysis of a 

target peptide bond (Figure 1.2A). 

  

Figure 1.2. Chemistry and architecture of 
caspases. 
(A) The His in the catalytic dyad promotes 
the nucleophilicity of Cys in the active site, 
which then performs a nucleophilic attack on 
the peptide backbone of the target protein 
substrate. 
(B) Schematic representation of the structural 
domains of caspases. Caspases contain a core 
domain, which is composed of the large and 
small subunits connected by an intersubunit 
linker (ISL). At the N-terminus is a 
prodomain (Pro) preceding the core of the 
enzyme. The active site cysteine resides in 
the large subunit. All caspases have cleavage 
sites in the intersubunit linker. Most 
caspases, particularly executioners, have a 
cleavage site between the prodomain and the 
large subunit. Cleavage sites are indicated by 
arrows. 
(C) Structure of a substrate-bound caspase 
dimer (PDB ID: 1F1J) showing the active site 
loops (L1, L2, L3, L4, from one monomer 
and L2’ from the other monomer) and the 
Cys-His catalytic dyad (shown as spheres). 
The prodomain in all available crystal 
structures of caspases is mobile and has not 
been observed crystallographically, so was 
modeled in this figure as light green dashed 
lines. 
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 Structurally, all caspases contain the highly homologous protease or core domain that is 

further subdivided into a large (17-20 kDa) and a small (10-12 kDa) subunit that are held together 

by an intersubunit linker (ISL) (Figure 1.2B). The N-terminus is a stretch of residues that 

comprise the prodomain (Pro), with the initiator caspases having longer and structured 

prodomains than the executioners. Initiator caspases such as caspase-8 and -9 are monomeric 

following synthesis on the ribosome, while executioners dimerize immediately upon ribosome 

release. Mature caspases exist as homodimers, having the two monomers aligned in a head-to-tail 

fashion (Fig. 1.2C). The two small subunits adjacent to one another make hydrophobic 

interactions that form the dimer interface. At the center of the structure is a sheet of 12 contiguous 

β-strands (six from each monomer) that are surrounded by several α-helices and a few short β-

strands. The substrate-binding pocket that contains the active site is composed of four protruding, 

dynamic loops (L1, L2, L3, L4) sampling different conformations and are reorganized and 

stabilized upon substrate binding. A stabilizing element is the interaction of loops L4 and L2 from 

one half of the dimer with the N-terminus of the small subunit (loop L2’) of the other half (Figure 

1.2C). These loop interactions have been shown to be critical for caspase activity12, and has been 

exploited to develop strategies to trap caspases into an inactive state that is incompetent to bind 

substrate. 

 The activity of caspases ultimately determines cell fate and any inopportune activation or 

inhibition is extremely detrimental to the cell. Because highly active caspases are lethal, they are 

synthesized and stored in their inactive zymogen forms (procaspases). The requirements for 

activation of executioner caspases are quite distinct from those of initiators. During zymogen 

activation, executioner caspases require cleavage at the intersubunit linker in order to be 

maximally active. These cleavage events are primarily carried out by initiator caspases, but could 

also be achieved by self-proteolysis. In contrast, initiator caspases are recruited to multimeric 

scaffolds such as the DISC (for caspase-8)13, PIDDosome (for casp-2)14 and the apoptosome (for 
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caspase-9)7,15,16 for activation. Dimerization has also been shown to be paramount to caspase 

activity (reviews17,18). 

 Targeting caspases to either inhibit or activate them is an efficient way to prevent or 

accelerate cell death. Caspases are extremely selective proteases in the sense that they have strong 

preference to cut after specific aspartate residue in their substrates, but do not cut after all 

aspartates haphazardly. They are notably unlike other proteases that randomly cleave at any 

available site bearing a recognized amino acid. Caspases are signaling proteases and are not 

designed for degradation of substrates. They cut only at one or sometimes two sites. These 

specific substrate modifications lead to either have them gain or lose function. The most 

conserved region in the structure of caspases is the active site. The substrate-binding pocket has 

evolved to retain specific residues that stringently recognize an aspartate in the P1 position of the 

peptide, but this cleavage preference has been shown to extend to include glutamate and 

phosphoserine under specific circumstances19–21. The P4-P3-P2 residues must make 

complementary interactions with other residues in the catalytic pocket for tighter binding and 

cleavage. While the residues that compose the P1 pocket are highly conserved the P4, P3 and P2 

pockets vary significantly between caspases. 

 The vast number and the range of protein substrates that undergo caspase cleavage, as 

well as the discrepancies between cleavage preferences in vitro and intracellularly prompted the 

idea that caspases possess exosites that serve as determinants of substrate recognition and 

processing (Figure 1.3A). Recently, caspase-7 was revealed to possess a lysine-rich exosite patch 

that facilitates faster cleavage of its substrate, poly(ADP ribose) polymerase 1 (PARP)22. In 

addition to exosites, data are emerging that caspases have allosteric sites (Figure 1.3B) that can 

act as switches when targeted by small molecules such as FICA and DICA in caspase-723, metal-

binding such as zinc in caspase-624 and -925 and peptides as in the case of caspase-626. Allosteric 

inhibitors generally function by trapping caspases into a conformational state that is incapable of 

binding substrate (Figure 1.3B). These exosites and allosteric sites are now acknowledged to be 
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excellent target regions, because while 

modifying the active site serves to efficiently 

and robustly inactivate caspases, it does not 

confer any specificity towards a particular 

caspase-substrate pair. Allosteric and exosite 

regions, especially those that are found to be 

unique to a specific caspase, could provide the 

needed specificity when directed for caspase 

inhibition or activation. 

Natural Regulators of Caspase Activation 

and Function 

 The whole ensemble of apoptosis-

related proteins must work in a precise and 

organized manner for apoptosis to function 

normally. As critical mediators of the 

apoptotic pathways, it is only fitting that 

caspase activity is tightly controlled. One can 

imagine the lethal or deleterious consequences 

when caspases are either missing/kept inactive 

or overexpressed/constitutively active. 

Knockout versions of mice that are deficient in 

specific caspases either result in perinatal lethality or have developmental defects (review27). A 

number of cancers28,29 and neurodegenerative diseases30,31 have been attributed to dysregulated 

activity and inappropriate expression of caspases. Fortunately, constant check-and-balance 

mechanisms have evolved to achieve timely activation and inhibition of caspases.  

 
Figure 1.3. Exosites and allosteric regions 
control caspases function. 
(A) Caspases possess exosites that aids in 
recognition and binding of a cognate substrate. 
Blocking the exosite results in either 
unproductive binding or no binding of the 
target substrate. 
(B) In the absence of any inhibitor or substrate, 
caspases predominantly exist in the zymogen 
state (top). Binding of a compound to the active 
site reorganizes and orders the loop bundle, 
shifting the equilibrium in its active state 
(middle). An allosteric inhibitor (such as FICA 
and DICA for caspase-7) binding distal to the 
active site drives back the equilibrium to the 
zymogen state (bottom). 
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 Upstream of the caspase activation 

cascade are Bcl-2 family proteins that are 

either pro- or anti-apoptotic (Figure 1.4). 

Many of the Bcl-2 family proteins are 

harbored inside the mitochondria and upon 

receiving an intracellular signal, these family 

members compete to enable the mitochondrial 

release of cytochrome c. Pro-apoptotic Bcl-2’s 

(BAX and BAK) induce or facilitate release of 

cytochrome c while anti-apoptotic Bcl-2’s do 

the opposite. IAPs (inhibitor of apoptosis proteins) are the first line of defense that keep caspase 

activation in check either by directly interacting with caspases or by facilitating ubiquitination 

and consequently proteasomal degradation of caspases (review32). Other cellular proteins 

identified to contribute to caspase regulation include heat shock proteins (Hsps) which have been 

observed to directly interact with caspases33–35 (for review: 32,36,37) and alternatively spliced 

caspase variants that generally act as dominant negatives38. In addition, adaptor proteins 

containing binding motifs compete for interaction with caspase activating scaffolds/complex, 

thereby regulating caspase activation. 

 It is also now becoming clear that caspases have evolved to be sensitive to changes 

brought about by post-translational modifications (PTMs). Phosphorylation, nitrosylation, 

ubiquitination and oxidative modification of caspases have been linked to both suppression and 

induction of apoptosis (reviews39,40). Caspases are highly susceptible to modifications, and in 

most cases these reported PTMs result in dramatic alteration of their function. The ability of other 

proteins to modify the caspase structure and consequently transform its function is a promising 

avenue for co-regulation of caspases and cognate enzymes, and sensitive regions or sites arising 

from these PTMs can be exploited for precise control of caspase function. 

 
Figure 1.4. Pro- and anti-apoptotic proteins 
control the intrinsic pathway. 
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 Among the PTMs in caspases, 

phosphorylation is perhaps the most 

documented and well-explored. Although 

the apoptotic pathways do not directly 

involve kinases in the signaling cascade, 

activities of relevant kinases have been 

determinants of the cell’s susceptibility to 

death. All apoptotic caspases harbor 

phosphorylation sites (Figure 1.5), and while 

numerous cell-based studies have identified 

the relevant caspase-kinase pairs and 

mapped their roles in the context of apoptosis, molecular details of the mechanisms of inhibition 

or activation that these phosphorylation events confer to caspases are still lacking. It is notable 

that these phosphorylation sites reside in different regions within the caspase structure, thus it is 

highly likely that these regions are potential allosteric sites and exosites that can be exploited to 

modulate the function of a specific caspase. An excellent model to interrogate the diverse 

mechanisms of caspase phosphoregulation is that of the initiator caspase-9, whose great extent of 

phosphorylation on all its domains could provide insights as to how phosphorylation precisely 

influences caspase structure, activation and function.  

The Initiator, Caspase-9 

 Caspase-9 is the initiator caspase that mediates the intrinsic apoptotic pathway. It is 

synthesized as a 46-kDa zymogen that has a long prodomain called the caspase recruitment 

domain (CARD) (res. 1-138) which, unlike in executioner caspases, does not get cleaved off 

during zymogen activation8,16,41 due to its critical function of mediating caspase-9’s recruitment to 

the apoptosome. The core of the enzyme is composed of the large subunit (res. 139-315) followed 

by a long linker (res. 316-330) and a small subunit (res. 331-416). The catalytic dyad of C287 and 

 
 

Figure 1.5. Reported phosphorylation sites in 
caspases. 
Apoptotic caspases are phosphorylated at multiple 
sites in their structure. Cleavage sites at the linker and 
between the prodomain and large subunit are indicated 
by arrows. 



 10 

H237 resides in the large subunit. There are 

three possible cleavage sites in the 

intersubunit linker- E306, D315 and D330 

(Figure 1.6A). The majority of self-cleavage 

occurs at D315 with little observed cleavage 

at E306. D330 is a cleavage site for caspase-

3, which is cleaved when the feedback loop 

present between caspase-3 and -9 is 

activated. 

 Although predominantly present as 

a monomer, the crystal structure of a 

CARD-deleted caspase-9 (ΔCARD casp-9) 

suggests that its active form is a dimer42. 

Interestingly, the structure (PDB ID:1JXQ) 

reveals that the two catalytic domains in the 

dimer have different conformations (Figure 

1.6B). One active site is catalytically 

competent while the other is not, resting in 

what is called an “inactive” active site. 

Moreover, the loop bundle in this inactive 

catalytic site resembles the conformation of 

the loops assumed by the caspase-7 

zymogen, hence it is incompetent to bind 

substrate in this arrangement. The presence 

of this catalytically incompetent active site 

 
Figure 1.6. The caspase-9 structure. 
(A) Domain organization of caspase-9 and location 
of reported phosphorylation sites within the 
caspase-9 structure, with cognate kinases indicated. 
(B) Structure of substrate-bound, dimeric, full-
length caspase-9 showing the active site loops (L1, 
L2, L3, L4 and L2’), phosphorylation sites (in 
spheres) and the active site catalytic dyad (shown as 
sticks) which is competent in only one monomer. 
There is no existing structure of full-length caspase-
9; this structure was modeled using available crystal 
structures of the CARD-deleted caspase-9 (PDB ID 
1JXQ) and the complex between caspase-9 CARD 
and Apaf-1 CARD (PDB ID 3YGS). The region 
between the CARD and large subunit was modeled 
as grey coils, as it is not present in any available 
crystal structures of caspase-9. 
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was shown to be a result of alleviating steric clashes at the dimer interface should the site assume 

an active conformation, and not simply an artifact of crystal contacts42.  

Multiple Levels of Caspase-9 Activation 

 The activation of executioner caspases mainly lies in the intra-chain cleavage of the 

prodomain and the intersubunit linker. Thus their activation is a direct consequence of the action 

of initiator caspases. Unlike executioners wherein dimerization and cleavage renders them fully 

active, initiator caspases, particularly caspase-9, are activated in a different manner, primarily 

because there are no upstream proteases to cleave them. Caspase-9 does undergo self-processing, 

but this does not seem to convert caspase-9 into its fully active state43,44. In addition, caspase-9 

activity seems to be influenced more by intra- and inter-domain interactions than by cleavage. 

This is supported by the observed increase in activity as protein domains are added stepwise to 

interact with the caspase-9 catalytic core, which is the simplest unit to generate caspase-9 

constructs that possess maximal intrinsic (basal) activity. The presence of the CARD increases 

the activity of caspase-9 by ~20%, and is further enhanced five-fold in the presence of Apaf-1 

CARD. The primary mode of caspase-9 activation is its recruitment to the apoptosome, in which 

it achieves its maximal activity, rendering it extremely efficient in cleaving downstream caspases 

and other substrates (Figure 1.7).  

 The apoptosome is a heptameric complex of Apaf-1, cytochrome c and d/ATP. Through 

homotypic interactions between Apaf-1 CARD and caspase-9 CARD, caspase-9 gets 

incorporated into the apoptosome where it undergoes auto-catalytic processing and activation. 

When bound to the apoptosome, caspase-9 activity is increased by 1000-fold, prompting the idea 

that caspase-9-bound apoptosome is the holoenzyme form of caspase-9. The fact that caspase-9 

reaches its full activity in the apoptosome prompted many models of its activation (reviews45,46). 

The induced proximity model suggests that the apoptosome serves as a platform to increase the 

local concentration of procaspase-9 that results in trans-autoprocessing. However, this does not 

explain why cleaved/processed caspase-9 is not fully active. The observation that caspase-9 is 
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predominantly monomeric but requires dimerization to be active led to the proximity-

dimerization model: caspase-9’s recruitment to the apoptosome leads to increase in local 

concentration and allows them to dimerize – and would also explain the ∆CARD caspase-9 

crystal structure of being a catalytically active dimer. Another model is centered on the activating 

caspase-9 by induced conformational changes in its active site as it is bound to the apoptosome. 

These changes may possibly be brought about by interactions of the apoptosome to the 

dimerization interface of caspase-9 thereby stabilizing the active loops, or by facilitating different 

 

 
Figure 1.7. Levels of caspase-9 activation. 
Caspase-9 is predominantly monomeric, but requires oligomerization, minimally dimerization, for 
activity. An increase in activity is facilitated by protein-protein interactions with Apaf-1 CARD. 
Caspase-9 achieves full activity by interacting with full-length Apaf-1, which together with cytochrome 
c, forms the apoptosome for caspase-9 binding. The structure of full-length caspase-9 was modeled 
using the CARD-deleted caspase-9 structure (PDB ID: 1JXQ) and caspase-9 CARD in complex with 
Apaf-1 CARD (PDB ID: 3YGS). The caspase-9 bound apoptosome was based on the structure reported 
by Cheng, et al, 201648) 
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oligomerization states of caspase-9. Recent near-atomic cryo-EM structures47,48 and biochemical 

studies49 on caspase-9-bound apoptosome have provided a clearer picture of how caspase-9 is 

poised to undergo activation in the apoptosome. Both models posit that proximity-driven 

dimerization and induced conformational changes in caspase-9 upon apoptosome binding are 

consistent with recent structures of the apoptosome. 

 While the canonical mode of caspase-9 activation lies in the apoptosome, caspase-9 has 

also been observed to undergo activation by alternative mechanisms that are independent of the 

apoptosome. This stems from observations that under certain cellular conditions such as viral 

infection50 and lysosomal cell death51, caspase-9 undergoes cleavage and activation without Apaf-

1 or cytochrome c. Caspase-9 was also found to be present and activated in the “dependosome”, a 

high-molecular weight complex composed of adaptor proteins (DRAL and TUCAN) and an E3 

ubiquitin ligase (NEDD4)52,53, in a manner analogous to that of the apoptosome. 

Intracellular Regulation of Caspase-9 

 Disturbance in the normal activation of caspase-9 has been linked to a number of 

apoptosis-related diseases and thus caspase-9 is considered a therapeutic target. In certain cancers 

and viral infections, caspase-9 has been observed as either poorly expressed or has diminished 

activity. Very low or no expression levels of caspase-9 and caspase-7 are evident in colonic 

carcinoma cells54 and caspase-9 expression was suggested to be a prognosticator of adverse 

carcinoma55. In testicular cancer cells, caspase-9 activation fails and confers greater resistance to 

apoptosis56. In degenerative diseases such as amyotrophic lateral sclerosis (ALS), caspase-9 was 

found to be highly abundant and active57 in spinal cords of ALS subjects. Thus, due to the central 

role of caspase-9 in apoptosis, it is heavily regulated in the cell to guarantee its proper and timely 

activation. 

 The many layers by which caspase-9 can be activated allow for multiple levels of its 

regulation. This multi-level regulation ensures that caspase-9 function is modulated with high 

fidelity, even providing fail-safe mechanisms in case one mode of activation goes awry. 
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However, this also causes caspase-9 activation to be particularly susceptible to various 

intracellular imbalance or assaults in the apoptotic pathways. Nevertheless, from a therapeutic 

viewpoint, one advantage of this multi-level regulation of caspase-9 is that it provides several 

potential nodes for therapeutic intervention to specifically control caspase-9 function. 

 Caspase-9 endogenously experiences tight control by a number of mechanisms (Table 

1.1). Mature caspase-9 is inhibited by XIAP by having its BIR3 domain interact with the small 

subunit of caspase-9 thereby preventing its dimerization58. An isoform caspase-9b that lacks the 

catalytic domain acts as a dominant negative factor and was found to interfere with caspase-9 

CARD:Apaf-1 CARD binding 59. Another CARD-containing protein that competes for Apaf-1 

binding is TUCAN (tumor up-regulated CARD-containing antagonist of caspase-9), which is 

found to be overexpressed in many types of cancer including breast, gastric and colon cancer 60,61. 

Zinc, which only recently has emerged as a relevant apoptotic regulator, has been reported to bind 

and inhibit caspase-962,63. Caspase-9 also undergoes post-translational modifications. Nitrosation 

of the active site cysteine leads to its failure to self-activate64–66. Interestingly, ubiquitination of 

caspase-9 has opposing effects, depending on the polyubiquitin linkage. XIAP also acts as an E3 

ubiquitin ligase, appending K47-linked ubiquitin chains that leads to proteasomal degradation of 

caspase-9. In contrast, the E3 ligase NEDD4 mediates K63-linked ubiquitination and this 

apparently leads to a more stable caspase-9 in the dependosome and results in its activation52,53. 

As previously mentioned, caspase-9 is extremely sensitive to phosphorylation, imparting another 

level of regulation which is the main focus of this dissertation. 
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Table 1.1. Natural regulators of caspase-9. 
Regulation Regulator Result Mechanism 

Oligomerization Self 
Apaf-1/cytochrome c 

Activation 
Activation 

Dimerization 
Holoapoptosome formation 

Protein binding XIAP Inhibition Prevents dimerization 
 Caspase-9b isoform Inhibition Competes for Apaf-1 CARD binding 
 TUCAN/CARD8 Inhibition Competes for Apaf-1 CARD binding 

Metals Zinc Inhibition Binds to active site and allosteric site 

Nitrosation NO Inhibition Modifies active-site cysteine 

Ubiquitination XIAP Inhibition K48-linkage; leads to proteasomal 
degradation 

 NEDD4 Activation K63-linkage; stabilizes caspase-9 in the 
dependosome 

Phosphorylation Kinases Inhibition 
(mostly) 

Many/diverse 

 

Phosphorylation of Caspase-9 Alters the Apoptotic Response 

 Caspase-9 is extensively phosphorylated. Eleven sites, spanning all domains, are 

reportedly phosphorylated by at least nine different kinases67 (Figure 1.6A). The high degree of 

phosphorylation in caspase-9 highlights the various checkpoints that caspase-9 experiences 

during apoptosis as it is poised to undergo self-activation and perform cleavage of executioner 

caspases. Phosphorylation of caspase-9 has been implicated in insufficient apoptosis in Downs 

syndrome68 and affects survival of breast and ovarian cancer cells69. The first report of its 

phosphorylation is by Akt70 or protein kinase B (PKB), a serine-threonine kinase involved in 

apoptotic suppression.  Since then, caspase-9 has been reported as a target of kinases that are 

involved in cell cycle (CDK169, CK271), cellular stress (PKC-ζ72, c-Abl73, Akt70) and extracellular 

signals (ERK1,274 and DYRK1A75) . Cell-based studies on caspase-9 revealed that these kinases 

inhibit apoptosis by preventing caspase-9 from self-processing and activation69,74,75, sometimes 

despite the release of cytochrome c76. 

 The catalytic core of caspase-9 has the highest number of phosphorylation sites of all 

domains of caspase-9. The most studied phosphorylation site in caspase-9 is T125. This residue 

lies in the potentially flexible linker between the CARD and the large subunit. It is 



 16 

phosphorylated by four different kinases (ERK 1 and 2 of the MAPK pathway, DYRK1A, 

CDK1) that have been implicated in cancer and tumorigenesis. In fact, phosphorylation of this 

residue has been found to be a hallmark of gastric carcinomas77. Akt/PKB, which was shown to 

phosphorylate S196 is involved in signaling pathways that respond to growth factors, thus is an 

important regulator of cell proliferation. Akt kinase transfected in HEK cells prevented caspase-3 

from activating, thus suppressing cell death70. In cell extracts treated with okadaic acid, a 

phosphatase inhibitor, caspase-9 was reported to be phosphorylated at S144 by an atypical PKC 

isoform, PKCζ, upon inducing hyperosmotic shock using NaCl or sorbitol72. In this case, caspase-

9 failed to undergo processing and apoptosis was restrained in HEK293 cells. In many types of 

cells elevated levels of cAMP have been found to confer resistance to apoptosis. The link 

between the cAMP elevation and apoptosis is the activation of cAMP-dependent protein kinase 

(PKA), which inhibits caspase-9 activation by phosphorylating it at three sites- S99, S183 and 

S195. However, it was reported that direct phosphorylation of these three sites is dispensable to 

caspase inhibition; instead it was suggested that PKA phosphorylates Apaf-1 and prevents it from 

oligomerizing and recruiting cytochrome c78. Intriguingly and in contrast to the inhibitory effect 

of kinases mentioned above, c-Abl is reported to promote caspase-9 processing at Y153 upon 

araC (DNA replication inhibitor)-induced apoptosis. Cells expressing a knockout of this site, 

Y153F, failed to undergo apoptosis even after araC treatment or exposure to UV radiation73.  

Divergent Mechanisms of Caspase-9 Control by Phosphorylation 

 It is clear that caspase-9 activity is particularly sensitive to phosphorylation, given the 

extent of its phosphorylation and the number of kinases that recognize it as a substrate. In the past 

decade, advancement in proteomics have identified phosphorylation sites in caspases-9 and in 

other caspases, but naturally, it has been difficult to perform wide-scale annotations under 

different cellular conditions. And while cell-based studies have been instrumental in determining 

the phenotypic consequence of either promotion or suppression of apoptosis upon 
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phosphorylation of caspase-9, to date there has been insufficient information on the molecular 

details to pinpoint the mechanism of phosphoregulation. Given the immense therapeutic potential 

of targeting caspase-9, knowing the precise molecular details of its phosphoregulation is 

absolutely essential if that mechanism is to be harnessed to specifically control caspase-9.  

 There are multiple aspects to caspase-9 phosphorylation that warrant deeper 

investigation. First, it is noteworthy that phosphorylation sites in caspase-9 are not clustered in 

one region, but rather are spread over different regions in caspase-9 structure (Figure 1.6B). All 

domains of caspase-9 - the CARD, catalytic core and intersubunit linker - are phosphorylated. 

Thus, phosphorylation of one site may confer a different mechanism of regulation to caspase-9, 

especially considering the fact that there are multiple levels to exert control within the caspase-9 

activation cascade. We have recently observed a dual mechanism of inactivation of caspase-7 by 

the kinase PAK2, wherein phosphorylation at S30 prevents procaspase-7 binding to and 

processing by caspase-9, and phosphorylation at S239 in the mature form directly blocks 

substrate binding79. Second, given that there are multiple sites phosphorylated by a single kinase, 

it is important to discriminate which site directly imposes a functional effect on caspase-9 upon 

phosphorylation, and which are simply “bystander” or redundant residues. Such is the case for 

caspase-9 phosphorylation by PKA, ERK1,2 and CK2 (Figure 1.6A) where more than one site is 

phosphorylated by each kinase. Are all sites required to be phosphorylated to inactivate caspase-

9, or does a single residue serve as a predominant phosphoregulator of caspase-9’s catalytic 

activity? While the concept of “bystander” or “silent” phosphorylation is replete in kinase 

literature, non-observance of functional effects should be carefully interpreted. As caspase-9’s 

activity is influenced by a variety of factors, the absence of a direct inhibition to the 

catalytic/proteolytic activity of caspase-9 upon phosphorylation does not necessarily mean that 

phosphorylation has no other influence on caspase-9 structure and function. Third, it is apparent 

from the great extent of phosphorylation in caspase-9 that phosphorylation is a major and critical 

regulator of its function. It is therefore fitting to ask whether there are more sites of 
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phosphorylation in caspase-9 that are yet to be uncovered, in what cellular context and how 

would it alter the apoptotic pathways. Finally, crosstalk between caspase-9 and its cognate 

kinases has not been thoroughly interrogated. Caspases and kinases are in constant molecular 

dialogue that allows for their co-regulation. Most caspases cleave the very kinase that 

phosphorylates them, resulting in either gain- or loss-of-function, or localization of the kinase 

into a different cellular compartment, thus tipping the balance between cell death and survival. 

Given that at least nine different kinases phosphorylate caspase-9, it is conceivable that this 

caspase-kinase interplay would play a more significant role in mediating the apoptotic response. 

 This dissertation focuses on addressing these molecular questions about caspase-9 

phosphoregulation by employing sound and complementary studies of biochemistry, structural 

biology and cell biology. Specifically, Chapter II investigates the single-site, dual-mechanism of 

caspase-9 inhibition by PKA, a ubiquitous kinase that is involved in cellular signaling but whose 

aberrant expression and activity has been observed in many cancer cell types. Chapter III delves 

deeper into the hierarchical nature of caspase-9 activation by interrogating the physical 

interactions between the caspase-9 CARD and its catalytic domains that affects caspase-9 

stability, and how phosphorylation by PKA perturbs these interactions. In Chapter IV we identify 

a novel site of phosphorylation in caspase-9 by c-Abl, a kinase that has both pro-apoptotic and 

anti-apoptotic/pro-survival roles, and elucidate the mechanism of inactivation. 
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CHAPTER II 

PHOSPHORYLATION BY PROTEIN KINASE A DISASSEMBLES 

THE CASPASE-9 CORE 

 

Majority of this chapter is published: Serrano, B.P. and Hardy J.A. Phosphorylation by Protein 

Kinase A Disassembles the Caspase-9 Core. Cell Death and Differentiation. In press (2018). 

Abstract 

 Caspases, the cysteine proteases which facilitate the faithful execution of apoptosis, are 

tightly regulated by a number of mechanisms including phosphorylation. In response to cAMP, 

PKA phosphorylates caspase-9 at three sites preventing caspase-9 activation and suppressing 

apoptosis progression. Phosphorylation of caspase-9 by PKA at the functionally relevant site 

S183 acts as an upstream block of the apoptotic cascade, directly inactivating caspase-9 by a two-

stage mechanism. First, S183 phosphorylation prevents caspase-9 self-processing and directly 

blocks substrate binding. In addition, S183 phosphorylation breaks the fundamental interactions 

within the caspase-9 core, promoting disassembly of the large and small subunits. This occurs 

despite S183 being a surface residue distal from the interface between the large and small 

subunits. This phosphorylation-induced disassembly promotes the formation of ordered 

aggregates around 20 nm in diameter. Similar aggregates of caspase-9 have not been previously 

reported. This two-stage regulatory mechanism for caspase-9 has not been reported previously 

but may be conserved across the caspases.  
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Introduction 

 Caspases are specialized enzymes that coordinate the intricate cascade of reactions to 

faithfully execute apoptosis. Caspases irreversibly cleave protein substrates causing gain or loss 

of function, thereby committing the cell to its demise. Caspases display exquisite specificity 

towards substrates, generally preferring to cleave after an aspartate, glutamate1,2 and in some 

cases phosphoserine3. Apoptotic caspases are classified as either initiators (caspase-2, -8 and -9) 

or executioners (caspase-3, -6 and -7). Uncontrolled activation of caspases is lethal, so caspases 

are synthesized and held as inactive zymogens (procaspases) prior to apoptosis induction. 

Activation generally relies on either recruitment to an activating scaffold (initiators) or cleavage 

at the intersubunit linker forming a mature caspase (executioners) (for review4). Most procaspases 

are homodimeric proteins that contain a highly homologous protease core, which can be cleaved 

into two large and two small subunits. While executioner caspases are constitutive dimers, 

initiator caspases exist in equilibrium between monomeric and dimeric states, with caspase-9 

existing predominantly a monomer5,6. Upon activation, the highly dynamic loops comprising the 

active site undergo conformational rearrangements to bind and cleave substrates, thereby 

initiating cell death. Ultimately, caspase activity is intrinsic to apoptosis, so caspase expression 

and activation is tightly regulated. This is achieved by a number of mechanisms which exert 

control at various checkpoints in the cell. Improper regulation of caspases is associated with 

diseases ranging from cancer to neurodegeneration (for review7–9). Thus, caspases are considered 

attractive drug targets for apoptosis-associated diseases. 

 Phosphorylation is a central regulator of apoptosis (for review10–12). Although apoptosis is 

unlike other classic signaling pathways because it does not directly utilize kinases, the related 

activity of kinases can determine a cell’s susceptibility to death. All apoptotic caspases are kinase 

substrates and caspases usually cleave the very kinases that phosphorylate them. Efforts to map 

kinase-caspase co-regulation and competition are ongoing (for review10,12–14), however, a more 

complex landscape of co-regulation becomes evident with the observation that some caspases 
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have multiple phosphorylation sites involving several kinases. Thus, although cell-based studies 

are fundamental in identifying cognate kinases and in determining the functional endpoint as 

either caspase inhibition or activation, biochemical and structural studies are essential in 

identifying critical residues and elucidating molecular details of diverse regulatory mechanisms 

arising from phosphorylation. 

 Among the apoptotic caspases, caspase-9 appears to be most sensitive to 

phosphorylation, which is mediated by a number of kinases activated in response to specific 

cellular signals (for review15). For example, in many cell types elevated cAMP levels have been 

found to confer protection from apoptosis16–19 due to sustained Protein Kinase A (PKA) activity, 

which phosphorylates caspase-9 at three specific sites – S99, S183 and S195 – leading to failure 

of caspase-9 activation and eventual suppression of apoptosis20. Intriguingly, however, 

phosphorylation of these sites was reported to be dispensable in directly inhibiting caspase-9 and 

it was instead suggested that PKA acts on a more upstream substrate such as Apaf-1 to prevent 

caspase-9 activation. This observation seems to evoke silent or bystander phosphorylation in 

caspase-9, and while non-functional phosphorylation does occur in other proteins21,22, the idea 

that PKA phosphorylates all three sites without any functional consequence seems to differ from 

what is known about the sensitivity of caspase activity to phosphorylation. Recent studies from 

our group23,24 and others25 have revealed that caspase activity is directly affected by 

phosphorylation both orthosterically and allosterically. In addition, the high conservation of 

phosphorylation sites across species15 underscores the likelihood that phosphorylation yields 

functional effects, as functional phosphorylation sites evolve more slowly than non-functional 

sites22. Given the complexity of having three PKA phosphorylation sites, it is important to 

differentiate sites critical to inhibition from non-functional sites and is paramount for unraveling 

the dynamic control of caspase-9 activity by phosphorylation. 
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 Here we identify S183 as the functionally relevant site that leads to direct inhibition of 

caspase-9 upon phosphorylation by PKA. Phosphorylation of the caspase-9 zymogen renders it 

incompetent to bind substrate, whereas phosphorylation of the mature form destabilizes the 

interactions within the caspase-9 core leading to its disassembly and formation of ordered 

aggregates. Understanding the multi-level mechanisms by which phosphorylation controls 

caspase-9 should provide new avenues to tap caspase-9’s therapeutic potential in apoptosis-

related disease. 

Results 

Phosphorylation of caspase-9 by PKA directly results in inhibition 

 All three reported sites of phosphorylation are located in the CARD (caspase activation 

and recruitment domain) plus large (CARD+Lg) region of caspase-9 (Figure 2.1A). S99 is in the 

highly flexible linker between the CARD and the large subunit. S183 sits just below Loop 1 (L1) 

in the vicinity of the substrate-binding groove and S195 is at the bottom of the α1 helix (Figure 

1B). Building on the report that PKA directly phosphorylates caspase-920, we tested whether PKA 

activity affects caspase-9 function by assessing the ability of procaspase-9 to undergo self-

processing in the presence of PKA and ATP. Procaspase-9 possesses a low level of basal 

activity5,26,27 that allows in trans cleavage, under favorable conditions, to generate a mature, 

active caspase-9. Even in homogeneous preparations of wild-type (WT) procaspase-9, the 

intersubunit linker is rapidly cleaved, generating the CARD+Lg and small (Sm) subunits (Figure 

2.2A). Addition of PKA with ATP greatly attenuated the rate of procaspase-9 self-cleavage 

(Figure 2.2A). 
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Figure 2.1. Sites of PKA 
phosphorylation in caspase-9. 
(A) Domain architecture of caspase-9 
showing the caspase activation and 
recruitment domain (CARD) (yellow 
green) and the protein core composed of 
the large (dark green) and small (light 
green) subunits connected by an 
intersubunit linker with three cleavage 
sites indicated by arrows: E306 (minor, 
self cleavage), D315 (major, self 
cleavage, and by caspase-8) and D330 
(by caspase-3). The sites of PKA 
phosphorylation are indicated by .℗ S99 
is in the CARD while both S183 and 
S195 are in the large subunit. 
 
(B) Structure of the caspase-9 dimer with 
phosphorylation sites (yellow spheres) 
noted.  There is no structure of full-
length caspase-9, so this model was built 
based on the CARD-deleted caspase-9 
structure (aa 138-416; PDB ID: 1JXQ) 
and the caspase-9 CARD structure (aa 1-
95; PDB ID: 3YGS) from a dimeric 
complex with Apaf-1 CARD. The region 
containing S99 is not present in either 
structure and is potentially highly 
disordered, so it was modeled as a dark 
gray coil. S99 is in the CARD; both 
S183 and S195 are located in the α1 
helix. 
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 To quantify the extent of inhibition, we assayed the activity of caspase-9 WT upon 

phosphorylation using the fluorogenic peptide substrate Ac-LEHD-AFC. Caspase-9 activity 

decreased two-fold when incubated with active PKA (Figure 2.2B), suggesting that PKA 

significantly inhibits caspase-9 function. In vitro phosphorylation using PKA and [γ-32P]ATP 

showed phosphorylation of the CARD+Lg region of caspase-9 (Figure 2.2C) as expected, with a 

corresponding marked inhibition of caspase-9 activity (Figure 2.2D). This sensitivity of caspase-9 

to phosphorylation is reversible. When treated with lambda protein phosphatase (λPP), we clearly 

observed the removal of phosphates from caspase-9 (Figure 2.2C). More importantly, caspase-9 

activity was relieved of inhibition upon dephosphorylation (Figure 2.2D). This ability of caspase-

9 being to be inactivated and reactivated by phosphorylation and dephosphorylation underscores 

the idea that this modification acts as a direct molecular regulator. 

S183 is the critical residue leading to caspase-9 inactivation upon PKA phosphorylation 

 To pinpoint the single residue most responsible for inhibition, we generated 

unphosphorylatable alanine variants and correlated their phosphorylation states (Figure 2.2E) 

with caspase-9 inhibition (Figure 2.2F). All single alanine variants were phosphorylated only in 

the CARD+Lg region, and while S99A and S195A were highly inhibited by phosphorylation, 

S183A activity was less affected by phosphorylation. Among the double unphosphorylatable 

variants (S99A/S195A, S99A/S183A, S195A/S183A), only S99A/S195A, in which only S183 

can be phosphorylated, displayed inhibition similar to phosphorylated WT.  

 Having all three sites unphosphorylatable (S99A/S183A/S195A) resulted in low levels of 

non-specific phosphorylation, especially with the appearance of a band corresponding to a 

phosphorylated small subunit (Figure 2.2E). This extra, non-specific phosphorylation had no 

substantial influence in caspase-9 activity, since only background levels of inhibition for the triple 

alanine mutant were observed. These results clearly suggest that S183 is the dominant site 

responsible for the inhibition due to PKA phosphorylation. 
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Figure 2.2. Phosphorylation of caspase-9 by PKA results in significant inhibition of caspase-9. 
(A) Active PKA inhibits self-processing of procaspase-9. Full-length (FL) procaspase-9 WT rapidly undergoes 
self-cleavage to generate the CARD+Large (Lg) and Small (Sm) subunits as assessed by Coomassie-stained SDS-
PAGE analysis. Addition of PKA and ATP to procaspase-9 slows the rate of self-cleavage, so that caspase-9 
remains predominantly in the full-length, uncleaved form even after 4 h incubation. 
(B) Addition of active PKA to cleaved caspase-9 WT results in a two-fold decrease in caspase activity after 2 h as 
measured by the hydrolysis of the fluorogenic caspase-9 substrate Ac-LEHD-AFC, suggesting that PKA treatment 
leads to inhibition. Percent caspase-9 activity is normalized against activity in the absence of PKA. Data shown are 
means (± SEM) of three independent trials on three separate days. 
(C) Caspase-9 is phosphorylated by PKA only in the CARD+Lg region, as detected by autoradiography after in 
vitro phosphorylation using [γ-32P] ATP for 4 h. There is no visible phosphorylation in the Sm subunit. PKA is 
phosphorylated during overexpression in bacteria73, so it does not get efficiently labeled by [γ-32P] ATP. Treatment 
of PKA-phosphorylated caspase-9 with λ protein phosphatase (λPP) results in dephosphorylation as manifested by 
loss of signal in the autoradiogram (labeled here and in the succeeding figures as 32P). 
(D) Phosphorylation of caspase-9 is reversible. Caspase-9 phosphorylated by PKA is inhibited. Treatment of 
phosphorylated caspase-9 with λ protein phosphatase (λPP) relieves the inhibition. Percent inhibition for 
phosphorylated caspase-9 (with both PKA and ATP present) was normalized against activity in the non-
phosphorylated form (with PKA but no ATP present). Data shown are means (± SEM) of three independent trials 
on three separate days. 
(E) Unphosphorylatable alanine variants (single, double and triple alanine substitutions at phosphorylated serines) 
and catalytic site-inactivated variant C287A were subjected to in vitro phosphorylation by PKA for 4 h. Double 
alanine variants show (observed by Coomassie-stained SDS-PAGE analysis in the first of each pair of panels) 
decreased levels of phosphorylation as the weaker intensity of the bands in the autoradiogram (second of each pair 
of panels). The triple alanine variant shows only weak, non-specific phosphorylation in the small subunit, 
indicating that all three sites S99, S183 and S195 are phosphorylated by PKA. 
(F) Inhibition by phosphorylation of WT caspase-9 and alanine variants. Only when S183 is available to be 
phosphorylated (WT, S99A, S195A and S99A/A195A) does caspase-9 experience significant inhibition. All S183A 
variants are insensitive to PKA-mediated inhibition. The catalytic parameters of alanine variants are indicated in 
Table 1. Percent inhibition for phosphorylated caspase-9 (with both PKA and ATP present) was normalized against 
activity in the non-phosphorylated form (with PKA but no ATP present). Data shown are means (± SEM) of three 
independent trials on three separate days. 
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PhosphoS183 caspase-9 and the phosphomimetic S183E are completely inactive 

 Due to low levels of non-specific phosphorylation observed in vitro, we prepared 

versions of caspase-9 that are unambiguously phosphorylated at only one site. We used a 

genomically recoded E. coli method28 to genetically encode site-specific phosphoserine 

incorporation during protein production. Three versions of caspase-9 that displayed 

phosphoserine only at S99, S183 or S195 (phosphoSer99, phosphoSerS183 and phosphoSerS195, 

respectively) were produced. All phosphocaspase-9 variants, as well as unphosphorylated WT 

caspase-9, were predominantly in the zymogen form (Figure 2.3A). WT caspase-9 and both 

phosphoSer99 and phosphoSer195 were able to self- process, while phosphoSer183 remained in 

its full-length/zymogen form (Figure 2.3A), suggesting that phosphoS183 limits caspase-9 

activity. Consistent with the ability to self-process, phosphoS99 and phosphoS195 showed 

LEHDase activity, whereas phosphoS183 had no measurable activity (Figure 2.3B), clearly 

demonstrating that phosphorylation at S183 inactivates caspase-9. 

 Although the phosphocaspase variants are the biologically relevant forms, the yield of 

phosphoserine-incorporated caspase-9 was extremely low. To obtain sufficient quantities to 

enable thorough interrogation of the effects of phosphorylation on caspase-9 function and 

structure, we generated phosphomimetic variants in which glutamate was substituted for 

phosphoserine. Following expression, S99E was observed in the mature, cleaved form and was 

catalytically active, with a modest three-fold reduction of activity as compared to the WT (Figure 

2.3C, 2.3D). 
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S195E was also in the mature, cleaved state and had WT-like activity. In contrast, the S183E 

substitution adversely affected caspase-9 activity. In addition to retaining a zymogen form, it was 

also catalytically incompetent to turn over substrate (Figure 2.3C, 2.3D). The expression and 

activity profiles of the phosphomimetics were consistent with what we observed for the 

phosphocaspase counterparts, indicating that they are robust phosphomimetics. 

 While cleavage is not an absolute requirement for caspase-9 activation, we sought to test 

whether the loss of activity of S183E is due to its zymogen nature, or due to the intrinsic changes 

brought about by the phosphomimetic mutation. S183E expressed from a constitutively two-chain 

 
 

Figure 2.3. Caspase-9 phosphorylated at S183 and phosphomimetic S183E are inactive. 
(A) Uncleaved zymogen versions of caspase-9 (WT and phosphocaspase, indicated with ℗ preceding the 
phosphoserine residue) purified from E. coli C321.ΔA which allows site-specific incorporation of phosphoserine, 
were subjected to self-cleavage for 2 h and assessed by Coomassie-stained SDS-PAGE analysis. Only caspase-9 
specifically labeled at S183 (phosphoS183) did not self-process, indicating that its activity is inhibited. PhosphoS99 
and S195 were able to self-process with kinetics similarly to WT caspase-9. 
(B) LEHDase activities of phosphocaspase-9 variants. Activity was measured after 2 h to allow self-
cleavage/activation of phosphocaspase-9. PhosphoS183 exhibited no LEHDase activity. Data shown are means (± 
SEM) of three independent trials on three separate days. 
(C) Phosphomimetic S183E was expressed as full-length, uncleaved caspase-9, unlike WT and phosphomimetics 
S99E and S195E which were expressed in a mature, cleaved state following expression, as assessed by Coomassie-
stained SDS-PAGE analysis. The constitutively two-chain (CT) version of caspase-9 is generated from the 
independent translation of the CARD+Lg and Sm subunits. CT WT and CT S183E are the cleaved forms of caspase-
9. 
(D) Catalytic parameters for caspase-9 phosphomimetic variants. Only the phosphomimetic S183E has a dramatic 
effect on caspase-9 activity in both full-length, uncleaved and CT versions. Data shown are means (± SEM) of three 
independent trials on three separate days. 
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(CT) construct, in which the CARD+Large region is translated independently from the small 

subunit, yields the mature, cleaved form (Figure 2.3C). Even in this mature version, CT S183E 

was still catalytically inactive (Figure 2.3D) with a 5-fold or greater increase in KM and 

approximately 100-fold decrease in kcat, suggesting that both substrate binding and catalytic 

ability are impacted. Overall, S183E shows a 1000-fold less efficient kcat/KM than WT caspase-9. 

S183A, which retains similar size and is uncharged like a serine residue, is active, albeit 

exhibiting a 10-fold lower catalytic efficiency than WT, primarily due to its decreased kcat (Figure 

2.3D). The triple alanine mutant S99A/S183A/S195A also shows only a 10-fold decrease in 

kcat/KM (Table 2.1). This suggests that phosphorylation or glutamate substitution, which results in 

a dramatic 1000-fold decrease in activity, is the major cause of inhibition, rather than simply 

generic sensitivity of the S183 site. These data strongly suggest that phosphorylation of S183 

directly impairs substrate binding. 

 

Table 2.1. Catalytic parameters1 for caspase-9 alanine variants using substrate Ac-LEHD-AFC.  

Caspase-9 variant 
KM 

(µM) 

kcat 

(s-1) 

103 x kcat / KM 

(µM-1s-1) 

S99A 768 ± 100 0.64 ± 0.04 0.83 

S195A 681 ± 71 1.22 ± 0.05 1.8 

S99A/S195A 469  ± 41 1.03 ± 0.03 2.2 

S99A/S183A 1203 ± 100 1.16 ± 0.05 0.96 

S195A/S183A 1318 ± 107 1.17 ± 0.05 0.89 

S99A/S183A/S195A 726 ± 71 0.20 ± 0.01 0.26 
1 Values are mean (± SEM) of three trials done on three separate days. 
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Phosphorylation at S183 disorients a conserved S1 arginine leading to impaired substrate 

binding 

 S183 resides just below Loop 1 (L1) which, together with L3, L4, L2 and L2’, form the 

active site loop bundle. L1 contains the highly conserved and critical R180. R180 plays two 

important roles. It directly binds substrate P1 residues and it orients R355, the most critical 

residue for substrate recognition, which makes bidentate interactions with substrate. The proper 

positioning of R180 is primarily due to an H-bond with the hydroxyl side chain of S183, with 

another set of H-bonds provided by their amide backbones (Figure 2.4A). These interactions 

ideally situate R180’s guanidinium group to interact with the P1 aspartate in the substrate, 

keeping it in position for the active site residues to perform catalytic cleavage (Figure 2.4B). 

 
Figure 2.4. Model for caspase-9 inhibition by phosphomimetic S183E and phosphoS183. 
(A) Structure of caspase-9 dimer (PDB ID IJXQ) highlighting the substrate-binding groove. Critical 
interactions between S183 (yellow sticks) and the conserved S1 subsite R180 (green sticks). R180 is an 
important residue that makes contacts with P1 aspartate in the substrate (light gray sticks). 
(B) Models for inhibition of caspase-9 by S183E and phosphorylation at S183. Substitution at S183 by 
glutamate or phosphoserine are predicted to result in a steric clash with R180, thus disorienting the 
active site loops 
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The inability of S183E and phosphoS183 to bind substrate appears to stem from a steric clash 

between E183 or phosphoS183 and R180 (Figure 2.4B). The additional bulk and extra charge 

coming from these groups should cause R180 to become displaced from the S1 pocket, 

consequently disorienting the active site loop bundle, thus making caspase-9 incompetent to bind 

substrate. This model is consistent with the behavior of S183A which, although incapable of 

being an H-bond acceptor to R180, provides enough space to allow R180 attain the proper 

conformation to interact with the substrate, and thus exhibits activity, albeit a decreased one. This 

mechanism of inhibition of substrate binding is also consistent with the kinetic data for S183E 

(Figure 2.3D) and phosphoS183 (Figure 2.3B) in which both are completely inactive. 

Phosphomimetic S183E impacts recognition by caspase-8 

 A hallmark of caspases is their involvement in complex cleavage cascades requiring that 

various caspases recognize and cleave other caspases. Caspase-9’s canonical function is to cleave 

executioner caspases, but it is also cleaved and activated by caspase-8 (at D315) 29,30 and caspase-

3 (at D330)31–33. We assessed the changes brought about by the phosphomimetic in the ability of 

other caspases to cleave caspase-9. For these experiments it is important that the intrinsic ability 

of S183E be understood. Whereas WT caspase-9 fully self-processes immediately, the full-length 

S183E phosphomimetic was completely devoid of self-processing activity (Figure 2.5A) so any 

processing can be attributed to caspases other than caspase-9. 

 S183E, like the full-length catalytically inactive variant C287A, was susceptible to 

cleavage by caspase-3 (Figure 2.5B, 2.5D) but remained completely inactive even after cleavage 

(Figure 2.5C), consistent with what was observed for CT S183E which was inactive in its mature 

form. Although caspase-8 was not as efficient as caspase-3 in cleaving caspase-9, it was striking 

that S183E remained mostly in its full-length form after incubation with caspase-8, suggesting 

that S183E transforms caspase-9 into a non-optimal substrate of caspase-8 (Figure 2.5D) and may 

represent another layer of regulation of caspase-9 by phosphorylation at S183. Phosphorylation of 

caspase substrates has been reported to alter their susceptibility to caspase cleavage (for 



 36 

review10). This effect, whether promotion or protection against cleavage, is commonly observed 

when phosphorylation is directly adjacent to the caspase cleavage site. In this case, however, 

S183 and the cleavage site D315 in the linker are distal in sequence (Figure 2.1A). Thus it is 

possible that the long linker of caspase-9 (which is not ordered in any crystal structure) has a 

conformation bringing it in the vicinity of S183 where phosphorylation alters the ability of 

caspase-8 to cleave and activate caspase-9. Alternatively, S183E could be negatively influencing 

the interface between caspase-9 and caspase-8, perhaps by exploiting an allosteric mechanism or 

by disrupting a possible exosite on caspase-9 required for interaction with caspase-8. 

  

 
 
Figure 2.5. S183E impacts recognition by caspase-8. 
(A) WT and S183E uncleaved zymogens were incubated for 8 h to allow self processing. S183E shows 
no self-processing activity as assessed by SDS-PAGE analysis. 
(B) S183E is cleaved by caspase-3 at D330. The catalytic-site substituted C287A and S183E 
phosphomimetic are cleaved in a similar manner by caspase-3 at D330 as assessed by SDS-PAGE 
analysis. Since C287A and S183E are both catalytically inactive, the cleavage products (CARD+Lg and 
Sm) result from the activity of caspase-3. In contrast, WT caspase-9 can self-process, resulting in a 
small subunit spanning residues 316-422 (Sm316-422) or can be cleaved by caspase-3, resulting in a small 
subunit spanning residues 331-422 (Sm331-422). 
(C) The catalytic-site inactivated variant C287A, the S183E phosphomimetic or WT caspase-9 were 
incubated for 2 h with caspase-3 to allow processing and then tested in an LEHDase activity assay. 
S183E does not gain activity even after cleavage by caspase-3. Data shown are means (± SEM) of three 
independent trials on three separate days. 
(D) The catalytic-site inactivated variant C287A or the S183E phosphomimetic were incubated for 6 h 
with caspase-3 or caspase-8 to observe processing.. Whereas C287A is fully processed by both caspase-
3 and caspase-8, S183E is only cleaved by caspase-3. S183E remains almost uncleaved after incubation 
with active casp-8, suggesting that S183E is a poor substrate for caspase-8.  



 37 

CT S183E breaks the interaction between the large and small subunits 

 The catalytic core of a caspase-9 monomer 

is formed from the regions that become the large 

and small subunits after cleavage5,34 (Figure 2.1B). 

The strong association between caspase large and 

small subunits is maintained by critical 

interactions that form and stabilize the core of both 

monomeric and dimeric caspase-9. In dimeric 

caspase-9, six β strands from each monomer 

associate edge-to-edge to form one contiguous 12-

stranded β sheet across the dimer interface held 

together tightly by a series of hydrophobic 

residues on both the large and small subunits5. 

Although the subunits are expressed independently 

of each other in the CT version of WT caspase-9, 

they associate and assemble to form a properly 

folded protein composed of one small and one 

large subunit. This tight association between 

subunits usually manifests through their co-elution 

on an ion exchange gradient during protein 

purification, coupled with co-varying band 

intensities of the subunits visible in a Coomassie-

stained denaturing gel. This behavior was 

observed for CT WT caspase-9, where peak 

fractions corresponded to the co-elution of the 

 
Figure 2.6. S183E breaks interactions 
within the core of caspase-9. 
(A) Anion exchange chromatogram (bottom) 
and Coomassie-stained gel of peak fractions 
(top) for CT WT caspase-9. CARD+Lg and 
Sm subunits co-elute and corresponding band 
intensities co-vary along the salt gradient 
during an anion exchange column, suggesting 
tight interaction of the subunits in the 
caspase-9 core. 
(B) Anion exchange chromatogram (bottom) 
and Coomassie-stained gel of peak fractions 
(top) for CT S183E. The independent elution 
of the Sm subunit from the CARD+Lg 
indicates dissociation of core subunits of 
S183E. 
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CARD+Lg and Sm subunits along a salt gradient and the subunit band intensities on a denaturing 

gel clearly co-varied (Figure 2.6A). This suggests that CT WT is well-behaved and properly 

folded, as supported by the data that it has the same catalytic efficiency as the FL WT (Figure 

2.4D). In contrast, CT S183E CARD+Lg and Sm subunits eluted separately on an anion exchange 

column (Figure 2.6B). This separate elution of subunits implies that S183E breaks the 

interactions between the large and the small subunits, making the protein unstable. We also 

observed that traditional caspase purification schemes were not suitable to purify CT S183E, as 

we always obtained impure protein, thus CT S183E was purified from inclusion bodies and 

refolded (see Methods). In both approaches, purified CT S183E displayed no caspase activity, 

likely due to loss of or weakening of interactions between the large and small subunits of caspase-

9. 

Phosphorylation of S183 unfolds and disassembles the caspase-9 core 

 The fact that S183E decreased the interactions between the large and small subunits 

suggests that phosphorylation of S183 could have a similar effect. We used caspase-3 to cleave 

full-length (FL) versions of caspase-9 phosphomimetics to assess the impact of cleavage of a 

phosphorylated zymogen on stability of the caspase-9 core. Caspase-3 natively cleaves caspase-9 

at D330; in vitro this occurs efficiently even at very low concentrations (Figure 2.7A). FL C287A 

and FL S183E showed distinct migration on a native gel (Figure 2.7B) with no significant 

aggregation nor any additional bands for each protein, suggesting that the protein samples 

retained their native, properly folded states. Upon cleavage by caspase-3, C287A’s mobility only 

shifted slightly. In striking contrast, cleaved S183E exhibited a dramatic shift in mobility on a 

native gel (Figure 2.7D). Since protein mobility in native gels depends on the conformation as 

well as the charged state of a protein, this significantly altered mobility of cleaved S183E implies 

a shift in conformation to one distinct from a properly folded, cleaved caspase-9.  
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Figure 2.7. S183E is highly destabilized upon cleavage. 
(A) Full-length (FL) S183E phosphomimetic and C287A catalytic site-inactivated variant are cleaved 
by caspase-3 (casp-3) in the same manner and with similar efficiencies as assessed by denaturing 
Coomassie-stained SDS-PAGE. 
(B) FL C287A, FL S183E and cleaved WT caspase-9 showed similar, compact migration along the 
native (non-denaturing) Coomassie-stained agarose gels, indicative of properly-folded proteins. 
(C) Thermal melting curves generated from differential scanning fluorimetry using SYPRO® orange. 
Both FL C287A and FL S183E showed typical melting transitions. FL S183E’s stability is less than 
that of FL C287A and comparable to that of a cleaved WT caspase-9 (Table 2.2). Data shown are the 
mean of three independent trials. Fluorescence values were normalized against the lowest and highest 
values in each data set.  
(D) Caspase-3-cleaved S183E exhibits a dramatic shift in mobility on a Coomassie-stained native 
agarose gel relative to casp-3-cleaved C287A caspase-9. 
(E) Thermal melting curves of caspase-3-cleaved C287A and S183E. Caspase-3-cleaved C287A 
shows a melting transition similar to uncleaved C287A. No melting curve is observed for caspase-3-
cleaved S183E. Data shown are means of three independent trials. Fluorescence values were 
normalized against the lowest and highest values in each data set.  
(F) FL phosphomimetic variants and FL S183A were prepared in the background of the C287A 
mutation to prevent self-cleavage.  All caspase-9 variants were cleaved by caspase-3 in the same 
manner as assessed by denaturing Coomassie-stained SDS-PAGE. 
(G) Coomassie-stained native agarose gel of FL phosphomimetic variants and FL S183A. Compact 
migration on the native gel suggests these caspase-9 variants are properly folded. 
(H) Thermal melting curves of full-length phosphomimetic variants and S183A. All variants 
displayed normal melting transitions. Data shown are means of three independent trials. Fluorescence 
values were normalized against the lowest and highest values in each data set.  
(I) Cleavage by caspase-3 of phosphomimetic variants and S183A did not significantly alter 
mobilities on a Coomassie-stained native agarose gel. Only caspase-3-cleaved S183E showed a 
significant shift in mobility, indicating a substantial change in the folded state of the protein. 
(J) Thermal melting curves of caspase-3-cleaved phosphomimetic variants and S183A. All variants 
displayed normal melting transitions, except for casp-3-cleaved S183E. Data shown are means of 
three independent trials. Fluorescence values were normalized against the lowest and highest values 
in each data set. 
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 The stability of S183E before and after cleavage was assessed by a thermal shift assay by 

differential scanning fluorimetry (DSF). Both FL C287A and FL S183E exhibited typical melting 

curves, indicating that they are properly folded (Figure 2.7C). It is notable, however, that the FL 

S183E is less stable than FL C287A (Table 2.2). After cleavage by caspase-3, no drastic changes 

in the melting transitions of C287A were observed, however, cleaved S183E was severely 

destabilized and no melting transition was observed (Figure 2.7E). The magnitude of the initial 

fluorescence was also very high, suggesting that cleaved S183E was already in an unfolded or 

molten globule state at the start of the thermal denaturation.  

 

Table 2.2. Melting temperatures2 (Tm) obtained from thermal shift assay of caspase-9 full-length and 
caspase-3-cleaved variants. 

Caspase-9 variant 
Tm (˚C) 

Full-length (FL) Cleaved by caspase-3 

C287A 46.2 ± 0.1 40.6 ± 0.5 

S183E 42.5 ± 0.2 no fit 

S99E/C287A 46.7 ± 0.6 39.0 ± 0.3 

S195E/C287A 46.5 ± 0.2 41.4 ± 0.2 

S183A/C287A 44.7 ± 0.1 38.6 ± 0.2 

WT (cleaved) 42.5 ± 0.3 not done 
2 Values are mean (± SEM) of three trials done on three separate days. 

 

 We likewise tested whether the corresponding phosphomimetics of the two other sites 

(S99 and S195) would impart instability to caspase-9 upon cleavage by caspase-3. We also 

sampled S183A to discriminate the effect of a stringent (glutamate) from a conservative (alanine) 

modification on stability. The phosphomimetics and S183A were constructed in the background 

of C287A to remove the ability to self-process. Caspase-9 S99E/C287A, S195E/C287A and 

S183A/C287A (Figure 2.7F) all showed properties of properly-folded proteins as demonstrated 

by their distinct migration on a native gel (Figure 2.7G) and by exhibiting typical protein melting 
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curves (Figure 2.7H, Table 2.2). Upon cleavage by caspase-3, none of the three variants showed 

dramatic shifts in either gel mobility (Figure 2.7I) or melting transitions (Figure 2.7J). Strikingly, 

amongst all the caspase-9 variants, a dramatic mobility shift and unusual melting curve were 

again only observed for cleaved S183E. Moreover, phosphorylation at S183 by PKA 

recapitulated what we observed for cleaved S183E. Using S183A and S99A/S195A to direct 

phosphorylation to S99/S195 or S183, respectively, we found that only when S183 is 

phosphorylated by PKA is the mobility shift similar to cleaved S183E (Figure 2.8). This 

demonstrates that phosphorylation at S183 destabilizes the caspase-9 monomer, and subsequent 

cleavage at the linker causes the core subunits to dissociate, rendering caspase-9 non-functional. 

  

 
 
Figure 2.8. Phosphorylation of caspase-9 by PKA at S183 results in destabilization similar to 
caspase-9 S183E. 
(A) Mature, cleaved forms of caspase-9 unphosphorylatable alanine variants were incubated with 
PKA and ATP to direct phosphorylation specifically at S99 and S195 or at S183. No impact on 
mobility was observed upon Coomassie-stained denaturing SDS PAGE. 
(B) Mobility shifts of unphosphorylated (no ATP) and phosphorylated (+ ATP) S183A or 
S99A/S195A caspase-9 following non-denaturing native agarose gel electrophoresis after 15 min 
or 1 h of phosphorylation. After 1 h of phosphorylation, S99A/S195A (conditions promoting S183 
phosphorylation) exhibited a drastic shift in migration, similar to what was observed in cleaved 
S183E, indicating that S183 phosphorylation destabilizes caspase-9 leading to a shift in the 
conformation. 
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Caspase-3-cleaved S183E caspase-9 forms ordered aggregates 

 Destabilized and partially unfolded globular proteins are known to have an increased 

propensity to aggregate in vitro35. We reasoned that the unfolded nature of S183E following 

cleavage could potentially render caspase-9 prone to aggregation. The tendency of cleaved S183E 

to form aggregates was assessed by monitoring Thioflavin T (ThT) fluorescence in vitro. A large 

increase in ThT fluorescence was observed for cleaved S183E (Figure 2.9A). In contrast, there 

was little to no increase in fluorescence observed for FL S183E, and cleaved or FL C287A. 

Cleaved S183E was found exclusively in the insoluble fraction, while most of cleaved C287A 

remained in the soluble fraction (Figure 2.9B). This magnitude of increase in ThT fluorescence, 

as well as the rapid kinetics of aggregate formation, strongly indicate that cleaved S183E forms 

aggregates which assume a regularity in structure, particularly an assembly or stacking of β-

sheets, since amorphous or early aggregates are not known to bind ThT36,37. 

 The size and morphology of the aggregates were visualized by transmission electron 

microscopy (TEM). The shape of the aggregates varied from circular to elongated clusters that 

also ranged in size from 10-40 nm (round) and 40-80 nm (elongated) (Figure 2.9C, Figure 2.10). 

At 400,000x magnification, the microscope was able to resolve individual units that are 

approximately 2-5 nm in diameter, which corresponds to the diameter of caspase-9 monomers, 

which are 2.5 nm in diameter. Moreover, it appears that the aggregates were assembled from 

proteins arranged adjacent to one another. Although not sufficient to form fibrils, this 

arrangement appears to confer enough structural regularity to form ordered aggregates that bind 

ThT.  
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Figure 2.9. Cleaved S183E forms ordered aggregates. 
(A) In situ ThT fluorescence monitored for 12 h. Only caspase-3-cleaved S183E showed significant 
increase in ThT fluorescence, suggesting that it forms higher order oligomers or aggregates. Very 
little increase in ThT fluorescence was observed for FL S183E or cleaved C287A. Data shown are 
means (± SEM) of three independent trials done on three different days. 
(B) SDS-PAGE analysis by Coomassie staining of the pellet (P) and supernatant (S) fractions of FL 
caspase-9 C287A or S183E after 12 h of cleavage by caspase-3. The caspase-9 CARD+Lg and Sm 
subunits fractionated mostly into the soluble supernatant for cleaved C287A, while for cleaved 
S183E, the subunits are found exclusively in the insoluble/ pellet fraction. 
(C) TEM images of aggregates of cleaved S183E. Individual units (e.g. caspase-9 monomers) appear 
to form ordered aggregates (enlarged images). The scale bar is 40 nm wide and 10 nm for selected 
enlarged images; all images are magnified 400 000x. 
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Cell-Based Studies to Interrogate Phosphorylation of Caspase-9 Intracellularly 

 Our in vitro phosphorylation results clearly demonstrated that phosphorylation of S183 

leads to dramatic inhibition of caspase-9 activity. We recognized the importance of showing the 

biological relevance of S183 phosphorylation. An ideal experiment would be to knock-out 

endogenous caspase-9 in cells and individually introduce wild-type (WT) caspase-9 and the 

unphosphorylatable variants S183A, S99A/S195A, and S99A/S183A/S195A. Upon expression, 

endogenous PKA would be activated by treatment with a cAMP analog or an activator of 

adenylate cyclase to induce the synthesis of cAMP. The phosphorylation states of each variant 

can be assessed by immunoblot against phosphoserine after immunopull-down with a caspase-9 

antibody. The LEHDase activities of cell lysates can then be measured and correlated to the 

phosphorylation state of caspase-9. 

 
Figure 2.10. TEM images of negatively stained aggregates of cleaved S183E. 

Sample TEM images collected from various grids. The scale bar is 40 nm wide; all images are 
magnified 400,000x. 
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 While it appears that these experiments are straightforward, it is quite important to take 

note that the caspase-9 variants do not have WT-like activities (Figure 2.3D, Table 2.1). In fact, 

the activities of S183A and the triple mutant S99A/S183A/S195A is decreased to only ~10% of 

the WT enzyme. Thus the maximum enzyme activity that can be measured from cells transfected 

with S183A or the triple mutant will almost be close to background. In addition, the extent of in-

cellular phosphorylation must also be taken into consideration, since only a certain fraction of the 

caspase-9 pool is usually phosphorylated (refer to Chapter IV, Figure 4.13B). These factors must 

be carefully considered, otherwise interpreting the results will be quite confounding and 

conclusions derived from those interpretations will be misleading. Nevertheless, we decided to 

pursue these cell-based experiments to support and strengthen our model that S183 

phosphorylation in caspase-9 is functionally and biologically relevant. 

 Instead of knocking out caspase-9 in cells, 

we used a caspase-9-deficient cell line, Jurkat JMR. 

This particular Jurkat clone was resistant to 

etoposide-induced cell death, which was found to be 

a consequence of the absence of caspase-967,68. We 

confirmed from immunoblot using an anti-caspase-9 

antibody that JMR does not express any endogenous 

caspase-9 (Figure 2.11), and was a good cell line to 

transfect with caspase-9 variants. 

 Prior to transfection, it is imperative to 

ensure that PKA is present and can be activated in JMR. JMR cells were treated either with a 

common cell-permeable cAMP analog, 8-BrcAMP, or with Forskolin, which is an activator of 

adenylate cyclase that synthesizes cAMP. In order to check that PKA is specifically activated, 

cells were pre-treated with a PKA-specific inhibitor, H8969. Immunoblot against the catalytic 

domain of PKA shows that PKA is expressed in JMR (Figure 2.12). More importantly, JMR was 

 
 

Figure 2.11. Jurkat JMR cells are deficient 
in casp-9. 
Immunoblot of lysates of Jurkat JMR cells 
show that JMR cells are casp-9- deficient. As 
controls, HEK293T cells were used to verify 
the antibody against caspase-9 and caspase-3. 
Caspase-3 is present in both JMR and 
HEK293T.  
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amenable to PKA activation by treatment with 

Forskolin. Using an antibody that specifically 

recognizes phosphorylation of PKA substrates 

with a defined consensus sequence, it was 

observed that Forskolin strongly induced the 

phosphorylation of these substrates compared 

with 8-BrcAMP. Phosphorylation of PKA 

substrates was diminished when cells were pre-

treated with H89, a PKA inhibitor, indicating 

that phosphorylation was specific PKA activation in JMR cells. 

 JMR cells were transfected to transiently express WT caspase-9 and the catalytic site-

inactive variant C287A. Low transfection efficiencies were observed (Figure 2.13A), which were 

not unusual for Jurkat cell lines. However, it appears that the expression of WT caspase-9 was 

toxic to JMR cells. After 48 h of transfection, cells began to form unusually large clumps and 

exhibited morphologies of dying cells (Figure 2.13B). This was confirmed by Trypan Blue 

staining of dead cells. After 48 h, only about 40% of cells in WT-transfected JMR cells were 

alive (Figure 2.13C). It is then highly likely that transfection of any active variant of caspase-9 

into JMR cells would also be toxic. This would be a reasonable outcome, since JMR cells which 

were previously caspase-9-deficient could be more sensitive to caspase-9 activity especially when 

overexpressed. While others have managed to introduce WT caspase-9 into JMR cells to generate 

a stable caspase-9-expressing cell line68, our efforts were not as successful. Thus, even by scaling-

up both transfection and cell culture to have enough material to work with, it would be extremely 

difficult to interpret whether any change in caspase-9 activity in PKA-active and PKA-inactive 

cells is due to its phosphorylation, since JMR with WT caspase-9 would have already induced 

apoptosis prior to PKA activation. 

 

 
Figure 2.12. PKA is activated by Forskolin 
and inhibited by H89. 
JMR cells were treated with Forskolin (30 µM 
for 20 min) or 8-BrcAMP (1 mM, 30 min). For 
PKA inhibition, cells were initially treated with 
H89 (20 µM, 20 min) prior to Forskolin or 8-
BrcAMP treatment. 
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Figure 2.13. Transfection of active, wild-type (WT) caspase-9 leads to cell death in JMR cells. 
Jurkat JMR cells were transfected with vector only or 3x-FLAG-tagged caspase-9 variants (catalytic site-
inactivated C287A or wild type). 48 h post transfection, cells were counted, washed with PBS, and lysed. 
(A) Caspase-9 C287A is moderately expressed in Jurkat JMR, whereas active WT caspase-9 is weakly 
expressed. 
(B) Cell morphology of vector-, C287A- and WT caspase-9-transfected Jurkat JMR. Cells transfected with 
WT caspase-9 exhibit morphology of unhealthy and dying cells. Cells were visualized using ZOE 
fluorescent imager (BioRad) in bright-field mode. 
(C) Relative amount of live/healthy JMR cells 48h after transfection. % live cells was measured by Trypan 
Blue staining and counted using the TC20 automated cell counter (BioRad). 
 
 
 These results underscore the challenges in conducting and interpreting caspase functional 

assays in cells, particularly when one intends to assign a loss-of-function property to a mutation 

or modification of a specific residue. Besides having necessary controls, it is critical to have prior 

knowledge of the intrinsic properties, specifically activity, of any caspase variant that will be 

introduced in the cell.  
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Discussion 

 Phosphorylation is recognized as one of the global regulators of caspase function, but the 

molecular basis of how this modification mediates caspase structure and function, especially of 

caspase-9, is vastly understudied. Our results demonstrate that phosphorylation of caspase-9 by 

PKA at S183 is sufficient to directly inactivate caspase-9 activity and hence block the apoptotic 

cascade. This result agrees well with the data in the report that initially identified the three sites of 

PKA-mediated phosphorylation20 however our new data on the kinetic activity of the S183 

substitution variants (Table 1) substantially impacts the conclusions made in the earlier work. The 

prior report20 measured DEVDase activity in cell extracts that had been depleted of caspase-9, 

supplemented with either WT caspase-9 or the unphosphorylatable S99A/S183A/S195A variant  

by in vitro translation and finally activated to apoptosis with cytochrome c. We surmise that the 

prior work was not based on transfection due to the fact that transfection of active caspase-9 is 

toxic (Figure 2.13), which prevented our exploration of the function of caspase-9 in a whole-cell 

context. In the in vitro translation assays, they found that DEVDase activity in cell extracts 

supplemented with either WT or the S99A/S183A/S195A variant were sensitive to the presence 

of PKA, leading to the conclusion that PKA does not directly act on caspase-920. Caspase-9 

shows strong LEHDase activity, but very weak DEVDase activity38. The major DEVDases 

activated by cytochrome c addition in HeLa cell extracts are caspase-3 and caspase-7, so the 

earlier assay20 measured the downstream activity of caspase-3 and -7 but did not directly assess 

the activity of caspase-9. The implicit assumption in the experiment was that caspase-3 and -7 are 

activated by the added WT or S99A/S183A/S195A caspase-9, however the intrinsic activity of 

S99A/S183A/S195A caspase-9 was not reported. In our work, we have shown that the intrinsic 

activity of S99A/S183A/S195A (Table 2.1) is decreased to only ~10% of WT caspase-9 activity. 

Due to the inherent differences in the catalytic activity of WT and S99A/S183A/S195A caspase-9, 

if caspase-9 had been responsible for activating the measured DEVDase activity, then the activity 

in the cell extracts supplemented with S99A/S183A/S195A should have been only ~10% of the 
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WT levels. That was not the case. The S99A/S183A/S195A DEVDase activity in the absence of 

PKA was 84% of that of WT caspase-9. This strongly suggests that the DEVDase activity was 

not due solely to activation by caspase-9, but was probably due to activation of caspase-3 and -7 

by another factor, likely caspase-8. Thus the interpretation that PKA was not acting directly on 

caspase-9 is confounded by the assumption that S99A/S183A/S195A is fully active. Our kinetic 

data on the intrinsic activity of S99A/S183A/S195A allows an updated interpretation of the prior 

data, which is consistent with direct inactivation of caspase-9 by PKA.  

 The hierarchical nature of caspase-9 activation allows phosphorylation to exert multiple 

levels of regulation during the life cycle of caspase-9. It is conceivable that caspase-9 

phosphorylated at S183 would still be recruited to the apoptosome since CARD:CARD 

interactions are not likely disrupted, however this phosphorylated form of caspase-9 is inherently 

non-activatable. It appears that phosphorylation at S183 should not favor a conformation in either 

the zymogen or cleaved form that would allow caspase-9 to bind substrate, even if it were docked 

as part of the apoptosome, the ultimate caspase-9 activating platform. Thus, phosphorylation at 

S183 acts as a block in the initiation phase of the caspase activation cascade, by rendering 

caspase-9 incapable of cleaving executioner caspases. S183 resides within the vicinity of the 

active site. Other caspases such as caspase-6 and caspase-7 are similarly phosphorylated at sites 

neighboring the active site loops which results in inhibition by preventing these loops to assume 

an active conformation23–25. This mechanism likewise appears to be pertinent to phosphorylation 

of caspase-9 at S183, thus this orthosteric nature of inhibition emerges as a common theme 

among phosphorylated caspases. 

 It is evident from our in vitro experiments that the two other sites, S99 and S195 are 

phosphorylated by PKA, yet the phosphorylated versions and their corresponding 

phosphomimetics showed little or no influence in any of the caspase-9 activities we interrogated. 

One possibility is that these are simply “functionally neutral” sites that have persisted through 

evolution since they do not confer any disadvantage associated with their phosphorylation21,22. 
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Another possibility is that their phosphorylation may influence caspase-9 on a different level than 

directly affecting its catalytic activity. Given that S99 resides within the CARD, phosphorylation 

may impact either caspase-9’s recruitment or its conformational activation in the apoptosome. 

S195 is highly exposed on the surface of helix α1, and phosphorylation might mediate protein-

protein interactions with other caspase-9 substrates. These possible mechanisms warrant further 

studies to uncover other levels of caspase-9 phosphoregulation. 

 Crosstalk usually occupies the regulatory landscape involving caspases and cognate 

kinases (for review10). This caspase-kinase interplay is essential in keeping the balance between 

cell death and survival. Typically, caspases cleave their cognate kinase, either freeing up 

regulatory elements and relieving the inhibited state, or rendering the kinase inactive (for 

review10). In our in vitro phosphorylation assays, we observed no cleavage of PKA by caspase-9. 

Should there be an interplay in a cellular context, a caspase cleavage site within PKA and 

homotypic binding motifs present in both enzymes are requisites. However, sequence analysis 

predicted no caspase-9 cleavage sites in PKA, which could indicate that the interplay is heavily 

weighted towards that of caspase-9 phosphorylation and its subsequent inhibition. Moreover, the 

observation that the phosphomimetic S183E greatly attenuates its cleavage by caspase-8 (Figure 

4D) suggests that once phosphorylated, caspase-9 could no longer be alternatively activated by 

the extrinsic pathway. Thus it appears that the impacts of phosphorylation by PKA prevails over 

several modes of caspase-9 activation. PKA is overexpressed in many cancers (for review39–41) 

and phosphorylation of caspase-9 to prevent its full-scale activation could be one of the 

mechanisms by which unregulated PKA could promote tumorigenesis, proliferation and 

transformation. 

 S183 appears to be a hotspot for inactivation upon phosphorylation, utilizing divergent 

mechanisms to limit caspase-9 activity. In addition to directly blocking substrate binding, our 

results have uncovered that S183 phosphorylation breaks the critical interactions within the 

caspase-9 core causing it to change conformation. This dramatic transition is fascinating since 
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S183 is not situated at the interface of the large and small subunits, hence this dissociation seems 

most likely to stem from conformational strains translated from one region to another within the 

caspase-9 core. We believe this to be the first report of such a mechanism for inactivation by 

phosphorylation. Moreover, this phosphorylation-induced destabilization appears to affect the 

mature (cleaved) form of caspase-9 more severely than the zymogen, likely due to covalently-

induced proximity.  

 On one hand, we could view this in the context of caspase-9 activation in the apoptosome 

where an S183-phosphorylated caspase-9 would remain non-activatable and would likely 

disengage from the apoptosome because it is no longer structurally and functionally intact after 

maturation. On the other hand, it is possible that caspase-9 can enter a different pathway that 

allows it to assume altered conformations that could potentially confer different functions to 

caspase-9 beyond its known role in activation of executioner caspases. Unfolding mechanisms 

have been observed to serve as direct regulators of signaling pathways, wherein unfolding 

facilitates remodeling of the active site or binding interfaces, allow disorder-to-order transitions 

and vice-versa, or interconvertion between tertiary and quaternary structures (for review42,43). 

Here we observed that unfolded, phosphorylated caspase-9 serves as a precursor to forming 

ordered aggregates. 

 Accumulation of unfolded protein is a hallmark of protein aggregation diseases such as 

Alzheimer’s, Huntington’s and amyotrophic lateral sclerosis (ALS) (for review44,45) and a 

common feature of toxic aggregation is phosphorylation (for review46). Phosphorylation of Tau, 

amyloid-β and α-synuclein has been associated with accelerated misfolding, aggregation and 

toxicity47–49, and while it may be reminiscent of what we observed with the phosphorylation-

induced unfolding of caspase-9, to date no disease of such type has been attributed to caspase-9 

aggregation. Hence, it seems that evolution has allowed this unfolding and aggregation 

mechanism of caspase-9 to persist because it does not appear to be deleterious to the cell, 

potentially due to low caspase-9 titers intracellularly. Whereas amyloid-like aggregates and fibrils 
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are usually associated with and causative of diseases, functional aggregates have also been 

identified to be exploited in many species35,50 to play a number of valuable roles. Cell death and 

inflammation pathways are known to utilize functional aggregates or higher-order structures to 

amplify and propagate signals, increase local concentration, facilitate recruitment or even direct 

subcellular localization51–57. Other cell death-related proteins known to assemble into higher-order 

structures in vivo include caspase-158, apoptosis-associated speck-like protein containing CARD 

(ASC)59, and Bax and Bak60. Thus the idea of a caspase-9 functional aggregate in the cell is not 

unprecedented, and it is worthwhile to note that we observed caspase-9 aggregation under 

conditions that are close to physiological. Nevertheless, whether these aggregates actually form in 

vivo and what their functional roles are in the cell remain to be explored. One could only 

speculate that at least for S183-phosphorylated caspase-9, these aggregates may prevent 

apoptosis, yielding either protective or, more likely, proliferative effects. Regardless, this is the 

first report of caspase-9 forming higher-order structures in the absence of any other protein or 

recruitment platform. PKA recognition sites are present in the sequences of other caspases 

including caspase-3, -6, -7, -8, and -10, although PKA-mediated regulation of these caspases has 

not been reported. Given the high structural homology among caspases, it is likely that other 

caspases may also form similar ordered aggregates in response to phosphorylation. 

 The mechanisms by which phosphorylation modulates protein structure and function are 

diverse and heterogeneous; each of these mechanisms is tailored and engaged to effectively 

regulate specific signaling pathways. Phosphoregulation stems from altering protein 

conformations and modulating protein-protein interactions. Conformational changes range from 

small or local to those that translate into larger structural rearrangements, resulting in activation 

or inhibition of a protein. Typical of these phosphorylation-induced perturbations are disorder-to-

order transitions and vice versa that have been reported to be common functional and stability 

switches61–64. Phosphorylation also imparts change in specificity, often creating new sites for 

recognition such as protease cleavage14, metal/cofactor binding and priming sites during 
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sequential activation or binding (for review65,66). In addition to inducing shifts in conformational 

states of proteins, phosphorylation greatly influences protein-protein interactions, and is often 

responsible for transitions between oligomeric states and complexes of proteins. In the case of 

caspase-9, a unique two-stage mechanism of caspase phosphoregulation is revealed. First, 

phosphorylation directly blocks substrate binding and inactivates caspase-9. In addition, 

phosphorylation at a site distal from the small:large subunit interface, dissociates the two 

constitutively interacting chains, thereby promoting the disassembly of the caspase core leading 

to inhibition. Whether this unfolding/disassembly mechanism is coupled to the assembly of 

higher order caspase-9 complex or aggregates in the cell, the nature and structure of these 

aggregates, and their functional or biological relevance in protection from or causation of disease 

remain to be examined. 

 
Materials and Methods 

DNA constructs and E. coli strains 

 The caspase-9 (C9) full-length wild-type (C9FL) expression construct consists of the full-

length, C-terminal His6x-tagged human caspase-9 gene (amino acids 1-416 plus the six terminal 

Histidines) in pET23b27 (gift of Guy Salvesen). The caspase-9 constitutively two-chain (C9 CT) 

expression construct consists of a synthetic gene (Genscript, Piscataway NJ) in pET21b that 

encodes E. coli codon-optimized human caspase-9 that is built for separate expression of the 

caspase-9 large subunit (amino acids 1- 315) independently from the small subunit (amino acids 

316-416 + His6x) which was under the control of a second ribosome binding site. Caspase-9 

variants encoding amino acid substitutions were generated using the QuikChange site-directed 

mutagenesis method (Stratagene/Agilent, Santa Clara CA). The caspase-3 wild type expression 

construct consists of the full-length, C-terminal His6x-tagged human caspase-3 gene (amino acids 

1-279 plus six terminal His) in pET23b70 (gift of Guy Salvesen). The gene for the catalytic 

subunit of PKA in pET15b71 was expressed from a construct supplied by Susan Taylor (Addgene 
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plasmid # 14921). The SepOTSλ (phosphoserine orthogonal translation system) plasmid, pBAD-

GST-AmpR vector, and the fully recoded E. coli strain C321.ΔA28 were gifts from Jesse Rinehart 

(Yale University). 

Expression and Purification of Proteins 

 Purification of soluble caspase-9 proteins. Caspase-9 variants (except C9 CT 

S99A/S183A/S195A) were transformed into BL21(DE3) strain of E. coli. The cultures were 

grown in 2xYT media with 100 µg/mL of ampicillin at 37˚C with vigorous shaking until they 

reached an optical density (OD600) between 1-1.2. The temperature was lowered to 15˚C and 

protein expression was induced by adding 1 mM of IPTG (Anatrace, Maumee OH). Protein 

expression was allowed to proceed for 3 h (except for C9 FL WT zymogen which was expressed 

for only 30 min, C9FL S183A, C9FL S99A/S183A and C9FL S195A/S183A which were 

expressed for 16 h) and cells were harvested by centrifugation at 4 700 x g for 10 min at 4˚C. Cell 

pellets were stored at -80˚C, freeze-thawed and lysed in a microfluidizer (Microfluidics, Inc., 

Westwood MA) in lysis buffer (50 mM sodium phosphate pH 7.0, 300 mM NaCl and 2 mM 

imidazole). Cell lysates were centrifuged at 30 600 x g for 50 min at 4˚C to remove cellular 

debris. The supernatant was filtered through 0.45 µm PVDF (EMD Millipore, Billerica MA) filter 

and loaded unto a 5-mL HiTrap Ni-affinity column (GE Healthcare, Pittsburgh PA). Proteins 

were eluted using a linear gradient of 2-100 mM imidazole in lysis buffer. Protein fractions were 

analyzed by SDS PAGE and fractions containing caspase-9 were pooled and diluted 8x with a 

buffer containing 20 mM Tris pH 8.5 and 5 mM DTT (buffer A) and loaded onto a HiTrap Q-

column (GE Healthcare). Proteins were eluted by a linear gradient from 0-275 mM of NaCl in 

buffer A. Caspase-9 eluted in buffer A at 180 mM NaCl. Peak fractions were analyzed by SDS 

PAGE for purity and were stored in -80˚C until use. 

 Purification of caspase-9 from inclusion bodies. Caspase-9 variants C9 CT 

S99A/S183A/S195A and C9 CT S183E were transformed into BL21(DE3) strain of E. coli. The 
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cultures were grown in 2xYT media with 100 µg/mL of ampicillin at 37˚C with vigorous shaking 

until they reached OD600=0.8. The temperature was lowered to 30˚C and protein expression was 

induced by addition of 1 mM IPTG. Protein expression was allowed to proceed for 3 h and cells 

were harvested by centrifugation at 4 700 x g for 10 min at 4˚C. Cells were freeze-thawed and 

lysed in a microfluidizer in a buffer containing 10 mM Tris pH 8.0 and 1 mM EDTA. The lysate 

was centrifuged at 27000 x g for 1h at 4˚C. Inclusion bodies were purified from the pellet by was 

washing 3x with buffer containing 100 mM Tris pH 8.0, 1 mM EDTA, 500 mM NaCl, 2% 

Triton-X and 1M urea, centrifuging at 17 000 x g for 15 min between washes. The pellet was then 

washed 3x with 100 mM Tris pH 8.0 and 1 mM EDTA to remove urea and performing the same 

centrifugation between washes.  The pellet was then resuspended in minimal volume of 6M 

guanidine chloride with 20 mM β-mercaptoethanol and placed in a rotating platform for 1 hour. 

The mixture was centrifuged at 20 000 x g for 20 min at 4˚C. Supernatant containing denatured 

caspase-9 was added dropwise to a refolding buffer containing 100 mM Tris pH 8.0, 10% 

sucrose, 0.1% CHAPS, 150 mM NaCl and 10 mM β-mercaptoethanol. Refolding was allowed to 

proceed by dialyzing the solution against 10 mM Tris pH 8.0, 0.1 mM EDTA and 10 mM β-

mercaptoethanol. The dialysate was centrifuged at 20 000 x g for 10 min at 4˚C to remove 

aggregates and the supernatant was filtered through a 0.45 µm PVDF membrane and loaded onto 

a 5-mL HiTrap Q-column. The column was developed by a linear gradient from 0-250 mM NaCl. 

Refolded caspase-9 eluted in a buffer containing 20 mM Tris pH 8.0, 200 mM NaCl and 5 mM β-

mercaptoethanol. Fractions were analyzed by SDS PAGE for purity and were stored in -80˚C 

until use. 

 Purification of caspase-3 protein. The gene for full-length wild-type Caspase-3 in 

pET23b was transformed into BL21(DE3) E. coli. Cultures were grown in 2xYT media with 100 

µg/mL Ampicillin at 37˚C with shaking until OD600=0.8. Protein expression was induced by 

addition of 1 mM IPTG at 30˚C for 3 h and cells were harvested by centrifugation at 4 700 x g for 
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10 min at 4˚C. Cells were freeze-thawed, lysed in a microfluidizer in a lysis buffer containing 50 

mM sodium phosphate pH 8.0, 300 mM NaCl and 2 mM imidazole, and centrifuged at 30 600 x g 

for 50 min at 4˚C to remove cellular debris. The supernatant was loaded onto a 5-mL HiTrap Ni-

affinity column, washed with 50 mM imidazole and proteins were eluted with 250 mM imidazole 

in lysis buffer. The eluted protein fraction was diluted six-fold with 20 mM Tris pH 8.0 with 2 

mM DTT (buffer A) and loaded onto a HiTrap Q-column. Proteins were eluted by a linear 

gradient from 0-500 mM of NaCl in buffer A. Caspase-3 eluted in buffer A with 250 mM NaCl. 

Peak fractions were analyzed by SDS PAGE for purity and were stored in -80˚C until use. 

 Purification of PKA catalytic subunit. PKA in pET15b was transformed into the 

BL21(DE3) strain of E. coli. Cultures were grown in 2xYT media with 100 µg/mL of ampicillin 

at 37˚C with vigorous shaking until OD600=0.6. Protein expression was induced by addition of 0.5 

mM IPTG at 16˚C for 12 hours. Cells were harvested by centrifugation at 4 700 x g for 10 min at 

4˚C. PKA was purified as reported72 with modifications. Cells were resuspended in lysis buffer 

(50 mM KH2PO4 pH 8.0 and 20 mM Tris-HCl), lysed by microfluidizer and centrifuged at 30 600 

x g for 45 min at 4˚C to remove cellular debris. The supernatant was loaded onto a 5-mL HiTrap 

Ni-affinity column and the column was washed with 50 mM imidazole in lysis buffer. Proteins 

were eluted with 500 mM imidazole in lysis buffer, diluted 6x with a buffer containing 50 mM 

KH2PO4 pH 7.15, 20 mM KCl and 1 mM DTT and loaded onto a 5-mL HiTrap Q-column.  The 

column was developed by a linear gradient from 20-250 mM KCl. PKA eluted in a buffer of 50 

mM KH2PO4 pH 7.15, 150 mM KCl and 1 mM DTT.  Fractions were analyzed by SDS-PAGE to 

determine purity (Fig. S4) and were stored in -80˚C until further use. 

In vitro phosphorylation and dephosphorylation of caspase-9 

 Autophosphorylation of PKA. PKA was incubated in kinase buffer (50 mM Tris-HCl pH 

7.5, 10 mM MgCl2, 0.1 mM EDTA and 0.01% Brij 35) with 250 µM ATP at 30˚C for 30 min. 

 Phosphorylation of caspase-9. Caspase-9 was added to the autophosphorylated PKA 

reaction and supplemented with 250 µM [γ-32P]ATP (10 µCi/µL, Perkin Elmer) and incubated for 
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30 min to 4 h at 32˚C. Reactions were stopped by adding SDS-PAGE loading dye and boiling for 

10 min. 

 Dephosphorylation of caspase-9. Lambda protein phosphatase (NEB) was used to 

dephosphorylate caspase-9. 100 U of phosphatase were used for every 10 µM of phosphate 

attached to caspase-9. The reaction was allowed to proceed for 1 h at 30˚C. The reaction was 

stopped by addition of SDS-PAGE loading dye and boiling for 10 min. Removal of phosphates 

was confirmed by loss of band intensity in the phosphorimage. Phosphorylation levels were 

quantified from an ATP standard curve on the same phosphorimage (Figure 2.14). Bands were 

imaged using Typhoon FLA 7000 (GE Healthcare) and quantified using ImageQuant TL software 

(GE Healthcare). 

 

Assay for caspase-9 activity  

 Caspase-9 was diluted in caspase-9 activity assay buffer (100 mM MES pH 6.5, 10% 

PEG 8 000, 5 mM DTT) to a final concentration of 800 nM. A substrate titration was performed 

in the range of 0 - 3 mM fluorogenic substrate Ac-LEHD-AFC (Ex 365/Em 495) (Enzo Life 

Sciences). Enzyme concentrations were determined by labeling the active-site using a quantitative 

 
Figure 2.14. ATP standard curve to determine phosphorylation levels. 

(A) [γ-32P] ATP standard samples were prepared by serial dilution. 1 µL was spotted and 
exposed on the same phosphorimage as the phosphorylated caspase-9 samples. 

(B) Standard curve constructed from intensities of [γ-32P] ATP standards. Band and spot 
intensities were quantified using ImageQuant software. 
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inhibitor z-VAD-FMK. The rate of LEHD cleavage was measured with a fluorescence plate 

reader (SpectraMax M5, Molecular Devices, Sunnyvale CA). 

Caspase-9 cleavage assays 

 Caspase-3 (30 nM) or caspase-8 (300 nM) was diluted in their respective activity buffers 

(caspase-3: 20 mM HEPES pH 7.5, 150 NaCl 5 mM CaCl2, 10% PEG 400 and 2 mM DTT; 

caspase-8: 10 mM PIPES pH 7.2, 100 mM NaCl, 1 mM EDTA, 0.05% CHAPS, 10% sucrose and 

2 mM DTT). Caspase-9 (3 µM) (catalytic site-inactive variant C287A or FL S183E) was added 

and the cleavage reactions were incubated at 37˚C for times indicated. For self-cleavage of 

caspase-9, 3 µM of caspase-9 zymogen (FL uncleaved WT caspase-9) was diluted in caspase-9 

minimal activity buffer (100 mM MES, 20% PEG 400 and 5 mM DTT) and incubated at 37˚C at 

each time point indicated. For cleavage of FL caspase-9 C287A phosphomimetics and FL S183E 

by caspase-3 for native gel electrophoresis and thermal shift assays, 500 nM of caspase-3 was 

prepared in 50 mM Tris-Cl pH 7.5, 150 mM NaCl and 2 mM DTT (cleavage buffer). Caspase-9 

was then added to a final concentration of 50 µM and cleavage was allowed to proceed for 15 

min at 37˚C. Reactions were stopped by adding SDS-PAGE loading dye and boiling for 10 min. 

Cleavage of the full-length caspase-9 band was analyzed by SDS-PAGE and densitometry using 

ImageLabTM (BioRad). For cleavage of FL caspase-9 as parallel samples for the ThT fluorescence 

assay, 75 µM of caspase-9 FL C287A or FL S183E was incubated with caspase-3 (500 nM) in 

caspase-3 cleavage buffer at 37˚C for 15 min. The cleavage reactions were transferred to a 96-

well black plate and further incubated at 30˚C for 12 h, after which the samples were centrifuged 

at 18 000 x g to pellet the aggregates. The pellet was dissolved in 2% SDS and both the pellet and 

supernatant fractions were analyzed by SDS PAGE. 

Construction, expression and purification of site-specific phosphocaspase-9 

 C9FL + His6x (1-422) was subcloned into NdeI and HindIII sites of pBAD-GST-AmpR 

vector to generate the plasmid C9F-pBAD. Codons that code for S99 (TCG), S183 (TCC) and 

S195 (TCC) were replaced by TAG using a QuikChange mutagenesis approach to generate 
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phosphocaspase-9 expression plasmids (C9pBAD-SepC9). Site-specific phosphoincorporation 

was performed as reported by Pirman, et al28. Briefly, recoded E. coli (rEcoli) C321.ΔA were co-

transformed with the C9pBAD-SepC9 and SepOTSλ plasmids. Cultures were grown in LB media 

supplemented with 2 mM O-phospho-L-serine (Sigma) pH 7.5, 100 µg/mL Ampicillin and 25 

µg/mL Kanamycin at 30˚C with shaking until an OD600 = 0.8. The temperature was lowered to 

18˚C and protein expression was induced by 0.4% L-arabinose (Acros Organics, NJ) and 1 mM 

IPTG for 20 h. Cells were harvested by centrifugation at 4 700 x g for 10 min at 4˚C. Cells were 

lysed and caspase-9 proteins were purified as described above, except for the addition of glycerol 

(5%), phosphatase inhibitors NaF (20 mM) and β-glycerophosphate (2 mM) in all purification 

buffers, as well as the use of a MonoQ 5/50 GL column (GE Healthcare) for the final ion 

exchange purification using a gradient of 0-300 mM NaCl. Yields of the phosphoserine-

incorporated caspase-9 were extraordinarily low: approximately 0.05-0.10 mg from 12L of 

expression. 

Native agarose gel electrophoresis 

 Caspase-9 (full-length and caspase-3-cleaved versions of phosphomimetics and alanine 

variants) (20 µg) was mixed with 2x native gel sample buffer and loaded onto a 0.8% agarose gel 

(prepared using 25 mM Tris-Cl pH 8.5 and 192 mM glycine). The gel was run for 90 min at 60 V. 

Protein bands were stained with Coomassie dye, imaged and analyzed using ImageLabTM 

(BioRad). 

Thermal shift assay by differential scanning fluorimetry 

 The thermal stability of caspase-9 variants in 10 µM in 50 mM Tris-Cl pH 7.5, 150 mM 

NaCl and 2 mM DTT was analyzed in the presence of SYPRO® Orange (ThermoFisher) (0.5x 

final concentration) using a CFX Connect Real-Time PCR detection system (BioRad). 

Measurements were performed in a 96-well plate in 50 µL reactions. The fluorescence intensity 
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was monitored by increasing the temperature in 0.5˚C increments from 25 to 95˚C. Thermal 

melting points (Tm) were determined by curve fitting analysis using Prism (GraphPad) software. 

In situ ThT Fluorescence Assay 

 Caspase-9 samples (FL and caspase-3-cleaved C287A and S183E versions of caspase-9) 

(75 µM) were mixed with Thioflavin T (ThT, Sigma) to a final concentration of 10 µM and 

incubated at 30°C in black 96-well plates that were sealed to prevent evaporation. The total 

reaction volume was 100 µL. The ThT fluorescence (Ex 450/Em 485) intensity of each sample 

was recorded every 10 min using a SpectraMax M5 plate reader over the course of 12 h. 

Transmission Electron Microscopy 

 A 50 µL sample of caspase-3-cleaved S183E (75 µM) was incubated at 30˚C for 12 h in 

parallel with the ThT fluorescence samples. After 12 h, the sample was centrifuged for 10 min at 

18 000 x g and the pellet was washed twice and resuspended in 25 µL nanopure water. A 3 µL 

sample of a three-fold diluted suspension was embedded on an ultra thin carbon film supported 

by a lacey carbon film on a 400-mesh copper grid (Ted Pella, Inc.) for 5 min. The grid was 

blotted to remove excess sample and was washed twice with nanopure water. The grid was then 

incubated upside-down on a drop of 2% uranyl acetate for 30 s, washed with water to remove 

excess stain and dried overnight for negative stain EM analysis. A JEOL JEM-2200 FS EFTEM 

(Energy Filtered Transmission Electron Microscope) operating at 200 kV was used to obtain 

micrographs at 200 000x to 400 000x magnification (UMass Amherst Electron Microscopy 

Center). In order to enhance contrast all images were zero-loss filtered using an energy slit width 

of 20 eV. 

Mammalian Cell Culture, Transfection and Preparation of Extracts 

 Jurkat JMR cells (gift of Douglas Green, St Jude Children’s Research Hospital) were 

grown in RPMI media supplemented with 10% fetal bovine serum, 2 mM glutamine and 1 mM 

HEPES. Cells were incubated at 37°C in a humidified atmosphere maintained at 5% CO2. Cells 

were transiently transfected with either empty vector (p3xFLAG-CMV-14 (Sigma)) or caspase-9 
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(C9 WT-3xFLAG or C9 C287A-3xFLAG) using the DNA-In Jurkat transfection reagent (MTI-

Global Stem) according to manufacturer instructions. A ratio of 5µg DNA : 10 µL reagent per 

well of a 6-well plate was observed to be optimal. Fresh media was supplemented after 24 h to 

support cell growth. 

 After 48 h of expression, transfected cells were washed with 1x PBS and lysed for 20 min 

with 1x Lysis buffer containing 50 mM Tris pH 7.5, 150 mM NaCl, 1% Triton-X100 and 

supplemented with 1x Halt™ protease and phosphatase inhibitor cocktail (Thermo Scientific). 

Lysates were clarified by centrifugation for 30 min at 16,100 x g at 4˚C.  

Activation of PKA in Jurkat JMR 

 JMR cultures grown to ~90% confluency were treated with 30 µM Forskolin (CST) for 

20 min, or with 1 mM 8-BrcAMP (8-Bromoadenosine 3’,5’-cyclic monophosphate sodium salt) 

(Sigma) for 30 min. For untreated cells, DMSO was added in place of the compounds. To 

determine the selective inhibition of endogenous PKA, JMR cells were initially treated with 20 

µM H89 (N-[2-[[3-(4-Bromophenyl)-2-propenyl]amino]ethyl]-5-isoquinoline-sulfonamide 

dihydrochloride) (CST) for 20 min prior to Forskolin or 8-BrcAMP treatment.  

Immunoblotting 

 Total lysates were loaded onto a 12 % SDS-PAGE and electroblotted to a PVDF 

membrane. Lysates were probed with antibodies against the following: caspase-9 (rabbit, Cell 

Signaling Technologies, CST), caspase-3 (rabbit, CST) and cyclophilin A (rabbit, CST) which 

served as a loading control. PKA activation was assessed by immunoblot using antibody against 

PKA (rabbit, CST) and an antibody against phosphorylated forms of PKA substrates with 

arginine at position -3 (mouse, CST). All primary antibodies were used at 1:1000 dilution. The 

following HRP-conjugated secondary antibodies (dilution 1:50.000) were used (all from Jackson 

Immunoresearch): goat anti-mouse IgG and goat anti-rabbit IgG. Bands were were detected by 

enhanced chemiluminescence and visualized in ChemiDoc XRS+ (BioRad). 
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CHAPTER III 

CASPASE-9 CARD:CORE DOMAIN INTERACTIONS REQUIRE 

A PROPERLY-FORMED ACTIVE SITE 

 

This chapter appeared in Kristen L. Huber’s Ph.D. Dissertation “Regulation of Caspase-9 by 

Natural and Synthetic Inhibitors” (2012), but has since been revised to include additional data and 

interpretation of results. The majority of this chapter is under revision: Huber, K.L.*, Serrano, 

B.P.* and Hardy, J.A. Caspase-9 CARD:Core Domains Interactions Require a Properly-formed 

Active Site. Biochem J. (2018). 

*These authors shared equally in this work. 

Abstract 

 Caspase-9 is a critical factor in the initiation of apoptosis, and as a result is tightly 

regulated by a number of mechanisms.  Caspase-9 contains a Caspase Activation and Recruitment 

Domain (CARD), which enables caspase-9 to form a tight interaction with the apoptosome, a 

heptameric activating platform. The caspase-9 CARD has been thought to be principally involved 

in recruitment to the apoptosome, but its roles outside this interaction have yet to be uncovered. 

In this work we show that the CARD is involved in physical interactions with the catalytic core of 

caspase-9 in the absence of the apoptosome; this interaction requires a properly formed caspase-9 

active site. The active sites of caspases are composed of four extremely mobile loops.  When the 

active-site loops are not properly ordered, the CARD and core domains of caspase-9 do not 

interact and behave independently, like loosely tethered beads. When the active site loop bundle 

is properly ordered, the CARD domain interacts with the catalytic core, forming a single folding 

unit. Together these findings provide mechanistic insight into a new level of caspase-9 regulation. 
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Introduction 

 Apoptosis or programmed cell death is a fundamental cellular process that is paramount 

to cellular regeneration and tissue homeostasis in multicellular organisms. Unlike other cell death 

pathways, apoptosis efficiently dismantles the cell without adverse effects on neighboring cells or 

its environment. Its faithful execution is essential in avoiding a number of catastrophic disease 

states and is also critical in organismal development, hence apoptosis is tightly regulated. 

Caspases (cysteine aspartate proteases) are special proteases dedicated to properly carry out the 

apoptotic pathways. Initiator caspases (caspase-2, -8 and -9) function upstream of the apoptotic 

pathways while executioners (caspase-3, -6 and -7) mediate downstream reactions. Because 

highly active caspases are lethal, they are synthesized and held as inactive zymogens 

(procaspases) to avoid untimely activation of apoptosis. Apoptotic pathways are triggered upon 

receipt of a death signal, either through ligand binding (extrinsic pathway) or mitochondrial 

assault (intrinsic pathway). Initiator caspases are then recruited to a multi-complex activating 

scaffold to undergo activation. These active initiators in turn cleave and activate downstream 

executioners, thereby initiating the series of proteolytic reactions, which ultimately culminates in 

cell death. Because the caspase activation cascade signals the commitment of the cell to its 

demise, the activation of these suicidal enzymes is tightly controlled. 

 Caspase-9 is a critical initiator of the intrinsic pathway, and is responsible for activating 

downstream executioners caspases -3, -6 and -7. Defects in the intrinsic pathway are 

characteristic of diseases ranging from autoimmune disorders to cancer. In these diseases, 

activation of caspase-9 is particularly critical 1–3, however, because of caspase-9’s upstream role 

in the intrinsic pathway, its regulation is quite distinct from that of the executioner caspases. 

Caspase-9 also has structural and functional characteristics that are distinct from other caspases. 

Like all caspases, the caspase-9 structure contains the highly homologous catalytic core, 

composed of the large and the small subunit connected by an intersubunit linker (Figure 1). While 

cleavage at the linker converts most caspases to their active form, caspase-9 is somewhat active 
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even prior to cleavage of the intersubunit linker 4. Caspase-9 is also predominantly monomeric in 

solution, unlike other caspases, which are constitutively dimeric. In addition, the catalytic core of 

caspase-9 is preceded by a long prodomain called the Caspase Activation Recruitment Domain 

(CARD). A six-helix bundle with protein binding motifs, the caspase-9 CARD facilitates protein-

protein interaction with the CARD in apoptotic protease activation factor 1 (Apaf-1), anchoring 

caspase-9 to its activation platform, the apoptosome 5–7. Caspase-9’s interaction with the 

apoptosome is one of the most significant unique features of this caspase.  

 The apoptosome platform is formed when an intracellular stress signal leads to release of 

cytochrome c from the mitochondria. Cytochrome c is then available to bind to Apaf-1, initiating 

a conformational change resulting in a dATP-dependent Apaf-1 heptamerization into the 

apoptosome. The apoptosome then recruits and activates caspase-9 (Figure 1.7). The molecular 

details of caspase-9 activation by the apoptosome have not been fully elucidated, but binding to 

the apoptosome increases caspase-9’s activity by approximately 2000-fold4. Intriguingly, even in 

the absence of the apoptosome, the presence of individual domains influence caspase-9 activity. 

Caspase-9 is 20% more active when caspase-9’s catalytic core remains covalently linked to the 

CARD domain, as in full-length caspase-9, than when it is proteolytically removed to form the 

∆CARD version of caspase-9 8 (Figure 1). The authors who made this observation suggested that 

increased tangling of CARD domains leads to an increase in the dimeric fraction of full-length 

caspase-9 over ∆CARD caspase-9, which accounts for this difference in activity. Addition of the 

isolated Apaf-1 CARD further enhances caspase-9 activity by five-fold, in vitro 8. The greatest 

increase in activity, though, occurs when full-length caspase-9, including both the CARD and 

core domains, binds to the apoptosome through caspase-9 CARD: Apaf-1 CARD interactions.  

Early models of the apoptosome activation of caspase-9 argued that the increased activity 

is due to a change in the oligomeric state of the enzyme via increasing the local concentration of 

monomeric caspase-9. Recruitment of additional molecules of caspase-9 was hypothesized to 

participate as partners in dimerization 9 or facilitate dimerization amongst the apoptosome-bound 
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monomers 10. This model is supported by the evidence that enhanced activity is associated with 

dimerized caspase-9 molecules 11. Alternative views of the activation mechanism invoke induced 

conformational changes in which the apoptosome binds to the dimerization interface of caspase-9 

and stabilizes the active site region leading to a catalytically competent conformation 12. This 

conformational change model is supported by the evidence from high-resolution cryoelectron 

microscopy (cryo-EM) which shows that caspase-9 is potentially monomeric in the highly active 

state, bound to the apoptosome9. Recent near atomic resolution cryo-EM structures of the human 

apoptosome show that a catalytic core of a caspase-9 monomer is bound to the apoptosome hub, 

independent of potential caspase-9 dimers undergoing activation 13,14. Additional studies of 

caspase-9’s activation mechanism have also suggested that cleavage of its intersubunit linker 

initiates dissociation from the apoptosome thus regulating the time of apoptosome activity 15. 

While it is clear that caspase-9 is recruited to the apoptosome through CARD:CARD 

interactions, it is not clear what prompts the release of caspase-9 from the apoptosome or how the 

caspase-9 CARD influences caspase-9 function when not bound to the apoptosome. This 

becomes more relevant with the observation that caspase-9 activation can be achieved without 

apoptosome formation through different pathways 16–18. If the caspase-9 CARD were 

predominantly involved in tethering caspase-9 to the apoptosome, then in the absence of the 

apoptosome removal of CARD should not decrease activity significantly. On the contrary, a 

significant decrease in caspase-9 catalytic efficiency is observed when the CARD is removed. 

This suggests that the CARD plays another role in function and regulation of caspase-9. The most 

direct hypothesis is that the caspase-9 CARD interacts this the core domain directly, influencing 

the structure and thus the function of the enzyme. The goal of this work is to probe and uncover 

the nature of any existing CARD:caspase-9-core interactions.   
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Results 

The Influence of CARD on the Oligomeric State of Caspase-9 

 The catalytic core of caspase-9 (∆CARD) has a lower catalytic efficiency than the full-

length version of the enzyme, but the fundamental structural and physical basis of these 

differences are not known. We interrogated the effect of the presence of the CARD on the 

specific biophysical properties of caspase-9 to understand why the presence of the CARD domain 

has a synergistic effect on function. To ensure that the caspase-9 ∆CARD and full-length reagents 

used for this study were comparable to the studies that show CARD’s ability to enhance caspase-

9 activity, we independently measured the catalytic properties of various caspase-9 constructs. 

Consistent with previous reports4,8, the ∆CARD variant of caspase-9 has a decreased catalytic 

efficiency relative to the full-length version (Table 3.1). Therefore the difference in activity 

observed between the two caspase-9 variants is most likely due to the presence or absence of the 

CARD. 

 

Table 3.1. Catalytic parameters3 for caspase-9 variants using substrate Ac-LEHD-AFC.  

Caspase-9 variant 
KM 

(µM) 

kcat 

(s-1) 

103 x kcat / KM 

(s-1 µM-1) 

Caspase-9 Full-length (C9FL) 430 ± 35 1.4 ± 0.1 3.3 

Caspase-9 ∆CARD 992 ± 34 0.3 ± 0.002 0.3 
3Values are mean (± SEM) of three trials done on three separate days. 

 

 Caspase-9 is predominantly monomeric in solution, but when subjected to size exclusion 

chromatography, proteolytic activity correlated with the small fraction of dimeric caspase-9 and 

not with monomeric caspase-9, suggesting that dimerization is required for caspase-9 activity8,11. 

Thus, one potential reason for the increase in the activity of full-length caspase-9 could be due to 

an increase in the ratio of dimeric caspase-9 when the CARD is attached, as has been suggested 

previously8. To assess this, full-length and ∆CARD versions of caspase-9 were subjected to size 
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exclusion chromatography (SEC) to determine the oligomeric state of each enzyme. Both full 

length and ∆CARD caspase-9 were predominantly monomeric in solution and no oligomeric 

fraction could be observed in the chromatogram (Figure 3.1). Caspase-9 can be forced into a 

dimeric state by binding of a covalent active-site inhibitor z-VAD-FMK. The full-length and 

∆CARD caspase-9 were both capable of completely converting to their respective dimeric states 

in the presence z-VAD-FMK (Figure 3.1).  

 
     Table 3.2. Molecular weights of caspase-9 variants from Size Exclusion Chomatography. 

Caspase-9 variant 
Molecular Weight (kDa) 

Observed Expected4 

Casp-9 ∆CARD 30 29.0 
Casp-9 ∆CARD + VAD-FMK 71 58.0 
Casp-9 Full-length (FL) 45 47.2 
Casp-9 Full-length + VAD-FMK 136 94.4 

       4Expected / Theoretical molecular weights were calculated from the protein sequence of caspase-9 
variants using ExPASy ProtParam tool19.  

 
 

Figure 3.1.  CARD does not influence caspase-9 oligomerization. 
Size exclusion chromatography of full-length caspase-9 (Casp-9 FL) and caspase-9 ΔCARD (Casp-9 
ΔCARD) in the presence and absence of active site ligand z-VAD-FMK. Both Casp-9 FL and Casp-9 
ΔCARD are capable of dimerization induced by z-VAD-FMK.  The molecular weights for the 
standards are marked as diamonds. 
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We observed that the molecular weight of the dimeric full-length caspase-9 was larger than 

expected (136 kDa vs. 94 kDa expected) (Table 3.2), which could be due to either a significant 

change in the hydrodynamic radius of dimeric full length caspase-9 or an enhanced interaction 

with the negatively charged matrix in the column, as we have observed with caspase-620. 

Nevertheless, these results suggest that the CARD does not appear to have a great influence on 

the oligomeric state of the enzyme and thus cannot be the cause of the increased activity observed 

in the presence of the CARD. 

The Presence of CARD Influences Stability of Caspase-9 

 Another potential reason for the increased activity of full-length caspase-9 could be that 

the presence of the CARD affects the protein’s stability. To assess this, both full-length and 

∆CARD caspase-9 in monomeric and dimeric forms were analyzed for changes in thermal 

stability by circular dichroism (CD) spectroscopy. Full-length caspase-9, which was cleaved at 

the intersubunit linker between the large and small subunits, and included the CARD domain, 

showed a three-state unfolding curve (Figure 3.2A). The first melting transition occurred at 48 ± 

2˚C while a second occurred at 62 ± 2˚C. To determine the domain of the full-length enzyme that 

unfolds at each melting transition, the catalytic core and CARD domains were expressed 

independently and interrogated in a similar fashion. The catalytic core of the enzyme (∆CARD), 

which was also cleaved at the intersubunit linker, corresponded to the first melting transition at 49 

± 1˚C (Figure 3.2B) while the second transition corresponded to that of CARD only with a 

melting temperature of 61 ± 2˚C (Figure 3.2C). These results suggest that when caspase-9 is in its 

cleaved monomeric state, the presence of CARD does not affect the overall thermal stability of 

the caspase-9 catalytic core and the two domains (CARD and core) of the enzyme unfold 

independently. 

 Although caspase-9 exists in equilibrium between monomer and dimer, it is 

predominantly monomeric in solution (Figure. 3.1). To assess whether the oligomeric state of 

caspase-9 influences its stability, thermal denaturation studies were similarly performed on the 
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Figure 3.2. Monomeric and dimeric states of caspase-9 have different unfolding properties.  
Thermal denaturation profiles (left) and circular dichroism spectra (right) of various forms of caspase-9 
(top schematics). 
(A) Two melting transitions are observed in the cleaved full-length, monomeric, caspase-9. 
(B) and (C) Thermal denaturation profile of caspase-9 core and CARD, respectively, showing that the 
first melting transition in full-length, monomeric caspase-9 (A) is due to the unfolding of the core, 
while the second is due to that of the CARD. 
(D) Full-length, cleaved caspase-9 is dimeric in the presence of an active site ligand z-VAD-FMK. 
Upon thermal denaturation, caspase-9 at this state exhibits a single melting transition, likely due either 
to dimerization, or the presence of an ordered active site, or both. 
(E) Dimeric, cleaved caspase-9 ΔCARD with bound z-VAD-FMK is highly stabilized by 14˚C 
compared to monomeric, cleaved ∆CARD (B). 
(F) Constitutive dimer (cDimer) full-length caspase-9 cleaved at the intersubunit linker exhibits two 
melting transitions, suggesting independent unfolding of CARD and core domains. 
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cleaved full-length and ∆CARD versions of caspase-9 when the enzyme is in a dimeric state with 

an active site ligand (z-VAD-FMK) bound (Figures 3.2D and 3.2E). Both versions of caspase-9 

showed an increase in thermal stability. Caspase-9 ∆CARD had a 14˚C increase in thermal 

stability in the presence of active site ligand (Figure 3E), which is similar to the increase in 

stability observed when caspase-7 binds active site ligand21. Full-length caspase-9 (Figure 3.2D) 

showed only a 6˚C increase in thermal stability in the presence of active site ligand, more similar 

to the 3˚C increase in stability observed for caspase-6 upon ligand binding22. Strikingly, in the 

presence of substrate, the three-state unfolding (two melting transitions) of the full-length 

caspase-9 was no longer observed (Figure 3.2A vs. 3.2D). It appears that binding a ligand to the 

active site of caspase-9, which induces dimerization and ordering of the active site loop bundle, 

also transitions caspase-9 to a two-state unfolding mechanism (single melting transition). In 

addition, full-length caspase-9 is completely unfolded at 90˚C as observed in the circular 

dichroism spectrum (Figure 3.2A, 3.2D). These data suggest that in the cleaved, dimeric and 

active-site bound state, the catalytic core and the CARD of caspase-9 unfold cooperatively. 

 To discriminate the influence of substrate-binding from dimerization on the observed 

cooperative unfolding, thermal denaturation was performed on a caspase-9 variant that exists as a 

constitutive dimer (cDimer) (Figure 3.2F). This dimeric version of caspase-923 was constructed 

by substituting residues in the dimer interface with those present in caspase-3, which is 

constitutively dimeric. Full-length, unbound dimeric caspase-9, which was cleaved at the 

intersubunit linker exhibited three-state unfolding (Figure 3.2F), suggesting that substrate binding 

was responsible for the observed changes in unfolding properties. Thus, the single melting 

transition observed when cleaved, full-length caspase-9 in the dimeric, active-site bound state 

(Figure 3.2D) indicates that substrate binding-induced dimerization either results in the complete 

unfolding of CARD, or causes the catalytic core and CARD to unfold as one cooperative unit. 

Comparison of the circular dichroism spectra of the full-length, cleaved caspase-9 in monomeric 

and dimeric states (Figure 3.3) show that there is no significant change overall in the secondary 
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structure content. The CARD is composed of six helices24; if the CARD became unfolded in the 

presence of substrate or upon dimerization, we would expect to see a significant loss in the CD 

signal. Secondary structure content analyses from the CD spectra revealed that there is ~5 % loss 

in helical content when full-length caspase-9 binds an active site ligand to induce dimerization 

(Figure 3.3, FL monomer vs FL + VAD-FMK). The similarity in the CD spectra with and without 

active site ligand suggests that the CARD remains folded and that the caspase-9 catalytic core and 

CARD must be unfolding as a single cooperative unit. This observation suggests that a physical 

interaction between the CARD and core domains occurs, which causes the two domains to unfold 

as a single unit.  

 

An Ordered Active Site Supports CARD:Core Interactions 

 Caspase-9 has been shown to possess catalytic function even as an uncleaved zymogen4 

possibly due to its increased intersubunit linker length. Caspase-9 possesses a longer L2 loop, 

allowing L2’ some flexibility to assume a productive conformation which enables caspase-9 to 

support a properly formed active site even without linker cleavage25. Therefore, the 

uncleaved/zymogen form of caspase-9 can be utilized to interrogate whether the interaction 

 
Figure 3.3. Comparison of CD spectra of caspase-9 full length (C9 FL) in monomeric and dimeric 
states. 
The secondary structure of caspase-9 with (+ VAD-FMK) and without (FL monomer, cDimer and cDimer 
C287A) an active site ligand bound was assessed by CD. C9 FL cDimer is a constitutive dimer variant of 
caspase-9. There is no significant change in the helical content of caspase-9 upon dimerization and substrate 
binding. Estimation of helix content was performed using BeStSel structure prediction and fold recognition 
software (http://bestsel.elte.hu/index.php)57. 
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observed between the CARD and the catalytic 

core of caspase-9 is due to changes in the 

active site conformation. Analysis of the full-

length monomeric caspase-9 in the uncleaved 

state (catalytic site-inactivated variant 

C287A), resulted in a two-state unfolding 

mechanism (Figure 3.4A) similar to that 

observed for the cleaved, dimeric and active 

site-bound state (Figure 3.2D). The 

monomeric, uncleaved caspase-9 zymogen 

appears to support the interaction of the core 

and CARD domains because they unfold as a 

single unit. To further test this mechanism, we 

cleaved the same caspase-9 zymogen construct 

with caspase-3. Cleavage of the intersubunit 

linker by caspase-3 disrupted the interaction of 

the CARD and catalytic core domains as 

observed by the independent three-state 

unfolding properties (Figure 3.4B), which is 

similar to that of the cleaved wild-type 

monomeric caspase-9. The presence of an 

intact linker also appears to support 

CARD:core interactions in constitutively dimeric (cDimer) full-length caspase-9 zymogen 

(C287A). This version of caspase-9 had a two-state unfolding mechanism (Figure 3.4C), similar 

to that of a full-length, dimeric caspase-9 with a bound active site ligand (Figure 3.2D). Together, 

these data suggest that the CARD domain and the catalytic core of caspase-9 do not physically 

 
 
Figure 3.4. The CARD and core of caspase-9 
unfold as a single unit when the intersubunit 
linker is intact. 
Thermal denaturation profiles (left) and circular 
dichroism spectra (right) of various forms of 
caspase-9. 
(A) Monomeric, zymogen (uncleaved) caspase-9 
(catalytic site-inactivated C287A) exhibited a 
single melting transition, which suggests 
cooperative unfolding of CARD and core of 
caspase-9. 
(B) Cleavage of the linker of (A) by caspase-3 
results in independent unfolding, as manifested by 
two separate melting transitions. 
(C) Zymogen (catalytic site-inactivated C287A), 
uncleaved caspase-9 in a constitutive dimeric 
state (cDimer) shows a single melting transition. 
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interact and unfold independently in monomeric or in dimeric caspase-9 that has a disordered 

active site resulting from cleavage of the intersubunit linker. In contrast, these domains physically 

interact and unfold cooperatively, as a single unit, when the active site region assumes an ordered 

conformation as supported by either an intact linker in both monomeric and dimeric states, or by 

binding of a substrate to the active site. 

Characterizing the Site of Interaction Between Caspase-9 Catalytic Core and CARD  

 The ∆CARD caspase-9 variant is less 

active than full-length caspase-9 (Table 3.1), 

suggesting that the presence of the CARD could 

increase the catalytic activity of the caspase-9 

core. Indeed, an increase of caspase-9 activity was 

observed when CARD was incubated with 

∆CARD (Figure 3.5A). This increase in activity 

was not simply due to molecular crowding since 

adding BSA in place of CARD did not amount to 

any significant change in activity. However, this 

enhancement did not reflect the full activity of 

full-length caspase-9, suggesting that a covalent 

tether between CARD and the catalytic core of 

caspase-9 is necessary for CARD’s impact on 

enzymatic activity. Since the linker between the 

CARD and core domains is essential to mediate 

the increase in the activity of caspase-9, we 

reasoned that perhaps there were either specific 

interactions with the tether and the adjacent 

domains or a length-dependence to the interaction. To test this, a five amino acid Ser-Gly 

 
 

Figure 3.5. Linker between CARD and 
core supports CARD:core interaction. 
 (A) In trans activity assay of ∆CARD 
caspase-9 with CARD. The presence of 
CARD enhances caspase-9 activity, but does 
not recapitulate the full activity of a full-
length caspase-9. Error bars are SD from 
three independent trials done on three 
separate days. 
(B) Thermal denaturation analysis (left) and 
CD (right) f Ser-Gly linker extension variant 
of caspase-9 showing the same melting 
transitions as that of full-length, cleaved WT 
caspase-9. 
(C) Ser-Gly linker extension variant exhibits 
the same kinetic behaviors as WT caspase-9. 
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extension was inserted within the linker between CARD and the large subunit of caspase-9’s 

catalytic core (Figure 3.5B). This variant behaves like the native full-length form of caspase-9 in 

both thermal stability (Figure 3.5B) and catalytic efficiency (Figure 3.5C), suggesting that a 

longer and potentially more flexible linker does not negatively impact the function of caspase-9. 

 The cooperative unfolding observed between the CARD domain and the catalytic core of 

dimeric caspase-9 implies a physical interaction between the two domains. To characterize this, 

the interaction between the isolated CARD and catalytic core domains in trans was interrogated 

(Figure 3.5). The catalytic core (∆CARD) in its monomeric or dimeric form (∆CARD+VAD-

FMK) was incubated with the CARD and analyzed for an interaction between the two domains 

by native gel electrophoresis (Figure 3.6A). An interaction between the two domains would result 

in a band migrating with the molecular weight of the full-length enzyme during native gel 

analysis. However, no visible shift in band migration was observed that would correspond to 

complex formation between CARD and ∆CARD, which suggests either no interaction between 

the domains, or very weak and transient interactions, or that the conditions for native gel 

electrophoresis did not promote CARD:core interactions. Ni-affinity isolation assay was then 

performed (Figure 3.6B) in which His-tagged ∆CARD in different states (cleaved with VAD-

FMK-bound, cleaved with no ligand bound, or uncleaved with no ligand bound (C287A)) was 

incubated with CARD (no His6x tag). Only ∆CARD with bound VAD-FMK was able to isolate 

the CARD after elution out of the Ni beads, suggesting complex formation between the catalytic 

core and the CARD (Figure 3.6B). In addition, fluorescent polarization/anisotropy binding 

experiments showed that while FITC-labeled CARD also binds to monomeric, cleaved ∆CARD 

caspase-9, tighter binding was observed with dimeric ∆CARD caspase-9 bound with an active 

site ligand (+ VAD-FMK) (Figure 3.6C). Together these data are consistent with those observed 

from thermal denaturation studies, where an ordered active site appears to promote CARD:core 

interactions. 
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 Given the observation that the CARD and core domain physically interact, we undertook 

a program designed to uncover sites where substitution of the native amino acids by alternatively 

charged amino acids might disrupt interactions between the CARD and core domain. To generate 

candidate sites for interaction and mutations, we performed docking studies between reported 

crystal structures of the CARD (PDB ID: 3YGS)24 and the dimeric form of the caspase-9 catalytic 

core (PDB ID: 1JXQ)11 using the RosettaDock server26. The top docking models were those that 

avoided interactions of CARD residues involved in the caspase-9 CARD/Apaf-1 CARD complex 

and avoiding unfavorable (e.g. steric) interactions between caspase-9 CARD and core. Two 

models fit these criteria (Figure 3.7), both showing putative electrostatic interactions between the 

CARD and the core. Model 1 predicted the interaction between negatively charged residues in α4 

helix of the core with arginines of the H1 helix of CARD (Figure 3.7A). Model 2 predicted 

homotypic helix to loop interactions: helices α1 and α4 in the core interacting with L1-2 (loop 

between helix H1 and H2) and a small kink in H4 of the CARD (Figure 3.7B). 	
   	
  

 
 
Figure 3.6. Characterizing CARD-core interaction. 
(A) Native gel electrophoresis showed no visible obility shift to indicate interaction between CARD and 
caspase-9 core (unbound/monomeric and z-VAD-FMK-bound/dimeric). 
(B) His-tagged, dimeric, VAD-FMK-bound ∆CARD was able to pull down untagged CARD by Ni-
NTA affinity assay, suggesting interaction between CARD and catalytic core of caspase-9. 
(C) Fluorescence anisotropy shows binding of FITC-labeled CARD to both monomeric and dimeric 
(+VAD-FMK) ∆CARD. Error bars are SD from three trials done on three separate days. 
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 Single and combination charge swapping variations based on the docking models were 

introduced in the CARD and core in an attempt to disrupt the interaction between the two 

domains and thus decrease the catalytic efficiency of the caspase-9 variants. We expected that 

mutations that disrupted the interaction between the CARD and core domain would decrease the 

catalytic efficiency of the variant versions of caspase-9 and would be comparable to the catalytic 

activity of ∆CARD (Table 3.1). Upon analysis of the charge swap effects on the catalytic 

efficiency of caspase-9, a two-fold decrease in catalytic efficiency was observed for variant R7E 

 
 

Figure 3.7. Representative docking models of possible sites of CARD-core interactions. 
Docking analysis between reported crystal structures of the caspase-9 core domain (PDB ID: 1JXQ) 
and caspase-9 CARD (PDB ID: 3YGS) generated top two models depicting (A) helix to helix and (B) 
loop to helix interactions of caspase-9 core with the CARD domain. Both models should not interrupt 
Apaf-1 CARD- caspase-9 CARD interactions and were chosen for substitution studies that may 
potentially disrupt the CARD-core interactions.  Docking studies were performed using the 
RosettaDock server. 



 82 

(Table 3.3) which would support Model 2, the helix-to-helix binding mode of CARD to the 

caspase-9 core. A similar effect was observed by the single site variant R11E which further 

supports a helix-to-helix binding model of CARD and the catalytic core of caspase-9. However 

the double site variant of R7E/R11E did not show an enhancement of this effect (Table 3.3). This 

could indicate that R7 and R11E are included in the activating affect of CARD; however, the 

combination of both these variants is not strong enough to completely eliminate the activation 

property of CARD, as the catalytic efficiency of the ΔCARD version (Table 3.1) of the enzyme 

was not recapitulated. 

 

Table 3.3. Catalytic parameters5 for caspase-9 charge-swap variants. 

Caspase-9 variant Region of Mutation 
KM 

(µM) 

kcat 

(s-1) 

103 x kcat / KM 

(µM-1s-1) 

Wild-type none 430 ± 35 1.4 ± 0.1 3.3 

R7E CARD (H1) 693 ± 55 0.76 ± 0.2 1.1 

R11E CARD (H1) 477 ± 19 0.73 ± 0.06 1.5 

R7E/R11E CARD (H1) 469 ± 216 0.6 ± 0.2 1.3 

D23R CARD (L1-2) 337 ± 103 0.78 ± 0.2 2.3 

R51E CARD (H4) 197 ± 56 0.85 ± 0.2 4.3 

E365R Core (α4) 429 ± 67 1.2 ± 0.2 2.8 
5Values are means (± SEM) of three trials done on three separate days. 

 

Phosphomimetic S183E Breaks CARD:core Interactions 

 The propensity of the CARD:core interactions to exist when caspase-9 is in a 

conformation with an ordered active site suggests that any modification in caspase-9 that would 

lead to a disordered active site loop bundle would disrupt these interactions. One particular 

caspase-9 variant that we have shown to inactivate caspase-9 by that precise mechanism is the 

phosphomimetic S183E (Chapter II). S183E was observed to have a profound effect on caspase-9 

function27. S183E prevents substrate binding by displacing a specific arginine residue (R180) in 

the S1 specificity pocket (Figure 2.4), resulting in the active site loop bundle to become 
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disoriented. After overexpression S183E remains uncleaved and exhibits no LEHDase activity 

(Figure 2.3C, 2.3D). Since S183E is in its monomeric and uncleaved form, we expected its 

stability to be comparable to that of the zymogen, catalytic-site inactivated caspase-9 C287A, and 

predicted it would exhibit only one melting transition upon thermal denaturation (Figure 3.4A). 

However, S183E underwent two melting transitions (Figure 3.8A), corresponding to the 

unfolding of the core (43˚C) and the CARD domain (64˚C). The S183E thermal denaturation 

profile suggests that the interaction between the CARD and core domain has been disrupted by 

the S183E substitution, leading the two domains to unfold independently. Importantly, the 

melting temperature of the core is unchanged from WT caspase-9 suggesting that the core is 

intact when the S183E variant is in the uncleaved zymogen conformation. The striking 

observation that the CARD:core interactions were eliminated upon modification of the S183 site, 

 
 
Figure 3.8. Phosphomimetic S183E disrupts CARD:core interactions. 
Thermal denaturation curves (left) and CD spectra (right) of caspase-9 S183 substitution variants. 
(A) Full-length, monomeric, uncleaved S183E exhibits three-state unfolding (two melting transitions), 
unlike other full-length uncleaved caspase-9 variants, suggesting that S183E breaks CARD:core 
interactions because the two domains unfold independently. 
(B) Cleavage of S183E by caspase-3 leads to destabilization and formation of aggregates. 
(C) Full-length, monomeric, uncleaved S183A (catalytic-site inactivated C287A) shows a single 
melting transition, indicating an intact CARD:core interaction. 
(D) Full-length, monomeric, cleaved S183A behaves similarly to full-length, monomeric, cleaved 
caspase-9 that exhibits three-state unfolding. 
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suggests that S183 must sit at the binding interface between the caspase-9 core and its CARD. 

However, our results from interrogating the effect of S183 phosphorylation on caspase-9 structure 

(Chapter II) point to a different mechanism in which S183E imparts conformational instability to 

caspase-9 in the cleaved state. All zymogen/uncleaved caspase-9 variants we interrogated were 

observed to have similar thermal stabilities, whether by CD (Figure 3.4A, 3.4C, 3.10A, 3.10C) or 

by DSF (Table 2.2), while S183E was observed to be less stable. This most likely contributes to 

the unusual three-state unfolding of S183E upon thermal denaturation – its unstable conformation 

cannot fully support CARD:core interactions. Moreover, cleaving S183E with caspase-3 to 

generate a fully mature caspase-9 led to its aggregation, which was evident in both its thermal 

denaturation curve that showed a decrease in thermal stability of the core (41˚C in cleaved S183E 

vs. 48˚C in WT caspase-9), and CD spectrum at 90˚C (Figure 3.8B), which was typical of an 

unfolded protein. These results are consistent with our observations that the core of S183E is 

becomes extremely unstable upon linker cleavage, and ultimately leads to the formation of 

ordered aggregates (Figure 2.7, 2.9). In addition, the CARD:core interactions appear to remain 

intact in the alanine variant S183A. Full-length, monomeric S183A showed a single melting 

transition in its uncleaved state (Figure 3.8C), suggesting cooperative unfolding of domains, and 

two melting transitions in its cleaved state (Figure 3.8D), indicating independent unfolding of 

CARD and core domains. Thus, although S183 did not emerge as a critical site of CARD:core 

interactions, our model of caspase-9 inactivation by S183E by disorienting the active site loops is 

in agreement with our hypothesis that a properly formed active site is crucial for the interaction 

between caspase-9 core and its CARD domain. 

 Phosphorylation has been shown to be a robust mechanism to disrupt binding 

interfaces28–30. Three reported phosphorylation sites - S9931, T107 and T12532,33 - reside in the 

potentially highly flexible region between the CARD and the large subunit (Figure 1.6A, 1.6B). 

Given that the linker which tethers the CARD to the catalytic core seems to be required for 

increased catalytic activity (Figure 3.5C), it is conceivable that phosphorylation at this region 
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could impact interactions between the CARD and core. We examined whether the 

phosphomimetic versions of these residues would break the CARD:core interactions by 

conducting the same thermal denaturation studies on both cleaved and zymogen/uncleaved forms. 

Both S99E and T125E in monomeric, uncleaved form showed cooperative unfolding of domains, 

exhibiting a single melting transition (Figure 3.9A, 3.9C), suggesting that the interaction between 

CARD and core is still present and was not interrupted by these mutations. Cleavage at the linker 

resulted in independent unfolding of the CARD and core domains (Figure 3.9B, 3.9D). These 

results suggest that S99 and T125 sites are not within the binding interface of the CARD and 

catalytic core. 

 
 

  

 
 
Figure 3.9. Phosphomimetic variants S99E and T125E retain CARD:core interactions. 
Thermal denaturation curves (left) and CD spectra (right) of caspase-9 CARD phosphomimetic 
variants. 
(A) and (C) Full-length, monomeric, uncleaved (constructed in the background of C287A) S99E (A) 
and T125E (C) exhibit two-state unfolding (single melting transition), suggesting intact CARD:core 
interactions. 
(B) and (D) Full-length, monomeric, cleaved S99E and T125E behaves similarly to full-length, 
monomeric, cleaved caspase-9 that exhibits three-state unfolding. 
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Discussion 

 Full control of the caspases involved in apoptosis, inflammation and neurodegeneration 

requires detailed understanding of the functions and regulatory mechanisms for each individual 

caspases. Caspase-9 has a particularly unique activation mechanism including changes in its 

conformational and oligomeric states and association with the apoptosome activation platform. 

Furthermore, the presence of individual domains such as the caspase-9 CARD (in cis) or the 

Apaf-1 CARD (in trans) have the ability to increase caspase-9 basal activity8. Altering enzymatic 

activities by additional domains have been observed in other proteins including PAS (Per-Arnt-

Sim) Kinase34, Dnmt1 DNA methyltransferase35, and ADAMTS-4 (A disintegrin and 

metalloproteinase with thrombospondin motifs 4)36, suggesting that this property may be of 

widespread significance. Therefore studying the individual activation effects of a particular 

domain provides further insights towards how caspase-9 becomes activated on the apoptosome. 

 Here we investigated the mechanism by which the caspase-9 CARD domain influences 

caspase-9 activity. We have demonstrated that the oligomeric state of both full-length and 

CARD-deleted (∆CARD) caspase-9 are similar, thus the increase in caspase-9 activity in the 

presence of the CARD is not due to a shift the oligomeric state as had been previously 

suggested11. We also observed that the mere presence of CARD is not responsible for the 

increased enzymatic activity but requires specific interactions between the CARD and core 

domain, particularly with the active site. We have observed that caspase-9 CARD:core interaction 

is controlled by the folded state of the active site (Figure 3.11). Specifically, the CARD and 

catalytic core domains of caspase-9 unfold independently and do not physically interact in either 

monomeric or dimeric states of the cleaved enzyme because the active site is unable to form a 

properly ordered substrate-binding groove and is therefore unable to support the interactions 

between the CARD and caspase-9 core. In the dimeric state with a ligand bound to the active site, 

these domains unfold cooperatively, as a single folding unit, indicating a physical interaction  
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Figure 3.10.  Model for caspase-9 conformational states in the presence of CARD domain. 
Relevant conformations of caspase-9 are shown as cartoons in the upper panels. Caspase-9 in both its 
uncleaved, monomeric state and cleaved, dimeric state assumes a conformation wherein an ordered 
active site supports the interaction of CARD with the core of the protein, allowing cooperative 
unfolding of the two domains as depicted in the lower panels.  The enzyme assumes a different 
conformation when this interaction is abolished either by transitioning to a cleaved monomeric or 
cleaved dimeric states where the active site is disordered, or by introducing a mutation in the core (as 
in S183E) that leads to its destabilization and disorder of active site loops. 
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between the CARD and core domain when the cleaved enzyme dimerizes and has a properly 

ordered active site that is capable of binding CARD.  

 The substrate-binding groove is ordered in dimeric, cleaved caspases (-1, -3, -6, -7, -8 

and -9) with a bound substrate. Notably a similar ordered conformation can be formed in 

uncleaved zymogen of caspase-9, due to linkage effects which allow the intersubunit linker to 

buttress the L3 and L4 loops in an ordered conformation11,37 (Figure 3.10). This manifests in the 

cooperative unfolding of CARD and the catalytic core of caspase-9 observed in the 

zymogen/uncleaved form of full-length caspase-9, whether monomeric or dimeric, when the 

intact intersubunit linker can properly order the active site even prior to cleavage. Intriguingly, 

this CARD-core domain interaction is disrupted either by cleavage of the  intersubunit linker by 

self-processing or by caspase-3, or by a mutation in the core such as S183E, all of which prevent 

the active site from assuming an ordered conformation. Thus, the CARD appears to be interacting 

with the caspase-9 core in any version of caspase-9 presenting a properly formed substrate-

binding groove. 

 Our attempt to pinpoint the binding interface between the CARD and catalytic core of 

caspase-9 showed that single charge swap mutations on the surface of the protein distal from the 

active site were not strong enough or properly positioned to disrupt the activating affect of 

CARD. A more extensive alanine scanning mutagenesis study or charge repulsion analysis 

around the substrate-binding groove could further define the region of interaction between the 

CARD and core domains mediated by the active-site region of the enzyme. Once the binding 

interface is defined, its role in the caspase-9 activation cascade can be further interrogated, and 

may serve as a potential junction to control caspase-9’s intrinsic activity. 

 The primary role of the CARD is to facilitate recruitment and subsequent activation of 

caspase-9 in the apoptosome. Prior to our work there has been no data to suggest that there are 

existing interactions between the CARD and the catalytic core of caspase-9. The role of these 

interactions in the context of the caspase-9 activation via the apoptosome remains to be explored, 
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but seems to be consistent with the induced conformational changes model12, wherein binding to 

the apoptosome stabilizes the active site region leading to its activation. Recent cryo-EM 

structures of caspase-9-bound apoptosome show that a catalytic core of caspase-9 is bound to the 

apoptosome hub14,38, and mechanistic studies have also shown that the catalytic core is able to 

interact with the nucleotide binding domain of Apaf-1 in the apoptosome39. Our results 

complement these observations in the sense that there are regions in the catalytic core that engage 

in stabilizing interactions with other proteins (in this case, the caspase-9 CARD), possibly 

influencing capase-9 activity. Given our observations that CARD:core interactions influence 

caspase-9 stability, it is possible that these interactions exist to stabilize caspase-9 prior to its 

recruitment to the apoptosome. One can envision caspase-9 utilizing the same binding interface in 

the CARD to interact with the catalytic core in the zymogen state when it is free from the 

apoptosome. Once the apoptosome is formed, the caspase-9 CARD:core interaction gives way to 

caspase-9 CARD:Apaf-1 CARD binding, allowing caspase-9 to be finally recruited and activated 

in the apoptosome. Moreover, in light of observations that caspase-9 is activated independent of 

the apoptosome to facilitate alternative pathways (both apoptotic and non-apoptotic)17,18,40, the 

presence of CARD:core interactions could also serve as a mechanism to retain, modulate or even 

enhance caspase-9 activity as it functions outside the apoptosome. Other human caspases 

(caspase-1, -2, -4/-5, -12) also possess a CARD (review41). Among these caspases, caspase-2 is 

most similar to caspase-9. It would be interesting to examine whether caspase-2 CARD is also 

able to form these interactions with the catalytic core, which would suggest natural prevalence of 

these interdomain interactions in caspases and not limited to caspase-9. This could also be a 

relevant theme in caspase-2 activation. Although caspase-2 has been shown to be activated via 

proximity-induced oligomerization via the PIDDosome42, genetic experiments have challenged 

this mode of activation, since caspase-2 was observed to be activated in the absence of this 

activating scaffold43,44. Alternative modes of caspase-2 activation have since been proposed 

depending on the type of cellular death signals (review45); in these cases it is tempting to 
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speculate that CARD:core interactions may play a role in regulating caspase-2 function, should 

they be present. Interdomain interactions have been demonstrated to be critical in controlling the 

different conformational states and in regulating the catalytic activity of several proteins 

including the deubiquitinating enzyme USP446, phenylalanine hydroxylase47 and ERAP-1 

(endoplasmic reticulum aminopeptidase-1)48. 

 Prior works on other caspases have suggested that regulation may be dependent on the 

most unique regions within the caspase structure, the prodomain and intersubunit linker. It is well 

established that the cleavage of the intersubunit linker primarily acts as an activation switch in 

executioner caspases (and in some initiator caspases such as caspase-8). However, it seems that 

there is no consensus as to the function of prodomain in executioner caspases. For example, while 

the prodomains of caspase-3 and caspase-7 have been shown to be dispensable for activity in 

vitro, it appears that in vivo, having an intact prodomain keeps the enzyme in its inactive state 

until cleaved by another downstream caspase49,50. The caspase-3 prodomain has been also shown 

to bind Hsp27 in monocytes, leading to inhibition of its proteolytic activation51. In caspase-6, an 

intact prodomain was reported to inhibit self-cleavage at the linker region in vivo52 and both the 

prodomain and linker are predicted to be highly disordered protein-binding regions53 that 

dramatically affect the stability of caspase-620. In the case of caspase-9 it appears that the cleaved 

state of the intersubunit linker and the interactions between the CARD (prodomain) and the 

catalytic core is essential for the appropriate function that is unique to caspase-9. 

 

Materials and Methods 

Caspase-9 Expression and Purification 

 The caspase-9 full-length gene (human sequence) construct, encoding amino acids 1-416, 

in pET23b (Addgene plasmid 11829 4) was transformed into the BL21 (DE3) T7 Express strain 

of E. coli (NEB) and purified in a manner similar to that previously reported 54. The cultures were 

grown in 2xYT media supplemented with ampicillin (100 mg/L, Sigma-Aldrich) at 37˚C until 
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they reached an optical density (OD) at 600 nm of 1.2. The temperature was reduced to 15˚C and 

cells were induced with 1 mM IPTG (Anatrace) to express soluble 6xHis-tagged full-length 

protein.  Cells were harvested after 3 h to obtain single-site processing at Asp315. Cell pellets 

stored at -20˚C were freeze-thawed and lysed in a microfluidizer (Microfluidics, Inc.) in 50 mM 

sodium phosphate pH 8.0, 300 mM NaCl, and 2 mM imidazole. Lysed cells were centrifuged at 

37,000 x g to remove cellular debris. The filtered supernatant was loaded onto a 5-mL HiTrap Ni-

affinity column (GE Healthcare). The column was washed with a buffer containing 50 mM 

sodium phosphate pH 8.0, 300 mM NaCl, and 2 mM imidazole until 280 nm absorbance returned 

to baseline. The protein was eluted using a linear imidazole gradient of 2 to100 mM over the 

course of 270 mL. The eluted fractions containing protein of the expected molecular weight and 

composition were diluted 10-fold into a buffer composed of 20 mM Tris pH 8.5, 10 mM DTT to 

reduce the salt concentration. This protein sample was loaded onto a 5-mL Macro-Prep High Q 

column (Bio-Rad Laboratories, Inc.). The column was developed with a linear NaCl gradient and 

eluted in 20 mM Tris pH 8.5, 100 mM NaCl, and 10 mM DTT buffer. The eluted protein was 

stored in -80˚C in the above buffer conditions. Purified caspase-9 was analyzed by SDS-PAGE 

and ESI-MS to confirm mass and purity. Caspase-9 variants, C287A, R7E, R11E, D23E, R51E 

E365R, R7E/R11E, S183E, S183A, C287A/S183A, S99E, C287A/S99E, T125E, C287A/T125E 

and the Ser-Gly linker extension, were constructed by site-directed mutagenesis method in the 

full-length expression construct, and were purified by the same method (except for S183E, 

S183A, C287A/S183A, S99E, C287A/S99E, T125E, C287A/T125E) as described here for the 

wild-type protein. 

 Caspase-9 S183E, S183A, C287A/S183A, S99E, C287A/S99E, T125E, C287A/T125E 

were purified using the same method except 50 mM NaH2PO4 pH 7.0, 300 mM NaCl and 2 mM 

imidazole buffer was used to lyse the bacterial cells and wash the HiTrap Ni column.  A linear 

imidazole gradient from 2 mM to 100 mM was used to elute the protein.  All proteins were 

further purified by anion exchange chromatography as described above. 
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 Caspase-9 ∆CARD was expressed from a two-plasmid expression system. Two separate 

constructs, one encoding the large subunit, residues 140-305, and the other encoding the small 

subunit, residues 331-416, each in the pRSET plasmid, were separately transformed into the 

BL21 (DE3) T7 Express strain of E. coli (NEB). The recombinant large and small subunits were 

individually expressed as inclusion bodies for subsequent reconstitution. Cultures were grown in 

2xYT media supplemented with ampicillin (100 mg/L, Sigma-Aldrich) at 37°C until they reached 

an optical density at 600 nm of 0.6. Protein expression was induced with 0.2 mM IPTG. Cells 

were harvested after 3 hrs at 37˚C. Cell pellets stored at -20˚C were freeze-thawed and lysed in a 

microfluidizer (Microfluidics, Inc.) in 10 mM Tris pH 8.0 and 1 mM EDTA. Inclusion body 

pellets were washed twice in 100 mM Tris pH 8.0, 1 mM EDTA, 0.5 M NaCl, 2% Triton, and 1M 

urea, twice in 100 mM Tris pH 8.0, 1 mM EDTA and finally resuspended in 6 M guanidine 

hydrochloride. Caspase-9 large and small subunit proteins in guanidine hydrochloride were 

combined in a ratio of 1:2, large:small subunits, and rapidly diluted dropwise into refolding buffer 

composed of 100 mM Tris pH 8.0, 10% sucrose, 0.1% CHAPS, 0.15 M NaCl, and 10 mM DTT, 

allowed to stir for one hour at room temperature and then dialyzed four times against 10 mM Tris 

pH 8.5, 10 mM DTT, and 0.1mM EDTA buffer at 4˚C.  Typically 5 mL of mixed caspase large 

and small subunits was diluted to 80 mL in refolding buffer and dialyzed against 5 L of dialysis 

buffer. The first and last dialysis steps were allowed to proceed for 4 hours at 4˚C while the 

second dialysis proceeded overnight at 4˚C. The dialyzed protein was centrifuged for 15 minutes 

at 16,500 x g to remove precipitate and then purified using a HiTrap Q HP ion exchange column 

(GE Healthcare) with a linear gradient from 0 to 250 mM NaCl in 20 mM Tris buffer pH 8.5, 

with 10 mM DTT. Protein eluted in 20 mM Tris pH 8.5, 100 mM NaCl, and 10 mM DTT buffer 

was stored in -80˚C. The identity of the purified caspase-9 ∆CARD was analyzed by SDS-PAGE 

and ESI-MS to confirm mass and purity. The ∆CARD-His6x construct was generated by deleting 

the CARD (res1-138) from the caspase-9 full-length construct by deletion mutagenesis. ∆CARD-

His6x was purified using the same method as wild-type caspase-9.  
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Oligomeric-State Determination 

 Caspase-9 wild-type, full-length and ∆CARD variant protein samples in 20 mM Tris pH 

8.5, 110 mM NaCl, and 5 mM DTT were incubated alone (monomer) or with covalent inhibitor 

z-VAD-FMK (carbobenzoxy-Val-Ala-Asp-fluoromethylketone, Enzo Life Sciences) (dimer) for 

2 hours at room temperature. The oligomeric state of the caspase-9 samples was determined via 

gel filtration. 100 µL of 0.5 mg/mL protein sample was loaded onto a Superdex 200 10/300 GL 

(GE Healthcare) gel-filtration column. Apo and z-VAD-FMK-incubated protein samples were 

eluted with 20 mM Tris pH 8.0, 100 mM NaCl, and 2 mM DTT.  Eluted peaks were analyzed by 

SDS-PAGE to identify the eluted protein. Four different molecular weight standards from the gel-

filtration calibration kit LMW (GE Healthcare) were run in the same conditions and a standard 

plot was generated to determine whether the peaks were caspase-9 monomer or dimer. 

CARD Expression and Purification 

 The CARD only construct (amino acids 1-138) in pET23b was made by QuikChange 

mutagenesis (Stratagene) using the oligonucleotide primer 5`-CCCAGACCAGTGGACATT-

GGTTCTGGAGGATTCGGTGATCACCACCACCACCACCACTAAGTCGGTGCTCTTGAG

AGTTTGAGGGGAAATGCAGATTTGG-3`and its reverse compliment on the caspase-9 full-

length gene (Addgene plasmid 11829). These oligo-nucleotide primers insert a 6xHis-tag and a 

stop codon after the last amino acid of the CARD domain (Asp138), leaving the remaining 

portion of the caspase-9 gene in the plasmid. A separate CARD construct was made to insert a 

human rhinovirus-3C (HRV) protease cleavage site (LEVLFQGP) before the 6xHis-tag using the 

primers 5’-CTCGGGCTGGAAGTGCTGTTCCAGGGTCCGCACCACCACCACCACCACT-

AAGCCG-3’ (forward) and 5’-ATCACCGAATCCTCCAGAACCAATGTCC-3’ (reverse). Each 

construct was transformed into BL21 (DE3) T7 Express strain of E. coli. The cultures were 

grown in 2xYT media supplemented with ampicillin (100 mg/L, Sigma-Aldrich) at 37˚C until 

they reached an optical density at 600 nm of 0.6. The temperature was reduced to 15˚C and cells 

were induced with 1 mM IPTG (Anatrace) to express soluble 6xHis-tagged full-length protein.  
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Cells were harvested after 18 hrs. Cell pellets stored at -20˚C were freeze-thawed and lysed in a 

microfluidizer (Microfluidics, Inc.) in 50 mM sodium phosphate pH 8.0, 300 mM NaCl, and 2 

mM imidazole. Lysed cells were centrifuged at 37,000 x g to remove cellular debris. The filtered 

supernatant was loaded onto a 5-mL HiTrap Ni-affinity column (GE Healthcare). The column 

was washed with a buffer containing 50 mM sodium phosphate pH 8.0, 300 mM NaCl, 2 mM 

imidazole until 280 nm absorbance returned to baseline. The column was washed with 50 mM 

phosphate pH 8.0, 300 mM NaCl, 50 mM imidazole and the protein was eluted with 50 mM 

phosphate pH 8.0, 300 mM NaCl, 250 mM imidazole. The eluted fraction was diluted 10-fold 

into a buffer containing 20 mM Tris pH 8.0 and 2 mM DTT to reduce the salt concentration. This 

protein sample was loaded onto a 5 mL Macro-Prep High Q column (Bio-Rad Laboratories, Inc.). 

The column was developed with a linear NaCl gradient. Protein eluted in 20 mM Tris pH 8.0, 2 

mM DTT, and 130 mM NaCl. Eluted protein was analyzed by SDS-PAGE to assess purity and 

stored in -80˚C. For cleavage of the His6x-tag, eluted fractions from the Ni-NTA column was 

diluted 2x with 50 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA and 1 mM DTT. 100 µg of 

hrv3C protease was added per 1 µg of CARD-6xHis and the reaction was incubated for 16h at 

4˚C with gentle mixing. The cleavage reaction was filtered through 0.45 µm PVDF. Filtered 

protein solution was diluted 6x with Buffer A and loaded onto a HiTrap Q column (GE 

Healthcare). The column was developed with a linear NaCl gradient. Caspase-9 CARD (no His 

tag) eluted in 20 mM Tris pH 8.0, 130 mM NaCl and 2 mM DTT. Full cleavage was assessed by 

running samples on a 16% SDS-PAGE gel. 

Thermal Stability and Secondary Structure Analysis by Circular Dichroism 

 All caspase-9 variants (except for S183E , S183A, C287A/S183A, S99E, C287A/S99E, 

T125E, C287A/T125E) and the CARD protein were buffer exchanged via dialysis against 100 

mM sodium phosphate pH 7.0, 110 mM NaCl, and 5 mM TCEP and diluted to 7 µM. The 

samples were split in half and incubated in the presence or absence of four molar equivalents of 

active site ligand VAD-FMK for 3 hours at room temperature. To ensure complete binding of the 
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active site ligand to the protein, remaining enzymatic activity was assayed using 300 µM 

substrate, LEHD-AFC (N-acetyl-Leu-Glu-His-Asp-7-amino-4-fluorocoumarin), (Enzo Life 

Sciences). Once full inhibition was achieved, samples were buffer-exchanged six times with 100 

mM phosphate buffer pH 7.0, 100 mM NaCl and 5 mM TCEP using an Amicon Ultracell 3K 

concentrator (Millipore) to remove unbound inhibitor. For S183E, S183A, C287A/S183A, S99E, 

C287A/S99E, T125E, C287A/T125E variants of caspase-9, prior to thermal denaturation by CD, 

the proteins were buffer exchanged with 100 mM phosphate buffer pH 7.5, 110 mM NaCl and 5 

mM TCEP using a NAPTM-5 Column (GE Healthcare). For cleavage of the unprocessed caspase-

9 C287A and S183E variants, 7 µM protein sample was incubated with 3% active caspase-3 

protein for two hours at room temperature. Full processing of caspase-9 C287A and S183E by 

caspase-3 was determined by SDS-PAGE analysis.  

 Thermal denaturation of caspase-9 variants and CARD was monitored by loss of CD 

signal at 222 nm over a range of 20–90°C. The circular dichroism spectra were monitored from 

250-190 nm. Both were performed on a J-720 or J-1150 CD spectrometer (Jasco) with a Peltier 

controller. Data were collected four separate times on different days from different batches of 

purified proteins. Curves were fit with Origin Software (OriginLab) using sigmoid fit to 

determine the melting temperature. 

Caspase-3 Expression and Purification 

 Caspase-3 full-length gene (human sequence) in pET23b (Addgene plasmid 11821 55) 

was transformed into BL21 (DE3) T7 Express strain of E. coli and protein expression was 

induced with 1 mM IPTG at 30°C for 3 hours 56. The protein was purified as described previously 

for caspase-3 21. The eluted protein was stored in -80°C in the buffer in which they eluted. The 

identity of purified caspase-3 was assessed by SDS-PAGE and ESI-MS to confirm mass and 

purity.  
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Native Gel Electrophoresis and Ni-NTA Affinity Isolation Assay to Determine in trans 

Interactions 

 For native gel electrophoresis to diagnose an interaction between caspase-9 ∆CARD and 

caspase-9 CARD in trans, full-length caspase-9, caspase-9 ∆CARD and the CARD domain only 

were dialyzed twice against 100 mM phosphate pH 7.0 and 2 mM DTT for 90 minutes to rid of 

excess salt.  Samples were incubated either alone or combined with CARD to achieve a 1:1 ratio 

of caspase-9 ∆CARD plus CARD. Each protein sample was diluted to a final concentration of 10 

µM in the dialysis buffer. To induce dimerization samples were incubated with 5-fold excess z-

VAD-FMK. All samples were allowed to incubate at room temperature for one hour. All samples 

were mixed with glycerol loading dye and fractionated on a 10% Tris/Glycine pH 8.3 

polyacrylamide gel. The oligomeric state of the mixed caspase-9 ∆CARD and CARD samples 

were identified by comparison to the apo (monomer) and z-VAD-FMK-bound (dimer) of both the 

caspase-9 full-length and caspase-9 ∆CARD protein in addition to the CARD only sample.  

 For Ni-NTA affinity isolation assay of caspase-9 ∆CARD-His6x (∆CARD, ∆CARD 

C287A, ∆CARD+VAD-FMK) with CARD in trans, samples were diluted to 10 µM in binding 

buffer (50 mM phosphate pH 8.0, 100 mM NaCl) with 5 mM DTT. To induce dimerization, 20 

µM ∆CARD was incubated with 5-fold excess z-VAD-FMK for 1 h at RT. Complete inhibition 

was assessed by assaying caspase-9 activity using 300 µM LEHD-AFC. Excess z-VAD-FMK 

was removed by buffer exchanging 5x with binding buffer using Amicon Ultra centrifugal filter 

10K MWCO (Millipore). Samples were incubated either alone or with CARD to achieve a 1:2 

ratio of caspase-9 ∆CARD-His6x plus CARD (no His tag). 100 µL of protein sample was added 

to a tube containing 35 µL of HisPur Ni-NTA magnetic beads (ThermoFisher) that were washed 

three times in water and twice in binding buffer without DTT. Ni-NTA beads plus caspase-9 

∆CARD-His6x and CARD samples were incubated for 3 hours at 4°C with mixing using an end-

to-end rotator. Supernatant (unbound fraction) was aspirated and the beads were washed three 

times with binding buffer to remove any unbound or weakly bound protein (wash fraction). 
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Protein elution was then carried out by incubating the Ni-NTA beads with 50 µL elution buffer 

(binding buffer + 250 mM imidazole) for 30 minutes at room temperature. The supernatant 

(elution fraction) was collected and all fractions were subjected to SDS-PAGE analysis.  

Fluorescence Anisotropy 

 Fluorescence anisotropy was monitored using a SpectraMax M5 plate reader (Molecular 

Devices, Inc.) with a fixed excitation wavelength set to 485 nm and an emission wavelength set to 

525 nm. Caspase-9 CARD (without the His tag) was labeled with fluorescein isothiocyanate 

(FITC) isomer 1 (Sigma) in labeling buffer containing 0.1 M sodium bicarbonate pH 9.0, 100 

mM NaCl for 2h at RT. Unreacted FITC was removed by buffer exchange using a NAP5 column 

equilibrated in 50 mM Tris (pH 7.5) and 150 mM NaCl. A fixed concentration of FITC-labeled 

CARD (25 nM) was titrated into a serially diluted caspase-9 ∆CARD (3 nM – 25 µM). The final 

volume of each binding reaction is 100 µL. All measurements were taken at 25˚C after a 1.5 h 

incubation at RT. 

Activity Assays 

 For kinetic measurements of caspase activity, 800 nM caspase-9 full-length protein was 

diluted in 100 mM MES pH 6.5, 10% PEG 8,000 and 5 mM DTT. Each sample was subjected to 

a substrate titration, performed in the range of 0-300 µM fluorogenic substrate, Ac-LEHD-AFC, 

(Ex 365/Em 495) which was added to initiate the reaction. Assays were performed in duplicates 

at 37°C in 100 µL volumes in 96-well microplate format using a Molecular Devices Spectramax 

M5 spectrophotometer. Initial velocities versus substrate concentration were fit to a rectangular 

hyperbola using GraphPad Prism (Graphpad Software) to determine kinetic parameters KM and 

kcat. Enzyme concentrations were determined by active site titration with quantitative inhibitor z-

VAD-FMK. Active site titrations were incubated over a period of 3 hours in 100 mM MES pH 

6.5, 10% PEG 8,000, and 5 mM DTT. Optimal labeling was observed when protein was added to 

z-VAD-FMK solvated in DMSO in 96-well V-bottom plates, sealed with tape, and incubated at 

room temperature in a final volume of 200 µL. 90 µL aliquots were transferred to black-well 
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plates in duplicate and assayed with 300 µM substrate. The protein concentration was determined 

to be the lowest concentration at which full inhibition was observed. 

 To test the ability of CARD to activate caspase-9 ∆CARD in trans, 10 µM of ∆CARD 

was incubated with CARD at different ratios (1x, 5x and 10x CARD) in minimal activity assay 

buffer (100 mM MES pH 6.5, 20% PEG 400 and 5 mM DTT) for 1h at RT. Control reactions 

were made using BSA in place of CARD. Samples were diluted to a final concentration of 800 

nM ∆CARD using minimal activity assay buffer and LEHDase activity was measured over the 

course of 10 min in 100 µL volumes using a Spectramax M5 fluorescence plate reader. 
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CHAPTER IV 

ACTIVE-SITE ADJACENT PHOSPHORYLATION AT TYR-397 BY c-ABL KINASE 

INACTIVATES CASPASE-9 

 

Majority of this chapter is published: Serrano, B.P., Szydlo, H.S., Alfandari, D.R. and Hardy J.A. 

Active-Site Adjacent Phosphorylation at Tyr-397 by c-Abl Kinase Inactivates Caspase-9. J. Biol. 

Chem. 292:21352-21365 (2017). 

 

Abstract 

 Caspase-9 is an initiator caspase and plays a central role in activating apoptotic cell 

death. Control of caspase-9 and all caspases is tightly regulated by a series of phosphorylation 

events enacted by a number of different kinases. Caspase-9 is the most heavily phosphorylated of 

all caspases, and is is thus perhaps the most tightly regulated of all caspases. Phosphorylation of 

caspase-9 by the non-receptor tyrosine kinase c-Abl, at Y153 reportedly leads to caspase-9 

activation. All other phosphorylation events on caspases have been shown to block proteolytic 

function by a number of mechanisms, so we undertook a project to understand the molecular 

mechanism of caspase-9 activation by phosphorylation. Surprisingly, we observed no evidence 

for Y153 phosphorylation under any of the conditions studied, perhaps suggesting that Y153 is 

not directly phosphorylated by c-Abl, but by another similarly activated kinase. Instead we 

identified a new site of c-Abl phosphorylation, Y397, which is adjacent to the caspase-9 active 

site, but as a member of the second shell, not a residue that directly contacts substrate. Our data 

indicate that Y397 is the dominant site of c-Abl phosphorylation both in vitro and upon c-Abl 

activation in cells. Phosphorylation at the Y397 site inhibits caspase-9 activity. It appears that the 

bulk of the added phosphate moiety directly blocks substrate binding. c-Abl is known to play both 

proapoptotic and prosurvival roles; these data on c-Abl regulation of caspase-9 suggest that c-Abl 

functions in a prosurvival mode.  
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Introduction 

 Cells undergo constant turnover to maintain normal tissue function and homeostasis. This 

is achieved by a delicate and dynamic balance of cellular networks involving cell proliferation 

and cell death signaling pathways. Apoptosis or programmed cell death is an essential pathway 

that proceeds via a series of biochemical reactions that ultimately result in the controlled 

dismantling of cellular components without adverse damage to neighboring cells. Tight regulation 

of apoptosis is fundamental to attain cellular homeostasis. Defects in regulation of apoptotic 

pathways have been implicated in many diseases that are in nature both proliferative, such as 

cancer, and degenerative, like Alzheimer’s and Huntington’s. As such, elements involved in 

apoptotic signaling are recognized as attractive drug targets for the development of therapeutics 

for apoptosis-related diseases. 

 Caspases are specialized proteases that mediate the faithful execution of apoptosis. 

Caspases cleave protein substrates causing either activation or inhibition which eventually 

commits the cell to death. Caspases are extremely specific towards substrates, generally 

preferring to cleave after an aspartate1 or glutamate2, and in some cases a phosphoserine3. 

Depending on where they act in the apoptotic pathways, caspases are classified as either upstream 

initiators (caspase-2, -8 and -9) or downstream executioners (caspase-3, -6 and -7). Because 

caspase activity inherently induces apoptosis, caspases are synthesized and held as inactive 

zymogens (procaspases). Procaspases contain an N-terminal prodomain region and the highly 

homologous caspase core, consisting of a large and a small subunit joined together by an 

intersubunit linker. Most procaspases exist predominantly as homodimeric proteins. Upon 

apoptosis induction, initiator caspases are recruited to complex protein scaffolds that promote 

activation, while executioner caspases depend on initiator caspases to cleave the intersubunit 

linker which consequently converts the inactive procaspase into a mature, active form. Once 

assembled into an active form, the highly dynamic loops that compose the active site assume a 

conformation that allows substrate binding and catalytic cleavage, thereby initiating a cascade of 
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reactions that eventually lead to the cell’s demise. Caspases exert such dominant impact on 

apoptosis, that any inopportune caspase activation is deleterious to the cell. Thus, caspase 

expression and activation are tightly regulated by various mechanisms at different checkpoints in 

the cell. 

 Phosphorylation is recognized to be a critical mediator of apoptosis (reviews4,5). Caspases 

form a subset of kinase substrates whose functions are directly affected by phosphorylation 

(review6). The initiator caspase-9 (caspase-9), for example, appears to be extremely sensitive to 

phosphorylation, having the largest number of phosphorylation sites reported of any caspase 

(Figure 4.1A; reviews6–8). This suggests that phosphorylation is a strong regulator of caspase-9 

function. This is perhaps because phosphorylation can impact caspase-9 on multiple levels, as 

caspase-9 achieves activation in many ways – from cleavage to dimerization to protein-protein 

interactions to the formation of the apoptosome. Phosphorylation sites are present in all domains 

of caspase-9 (Figure 4.1A) and are targeted by kinases that are involved in cell cycle9,10, cellular 

stress11–13 and extracellular signals14,15.  

 In general, phosphorylation of caspases results in apoptotic suppression, which is a direct 

consequence of caspase inhibition. Intriguingly, of all the reported sites of phosphorylation in 

caspase-9, Y153 is the only site reported to activate caspase-912. All other sites of 

phosphorylation reportedly have led to inactivation (review16). Y153 in caspase-9 is reported to 

be phosphorylated by the non-receptor tyrosine kinase c-Abl. c-Abl is activated in response to 

various extrinsic and intrinsic signals, which causes it to possess both pro- and anti-apoptotic 

roles (review17). c-Abl generally recognizes the sequence I/V/L-Y-X-X-P and phosphorylates a 

large number of functionally diverse substrates, in part due to its ability to shuttle between the 

cytosol and the nucleus. Interestingly, this nucleocytoplasmic shuttling of c-Abl dictates whether 

its activation would promote either cell death or survival. For example, oncogenic forms of c-Abl 

exhibit strictly cytoplasmic localization and constitutive activity, while nuclear c-Abl activated by 

cellular stress such as DNA damage promotes apoptosis. This pro-apoptotic function of c-Abl has 
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been attributed to its phosphorylation of caspase-9 resulting in self-processing and subsequent 

activation of caspase-312. We were intrigued by this functional effect of c-Abl on caspase-9, 

especially since all other sites were reported to be inhibiting upon phosphorylation. For this 

reason we undertook a study of the mechanism of caspase-9 activation by Y153 phosphorylation. 

During this study we also identified a new site of phosphorylation. 

 In the last decade a number of cell-based studies identified sites of phosphorylation in 

caspase-9 (review16). Many excellent proteome-wide studies have annotated sites of 

phosphorylation in caspase-9 and other caspases. Given the multitude of different cellular 

contexts, it has naturally been impossible to perform these large-scale, proteome-wide studies 

under all relevant cellular conditions. Thus, although a number of sites have been identified it is 

likely that many other sites of phosphorylation by particular kinases have not yet been identified. 

Here we report a novel site of phosphorylation in caspase-9 by c-Abl. An active-site adjacent 

residue Y397 is phosphorylated by c-Abl both in vitro and intracellularly, leading to caspase-9 

inhibition. 

Results 

 Caspase-9 is composed of the caspase activation and recruitment domain (CARD) and 

the core which consists of the large and the small subunit. The reported phosphorylation site 

Y153 resides in the caspase-9 large subunit (Figure 4.1A, 4.1B). In the dimeric, substrate-bound 

structure of caspase-9, the hydroxyl group of Y153 forms an H-bond with D350 in the L2’ loop. 

This interaction seems to support the position of L2’ as it correspondingly interacts with L2 and 

L4 in the other half of the dimer to form the substrate binding groove and catalytic site (Figure 

4.1C). Thus it is conceivable that phosphorylation of Y153 would impact caspase-9 activity. 

Phosphorylation of caspases typically leads to inhibition (review6), yet it has been reported that 

upon DNA damage, Y153 phosphorylation by c-Abl results in self-processing and promotes 

caspase-9 cleavage of caspase-312.   
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Figure 4.1. Y153 makes critical contacts with active site loop L2’. 
(A) Domain architecture of caspase-9 showing the N-terminal caspase activation and recruitment 
domain (CARD) and the core which is composed of a large (Lg) and a small (Sm) subunit connected by 
an intersubunit linker. Three cleavage sites in the intersubunit linker are indicated by arrows: E306 
(minor, self-cleavage), D315 (major, self-cleavage) and D330 (by caspase-3). Reported phosphorylation 
sites are indicated by ℗ in white; the c-Abl phosphorylation site Y153 in the large subunit is 
highlighted in yellow. Cognate kinases are indicated with arrows pointing at the phosphorylation site. 
(B) Structure of full-length, dimeric caspase-9 showing the phosphorylation site, Y153, as spheres. The 
structure shown here was modeled from individual structures of the CARD-deleted caspase-9 (aa 138-
416; PDB 1JXQ) and the caspase-9 CARD (aa 1-95; PDB 3YGS) from a dimeric complex with Apaf-1 
CARD. The region between the CARD and core is not present in either structures and is most likely 
highly disordered, hence it was modeled as gray coil. The loops forming the substrate binding groove 
(L2, L3 and L4 from one monomer and L2’ from the opposite monomer) are labeled. 
(C) Y153 forms an H-bond with D350 in loop L2’, supporting the “up” position of L2’ in order to 
properly interact with L2 and L4 and achieve a catalytically competent active site. 
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Phosphomimetic Y153E has impaired catalytic efficiency compared to WT caspase-9 

 To probe for the functional consequence of Y153 phosphorylation in caspase-9, we 

generated the glutamate phosphomimetic Y153E. Following overexpression, Y153E remained in 

its zymogen (uncleaved) form unlike wild-type (WT) caspase-9, which was expressed as a 

mature, cleaved enzyme (Figure 4.2A). Caspase-9 zymogen possesses basal activity and hence 

readily undergoes self-processing; however, it seems that the glutamate substitution blocks 

function. Unlike the WT zymogen, Y153E lacked the ability to self-process (Figure 4.2B) and did 

not exhibit any LEHDase activity (Table 4.1) in the zymogen form. To assess whether the 

 
 
Figure 4.2. Y153 is an inherently sensitive site. 
(A) Caspase-9 Y153 variants (phosphomimetics Y153E, Y153D and non-phosphorylatable Y153F) 
remained in the uncleaved zymogen (full-length) state upon overexpression, whereas WT caspase-9 
forms the mature, cleaved state upon overexpression. The constitutively two-chain (CT) versions of 
caspase-9 are generated by independent translation of the CARD+Large (Lg) and Small (Sm) subunits, 
thus all caspase-9 CT variants (CT Y153E, CT Y153F and CT Y153Q) are in the “cleaved” state 
following overexpression. 
(B) WT caspase-9 zymogen readily undergoes self-processing into the CARD+Large and small 
subunits. Full length Y153E is unable to self-process and remains in the zymogen (uncleaved) form, 
suggesting it is inherently inactive. 
(C) Caspase-3 natively cleaves caspase-9 at D330. WT Caspase-9, catalytic-site inactivated variant 
C287A, phosphomimetic Y153E and variants Y153D and Y153F were incubated alone or with caspase-
3. Cleavage at D330 to generate mature proteins only occurred in the presence of caspase-3, except for 
WT which immediately self-processes. 
(D) Caspase-9 full-length variants cleaved by caspase-3 (C) were tested in an LEHDase assay. Y153E, 
Y153D and Y153F did not gain activity following caspase-3 cleavage. 
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observed inhibition was due to its zymogen nature and to assess whether these variants are still 

cleavable by other caspases, full-length Y153E was cleaved by caspase-3 (Figure 4.2C). Even 

following cleavage to generate the mature form, Y153E remained inactive (Figure 4.2D).  

 In addition, caspase-9 variants at this position were expressed from a constitutively two-

chain (CT) construct, which allows independent translation of the CARD+Large and the small 

subunits. Even in its fully mature form, CT Y153E remained inactive, suggesting that the 

glutamate phosphomimetic inherently inhibits caspase-9 activity (Figure 4.2A, Table 4.1). This 

was in contrast to prior reports, in which phosphorylation at Y153 was suggested to promote 

caspase-9 self-processing and thereby activation12. To validate that the inhibition was a direct 

consequence of the phosphomimetic, an aspartate substitution (Y153D) was made and showed 

the same inactivating effect as the glutamate phosphomimetic, while the conservative 

phenylalanine substitution mutant (Y153F) had a ~150x decrease in catalytic efficiency (Table 

4.1). Both Y153D and Y153F were also uncleaved upon overexpression, suggesting impaired 

self-processing abilities (Figure 4.2A). 

 

Table 4.1. Catalytic parameters6 of caspase-9 variants. 

Caspase-9 variants KM 
(µM) 

kcat 
(s-1) 

103 x kcat/KM 
(µM-1s-1) 

Caspase-9 Full-Length (C9 FL) 

Wild-type (WT) 430 ± 35 1.4 ± 0.1 3.3 
Y153E > 3000 < 0.01 < 0.003 
Y153D > 3000 < 0.01 < 0.003 
Y153F 2804 ± 829 0.04 ± 0.01 0.02 
Y397F 338 ± 18 0.78 ± 0.1 2.7 

Caspase-9 Constitutively Two-Chain (C9 CT) 

WT 609 ± 35 1.8 ± 0.03 3.0 
Y153E > 3000 < 0.01 < 0.003 
Y153F > 3000 < 0.01 < 0.003 
Y153Q > 3000 < 0.01 < 0.003 
Y397E 961 ± 100 0.57 ± 0.08 0.59 

6 Values are mean (± SEM) of three trials done on three separate days. 
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 Similar to Y153E, caspase-3 was able to cleave Y153D or F to generate mature enzymes; 

however they remained inactive (Figure 4.2C, 4.2D). Moreover, the CT version of Y153F had no 

measurable activity, and introducing a polar amide side chain of glutamine (CT Y153Q) did not 

rescue activity (Table 4.1, Figure 4.2A). These results are in line with prior observations. This 

region where the L2 and L2’ loops interact is extremely sensitive to mutation and post-

translational modification. Substitutions that break the L2-L2’ interaction disrupt caspase 

activity18 and phosphorylation of S257, which is also in this region also inactivates caspase-619. 

Thus, one might anticipate a priori that should Y153 be phosphorylated, it would be inactivating. 

Y397 is the major phosphorylation site in caspase-9 by c-Abl  

 We performed in vitro phosphorylation using recombinant c-Abl to interrogate the 

behavior of the phosphorylated form of caspase-9. Caspase-9 was indeed a substrate of c-Abl, as 

both the kinase domain only (KD) and the three domain (SH3-SH2-kinase domain) (3D) forms of 

c-Abl resulted in 32P-labeling of caspase-9 zymogen/full-length (as catalytic site inactivated 

C287A) in the presence of [γ-32P]-ATP (Figure 4.3). Surprisingly, we did not observe any 

phosphorylation in the CARD+Large (CARD+Lg) region where Y153 is located, but rather clear 

phosphorylation of the small subunit (Sm) in cleaved, WT caspase-9 (Figure 4.3B, 4.3D). Upon 

inspection of all other tyrosine residues in caspase-9 (Y251, Y345, Y363 and Y397), Y397 was 

the most highly surface-exposed (Figure 4.4A). In addition, the sequence surrounding Y397 

contains a consensus sequence for c-Abl recognition (Figure 4.4B, 4.4C).  

 To pinpoint the phosphorylated residue or residues, Y153 and Y397 were rendered 

unphosphorylatable by substitution of phenylalanine and incubated with active c-Abl. Y153F 

substitution did not abolish phosphorylation, as the small subunit was still clearly labeled with 32P 

(Figure 4.4D). Y397 appears to be more solvent exposed relative to Y153 hence it is possible that 

the competition for Abl recognition and phosphorylation is heavily weighted towards Y397. 

However, making Y397 unphosphorylatable (Y397F) did not force phosphorylation of Y153 but 

almost completely eliminated caspase-9 phosphorylation (Figure 4.4D). 
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Figure 4.3. c-Abl phosphorylates caspase-9 in vitro at the small subunit. 
(A) and (C)  Recombinant c-Abl constructs used to phosphorylate caspase-9 in vitro. The construct c-
Abl KD comprises only the kinase domain, while the c-Abl 3D construct contains the SH3-SH2 
regulatory/binding domains as well as the kinase domain. 
(B) and (D) Caspase-9 catalytic-site inactivated variant C287A (full-length) and WT (cleaved) were 
subjected to in vitro phosphorylation by c-Abl KD or 3D in the presence of ATP + [γ-32P]ATP for 2h. c-
Abl undergoes autophosphorylation/autoactivation upon treatment with ATP. Both forms of c-Abl 
phosphorylated caspase-9 in the zymogen (C287A) and cleaved (WT) forms. No phosphorylation in the 
CARD+Large region (Y153 site) was detected, but phosphorylation in the small subunit was clearly 
visible, as shown in the autoradiograph labeled here and in the succeeding figures as 32P. 
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Figure 4.4. Y397 is the predominant site for c-Abl phosphorylation in vitro. 
(A) Structure of caspase-9 core showing all the tyrosine residues (yellow spheres). Y397 resides in 
loop L4 and is noticeably solvent-exposed, due to crystal contacts in this structure (PDB ID 1JXQ). 
(B) Substrate sequence logo for the consensus recognition sequence of c-Abl (downloaded from 
PhosphoSitePlus 57)  
(C) Sequence of residues surrounding each tyrosine present in caspase-9. Residues in favorable 
positions are underlined. Sequence surrounding Y397 conforms well to the consensus sequence for c-
Abl phosphorylation. 
(D) Unphosphorylatable caspase-9 variants (phenylalanine substitutions at putative phosphorylated 
tyrosines) in both full-length (FL) and CT versions were subjected to in vitro phosphorylation by c-
Abl for 2h. The * denotes that FL Y397F was constructed in the background of C287A (catalytic 
cysteine inactivated variant) to prevent self-processing since Y397F is active. FL Y153F caspase-9 
was still visibly phosphorylated; the CT version of Y153F revealed that the phosphorylation is in the 
small subunit. An absence of phosphorylation was observed for Y397F (both FL and CT) and the 
double mutant Y153F/Y397F. 
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 We also tested CARD-deleted versions of 

caspase-9 (∆CARD) to increase Y153 

accessibility, as the CARD in the full-length is 

attached through a highly flexible linker and could 

potentially block the Y153 site. Even in the 

absence of the CARD, only phosphorylation at the 

Sm subunit was observed (Figure 4.5). To 

unambiguously identify the phosphorylated site, 

we performed LC-MS/MS on peptide fragments 

following ArgC proteolysis of c-Abl-

phosphorylated WT caspase-9 and observed 

phosphate labeling at Y397 with high confidence 

(Figure 4.6A, 4.6B). These results clearly indicate that Y397 is the dominant site for 

phosphorylation by c-Abl in vitro. 

Phosphorylation of Y397 leads to caspase-9 inhibition 

 This is the first report of a novel site, Y397, being phosphorylated by c-Abl. As such, it is 

imperative to probe whether this phosphorylation imparts functional or structural perturbations to 

caspase-9. A modest but statistically significant inhibition of caspase-9 LEHDase activity was 

observed when WT was phosphorylated at Y397. In contrast, the activity of the 

unphosphorylatable Y397F variant was unchanged even after treatment with c-Abl (Figure 4.7A, 

4.7B). Although full inhibition was not achieved under in vitro phosphorylation conditions, a 

strong correlation between the levels of phosphorylation and caspase-9 inhibition was observed 

(Figure 4.7C). In fact, phosphocapture experiments resulted in samples with enriched levels of 

phosphorylated caspase-9 that correspondingly exhibited higher degrees of inhibition (Figure 

4.7D), implying that a homogeneous population of phosphorylated caspase-9 would be 

completely inhibited.  

 

 
 
Figure 4.5. Removal of the CARD in 
caspase-9 (∆CARD) did not promote Y153 
phosphorylation. 
No visible phosphorylation in the large 
subunit was observed in both cleaved 
versions of WT and ∆CARD caspase-9. Only 
the small subunit in both cases was robustly 
phosphorylated. An unidentified non-specific 
12 kDa band from ∆CARD C287A was also 
observed be phosphorylated. 
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Figure 4.6 MS/MS spectra of peptides of derived from c-Abl-phosphorylated 9. 
WT 9 was phosphorylated by c-Abl and was digested with Arg C protease which cleaves on the C-
terminal side of arginine and lysine residues. Two peptide fragments showed phosphorylation at Y397 
with high confidence. In the same analysis the peptides containing Y153 were only observed with 
intermediate confidence, nevertheless phosphorylation of Y153 was not indicated by this analysis. 



 

 114 

 

  

 
 
Figure 4.7. Phosphorylation of Y397 leads to caspase-9 inactivation. 
(A) WT Caspase-9 and the unphosphorylatable variant Y397F were subjected to in vitro 
phosphorylation by Abl in the presence or absence of ATP for 2h. Phosphorylation of the small 
subunit was clearly observed in WT caspase-9 but was essentially absent for caspase-9 Y397F. 
Only background levels of phosphorylation were visible in the CARD+Large region. Gels and 
corresponding autoradiographs shown are representative of four independent trials performed on 
four separate days. 
(B) Inhibition of WT and Y397F caspase-9 by phosphorylation. The activities of samples in (A) 
after incubation with c-Abl for 2h were measured using the caspase-9 preferred substrate Ac-
LEHD-AFC. WT caspase-9 was moderately inhibited whereas caspase-9 Y397F was insensitive to 
c-Abl-mediated inhibition. The reduced LEHDase activity for phosphorylated WT caspase-9 (+ 
ATP) was statistically different from that of unphosphorylated WT (- ATP) (**P<0.05) as 
determined by Student’s t-test. Data shown are means ± SEM from four independent experiments 
performed on four separate days. 
(C) The level of caspase-9 phosphorylation correlates with the extent of inhibition. Phosphorylation 
levels of caspase-9 were determined from [γ-32P]ATP standards exposed on the same 
autoradiograph as the Coomassie-stained SDS-PAGE gel (see under Methods, Figure 4.18). 
Percent inhibition for phosphorylated caspase-9 (both c-Abl and ATP present) was normalized 
against activity in the non-phosphorylated form (with c-Abl but no ATP). Data shown are means ± 
SEM from four independent experiments performed on four separate days. 
(D) Correlation plot between caspase-9 inhibition and caspase-9 phosphorylation. WT caspase-9 
was initially phosphorylated in vitro by c-Abl and was subjected to phosphoprotein enrichment to 
capture a greater fraction of phosphorylated caspase-9.  Data shown are means ± SD from three 
independent experiments performed on three separate days. 
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We also observed that phosphorylation of Y397 is reversible; treatment with CIP (Calf Intestinal 

Phosphatase) removed phosphorylation with a concomitant rescue in activity (Figure 4.8). 

 

 
 
Figure 4.8. Dephosphorylation of caspase-9 relieves inhibition. 
(A) c-Abl phosphorylated caspase-9 is dephosphorylated by CIP (Calf Intestinal Phosphatase) for 1h. No 
visible phosphorylation remains in the CIP-treated caspase-9, suggesting that phosphorylation by c-Abl is 
reversible. 
(B) CIP treatment to dephosphorylate caspase-9 leads to recovery of activity. Note: CIP reaction buffer 
contains 100 µM ZnCl2, which fully inhibits caspase-9 activity. Even when diluted into caspase-9 activity 
assay buffer, caspase-9 is still partially inhibited, hence the large difference in LEHDase activity before and 
after CIP treatment. 
 

 One of the hallmarks of suppressed apoptosis emanating from caspase-9 inhibition is the 

attenuation of the cleavage of downstream substrates caspase-3 and caspase-720. WT Caspase-9 

phosphorylated by c-Abl cleaved full-length caspase-7 and caspase-3 more slowly than 

unphosphorylated WT caspase-9 (Figure 4.9A, 4.9E). In contrast, there was no significant 

difference in caspase-7 or caspase-3 cleavage kinetics by caspase-9 Y397F regardless whether c-

Abl was active (+ ATP) or not (no ATP) (Figure 4.9B, 4.9F). This recapitulates the previous 

finding that Y397F is insensitive to inactivation by c-Abl. Importantly, the degree of caspase-9 

phosphorylation also correlates with the decrease of its protein cleavage kinetics (Figure 4.9C, 

4.9D for caspase-3 and Figure 4.9G, 4.9H for caspase-7). It is worthwhile to note that Y397F is as 

active as WT caspase-9 (Table 4.1), therefore the decrease in caspase-9 activity can be 

unambiguously attributed to phosphorylation and not simply due to inherent sensitivity of this 

site. Along these lines, we observed a five-fold decrease in catalytic efficiency in the Y397E 
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phosphomimetic (Table 4.1) and attenuated protein cleavage kinetics (Figure 4.10A, 4.10B). 

Although Y397E is not a perfect surrogate for phosphorylated Y397, it manifests similar 

functional outcome to Y397 phosphorylation. Thus one functional effect of Y397 

phosphorylation by c-Abl is to diminish caspase-9’s activation of executioner caspases. 

 

 

 
 

Figure 4.9. Phosphorylated caspase-9 exhibits slower protein cleavage kinetics.  
(A) WT or (B) Y397F caspase-9 was incubated with c-Abl in the presence or absence of ATP. 1 µM 
caspase-9 from the phosphorylation reaction was allowed to cleave 3 µM full-length caspase-3 
C163A (catalytic-site inactivated variant) (C3 FL) for 30 min. Cleavage kinetics for each reaction are 
plotted as a function of the disappearance of the C3 FL band.  
(C) Representative Coomassie-stained gels and corresponding autoradiographs of phosphorylation 
reactions used in (A) and (B). Caspase-9 WT is visibly phosphorylated at Y397. 
(D) Correlation between caspase-9 phosphorylation as detected by autoradiography in (C) and 
inhibition of caspase-3 (C3) cleavage after 30 min. as shown in (A) and (B).  
(E) and (F) Caspase-9 WT or Y397F was incubated with c-Abl in the presence or absence of ATP. 1 
µM of caspase-9 from the phosphorylation reaction was allowed to cleave 3 µM full-length caspase-7 
C186S (catalytic site inactivated variant) (C7 FL) for 30 min. Cleavage kinetics for each reaction are 
plotted as a function of the disappearance of the C7 FL band. 
(G) Representative Coomassie-stained gel and corresponding autoradiograph of phosphorylation 
reactions used in (E) and (F). Caspase-9 WT is phosphorylated at Y397. 
(H) Correlation between caspase-9 phosphorylation as detected by autoradiography in (G) and 
inhibition of caspase-7 (C7) cleavage after 30 min. as shown in (E) and (F). 
Data shown for all of the above experiments are means ± SEM from three independent experiments 
done on three separate days. 
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Model for caspase-9 inhibition by Y397 phosphorylation 

 The substrate binding site of active, dimeric caspases consists of highly mobile loops - 

L2, L3, L4 from one monomer and L2’ from the opposite monomer - which, upon substrate 

binding, assume a properly ordered conformation to perform catalytic cleavage. Y397 is situated 

in loop L4 of caspase-9 (Figure 4.1A, 4.11B). In the substrate-bound structure, Y397 participates 

in the hydrophobic network along with I396 and W362 to engage the hydrophobic P4 residue 

(Figure 4.11A). Modeling a phosphotyrosine in place of Y397, it appears that both the added bulk 

and charge of phosphoY397 would directly impact substrate binding. Being situated in a highly 

mobile loop, the phosphotyrosine could be envisioned to reach into the substrate-binding cavity, 

essentially creating steric and electrostatic clashes with other subsite residues (Figure 4.11B). 

This would either directly obstruct the incoming substrate from binding, or prevent the loop 

bundle from assuming an ordered conformation keeping the active site in an unproductive state, 

or both.   

 
 

Figure 4.10. Caspase-9 Y397E showed attenuated cleavage kinetics of protein substrates. 
Cleavage of full-length catalytic site-inactivated variants caspase-3 C163A (A) and caspase-7 C186S 
(B) by WT caspase-9, Y397E and Y397F, as shown in Coomassie-stained denaturing gels. The 
intensity of the bands from the cleavage assays were quantified and plotted as a function of amount of 
full-length substrate protein remaining in the panels on the right. Data shown are means ± SEM of 
three independent experiments done on three separate days. 
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Figure 4.11. Models for 9 inhibition by phosphorylation at Y397. 
(A) A diagram of the interactions of 9 residues in the active site with the irreversible peptide inhibitor 
Z-EVD-Dcbmk (benzoxycarbonyl-Glu-Val-Asp-dichlorobenzylmethyl ketone) was generated using 
Ligplot58. The substrate peptide residues are labeled P4, P3, P2 and P1. Broken lines indicate H-bonds. 
Half-circles ( ) indicate hydrophobic interactions within 5 Å of 9 residues. Y397 takes part in a 
hydrophobic network to stabilize the side chain in the P4 position in the only extant structure of 9 (PDB 
ID 1JXQ) bound to a tripeptide capped at the N-terminus with a carboxybenzyl moiety. In the structure 
the carboxybenzyl occupies the S4 pocket which binds hydrophobic residues in the 9 recognition sites.  
(B) Y397 is in the highly mobile L4 loop, in close proximity to the substrate-binding cavity and loops 
L2 and L2’. A phosphotyrosine in this position (p-Y397) could create steric clashes and potentially 
prevent substrate binding by blocking access to the active site cavity, or by preventing the active site 
loops from achieving the catalytically competent conformation. Modeling of the phosphotyrosine was 
performed in Coot59 using PDB 1JXQ. 

 A 

 
 B 
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Y397 is phosphorylated in cells upon direct c-Abl activation 

 In vitro phosphorylation coupled with the use of unphosphorylatable protein variants has 

allowed identification of putative residues phosphorylated by kinases. However alternative 

specificity of kinases towards substrates in vitro has been reported in isolated cases21. The lack of 

regulatory elements normally present intracellularly has been suggested to contribute to altered 

phosphorylation. To determine whether Y397 was a bona fide cellular site of phosphorylation, 

recombinant WT caspase-9 was added into HEK 293T lysates supplemented with [γ-32P]ATP and 

orthovanadate, a phosphatase inhibitor. This resulted in visible phosphorylation of the 

CARD+Large (Figure 4.12A, Figure 4.13A, no Abl). Given that there are other kinases readily 

activated by addition of ATP and treatment of orthovanadate, and that caspase-9 has multiple 

phosphorylation sites in this region9,11,13–15,22,23, we were not surprised by this observation. 

Phosphorylation of the small subunit in WT caspase-9 in the absence of c-Abl was not evident, 

which could either be due to low titers of endogenous c-Abl in HEK 293T, or because c-Abl was 

not sufficiently activated, or both. Since the activation state of c-Abl was not known, the lysates 

were supplemented with recombinant c-Abl to allow in trans activation of c-Abl. This resulted in 

distinct phosphorylation of the small subunit in WT caspase-9, whereas Y397F exhibited 

negligible levels of small subunit phosphorylation (Figure 4.12A, 4.12B, 4.13B). For both WT 

and Y397F, the CARD+Large region appeared to retain its phosphorylation state. Addition of a c-

Abl inhibitor, Imatinib, abrogated the phosphorylation of the small subunit but not that of the 

CARD+Large (Figure 4.12A). This implies that the phosphorylation observed for the small 

subunit was predominantly due to c-Abl, while that for the CARD+Large was not, and could be 

reliant on the action of other kinases. 
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Figure 4.13. Phosphorylation of recombinant caspase-9 in HEK 293T lysates. 
(A) Recombinant WT caspase-9 was incubated with HEK 293T lysates with and without added c-Abl (20 
nM) over the course of 4h. The CARD+Large (CARD+Lg) region of caspase-9 is phosphorylated even 
without adding c-Abl. Only when c-Abl was added was there visible phosphorylation of the small (Sm) 
subunit. 
(B)Phosphorylation states of WT caspase-9 and Y397F in lysates. The small subunit is clearly 
phosphorylated in WT and weakly phosphorylated in Y397F. 
 

 
 
 
Figure 4.12. Caspase-9 is phosphorylated at Y397 by activated c-Abl in HEK 293T lysates. 
(A) Recombinant caspase-9 was phosphorylated in HEK 293T lysates. Lysates were supplemented with 
20 nM c-Abl, 200 µM orthovanadate and 1 mM ATP + [γ-32P]ATP to ensure in trans activation of c-
Abl. Where indicated, lysates were also treated with the c-Abl inhibitor Imatinib (200 µM) 30 min prior 
to addition of c-Abl. WT or Y397F caspase-9 (30 µg) were added to lysates to allow caspase-9 
phosphorylation. WT but not Y397F caspase-9 showed phosphorylation in the small (Sm) subunit, 
which was not visible with Imatinib-treated lysates. In some trials, the small subunit of Y397F also 
appears to be labeled albeit at a significantly lower level than that of WT (Supplemental Figure S4.4B). 
The phosphorylation observed for CARD+Large appeared to be c-Abl-independent, since Imatinib did 
not eliminate its phosphorylation. The band was confirmed to correspond to 32P-labeled CARD+Lg 
since it was not present in samples containing only lysates and [γ-32P]ATP (Figure 4.14)  
(B) Band intensities corresponding to a phosphorylated small subunit in WT and Y397F show that 
Y397F is significantly less phosphorylated (student’s t-test indicates data is statistically significant 
***P<0.05 at 99% confidence). Data shown are means ± SEM from three independent experiments 
performed on three separate days. 
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Figure 4.14. Negative control reactions in lysates. 
WT caspase-9 is phosphorylated in the CARD+Lg region in the absence of activated c-Abl. The bands 
were verified to correspond to caspase-9 since a reaction containing only HEK293T lysates and ATP did 
not show 32P-labeling at the corresponding molecular weight of the caspase-9 CARD+Lg. 
 
 
 
 We then proceeded to interrogate caspase-9 phosphorylation in cells upon activation of 

endogenous c-Abl. HEK 293T cells were treated with DPH, a known direct activator of c-Abl24, 

along with the phosphatase inhibitor orthovanadate. This led to c-Abl activation, as manifested by 

phosphorylation of c-Abl at Y41225. In addition, CrkII, a well-known physiological substrate of c-

Abl26, was phosphorylated only upon treatment of DPH. The presence of active, phosphorylated 

c-Abl and phosphorylated CrkII were confirmed by immunoblot against the 

phosphorylatedresidues p-Y412 (for c-Abl) and p-Y221 (for CrkII) (Figure 4.15A). The c-Abl 

inhibitor Imatinib abolished these phosphorylation events, demonstrating that c-Abl is indeed 

activated by DPH and vanadate (Figure 4.15A).  

 In order to probe caspase-9 phosphorylation by c-Abl, HEK 293T cells were transfected 

with FLAG-tagged caspase-9 catalytic site-inactivated variant C287A and the unphosphorylatable 

C287A/Y397F variant. Transfected cells were then treated with DPH/vanadate to induce c-Abl 

activation (Figures 4.15B, 4.16A, 4.16B, panels labeled Total). Immunoprecipitated caspase-9 

C287A was robustly tyrosine-phosphorylated as assessed by phosphotyrosine immunoblot 

(Figures 4.15B, 4.16A, 4.16B; panels labeled IP:FLAG). Together these data indicate that 

caspase-9 is a bona fide substrate of c-Abl. While phosphorylation was not entirely eliminated in 
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the unphosphorylatable variant C287A/Y397F, the level of phosphorylation was significantly 

weaker than in C287A, although the total amount of immunoprecipitated caspase-9 was the same 

in both transfected conditions (Figure 4.15B, 4.15C). Moreover, transfected cells treated with 

DMSO showed weak tyrosine phosphorylation of both C287A and C287A/Y397F, the 

phosphorylation levels of which are comparable to that of C287A/Y397F in DPH/vanadate-

treated cells (Figure 4.16A). This strongly supports the model that Y397 is the predominant site 

for c-Abl phosphorylation upon its activation by DPH and is the dominant site of c-Abl 

phosphorylation in cells. 

 
 
Figure 4.15. Activation of c-Abl leads to caspase-9 phosphorylation at Y397 intracellularly. 
(A) c-Abl is activated by 5-(1,3-diaryl-1H-pyrazol-4-yl)hydantoin (DPH) in synergy with orthovanadate 
treatment. HEK 293T cells were treated with DMSO, the known c-Abl activating compound DPH + 
orthovandate, or Imatinib for 2h. Lysates were probed for active c-Abl as assessed by immunoblot (IB). 
Active c-Abl is phosphorylated at Y412. DPH/vanadate treatment clearly resulted in c-Abl activation, 
as manifested by phosphorylation at Y412 and downstream phosphorylation of a well-known c-Abl 
substrate, CrkII. 
(B) Caspase-9 is phosphorylated at Y397 by active c-Abl intracellularly. HEK 293T cells were 
transfected with vector alone (p3xFLAG-CMV™-14), catalytic site-inactivated caspase-9 (C9 C287A-
3xFLAG or) or the unphosphorylatable variant (C9 C287A/Y397F-3xFLAG). 24h post-transfection, 
cells were treated with DPH/vanadate for 2h, harvested and lysed. Immunoblot of total proteins 
confirmed c-Abl activation and caspase-9 expression. Caspase-9 was immunoprecipitated from lysates 
with an anti-FLAG antibody and probed with anti-phosphotyrosine (p-Tyr) and anti-caspase-9 by 
immunoblotting. Cells transfected with C287A/Y397F showed significantly lower levels of 
phosphotyrosine in uncleaved caspase-9 compared with those transfected with C287A, although the 
levels of immunoprecipitated caspase-9 in both C287A and C287A/Y397F were similar. 
(C) Relative abundance of phosphotyrosine (p-Tyr) in caspase-9 C287A and C287A/Y397F. Band 
intensities of p-Tyr were normalized against corresponding band intensities of caspase-9 in the 
immunoprecipitates. Student’s t-test indicates data is statistically significant *P<0.05 at 99% 
confidence. Data shown are means of three independent experiments done on three separate days. 
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Figure 4.16. Independent trials of caspase-9 phosphorylation in cells by active c-Abl. 
(A) Caspase-9 shows basal tyrosine phosphorylation in the absence of active c-Abl. 
Both caspase-9 C287A and C287A/Y397F in DMSO-treated cells showed weak tyrosine phosphorylation, 
the levels of which were similar to that of C287A/Y397F in DPH/vanadate-treated cells, suggesting that 
this basal phosphorylation is independent of c-Abl activity. 
(B) Another independent trial showing that cells transfected with C287A/Y397F are less abundant in 
tyrosine phosphorylated-caspase-9 than those transfected with C287A. 
 
 
 

Discussion 

 It is clear from the data presented here that Y397 is a bona fide site of phosphorylation 

intracellularly, as was predicted by in vitro phosphorylation studies using purified proteins. There 

has been some suggestion in the literature that in vitro phosphorylation of kinase substrates 

sometimes differs from in cellular phosphorylation21,27,28. We have not previously observed 

irregular phosphorylation of caspase substrates by any of the kinases we have studied19,29,30. Once 

again in this work, we found that in vitro phosphorylation by c-Abl accurately reflected the 

intracellular phosphorylation specificity we observed. This fidelity between in vitro and cell-

based observations is probably due to caspase-9 being a direct substrate of c-Abl. Our data from 

multiple kinase:caspase pairs suggest that when the appropriate kinase is studied, in vitro and 

cellular phosphorylation patterns are conserved19,29,30.  
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 While it is clear that Y397 is a bona fide site of c-Abl phosphorylation of caspase-9, one 

of the most surprising aspects of our work is the fact that the reported sites on caspase-9, 

particularly Y153, was not observed to be phosphorylated by c-Abl either using purified proteins 

or intracellularly and was not activated by c-Abl as previously reported. This could be for a 

number of reasons. First, the study that identified Y153 phosphorylation as activating did not 

investigate the functional impact of substitutions at Y153 on proteolytic activity, but assumed that 

Y153F caspase-9 was proteolytically active12. In this work, we have shown that Y153F is 

intrinsically inactive. The intrinsic lack of activity led to the interpretation that Y153F transfected 

cells were less susceptible to cell death due to phosphorylation by c-Abl12, when in fact, cells 

should have been rendered less susceptible to cell death due to the lack of proteolytic activity in 

Y153F caspase-9. Second, it is important to note that Y397 is contained within a much more ideal 

c-Abl recognition site than Y153 is. Second, c-Abl phosphorylation of caspase-9 at Y153 was 

reported after induction of DNA damage12. c-Abl is known to shuttle between the cytosol and the 

nucleus31 and DNA damage activates the nuclear c-Abl32,33. It is possible that c-Abl activated by 

DNA damage has an altered sequence specificity or recognizes caspase-9 in complex with 

cofactors that direct phosphorylation to Y153, or prefers to phosphorylate Y153 in caspase-9 in a 

different conformational state. We are only able to speculate on the altered specificity or complex 

formation, but we have evidence that the conformational state is not likely to contribute 

significantly to the ability of c-Abl to recognize caspase-9. We found that neither caspase-9 in the 

zymogen nor in the cleaved state was phosphorylated at Y153 (Figure 4.3B, 4.3D) in vitro. 

Fourth, cases of multisite phosphorylation on proteins resulting in antagonistic effects have been 

reported34,35, so it is possible that two sites in caspase-9 are differentially phosphorylated by c-Abl 

in vivo. Finally, and most probably, it is also possible that c-Abl activated by DNA damage 

activates another kinase that is responsible for Y153 phosphorylation. The fact that Y397 is 

contained within a more ideal c-Abl recognition site than Y153 may also suggest that Y153 
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phosphorylation is achieved not by c-Abl directly, but by a different kinase that is activated by c-

Abl or by the same stimuli that activate c-Abl.  

 Y397 is present in the L4 loop, which forms the side of the substrate-binding groove in 

caspases. This site is a privileged location for regulation in that is adjacent to but does not directly 

interact with substrate. No phosphorylatable tyrosines are present in the L4 loops of other 

caspases (Figure 4.17A, 4.17B) so phosphorylation by c-Abl and inhibition by this active-site 

adjacent mechanism is likely to be unique to caspase-9. Thus Y397 may provide a chemical 

handle for development of compounds that inhibit caspase-9 specifically. Interestingly, in 

caspase-6, C264 which is also in the L4 loop, is palmitoylated36. The functional impact of this 

palmitoylation has not been fully uncovered but it is tempting to speculate that like caspase-9 

Y397 phosphorylation, caspase-6 C264 palmitoylation may result in loss of activity.  

 
 
Figure 4.17. Y397 is unique to caspase-9. 
(A) Sequence alignment of loop L4 of apoptotic caspases. Only caspase-9 contains the 
phosphorylatable tyrosine at any position in the L4 loop. 
(B) Structure alignment of caspases -3, -6, -7, -8 and -9 highlighting the active site loop bundle. 
Residues corresponding to sites Y153 and Y397 are shown in sticks.  A tyrosine in Y153 site is 
present in all caspase structures shown, while only caspase-9 has a tyrosine in position Y397. 
(C) Other apoptotic caspases were incubated with c-Abl in the presence of ATP + [γ-32P]ATP to 
assess the ability of c-Abl to phosphorylate them. Caspase-9 clearly appears to be the preferred 
substrate of c-Abl over other caspases in vitro. Caspase-8 is weakly phosphorylated at both its large 
and small subunits. The following caspase variants were used: caspase-3 CT C163A, WT caspase-6 
CT, caspase-7 CT C186S, caspase-8 ∆DED and WT caspase-9 CT. CT refers to Constitutively Two-
Chain caspase construct. 
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The L4 has the most diverse sequence among the active site loops in the apoptotic caspases thus 

posttranslational or targeted modification of L4 could be an amenable method of inhibition as it 

might confer added specificity for each caspase. 

 While the full impacts of Y397 phosphorylation are not known it is tempting to speculate 

about the functional impact of this phosphorylation event. A prevalent consequence of 

phosphorylation is to impact protein-protein interactions. Phosphorylation can either disrupt or 

promote binding and in some cases even create a new binding interface. The region where Y397 

resides, 395GIYK398, in L4 of caspase-9 is involved in crystal contacts37, which may suggest that 

this region could potentially be involved in protein-protein binding under native conditions as 

well. Caspase-9 is activated by recruitment to the apoptosome via CARD-CARD interactions 

with Apaf-138. Recently, a structure of the human apoptosome revealed that a monomer of 

caspase-9 core (p20/p10) is “parked” on the apoptosome hub, likely in a dynamic manner, 

independent of the other caspase-9 dimer/s undergoing activation within the CARD-CARD 

ring39.  Monomeric caspase-9 cores were also reported to bind to the apoptosome by forming 

heterodimer with the Apaf-1 nucleotide oligomerization domain (NOD) via the caspase-9 small 

(p10) subunit40. In addition, the apoptosome of C. elegans formed from CED4 and CED3 

(homologues of Apaf-1 and caspase-9, respectively) shows that the L2’ region of CED3 directly 

interacts with the oligomerized CED4 and is crucial in the formation of a functional 

holoenzyme41. These observations imply that in addition to the CARD, other regions in caspase-9 

interact with the apoptosome and potentially influence its activation. Perhaps the Y397 region of 

the small subunit is involved in direct interactions with the apoptosome, such that 

phosphorylation of Y397 would impact these interactions.  

 c-Abl has been reported to play both pro-apoptotic and anti-apoptotic/pro-survival roles. 

The fact that caspase-9 is inhibited by c-Abl phosphorylation at Y397 suggests that this molecular 

event contributes to the pro-survival nature of c-Abl. Whereas c-Abl activation by DNA damage 

is known to induce cell death, hyperactive cytoplasmic kinase activities of c-Abl and Abl fusion 
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proteins are recognized for their oncogenic potential42,43. Overexpression and activation of c-Abl 

has been detected in certain breast, colon and lung cancer carcinoma, and in some cases 

melanoma (review43). A prime example is BCR-Abl fusion kinase, whose loss of autoinhibition 

and increased catalytic activity is highly persistent in chronic myelogenous leukemia (CML) 

(reviews44,45). Besides deregulation and hyperactivity, the expanded diversity of Abl substrates 

due to altered specificities is thought to be another driving force towards oncogenicity46,47. Thus 

Abl phosphorylation of pro-apoptotic proteins with a loss-of-function consequence is consistent 

with c-Abl’s anti-apoptotic/pro-survival function. Targeting an initiator caspase such as caspase-9 

serves as an efficient route to execute an upstream block in apoptosis signaling.  

 The dynamic crosstalk between caspases and kinases enables their co-regulation, which is 

essential for cellular homeostasis. In many cases kinases are regulated by proteolysis by the very 

caspases they phosphorylate (reviews6,48). The cellular outcome, whether promotion or 

suppression of apoptosis, is dictated by which functional impact overcomes or precedes the other: 

caspase phosphorylation or kinase cleavage. We did not observe any apparent cleavage of c-Abl 

by caspase-9 in vitro. One possibility is that caspase-9 only exhibits basal or much lower levels of 

activity whereas the kinase activity of c-Abl is heavily favored under in vitro phosphorylation 

conditions. It is also possible that c-Abl is simply not a preferred substrate of caspase-9. 

However, the case might be different intracellularly since c-Abl was shown to be cleaved by 

caspase-8 and caspase-3 causing its transformation to an active state49 and/or its relocation to the 

nucleus50. Given that c-Abl exerts dual yet opposing functions in apoptosis, one could infer that 

the molecular dialogue between c-Abl and caspase-9 would especially be more relevant in cell 

death signaling. We also observed that among apoptotic caspases, caspase-9 is the most preferred 

substrate of c-Abl (Figure 4.15C); we envision that exploiting this interaction could be a suitable 

approach to specifically control caspase-9 function. 

 More phosphorylation sites have been reported in caspase-9 than in any other caspase 

(reviews6–8). Perhaps this is simply due to the fact that more effort has focused on caspase-9, or 
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because there is a need for additional regulation of caspase-9. The latter is more likely, as 

caspase-9’s upstream function requires exquisite control to prevent any inopportune amplification 

of apoptotic signals. Given the rapid rate of proteomics advancement, we expect more 

phosphorylation sites to be reported on caspases under different cellular conditions. In the study 

of the interactions of kinase with their substrates, it is often insufficient to rely solely on cell-

based assays, particularly when the intrinsic activity of mutant enzymes has not been assessed. 

Accurately identifying functionally relevant sites and elucidating the mechanism of 

phosphoregulation requires complementary cellular, biochemical and structural interrogation, as 

was done in this case. 

 Our recent data elucidating Y397 phosphorylation adds to the growing list of caspase 

phosphoregulation (see Chapter V, Table 5.1). Our results clearly demonstrate that Y397 in 

caspase-9 is a bona fide and the dominant site of phosphorylation by c-Abl intracellularly. An 

active-site adjacent residue, Y397 does not seem to participate in strong molecular interactions 

with residues within the substrate-binding pocket or with the substrate itself, but phosphorylation 

transforms this site to one that directly inhibits substrate binding. This is the first report of a novel 

c-Abl phosphorylation site unique to caspase-9, and targeting Y397 may serve as an alternative 

approach for the specific control of caspase-9. Our results suggest that phosphorylation of 

caspase-9 by c-Abl is an important mechanism by which c-Abl fulfills its survival role to escape 

apoptosis. The next studies prompted by these findings are to determine the level of caspase-9 

phosphorylation at Y397 in cancer cells where c-Abl is overexpressed and hyperactive as it may 

provide possible avenues for caspase-kinase co-therapies in cancer and other proliferative 

diseases. 
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Materials and Methods 

DNA constructs 

 The caspase-9 full-length wild-type (C9FL WT) expression construct (gift of Guy 

Salvesen) consists of the human caspase-9 gene (amino acids 1-416) with C-terminal 6x His tag 

in pET23b54. The caspase-9 constitutively two-chain (C9 CT) construct consists of an E. coli 

codon-optimized synthetic gene (GenScript) built for expression of the CARD+Large subunit 

(amino acids 1-315) and separate expression of the small subunit (amino acids 316-416 plus 

6xHis) which was under the control of a second ribosome binding site. The Caspase-9 ΔCARD 

expression construct was made by deleting the CARD in the C9FL construct by deletion 

mutagenesis and inserting a start codon before the first amino acid (Val-139) of the large subunit. 

Caspase-3 full-length wild-type expression construct (gift of Guy Salvesen) consists of the human 

caspase-3 gene (amino acids 1-279 plus 6x His) in pET23b 55. Caspase variants encoding amino 

acid substitutions were generated by point mutagenesis. Bacterial expression constructs for the c-

Abl kinase domain (c-Abl kinase) (residues 229-511) in pET28a, c-Abl SH3-SH2-kinase domains 

(c-Abl 3D) (residues 46-515) in pET28a and YopH phosphatase in pCDFDuet-1 were gifts from 

Markus Seeliger56 (Stony Brook University School of Medicine, NY). Both c-Abl constructs have 

a TEV protease-cleavable 6xHis tag at the N-termini. For caspase-9 expression in HEK 293T 

cells, caspase-9 FL C287A or FL C287A/Y397F gene was subcloned between HindIII and 

BamHI sites of the p3xFLAG-CMV™-14 vector (Sigma), producing a C-terminally 3xFLAG-

tagged caspase-9 expression construct.  

Expression and Purification of Proteins 

 Purification of caspase-9 proteins. Caspase-9 (FL, CT and ΔCARD expression 

constructs) in pET23b were individually transformed into the BL21(DE3) E. coli strain. Cells 

were grown in 2xYT media with 100 µg/mL of Ampicillin at 37˚C with shaking until OD600=1.2. 

The temperature was lowered to 15˚C and protein expression was induced with 1 mM IPTG for 3 
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h. Cells were harvested by centrifugation at 4,700 x g for 10 min at 4˚C. Thawed cells were 

resuspended in a buffer containing 50 mM sodium phosphate pH 7.0, 300 mM NaCl, 2 mM 

imidazole and lysed by use of a microfluidizer (Microfluidics, Inc.). Cell lysate was clarified by 

centrifugation at 37,000 x g for 1 h at 4˚C. The supernatant was then loaded onto a HiTrap Ni-

affinity column (GE Healthcare). Proteins were eluted using a linear imidazole gradient from 2-

100 mM. Fractions containing caspase-9 were pooled, diluted eight-fold in 20 mM Tris pH 8.5, 5 

mM DTT and loaded onto a HiTrap Q-column (GE Healthcare). Proteins were eluted using a 

linear NaCl gradient from 0-275 mM. Caspase-9 eluted in buffer with 180 mM NaCl. Peak 

fractions were analyzed by SDS-PAGE for purity and stored in -80˚C until further use. 

 Purification of caspase-3. Full-length caspase-3 (wild-type or the catalytic site 

inactivated variant C163S expression constructs) in pET23b were individually transformed into 

the BL21(DE3) strain of E. coli. Cultures were grown in 2xYT media supplemented with 100 

µg/mL ampicillin at 37˚C with shaking until OD600=0.8. The temperature was lowered to 30˚C 

and protein expression as induced by 1 mM IPTG for 3 h. Cells were harvested by centrifugation 

at 4,700 x g for 10 min at 4˚C. Cells were freeze-thawed, resuspended in lysis buffer (50 mM 

sodium phosphate pH 8,300 mM NaCl, 2 mM imidazole) and lysed by use of a microfluidizer. 

Lysed cells were centrifuged at 30,600 x g for 50 min at 4˚C to remove cellular debris. The 

supernatant was loaded onto a HiTrap Ni-NTA column. The column was then washed with 50 

mM imidazole in lysis buffer and proteins were eluted with 250 mM in lysis buffer. The eluent 

was diluted six-fold with buffer A (20 mM Tris pH 8.0, 3 mM DTT) and loaded onto a HiTrap Q-

column. Proteins were eluted using a linear gradient from 0 – 500 mM NaCl. Caspase-3 eluted in 

buffer A with 250 mM NaCl. Peak fractions were analyzed by SDS-PAGE for purity and stored 

in -80˚C until use. 

 Purification of c-Abl kinase. c-Abl kinase was purified according to a method developed 

by Seeliger, et al56. Briefly, the expression constructs for c-Abl in pET28a and for YopH in 

pCDFDuet were co-transformed in BL21(DE3) E. coli cells. Cells were grown in 2xYT media 
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supplemented with kanamycin (50 µg/mL) and streptomycin (50 µg/mL) at 37˚C with shaking 

until OD600=1.2. The temperature was lowered to 18˚C and protein expression was induced with 

0.2 mM IPTG for 16h. Cells were harvested by centrifugation at 4,700 x g at 4˚C and stored in -

80˚C until use. Thawed cells were resuspended in lysis buffer (50 mM Tris pH 8.0, 500 mM 

NaCl, 5% glycerol, 25 mM imidazole), lysed by passing through a microfluidizer and centrifuged 

at 37,000 x g for 1h at 4˚C. The supernatant was loaded onto a 5-mL HiTrap Ni-affinity column. 

Proteins were eluted using a linear gradient of 25 – 250 mM imidazole in lysis buffer. Fractions 

containing c-Abl were pooled and treated with TEV protease to cleave the His-tag (1 mg of TEV 

per 25 mg of crude kinase). Cleavage proceeded at 4˚C for 16 h while dialyzing against 20 

volumes of buffer A (20 mM Tris pH 8.0, 100 mM NaCl, 5% glycerol and 1 mM DTT). The 

dialysate was diluted two-fold with buffer A and loaded onto a HiTrap Q column. The column 

was developed using a linear gradient of 100-350 mM NaCl in buffer A. c-Abl eluted in buffer A 

with 200 mM NaCl. Peak fractions were analyzed by SDS-PAGE for purity and stored in -80˚C 

until use. 

In vitro phosphorylation and dephosphorylation of caspase-9 

 Autophosphorylation of c-Abl. c-Abl (20 µM) was incubated in kinase activity buffer (50 

mM Tris-Cl pH 7.5, 20 mM MgCl2, 0.1 mM EDTA, 0.5 mM EGTA, 5 mM β-glycerophosphate, 

1 mM Na3VO4) and allowed to autoactivate in the presence of 250 µM ATP spiked with [γ-

32P]ATP (10 µCi/µL, Perkin Elmer) for 2 h at 30˚C. 

 Phosphorylation of caspase-9. Caspase-9 (50 µM) was incubated with 1 µM of 

autoactivated c-Abl in kinase activity buffer with 1 mM ATP with [γ-32P]ATP for 4 h at 30˚C. For 

phosphorylation of caspase-9 in HEK 293T lysates, 20 nM of c-Abl was incubated first with the 

lysates (150 µg total protein) with or without Imatinib (200 µM, Sigma) for 30 min. Caspase-9, 

WT or Y397F, (30 µg) was then added and the reaction was allowed to proceed for 4h at 30˚C. 
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 Dephosphorylation of caspase-9. Phosphorylation reactions were treated with calf 

intestinal alkaline phosphatase (CIP)(NEB) (10 U for every 10 µg of incorporated phosphate). 

The reaction was incubated at 30˚C for 1 h. Removal of phosphates was confirmed by the loss of 

band intensity in the phosphorimage. 

 Phosphoenrichment. c-Abl-phosphorylated caspase-9 WT (100 µM) was buffer-

exchanged into a loading buffer (TALON® PMAC kit, Clontech) using a NAP™5 desalting 

column (GE Healthcare). The buffer-exchanged protein solution was then mixed with TALON® 

PMAC magnetic beads (Clontech) for 1 h at 4˚C. The beads were washed twice with loading 

buffer and phosphorylated proteins were eluted stepwise from the beads using 250 mM sodium 

phosphate pH 7.2, 0.5 M NaCl. Protein concentrations of eluted fractions were estimated using a 

BCA (bicinchoninic acid) assay kit (PierceTM, Thermo Scientific). 

 All reactions were stopped by addition of SDS-PAGE sample dye and boiling for 10 min. 

Proteins were resolved by denaturing SDS-PAGE. Phosphorimages were obtained using Typhoon 

FLA 7000 (GE Healthcare) and bands were quantified using ImageQuant TL software (GE 

Healthcare). Amount of phosphate incorporated was quantified from an ATP standard curve on 

the same phosphorimage (Figure 4.18). 

 
 
Figure 4.18. [γ-32P]ATP standards allow quantification of phosphorylation levels in caspase-9. 
Representative Coomassie-stained gel and corresponding phosphorimage of casp-9 phosphorylation by the 
three domain (3D) c-Abl kinase in the presence of [γ-32P]ATP with ATP standards on the same 
phosphorimage. The intensity of the standards allowed phosphorylation levels in casp-9 and c-Abl to be 
accurately quantified. 
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Caspase-9 activity assay 

 Caspase-9 was diluted in caspase-9 activity assay buffer (100 mM MES pH 6.5, 10% 

PEG 8000, 5 mM DTT) to a final concentration of 800 nM. For determination of catalytic 

parameters, a substrate titration was performed in the range of 0 - 3 mM fluorogenic substrate Ac-

LEHD-AFC (Ex 365 / Em 495) (Enzo Life Sciences). Enzyme concentrations were determined 

by active-site titration using a quantitative inhibitor z-VAD-FMK (Enzo Life Sciences). The rate 

of LEHD cleavage (LEHDase) was measured using a Spectramax M5 fluorescence plate reader 

(Molecular Devices). For caspase-9 activity assays after phosphorylation, 1.5 µM of caspase-9 

and 1 mM substrate were used. 

Protein Cleavage assays 

 Self-cleavage. Zymogen forms of caspase-9 (WT, Y153E, Y153D and Y153F) (3 µM) 

were allowed to undergo self-cleavage in a minimal activity assay buffer (100 mM MES pH 6.5, 

20% PEG 400, 5 mM DTT) at 37˚C over the course of 2 h.  

 Cleavage by caspase-3. Caspase-3 WT (20 nM) was prepared in caspase-3 activity assay 

buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 5 mM CaCl2, 10% PEG 400, 2 mM DTT). Full-

length, uncleaved caspase-9 (catalytic site inactivated variant C287A or phosphomimetics Y153E 

and Y153D, or Y153F) (5 µM) was added and the reaction was incubated at 37˚C for times 

indicated. 

 Cleavage of caspase-3 and caspase-7 by caspase-9. Caspase-9 WT or Y397F (50 µM) 

was initially phosphorylated by c-Abl. Phosphorylated (WT) and unphosphorylated (Y397F) 

caspase-9 was then diluted to 1 µM in caspase-9 minimal activity buffer after which each of the 

catalytic site inactivated variants of caspase-3 C163S or caspase-7 C186A were added to a final 

concentration of 3 µM and incubated at 32˚C. Aliquots were taken at different time points within 

30 min.  

 All cleavage reactions were stopped by addition of SDS-PAGE sample buffer and boiling 

for 10 min. Bands were quantified by densitometry using ImageLab software (BioRad). 
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Mammalian Cell culture, transfections and preparation of extracts 

 HEK 293T cells were grown in RPMI media supplemented with 10% fetal bovine serum, 

2 mM glutamine, 50 I.U. penicillin, 50 µg/mL streptomycin and 2 mM sodium pyruvate.  Cells 

were incubated at 37°C in a humidified atmosphere maintained at 5% CO2. Cells were transiently 

transfected with either empty vector (p3xFLAG-CMV-14) or caspase-9 (C9 C287A-3xFLAG or 

C9 C287A/Y397F-3xFLAG) using the X-tremeGENE HP DNA transfection reagent (Roche) 

according to manufacturer instructions. 

 After 24 h of expression, transfected cells were washed with 1x PBS and lysed with 1x 

Modified Barth’s Saline (MBS)-TritonX pH 7.8 containing 5 mM HEPES pH 7.8, 176 mM NaCl, 

1 mM KCl, 1mM MgSO4, 2.5 mM NaHCO3, 1% Triton-X100 and supplemented with Halt™ 

protease and phosphatase inhibitor cocktail (Thermo Scientific). Lysates were clarified by 

centrifugation for 30 min at 16,100 x g at 4˚C.  

Activation of c-Abl in HEK 293T 

 Transfected HEK 293T cultures grown to ~90% confluency were treated with 20 µM 5-

(1,3-diaryl-1H-pyrazol-4-yl)hydantoin (DPH) (Sigma) and 100 µM sodium orthovanadate 

(Sigma) for 2 h. For untreated cells, DMSO was added in place of DPH. To determine the 

inhibition of endogenous c-Abl, HEK 293T cells were initially treated with 20 µM of Imatinib 

mesylate (Sigma) for 16h prior to DPH treatment. Activation was assessed by monitoring 

autophosphorylation of c-Abl at Y412 and phosphorylation of known c-Abl substrate CrkII by 

immunoblot. 

Immunoprecipitation and Immunoblotting 

 3xFLAG-tagged caspase-9 from lysates of transfected cells were immunoprecipitated 

using anti-FLAG® M2 Affinity Gel (Sigma). The beads with covalently linked antibody were 

incubated with the lysates for 16 h at 4˚C using an end-to-end rotator. Beads were washed three 

times with 1x MBS-TritonX buffer with Halt™ protease and phosphatase inhibitor cocktail 

(Thermo Scientific). Immunoprecipitates were eluted with non-denaturing Laemmli buffer, after 
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which 5 mM DTT (final concentration) was added and the solution was boiled for 5 min. Total 

lysates and immunoprecipitates were loaded onto a 5-22 % SDS-PAGE and electroblotted to a 

PVDF membrane. Total lysates were probed with antibodies against the following: FLAG 

(mouse, clone M2, Millipore), phosphoY412 c-Abl (rabbit, Cell Signaling Technologies (CST)), 

phosphoY221 CrkII (rabbit, CST), caspase-9 (rabbit, CST) and cyclophilin A (rabbit, CST) which 

served as a loading control. Antibody-antigen complexes were probed with anti-phosphotyrosine 

(mouse, 4G10 Platinum, Millipore) and anti-caspase-9 (mouse, Proteintech). All primary 

antibodies were used at 1:1000 dilution. Prior to immunoblotting with anti-caspase-9, the 

membrane was stripped using a stripping buffer pH 2.2 (20 mM glycine, 0.1% (w/v) SDS, 1% 

Tween) for 1h then washed sequentially with 1x PBS and 1xTBST. Stripping was confirmed by 

probing with a secondary antibody and visualizing no bands after substrate incubation. The 

following HRP-conjugated secondary antibodies were used (all from Jackson Immunoresearch): 

goat anti-mouse IgG, goat anti-mouse IgG light chain-specific, goat anti-rabbit IgG. 

Immunoreactive bands were were detected by enhanced chemiluminescence using an X-ray film 

and by visualizing in ChemiDoc XRS+ (BioRad). For detection by X-ray fil, secondary 

antibodies were diluted 1:5000; for detection by ChemiDoc XRS+, secondary antibodies were 

diluted 1:50,000. 

Protein Digestion and LC-MS/MS  

 In-solution digestion. Caspase-9 (50 µM) was phosphorylated by c-Abl (1 µM) with 1 

mM ATP for 4h at 30˚C. After phosphorylation, 5 mM DTT (final concentration) was added and 

incubated at 30˚C for 20 min. Cysteine alkylation was then performed by treatment of the sample 

with 8 mM iodoacetamide (Sigma). The tube was covered with foil to prevent light-mediated 

reactions and the reaction was agitated using an end-to-end rotator for 15 min at RT. Unreacted 

iodoacetamide was quenched by adding 5 mM DTT for 15 min at RT. Half of this reaction (~100 

µg caspase-9) was diluted in the same volume of Arg-C incubation buffer (50 mM Tris pH 7.7, 5 

mM CaCl2 and 2 mM EDTA). 1 µg of Arg-C protease (sequencing grade, Promega) in 50 µL 
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activation buffer (5 mM Tris-Cl pH 7.7, 5 mM DTT, 200 µM EDTA) was then added to the 

reaction. Digestion was allowed to proceed for 16h at 37˚C. The reaction was stopped by adding 

10% formic acid to a final concentration of 0.5%. Final pH was confirmed to be ≤ 2.0. Arg-C was 

removed using a Microcon® spin filter column MWCO 10K (Millipore) centrifuged at 16,100 x 

g for 15 min. Peptide concentration was estimated by absorbance at 280 nm using a NanoDropTM 

2000c spectrophotometer (Thermo Scientific). Digested proteins were diluted with 1% formic 

acid to contain 2 µg of peptides. 

 LC-MS/MS. Protein digests were diluted in 0.1% formic acid in water (solvent A) and 

were analyzed on an Orbitrap FusionTM mass spectrometer (Thermo Scientific) coupled to an 

Easy-nLC 1000 (Thermo Scientific) ultra high-pressure liquid chromatography (UHPLC) pump. 

Analytical LC separations were performed on a FortisBIO C18 nano-flow column (150 mm x 75 

µm, 1.7 µm (Fortis Technologies Ltd.)) at a flow rate of 225 nL/min. The following step gradient 

was used: 0-40% solvent B (0.1% formic acid in acetonitrile) for the first 90 min then 40-85% B 

for 90-95 min. Total run time was set to 130 min. MS1 spectra were collected on a positive 

polarity mode with a scan range from m/z 350-1500 at a resolution of 120,000 with an automated 

gain control (AGC) target of 400,000 and a maximum injection time of 50 ms. The most intense 

ions were selected for MS/MS. A dynamic exclusion window of 60 s with a mass tolerance of 

±10 ppm was used to exclude precursors. MS2 precursors were isolated with a quadrupole mass 

filter, fragmented by electron transfer dissociation (ETD) and detected by an ion trap mass 

analyzer. MS2 was operated with an AGC target of 50,000 and a maximum injection time of 100 

ms. MS/MS analysis workflow was created with Proteome Discoverer v1.4 (Thermo Scientific). 

Assignment of MS/MS spectra was performed using the SEQUEST algorithm utilizing the 

FASTA sequence for human caspase-9 (UniProt ID P55211). SEQUEST searches were 

performed with a 10 ppm precursor mass tolerance and 0.5 Da fragment mass tolerance while 

requiring peptide termini to have ArgC protease specificity and allowing up to three missed 
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cleavages. Carbamidomethylation of cysteine residues (+57.021 Da) and phosphorylation of 

tyrosine residues (+79.966) were set as dynamic modifications. 
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CHAPTER V 

CASPASE-9 PHOSPHORYLATION BY PKA AND c-ABL: 

BLOCKING THE APOPTOTIC CASCADE 

 

 The power to control cellular signaling pathways has been one of the driving concepts in 

therapeutic intervention and drug development aimed at finding cures for deadly and severely 

debilitating human diseases. A retrospective examination of the basis of the pathogenesis of these 

diseases would reveal a fundamental signaling pathway that almost always contributes to the 

progression, or even accounts for that disease. A prominent critical pathway is apoptosis or 

programmed cell death, a mechanism utilized by multicellular organisms to achieve tissue 

homeostasis and ensure survival by safely disposing unwanted, harmful or unneeded cells. 

Diseases associated with defective apoptosis include cancer, neurodegeneration, cardiovascular 

diseases and autoimmune disorders. The past few decades have seen continuous efforts to unravel 

the many layers of how the cell expertly controls this very complex pathway, resulting in a 

breathtaking wealth of knowledge about apoptotic signaling. The attractive idea that one would 

be able to control cell death as a means to treat cancer or neurodegeneration has prompted 

numerous studies involving core apoptotic components that can either serve as targets or, those 

that could potentially be elevated to the clinic as biological therapeutics. 

 Many elements coordinate to ensure the faithful execution of apoptosis, but caspases 

have solicited much interest as appealing therapeutic targets not only because of the great extent 

of their killing potential, but also the distinctive property of possessing various switches that 

allow them to be turned on or off. One particular molecular switch that controls caspase function 

is phosphorylation. While the functional phenotype (suppression or induction of apoptosis) 

resulting from phosphorylation of caspases has been known in most cases, key molecular details 

that would explain the functional consequences of phosphorylation have been nearly completely 

lacking. This dissertation presented detailed structural and mechanistic investigations of caspase-
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9 regulation by phosphorylation in order to provide information that will aid in designing 

therapeutic strategies for apoptosis-associated diseases. 

Phosphorylation at S183 and Y397 Directly Inhibits Caspase-9 

 In Chapter I, we put forth the many aspects in caspase-9 phosphorylation that needs to be 

addressed in order to fully harness the mechanism of phosphoregulation for therapeutic purposes. 

One of the major findings of this work is that phosphorylation of caspase-9 at two dominant sites, 

S183 and Y397, abides by the common theme of phosphorylation, directly inhibiting a caspase’s 

catalytic function. S183 is phosphorylated by PKA, while Y397 is acted upon by c-Abl kinase. 

Two previous findings prompted us to investigate caspase-9 phosphorylation by PKA and c-Abl. 

One was the prior report and conclusion that phosphorylation of three sites (S99, S183 and S95) 

in caspase-9 was redundant and nonessential to caspase-9 inhibition1. The second was that among 

the many reported phosphorylation of caspase-9, only phosphosphorylation by c-Abl at Y153 

apparently leads to self-activation and promotes apoptosis2. Our experience with studying 

multiple caspase:kinase3,4 pairs led us to hypothesize that contrary to what was reported, 

phosphorylation by PKA and c-Abl would directly inhibit caspase-9 function. The data in this 

dissertation have shown that assertion to be true. 

 Chapter II presents comprehensive studies to elucidate the molecular mechanism of 

caspase-9 inhibition by PKA. One crucial detail that emerged was that caspase-9 was directly 

inhibited by PKA phosphorylation. Using phosphomimetics, in vitro phosphorylation and site-

specific phosphoincorporation, we identified S183 as the predominant site of caspase-9 

phosphorylation leading to inhibition. This finding is noteworthy because it contradicts the prior 

conclusion of Martin et al.1 about the non-functional or silent effect of PKA phosphorylation in 

caspase-9 inhibition. We are able to explain why Martin et al. misinterpreted their data leading to 

an erroneous conclusion. Specifically, as is common in many cell-biological studies, they 

neglected to biochemically assess the catalytic function of the mutants they used in their studies. 

Because the variants they used were inherently inactive, but were assumed to be active, the 
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conclusions drawn by their paper were faulty. Our results clearly showed that a phosphorylation 

of S183 was enough to render caspase-9 catalytically inactive. In Chapter IV, we employed the 

same strategies from Chapter II to explore the activating effect of c-Abl phosphorylation on 

caspase-9 as previously reported2. While we were thrilled with the prospect of exploiting a unique 

activating mechanism in caspase-9, our results pointed two major findings, both of which were 

contrary to what was previously reported. First, we uncovered that Y153 is not the major site of 

phosphorylation by c-Abl, rather we discovered a novel site of phosphorylation in caspase-9, 

Y397, which was observed to be robustly phosphorylated both in vitro and intracellularly. 

Second, phosphorylation of Y397 by c-Abl does not activate but inhibits caspase-9 activity. In the 

paper by Raina et al.2, the conclusion that phosphorylation by c-Abl activates caspase-9 was again 

based on the erroneous assumption that the unphosphorylatable mutant Y153F was active. They 

attributed the observed suppression of apoptosis to the absence of phosphorylation in Y153. In 

fact, our biochemical assays clearly show that Y153F has severely impaired catalytic activity, and 

would explain the attenuated apoptosis in cells expressing Y153F. 

 It was evident that our results were not in total agreement with what was previously 

reported. We provided an updated interpretation of the previous results, citing the importance of 

performing structural and biochemical analyses to complement cell-based assays. While cell-

based assays are essential in discerning the biological relevance of phosphorylation, conclusions 

derived from these assays can be misleading, most especially when the intrinsic activities of 

caspase-9 variants were not assessed and taken into account. Such was the case for both papers on 

PKA and c-Abl phosphorylation. In addition, structural analysis of caspase-9 S183 and Y153 

would have instantly provided a snapshot of the possible functional effect of phosphorylation. 

S183 is involved in critical interactions within conserved residues in the active site, while Y153 

contacts with the L2 loop to support the active site loop bundle. Based on these, one would have 

predicted that phosphorylation of S183 and Y153 would be inactivating, and not silent or 

activating, respectively. Based on this theme, we recommend to other investigators probing 
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capsase or caspase-kinase interaction that in the future, the phosphomimetic and 

unphosphorylatable versions of all caspases be functionally assessed before any cell-based assays 

with mutant proteins are undertaken. 

 Structural analyses allowed us to expound on the molecular details of how 

phosphorylation of S183 and Y397 directly inhibits caspase-9 activity. One detail that particularly 

stood out is the proximity of these two residues to the substrate-binding groove (Figure 2.1B, 

4.11B), which seems to be a hotspot for phosphorylation in other caspases as well3,4. We have 

presented models that would explain the mechanism of inhibition by phosphorylation at S183 and 

Y397. Both models suggest that phosphorylation of these sites prevent substrate binding through 

different but related mechanisms. S183 phosphorylation disorients the active site loop bundle, 

while Y397 phosphorylation reaches into and blocks the substrate-binding pocket.  

 Our results that phosphorylation by PKA and c-Abl leads to caspase-9 inhibition suggest 

an anti-apoptotic/prosurvival role of these kinases. This is particularly relevant in deciphering the 

relationship between c-Abl and caspase-9. c-Abl has been reported to play dual yet opposing 

roles in apoptotic signaling, depending on its cellular localization. Our observation that caspase-9 

is inhibited by c-Abl phosphorylation suggests that this molecular event contributes to the 

prosurvival nature of c-Abl, which is consistent with c-Abl’s anti-apoptotic function in the 

cytosol where majority of caspase-9 cellular pool are found. Phosphorylation of caspase-9 by 

PKA and c-Abl therefore act as upstream block in the apoptotic cascade. 

Structural Impacts of Phosphorylation on Caspase-9 

 A significant finding in Chapter II was that S183 phosphorylation by PKA appears to 

utilize two different mechanisms of inhibiting caspase-9, depending on its conformational state. 

Phosphorylation of S183 while caspase-9 is in its latent/zymogen state directly prevents substrate 

binding, but in its mature/fully cleaved state, S183 phosphorylation triggers the disassembly of 

caspase-9 by unfolding its catalytic core. This supports our previous assertion that 

phosphorylation can differentially exert its influence throughout the different stages in caspase-
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9’s life cycle. Another fascinating observation was that S183 is distal from the caspase-9 

large:small interface, thus the unfolding and disassembly likely proceeds through allosteric 

mechanism. To our knowledge this is the first report of such allosteric mechanism of inhibition in 

caspases. The most intriguing detail in S183 phosphorylation is our observation that upon 

phosphorylation-induced unfolding, caspase-9 formed ordered aggregates, the morphology of 

which were visualized through electron microscopy (Figure 2.9, 2.10). While the existence and 

possible function of caspase-9 ordered aggregates in vivo remain in question, we offered two 

possible scenarios that would explain why phosphorylated caspase-9 might engage such a 

mechanism (see Discussion in Chapter II). One is the possibility that the disassembly of the 

catalytic core is a surefire way to completely block the apoptotic cascade. Our results point to the 

idea that phosphorylated S183 is completely inhibited and more importantly, non-activatable, 

even as caspase-9 was directed to the apoptosome. Within the apoptosome, activation by cleavage 

of caspase-9 occurs. Cleaved caspase-9 phosphorylated at S183E is severely unstable. This leads 

to its unfolding and eventually being disengaged from the apoptosome because it is no longer 

structurally intact, and possibly gets directed to proteasomal degradation. The second scenario 

involves these ordered aggregates as a mechanism to hold caspase-9 in its latent/inactive state 

until caspase-9 gets dephosphorylated and reactivated, a mechanism analogous to that of 

functional aggregates. Both scenarios are appealing from a therapeutic and a mechanistic 

viewpoint. Phosphorylation-mediated unfolding and degradation suggests crosstalk between 

phosphorylation and ubiquitination pathways, thus providing an additional node of possible 

therapeutic intervention to control apoptosis. The notion that caspase-9 forms higher order 

structures apart from the apoptosome and more importantly, with an opposite function, i.e. 

deactivating, adds another layer in the hierarchical nature of caspase-9 structure and function. 

 In our experiments, ordered aggregates were derived from the phosphomimetic S183E. 

What would aid in thorough investigations of the mechanism of formation of these ordered 

aggregates is to use a phosphorylated version of S183. While we have successfully generated 
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phosphoS183 using site-specific phosphoincorporation in E. coli, the extremely low expression 

levels of the phosphocaspase has limited the amount of material to perform aggregation and 

subsequent experiments. We recently constructed an MBP-fused phosphocaspase-9, which was 

observed to significantly boost caspase-9 expression. It would then be interesting to take S183-

phosphorylated caspase-9, subject it to aggregation and test whether dephosphorylation would 

resolubilize and reactivate caspase-9. If so, then it would strengthen our hypothesis of the nature 

and function of these ordered aggregates. The next phase would be to determine the structure of 

caspase-9 aggregates by cryo-EM to identify critical interactions within caspase-9 domains or 

among caspase-9 molecules. 

 We also probed and characterized the interaction between the caspase-9 CARD and 

catalytic core. This physical interaction influences the stability and activity of caspase-9, but is 

dictated by the geometry of the active site and the conformational states of the enzyme. The 

region of binding between the CARD and core is still unknown, but would greatly benefit from 

structural studies such as X-ray crystallography and small-angle X-ray scattering. While 

numerous structures are available for other apoptotic caspases, to date there are only six 

structures of non-apoptosome-bound caspase-9 in the PDB. In addition, there is no available 

structure of the full-length caspase-9, only that of the catalytic core (∆CARD)5–8 or the CARD9,10, 

alone or in complex with other proteins or domains. It would be helpful to obtain a crystal 

structure of the full-length caspase-9. Since in almost all crystal structures, the caspase-9 core is a 

homodimer, we envision that full-length caspase-9 will crystallize as a dimer as well. What would 

be most interesting is whether the interaction between the CARD and catalytic core would be 

present in the structure of the full-length caspase-9 with an active-site ligand bound.  

Caspase-9-Kinase Interplay 

 Crosstalk between caspases and kinases is important in their co-regulation, and the 

cellular outcome of either promotion or suppression of apoptosis is dictated by whether caspase 

phosphorylation or kinase cleavage takes precedence over the other. Typically caspases cleave 
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the very kinase that phosphorylates them; such cases were observed in caspase-7 with PAK24 and 

caspase-8 with Src11. In our studies on caspase-9 phosphorylation by PKA and c-Abl, we did not 

observe any cleavage of either kinase by caspase-9. This observation could be explained by the 

relatively low activity of caspase-9 in in vitro conditions. A good model to test whether caspase-9 

would cleave PKA and c-Abl is monitor kinase cleavage using caspase-9 in the presence of Apaf-

1, cytochrome c and dATP, which may accurately reflect an active caspase-9 in the apoptosome. 

Should kinase cleavage be observed, the next study would be to determine whether PKA and c-

Abl prefers to phosphorylate caspase-9 in a specific conformational state, i.e, apoptosome-bound 

and cleaved caspase-9 or free caspase-9 in zymogen state. 

 Alternatively, it is also likely is that the cross talk between caspase-9 and its cognate 

kinases is heavily weighted towards phosphorylation. A reason for this assumption is that unlike 

other caspase:kinase pairs (review12), no cognate kinase has been reported to be a substrate of 

caspase-9. In fact, sequence analyses predicted no caspase-9 cleavage site in PKA. c-Abl is 

cleaved by both caspase-313,14 and caspase-814, and while it may be feasible caspase-9 likewise 

cleaves c-Abl intracellularly, the caspase cleavage sequences present in c-Abl are not preferred by 

caspase-9. Thus it appears that for both PKA and c-Abl (and possibly all other cognate kinases of 

caspase-9), phosphorylation-mediated inhibition of caspase-9 would always prevail over kinase 

cleavage. A complete understanding of this relationship would be critical in the development of 

caspase-kinase co-therapies. For example, in cancer and tumor applications, turning on an 

upstream apoptotic caspase like caspase-9 while turning off any inhibition coming from a specific 

kinase could potentially result in maximum killing of targeted cells. 

Specificity of Phosphorylation by PKA and c-Abl among Apoptotic Caspases 

 A notable observation in Chapter IV was that caspase-9 is the most preferred caspase 

substrate of c-Abl. In addition, the phosphorylated residue, Y397 is a site that is only present in 

caspase-9 and not in other apoptotic caspases. This provides multiple potential strategies for the 

specific control of caspase-9, either by targeting c-Abl or by exploiting the Y397 site to develop 
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inhibitors that will specifically target caspase-9. In contrast to the specificity displayed by c-Abl 

towards caspase-9, other apoptotic caspases including caspase-8, -10, -3, -6, and -7 contain the 

PKA phosphorylation motif surrounding the S183 site. Surprisingly, caspase-9 is the only 

reported caspase substrate of PKA. It would be interesting to explore if these caspases are also 

phosphorylated by PKA and whether they are similarly inhibited by the same the mechanisms as 

those observed in caspase-9. If other caspases were found to be PKA substrates, this suggests that 

PKA could have the upper hand in putting a break in the apoptotic pathways by phosphorylating 

and inhibiting multiple caspases, a mechanism which may be exploited by cells in many cancers 

and tumor types where PKA is overexpressed15,16. 

Other Sites of Phosphorylation in Caspase-9 

 Caspase-9 contains the greatest number of phosphorylation sites among caspases, 

highlighting the need for additional regulation of caspase-9. In the major chapters of this 

dissertation, we only focused on two sites of phosphorylation, S183 and Y397, and already 

uncovered many layers that govern phosphoregulation of caspase-9. In the Appendix, we present 

initial studies on other phosphorylation sites within the CARD and core (S99, T125, S144, S195) 

and intersubunit linker (S302, S307 and S310) using phosphomimetics in an attempt to identify 

which sites would also inhibit caspase-9 function. We found that in most cases, phosphomimetics 

did not directly inhibit catalytic activity, which strongly suggests that phosphorylation of these 

residues affect caspase-9 function at a different level. Two particular phosphorylation sites are of 

interest – S307 and T125. Our results showed that phosphomimetic S307E is ~40x less active 

than WT, although it is capable of self-processing/autoactivation. In this case, phosphorylation 

appears to permit zymogen activation of caspase-9, but prevents it from achieving a fully active 

state. T125 is the site that is targeted by multiple kinases17–19 to inhibit caspase-9 intracellularly. 

In our phosphomimetic studies, T125E is as active as WT and binding assays showed that it does 

not prevent caspase-9 from being recruited by Apaf-1. The exact mechanism of how T125 

phosphorylation inhibit caspase-9 function remains to be seen. T125 sits in the potentially flexible 
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region between the CARD and the large subunit. Reported exosites in caspases seem to cluster in 

the prodomain-adjacent region, such as the 38KKKK41 patch20  and S304 in caspase-7 and a 

putative hydrophobic exosite patch in caspase-6 composed of 55FFW57 21. In light of these 

observations, one might wonder if there are also exosites in caspase-9 that reside in the 

prodomain-adjacent region (such as T125 and S99) and whether phosphorylation would influence 

exosite binding. Assessing the ability of T125E and S99E to cleave caspase-9 substrates and 

comparing it with that of WT is a good place to start exploring this exosite concept. 

Diverse Molecular Mechanisms of Phosphorylation-Mediated Caspase Inhibition 

 Prior to this work, only one mechanism of caspase-9 phosphoregulation (mediated by 

CK2) has been elucidated. The work presented in this dissertation now adds three distinct 

mechanisms of caspase-9 phosphoregulation to the growing list of molecular mechanisms of 

phosphorylation-mediated caspase inhibition (Table 5.1). Some of these mechanisms operate by 

inhibiting the early stages of caspase activation, particularly zymogen activation. The conversion 

of caspases from a zymogen to a cleaved (mature) state to gain maximal activity is achieved by 

cleavage at the intersubunit linker, either by the self-processing or by the action of another 

caspase. Phosphorylation of residues adjacent or within the cleavage site(s) in the intersubunit 

linker has been shown to block linker cleavage, as observed in casp-322, -811,23 and -924. Recently, 

phosphorylation of casp-7 at a prodomain-adjacent S30 was observed to block interaction with 

caspase-9, leading to failure of casp-7 cleavage and activation4. Phosphorylation also impacts the 

catalytic activity of mature caspases. The mobile nature of the active site loops allows the kinase 

facile access to phosphorylation sites that are in close proximity to or within the substrate-binding 

pocket. Phosphorylation of these residues appears to be a robust way to directly inhibit catalytic 

function either by blocking substrate binding through steric clash, as observed in casp-7 S2394, or 

by disorienting the substrate-binding loops, thus making them incompetent to bind substrate, as in 

casp-6 S257 and caspase-9 S1833,25. Another is through an active site-adjacent mechanism, as in 

Y397 in caspase-9, in which a residue in close proximity to the active site is able to reach into the 
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susbtrate binding pocket to block substrate binding26. We also observed an intriguing allosteric 

mechanism of phosphoregulation in caspase-9 wherein phosphorylation of S183 in the mature 

form is sufficient to disassemble the caspase-9 core despite S183 being distal from the large:small 

interface25. We expect that more distinct mechanisms will be added in this growing list. 

 

Table 5.1 Molecular mechanisms of phosphorylation-mediated caspase inhibition. 

Molecular Mechanism Caspase Site Kinase 

 
Preventing zymogen activation 

 
Caspase-3 
Caspase-8 
Caspase-9 

 
T174, S176 

Y380 
S310 (S348 murine) 

 
CK222 
Src11,23 
CK224 

Blocking protein-protein interactions Caspase-7 S30 PAK24 

Disorienting substrate-binding loops Caspase-9 
Caspase-6 

S183 
S257 

PKA25 
Ark53 

Directly blocking substrate binding Caspase-7 S239 PAK24 

Core disruption & formation of ordered 
aggregates 

Caspase-9 S183 PKA25 

Active-site adjacent Caspase-9 Y397 c-Abl26 

 

 Many molecular questions still abound concerning caspase phosphoregulation. Of these, 

we consider two important questions, which when addressed, will greatly aid in our 

understanding about caspase phosphorylation and how it influences the apoptotic pathways. First, 

what degree of phosphorylation of caspases is sufficient to switch on or off their function, and is 

there a threshold of phosphorylation level that would lead to either suppression or induction of 

apoptosis? And second, what phosphatases are associated with these phosphorylation events that 

will ensure reversibility of phosphorylation in order to regain balance between cell death and 

survival?  
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APPENDIX 

INTERROGATION OF OTHER PHOSPHORYLATION SITES IN CASPASE-9 

 

 The use of glutamate as a phosphomimetic has allowed us to widely investigate 

functional effects arising from phosphorylation. Glutamate is typically an acceptable surrogate for 

a phosphoSer and phosphoThr, imparting both the bulk and negative charge similar to a 

phosphate moiety. Besides the ease by which it can be constructed by site-directed mutagenesis, 

one particular advantage of using a phosphomimetic is the ability to obtain homogeneously 

“labeled” samples, whereas in vitro reactions typically do not achieve 100% phosphorylation. 

Thus the intrinsic functional effect of phosphorylation can readily be examined and explicitly 

attributed to that modification. In this section, we employed phosphomimetics to interrogate 

residues that were not directly inactivating upon phosphorylation, but could influence other 

aspects of caspase-9 structure and function such as oligomerization, protein-protein interactions 

and cleavage.  

Phosphorylation in CARD and Catalytic Core Domains 

 The CARD and catalytic core of caspase-9 contain the greatest number of 

phosphorylation sites (Figure 1.5, 1.6). In Chapter II, we identified S183 as the predominant site 

of phosphorylation that leads to inactivation of caspase-9 by PKA via allosteric mechanisms. In 

Chapter IV, Y397 was determined to be a novel site of inactivation upon c-Abl phosphorylation. 

Along with S183, two other sites were phosphorylated by PKA – S99 and S195, however 

phosphorylation of these sites was reported to be dispensable to caspase-9 inhibition1, and we 

make the same observation (Chapter II, Figure 2.2F) . Other sites that reside in the CARD and 

core regions are S144, which was observed to be phosphorylated by the atypical PKC ζ under 

hyperosmotic stress, and T125, a site phosphorylated by multiple kinases including ERK1,22, 

DYRK1A3 and CDK14. In some cases, T107 is reported to be phosphorylated along with T125, 

albeit in low levels2,4. Caspase-9 in cell extracts that were phosphorylated on either S144 or T125 



 154 

showed diminished self-processing upon incubation with Apaf-1 and cytochrome c. In addition, a 

decrease in both casp-3 cleavage and DEVDase activity in these cell extracts were observed, 

suggesting that S144- or T125-phosphorylated caspase-9 failed to cleave and activate 

downstream caspases. These results initially point towards a direct inactivation of caspase-9 

activity upon phosphorylation.  

 Phosphomimetic versions S99E, S195E, S144E, and T125E were constructed, 

overexpressed and purified from E. coli. In contrast to previous reports where phosphorylation 

was inhibitory to caspase-9 activity, all 

phosphomimetic variants (S99E, S195E, S144E 

and T125E) displayed LEHDase activity. 

Following overexpression, these variants were in 

fully mature/cleaved forms (Figure A.1), 

indicating that the variants were capable of self-

activation/cleavage. Moreover, their catalytic 

parameters against caspase-9 substrate LEHD 

showed that they were active (Table A.1). 

 
Table A.1. Catalytic parameters9 of WT caspase-9 and phosphomimetic variants using substrate Ac-

LEHD-AFC.  

Caspase-9 variant 
KM 

(µM) 

kcat 

(s-1) 

103 x kcat / KM 

(µM-1s-1) 

WT 430 ± 35 1.4 ± 0.10 3.3 

S99E 1280 ± 295 0.97 ± 0.10 0.80 

T125E 509 ± 47 1.38 ± 0.40 2.7 

S144E 280 ± 85 0.72 ± 0.15 2.6 

S195E 440 ± 85 0.90 ± 0.10 2.1 
9Values are mean (± SEM) of three trials done on three separate days. 

 
 The observation that there was no direct hit to the catalytic activity of these caspase-9 

variants could simply imply non-functional or silent phosphorylation, an idea that has been 

 
Figure A.1. WT and phosphomimetic 
versions of caspase-9. Following 
overexpression  all variants were in the fully 
mature/cleaved state. 



 155 

debated in the phosphorylation field5,6. Although it is appealing to assign these sites as non-

functional, knowing the multifaceted nature of caspase-9 regulation led us to further probe how 

phosphorylation of these sites, besides affecting catalytic activity, could influence caspase-9 

activation. Prior work in our group has clearly shown that phosphorylation of one site does not 

necessarily alter catalytic activity, yet impacts a different aspect of caspase function. This was 

evident in casp-7 phosphorylation by PAK2, where phosphorylation of S30 and phosphomimetic 

S30E had no effect in activity but was found to significantly attenuate procasp-7 cleavage and 

activation by caspase-97. 

Exploring Apaf-1 CARD:caspase-9 CARD Interactions 

 From Chapter III it was clear that S99E and T125E did not abolish the interactions 

between the CARD and catalytic core of caspase-9 (Chapter II, Figure 3.10). We then explored 

whether S99E and T125E could disrupt the interaction between caspase-9 CARD and Apaf-1 

CARD. This CARD:CARD interaction is paramount to the initial step of caspase-9 activation in 

the apoptosome; any event that breaks this interaction will be an upstream block in the caspase-9 

activation cascade. S99 and T125 are located in the potentially flexible linker preceding the large 

subunit (Chapter I, Figure 1.6). These residues do not appear to directly participate in Apaf-1 

CARD:caspase-9 CARD interactions, based on the available structures of the CARD:CARD 

complex, both in isolation8,9 and in the apoptosome10–14. However, we reasoned that the flexible 

nature of the S99 and T125 and the altered properties of the residues due to the glutamate 

substitution could prevent interaction with Apaf-1 CARD since CARD:CARD interactions are 

driven by electrostatics. In addition, there are other charged surfaces outside of CARD:CARD 

binding interface that remain exposed9 which could potentially interact with E99 or E125. Gel 

mobility shift assays show that the migration of S99E and T125E clearly shifted upon incubation 

with Apaf-1 CARD, suggesting that the CARD:CARD interactions are still intact in these 

caspase-9 variants (Figure A.2A). In the presence of Apaf-1 CARD, full-length caspase-9 has 

been observed to form two species – a heterotetramer composed of a homodimer of caspase-9 
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with two Apaf-1 CARD bound, and a high molecular weight oligomer/complex (~300-400 kDa)9. 

It was suggested that the high molecular weight complex is formed due to additional interactions 

outside of the CARD:CARD binding interface, possibly between the caspase-9 catalytic core and 

the CARD:CARD platform. Along with the formation of these oligomers was a marked elevation 

in caspase-9 activity. A similar increase in activity was observed with WT caspase-9 and T125E 

when bound to Apaf-1 CARD. Strikingly, S99E failed to exhibit this increase in activity (Figure 

A.2B). S99E itself was less active than WT (Table A.1), and a similar diminished activity was 

also observed with the phosphorylated version, phosphoS99 (Chapter II, Figure 2.3B). Thus it 

seems that S99E has enough intrinsic activity to undergo self-processing but is resistant to 

enhancement even in the presence of an activating scaffold. Studies such as testing the activities 

of S99E and T125E or the phosphorylated versions (using site-specific phosphoincorporation) in 

the presence of a reconstituted apoptosome will provide additional insights into how 

phosphorylation of S99 and T125 inhibits caspase-9 activity as reported. 

  

 
 

Figure A.2. S99E and T125E are able to interact with Apaf-1 CARD. 
(A) Gel mobility shift assay of WT caspase-9, and phosphomimetic variants S99E and T125E in the 
presence of two-fold excess Apaf-1 CARD. Clear migration shifts were observed for all caspase-9 
variants, suggesting an interaction with Apaf-1 CARD. 
(B) Change in caspase-9 activity after incubation with Apaf-1 CARD. Elevated LEHDase activity was 
observed in WT caspase-9 and T125E while S99E did not display any change in activity.  
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Utilizing Phosphomimetics to Explore Potential Exosites 

 One recently explored mechanism that dictates caspase function is that caspases possess 

exosites critical to substrate recognition and binding. Due the negative charge that the phosphate 

moiety imparts on a residue, phosphorylation can alter binding interfaces, either promoting 

interactions by creating a new interface, or abrogating interactions by introducing charge 

repulsion. Thus one strategy to explore the presence of exosites in caspases is through 

phosphorylation. In casp-7, S30 was uncovered to be an exosite for binding with caspase-9. 

Phosphorylation of S30 abrogated binding of caspase-9 to procasp-7, leading to an attenuation of 

procasp-7 cleavage by caspase-9. This cleavage is paramount to casp-7 activation. However S30E 

had no direct effect on the DEVDase activity of the fully mature/cleaved casp-77. In light of these 

observations, we examined whether S144 and S195 sites in caspase-9 also serve as exosites that 

are utilized by caspase-9 to bind and turnover protein substrates. 

 Both S144 and S195 are on the surface of helices in the catalytic core that could 

potentially be binding surfaces in caspase-9 (Figure 1.6B, A.3). Both sites are adjacent to charged 

patches in the catalytic core and substitution of both S144 and S195 to glutamate increases the 

surface area of these charged patches (Figure A.3).  

  

 
 
Figure A.3. Electrostatic potential map of catalytic core of caspase-9 monomer. 
Surface representation of caspase-9 highlighting the changes in electrostatic potential in S195E (left) 
and S144E (right) when substituted with glutamate (E195 and E144, respectively). Cartoon 
representation in the middle shows the location of S144 and S195 in the caspase-9 monomer. 
Electrostatic potential maps were created using Pymol. 
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 Caspase-9 phosphomimetic variants S144E and S195E exhibited WT-like LEHDase 

activities (Table A.1). We assessed whether S144E and S195E would impact the cleavage of 

protein substrates. Being an initiator caspase, it is extremely important that caspase-9 fulfills its 

function of cleaving downstream executioner caspases. Caspase-9 should also be able to undergo 

self-processing in the apoptosome, as it has emerged that uncleavable versions of caspase-9 could 

not be efficiently activated in the apoptosome15.  

 S144E, S195E and the double glutamate variant S144E/S195E were tested in their ability 

to cleave the zymogen caspase-9 variant C287A (Figure A.4) to represent the ability of caspase-9 

to perform in trans cleavage of other procaspase-9 enzymes. The rate of cleavage of caspase-9 

C287A was similar for WT and S144E. S195E cleaved C287A slightly faster than WT, while the 

double mutant S144E/S195E displayed similar cleavage kinetics to WT. These data suggest that 

the phosphomimetic variants tested were capable of in trans caspase-9 processing.  

S195E was further tested in cleaving of executioner caspases casp-3 and -7. If caspase-9 utilizes 

S195 to bind and cleave casp-3 or casp-7, then the glutamate phosphomimetic S195E would 

display either faster or slower protein cleavage kinetics. However, there was no significant 

difference in its cleavage kinetics compared to WT caspase-9 (Figure A.5). 

 
 
Figure A.4. Phosphomimetic S144E, S195E and S144E/S195E do not block in trans caspase-9 
processing. 
Full-length, zymogen caspase-9 C287A (catalytic site-inactivated) was cleaved with S144E, S195E and 
S144E/S195E variants for 2h. All variants cleaved C287A with comparable kinetics. 



 159 

While phosphorylation of S144 and S195 reportedly led to caspase-9 inhibition in cell extracts, 

our assays showed no difference in protein cleavage activities between WT and the 

phosphomimetics. The mechanism for the reported inhibition of caspase-9 upon phosphorylation 

of these residues remains to be explained. 

Phosphorylation of the Intersubunit Linker 

 Procaspase-9 is cleaved at three sites in the intersubunit linker. The major site for self-

processing and cleavage by casp-8 is D315 in caspase-9 while minor processing occurs at E306. 

Caspase-9 D330 is the recognition and cleavage site for casp-3. Cleavage of the linker is an 

activating event for all caspases because it allows the critical L2 and L2’ loops to sample the “up” 

conformation to stabilize the active site loop bundle. As an initiator caspase, no upstream caspase 

in the intrinsic pathway cleaves the caspase-9 linker, hence it undergoes processing and activation 

once incorporated in the apoptosome. Although it has been observed that cleavage of procaspase-

9 is not necessary for catalytic activity, cleavage plays an integral part of caspase-9 regulation in 

various ways. First, the initial cleavage at D315 yields the p35 CARD+Large subunit and the p12 

small subunit. The neo-N-terminal of the p12 subunit generates the IAP binding motif 

(316ATPF319) that is recognized by the BIR3 domain of XIAP, the apoptotic suppressor that traps 

caspase-9 in its monomeric state by binding to this epitope and blocking the dimerization 

interface, preventing caspase-9 activation. However, the second cleavage at D330 removes the 

IAP binding motif and partially relieves XIAP inhibition and allow caspase-9 activation. Second, 

 
 

Figure A.5. Cleavage of procasp-3 and procasp-7 by caspase-9 S195E. 
(A) Full-length, zymogen casp-3 (catalytic site-inactivated C163S), or (B) full-length zymogen casp-7 
(catalytic site-inactivated C186A) was cleaved by WT caspase-9 or S195E for 2h. No significant 
difference in cleavage kinetics was observed between WT and S195E. 
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it was reported that cleaved caspase-9 has a weaker affinity for the apoptosome than procaspase-

9/zymogen, causing procaspase-9 to displace any auto-activated/cleaved caspase-9 from the 

apoptosome. This process of recruitment-activation-displacement of caspase-9 in the apoptosome 

is hypothesized to function as a molecular timer, with the intracellular concentration of 

procaspase-9 setting the duration of the timer to process executioner caspases as caspase-9 

substrates16. If this model is accurate, then cleavage of the intersubunit linker is critical, since 

without cleavage, procaspase-9 might remain bound to the apoptosome and cause the molecular 

timer to be suspended. Third, uncleavable versions of caspase-9 (E306A/D315A/D330A) were 

observed to be inefficiently activated by the apoptosome, attributing the drastic reduction in 

activity to the reduced ability of uncleavable caspase-9 to form homodimers15. Fourth, although 

the form in which caspase-9 functions outside of the apoptosome is still unknown, activated 

caspase-9 has been observed to be cleaved17. 

 Phosphorylation of caspase substrates has been reported to alter their tendency to undergo 

cleavage by caspases (reviews18,19). This effect, whether promotion or protection against cleavage 

is commonly observed when phosphorylation is very near the caspase cleavage site. Caspase-9 

has three phosphorylation sites in the intersubunit linker (Figure A.6A). These three sites are both 

adjacent to each other and neighbors the natural cleavage sites E306 and D315 (Figure A.6B). All 

three sites – S302, S307 and S310 – are reported to be phosphorylated by the kinase CK2 (casein 

kinase 220,21). CK2 recognizes the minimal consensus sequence S-X-X-D/E/pS/pT (where pS and 

pT are phosphoSer and phosphoThr, respectively). Close inspection of these three sites revealed 

that the sequences surrounding these sites conform to the CK2 recognition sequence. Since these 

sites are adjacent to the linker cleavage sites in caspase-9, phosphorylation could prevent or 

promote self-cleavage of caspase-9. Phosphomimetic versions (S302E, S307E and S310E) were 

expressed in the full-length construct. Following overexpression, we observed that all 

phosphomimetic variants were in the fully mature/cleaved form, indicating that phosphomimicry 

most likely does not block caspase-9 self-cleavage. One interesting observation was the cleavage 
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pattern of S310E. The predominant cleavage happens at D315, with a little (< 5%) processing 

observed at E306, and both fragments co-elute over the course of an ion exchange gradient. This 

fraction and co-elution were consistently observed in all our preparations of active caspase-9 

variants. Intriguingly, S310E appears to promote cleavage at E306 (Figure A.6C, first lane in 

S310E), generating the E306 cleavage fragment greater than 5% that can be separated from the 

D315 fragment on an ion exchange gradient. The relevance of this cleavage pattern is still 

unknown but there was a moderate decrease in LEHDase activity observed for S310E (Figure 

A.6D). 

 The most striking observation among the linker variants was the dramatically reduced 

activity of S307E. It was able to auto-/self-process yet its catalytic efficiency is ~ 40x less than 

WT (Figure A.6C, A.6D). The fact that S307E was able to self-process yet exhibits a diminished 

catalytic activity suggests that phosphorylation affects the mature/cleaved form more severely 

 
 
Figure A.6. Caspase-9 intersubunit linker phosphomimetic variants. 
(A) Caspase-9 domains showing phosphorylation sites at intersubunit linker by CK2. 
(B) The phosphorylation sites are adjacent to self-cleavage sites (E306 and D315, indicated by 
arrows) of caspase-9. 
(C) Following overexpression, all phosphomimetic variants are in fully cleaved/mature form. S310E 
shows a distribution of two cleavage fragments. 
(D) Catalytic parameters of linker variants using substrate LEHD-AFC. The catalytic efficiency of 
S307E is drastically reduced. 
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than the zymogen. We have yet to explore the mechanism by which S307E is inactivating, but we 

surmise that the long linker of caspase-9 can reach into its substrate-binding groove, and a 

phosphorylated S307 could either destabilize the active site loop bundle or occlude the substrate 

from binding, or both. The linker region of caspases have been shown to perform conformational 

acrobatics that contribute to the activation and catalytic function of caspases22,23. Casp-6 has a 

relatively long linker compared to other executioner caspases which allows for intramolecular 

cleavage24. In the structure of procasp-8 obtained by NMR, it was observed that the intact linker 

sits within the vicinity of the active site and forms intramolecular contacts with residues in the 

active site loop bundle23. Thus is it conceivable that the longer linker of caspase-9 would 

similarly be able to form these interactions with the active site loops and that phosphorylation of 

S307 would perturb critical interactions within the active site necessary for catalytic activity.  

 Phosphorylation of the intersubunit linker near cleavage sites in caspases has been 

reported to prevent zymogen activation, either by self-processing or by cleavage by other 

caspases. Casp-3 is phosphorylated by CK2 at T174 and S176, blocking linker cleavage by casp-8 

and caspase-920. Casp-8 is phosphorylated by Src kinase at Y380, preventing its maturation and 

activation in the DISC25,26. In murine caspase-9, phosphorylation of S348, which corresponds to 

S310 in human, also prevents auto/self-processing. However, our results showed that the 

corresponding phosphomimetics for the phosphorylation sites in the linker were still capable of 

self-processing since they were in the fully cleaved/mature form following overexpression 

(Figure A.6C). It would be worthwhile to study whether these phosphomimetics block cleavage 

of caspase-9 by other caspases including casp-3 and casp-8, which naturally cleave caspase-9. In 

addition, the phosphate moiety is in itself a glutamate mimic19,27,28, thus it could potentially create 

new cleavage sites in caspase-9 that can be recognized by other caspases. 
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