
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

March 2018

On the Performance of Adaptive Bitrate Streaming and Parallel On the Performance of Adaptive Bitrate Streaming and Parallel

Cloud Applications Cloud Applications

Cong Wang
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the OS and Networks Commons

Recommended Citation Recommended Citation
Wang, Cong, "On the Performance of Adaptive Bitrate Streaming and Parallel Cloud Applications" (2018).
Doctoral Dissertations. 1179.
https://scholarworks.umass.edu/dissertations_2/1179

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1179?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ON THE PERFORMANCE OF ADAPTIVE BITRATE STREAMING
AND PARALLEL CLOUD APPLICATIONS

A Dissertation Presented

by

CONG WANG

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2018

Electrical and Computer Engineering

© Copyright by Cong Wang 2018

All Rights Reserved

ON THE PERFORMANCE OF ADAPTIVE BITRATE STREAMING
AND PARALLEL CLOUD APPLICATIONS

A Dissertation Presented

by

CONG WANG

Approved as to style and content by:

Michael Zink, Chair

Lixin Gao, Member

David Irwin, Member

Ramesh Sitaraman, Member

C. V. Hollot, Department Head
Electrical and Computer Engineering

To my family.

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my PhD advisor, Professor Michael

Zink, who always encourages me and inspires me with full of valuable and insightful ideas.

Without his guidance and persistent help this dissertation would not have been possible.

I am heartily thankful to my committee members Professor Lixin Gao, Professor David

Irwin, and Professor Ramesh Sitaraman for presiding over my dissertation. I would like

to thank my Master advisor, Professor Tilman Wolf, and Professor Weibo Gong for their

constructive advice and invaluable help on both of my research and future career.

I also would like to acknowledge my labmates for the knowledge and experience they

have shared with me. In particular, I want to thank Divyashri Bhat, Dilip Kumar Krish-

nappa, Eric Adams, Amr Rizk from Technische Universität Darmstadt and Fraida Fund

from NYU Polytechnic School of Engineering, who worked together with me on so many

great projects.

Finally, I appreciate all of the sincere support from my family and friends. Special

thanks to Jieqi Kang, Shan Lu, Xiaolin Xu, Shuo Li, Yang Lei and Kan Fu, this dissertation

pales in comparison to what I gained from them.

v

ABSTRACT

ON THE PERFORMANCE OF ADAPTIVE BITRATE STREAMING
AND PARALLEL CLOUD APPLICATIONS

FEBRUARY 2018

CONG WANG

B.Sc., YANSHAN UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Michael Zink

As shown in recent studies, video streaming has become the biggest category of back-

bone Internet traffic in US. With the boost of Internet and video-on-demand (VoD) tech-

nologies, millions of people can watch videos on a variety of client devices, such as smart

phones, laptops, tablets, over different access networks, such as Wifi, Ethernet and cellular

networks. Each of these client devices and access networks has different service require-

ments for video streaming, such as bitrates, resolutions, network bandwidth and CPU ca-

pabilities. To meet these diversified client demands and high service quality expectations,

it becomes critical to build efficient, flexible and scalable video delivering platforms in the

future video services.

Traditional stateful video streaming protocols, such as Real Time Messaging Protocol

(RTMP) or Real Time Streaming Protocol (RTSP), are no longer sufficient for today’s VoD

service requirements. This is primarily because: i) traditional video streaming protocols

vi

require special media servers to host the video contents, such as Windows Media Server,

Flash media Server, Wowza, etc. ii) Protocols like RTSP usually require specific firewall

configurations and plug-ins for video playback. iii) These protocols can only support fixed

resolutions or bitrates throughout the video playback.

To ensure high quality video delivery to different end user devices, most of the content

providers have switched to Adaptive Bitrate (ABR) streaming approach, which is specif-

ically designed to enable a smooth user playback experience. ABR streaming is capable

of monitoring the available network bandwidth, and therefore choosing the best suitable

quality according to the network capacity. An HTTP based ABR streaming contents can

be easily hosted on most of the regular web HTTP servers as well as web caches. More-

over, since HTTP-based video requests are client oriented, ABR mechanism can easily get

access to video contents without special configurations on firewalls or proxies.

On the other hand, the rapid growth of video services requires large amounts of physical

resources to host the videos and to serve the large population of clients. As with many other

services, resources are usually provisioned such that peak requests can be handled without

impact on the quality of the provided VoD service; on the contrary, analyses of VoD services

have shown that the overall number of requests can vary significantly over time. Therefore,

as an alternative solution, cloud services, such as Amazon Web Services (AWS), Google

Cloud and Microsoft Azure Cloud, provide resources that can be quickly deployed and

released according to the service load. This approach has been widely used for web and

VoD services, such as Netflix, GitHub and Dropbox, since the content providers do not

have to deploy and maintain expensive physical infrastructures. Instead, they only need to

pay for the usage of the allocated cloud resources.

Hosting the cloud services requires tremendous energy consumption. This has been

widely considered as the primary design constraint for scaling up today’s cloud platforms.

This is mainly due to the high cost and carbon footprint of powering and cooling these sys-

tems. Recent studies have shown that, if historical trends continue, the power requirements

vii

of an exascale platform in 2020 would be 200MW with an annual electricity bill greater

than $2.5B primarily composed of “dirty” energy sources. These costs are unsustainable

for even the highest-value applications. Therefore, improving the energy efficiency has

become critical in today’s cloud world.

Taking into account these confounding facts and service requirements, in this disser-

tation, we seek to evaluate and improve the performance for both ABR video streaming

and cloud applications. First, we present a set of measurement studies for ABR streaming

applications. Using the data from the application, network, and physical layers in different

network environments, we identify the key factors that can impact the quality of video de-

livering services. Then we develop and evaluate a new ABR streaming quality adaptation

algorithm to improve the user playback experience. Our results show that the proposed

adaptation algorithm can improve Quality of Experience (QoE) by up to 96% in terms of

QoE metric spectrum.

In the second part of this dissertation, we explore the options for better application

efficiency for ABR video transcoding services from the renewable energy perspective. We

define a set of dynamic and static energy management policies that apply to distributed

ABR video transcoding tasks. In addition, we extend the power management mechanisms

to parallel cloud applications and show the general applicability of our approach. We show

that, by utilizing the renewable energy sources, the transcoding grid energy usage can be

reduced by 73-83%, and the corresponding energy cost can be reduced by 14-28% with

satisfying viewer experience. When coming to the parallel cloud applications, with the

effective use of power management policies, the total cost can be reduced by up to 67%

comparing to when using fixed prices. This can be achieved by only increasing up to 17%

of the application runtime and 9% of the total energy consumption.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Adaptive Bitrate (ABR) Streaming in the Cloud . 2
1.3 Dissertation Contributions and Outlines . 3

2. BACKGROUND . 6

2.1 ABR Streaming and DASH . 6
2.2 Quality of Service (QoS) and Quality of Experience (QoE) 8
2.3 Cloud Services . 10
2.4 Cloud Power Management Mechanisms . 12

3. RELATED WORK . 13

3.1 ABR Streaming Services . 13

3.1.1 Measurements on ABR Streaming . 13
3.1.2 Rate Selection Policies . 14

3.2 Energy-Aware Cloud-based Transcoding . 15
3.3 Energy-Aware Parallel Cloud Application . 16

ix

4. USER EXPERIENCE CHARACTERIZATION FOR WIRELESS ABR
STREAMING . 18

4.1 Introduction . 18
4.2 Measurement Platform . 19

4.2.1 UMass WiMAX Testbed . 20
4.2.2 Testbed Configuration . 21
4.2.3 Measurement Infrastructure . 22

4.3 Wireless Environment . 23
4.4 Experimental Evaluation . 26

4.4.1 Buffer Status . 28
4.4.2 Video Bitrate . 28
4.4.3 Segment Download Time . 30
4.4.4 Buffer Status . 30
4.4.5 Video Playback Freezes . 31

4.5 Summary . 32

5. QOE AWARE QUALITY ADAPTATION FOR ABR STREAMING
SERVICES . 33

5.1 Introduction . 33
5.2 DASH Player Architecture . 35

5.2.1 The Playback Buffer . 35
5.2.2 Rate Estimation . 36
5.2.3 Quality Adaptation . 37

5.3 Critical Observations for DASH . 38

5.3.1 User Space Rate Estimation . 38
5.3.2 Interaction with Underlying Protocols . 39

5.4 Spectrum-based Quality Adaptation . 43

5.4.1 Smooth and Reliable Rate Estimation . 44
5.4.2 Init: A Slow Start of Segment Quality . 46
5.4.3 Steady State . 47

5.4.3.1 Spectrum-based Adaptation . 47
5.4.3.2 Buffer Guidance - Latent Fallback . 49
5.4.3.3 Player States . 50

5.4.4 Segment Retransmission Scheduling . 52

x

5.5 Experimental Evaluation . 56

5.5.1 GENI Single Run Experiments . 57
5.5.2 GENI Multi-Run Experiments . 59
5.5.3 Internet Experiments . 66

5.6 Summary . 69

6. ENERGY EFFICIENT DESIGN FOR CLOUD-BASED ABR VIDEO
TRANSCODING SERVICES . 70

6.1 Introduction . 70
6.2 Methodologies . 72

6.2.1 Cloud-based Real Time Transcoding . 72
6.2.2 Energy Aware Transcoding Workload . 74
6.2.3 Power Capping Mechanisms . 76
6.2.4 Power Management Policies . 77
6.2.5 Video Data Sets . 80

6.3 Experimental Evaluation . 80

6.3.1 Transcoding with Unlimited Energy . 81
6.3.2 Transcoding with Renewable Energy . 82
6.3.3 Energy Aware Transcoding for CDNs . 84

6.4 Summary . 86

7. EXTENSION OF ENERGY MANAGEMENT FOR PARALLEL CLOUD
APPLICATIONS . 87

7.1 Introduction . 87
7.2 System Architecture . 89

7.2.1 Problem Statement . 89
7.2.2 Parallel Task Model . 90

7.3 Implementation . 91

7.3.1 Reference Applications . 91
7.3.2 Input Power Signal . 93

7.4 Performance Evaluation . 93

7.4.1 Node Power Usage . 94
7.4.2 Rigid Parallel Applications . 95
7.4.3 Elastic Parallel Applications . 96

xi

7.5 Summary . 106

8. CONCLUSIONS AND FUTURE WORK . 108

BIBLIOGRAPHY . 110

xii

LIST OF TABLES

Table Page

4.1 Selected parameters of WiMAX BS configuration. 21

5.1 Symbols of notations. 44

5.2 QoE metrics for the GENI experiments with controlled UDP and TCP
cross traffic. The table includes averages as well as standard deviations
for 20 runs. 62

5.3 QoE Metrics for 10 concurrent homogeneous streaming sessions. 65

5.4 QoE metrics for the Internet measurement campaign. 68

6.1 Summary of design space for energy-agile policies. 80

6.2 Summary of transcoded resolutions and bitrates. 80

6.3 Comparison of total transcoding grid energy usage (kWh) and energy cost
($). 85

7.1 Comparison of overhead power for all policies in terms of percentage of
total available power (%). 98

7.2 Comparison of energy cost of each application running for non-renewable
energy powered cluster. 100

xiii

LIST OF FIGURES

Figure Page

2.1 DASH Flow Diagram . 7

4.1 The WiMAX testbed network configuration. A software router configured
by the BS controller forwards traffic from each client to its predefined
datapath on the university network, the public Internet, or a GENI
backbone link. 22

4.2 The mobility patterns followed in New York and Amherst, respectively,
and the location of each WiMAX BS. Map data ©OpenStreetMap
contributors, tiles from skobbler. 24

4.3 WiMAX link characteristics. Figure 4.3a shows the distribution of CINR
(signal quality) measurements at each location, Figure 4.3b shows
CINR along each experiment path as a function of time for a single
representative trial, with the shaded area indicating a range of one
standard deviation above and below the mean CINR calculated across
all trials. Figure 4.3c gives the autocorrelation of CINR over a long
timescale. 24

4.4 Empirical CINR transitions over a timescale of one second. All
measurements are collected on a mobile client moving at walking
speeds. 25

4.5 Download rate for video segments over 375 seconds of playback time, and
buffer status over the same period. The line gives values for a
representative trial, while the shaded region shows one standard
deviation above and below the mean for all trials. In Figure 4.5a, the
30% point buffer state is marked by a horizontal line. 28

4.6 Distribution of bitrates for video segments downloaded by the DASH
client at New York and Amherst. 29

4.7 State transition probabilities for video download bitrate. 30

xiv

4.8 The distribution of segment download times is shown in Figure 4.8a.
Figure 4.8b is a zoomed-in version of the same data, showing
download times that are shorter than ten seconds. 31

5.1 Coarse architecture of a DASH client. Buffer filling and download rate
estimates are fed to the quality adaptation logic which decides the
quality of the next segment. The stream encounters varying network
conditions, e.g., due to contending cross traffic. 36

5.2 User space rate estimations in DASH: (a) Impact of NIC segmentation
offloading on rate estimation in user space. (b) User space rate
estimation in DASH is more accurate for longer segments. 39

5.3 DASH segment download rates for links of different capacity. The
segment size has a substantial impact. 40

5.4 DASH abstraction as source of TCP mice flows. 41

5.5 DASH is TCP submissive: impact of the segment length for one DASH
flow competing with one TCP Reno flow. 42

5.6 (a) Sub-segment rate estimation. (b) Empirical downloading rate vs.
segment download size. 46

5.7 Spectrum based sustainable quality identification. 48

5.8 Estimated buffer drain δ̂(n+ 1, q) = B(n)− B̂(n+ 1) determines the
admissibility of a proposed quality qsn+1. Latent fallback is viable only
if B(n) is above ch. 50

5.9 High-level sketch of the SQUAD algorithm. The calculation block to get
the sustainable quality is given in Fig. 5.7. The buffer drain
consideration in the decreasing player state is given in Fig. 5.8. 52

5.10 Example of SQUAD retransmissions (sketch and actual measurement
run). 53

5.11 Butterfly evaluation topology. 57

5.12 Quality bitrate with UDP-U cross traffic for VLC, SARA and
Buffer-based [50] algorithm (BBA). (Implementation
accompanying [54]). 59

5.13 Quality bitrate with UDP-U cross traffic for BOLA-O and BOLA-U. 59

xv

5.14 Quality bitrate with UDP-U cross traffic for SQUAD, SQUAD with buffer
based retransmission (SQUAD-BR) and SQUAD with rate based
retransmission (SQUAD-RR). 59

5.15 Quality bitrate with UDP-W cross traffic for VLC, SARA and BBA. 60

5.16 Quality bitrate with UDP-W cross traffic for BOLA-O and BOLA-U. 60

5.17 Quality bitrate with UDP-W cross traffic for SQUAD, SQUAD-BR and
SQUAD-RR. 60

5.18 Quality bitrate with UDP ON-OFF cross traffic for VLC, SARA and
BBA. 61

5.19 Quality bitrate with UDP ON-OFF cross traffic for BOLA-O and
BOLA-U. 61

5.20 Quality bitrate with UDP ON-OFF cross traffic for SQUAD, SQUAD-BR
and SQUAD-RR. 61

5.21 UDP-U cross traffic. 64

5.22 UDP-W cross traffic. 64

5.23 UDP ON-OFF cross traffic. 64

5.24 TCP cross traffic. 65

5.25 QoE metric fairness for 10 concurrent homogeneous streaming
sessions. 67

5.26 Internet measurements: US East Coast - Amazon EC2, Sydney,
Australia. 68

5.27 Internet measurements: US East Coast - Amazon EC2, Sao Paulo,
Brazil. 68

6.1 Electricity’s real-time price fluctuates significantly every few minutes. 71

6.2 CDN and Online transcoding architecture. 72

6.3 The transcoding work load in terms of number of transcoding requests
(6.3a) and data rate (6.3b). 74

xvi

6.4 The solar (6.4a) and wind (6.4b) power and the real-time electricity prices
in the five-minute spot market (6.4c). 76

6.5 Transcoding time for 1 minute video with different resolutions and
bitrates. 81

6.6 Transcoding with solar energy: runtime (6.6a), percentage of grid power
usage (6.6b) and energy cost (6.6c)). 82

6.7 Transcoding with wind energy: runtime (6.7a), percentage of grid power
usage (6.7b) and energy cost (6.7c)). 82

6.8 The rebuffering ratio with different power management policies. 84

7.1 The solar (7.1a) and wind power (7.1b) generated over a day, as well as a
power signal based on using a fixed budget to purchase electricity at
real-time prices in the five-minute spot market (7.1c). 92

7.2 Power usage at different CPU load levels. 94

7.3 Runtime of rigid Graph500 (7.3a), WRF (7.3b) and Jacobi (7.3c) for solar,
wind and spot price-based power signals using both the dynamic
policy and static balanced policy that employ active power capping.
95

7.4 Energy consumption of rigid Graph500 (7.4a), WRF (7.4b) and Jacobi
(7.4c) for solar, wind and spot price-based power signals using both
the dynamic and static policies. 96

7.5 Runtime of elastic Graph500 for greedy, balanced and agile policies with
solar (7.5a), wind (7.5b), and spot price-based power signals (7.5c) for
cases with multiple applications. 97

7.6 Total energy consumption for greedy, balanced and agile policies with
solar (7.6a), wind (7.6b), and spot price-based power signals (7.6c) for
cases with multiple applications. 97

7.7 The runtime (7.7a) and power consumption (7.7b) of elastic Graph500
when operating under full power and fixed power budget. 100

7.8 The runtime of elastic Graph500 (7.8a), WRF (7.8b) and Jacobi (7.8c)
with different energy storage capacities (τ). 101

7.9 The runtime of elastic Graph500 (7.9a), WRF (7.9b) and Jacobi (7.9c) as a
function of the inactive transition time. 102

xvii

7.10 The runtime of elastic Graph500 with different K values when utilizing
solar energy (7.10a), wind energy (7.10b) and spot price-based energy
(7.10c) sources. 103

7.11 The application runtime with different power budgets. 104

7.12 The runtime of our elastic agile policy when running Graph500 with solar
(7.12a), wind (7.12b), and spot price based power signal (7.12c). 104

7.13 The runtime of our elastic agile policy when running WRF with solar
(7.13a), wind (7.13b), and spot price based power signal (7.13c). 105

7.14 The runtime of our elastic agile policy when running Jacobi with solar
(7.14a), wind (7.14b), and spot price based power signal (7.14c). 105

7.15 Our algorithm runtime for different data center scales. 106

xviii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Coupling with today’s high capacity Internet, video on demand (VoD) systems allow

users to select and watch videos with their own preferences. With this high flexibility, VoD

has become the most popular way of entertainment in today’s Internet. According to a

recent Sandvine report [14], 71% of the downstream Internet traffic at peak hours (8 PM

to 1 AM EST) in the US is real time entertainment such as live streaming and video on

demand. Also, over 50% of the peak period downstream traffic is composed of by Netflix

and YouTube video streams.

With the rapid growth of VoD traffic and user population, it becomes critical to main-

tain high user satisfaction while delivering a large amount of video contents. Krishnan et

al. [59] show that rebuffering events significantly reduce the user experience. Users are

less likely to watch the complete video when experiencing long buffering time, and are less

likely to return to the content provider’s site if they experience a long start up wait time. On

the other hand, with the support of a variety of content/network providers, users are able

to watch video from various client platforms, such as smart phones, laptops, tablets, over

a variety of access networks, such as Wifi, Ethernet and cellular networks. Each of these

client devices and access networks has unique requirements for video streaming, such as

bitrates, resolutions, network bandwidth and CPU capabilities. To meet these client de-

mands and high service quality expectations, building more efficient, flexible and scalable

video delivering platforms becomes increasingly important for future video services.

1

1.2 Adaptive Bitrate (ABR) Streaming in the Cloud

In order to fulfill the complex service requirements of ABR video delivering, virtually

all the video content providers have switched to the adaptive bitrate (ABR) streaming ap-

proach. Unlike the traditional video streaming techniques, such as Real Time Messaging

Protocol (RTMP) or Real Time Streaming Protocol (RTSP), ABR streaming mechanism

encodes the videos into short segments with typical length varying from 2 seconds to 10

seconds, depending on the implementation. Each segment is encoded into multiple quality

layers with different bitrates. During a streaming session, the client monitors the available

network bandwidth and adjusts the requested video quality, according to the server-client

link bandwidth.

The high demand of VoD services requires tremendous amount of storage space, net-

work bandwidth and computation resources, especially for ABR contents which are en-

coded with Advanced Video Codec (AVC) [69]. This is because in case of AVC, videos

are required to be encoded into multiple copies with different qualities in order to adapt

to different service requirements. According to [38], there are about 500 hours of videos

uploaded to YouTube every minute. As for another major video content provider, Netflix

needs to deliver over 3× 108 TB data to end users [37]. With traditional approaches, con-

tent providers have to supply a large amount of physical resources in order to meet the

high demand of video services. As with many other services, resources are provided such

that peak requests can be handled without impact on the quality of the VoD service; on the

contrary, analyses of VoD services have shown that the overall number of requests can vary

significantly over time, which can lead to significant over-provisioning of resources.

As an alternative solution, cloud services, such as Amazon Web Services (AWS), Google

Cloud and Microsoft Azure Cloud, provide resources that can be quickly deployed and re-

leased according to customer needs. This approach has been widely used for web and VoD

services, such as Netflix, GitHub and Dropbox, since the content providers do not have to

2

maintain expensive physical infrastructures. Instead, they only need to pay for the usage of

the allocated cloud resources.

Cloud platforms provide high flexibility to customers by allowing them to pay only

for the time period they actually use the hardware and for the amount of data that is actu-

ally transmitted. However, the deployment and maintainance of cloud services results in

tremendous energy consumption, which has been widely regarded as the primary design

constraint for scaling up the capacity of cloud platforms. This is mainly due to the cost

and carbon footprint for powering and cooling these systems [18]. To illustrate the magni-

tude of this constraint, recent estimates project that, if historical trends continue, the power

requirements of an exascale platform in 2020 would be 200MW [18] with an annual elec-

tricity bill greater than $2.5B [17], primarily composed of “dirty” energy sources. Such

high costs are unsustainable for even the highest-value applications. Therefore, improving

the energy efficiency has become critical in today’s cloud world.

1.3 Dissertation Contributions and Outlines

As we outline in Section 3, while researchers have recognized the importance of im-

proving performance and efficiency for ABR streaming services and cloud based applica-

tions, there has been little prior research on systematic characterization, design, implemen-

tation and analysis of cloud-based video eco-system. Thus, in this dissertation, we analyze

and improve the performance of ABR streaming in the cloud environments. In the first

part of this dissertation, we present measurements collected from ABR streaming applica-

tions. Using data from the application, network, and physical layers, in different network

environments, we identify the key factors that directly impact the quality of video deliver-

ing services. Then we develop and evaluate a new quality adaptation algorithm aiming to

improve the user experience, especially for the conditions with varying network capacities.

In the second part of this dissertation, we explore the options for better application

efficiency for ABR video transcoding services from the renewable energy perspective. We

3

define a set of dynamic and static energy management policies that apply to distributed

ABR video transcoding tasks. In addition, we extend the power management mechanisms

to parallel cloud applications and show the general applicability of our approach. We show

that, by utilizing the renewable energy sources, the transcoding grid energy usage can be

reduced by 73-83%, and the corresponding energy cost can be reduced by 14-28% with

satisfying viewer experience. When coming to the parallel cloud applications, with the

effective use of power management policies, the total cost can be reduced by up to 67%

comparing to when using fixed prices. This can be achieved by only increasing up to 17%

of the application runtime time and 9% of the total energy consumption.

This dissertation includes eight chapters. In Chapters 1-3, we provide general infor-

mation of this dissertation. Chapter 1 gives an overall introduction and motivation of this

dissertation. Chapter 2 introduces the background information and provides explanations

of key concepts that will be commonly used in later parts of this dissertation. In Chap-

ter 3, we discuss the research works that are closely related to this dissertation topic, and

introduce how our approach differs from the previous research works.

In Chapter 4, we provide a measurement study on two campus testbeds to show how

ABR streaming applications perform in a mobile, long distance wireless environment. Us-

ing measurements from the application, network, and wireless physical layers, we identify

characteristics of the cellular data network that directly impact the quality of the video

service, and therefore present our approach for further improvement and optimization.

In Chapter 5, we perform a detailed analysis of the interplay between the ABR stream-

ing and its underlying networking protocols. And then we develop a new ABR streaming

rate adaption algorithm with accurate rate estimation and retransmission mechanisms to

improve the user quality of experience by addressing many of our critical observations. In

addition, we present a comprehensive evaluation of our proposed ABR streaming algorithm

along with a set of other state-of-the-art algorithms.

4

In Chapter 6, we introduce the challenges for utilizing renewable energy sources for

cloud based ABR video transcoding applications, and then propose a set of power manage-

ment policies to enable the renewable energy usage and to improve the energy efficiency

for these applications. We provide experimental evaluation of the policies in a small scale

prototype cluster, as well as trace based simulation using a user behavior trace collected

from a large scale video content delivery network.

In Chapter 7, we further extend the power management policies proposed in Chapter 6,

to scenarios with parallel cloud applications. We provide further evaluation on the policies

and show the general applicability of these policies for such parallel cloud applications.

In the last chapter, we conclude this dissertation, and provide possible directions for

future research works.

5

CHAPTER 2

BACKGROUND

In this chapter, we introduce background information in this dissertation. We first in-

troduce the ABR streaming and its QoE measurement metrics. Then, we present the cloud

services that we use in this dissertation and their characteristics. Finally, we introduce the

energy monitoring and controlling mechanisms for cloud server nodes.

2.1 ABR Streaming and DASH

In order to ensure a high user experience, many content providers have switched to ABR

streaming, which has been widely implemented by modern video content providers, such

as Microsoft’s Smooth Streaming [105], Apple’s HTTP Live Streaming [24] and Adobe’s

HTTP Dynamic Streaming [1]. Comparing to the traditional UDP based, single layer, real

time media transfer protocols, e.g., RTP or RTSP, today’s ABR streaming technologies are

built on top of the Hyper Text Transfer Protocol (HTTP) and Transmission Control Protocol

(TCP), aiming to provide reliable transmission.

TCP based applications perform steadily over stable network conditions. However, for

AVC based ABR streaming, in case of low network capacity or high bandwidth fluctua-

tions, clients can be exposed to frequent packet losses which leads to interrupted playback

experience. Therefore, the ABR streaming approach transcodes single layer, high quality

videos into multiple copies with different bitrates, then for each bitrate layer, the video

is encoded into small segments with short duration, typically between 2 and 10 seconds,

depending on the actual implementation. With ABR streaming, different client devices,

varying from cell phones to PCs or large screen HD TVs, are all able to request their most

6

Figure 2.1: DASH Flow Diagram

suitable bitrates from the same video server according to their resolutions, processor capa-

bilities and network conditions.

Prior to the downloading of video contents, clients devices are able to retrieve the Me-

dia Presentation Description (MPD) file containing a list of all available video and audio

bitrates and segments. The actual video segments are requested by sending HTTP GET

requests to the appropriate video server or cache, and, upon arrival at the client, stored in

the client buffer. Typically the client playback will not start until achieving a certain buffer

filling level. To quickly accumulate the client buffer, ABR algorithms usually select the

lowest available bitrate at the beginning of playback. While playing, the ABR streaming

algorithm continuously monitors the available network bandwidth, and make decision on

the next bitrate request accordingly. In the case of network congestion, instead of paus-

ing the playback, the ABR streaming mechanism reduces the requested quality bitrate, and

therefore can maintain a smooth playback experience for users.

One of the most popular implementations of ABR streaming is the MPEG’s Dynamic

Streaming over HTTP (DASH) standard [89]. Its popularity can mostly be attributed to the

facts that i) DASH-format videos can be streamed from any kind of HTTP server that are

hosting the contents; ii) adaptation logic resides in the client, which makes DASH highly

7

scalable; and iii) it is an open standard. In this case, the quality of a video, along with

resulting streaming bandwidth, can be adapted based on bottleneck bandwidth, server ca-

pacity, and client resources. Figure 2.1 depicts the DASH streaming flow process. The

DASH server hosts two components: A Media Presentation Description (MPD) manifest

file which contains the index of all the available bitrate (qualities), segment lengths, for-

mat, URL, etc; and video segments which contain the actual multimedia contents in the

form of single or multiple files based on the encoder [63]. The client periodically (2 –

10 seconds) probes the available bandwidth and local buffer condition, and then selects a

suitable quality level from the MPD file. Finally it downloads the desired content from the

HTTP server, and plays the video. Therefore, with the benefits of lightweight HTTP server,

and the flexibility of bitrate adaptation, DASH is able to provide high resilience to network

variations and smooth playback experience.

2.2 Quality of Service (QoS) and Quality of Experience (QoE)

With the increasing popularity of video streaming services, one of the critical goals

for content providers is to ensure a high-quality experience for end users. As stated in

Chapter 1, users are highly likely to leave the content provider’s site if they experience

frequent playback pausing and rebuffering.

In order to quantitatively measure the performance of video streaming services, we

look into two metrics. The first one is Quality-of-Service (QoS), which was proposed by

the International Telecommunication Union (ITU) in 1994 [51]. QoS considers network

and video playback aspects in order to decide the video delivery performance, such as,

bitrate, bandwidth, playback pausing, etc.

On the other hand, Quality-of-Experience (QoE) is a set of performance metrics that

focuses on the perspective of user satisfaction. The current measurement studies typically

classify QoE into two categories: subjective QoE and objective QoE. Subjective QoE is

based on users’ opinions. One of the most commonly used subjective QoE metric is Mean

8

Opinion Score (MOS) [102]. In this case, the QoE is evaluated by user’s ratings on a scale

from 1 to 5. The higher the MOS, the higher the QoE.

In this dissertation, we focus on the second QoE category with objective metrics, i.e.,

metrics that can be quantified without subjective assessment. This is because objective

QoE evaluations can be automated, therefore, they are easier to be integrated into service

improvements. Here we list the metrics we consider in this dissertation.

• Video initiation time. In order to provide users with a smooth playback experience,

media players usually buffer the initial part of the video before they actually start

displaying the content. Most players set a certain buffer level threshold. As soon

as the buffer level accumulates beyond the threshold, the video playback starts. The

time period between when the first segment is buffered and when playback starts is

described as video initiation time.

• Video rebuffering. A video segment has to be downloaded before it is rendered and

presented onto the user’s screen. If the segment download speed is slower than the

video playback, the buffer level drops. To deal with buffer depletion, video players

pause the playback and wait for the next frame to arrive when buffer level is critically

low. This is named as rebuffering. Based on the video download rate, rebuffering

can happen multiple times during the playback of a video. Rebuffering events can

significantly reduce the user experience since the video playback “freezes” [59].

• Average bitrate. The average bitrate measures the number of bits per unit playback

time, and is a typical metric for objective video playback quality. Usually higher

average bitrates ensure a better view from the users. However, higher bitrates require

better network bandwidth and higher CPU capacity on the client devices. Choos-

ing inappropriate bitrates can either result in low video playback quality or frequent

video rebuffering.

9

• Quality switching. In the case of ABR streaming, the video quality (bitrate) is

chosen by the client algorithm, which is a reflection of network capacity. Therefore,

under unstable network conditions, the video quality can vary in order to avoid video

rebuffering. The number of quality changes is identified as detrimental to QoE by

viewers by Zink et al. [107].

• Spectrum. Another video quality metric we considered is the presentation quality

of video playback. Here we employ the metric, named spectrum, proposed by Zink

et al. [107]. Spectrum provides a simple yet efficient way to determine the video

quality from the viewer’s perspective. The authors believe that two factors reduce the

user experience: the video quality degradation and the frequency of quality switches.

As shown in a comparison study, the spectrum reflects perceived quality better than

PSNR. The overall spectrum of quality adaptive video v can be represented as:

s(v) =
T∑
t=1

zt(ht −
1
T∑
i=1

zi

(
T∑
j=1

zjhj))
2 (2.1)

where the two terms ht and zt are defined as:

ht: the number of layers in time slot t, t = 1, ..., T ;

zt: indication of a step in time slot t, zt ∈ {0, 1}, t = 1, ..., T .

Usually, a lower spectrum means less quality fluctuations, resulting in a higher QoE.

The benefit of this metric is that it reflects the subjective quality observed by viewers,

and can be easily calculated.

2.3 Cloud Services

When serving millions of users, hosting a large scale of video repository becomes very

expensive, especially due to the large upfront investments in hardware and time spend on

the heavy lifting of managing the hardware. Cloud platforms have become one of the pri-

10

mary enablers to reduce the huge cost of video hosting. With the support of cloud services,

content providers can rent the hardware and pay for the actual usage time and amount of

data transfer, instead of purchasing and maintaining dedicated servers. In addition, a vari-

ety of hardware configurations are available varying from basic, low performance VMs to

high-end bare metal servers depending on the actual needs of users.

In this dissertation, we look into many of the popular cloud service providers including

both commercial clouds and research clouds. Commercial clouds are designed on pay-

as-you-use model, with the goal of providing reliable, flexible and low cost IT resources.

Users can get access to servers, storage, databases and a broad set of application services

over the Internet. In this dissertation, we make use of two commercial cloud services: AWS

Elastic Compute Cloud (EC2) [2] and Rackspace Cloud [13]. Both EC2 and Rackspace

provide resizable cloud computing capacity to execute applications on demand. The cost

of commercial cloud services depends on the type of resources used and the duration of the

usage, as well as additional factors such as the amount of I/O performed and the amount

of storage used. In addition to regular cloud server hosting, the commercial clouds also

offers services including cloud storage, Content Delivery Networks (CDN) and cloud-based

website hosting.

In contrast, research clouds provide free resources for the research community, on a

reservation basis. In this dissertation, we make use of two research cloud platforms: Exo-

GENI [3] and CloudLab [80]. ExoGENI is an open-source research cloud platform, which

allows users to programmatically manage a controllable, shared substrate on a reserva-

tion basis. The ExoGENI cloud uses a slice-based architecture which gives experimenters

more flexibility than commercial clouds, since it allows them to create customized network

topologies for a compute cluster.

CloudLab is a scientific instrument, open-source cloud platform. CloudLab allows

users to instantiate a complete private cloud stack and to get full visibility to each aspect

11

of the cloud facility. In addition, CloudLab allows the users to get access to its IPMI based

power monitoring and controlling modules for real time power consumption measurements.

2.4 Cloud Power Management Mechanisms

Energy consumption is one of the key aspects that constrains the scaling up of large

cloud platforms. In order to optimize the energy usage and the performance of cloud appli-

cations, we make use of various techniques to monitor and control power consumption for

either individual servers or at the scale of server racks.

Power capping mechanisms. Power capping enables the system administrators to

cap the power consumption of a server or a group of servers. The corresponding power

consumption can therefore be adjusted with the power capping configurations. In this dis-

sertation, we cap the active power in a prototype by controlling CPU power states, e.g., via

Dynamic Voltage and Frequency scaling and changing C-states, and capping utilization.

IPMI. In this dissertation, we make use of the Intelligent Platform Management Inter-

face (IPMI) to control and monitor the power usage of the nodes in real time. IPMI is an

autonomous computer subsystem that is separate from the operating system (OS). It allows

the users to remotely boot or shut down severs or maintain the system in case of OS failures.

IPMI is also able to monitor the system status, such as system temperature, power usage,

and fan speed. Each CloudLab server is equipped with an out-of-band server management

card that supports the IPMI protocol, which supports a fine-grained power monitoring at a

1Hz resolution at 1W granularity.

12

CHAPTER 3

RELATED WORK

There has been extensive research works on improving the performance and energy

efficiency for both ABR streaming and cloud applications. In this chapter, we discuss the

related work in these areas.

3.1 ABR Streaming Services

Due to its popularity, ABR streaming has been extensively studied in recent publica-

tions, especially for DASH. The related work for ABR streaming can be coarsely divided

into two categories, i.e., (i) measurement studies showing real-world streaming behavior

of ABR streaming, and (ii) studies that propose new quality adaptation mechanisms to

improve the DASH streaming performance.

3.1.1 Measurements on ABR Streaming

Large-scale studies of DASH performance have been conducted in commercial video

streaming platforms such as Hulu, Netflix and Vudu [21,49,50]. Similar measurement also

studied aspects of the transmission behavior of video clients [20], DASH network traffic

characteristics [78], and DASH QoE [41,74]. These measurement studies point out some of

the real-world difficulties that face ABR streaming such as the high variability of the end-

to-end throughput, the inaccuracy of client based rate estimation, as well as rebuffering

risks due to non-preemptive segment download. These factors make a purely rate-based

quality adaptation approach highly volatile.

13

3.1.2 Rate Selection Policies

As the DASH standard does not specify how to perform rate adaptation, many research

groups studied the impact of different rate adaptation algorithms on DASH performance.

The existing body of work on DASH quality adaptation has two sources of information,

i.e., the buffer fill and the available bandwidth estimate. Proposed algorithms usually use

one of these two sources as a main information source and the other one to cover corner

cases. The work in [50] uses measurements from a commercial video streaming platform to

assert that it is sufficient to mainly use the client buffer fill level to determine the quality of

the next segment to download. Here, the authors find that it is important to obtain available

bandwidth estimates only during the startup phase.

Villa et al. [94] propose a traffic shaping mechanism to alter packet interarrival times to

improve the accuracy of available bandwidth estimates by reducing traffic burstiness. Tian

et al. [90] proposed a PID controller for rate adaptation which takes the buffer filling into

account to refine the available bandwidth estimates. Similarly, the authors of [36] propose

a control theoretic approach to stabilize the buffer filling at certain level. In addition, a

recent work [26] proposed a light weight rate adaptation algorithm based on a buffer map

that avoids heavy online computation and provides playback with less rebufferring events.

Studies that investigate the impact of different segments sizes and lengths include [31,

54, 96]. In Sect. 5.5, we provided a brief sketch of the SARA algorithm from [54], which

takes into account that segment sizes may differ widely even within the same quality level.

Another research direction is on studying and optimizing DASH performance under

various network architectures. E.g., DASH over CDN [19, 68], DASH over CCN [30, 62],

centralized control plane [42], etc. In addition, there are many DASH algorithms that

take QoE into account when performing rate adaption. The first approach, that is denoted

PANDA (for probe-and-adapt) [65,66], presents a buffer filling based adaptation algorithm

that solves the quality selection optimization problem with respect to an α-fairness objec-

14

tive using a dynamic programming approach. The authors use peak signal-to-noise ratio

(PSNR) to capture QoE.

The second approach is given in [104], where the authors propose a QoE metric that

is a weighted combination of the average video quality, the average quality variation, the

rebuffering time, and the startup delay. The authors formulate the rate selection problem as

a stochastic optimal control problem. Assuming stability of network conditions on known

finite time horizons, the proposed algorithm uses a model predictive control approach to

optimize the QoE metrics. This algorithm is based on an offline section, which does offline

optimization (using CPLEX) for different scenarios, and an online section, which com-

prises table lookups of precalculated solutions. A similar approach that is solely based

on the buffer filling is given in [88] which formulates this rate selection problem as a slot

based deterministic optimization problem that is solved using a Lyapunov technique. Here,

BOLA-U maximizes a weighted combination of the quality bitrate and the smoothness

measured in terms of average rebuffering time. A second variant of this algorithm, BOLA-

O, addresses the trade off between maximizing the quality bitrate and reducing oscilla-

tions during playback. Unlike BOLA-U, BOLA-O measures the download rate of previous

streamed segments to choose a more sustainable quality bitrate for the client player.

A similar approach has been leveraged in [101] which formulates the rate selection

problem as a MDP and uses dynamic programming to find an optimal solution. For these

methods to find the optimal rate selection policy, strong assumptions have to be made on

the statistics and predictability of the network conditions.

3.2 Energy-Aware Cloud-based Transcoding

Energy-aware cloud applications have become a widely discussed topic in recent publi-

cations. This is largely due to the increasing energy usage of IT infrastructure and increas-

ing weight of video streaming services. However, little prior research has been conducted

on transcoding with renewable energy powered data centers.

15

Initial research focuses on transcoding job scheduling aiming to shift transcoding jobs

from the centralized media server to the local offloading server [34], or using DVFS man-

agement scheme to reduce power consumption and thread management and scheduling

schemes [87]. These works look into cloud based transcoding scenarios, however, they are

not taking renewable energy resources into account.

Another research direction is on optimizing transcoding job scheduling to maximize

the Quality of Experience (QoS). For example, Gao et al. [43] look into predictive resource

provisioning that optimizes QoS, while Wei et al. [98] investigate a task scheduling algo-

rithm to dynamically adjust the resource reservation and schedule the tasks to improve the

QoS. These works differ from ours because they do not consider energy consumption in

cloud environments.

In this dissertation, our work takes into account both transcoding performance and re-

newable energy utilization. To the best of our knowledge, this is the first attempt to con-

duct large scale transcoding on clusters powered by both variable renewable energy and

non-renewable energy prices.

3.3 Energy-Aware Parallel Cloud Application

Recently, researchers have recognized the importance of optimizing the usage of vari-

able power. This is due, in part, to a combination of rising energy prices and falling prices

for solar panels and wind turbines. In particular, data centers are beginning to make use of

substantial renewable deployments, as evidenced by the 40MW co-located solar farm that

powers Apple’s new iCloud data center in Maiden, North Carolina [24].

Initial research on optimization for power variations has focused on either using energy

storage to offset power shortages [46], or enabling isolated system components to adapt

their power usage. Research on using energy storage focuses on the best combination of

energy storage devices, e.g., batteries, flywheels, etc., to minimize costs, and evaluates the

potential savings based on realistic workloads, power prices, and battery costs. Our work

16

differs from this work by focusing on optimizing parallel applications given a variable

power source and a small fixed amount of energy storage capacity.

Another research direction is on adapting different system components to run on vari-

able power. These system components include web servers [58], distributed caches [83],

file systems [84], virtual machine migrations [61], and batch schedulers [45]. Our work

focuses on parallel applications, rather than individual components. Prior work on batch

schedulers is most closely related to our work. However, this work differs from ours in

its focus on short batch tasks, which a scheduler may simply defer until enough power is

available to run them. Unfortunately, for long-running, parallel tasks there may never be

enough power to run them to completion, which requires them to, instead, dynamically

adapt their execution in real time as power varies.

Another interesting approach is to run parallel tasks in virtual machines (VMs) and

migrate them before deactivating nodes to consolidate workload. However, VMs introduce

additional virtualization overheads that degrade performance, and the migration overhead is

often large, especially for HPC applications that have large memory footprints. In addition,

consolidating applications on a small subset of nodes may overload nodes and degrade

performance, i.e., by causing memory thrashing.

The slack-based energy gear optimization leverages inter-node bottlenecks in MPI pro-

grams to improve energy-efficiency [55]. Our work differs from this approach by consider-

ing power variations from green energy sources, as well as both active and inactive power

capping techniques.

Our approach in this dissertation aims to maximize energy efficiency by deciding the

optimal number of nodes and capacity of each node based on the availability of renewable

energy resources. The energy cost can be significantly reduced by using minimal amount

of “dirty” energy resources and battery for energy storage. By sacrificing the least amount

of performance, the maximum efficiency of renewable energy can be achieved.

17

CHAPTER 4

USER EXPERIENCE CHARACTERIZATION FOR WIRELESS
ABR STREAMING

4.1 Introduction

Over the past few years, mobile video has become an essential Internet service. The

increasing ubiquity of smartphones, tablets, and other mobile devices, together with the

growth of media-intensive Internet applications that drive video usage, ensures that this

trend will continue. According to [35], More than half a billion mobile devices and con-

nections were added in 2015. If historical trends continue, 75% of the world’s mobile data

traffic will be video by 2020.

In reaction to this trend, various industry bodies have been working to standardize the

delivery of mobile video. In particular, DASH has been specifically designed to meet this

demand and enable a high-quality experience for end users of video on demand and real

time communication services. It is designed to adapt to dynamic link characteristics, aim-

ing to deliver the best possible video quality in any scenario.

Meanwhile, as demand for instant access to high-quality multimedia content grows,

wireless carriers are racing to deploy upgraded networks that are better equipped to meet

this demand. Serving wireless video is a significant challenge for already-stressed cellular

data networks [39]. In addition to the high bandwidth requirements, video traffic imposes

additional latency and packet loss constraints for acceptable service.

Yet despite widespread acknowledgement of the challenges associated with mobile

video delivery and attempts to take these into account when developing new Internet video

standards, surprisingly little is known about how these challenges affect consumers of mo-

18

bile video. Although a great deal of effort has been concentrated on quantifying the aggre-

gate effect of mobile video on core and access networks, there has been no study of how

mobile video services are experienced by individual users in a pedestrian mobile setting.

In this chapter, we collect mobile measurements from DASH by moving at walking

speeds through an 802.16e WiMAX [23] network. Using measurements from the appli-

cation, network, and wireless physical layers, we identify characteristics of the cellular

data network that directly impact the quality of video service, and suggest areas for further

improvements and optimizations.

Our contributions for this part of dissertation are, therefore, the following:

• Empirical measurements quantifying key characteristics of network and video per-

formance experienced by a pedestrian user in a realistic mobile setting. We correlate

measurements of wireless link quality to video bitrate, video frame rate, video frame

size, packet loss, and other relevant statistics, for DASH services.

• Identification of behaviors in DASH when interacting with the wireless environment

contributes to poor user experience. By noting these behaviors, we hope to distin-

guish areas for further improvement in these evolving Internet video standards.

4.2 Measurement Platform

This work was conducted using dedicated experimental WiMAX 802.16e networks in-

stalled at the campuses of the Polytechnic Institute of NYU (NYU-Poly) and the Univer-

sity of Massachusetts Amherst (UMass Amherst). Each installation includes a commercial

WiMAX base station (BS) operating in a licensed frequency band, as well as other compo-

nents required to route traffic from WiMAX clients to the Internet or other networks. For

highly controlled experimentation, this platform has a distinct advantage over commercial

cellular networks because it allows us to isolate the effects of the wireless channel quality

from other variables such as competing traffic, carrier routing and shaping policies, and ra-

19

dio configuration. This increases consistency and repeatability, while still being more true

to life than a simulation or emulation environment. In this section, we introduce the setup

of WiMAX testbeds, and the tools for conducting the measurements.

4.2.1 UMass WiMAX Testbed

In order to systematically evaluate the user experience of DASH, we conduct part of

our measurements on the UMass Amherst 802.16e mobile WiMAX research testbed in

comparison to the WiMAX testbed at New York University with a similar configuration.

The experiments are done using software tools from the WiMAX project [40] as well as

the GIMI [9] instrumentation and measurement infrastructure.

The WiMAX technology offers wide-area broadband wireless communication similar

to other 4G systems, with advanced mobility and flexibility, high data rates, and support

for diversified QoS service classes. The bandwidth and range of WiMAX make it suitable

for a number of potential applications, including providing mobile broadband coverage to

a variety of devices as a Metropolitan Area Network (MAN), providing an alternative to

cable for last mile broadband access (especially to rural areas where it is not practical to

install a wired connection), and serving as a wireless backhaul for cellular networks.

The UMass WiMAX testbed is part of the deployment of the mesoscale research testbed

of Global Environment for Network Innovations (GENI) [27,28]. This testbed provides net-

work researchers with 4G cellular services and wide-area coverage with fully programmable

infrastructure. Both the WiMAX base station and clients are virtualized such that users can

run multiple experiments concurrently. The testbeds are managed by the cOntrol and Man-

agement Framework (OMF) [77], which gives local and remote researchers a robust set

of scripting, experiment control, management, and measurement tools to run their experi-

ments. The testbed nodes may be “fixed” nodes, which remain connected to a wired control

network at all times, or “mobile” nodes, which may be temporarily disconnected from the

control network for mobile experiments.

20

Access Mode SOFDMA/TDD
Center Frequency 2.595 GHz

Channel Bandwidth 10 MHz
Frame Duration 5 ms

Antenna Beamwidth 120◦

Transmit Power 38 dBm
TDD DL:UL ratio 35:12

CRC Enabled
Packing Enabled

Fragmentation Enabled
Compressed MAP Disabled

Service Class Best Effort (BE)

Table 4.1: Selected parameters of WiMAX BS configuration.

The GENI WiMAX BSs used in this study are commercial WiMAX 802.16e radios

from NEC, operated via customized control software developed at WINLAB [29] that is

installed on a separate BS controller. Table 4.1 summarizes key BS configuration parame-

ters for the experiments presented in this chapter.

4.2.2 Testbed Configuration

The network configuration for the WiMAX testbeds is shown in Fig. 4.1. Each testbed

node is equipped with an Intel Centrino Advanced-N+WiMAX 6250 wireless network

adapter which is configured to connect to a GENI-operated WiMAX network. When

a testbed node requests entry to the WiMAX network, Generic Routing Encapsulation

(GRE) [47] tunnels are set up on the BS and the BS controller to route traffic to and from

the WiMAX client. Meanwhile, a Click software router [56] running on the BS controller

is configured to forward traffic between the WiMAX network and a user-defined datapath.

In this way, WiMAX clients can communicate with other hosts on a campus network, the

public Internet, or a GENI backbone network.

21

GENI WiMAX BS

Base Station Controller

University Network

WiMAX Client

Click software router

GRE tunnels

Air interface

 Public Internet

or

GENI Backbone

Hosts on

University

Network

Figure 4.1: The WiMAX testbed network configuration. A software router configured
by the BS controller forwards traffic from each client to its predefined datapath on the
university network, the public Internet, or a GENI backbone link.

4.2.3 Measurement Infrastructure

This work was made possible by the extended measurement capabilities offered by sev-

eral open-source tools. The GIMI [9] instrumentation and measurement toolset provided

storage and presentation of measurement data, which was collected by specially instru-

mented versions of popular Internet applications.

The GIMI project aims to provide instrumentation and measurement services for exper-

imenters on selected types of GENI aggregates. GIMI builds on OMF and its associated

measurement library, OML [70], which are already used on GENI WiMAX testbeds. The

GIMI toolset adds utilities for pushing measurements from a WiMAX testbed to a user’s

personal storage on an iRODS [7] data grid, and for visualization and presentation of mea-

surement results.

The WiMAX clients used in this work were equipped with GIMI tools, which we used

to push measurements collected by an OML server on the clients to the GIMI measurement

data archive (i.e., iRODS).

In a previous study [40], we quantified the performance of this platform, particularly

with regard to achievable data rates. We found that the data rates achieved on this plat-

form are similar to typical data rates measured by others for users of commercial HSPA+

networks and users of commercial LTE networks [48]. This suggests that with regard

22

to overall performance, this platform can be considered broadly representative of current

wireless broadband networks.

The clients used in this study were standard laptops equipped with a commercial WiMAX

network adapter, a USB GPS dongle, and a webcam. On these, we installed modified

version of 2.1.0 of the popular VLC media player, which includes a DASH plugin [72].

This software was instrumented using the OML measurement framework [70] to include

“hooks” that collect key network and video metrics from the application, and stream mea-

surements to a local database at regular intervals while the application is running. We also

used logger applications to continuously collect GPS coordinates from the gpsd daemon in

Linux and wireless link characteristics from the WiMAX device. We collect the following

data from these tools:

• VLC with DASH. We collect DASH performance data including DASH download

rate, DASH chosen bitrate and buffer status.

• WiMAX Logger. We collect wireless signal data includingReceived signal strength

indicator (RSSI), carrier to interference plus noise ratio (CINR) and frequency.

• GPS Logger. We collect location data including latitude, longitude, altitude and

moving speed.

4.3 Wireless Environment

Because the characteristics of a wireless channel are heavily dependent on the topog-

raphy of an area, we collected measurements at two campuses in very different wireless

settings. NYU-Poly is in an urban area composed mainly of high-rise commercial, civic,

and residential buildings. It is a highly dynamic environment, with heavy moving vehi-

cles and pedestrian traffic in the radio path. In contrast, the UMass Amherst campus is a

suburban/semi-rural environment, with few tall buildings and little traffic.

23

(a) (b)

Figure 4.2: The mobility patterns followed in New York and Amherst, respectively, and the
location of each WiMAX BS. Map data ©OpenStreetMap contributors, tiles from skobbler.

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●●

●●

●

●●

●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●●

●●●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●●

●●

●

●

●

●●

●●

●●

●●

●

●●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●●●

●

●

●●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●●

●

●●●

●

●●

●●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●●●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●

●●

●

●●

●

●

●●

●●●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●●

●

●●

●●●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●●

●●

●

●●

●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●●

●●●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●●●

●

●●●

●

●●

●●●●

●

●●

●●

●●

●●●●

●●

●

●●●●●●●

●

●●●●

●●●

●●

●

●

●

●●●

●

●●

●●●

●

●●

●●●●●●

●●●

●

●●●●

●●

●

●●●

●

●

●●

●

●

●●

●

●

●●●

●●

●●●

●●

●

●

●●●

●●●

●

●●●●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●●

●●

●

●

●●

●●

●

●

●●●●●

●

●●

●●

●●●●

●

●●●●

●

●

●

●●●●

●

●●

●

●●●●●●●

●

●

●●

●

●

●●●●●●●

●

●●●●

●●●

●

●

●●

●●

●

●●●●

●

●●

●●●

●●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●●

●

●●

●●●●●

●

●●

●●

●●

●●●●●●●

●●

●●●

●

●●

●

●

●●●

●

●●

●●●●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●

●●●

●

●●●●

●●

●●●●●●●

●●●●●

●●●

●●

●

●

●●

●

●●

●

●●

●●

●

●

●●●

●

●

●

●●●●●●

●●

●

●●●

●

●

●

●●

●●●

●●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●●

●●

●

●●

●●●●●●

●

●●

●

●

●

●

●

●

●●●●●

●

●●

●

●●

●

●

●

●●●●●

●

●●●

●

●

●

●●

●

●●●

●

●●●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●

●●

●

●●

●

●●

●●

●

●●

●

●●

●

●

●

●

●●●

●●

●

●

●

●●●●

●

●●

●

●

●●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●●●●

●

●

●

●

●

●

●●●●●●

●●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●●●

●

●●

●

●

●●●●●●●

●

●

●

●

●

●●●

●●●

●

●

●●●

●

●●●●●

●

●

●●

●●●

●●●●●

●

●●●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●●●

●

●●

●●●●●●●

●●

●

●

●

●

●

●●

●

●

●●●●●

●

●●●

●

●

●

●●●

●

●●●

●

●●

●

●●

●

●●

●●●

●●

●

●●●●●

●●

●●

●●●●

●●

●●●

●

●●●●

●

●●

●●●●●●●

●

●●

●

●●

●●

●●

●

●

●

●●●●

●●

●

●●●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●●●

●

●

●●●●●●●●

●

●

●

●

●●●

●●

●

●

●

●●●●●●●●●

●

●●●

●●●

●●●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●

●

●●

●●

●

●●●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●●●●

●

●●●

●

●●●

●

●●

●

●●

●

●●●●

●●

●●

●●●●●

●●●●●

●

●●

●

●

●

●●●●

●

●●

●

●

●●

●●●

●●

●●●●●●

●

●●●

●●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●●

●●●●

●●

●

●●●●●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●●●

●●

●

●●

●

●

●●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●

●●

●

●

●●

●●●

●●●●●●

●

●●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●●●

●

●

●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●●

●●●●●●●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●●●

●

●

●

●●

●

●

●

●●

●●●

●●

●●●●●

●●

●

●●

●

●●

●●

●●

●●

●

●

●●●●

●●

●●

●

●●

●

●

●●●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●●●●●

●

●●

●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●●

●●●

●

●

●

●●

●●●

●

●

●●

●

●●

●●

●

●●

●

●

●●

●●●

●●●

●

●●●

●

●

●●●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●●

●

●

●

●●●

●●●

●●

●

●

●●

●●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●●●

●●●●●●●●●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●●

●●

●

●●●●●

●

●

●

●●

●●

●

●●

●

●●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●●●

●

●

●●

●

●●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●●●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●●

●●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●●

●

●

●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●●●●●

●●

●

●

●●

●

●●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●●

●●●●

●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●●

●●●●

●●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●●

●

●●

●●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●●●●●

●●●

●

●

●

●

●

●●●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●●●●

●

●●

●●●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●●

●

●●●

●

●

●●

●

●●●

●

●●

●

●

●

●

●●●●●●●●●

●●

●

●

●

●

●

●●

●●●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●●●●●

●

●●

●

●

●●●

●

●

●●

●●●

●●●●●●

●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●●●

●

●

●●●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●●●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●●●●●

●

●●

●

●●

●●●●

●●

●

●

●●

●

●

●●

●●

●

●●●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●●

●●

●●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●●

●

●

●

●

●

●

●●

●

●●

●●

●●

●●●●

●

●

●

●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●●●●

●●

●

●

●

●

●

●

●●

●

●●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●

●●●

●

●

●●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●●

●

●

●

●●●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●●

●●●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●●●●●●●●●●●●

●

●●●●

●●

●

●

●

●

●●

●●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●

●

●●●●●●●

●

●●●

●

●●

●●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●●●

●●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●

●●●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●●●●

●

●

●

●

●●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●●●●●

●

●

●

●

●●

●

●

●●●●●

●●

●

●●

●

●●

●●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●●

●●

●●●●●

●●●●

●

●

●●

●●●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●●

●

●●

●●

●

●●

●

●

●

●●

●

●●

●●

●●

●●●

●

●

●

●●●●

●

●

●

●

●●

●●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●●

●●

●●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●●●

●

●●●

●●

●

●

●●

●

●●

●

●●●●

●●

●●●●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●●●

●

●●

●

●●●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●●●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●●●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●

●

●●

●

●●

●

●●

●

●

●●●

●

●

●

●

●●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●●

●●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●●●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●●

●

●

●

●●

●

●●

●●

●

●●

●●

●

●

●●

●

●●

●●●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●●

●●

●●

●●●

●

●

●●●●

●●●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●

●

●●

●●

●

●

●

●●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●●●

●●

●

●

●

●

●●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●●●●

●

●●

●●●●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●●●

●●●●●

●●●●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●

●●●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●●

●

●●

●●

●●

●

●

●●

●

●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●

●●●●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●●●●●●●

10

20

30

40

NY Am
Location

C
IN

R
 (

dB
)

(a)

10

20

30

40

0 100 200 300
Time (s)

C
IN

R
 (

dB
)

New York
Amherst

(b)

−0.5

0.0

0.5

1.0

0 100 200 300
Lag (s)

A
ut

oc
or

re
la

tio
n

C
oe

ffi
ci

en
t

New York
Amherst

(c)

Figure 4.3: WiMAX link characteristics. Figure 4.3a shows the distribution of CINR (sig-
nal quality) measurements at each location, Figure 4.3b shows CINR along each experiment
path as a function of time for a single representative trial, with the shaded area indicating
a range of one standard deviation above and below the mean CINR calculated across all
trials. Figure 4.3c gives the autocorrelation of CINR over a long timescale.

24

Amherst New York

10

15

20

25

30

35

10 15 20 25 30 35 10 15 20 25 30 35
Current CINR (dB)

N
ex

t C
IN

R
 (

dB
)

0.00

0.25

0.50

0.75

1.00

Transition
probability

Figure 4.4: Empirical CINR transitions over a timescale of one second. All measurements
are collected on a mobile client moving at walking speeds.

All of the measurements described in this chapter were collected along a 400 m mea-

surement path at each location. The geographical layout of this path is depicted in Fig-

ure 4.2, and its wireless link characteristics are given in Figure 4.3.

Figure 4.3a shows the distribution of CINR values measured over all experiments, while

Figure 4.3b shows CINR as a function of time along the experiment path. At both locations,

a similar mean carrier to interference plus noise ratio (CINR) of approximately 25 dB is

observed along the measurement path, although a slightly greater range of CINR values is

observed in New York.

However, the channel behavior in time is quite different for the two wireless settings.

Because the wireless signal propagates through “street canyons” in the urban area, the

wireless signal tends to be very consistent when moving within a single “canyon.” In

the suburban environment, where variations in signal strength are attributed to shadowing

from individual buildings and obstructions in the signal path, more dramatic variations are

observed over a short timescale.

This property is supported by Figure 4.3c, which shows the autocorrelation of each

channel for lags up to 350 seconds. For the Amherst channel, the autocorrelation func-

tion closely resembles the widely reported exponential model. This intuitively represents

the idea that locations that are close together are highly correlated, with the correlation

decreasing gradually with distance. In New York, the autocorrelation function is shaped

25

more like an exponential decaying sinusoid [106]. For the urban wireless channel, there

is a strong correlation between measurements on a single block in the street grid, even

though these may be separated by some tens of seconds, and virtually no correlation across

intersections. This is reflected in the shape of the autocorrelation function, which shows

a strong correlation between samples collected on the same block, and a sharp change in

correlation coefficient at each intersection.

The behavior of the wireless channel over a fine timescale, meanwhile, shows that

over a short interval, the wireless channel is more consistent in the urban environment.

Figure 4.4 shows the empirical probability of transitioning from one CINR value to another

over a timescale of one second. In New York, two CINR values observed one second apart

almost always differ by less than 5 dB, while in Amherst, transitions greater than 10 dB are

seen quite often.

Put simply, we may state based on Figure 4.3b, Figure 4.3c, and Figure 4.4, that a

period of especially poor or especially good signal quality is likely to be of short duration

in Amherst, and of long duration in New York.

We note these differences because the video applications under consideration use short-

term estimates of network metrics to adjust bandwidth usage; the time variance of the chan-

nel is therefore highly relevant to performance. Although these application-level decision

are generally designed to apply only for a short timescale, in practice we will see that the

behavior of the channel over a longer timescale is also highly relevant.

4.4 Experimental Evaluation

Our procedure for measuring the user experience of DASH is as follows. The DASH-

enabled VLC player [72] is installed on a laptop, which connects to the campus network

through a WiMAX access network. We use an Apache HTTP server to hosts all the video

segments and the media presentation description (MPD) file. The link between this video

server and the WiMAX network is a wired connection under low load, so that any network-

26

related behaviors we observe may be attributed to the wireless link. We stream DASH

video to the client while moving at walking speeds along the experiment path described in

Section 4.3. The experiment is repeated ten times at each location, with consistent results

observed across the ten trials.

For the video, we used the Big Buck Bunny animated video from the DASH dataset [63],

with 2-second segments encoded at bitrates of 100, 200, 350, 500, 700, 900, 1100, 1300,

1600, 1900, 2300, 2800, 3400, 4500, and 6000 kbps. Because the VLC media player can-

not currently play back H264/MP4 videos with dynamic resolution, we used video encoded

at a constant resolution of 480p and a 24 fps frame rate. Our choice of 2-second segments

was intended to provide high flexibility for adapting to bandwidth fluctuations in the mo-

bile setting. Similarly, we used a maximum buffer size of 30 seconds (the default in VLC),

to help the client smooth over temporary disruptions in signal quality.

The adaptation policy used by a DASH client is not standardized. The DASH client in

VLC follows a simple rate-based adaptation scheme which uses buffer state and bandwidth

history to decide what bitrate to request for the next video segment. We call this a maximum

bitrate-low buffer avoidance policy; a similar policy has been used e.g. in [64].

• If the video buffer is full, the client does nothing.

• If the video buffer is less than 30% full, the client requests the next video segment at

the lowest bitrate level, to avoid buffer depletion and a freeze in video playout.

• Otherwise, the client requests the next segment at the highest bitrate that is less than

the empirical bitrate measured when downloading the previous segment.

This simple policy is suitable for this study because our intent is not to evaluate a

particular adaptation policy, but rather to gain a broad understanding of DASH performance

in a particular setting.

27

0

25

50

75

100

0 100 200 300
Time (s)

B
uf

fe
r

S
ta

tu
s

(%
)

(a)

0

2000

4000

6000

0 100 200 300
Time (s)

B
itr

at
e

(k
bp

s)

New York
Amherst

(b)

Figure 4.5: Download rate for video segments over 375 seconds of playback time, and
buffer status over the same period. The line gives values for a representative trial, while
the shaded region shows one standard deviation above and below the mean for all trials. In
Figure 4.5a, the 30% point buffer state is marked by a horizontal line.

4.4.1 Buffer Status

Figure 4.5a shows the buffer status of the DASH client over 375 seconds of video

playback. A maximum of 30 seconds of video may be buffered at one time. Thus, at 100%

buffer status, 30 seconds of video are in the buffer; at 0%, freezes in video playback will

occur. The 30% point, at which the client drops to the lowest available bitrate to avoid

buffer starvation, is marked by a horizontal line in Figure 4.5a.

The shape of the buffer status curve is closely related to the CINR curve in Figure 4.3b.

When the wireless channel quality is poor, there tends to be a corresponding dip in the

buffer status. At Amherst, after an initial period of poor channel state, the signal recovers

and the DASH client builds up a sufficiently large buffer to survive subsequent periods of

poor channel quality without buffer starvation. In New York, where periods of poor channel

quality tend to last for an extended period of time, the DASH client cannot survive the low

CINR periods without dropping below the 30% state.

4.4.2 Video Bitrate

The buffer status directly impacts the video segment bitrate selected by the DASH

client, shown in Figure 4.5b. The mean bitrate over 375 seconds of video playback was

28

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.1
0.35

0.5
0.7

0.9
1.1

1.29
1.59

1.89
2.29

2.79
3.39

4.49
5.59

C
D

F

Bitrate (Mbps)

New York
Amherst

Figure 4.6: Distribution of bitrates for video segments downloaded by the DASH client at
New York and Amherst.

1003 kbps in New York and 1744 kbps in Amherst, with standard deviations of 416.1 and

715.0 kbps, respectively.

Figure 4.6 gives the relative frequency of each bitrate selected by the DASH client.

At both locations, we observe a high proportion of instances where the lowest bitrate is

used, due to the adaptation strategy of dropping to the lowest bitrate whenever the buffer

is approaching starvation. This behavior has the unfortunate effect of introducing sudden

changes in video quality, rather than gradual changes which may be preferable to most

users [71]. This effect is especially pronounced in New York, where we see many instances

of fallback to the lowest bitrate and then recovery to a higher bitrate (Figure 4.5b). These

coincide with the areas in Figure 4.5a where buffer status drops below 30%.

We also see evidence of this behavior in Figure 4.7, which shows the empirical proba-

bility that the next segment is downloaded at a particular bitrate, given the current segment’s

bitrate. The transitions are generally smooth (i.e., the bitrate of the next segment is similar

to the current segment’s bitrate). However, there is always a substantial probability of drop-

ping to the lowest bitrate to avoid buffer depletion (and subsequently, abruptly recovering

to a high bitrate).

29

Amherst New York

101492
351043
501122
700873
900606

1100480
1299746
1598978
1897661
2296317
2795939
3392769
4493282
5991271

10
14

92
35

10
43

50
11

22
70

08
73

90
06

06
11

00
48

0
12

99
74

6
15

98
97

8
18

97
66

1
22

96
31

7
27

95
93

9
33

92
76

9
44

93
28

2
59

91
27

1

10
14

92
35

10
43

50
11

22
70

08
73

90
06

06
11

00
48

0
12

99
74

6
15

98
97

8
18

97
66

1
22

96
31

7
27

95
93

9
33

92
76

9
44

93
28

2
59

91
27

1

Current Data Rate (bps)

N
ex

t D
at

a
R

at
e

(b
ps

)
0.00

0.25

0.50

0.75

1.00

Transition
probability

Figure 4.7: State transition probabilities for video download bitrate.

4.4.3 Segment Download Time

For a DASH video client to avoid freezes, the average download time per segment

should be less than the segment playing time. Figure 4.8 shows the distribution of segment

download times for our measurements with 2-second segments, with the mean download

time given as the horizontal line in the boxplots, the upper and lower hinges corresponding

to the first and third quartiles, and outliers beyond 1.5 interquartile range (IQR) of the

hinges plotted as points. Overall, we measured a mean download time of 1.56 seconds

per segment, with 75% of segments downloaded in less than 1.87 seconds. However, the

outliers - though rare - include segment download times as high as 125 seconds, especially

in the urban setting. Because the client uses sequential HTTP downloading, long download

times block the downloading of future segments, which often causes playback to freeze

(depending on buffer status).

4.4.4 Buffer Status

It is also noteworthy that as the segment download time increases, the bandwidth mea-

sured over the duration of the download is less predictive of the bandwidth for the next

download period. The extent of this relationship is governed by the autocorrelation of the

wireless channel, shown in Figure 4.3c. When long segment download times exist (as

observed in the urban wireless network), the simple rate-based adaptation logic is less ef-

30

●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●
●●●
●●
●●●
●●●●
●
●
●●●
●●●●●●●●●●●●●●●●●
●
●

●
●●●●
●

●
●●

●
●●●●●●

●
●
●
●

●
●

●

●
●●
●●

●●

●
●
●

●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●
●
●
●
●●●●●
●
●●●
●
●
●●●

●●●●●●●●
●●
●
●●
●●●
●

●

●

●●●●●●●●●
●●●●●●●●

●●
●●
●
●●
●
●
●●●●
●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●

●

●
●
●

●●●●●●●●●

●

●●●
●●●
●●
●●●

●●●●●●
●

●●●●●
●●
●
●●●●
●

●●

●
●
●
●●
●●
●
●●
●

●●●●●●●●
●

●

●●●●●
●

●

●

●●●●●●●●●●

●

●●●●●
●
●●●●●
●●●●●●●●●

●●
●●●●
●
●●
●
●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●
●●●●●●●
●
●●●
●●●●●●
●
●●
●●
●
●●●
●
●●

●●

●●●●
●
●●●●●
●
●●●●
●

●

●●●
●●●
●●
●
●

●
●●

●

●●●●●
●
●●

●

●

●●●●●●
●
●●●●●●●●●
●
●
●
●●●●●●●●●
●
●●

●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●
●

●●
●●●●●●●
●●●●●
●●
●
●●●●
●●
●●●●

●●
●
●

●
●●●

●●●
●●●
●●●●
●●
●●●

●●●

●
●

●●●
●●●
●
●●

●●

●●●
●●●●

●
●
●●
●●●●●

●

●

●●
●
●●
●
●●●●●●
●●
●

●●

●●●●●

●
●
●●●●●
●
●●●●
●
●
●
●●●●●●●●●●●●●●●●●●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●

●●●●●●
●
●●
●
●
●

●

●●●●●●

●

●

●●●●●●●●
●●

●●

●●●●●
●
●●●●

●
●

●●●●●
●
●
●
●

●●●●

●
●

●●●●●
●

●
●

●
●●●●
●●
●●●●●●

●

●
●●●●●●

●

●
●●●●●●
●●●●

●●
●●●●
●●
●
●●
●
●●
●●●●●●●
●●
●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●
●●

●●

●●●●●●●●

●
●

●
●

●●●●●●

●●
●●●●
●●●●●●●
●●
●●●●●●●
●
●●●●●
●●●
●
●
●●

●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●
●
●●
●●●●
●●●●●
●

●●

●
●●
●●

●
●
●●●

●

●
●●●
●●
●

●

●
●●●
●
●
●●
●●
●●●

●●

●●●

●
●
●●
●
●●

●

●

●

●●●●●●
●

●

●●
●
●●●●●●●●
●●●●●
●
●
●●●●●●●●●●●●●
●●●●●●●
●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●

●●
●
●

●●
●●●●●
●●
●
●
●●
●
●
●●●●
●

●●●●
●●●●●●
●●●
●

●●
●●
●●

●●●●
●●●●
●●
●
●●
●●●●●●●●●
●

●

●

●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●
●●●●
●●●
●●●●●●
●●●
●●
●

●●●
●●●●●●●
●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●

●

●

●●●●●●●●●
●●
●
●●

●●●●
●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●
●

●
●●
●●●

●

●

●●●●●●●●●●●

●

●
●
●●●

●●

●

●

●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●
●

●
●

●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●

●
●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●
●

●●●●●●●●

●●
●

●●●●

●●

●

●●●●●●●●●●

●●

●●●●
●●

●●

●●●

●
●
●

●●●●

●●●
●●●
●●
●
●●●

●

●
●

●●●●●●
●
●●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●
●●●●●●
●
●
●●
●●
●
●●●●●●
●●

●

●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●

●●
●●●●●
●
●●●●●●●●●●●●
●
●●●●

●

●

●●●●●●●●●

●

●
●●●●●

●●●
●●●

●
●

●
●●●●●
●
●●

●●●●●

●
●●

●
●●
●
●●
●●

●●●
●●●●●●●●●●●●●●

●

●●●

●

●●
●
●

●●●

●

●
●

●

●●●●
●●
●●●●
●●
●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●

●

●

●●●●●●●
●
●●●

●●

●●●

●●
●

●●●●●●●
●●
●

●●

●●●●

●●
●●

●●●
●●●●●●●
●●●●●
●
●
●●

●●●●
●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●
●
●
●
●●
●
●●●●●●●●●●●●●●
●
●●●
●
●
●●
●●●●
●

●

●●●●●●●
●
●

●●●●

●
●

●●●●●

●

●

●●●●●●●●●●

●
●●
●●
●

●
●
●
●●●●

●●●
●●●●●
●●
●
●●●

●
●
●
●
●●●●

●●

●●●●
●
●
●●●●●●●●●●●●
●●●●●●●●●●●
●●
●

●●

●●●
●
●●
●

●●●●
●
●

●●
●
●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●

●●

●●●●●●●●●

●

●
●●●●●

●●
●
●●●●●●●
●●●●●●●●●●●●●
●●
●●●●●●●●●
●●

●●
●●
●
●●
●
●●●●
●
●●●●●●●●
●●●●●●●●●
●●●●●
●●
●
●●
●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●
●●●●●
●●●●●●●●●●●●●●
●
●
●●●●

●

●

●

●●●●●●●●●●
●●●
●●●
●

●

●
●
●●●●
●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●

●
●
●●

●●●
●●●●
●
●●●

●●

●●●●●●●●●

●
●

●●●●●
●●
●●
●●

●
●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●
●●
●

●●
●●●
●●●●
●●●●
●●
●

●●
●
●●●●

●

●

●●●●●●●●●

●

●●●
●
●
●●
●●●

●
●

●
●●●●
●●●●●●●●●●●●●
●
●
●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●
●●

●
●
●
●

●●

●●●●●●●●●
●●
●●
●●●
●
●
●
●

●●●
●●
●●●
●●
●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●

●●
●

●
●
●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●

●
●●

●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●

●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●
●

●

●●●●●●●●●

●

●●
●●
●●
●
●●●●●●●●●●●●

●

●

●
●●
●●●

●

●●●●●●●

●

●
●
●

●●
●
●●●●●

●

●●

●

●

●●●
●

●

●

●●

●●●
●●
●●●●●●●

●

●●●●●●
●
●●●●●●●●●●●●●

●
●
●

●●●●●●●●●●
●
●

●●
●

●

●●●
●
●●●●●●●●

●

●
●
●
●
●●●●●●●●●●●●
●

●●

●

●●
●●●●●●●●●●
●

●
●
●
●
●●●●●

●●

●●●●●●●●●●

●
●

●●●●

●●

●●●●
●●●●

●

0

40

80

120

New York Amherst

S
eg

m
en

t D
ow

nl
oa

d
T

im
es

 (
s)

(a)

●

●

●●●
●
●●●

●

●

●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●●●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●●●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●●●

●

●

●
●●●

●
●●
●

●●

●
●

●

●

●

●
●●

●

●

●
●●●
●

●
●●●

●

●

●●
●
●●●●●●●

●
●
●●
●●●
●

●●●
●
●
●

●●●●

●

●●●
●●●
●

●
●●

●
●
●

●

●

●
●

●

●

●

●
●●●

●

●

●

●●●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●●

●

●

●

●

●
●●●●●●●●●●●●●●●

●

●

●

●

●
●
●
●●

●●●
●

●

●

●●
●●●

●
●

●●●

●

●

●

●

●

●

●

●●●

●

●●●●●

●

●
●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●

●●

●

●

●●●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●
●

●●●●●●●●

●

●●●●●●

●

●

●

●

●

●●●●●
●
●
●●●

●●●●●●●

●

●

●

●

●
●●●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●
●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●●
●
●

●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●
●

●●●●
●●

●

●●●●●●●

●

●●●

●●●
●
●
●
●
●●

●●●●●●●●●●●

●

●●●
●●●
●

●

●
●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●●●●

●

●

●

●

●

●●
●

●
●●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●●●

●●

●

●

●

●

●
●●

●●

●●
●

●●

●
●
●●●●
●●
●●

●

●●

●

●●●

●

●

●
●

●

●●
●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●
●●●

●

●●
●
●
●●●
●

●

●

●

●

●
●●
●●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●●
●●●

●

●

●

●

●●
●

●

●●

●●

●

●

●●

●

●●●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●●
●

●
●●
●
●

●

●●●
●●
●
●
●●●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●
●●●
●
●●

●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●●●●
●●
●●

●
●●

●

●●

●

●

●

●
●●

●

●
●●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●

●

●●●●
●

●●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●●●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●●●●●●●●●●●

●

●●
●●●●●
●●

●●

●

●●●
●
●●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●●

●

●
●●

●●

●
●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●
●

●
●
●

●

●

●

●
●

●

●

●

●●●●●●

●

●●●

●

●●

●

●
●●
●●

●

●
●
●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●●●●●●●

●

●

●

●

●●

●●●

●

●
●

●
●●

●

●●●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●●

●
●●

●

●●
●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●●●●●●●●●● ●
●

●●
●●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●
●●
●

●

●

●

●

●
●●

●

●

●

●●

●●●●
●●

●

●

●
●

●●

●●

●

●

●

●●
●●●

●

●

●

●

●
●●
●

●●●●●

●

●

●

●

●

●
●●

●

●

●

●

●
●●
●

●
●●●
●●●●
●
●●

●
●

●●●●●●●●●

●

●

●

●

●

●
●

●●

●

●

●●
●
●
●
●

●●
●

●●

●

●

●

●●

●●●●●●●●●●●●

●

●

●●

●●

●

●
●

●●
●●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●●

●

●

●

●

●
●

●

●

●

●●●
●●

●

●

●

●●

●

●

●●
●●

●

●

●

●

●
●●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●

●

●●
●

●
●●

●

●●

●●●●
●

●
●
●

●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●●
●

●●●●●●●

●
●

●
●
●
●●

●

●
●

●
●●●●

●

●

●●
●

●

●

●●●

●●●●●●
●●●

●

●●
●●
●

●

●
●

●●●

●

●

●

●
●●

●
●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●
●●

●

●
●

●
●●●

●
●

●

●

●●

●

●

●●

●

●
●

●

●

●
●
●

●

●●●●
●
●
●●●●●
●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●●●

●
●

●

●●
●

●

●

●●

●

●

●●●●●●●●●●●●●●
●

●

●

●

●

●●
●
●
●
●●●●●

●

●

●

●●
●

●
●
●
●●
●
●●
●●
●●

●

●●●

●●

●

●●

●

●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●●●
●

●
●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●●
●●

●
●

●●

●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●
●●●

●

●
●
●

●●●
●●●●
●●●●●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●
●●●●

●

●

●●

●

●
●●
●●
●
●●●●●
●

●●●●●●●●●●●●●●
●

●●●●●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●●

●●

●

●

●
●●

●

●

●

●
●
●●
●

●

●

●●

●●

●

●●
●●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●●
●
●

●

●

●

●

●

●
●

●
●●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●●●●●

●●
●●
●
●●●
●●
●

●
●●●●●●●●●●●●●●

●

●

●
●●

●●●●●●

●

●●●●●

●

●

●●●

●

●

●●
●

●●●●
●●
●
●
●

●

●
●●
●
●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●
●

●●

●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●●●●●

●

●

●

●
●

●●

●

●

●

●●●●●●●
●
●●

●

●

●

●

●

●

●

●

●●●●●
●
●
●

●
●

●

●●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●
●●●
●
●
●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●●

●
●●●●●●●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●●
●●
●

●●●●●●●●●●●●●●●●●●●●

●

●
●●●
●

●

●

●
●

●

●
●●
●
●

●●
●

●●●●●●
●

●●
●●●●

●

●
●●

●

●

●

●

●●●●●●
●●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●●
●

●●
●

●

●

●

●●●●

●
●●
●
●●●
●●●●

●●

●

●

●

●

●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●

●

●
●
●

●

●

●

●

●

●●●●
●
●
●●●

●

●

●

●

●

●●

●●
●

●

●

●

●●●●

●

●
●
●
●

●
●

●●●●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●●●●●●

●

●
●
●●●●●●●
●
●●●

●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●

●

●

●

●●
●
●●

●
●

●

●●●

●●●●●●
●

●●●

●

●●●
●
●●

●

●
●

●

●

●

●

●

●
●●●●●●●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●
●●

●●

●●

●

●

●

●

●
●●
●●●●●
●●
●●●●●●

●

●

●

●

●

●●●

●

●
●

●
●●●
●

●

●

●
●

●

●
●
●
●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●
●

●

●

●

●
●●

●●●●●●●●●●●●●●

●●

●

●●●

●

●●●
●
●●●●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●
●
●
●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●
●
●

●

●

●
●

●

●●
●●●

●●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●
●

●●●
●

●

●

●

●

●

●
●

●
●

●
●●
●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.0

2.5

5.0

7.5

10.0

New York Amherst

S
eg

m
en

t D
ow

nl
oa

d
T

im
es

 (
s)

(b)

Figure 4.8: The distribution of segment download times is shown in Figure 4.8a. Figure
4.8b is a zoomed-in version of the same data, showing download times that are shorter than
ten seconds.

fective. Long download times (those above the third quartile) tend to appear in clusters

because of this effect.

4.4.5 Video Playback Freezes

A key metric for video streaming performance is the frequency and duration of freezes

in video playback. Here, the behavior of the DASH client is very different depending on

the wireless setting. In Amherst, on average, playback was frozen for 7% of the 375 second

playback period, during which time 8.1 short interruptions (lasting less than four seconds)

and 0.5 long interruptions (with duration 4-6 seconds) were observed. In New York, the

video was stalled for 15% of the same playback period on average. During this interval,

an average of 8.1 interruptions less than four seconds and 2.3 interruptions lasting four

seconds or more were observed, with some interruptions lasting up to 68 seconds.

The extended freezes may be attributed to the occasional long segment download times

measured in New York (Figure 4.8). These results are also corroborated by Figure 4.5a,

which shows the video buffer status while walking along the experiment path. In New

York, we see an extended period of time during which the buffer is almost empty, while at

Amherst, the buffer is depleted only for short intervals before rebounding.

31

4.5 Summary

In this chapter, we evaluate the DASH performance over a wireless scenario. Results

show that the performance of an adaptive video delivery strategy in a mobile setting de-

pends on the characteristics of the wireless network in time, in both the short- and long-

term. For example, the maximum bitrate-low buffer avoidance policy used by the VLC

DASH client has good performance in the suburban location, but not in the urban setting,

where signal quality is generally constant for the length of at least one “block” in the street

grid. For this setting, a strategy that adjusts download rate to maintain a constant buffer sta-

tus, such as the policy suggested in [90], might be more appropriate. (This would also offer

a smoother playback experience.) We expect that in a very rural area where distance-based

path loss is most significant in determining wireless signal quality, or a crowded network

where load on the BS dictates data rates, entirely different policies might be optimal.

We also note that the DASH client sometimes experiences freezes in video playback as a

result of extremely long segment download times in areas with poor signal quality. Segment

abandonment mechanisms, e.g., the implementation in BOLA adaptation algorithm [88],

and parallel segment downloading mechanisms, could alleviate this issue.

32

CHAPTER 5

QOE AWARE QUALITY ADAPTATION FOR ABR STREAMING
SERVICES

5.1 Introduction

In Chapter 4, we show that the DASH user playback experience can be significantly

compromised under unstable network conditions. In this chapter, we design and evaluate

a set of DASH quality adaptation algorithms to improve the QoE and to ensure a smooth

DASH playback experience.

Today’s DASH implementations are mostly based on HTTP and the benefits of the

underlying TCP protocol, which include standardized transport, firewall penetration, and

adaptation to bandwidth changes. Unfortunately, the use of TCP also brings a set of dif-

ficulties which we identify and investigate in this chapter. Examples of such challenges

are, the dual control-loop (one for DASH and one for TCP as already identified by Huang

et al. [49]), the impact of video segment size, and the impact of dead times on congestion

window size.

An additional challenge for DASH video streaming is to provide a high QoE to the

viewer. For example, results in Chapter 4 have shown significant quality fluctuation when

DASH experiences unstable network condition. From the onset, DASH has been designed

with the goal to prevent re-buffering events, which have the most serious impact on QoE,

as shown by Krishnan and Sitaraman [59]. In addition to re-buffering events, frequent

changes in quality have also been identified as detrimental to QoE by viewers, e.g., in Zink

et al. [107].

These insights motivated us to design a new DASH adaptation algorithm that aims at

achieving the highest possible quality (in terms of bitrate) while minimizing the number of

33

quality changes, since we believe that most existing approaches only focus on the former

and, thus, do not always result in a satisfying QoE. In this chapter, we study the effec-

tiveness of transporting the data from the content providers to the customers and propose

bitrate selection algorithms to improve the user Quality of Experience (QoE).

We therefore make the following contributions in this part of dissertation:

• Critical Observations. We perform a detailed analysis of the interplay between the

DASH adaptation mechanism and underlying TCP. Through this analysis we iden-

tify several issues that contribute to the problem of optimizing the DASH streaming

performance. Most notably, we identify i) the substantial impact of segment size on

the download rate; ii) the impact of dead time on the congestion window; and iii) the

inaccuracy of segment-based available bandwidth estimation.

• SQUAD & SQUAD-BR/RR. We develop a new DASH rate adaption algorithm de-

noted SQUAD, that has the goal to maximize the quality of experience of users

watching video by addressing many of our critical observations. To achieve this

goal, we consider two quantitative metrics that describe QoE and combine these in

an online optimization algorithm. With SQUAD-BR and -RR, we present an exten-

sion of this algorithm that performs retransmissions for low-quality buffered but not

played-out segments, to further improve QoE.

• Evaluation. We present results from an extensive evaluation of the SQUAD al-

gorithm. We perform a series of experiments in a controlled environment (GENI

testbed) and in the wild (public Internet) and compare SQUAD, SQUAD-BR, and

SQUAD-RR with a large set of other existing DASH algorithms.

34

5.2 DASH Player Architecture

In this section, we highlight the main components of a general DASH player architec-

ture as depicted in Fig. 5.1. We divide the client block into the following logical compo-

nents: (i) playout buffer, (ii) rate estimation / prediction and (iii) quality adaptation.

In the following, we provide some initial definitions of DASH parameters to lay the

ground for subsequent modeling. We denote the size of a DASH video segment (in bits)

of a certain quality as si,q, with the segment number i ∈ {1, . . . , N} and the quality level

q ∈ {1, . . . , Q}. Here, q = 1 (q = Q) denotes the lowest (highest) quality with respect

to the video quality bitrate rq, i.e., rj < rj+1 for j ∈ {1, Q − 1}. We denote the quality

of a fetched segment i by qi and its quality bitrate by rqi and drop the subscript when it

is obvious. We consider the case where all video segments have equal length in time, i.e.,

every segment carries X seconds. The fetch time of segment number i in quality level q is

given as ti,q = si,q/Ri,q, where Ri,q is the segment download rate in bit/sec. In Sect. 5.3 we

describe how the segment download rate Ri,q depends on a combination of different factors

such as the network conditions, the TCP state and even the size of the segment si,q.

5.2.1 The Playback Buffer

The purpose of the playback buffer B(i) is to smooth short-term variations of the net-

work conditions. Specifically, temporary fluctuations in the segment download rates R

should be absorbed by the buffer, i.e., producing fluctuations in the buffer filling B(i)

while keeping the steady state playback quality q unchanged.

In this work, we define B(i) as the cumulative number of video seconds contained in

the playout buffer after fetching segment i. Note that B(i) is defined over i ∈ {0, . . . , N}

and that by convention B(0) = 0. We define the event {B(i) = 0} as the rebuffering

event. For any practical application, the playout buffer is set to a finite size Bmax. For

B(i− 1) < Bmax we write down the buffer recurrence as

35

HTTP

TCP

server

quality

adaptation

rate

estimation

playout

buffer

cross

traffic

Figure 5.1: Coarse architecture of a DASH client. Buffer filling and download rate esti-
mates are fed to the quality adaptation logic which decides the quality of the next segment.
The stream encounters varying network conditions, e.g., due to contending cross traffic.

B(i) = max {0, B(i− 1) +X − ti} , (5.1)

where ti is the fetch time of segment i. ForB(i) = Bmax we haveB(i+1) = Bmax−ti+1

since the player idles for X seconds when the buffer is full.

5.2.2 Rate Estimation

One basic client-side download rate estimation logic in DASH simply divides the seg-

ment size si,q over the segment fetch time ti. Here, the fetch time is given by the time

difference between the timestamps of the HTTP GET request and the segment being deliv-

ered to the playout buffer, i.e.,

di,q =
si,q

tdeliveredi − tGETi

(5.2)

Note that the rate estimate di,q is smeared by the one-way delay of the GET request. This

error diminishes with increasing segment size si,q. Rate estimation methods that calculate

the download rate over multiple concatenated segments extend (5.2) to

di,j,q =

∑j
k=i sk,q

tdeliveredj − tGETi

(5.3)

36

for segment indexes j ≥ i. In Sect. 5.3, we provide a critical evaluation of the foundations

of the DASH rate estimates.

5.2.3 Quality Adaptation

Next, we review some basic concepts for the segment based quality adaptation logic

shown in Fig. 5.1. DASH clients first fetch media presentation description (MPD) files that

contain information of the contents to be streamed, e.g., server IPs, bitrates of different

quality levels and the URIs to the segments of different qualities [86]. Basically, quality

adaptation algorithms have two sources of information, i.e., the status of the playout buffer

filling and the download rate of previous segments provided by the rate estimation logic.

Buffer based quality adaptation takes, in general, the current buffer filling B(i) and, in

some cases, the change of the buffer filling (B(j)−B(i)) /
(
tdeliveredj − tdeliveredi

)
for

segments j ≥ i, into account when deciding on the quality of the next segment to be

fetched. The change of the buffer filling is an indicator for a mismatch of the segment

download rate and the chosen rate. In DASH, there exists a subtle relationship between

the change of buffer filling metric and the average download rate, since DASH introduces

inter-request time gaps. We will provide a detailed analysis of this issue in Sect. 5.3.

Quality adaptation mechanisms also take the download rate estimation into account,

aiming to match the segment download rate to the playout bitrate. This is done by choosing

segment qualities with bitrates lower than the estimated available bandwidth. The estima-

tion of the available bandwidth for the next segment(s) given the download rate history can

rely, for example, on network active probing techniques [52] or simply on time series anal-

ysis. Furthermore, the rate based adaptation mechanism bears the risk of quality oscillation

in accordance to the fluctuation of available bandwidth. From a streaming point of view, it

is well known that frequent video quality oscillations are detrimental to the QoE perceived

by the users.

37

In the following sections, we will refer to the basic DASH player architecture and de-

scribe the details of the modifications introduced by our adaptation algorithm SQUAD. We

will provide some critical observations on DASH that inspire some concepts of SQUAD.

5.3 Critical Observations for DASH

In this section, we make some fundamental observations in DASH that increases the

difficulties of DASH performance optimization.

5.3.1 User Space Rate Estimation

DASH clients usually estimate the segment download rate from segment timestamps

in user space. Depending on the hardware environment and its configuration, these esti-

mations may vary significantly. Trivially, estimates made in virtualized environments may

be highly varying, because of VM scheduling [100]. Therefore, in this part, we look at a

non-virtualized bare-metal topology and show the impact of different settings of the net-

work interface card (NIC), at the example of segmentation offloading (SO), on

the DASH segment rate estimates. To this end, we use the Emulab testbed [99] to build a

butterfly topology as depicted in Fig. 5.11 with M = 1 node on each side, where we use

bare metal machines connected via 100 Mbps links. In this case we do not generate any

cross traffic. We emulate a persistent HTTP DASH flow through a long running greedy

TCP flow, and then compare the segment download rate estimates obtained for different

segment lengths. Figure 5.2a shows the rate estimates over increasing estimation time

scales. We normalize the x-axis, i.e., the time scale, to the number of packets that fit into

one time slot at line rate. From Fig. 5.2a, we deduce that the user space rate estimate is in-

deed affected by the segmentation offloading for small DASH segments, i.e., in the order of

tens to hundreds of packets. On the other hand, larger time scales, i.e., equivalent to larger

DASH segments, allow some averaging such that the impact of SO can be negligible.

38

10 100 1000

20

40

60

80

100

time scale [# of packets × transmission time]
es

tim
at

ed
 r

at
e

[M
bp

s]

TSO on
TSO off

(a) Segmentation offloading.

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

segment size [MB]

es
tim

at
ed

 r
at

e
[M

bp
s]

(b) Rate versus segment size.

Figure 5.2: User space rate estimations in DASH: (a) Impact of NIC segmentation of-
floading on rate estimation in user space. (b) User space rate estimation in DASH is more
accurate for longer segments.

To get a better understanding of the DASH user space segment download rate estima-

tion, we rerun the experiment with the Python DASH player from [54]. We modified the

player to continuously measure the download rate during segment download process by

taking one measurement point every 50 packets. A one-minute video is streamed in the

topology in Fig. 5.11 with link capacities of 10Mbps, one DASH flow and no cross traf-

fic. The video segment length is 2 sec. We measure the download rate for segments of

different sizes as shown in Fig. 5.2b, which depicts averages and 0.95 confidence intervals.

Here, too, we observe that the inaccuracy of rate estimates is highest when the segments

are small.

5.3.2 Interaction with Underlying Protocols

In the following, we discuss specific characteristics of DASH that arise due to TCP.

Dual control loop

The design choice of DASH to utilize HTTP for adaptive bitrate streaming brings nu-

merous advantages, such as standardized transportation, firewall penetration, adaptation to

the bandwidth changes and all the advantages of TCP. However, since the DASH player

needs to specify the quality bitrate of the segments to be fetched, it may be regarded as

39

an outer control loop, while TCP running as an inner control loop that prevents conges-

tion. While TCP aims for the fair share on a packet level time scale, DASH aims for the

sustainable quality bitrate, i.e., essentially the fair share, on a segment level. The problem

exacerbates when the control loop of DASH runs on a per segment basis. Since the seg-

ments are of different sizes, the time scale on which DASH tries to find the fair share is

continuously changing. Figure 5.3 shows empirical segment download rates for different

segment sizes from testbed measurements, with one DASH flow using the topology shown

in Fig. 5.11 without cross traffic. We vary the segment lengths (in seconds), the link capac-

ities, and the persistency of DASH HTTP connection. Figure 5.3 clearly shows the impact

of the DASH segment size on the download rate for both HTTP connection types. The

empirical download rate may be much lower for small sized segments.

Our algorithm (SQUAD), which we present in Sect. 5.4, takes into account this discrep-

ancy of the rate estimation time scales and provides DASH with (available) download rate

information on the appropriate time scale.

 1

 10

 0.1 1 10 100

D
o

w
n

lo
a

d
in

g
 R

a
te

 (
M

b
p

s
)

Segment Size (Mbit)

2-sec: persistent
10-sec: persistent

2-sec: non-persistent
10-sec: non-persistent

(a) 10 Mbps.

 1

 10

 0.1 1 10 100

D
o

w
n

lo
a

d
in

g
 R

a
te

 (
M

b
p

s
)

Segment Size (Mbit)

2-sec: persistent
10-sec: persistent

2-sec: non-persistent
10-sec: non-persistent

(b) 30 Mbps.

 1

 10

 100

 0.1 1 10 100

D
o

w
n

lo
a

d
in

g
 R

a
te

 (
M

b
p

s
)

Segment Size (Mbit)

2-sec: persistent
10-sec: persistent

2-sec: non-persistent
10-sec: non-persistent

(c) 100 Mbps.

Figure 5.3: DASH segment download rates for links of different capacity. The segment
size has a substantial impact.

DASH download rate vs. available bandwidth

In general, the segment download rate of the DASH client is derived from the HTTP

activity, i.e., from (5.2). This download rate estimation does not necessarily coincide with

the available bandwidth on the client-server path [67]. Basically, TCP aims for the fair

40

share to which a long-lived TCP flow would converge to. In contrast, as shown in Fig. 5.3,

DASH cannot even utilize the full capacity of the pipe for small segment sizes.

DASH is TCP submissive

long lived
TCP

DASH

capacity

Figure 5.4: DASH abstraction as source of TCP mice flows.

Although DASH utilizes HTTP over TCP/IP to retrieve segments, we argue that it does

not necessarily receive its fair bandwidth share when competing with other long-lived TCP

cross traffic. The reason for this behavior is that a DASH video stream does not constitute a

long-lived TCP flow from the server to the client. Figure 5.4 shows a sketch of this behavior

for one hypothetical case of one DASH flow competing with one long-lived TCP flow.

Reasons for this discontinuous traffic behavior lie in the nature of DASH streaming. We

assume a persistent HTTP connection, since in case of DASH over non-persistent HTTP,

it is simple to show that the continuous TCP cross traffic receives more than the fair band-

width share. In general, there exist dead times of no DASH transmission that result from

the DASH adaptation algorithm itself, i.e., depending on how often the DASH adaptation

logic fetches a new segment and the corresponding buffer filling. Figure 5.5d shows the em-

pirical Cumulative Distribution Function (eCDF) of the dead times between receiving the

last packet of one DASH segment and sending out the HTTP GET request for the next one.

Clearly, there is silence time of multiple hundred milliseconds in the median case. This is

sketched in Fig. 5.4 as gaps between the DASH segments. In addition, due to the discon-

tinuous behavior of DASH, the congestion window of the corresponding TCP session has

a higher risk of being reset due to idling more than long lived greedy TCP sessions.

41

0 50 100 150 200 250 300
0

2

4

6

8

10

time [s]

ra
te

 [
M

bp
s]

seg. DL rate
quality bitrate
DASH traffic

(a) DASH throughput 2sec.

0 50 100 150 200 250 300
0

2

4

6

8

10

time [s]

ra
te

 [
M

bp
s]

seg. DL rate
quality bitrate
DASH traffic

(b) DASH throughput 10sec.

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

time [s]

cw
nd

2sec
10sec

(c) DASH-TCP cwnd.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

time [s]

C
D

F

2sec
10sec

(d) Silent times between segment re-
ception and next segment request.

Figure 5.5: DASH is TCP submissive: impact of the segment length for one DASH flow
competing with one TCP Reno flow.

In Fig. 5.5, we show the results for the experiment of competing DASH and a long-lived

TCP flow as sketched in Fig. 5.4. We run this experiment with two different segment sizes,

i.e., 2 sec and 10 sec, a link capacity of 10 Mbps and a DASH repository of the Big Buck

Bunny dataset with quality bitrates ranging from 89 Kbps to 4.2 Mbps. We emphasize

that we do not aim to investigate ABR segment size optimizations in this work, but merely

show that different settings of DASH parameters can lead to entirely different performance.

Our goal is to show the fundamental roots for this varying behavior. Figure 5.5a shows

the segment throughput as measured by the client as well as a finer grained throughput

measurement that is done on the wire. For a segment size of 2 sec, the quality bitrate of

the DASH stream is remarkably low with respect to the fair share. The reason for that can

42

be inferred from Fig. 5.5c, where we observe that the corresponding congestions window

(measured by number of TCP packets) does not ramp up as the segments are “small” in

size. In contrast, for 10 sec segments the congestion window in Fig. 5.5c is nearly an order

of magnitude higher and the quality bitrate shown in Fig. 5.5b stays at a high quality level

with bitrate of 3.8 Mbps.

The interrupted TCP stream generated by DASH can be modeled as the output of an

ON-OFF source that generates TCP mice flows (although technically imprecise because of

the persistent HTTP connection). Hence, it is known that competing long-lived (elephant)

and mice flows suffer from fairness disparities [44].

5.4 Spectrum-based Quality Adaptation

In this section, we describe a DASH quality adaptation algorithm that addresses many

of the critical points raised in Sect. 5.3. We list all symbols and their definitions in 5.1.

The aim of this algorithm is to maximize the quality of experience associated with DASH

streaming sessions in a quantitative manner. We consider two metrics that describe QoE,

and connect these metrics to an online optimization algorithm in a novel manner. Given

a DASH streaming session of N segments each of length X seconds, the first metric we

consider is the average video bitrate, i.e., the average video quality, which we express as

r̄ =
1

N

N∑
i=1

rqi . (5.4)

Recall that rqi is the quality bitrate of segment i at quality level q ∈ {1, . . . , Q}. Equation

(5.4) does not consider the detrimental impact of rebuffering on the average video quality.

One method to capture rebuffering in (5.4) is to substitute N by N ′, i.e., the number of

segments N in addition to the number of segments that can be fitted in the rebuffering time

as dtrebuf/Xe. Trivially, the corresponding rates rqi are set to zero.

The second metric that we consider is a centralized measure for the variation of the

video quality around the average quality which is denoted as “spectrum” in [107]. In this

43

Symbol Description
q Video segment quality level
rq Video quality bitrate of quality level q
Ri,q Segment download rate in bit/sec for segment i, quality level q
ti,q Video segment fetch time of segment number i in quality level q
B(i) The playout buffer size in terms of number of segments
di,q The download rate for segment number i, quality q
si,q Segment size of segment number i, quality q

t
cj,delivered
i Time required to download cj bits of segment i in quality q

d̂ εsi,q Empirical lower bound of download rate of segment number i, quality q
Lαn+1(v) Weighted quality list
H(N) Spectrum given window with N segments
qCi Chosen quality of segment number i
qsi Sustainable quality of segment number i

cl and ch Lower and upper buffer filling thresholds
t̂Ar,q Estimated available download time for segment r in quality q

Table 5.1: Symbols of notations.

chapter, we slightly adapt the spectrum definition to DASH streaming to express the video

bitrate variation around the average bitrate given N segments as

H(N) =
N∑
i=1

zi

(
rqi −

∑N
j=1 zjrqj∑N
j=1 zj

)2

(5.5)

where zi = 1{rqi 6=rqi−1}. In the following, we describe our DASH quality adaptation al-

gorithm that has the objective of maximizing (5.4) while minimizing the spectrum (5.5).

From a classification point of view, our quality adaptation algorithm can be regarded as a

rate and buffer based algorithm, since it takes the information on the buffer filling as well

as the historical download rates to decide on the quality of the next segment.

5.4.1 Smooth and Reliable Rate Estimation

Given our observation in Sect. 5.3 that the measured segment download rate varies with

the segment size and the current state of the server TCP state machine, we introduce two

key ideas to provide smooth and reliable estimates of the download rate of the next segment

to be fetched.

44

Smooth sub-segment rate estimates: Looking at the download rate estimation methods

from Sect. 5.3, we observe that the estimates are usually calculated upon the arrival of a

video segment. Since segments vary in size, the different estimates correspond to different

time scales. Hence, given the knowledge of the time scale dependence of the behavior of

network protocols (such as TCP fairness) and the available bandwidth, we decide to take

running estimates of the download rate vs. the downloaded data amount. Starting from the

request time tGETn for segment n we calculate the running download rate estimate as

d̂s =
s

t
cj,delivered
n − tGETn

(5.6)

where s represents the segment size, tcj,deliveredn is the time required to download cj bits

of segment n in quality q, where cj ≤ sn,q. Figure 5.6a depicts this procedure. In the

following, we calculate d̂s from (5.14) using the granularity of cj+1 − cj = 50 IP packets

(roughly 75kB). The granularity of the smooth sub-segment rate estimates technique deter-

mines the smallest segment size for which an acceptable estimate accuracy can be obtained.

It also determines the computational complexity of the estimation through the number of

given samples. This parameter can be set at the start of a streaming session as soon as the

segment sizes of a video are known from its MPD file.

Reliable rate estimates: One important contributor to the efficiency of any quality adap-

tation algorithm for DASH is the accuracy of the download rate estimation. However, in

Sect. 5.3, we showed that the segment download rate in case of DASH depends on the seg-

ments size as well as the TCP state. Practical approaches to predict the TCP transmission

rate that are based, e.g., on machine learning techniques have been considered in [90]. In

contrast, in this work we assume a thin client that keeps track of the segment download his-

tory. However, we do not aim to predict the TCP transmission rate in such manner. Instead,

we collect the download rates d̂s similar to Fig. 5.3 and deduce an empirical lower bound

on the download rate for the next segment n + 1 of size sn+1,q from the percentile of the

empirical distribution as

45

empirical download rate

download size

 [Mb]

1 ssi js

d̂

(b)

...

time

cumulative

data

s

tc tc ts1 2

...

c
1

c
2

c
j

tcj

d
2

^
d

j

^

d
s

^

(a)

Figure 5.6: (a) Sub-segment rate estimation. (b) Empirical downloading rate vs. segment
download size.

P
[
rn+1,q ≤ d̂ εsn+1,q

]
≤ ε, (5.7)

where ε is a conservatism parameter. The smaller ε, the more conservative is the lower

bound d̂ εsn+1,q
for the download rate of the next segment, as sketched in Fig. 5.6b.

5.4.2 Init: A Slow Start of Segment Quality

Initially, we start the streaming session by retrieving the corresponding MPD file which

we modified to include the segments sizes (in kB). Modifying the MPD to include seg-

ment size was first proposed by [54]. Note that our implementation can be easily adapted

to other techniques used to obtain the actual segment sizes, e.g., through HTTP range re-

quests. Since we do not assume any prior information on the available bandwidth along

the path between the client and the streaming server, we stream the first segment with the

lowest possible quality. Instead of streaming only the first segment in the lowest quality,

we may stream a consecutive train of the first W1 segments in the lowest quality. This

conservative yet tunable parameter allows the player to quickly accumulate the buffer and

therefore reduce the risk of rebuffering at the beginning of playback. However, a larger

W1 value keeps the player longer at the lowest quality, which increases the risk of video

abandonment. In the sequel, we set W1 = 5 if not stated otherwise.

The segment quality slow start behavior starts from segment W1 + 1. Here, with every

segment we double the quality level requested until we reach the highest possible quality.

46

We conclude the initial phase and go to the next phase, where we denote the steady state,

either when the quality slow start is finished or when the download time of the last fetched

segment is longer than doubling the segment length X . We choose this empirical break

condition to minimize the risk of rebuffering in the initial phase.

5.4.3 Steady State

In this section, we describe how the player decides on the quality of the next requested

segment based on our spectrum based quality adaptation.

5.4.3.1 Spectrum-based Adaptation

After the initial phase, i.e., W1 + blog(Q)c segments, the player decides on the rest of

the video qualities using the spectrum H given in (5.5). Given the trace of quality levels

downloaded so far, the player aims at minimizing (5.5) for all possible quality levels for

the next segment. However, this strategy leads to the preference of segment qualities that

are close to the average quality bitrate and may not necessarily have a drift towards higher

qualities. Since the goal of our adaptation algorithm is to maximize the average bitrate

(5.4) subject to minimizing the quality variations around the mean (5.5), we modify the

adaptation algorithm as follows.

We sort the qualities according to their calculated spectrum H , where we mark the

qualities either as “sustainable” or “unsustainable”, according to their estimated fetch time

t̂. We denote a quality sustainable if its fetch time t̂ is less or equal to theX seconds of video

contained in that segment. Considering the playout buffer evolution (5.1), this is equivalent

to imposing a buffer constraint such that we do not fetch qualities that lead to buffer drain.

In the sequel we will relax this constraint. This ordering operation is depicted in Fig. 5.7

and it provides the player with a first reference for choosing the quality of the next segment.

We conjecture that, in general, consumers are less likely to recall the movie quality after

a few minutes. Therefore, the current QoE is a function of the segment qualities over a

window v of past segments. Hence, as shown in Fig. 5.7, given n downloaded segments

47

get sustainable quality
qs

n+1

qc

n-1
qc

n
{ , … , , }qc

1
+MPD

^

1 ssi j

d

s

for dsn+1

-

dsn+1

e

or

estimate fetch time

X
d

s

ns

n

1

ˆ
1

d̂
1ns

d̂
1ns

t̂

no

unsustainable
qs

n+1

yes

calculate spectrum

H(n+1) over

windows v V

n+1n+1

apply weight

a(q)

for drift

calculate ordered

quality list

maximizing the average

of over V

choose qs

n+1

L
a

n+1
(v)

L
a

n+1
(v)

qs

n+1 1,...,Q

:=

:=

Figure 5.7: Spectrum based sustainable quality identification.

with qualities qCi with i ∈ {1, . . . , n}, we calculate the ordered quality lists Ln+1(v) for

segment n + 1 for multiple backward window lengths v ∈ V , where V denotes the set of

window lengths used to calculate the spectrum. To include the drift to higher qualities, we

multiply each of the values Ln+1(v) with a corresponding quality weight

α(q) =

(
r1

rQ

) 1
Q−q+1

. (5.8)

Note, the bitrate ratio r1/rQ < 1 and the weighting function α(q) is concave in Q− q.

We combine the weighted quality lists Lαn+1(v), i.e., the element wise product of the

two vectors α and Ln+1(v), and calculate the average of Lαn+1(v) over multiple v. The

basic adaptation algorithm sets the so-called chosen quality for the next segment qCn+1 to

the sustainable quality qsn+1 which minimizes the average

∑
v∈V

1

|V |
Lαn+1(v), (5.9)

where |V | denotes the cardinality of V . Next, we use V = {4, 8, 16} segments.

48

5.4.3.2 Buffer Guidance - Latent Fallback

Now we turn our attention to relax the restrictive buffer constraint from above that we

do not fetch qualities that lead to buffer drain. In general, our aim is to stream a movie

in highest sustainable quality while minimizing the quality variations. Conceptually, a

quality adaptation strategy that tries to keep the buffer filling fixed will eventually follow

the variations of the available bandwidth. Hence, we use a buffer guidance approach to

complement the spectrum based adaptation from Sect. 5.4.3.1. Here, we allow the playout

buffer B to drain at most by a certain amount whenever the available bandwidth decreases

and the current quality level becomes unsustainable. This latent fallback allows the player

to sacrifice buffer filling to maintain unsustainable but spectrum minimizing quality levels

for short periods of time in order to be able to overcome temporary available bandwidth

fluctuations. This, however, is only possible when the buffer filling is high enough to

minimize the risk of rebuffering. In the following we describe the details of this algorithm.

As depicted in Fig. 5.8, we divide the playout buffer into three areas, “low”, “medium”

and “high”. Similar divisions have been introduced in [54] and VLC [72]. In our case,

we only allow latent fallback when the buffer is in the “high” region. We mark the buffer

division by cutoff percentages cl and ch, where the subscripts stand for the lowest and

highest area. When the buffer filling is above ch we calculate the ordered quality lists

Lαn+1(v) as in Sect. 5.4.3.1 but we only mark qualities as unsustainable, that lead to a buffer

drain below cl. In other words, we mark qualities q as unsustainable only when

B̂(n+ 1) := B(n)− δ̂(n+ 1, q) < cl, (5.10)

where δ̂(n+ 1, q) := t̂n+1,q−X is the estimated buffer drain due to fetching segment n+ 1

in quality level q. We keep applying the latent fallback algorithm as long as the buffer

filling is above ch. As soon as the buffer filling is equal or below ch, we return to the buffer

constraint from Sect. 5.4.3.1.

49

...

buffer fill B

segment #n-1 n n+1

c
l

c
h

using estimate)1(ˆ nB

1

ˆ
nsd

admissible quality

admissible quality

non-admissible quality

s

nq 1

s

nq 1

s

nq 1

high

med

low

max

Figure 5.8: Estimated buffer drain δ̂(n + 1, q) = B(n)− B̂(n + 1) determines the admis-
sibility of a proposed quality qsn+1. Latent fallback is viable only if B(n) is above ch.

5.4.3.3 Player States

In steady state we differentiate between three states in which the player can be, which

we denote as (i) decreasing, (ii) steady and (iii) increasing. These states simply describe

the relation between the current chosen segment quality qCn and the sustainable quality

level that is calculated for the next segment to be fetched qsn+1. Based on its state, the

player decides on the chosen segment quality for the next segment qCn+1. Next, we describe

the steps that are common to all states before delving into the particular details of every

state. Fig. 5.9 shows an overview of the entire algorithm.

Before fetching a new segment, we always calculate the corresponding sustainable

quality level qsn+1 as described in Sect. 5.4.3.2. In particular, qsn+1 is calculated as the

quality which minimizes the spectrum, technically (5.9), while meeting the stringent buffer

constraint t̂n+1 ≤ X from Sect. 5.4.3.1. To this end, we first calculate the estimated fetch

time for segment n+1 in quality q for q ∈ {1, . . . , Q} as t̂n+1,q = sn+1,q

d̄sn+1,q
, where d̄sn+1,q de-

notes the average download rate estimated empirically from Fig. 5.6b (similar to Fig. 5.3)

given the size of the next segment sn+1,q. Hence, as stated above, we find qsn+1 that mini-

mizes (5.9) and compare it to qCn to detect the current player state. Next, we describe the

steps carried out when the different player states are detected:

50

Decreasing: In the decreasing state we detect that the sustainable quality level is less than

the current chosen quality, qsn+1 < qCn . Here we first invoke the latent fallback technique

that is described in Sect. 5.4.3.2 to avoid rapid quality changes in exchange for buffer filling.

To this end, we recalculate the sustainable quality qsn+1 that minimizes (5.9), however, using

the ε percentile d̂ εsn+1,q
from (5.7). In the following, we set the percentile ε = 0.2 to strike a

balance between smoothness and responsiveness. Next, we consider the buffer filling as in

Sect. 5.4.3.2. If the buffer filling is higher than ch, i.e., we have enough segments buffered,

we may sacrifice buffer filling in exchange for holding the quality level qn. Hence, as long

as the estimated buffer underflow probability after fetching the next segment is less than ε,

i.e.,

P
[
B̂(n+ 1) < cl

]
≤ ε, (5.11)

we set the chosen quality for the next segment as the average qCn+1 := (qCn + qsn+1)/2

with qsn+1 calculated using the percentile d̂ εsn+1,q
. Note that we do not perform this averaging

procedure more than once during one decreasing period, since the idea here is to hold a

moderate quality level as long as the buffer filling permits. As described in Sect. 5.4.3.2,

as soon as the current buffer filling qCn falls below ch, we set the chosen quality level as

qCn+1 := qsn+1. This procedure is depicted in Fig. 5.9.

Increasing: In the increasing state we observe that qsn+1 > qCn through the use of the

average download rate d̄sn+1,q . This state denotes that the player has room for increasing

the segment quality. In this case we set the chosen quality as qCn+1 := qsn+1.

Steady: In the steady case we detect no change in the calculated sustainable quality level

with respect to the previously fetched segment, i.e., qsn+1 = qCn . In this case, we decide

to be cautious and recalculate qsn+1 using the percentile d̂ εsn+1,q
. If qsn+1 stays unchanged,

then we set the quality as qCn+1 := qsn+1; if we detect qsn+1 < qCn then we undergo the same

procedure as in the decreasing state.

51

get sustainable

quality usingqs

n+1
dsn+1

-

get sustainable

quality usingqs

n+1

get sustainable

quality usingqs

n+1

?

seg #

quality

n+1

dsn+1

e
dsn+1

e

qc

n
qs

n+1>

qc

n+1
qs

n+1
:=

qc

n+1
qs

n+1
:=

qc

n
qs

n+1< qc

n
qs

n+1=

qc

n
qs

n+1=

decr flag ?

set decr flag = 0

set decr flag = 0

10

:=

set decr flag = 1

{ } and { }B(n) > c
^

h
P[B(n+1) < c] < e

^

l

buffer check

qc

n+1
qs

n+1
:=

no

set decr flag = 0

yes

qc

n+1

qc

n
qs

n+1

2
+ qc

n+1
qc

n
:=

qc

n-1
qc

n
{ , … , , }qc

1
+MPD

Figure 5.9: High-level sketch of the SQUAD algorithm. The calculation block to get the
sustainable quality is given in Fig. 5.7. The buffer drain consideration in the decreasing
player state is given in Fig. 5.8.

5.4.4 Segment Retransmission Scheduling

Traditional ABR approaches stream the video segments in the order provided by the

MPD file. Looking closely at the segment qualities buffered at the client at any point in

time we find that these reflect the recent quality decisions made by the adaptation algo-

rithm, which, in turn, are based on the specific interpretation of the measured download

rate and the corresponding buffer filling. Looking at the buffer filling in retrospect as in

Fig. 5.10 (a) we identify quality switches that we denote as quality “gaps”. The emergence

of these quality gaps is complex as it describes the instantaneous interaction of the adap-

tation algorithm with the buffer filling state and the download rate. In the following, we

illustrate how to increase the QoE by filling some of these quality gaps. Fig. 5.10 (a) shows

a simplified example of a sample path of segment qualities inside the player buffer with

different possible gaps. We define gaps as the downward variation from the quality level

which minimizes the spectrum (5.5).

52

In the following, we introduce a retransmission scheduling algorithm that detects the

quality gaps in the client buffer, and enables the replacement of low quality buffered seg-

ments with higher quality ones upon download rate improvement. In addition to gap detec-

tion, we predict the segment download finishing time based on the download rate history

to decide the feasibility of retransmission and prioritize the gaps that need to be filled. Fur-

thermore, to ensure the retransmitted segments can be downloaded without impacting the

regular transmitted segments, we monitor the segment downloading process in real time

and abandon the retransmitted segment if it cannot be downloaded before playout. Hence,

by enabling retransmissions we aim to further reduce the number of quality switches lead-

ing to higher QoE. Video segment retransmission method has been initially introduced

by Zink et al. [107]. While retransmissions can be regarded as an additional burden on

the available bandwidth we note that recent works such as [95] suggest different types of

redundant transmission to provide higher QoS. In contrast, in our work, we only invoke

retransmissions when it is nearly guaranteed that this will improve QoE, as shown in a

session of measurements in Fig.5.10 (b).

original
transmission

Quality level

151
buffer in # of

segments2 3

1

2

3

4

4

5 6 7 8 9 10 11 12 13 14

5

6

7

8

1

re-
transmission

2

3 4

Number indicates priority
of segments for
retransmission

Original gap
(1 segment length).
Need to retransmit

segment 3 (8) at quality
level 6 to closegap.

Original gap
(2 segment lengths).

Need to retransmit segments 13 & 14
at quality level 4 to close gap

(a) Retransmission illustration.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140

B
it
ra

te
 o

r
D

o
w

n
lo

a
d
 R

a
te

 (
M

b
p
s
)

Segment Number

Before Retransmission
After Retransmission

Download Rate

(b) Single run retransmission example.

Figure 5.10: Example of SQUAD retransmissions (sketch and actual measurement run).

Next, we introduce two retransmission approaches along with the retransmission seg-

ment abandonment mechanism.

53

Segment download time estimation: To ensure a smooth playback experience, segments

need to be completely retransmitted before the player starts rendering them. The available

fetch time for a segment can be represented by:

t̂Ar,q = tr − tcurr (5.12)

where (i) t̂Ar,q denotes the estimated available download time for segment r in quality q, (ii)

tr represents the playback time of targeted retransmission segment, and (iii) tcurr denotes

the time of current played segment.

With the help of estimated download rate d̂, we estimate the fetch time of the retrans-

mission segment r as:

t̂r,q =
sr,q

d̂ εsr,q
. (5.13)

If tAr,q > tr,q we have more time to retransmit the new segment before segment r has to

be rendered. Retransmissions are only possible in steady state as described in Sect. 5.4.3.

Given that we detect multiple quality gaps in the playout buffer as in Fig. 5.10 we need

to prioritize the gaps to be filled. The spectrum-minimizing prioritization scheme can be

mapped to the computationally intractable Knapsack problem [107]. Hence, we devise

the following heuristic that has been observed to provide the best performance. Here, we

prioritize the gaps to be filled according to the following rules:

1. Narrowest gap: The first priority goes to closing as many gaps as possible, therefore,

we start with the gaps with least number of segments.

2. Largest quality switch magnitude: As a second priority we close the gaps with

largest quality switch magnitude. This is due to the fact that we need to retransmit

entire segments in DASH, hence, we aim at improving the quality by as many layers

as possible, which also minimizes the spectrum in (5.5).

3. Lowest quality layer: Finally, we close gaps with the lowest quality layer first, in

case we have multiple gaps with the same width and quality switch magnitude.

54

Based on the estimated segment fetching time (5.13), we design two retransmission

mechanisms based on 1) segment downloading rates, that we denote SQUAD-RR and 2)

client buffer level, denoted SQUAD-BR.

Rate based retransmission: In this case, we decide whether to carry out retransmission

by comparing the estimated download rate to the segment bitrate. The retransmission can

be triggered only when: min{d̂ εsr,q , d̂
ε
sn+1,q

} > κ(qr + qn+1), i.e., when the effective down-

load rate sustains both the new segment n + 1 and the retransmitted segment r. In our

experiments we use κ = 1.2 to account for bandwidth fluctuations.

Buffer based retransmission: The second retransmission approach is based on the client

buffer level. Here, we enable retransmissions when the buffer filling is in the high region

ch (see Fig. 5.8). During retransmissions we monitor the buffer level and allow retrans-

missions to continue as long as the playout buffer filling is in high or medium region. If

the buffer drops below the threshold cl, we stop retransmissions and resume the normal

segment downloading process to avoid further buffer draining.

Retransmission segment abandonment: The retransmission process bears the risk of

wasting valuable download bandwidth when retransmitting segments in addition to trans-

mitting regular ones. Therefore, we design a segment abandonment mechanism which only

applies to segments that are being retransmitted. In this case, we monitor the download rate

on sub-segment level, i.e.,

d̂s =
s

t
cj,delivered
r − tGETr

(5.14)

where tcj,deliveredr is the time required to download cj bits of segment r in quality

q, where cj ≤ sr,q. We abandon the retransmission process when we observe that the

segment will not be downloaded on time according to the estimated download rate d̂ εsr,q ,

i.e., tAr,q < δ · tr,q. In our implementation, we use a conservative factor δ = 1.5, in order to

avoid frequent interruption of the retransmission process.

55

5.5 Experimental Evaluation

In the following, we conduct a number of experiments in a controlled testbed, the GENI

testbed, as well as in the public Internet to evaluate the performance of SQUAD.

For all experiments we make use of an excerpt of the BigBuckBunny dataset [63]

that comprises a video that is 300 seconds long and an MPD that describes attributes of the

video. We extended the MPD file by providing the size of each segment in each of the avail-

able quality levels. The quality bitrates available in this MPD are the following {0.09,

0.13, 0.18, 0.22, 0.26, 0.33, 0.59, 0.79, 1.03, 1.24, 1.54, 2.48,

3.52, 4.21}Mbps.

For better judgement of the performance of SQUAD we compare its performance with

the ones of three additional algorithms, which we are denoted “VLC”, “SARA”, “Buffer-

based” and “BOLA”. We briefly describe them in the following:

VLC: The first algorithm we decided to chose for comparison is a basic quality adaptation

algorithm from [72], as introduced previously in Section 4.4.

SARA: The second algorithm we use for comparison has been proposed in [54] and coined

segment aware rate adaptation (SARA). The algorithm predicts the time required for fetch-

ing a segment based on its size and the available bandwidth estimate through a weighted

harmonic mean. Further, SARA selects the bitrate depending on the current buffer filling

and drops to the lowest bitrate if the buffer filling falls below a certain threshold. Note that

the SARA implementation accompanying [54] uses non-persistent HTTP by default.

SQUAD: Our proposed spectrum-based quality adaptation algorithm is explained in detail

in Sect. 5.4.

Buffer-based: This algorithm is denoted BBA-0 in [50] and is implemented as part of the

Python DASH client emulator accompanying [54]. In a nutshell, the algorithm defines a

class of functions that map current buffer occupancy to a quality bitrate (denoted rate map)

to avoid unnecessary rebuffering and maximize the average video rate. This algorithm was

part of a wide-scale Netflix experiment in [50].

56

Flow #M

Flow #1

Flow #2

server 1

..
.

..
.

server 2

server Mclient M

client 2

client 1

Figure 5.11: Butterfly evaluation topology.

BOLA: This buffer-based algorithm [88] is currently implemented in the DASH-JS player.

In this chapter, we compare our SQUAD algorithms with two variations of BOLA: BOLA-

U maximizes a weighted combination of the bitrate and the smoothness measured in the

average rebuffering time; and BOLA-O addresses the trade-off between maximizing the

bitrate and reducing oscillations during playback.

5.5.1 GENI Single Run Experiments

The GENI (Global Environment for Networking Innovation) testbed is a distributed

virtual laboratory sponsored by the U.S. National Science Foundation (NSF). It allows re-

searchers to obtain a virtualized and isolated slice of compute, storage, and networking

resources for the development and validation of new approaches in networking and dis-

tributed systems [27, 28]. GENI allows the setup of larger and wide-area topologies.

For the evaluation in the GENI testbed we create a slice that comprises a butterfly

topology as shown in Fig. 5.11. In this section, we show the single-run experiments, in

order to take a close look at the playback performance amongst different algorithms. In the

following experiments, we stream the DASH video from server i to client i for i ∈ {1, 2, 3}.

For the experiments with one DASH flow we utilize server 1 and client 1 and for the cross

traffic flow we utilize server 2 and client 2. All links possess a capacity of 10 Mbps.

We first take a close examination of all the algorithms by looking into single-run experi-

ments. In Fig. 5.12 to 5.20 we run (i) contiguous UDP cross traffic of 8 Mbps for 2 minutes

57

(available bandwidth has U-shape), (ii) two-level UDP cross traffic of 8 and 5 Mbps (avail-

able bandwidth has W-shape) and (iii) alternating ON-OFF UDP cross traffic of 8 Mbps

in the ON state. Fig. 5.12 to 5.20 depict 5 minute sample runs for each of the studied algo-

rithms showing the following: 1) The empirical segment download rate (denoted in figures

as seg. DL rate), 2) the quality bitrate (important QoE metric), 3) the buffer filling over

time, as well as, 4) instantaneous rate measurements of the cross traffic (shown as crosses)

and of the DASH flow (shown as dots). In all following figures, the y-axis denotes the rate

in Mbps and for the buffer filling curves it denotes the buffer length in segments. Note that

one segment is 2 seconds long in this dataset and that we set the maximum buffer size to

30 seconds, i.e., 15 segments.

From Fig. 5.12 to 5.20 we deduce the following observations: First, the VLC algorithm

is highly aggressive in choosing the quality bitrate which may substantially drain its playout

buffer, enforcing it to significantly reduce the quality bitrate when the buffer reaches 25%.

This leads to high quality jump magnitudes which are detrimental to QoE. Secondly, SARA

introduces many oscillations of the fetched quality bitrate around the available bandwidth

which is harmful to the QoE. BOLA-O and BOLA-U can provide good results in certain

cases, e.g., the one with UDP ON-OFF cross traffic, however, in the case with other types

of cross traffic, e.g., UDP-U, BOLA can introduce many quality switches. On the contrary

SQUAD performance is smooth: With the latent fallback and the percentile, respectively,

average rate estimation it holds the quality bitrate over temporary available bandwidth fluc-

tuation. The buffer-based algorithm BBA possesses many unnecessary quality switches.

The quantitative results of the average quality bitrate, the number of quality jumps, as

well as, the spectrum H are given in Tab. 5.2. These metrics show that SQUAD provides

a significant QoE improvement as seen by the strong reduction in the number of quality

jumps [107] while sacrificing little or no average quality bitrate. SQUAD also outperforms

its competitors in minimizing the variation of the quality bitrates (spectrum).

58

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(a) VLC.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(b) SARA.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(c) BBA.

Figure 5.12: Quality bitrate with UDP-U cross traffic for VLC, SARA and Buffer-
based [50] algorithm (BBA). (Implementation accompanying [54]).

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(a) BOLA-O.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(b) BOLA-U.

Figure 5.13: Quality bitrate with UDP-U cross traffic for BOLA-O and BOLA-U.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(a) SQUAD.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(b) SQUAD-BR.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(c) SQUAD-RR.

Figure 5.14: Quality bitrate with UDP-U cross traffic for SQUAD, SQUAD with buffer
based retransmission (SQUAD-BR) and SQUAD with rate based retransmission (SQUAD-
RR).

5.5.2 GENI Multi-Run Experiments

In this section we show the GENI experiments with multiple runs. These experiments

allow us to get a comprehensive idea of the performance amongst the algorithms in the

59

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(a) VLC.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(b) SARA.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(c) BBA.

Figure 5.15: Quality bitrate with UDP-W cross traffic for VLC, SARA and BBA.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(a) BOLA-O.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(b) BOLA-U.

Figure 5.16: Quality bitrate with UDP-W cross traffic for BOLA-O and BOLA-U.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(a) SQUAD.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(b) SQUAD-BR.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(c) SQUAD-RR.

Figure 5.17: Quality bitrate with UDP-W cross traffic for SQUAD, SQUAD-BR and
SQUAD-RR.

controlled experimental environment. In the first set of experiments we individually run

the DASH algorithms solely in parallel to UDP and TCP cross traffic.

In addition to the UDP experiments mentioned in 5.5.1, we evaluate the performance of

the DASH algorithms while competing with aggregate TCP cross traffic. In this case, we

60

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(a) VLC.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(b) SARA.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(c) BBA.

Figure 5.18: Quality bitrate with UDP ON-OFF cross traffic for VLC, SARA and BBA.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(a) BOLA-O.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(b) BOLA-U.

Figure 5.19: Quality bitrate with UDP ON-OFF cross traffic for BOLA-O and BOLA-U.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(a) SQUAD.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(b) SQUAD-BR.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

R
a

te
 [

M
b

p
s
]

o
r

B
u

ff
e

r
S

iz
e

 [
s
e

g
]

Time [s]

Seg. DL Rate
Quality Bitrate

Buffer Fill

(c) SQUAD-RR.

Figure 5.20: Quality bitrate with UDP ON-OFF cross traffic for SQUAD, SQUAD-BR and
SQUAD-RR.

set up the butterfly topology with M = 10 client/server pairs, and 20 Mbps capacity on all

links. Note that in this experiment the fair share amounts to 2 Mbps per client/server pair.

We run a single DASH client, along with 9 concurrent TCP cross traffic streams.

61

Average Quality Bitrate [Mbps]

Cross
traffic

VLC BBA SARA SQUAD SQUAD-
BR

SQUAD-
RR

BOLA-
U

BOLA-
O

avg. SD avg. SD avg. SD avg. SD avg. SD avg. SD avg. SD avg. SD
UDP-U 3.42 0.01 2.91 0.01 3.15 0.01 3.03 0.02 3.03 0.03 3.03 0.02 3.56 0.02 3.47 0.02
UDP-W 3.60 0.02 3.09 0.02 3.16 0.05 3.95 0.03 3.99 0.01 3.95 0.03 3.94 0.04 3.04 0.37

UDP-ON/OFF 3.47 0.03 2.95 0.03 3.16 0.02 3.80 0.24 3.84 0.03 3.81 0.03 3.93 0.01 3.87 0.02
TCP 1.67 0.16 1.69 0.15 1.53 01.5 1.69 0.23 1.64 0.18 1.67 0.27 1.74 0.23 1.25 0.13

of Quality Switches

Cross
traffic

VLC BBA SARA SQUAD SQUAD-
BR

SQUAD-
RR

BOLA-
U

BOLA-
O

avg. SD avg. SD avg. SD avg. SD avg. SD avg. SD avg. SD avg. SD
UDP-U 17.1 1.98 66.0 3.77 39.8 2.66 7.05 0.21 7.15 0.35 7.0 0.2 19.7 3.4 20.9 2.71
UDP-W 18.2 2.09 69.7 4.21 49.9 4.28 9.1 2.46 4.4 1.49 9.7 2.26 9.5 2.1 30.5 9.4

UDP-ON/OFF 23.9 2.9 66.8 3.1 37.1 2.6 6.7 0.95 4.7 1.1 6.6 1.0 5.3 0.7 7.5 1.8
TCP 91.3 5.79 86.2 18.1 57.1 9.38 18.5 6.36 18.9 6.83 20.2 5.76 51.1 15.1 30.3 9.81

Spectrum

Cross
traffic

VLC BBA SARA SQUAD SQUAD-
BR

SQUAD-
RR

BOLA-
U

BOLA-
O

avg. SD avg. SD avg. SD avg. SD avg. SD avg. SD avg. SD avg. SD
UDP-U 1587 237 6602 391 3037 223 461 44 464 47 447 27 1505 193 1361 153
UDP-W 1749 278 7228 505 4211 416 766 281 237 155 836 257 889 191 2328 811

UDP-ON/OFF 1811 381 6962 334 2899 205 438 103 252 108 412 94 339 58 610 119
TCP 3704 346 2969 624 3211 694 1162 421 1152 491 1256 379 2179 609 1375 370

Table 5.2: QoE metrics for the GENI experiments with controlled UDP and TCP cross
traffic. The table includes averages as well as standard deviations for 20 runs.

Fig. 5.21 to 5.23 show empirical CDFs (eCDFs) of three quantitative QoE metrics of in-

terest, i.e., the chosen (quality) bitrate, the number of quality switches and the spectrum H

as defined in (5.5). Table 5.2 shows corresponding average and standard deviation values.

The eCDFs are calculated using 20 independent runs for all the DASH algorithms. From

Figs. 5.21 to 5.23 we deduce the following observations: First, the algorithms {VLC, BBA,

SARA} are highly aggressive in choosing the quality bitrate which may substantially drain

the playout buffer. This leads to higher quality jump magnitudes which are detrimental

to QoE. Especially the {BBA and SARA} algorithms introduce many quality oscillations

around the available bandwidth which is harmful to the QoE. On the contrary SQUAD (with

and without retransmissions) has a smooth performance: With the latent fallback and the

percentile/average rate estimation SQUAD keeps the quality bitrate relatively stable over

temporary bandwidth fluctuation. Comparing SQUAD with BOLA reveals a very similar

performance and one or the other performs slightly better depending on the cross traffic

scenario. Generally, there can be seen a trade-off between the two approaches, which is

62

most prominent in the UDP U-shape case. While the BOLA algorithms achieve a slightly

higher quality rate, the number of quality switches and the spectrum H are significantly

lower for the SQUAD algorithms.

UDP-U: While the BOLA algorithms achieve a slightly higher quality rate, the number of

quality switches and the spectrum H are significantly lower for the SQUAD algorithms.

This indicates that the SQUAD algorithms result in better QoE in the case of longer-term,

significant changes in available bandwidth.

UDP-W: In this case, the performance of both algorithm classes (BOLA and SQUAD) is

almost identical when it comes to average quality bitrate. The results for number of quality

switches and spectrum presented in Table 5.2 show that the buffer-based retransmission

algorithm (SQUAD-BR) significantly improves the QoE.

UDP-ONOFF: In the UDP-ONOFF case, the algorithm classes perform almost identical.

This indicates that they can handle rapid changes in available bandwidth quite well. Taking

a closer look at the results presented in Table 5.2 reveals that the buffer-based retransmis-

sion approach (SQUAD-BR, see Sect. 5.4.4) has a positive impact on the QoE. While the

average quality bitrate is similar to the other SQUAD and BOLA algorithms, the num-

ber of quality switches and the value of the spectrum are reduced. The reduction is more

significant in the case of the spectrum.

TCP: In the case of aggregate TCP cross traffic, BOLA-U achieves a higher quality bi-

trate, however, its aggressiveness in increasing the quality bitrate leads to a higher number

of quality switches and a higher spectrum. BOLA-O achieves a low number of quality

switches (low spectrum), however, it suffers from a lower quality bitrate. SQUAD algo-

rithms achieve comparable quality bitrates, yet they are able to significantly improve the

QoE in terms of quality switches and spectrum.

63

2 2.5 3 3.5 4 4.5 5

Chosen rate [Mbps]

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-U

BOLA-O

VLC

BBA

SARA

(a) Average bitrate.

0 20 40 60 80 100

of quality switches

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-U

BOLA-O

VLC

BBA

SARA

(b) # of quality switches.

0 2000 4000 6000 8000 10000

Spectrum

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-U

BOLA-O

VLC

BBA

SARA

(c) Spectrum.

Figure 5.21: UDP-U cross traffic.

2 2.5 3 3.5 4 4.5 5

Chosen rate [Mbps]

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-U

BOLA-O

VLC

BBA

SARA

(a) Average bitrate.

0 20 40 60 80 100

of quality switches

0

0.2

0.4

0.6

0.8

1

eC
D

F SQUAD

SQUAD-BR

SQUAD-RR

BOLA-U

BOLA-O

VLC

BBA

SARA

(b) # of quality switches.

0 2000 4000 6000 8000 10000

Spectrum

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-U

BOLA-O

VLC

BBA

SARA

(c) Spectrum.

Figure 5.22: UDP-W cross traffic.

2 2.5 3 3.5 4 4.5 5

Chosen rate [Mbps]

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-U

BOLA-O

VLC

BBA

SARA

(a) Average bitrate.

0 20 40 60 80 100

of quality switches

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-U

BOLA-O

VLC

BBA

SARA

(b) # of quality switches.

0 2000 4000 6000 8000 10000

Spectrum

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-U

BOLA-O

VLC

BBA

SARA

(c) Spectrum.

Figure 5.23: UDP ON-OFF cross traffic.

64

1 1.5 2 2.5 3

Chosen rate [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-U

BOLA-O

VLC

BBA

SARA

(a) Average bitrate.

0 20 40 60 80 100

of quality switches

0

0.2

0.4

0.6

0.8

1

C
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-U

BOLA-O

VLC

BBA

SARA

(b) # of quality switches.

0 2000 4000 6000 8000

Spectrum

0

0.2

0.4

0.6

0.8

1

C
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-U

BOLA-O

VLC

BBA

SARA

(c) Spectrum.

Figure 5.24: TCP cross traffic.

Concurrent Homogeneous 10 Streaming Sessions

QoE
Metric

SQUAD SQUAD-BR SQUAD-RR BOLA-O BOLA-U
avg. SD avg. SD avg. SD avg. SD avg. SD

Quality
bitrate [Mbps] 2.57 0.62 2.55 0.6 2.57 0.62 2.56 0.81 2.81 0.63

of quality
switches 14.08 3.97 13.77 4.04 13.67 3.90 13.85 6.44 47.82 17.21

Spectrum 1069.1 377.4 1099.6 421.9 1090.4 471.8 1132 423.3 3626 1320

Table 5.3: QoE Metrics for 10 concurrent homogeneous streaming sessions.

Concurrent clients: The goal of the second set of measurements performed in the GENI

testbed is to investigate the fairness among multiple streams of the same DASH algorithm.

We conducted this experiment by running 10 concurrent homogeneous DASH clients with

20 Mbps capacity on the bottleneck link. The topology for this experiment is shown in

Fig. 5.11, where M = 10. Due to the better performance of the BOLA and SQUAD

algorithms in the previous set of experiments, we decided to run this set of experiments

only with those two algorithm classes. In this experiment, each new stream starts with a 10

seconds delay offset. We executed each experiment 20 times and show the average and stan-

dard deviation of the 10 clients in Table 5.3. The results show that BOLA-U achieves the

highest average bitrate but also the highest number of quality switches. In contrast, BOLA-

O and all three SQUAD algorithms achieve a slightly lower average bitrate in exchange for

much less quality switches. Note that although BOLA-O achieves similar average bitrate

65

and number of quality switches, it has a considerably higher standard deviation for these

two metrics. This indicates that SQUAD is able to achieve less variations among all the

clients in terms of quality bitrate and quality switches. Note that on average all clients

achieve a bitrate that is higher than 2Mbps. This is because the 10 second delay allows a

subset of clients to temporarily get a higher bitrate than 2Mbps. E.g., client 1 can stream

at the highest quality rate without any competing traffic for the first 10 seconds. Since this

is a scenario for a highly congested bottleneck link, there is not much room for retrans-

missions. This is reflected by virtually no improvement of the three metrics in the case of

SQUAD-BR and -RR.

Further, we use Jain’s fairness index [53] to quantify the fairness of QoE among the

clients, i.e., in terms of the quality bitrate, the number of quality switches, and the spectrum.

An index value closer to 1 indicates a better fairness. Figure 5.25 shows that SQUAD

achieves comparable fairness to BOLA in terms of bitrate and spectrum and achieves a

better fairness in terms of the number of quality switches. Also, amongst the 20 runs, we

show that the SQUAD algorithms can achieve slightly less fairness fluctuations in terms

of standard deviation. In this case, BOLA-U achieved the highest fairness index (0.95)

for playback bitrate, since all the clients are more aggressive in increasing the playback

quality; yet it has a lower fairness in terms of quality switches and spectrum comparing

to SQUAD. Also SQUAD achieved slightly less standard deviation comparing to BOLA.

E.g., in the case of spectrum, SQUAD algorithms got standard deviation of 17%, which is

lower comparing to BOLA (21%).

5.5.3 Internet Experiments

Besides evaluating SQUAD performance in controlled testbeds, we are also interested

in its performance in the “wild”. In this section, we use a set of experiments to take a

comprehensive examination of SQUAD (SQUAD, SQUAD-RR and SQUAD-BR) as well

as BOLA (BOLA-O and BOLA-U) algorithms, in the Internet environment. We use these

66

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

SQ
U
AD

SQ
U
AD

-BR

SQ
U
AD

-R
R

BO
LA-O

BO
LA-U

J
a
in

 I
n
d
e
x

Quality Bitrate
Quality Switches

Spectrum

Figure 5.25: QoE metric fairness for 10 concurrent homogeneous streaming sessions.

two sets of algorithms because they provided the highest quantitative QoE in the GENI

experiments. We make use of Amazon EC2 servers in Sydney and Sao Paulo to host the

video repository. The client is located in a residential home in western Massachusetts of

US. We measured a maximum bandwidth using a long-lived TCP flow to the EC2 servers

in Sydney and Sao Paulo that amount to 3.2 Mbps and 2 Mbps, respectively. Results of the

measurements are shown in Figures 5.26 and 5.27, as well as, in Table 5.4. We show that

the SQUAD algorithms outperform BOLA. Interestingly we note the QoE improvement

achieved by SQUAD-RR, which effectively retransmits segments that impact the number

of quality switches, leading to an improved QoE in Internet-based streaming scenario.

Note that for all presented testbed and Internet measurements, the rebuffering time

amounts to less than 1% of total playback time for all algorithms, except for the cases of

aggregate TCP cross traffic in combination with SQUAD and BOLA algorithms. Due to

the large amount of TCP cross traffic in the bottleneck link, SQUAD and BOLA have 3.3%

and 2.7% average rebuffering time, respectively.

67

DASH Server: Sydney

QoE
Metric

SQUAD SQUAD-BR SQUAD-RR BOLA-O BOLA-U
avg. SD avg. SD avg. SD avg. SD avg. SD

Quality
bitrate [Mbps] 2.91 0.22 2.90 0.21 2.94 1.17 1.19 0.26 1.66 0.34

of quality
switches 11.6 3.2 10.6 3.9 7.2 2.1 17.3 12.71 37.7 9.7

Spectrum 995.4 376 835.7 458.0 472.3 218.4 1415 630.3 2679 721.4

DASH Server: Sao Paulo

QoE
Metric

SQUAD SQUAD-BR SQUAD-RR BOLA-O BOLA-U
avg. SD avg. SD avg. SD avg. SD avg. SD

Quality
bitrate [Mbps] 0.58 0.17 0.54 0.19 0.55 0.19 0.39 0.17 0.66 0.32

of quality
switches 4.0 1.44 3.9 2.99 3.25 1.13 4.5 4.6 63.2 19.15

Spectrum 105 28 140 39 106 44 102 25 1323 878

Table 5.4: QoE metrics for the Internet measurement campaign.

0 1 2 3 4 5

Chosen rate [Mbps]

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-O

BOLA-U

(a) Average bitrate.

0 10 20 30 40 50 60

of quality switches

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-O

BOLA-U

(b) # of quality switches.

0 500 1000 1500 2000

Spectrum

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-O

BOLA-U

(c) Spectrum.

Figure 5.26: Internet measurements: US East Coast - Amazon EC2, Sydney, Australia.

0 1 2 3 4 5

Chosen rate [Mbps]

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-O

BOLA-U

(a) Average bitrate.

0 20 40 60 80 100

of quality switches

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-O

BOLA-U

(b) # of quality switches.

10
2

10
3

Spectrum

0

0.2

0.4

0.6

0.8

1

eC
D

F

SQUAD

SQUAD-BR

SQUAD-RR

BOLA-O

BOLA-U

(c) Spectrum.

Figure 5.27: Internet measurements: US East Coast - Amazon EC2, Sao Paulo, Brazil.

68

5.6 Summary

In this chapter, we provide a QoE tailored quality adaptation algorithm denoted SQUAD.

A quick dissection of the DASH control loop over TCP shows the discrepancy of the avail-

able bandwidth estimation time scale between the quality adaptation algorithm and the

underlying transport protocol. Bearing this in mind, we construct SQUAD such that it uses

rate estimates on the appropriate time scales. SQUAD takes multiple QoE metrics into

account, i.e., the average quality bitrate and most importantly its variation.

We test our player implementation against state-of-the-art quality adaptation algorithms

of different objectives in a controlled network environment, as well as, in streaming ex-

periments across the Internet. The experiments show that by sacrificing little or no aver-

age quality bitrate, SQUAD provides significantly better QoE. With an additional retrans-

mission scheduling algorithm, we show that SQUAD is able to further minimize quality

switching frequency and magnitude by retransmitting and replacing the segments that have

already been filled into the client buffer.

69

CHAPTER 6

ENERGY EFFICIENT DESIGN FOR CLOUD-BASED ABR VIDEO
TRANSCODING SERVICES

6.1 Introduction

As shown in recent studies, cloud based video streaming applications have become a

significant contributor for energy consumption. In 2011, the year studied by [85], Amer-

icans streamed 3.2 billion hours of video, which consumed approximately 25 Peta Joules

of energy (enough to power about 175,000 U.S. households for one year) and emitted 1.3

billion kilograms of CO2. By today, these numbers have further increased given the in-

creasing popularity of video streaming services. With the raising awareness of energy

consumption, leading IT companies have been striving to power their infrastructure with

green and renewable energy. Amazon claims that 40% of their operations are powered by

renewable energy, while Microsoft has also committed to a goal of 44% renewable energy

for its Azure data centers [81]. All of these trends clearly indicate the needs of reducing

“dirty” energy usage as well as expensive energy supply from the grid.

Today’s grid is grossly inefficient, while utilities begin to experiment with demand re-

sponse programs, in most cases, utilities still balance supply and demand largely by only

regulating supply, while granting consumers the freedom to use as much power as they

want, whenever they want. This freedom imposes a steep price along multiple dimensions,

resulting in wasted capital investments, high operational costs, and limited renewable pen-

etration. The grid’s inefficiencies have motivated recent “smart” grid initiatives to reduce

peak demands and better handle intermittent renewables using demand-side management,

which balances supply and demand, in part, by regulating electrical loads’ energy usage,

70

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0 4 8 12 16 20 24
S

p
o
t
P

ri
c
e
 (

$
/k

W
h
)

Time (hours)

Figure 6.1: Electricity’s real-time price fluctuates significantly every few minutes.

e.g., via real-time pricing or demand response. These initiatives offer consumers the poten-

tial for significantly lower costs, while also enabling consumers to use more green energy

from renewable sources. As one example, Figure 6.1 plots electricity’s real-time price (in

New England’s five-minute spot market) on October 5, 2013 from 12am to 11:59pm to

highlight that it varies dramatically even over short time-scales. These fluctuations enable

consumers to reduce costs by increasing energy usage when prices drop, and decreasing

it when prices rise. In addition, the ability to adapt to power fluctuations also enables

platforms to reduce their carbon emissions by increasing their reliance on local renewable

energy sources, which generate energy intermittently based on environmental conditions.

In this chapter, we focus on improving the energy efficiency for transcoding cloud of

ABR services. Our goal is to provide insights into designing energy management policies

that effectively execute video transcoding tasks in the presence of time-varying, dynamic

power constraints, and make use of least amount of energy supplied from the grid.

In this part of the dissertation, our contributions are the following:

• We model the video transcoding task scheduling problem, and design a series of

power management policies for large scale, deadline-driven video transcoding jobs.

• We evaluate the performance of energy agile video transcoding services based on a

small synthetic video dataset and a large scale video trace collected from Akamai’s

video CDN.

71

480p

720p

1080p

2K

4K
Storage Cloud

Edge Servers
Transcoding Cloud

Raw Video

Content Providers

Figure 6.2: CDN and Online transcoding architecture.

We show that, our energy management policies can provide low rebuffering ratio (<0.5%),

and can also significantly reduce the grid energy usage by 73-83%. As a result, by making

efficient use of the low-price renewable energy sources, the total energy cost for completing

transcoding tasks in the cloud can reduce by 14-28%.

6.2 Methodologies

In this section, we provide an overview of a cloud-based video transcoding service

architecture. In addition, we present the energy-aware transcoding workload model, the

power managing policies for the ABR video transcoding services, and the video data sets

for evaluating the energy aware transcoding policies.

6.2.1 Cloud-based Real Time Transcoding

In order to ensure a smooth playback for ABR streaming, a new video needs to be

transcoded into suitable resolutions, segment durations and bitrates before the user actually

starts watching. E.g., Netflix transcodes each video 120 times in order to serve different

user needs [82]. This approach guarantees that the videos are ready no matter what res-

olution, bitrate or segment duration is requested by the users. However, transcoding and

storing such huge amount of videos has become challenging for content providers, due to

72

the ever-growing requirements for storage space and computational resources. A common

alternative solution is to perform transcoding while the video is being streamed to the end

user, commonly known as real time transcoding [92]. This approach greatly reduces stor-

age space requirements, yet it introduces strict scheduling requirements, since the video

segments must be transcoded and streamed before the client buffer drains.

The transcoding tasks are usually performed either by the content provider or by Con-

tent Delivery Networks (CDN). In this dissertation, we focus on transcoding performed by

CDN clouds. As shown in Figure 6.2, the CDN transcoding architecture consists of three

components. The transcoding cloud provides real time transcoding services to encode the

raw video into target formats and bitrates. The storage cloud stores the raw videos pub-

lished by video content providers, as well as the transcoded videos. The Edge Servers are

distributed around the world, and located geographically close to the end users. By caching

and prefetching the contents, the edge servers can provide users with a low delay, high

throughput video streaming experience.

When a client starts to play a video, it initializes the playback by sending an HTTP re-

quest for video content with specific resolution and bitrate to the CDN. Then the following

steps happen inside the CDN:

1. The CDN redirects the request to an edge server with shortest geographic distance.

2. If the requested segment, with specific bitrate and resolution, is available on the edge

server, it is directly sent from the edge server to the client. Otherwise, the edge server

downloads this segment from the storage cloud and forwards it to the client.

3. If the request is forwarded to the storage cloud, the CDN checks if the segment is

available. If not, the storage cloud sends a transcoding request to the transcoding

cloud, where the raw video is encoded into the requested resolution and bitrate, and

sent back to the edge sever.

73

The interplay of CDN cloud and transcoding services provides tremendous improve-

ment for cloud storage space, since the service providers do not need to pre-transcode and

store all the videos in the cloud. Instead, the videos are only transcoded into desired quality

levels for target video segments. The high capacity of servers and high transportation link

bandwidth inside the CDN ensures that the videos can be transmitted to users on time and

therefore provide a low buffering ratio and short video start up delay.

6.2.2 Energy Aware Transcoding Workload

 0

 500

 1000

 1500

 2000

 2500

 3000

05/31-00:00

05/31-06:00

05/31-12:00

05/31-18:00

06/01-00:00

06/01-06:00

06/01-12:00

06/01-18:00

06/02-00:00

06/02-06:00

06/02-12:00

06/02-18:00

06/03-00:00

N
u

m
b

e
r

o
f

R
e

q
u

e
s
ts

Time of Day

(a) Number of requests.

 0

 1000

 2000

 3000

 4000

 5000

 6000

05/31-00:00

05/31-06:00

05/31-12:00

05/31-18:00

06/01-00:00

06/01-06:00

06/01-12:00

06/01-18:00

06/02-00:00

06/02-06:00

06/02-12:00

06/02-18:00

06/03-00:00

T
ra

n
s
c
o

d
e

 W
o

rk
lo

a
d

 (
G

b
p

s
)

Time of Day

(b) Transcoding workload.

Figure 6.3: The transcoding work load in terms of number of transcoding requests (6.3a)
and data rate (6.3b).

The cloud-based ABR transcoding applications have their unique characteristics. First,

the ABR transcoding tasks are usually batch-like, CPU intensive, and with short-durations.

Therefore, they are well suited for distributed computing clusters subject to power man-

agement, because the jobs are highly parallelizable, and impose less dependency on other

computing nodes. Therefore, the nodes can easily switch between sleep and awake states

as long as the current batch jobs are completed, and result files are transferred to the storage

nodes. Also the ABR transcoding tasks are highly predictable by the client OS, network

type, recommendation list, etc. In this case, we perform predictive transcoding in the later

sections in order to reduce the transcoding workloads. Finally, the transcoding tasks are

74

strictly deadline-driven, and the workloads are highly variable according to the time-of-

day. For example, we show the number of requests per unit time for a video request trace

collected from the Akamai video CDN in Figure 6.3a. The corresponding transcoding

workload is shown in Figure 6.3b. In order to ensure a satisfying user experiments, we

utilize the grid energy in combination to the renewable energy to keep up with the varying

energy requirements.

We model the video transcoding system as a series of batch workloads, each with re-

quest arrival time and required transcoding deadline. When transcoding jobs are being

executed, they are distributed to N worker nodes, while the exact scheduling is subject to

dynamic power constraints and grid energy prices. Since renewable energy is often inter-

mittent and weather dependent, we use a combination of renewable energy and grid energy.

Our goal is to finish executing the transcoding tasks such that specified job deadlines and

operational goals (e.g., minimize grid energy usage and cost) can be satisfied. We aim

to minimize the grid energy usage, since a large portion of the grid energy generation is

formed by non-renewable sources. For example, as shown in the report [8] from the New

England Independent System Operator (ISO), over 90% of the energy generation is from

non-renewable energy sources. More formally, we aim to schedule the transcoding jobs

within a set of task deadlines TR(t), given a renewable power signal Pr(t) and grid spot

market power price signal Cg(t), which dictates an average power cap over each interval

(t− τ, t]. Here, τ is the length of each interval, which we assume is dictated by the energy

storage capacity.1 In this work, we assume a τ value of 120 seconds.

We employ a set of power management policies to distribute the renewable power over

the transcoding cluster. If the renewable energy generation is not sufficient to support all the

transcoding requests, we purchase additional energy from the grid based on the spot market

price and transcoding workload. We divide the energy price into 3 regions: high, medium,

1In the future, grid energy usage can be further reduced by using larger energy storeage devices once
energy storage becomes more efficient.

75

and low. We use a simple policy to decide how much grid energy should be purchased in

addition to the renewable energy:

• When the energy price is high, the total power should be able to execute at least 85%

of all requests.

• When the energy price is medium, the total power should be able to support at least

95% of all transcoding tasks.

• When the energy price is low, we purchase the power that is enough to support all

the transcoding tasks.

In this energy trace, as we show in Figure 6.4c, the high prices only lasts for short periods

(<7%). With the help of predictive transcoding, as we show in Section 6.3.3, the overall

transcoding performance seldom gets compromised.

A set of optimization and prediction mechanisms for deciding the grid energy purchas-

ing may further improve the system performance, we leave the design of such mechanisms

to the future work.

 0

 1

 2

 3

 4

 5

 6

 7

 8

04/15-00:00

04/15-06:00

04/15-12:00

04/15-18:00

04/16-00:00

04/16-06:00

04/16-12:00

04/16-18:00

04/17-00:00

04/17-06:00

04/17-12:00

04/17-18:00

04/18-00:00

P
o

w
e

r
G

e
n

e
ra

te
d

 (
k
W

)

Time of Day

(a) Solar power.

 0

 2

 4

 6

 8

 10

 12

 14

 16

04/15-00:00

04/15-06:00

04/15-12:00

04/15-18:00

04/16-00:00

04/16-06:00

04/16-12:00

04/16-18:00

04/17-00:00

04/17-06:00

04/17-12:00

04/17-18:00

04/18-00:00

P
o

w
e

r
G

e
n

e
ra

te
d

 (
k
W

)

Time of Day

(b) Wind power.

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

04/15-00:00

04/15-06:00

04/15-12:00

04/15-18:00

04/16-00:00

04/16-06:00

04/16-12:00

04/16-18:00

04/17-00:00

04/17-06:00

04/17-12:00

04/17-18:00

04/18-00:00

E
n

e
rg

y
 P

ri
c
e

 (
$

/k
W

h
)

Time of Day

(c) Spot market power.

Figure 6.4: The solar (6.4a) and wind (6.4b) power and the real-time electricity prices in
the five-minute spot market (6.4c).

6.2.3 Power Capping Mechanisms

Given an average power budget for each interval τ , we must distribute the available

power among N nodes that are executing a transcoding task. We leverage existing node

76

power capping mechanisms, which ensure a node’s power usage does not exceed a set

threshold, to enforce a given distribution of power. Power capping may be either active

or inactive. Active power capping uses Dynamic Voltage and Frequency Scaling (DVFS)

or C-state throttling, which rapidly toggles processors between low-power idle C-states, to

cap power without deactivating a node. The advantage of active power capping is that it

keeps nodes active (albeit at a degraded performance level), is transparent to application

software, is highly responsive (as power cap changes occur near instantly), and imposes a

low overhead to transition power states. However, the primary disadvantage of active power

capping is that it typically only targets CPU power, which accounts for only a fraction of

node power usage, and thus its dynamic power range is limited. In practice, active power

capping is typically only able to lower a node’s power usage to at most 50% of its peak

power [22].

In contrast, inactive power capping puts nodes to inactive state. While inactive power

capping reduces a node’s power usage to near zero, it incurs a high temporal transition

overhead, varying from tens of seconds to minutes. The temporal overhead also wastes

energy, since the node consumes energy while transitioning, but performs no computation.

Thus, ABR video transcoding clusters are well suited for inactive power capping, since

the task durations are typically on the level of segments (2-10 seconds), and transcoding

tasks among segments are independent from each other. In our experiments, we assume

an inactive power capping delay of 60 seconds. Due to its high overhead, inactive power

capping is only used when capping the power of clusters, since it enables a wider dynamic

power range than when only using active power capping [91].

6.2.4 Power Management Policies

In this section, we make use of the power capping mechanisms to control the video

transcoding. We first propose policies that focus on rigid transcoding applications, which

only rely on active power capping. This is because rigid applications cannot adjust the num-

77

ber of nodes being used while the transcoding task is running. While active power capping

affects performance, it is transparent to the application, which enables rigid applications to

make use of it. Since inactive power capping deactivates nodes, it has the effect of periodi-

cally altering the number of nodes an application is using; rigid applications cannot handle

such reductions, as they will be perceived as failures.

Therefore, we introduce a simple balanced power management policy, which can be

suitable for rigid cloud transcoding applications. The balanced policy equally distributes

power among the nodes, such that each of the N nodes’ active power cap is set to i.e.,

Pcap = Pavailable(t)/N at time t for each node. In this way, the available energy is given to

as many nodes as possible, which can be useful for scaling up the transcoding tasks when

the amount of available power is high.

In contrast to the balanced policy, deactivating nodes using inactive power capping can

be beneficial in reducing the fraction of the available power that contributes to an active

node’s idle power. In addition to actively capping server power consumption by limiting the

maximum server CPU capacity, these policies stretch and contract an elastic transcoding

application while it is running by activating and deactivating nodes to maintain a platform-

wide power cap. For example, since each node’s idle power is roughly 50% peak power,

simply activating a node without doing any useful work consumes a significant amount

of power. This portion of idle power effectively represents wasted energy that is due to

powering non-energy-proportional components, such as disk and memory. Here, we define

this portion of idle power consumption as overhead power, and In contrast, the remaining

power usage represents effective power, since only the effective power contributes to actual

transcoding. With regard to the idle power, the balanced policy incurs high idle power

across all nodes, since more nodes are active regardless of the available power. Thus, we

define a greedy power management policy that concentrates available power to the least

number of active nodes, i.e., Nactive = dPavailable/Pmaxe. The last node will, therefore,

78

receive the remaining power, if not the full power. The greedy allocation, which uses

inactive power capping, can achieve higher utilization in terms of effective power.

In addition to the greedy policy, to further reduce the idle power, we define an agile

policy that determines the optimal subset of active nodes. To do this, we compute the least

idle power for each possible set of active nodes, from 1 to N , based on the available power.

Once these nodes are active, the agile policy then equally distributes the available power to

the set of active nodes upon needs.

For each of the above three static power policies, we introduce a dynamic variation that

also uses active power capping, for which we continuously redistribute the available power

based on node utilization. In contrast, a static variation does not change power capping

after fixed amount of power is allocated.

Our dynamic policies measure node CPU utilization and power per second, and adjust

active power caps based on node utilization levels. In particular, we reduce the power cap

for nodes that are being idle (< 95% CPU utilization), and redistribute the power to the

nodes that are operating above 95% CPU utilization [97]. In essence, our dynamic power

management policy reduces wasted power by taking power away from nodes that are being

idle, and reallocating the power to the nodes that are executing transcoding tasks.

Table 6.1 summarizes the design space for our energy-agile policies. The basic idea for

our power policies is to determine the optimal energy reallocation based on an application’s

characteristics, e.g., rigid vs. elastic, and the available power capping mechanisms. The

balanced policy only utilizes active power capping by limiting maximum CPU capacity

and therefore is suitable for rigid applications. With elastic applications, greedy and agile

policies can make use of both active and inactive power capping by determining the optimal

subset of nodes that minimizes overhead power. For all three energy management policies,

we have two variations: the static variation, i.e., keep power allocation unchanged once

an application starts, and the dynamic variation, i.e., keep tracking CPU utilization and

reallocate power cap.

79

Metric Balanced Greedy Agile
Power Capping Active Active & Inactive Active & Inactive

Best Application Rigid Elastic Elastic

Table 6.1: Summary of design space for energy-agile policies.

Resolution Bitrates
480p 1 Mbps 2 Mbps -
720p 1 Mbps 2 Mbps 4 Mbps
1080p 2 Mbps 4 Mbps 8 Mbps

1440p (2K) 4 Mbps 8 Mbps 16 Mbps
2160p (4K) 8 Mbps 16 Mbps 32 Mbps

Table 6.2: Summary of transcoded resolutions and bitrates.

6.2.5 Video Data Sets

In order to evaluate the performance of energy-aware transcoding, we make use of

a mini video data set and a large scale data set collected from Akamai’s CDN. For the

mini video set, we use a set of 50 demo videos, each with 1 minute length provided by

Harmonic [6]. We transcode each short video into 5 resolutions, 14 bitrate layers, 6-second

segment duration. The resolutions and bitrates are summarized in Table 6.2.

For the second data set, we make use of an extensive, anonymized log collected from

Akamai’s video CDN. Akamai [73] is the world’s largest CDN provider that delivers 15-

30% of global Internet traffic. Akamai’s CDN contains over 150,000 edge servers dis-

tributed in 90+ countries and 1200 ISPs around the world. In this video log, user video

requests from across Akamai’s global CDN over a 3-day period in June 2014 were col-

lected. The ABR streaming traffic in this log contains 5 million video sessions originating

from over 200,000 unique clients who were served by 1294 video servers around the world.

6.3 Experimental Evaluation

In this section, we present the evaluation for our transcoding power management poli-

cies. We first show the results for transcoding with the mini video dataset with both un-

80

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

480p-1M

480p-2M

720p-1M

720p-2M

720p-4M

1080p-2M

1080p-4M

1080p-8M

2K-4M

2K-8M

2K-16M

4K-8M

4K-16M

4K-32M

T
ra

n
sc

o
d

in
g

 T
im

e
 (

se
c)

UltraFast
Fast

Medium
Slow

Figure 6.5: Transcoding time for 1 minute video with different resolutions and bitrates.

limited power and renewable power. Then we show the transcoding performance with the

Akamai CDN trace described in Section 6.2.5.

6.3.1 Transcoding with Unlimited Energy

In this section, we show the transcoding performance when operating under unlimited

power as a baseline for future comparisons. Since we target real time transcoding in this

work, we show the average transcoding time compared to the actual video length for dif-

ferent video resolutions and bitrates shown in Table 6.2. We use this transcoding runtime

in the simulation of our large scale transcoding system. For the transcoding time analysis,

we use the FFmpeg tool [4] to divide the videos into segments and x264 encoder [16] to

transcode the video segments into different bitrates.

This experiment was performed on the CloudLab testbed [80] with a single Intel-based

Dell R720 server containing 32 cores and 64GB memory. We transcode each 1-minute

video into 5 resolutions, 14 quality layers varying from 480p, 1 Mbps to 2160p, 32 Mbps,

with different encoding speed options (slow, medium, fast and ultrafast).

Figure 6.5 shows the average time for transcoding a one-minute video. The time taken

for different bitrates but same resolution is relatively stable, while scaling up the resolu-

81

tion significantly increases the video transcoding time. In the case of medium transcoding

speed, videos can be transcoded in real time (<60 seconds) up to a 2K resolution and a

16 Mbps bitrate. We use the default medium speed for future transcoding analysis in this

work, because its runtime is close to fast, and it provides better video quality [12].

 0

 50

 100

 150

 200

 250

Balanced(U
Fast)

G
reedy(U

Fast)

Agile(U
Fast)

U
nLtd(U

Fast)

Balanced(Fast)

G
reedy(Fast)

Agile(Fast)

U
nLtd(Fast)

Balanced(M
edium

)

G
reedy(M

edium
)

Agile(M
edium

)

U
nLtd(M

edium
)

Balanced(Slow
)

G
reedy(Slow

)

Agile(Slow
)

U
nLtd(Slow

)

R
u

n
ti
m

e
 (

m
in

u
te

s
)

Static
Dynamic

(a) Runtime.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Balanced(U
Fast)

G
reedy(U

Fast)

Agile(U
Fast)

Balanced(Fast)

G
reedy(Fast)

Agile(Fast)

Balanced(M
edium

)

G
reedy(M

edium
)

Agile(M
edium

)

Balanced(M
edium

)

G
reedy(M

edium
)

Agile(M
edium

)

E
n

e
rg

y
 f

ro
m

 G
ri
d

 (
%

)

Static
Dynamic

(b) Percentage.

 0

 5

 10

 15

 20

 25

 30

Balanced(U
Fast)

G
reedy(U

Fast)

Agile(U
Fast)

U
nLtd(U

Fast)

Balanced(Fast)

G
reedy(Fast)

Agile(Fast)

U
nLtd(Fast)

Balanced(M
edium

)

G
reedy(M

edium
)

Agile(M
edium

)

U
nLtd(M

edium
)

Balanced(Slow
)

G
reedy(Slow

)

Agile(Slow
)

U
nLtd(Slow

)

E
n

e
rg

y
 C

o
s
t

(c
e

n
ts

)

Static
Dynamic

(c) Energy cost.

Figure 6.6: Transcoding with solar energy: runtime (6.6a), percentage of grid power usage
(6.6b) and energy cost (6.6c)).

 0

 50

 100

 150

 200

 250

Balanced(U
Fast)

G
reedy(U

Fast)

Agile(U
Fast)

U
nLtd(U

Fast)

Balanced(Fast)

G
reedy(Fast)

Agile(Fast)

U
nLtd(Fast)

Balanced(M
edium

)

G
reedy(M

edium
)

Agile(M
edium

)

U
nLtd(M

edium
)

Balanced(Slow
)

G
reedy(Slow

)

Agile(Slow
)

U
nLtd(Slow

)

R
u

n
ti
m

e
 (

m
in

u
te

s
)

Static
Dynamic

(a) Runtime.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

Balanced(U
Fast)

G
reedy(U

Fast)

Agile(U
Fast)

Balanced(Fast)

G
reedy(Fast)

Agile(Fast)

Balanced(M
edium

)

G
reedy(M

edium
)

Agile(M
edium

)

Balanced(Slow
)

G
reedy(Slow

)

Agile(Slow
)

E
n

e
rg

y
 f

ro
m

 G
ri
d

 (
%

)

Static
Dynamic

(b) Percentage.

 0

 5

 10

 15

 20

 25

 30

Balanced(U
Fast)

G
reedy(U

Fast)

Agile(U
Fast)

U
nLtd(U

Fast)

Balanced(Fast)

G
reedy(Fast)

Agile(Fast)

U
nLtd(Fast)

Balanced(M
edium

)

G
reedy(M

edium
)

Agile(M
edium

)

U
nLtd(M

edium
)

Balanced(Slow
)

G
reedy(Slow

)

Agile(Slow
)

U
nLtd(Slow

)

E
n

e
rg

y
 C

o
s
t

(c
e

n
ts

)

Static
Dynamic

(c) Energy cost.

Figure 6.7: Transcoding with wind energy: runtime (6.7a), percentage of grid power usage
(6.7b) and energy cost (6.7c)).

6.3.2 Transcoding with Renewable Energy

In this section, we show the transcoding performance with solar and wind renewable

energy sources in Figure 6.6 and Figure 6.7, respectively. In this experiment, we make use

of 16 Dell R720 servers in the CloudLab testbed. We record the total runtime for each of

the power management policies and transcoding speeds.

82

Our experiments utilize power signals from real solar panel and wind turbine deploy-

ments at UMass Amherst, in combination with the grid power from the wholesale elec-

tricity market. For the renewable power signals, we select a representative 3-day period

from April 15, 2016 12 AM to April 18, 2016 11:59 PM, as shown in Figure 6.4a and

Figure 6.4b. For grid power, we use the five-minute spot price (shown in Figure 6.4c) from

the New England Independent System Operator (ISO) for the same three-day period. To

make a fair comparison among the power signals, we normalize the solar and wind power

such that they have the same average power.

We show the total transcoding runtime, percentage of grid power usage, and grid energy

cost for solar energy source and wind energy source in Figures 6.6 and 6.7, respectively.

We estimate the renewable energy cost using the data from Lazard cost of energy analysis

report [10]. The average cost is $43/MWh for solar and $31/MWh for wind. As can be

observed, the agile policy yields the lowest runtime among the renewable power policies.

This is because the agile policy is able to iterate through the power allocation options and

find the optimal allocation strategy. The dynamic policies can further reduce the runtime

and energy consumption by 7-19% compared to static policies. Our power policies enables

the usage of renewable energy sources with the trade-off of runtime increase of 9-22% com-

pared to transcoding with unlimited power. However, the utilization of renewable energy

can significantly reduce the grid energy usage from the electricity suppliers, and therefore

reduce the overall energy cost. As shown in Figure 6.6b and 6.7b, the transcoding pro-

cess only makes use of 6-19% of power from the electricity grid. As shown in Figure 6.6c

and 6.7c, since the renewable energy price is lower than spot market energy price, the

utilization of renewable energy introduces 17%-49% energy cost reduction compared to

transcoding with unlimited grid power.

83

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
D

F

Rebuffering Ratio (%)

Balanced
Greedy

Agile
Unlimited

(a) Solar.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F

Rebuffering Ratio (%)

Balanced
Greedy

Agile
Unlimited

(b) Wind.

Figure 6.8: The rebuffering ratio with different power management policies.

6.3.3 Energy Aware Transcoding for CDNs

In this section, we simulate the power management policies based on the Akamai video

CDN trace. We employ Earliest Deadline First (EDF) [33] for scheduling video requests.

Based on the transcoding requests, we use our power management policies to control the

transcoding job execution. In the simulation, we start with an empty video storage in

the storage cloud. However, this introduces much additional transcoding workload on the

first day, which is not typical in a real system. Therefore, we follow the methodology

from [60], and leave the first day for warming up the system and prepare for the next two

days’ transcoding tasks. Since the solar and wind generation facility is relatively small

comparing to the scale of the Akamai transcoding cloud, we normalize the renewable en-

ergy (solar and wind) signal shown in Figure 6.4 such that the peak power production can

support full workload of the Akamai transcoding data center.

We measure the actual performance of the energy-aware transcoding policies in terms

of the rebuffering ratio, which represents the length of rebuffering state at the client as per-

centage of the total playback. In our case, the playback rebuffering is caused by two factors:

prediction error and power insufficiency. In the prediction phase, we use the Markov model

based network type-OS tuple prediction policy from [60] to generate transcoding tasks. The

prediction error occurs in case of a misprediction and due to that error requested video seg-

84

Energy source Balanced Greedy Agile

Solar
Usage (kWh) 2775 2501 1921

Cost ($) 525.2 512.1 488.1

Wind
Usage (kWh) 3021 2668 2421

Cost ($) 495.6 455.8 436.9

Unlimited
Usage (kWh) 12115

Cost ($) 614.9

Table 6.3: Comparison of total transcoding grid energy usage (kWh) and energy cost ($).

ments are not pre-transcoded before the deadline. We determine this error by comparing

the predicted video requests and the actual requests from Akamai’s CDN trace. In the case

of insufficient power, the current power budget Ebudget is not sufficient to power the min-

imum number of servers required to execute all transcoding requests on time. Therefore,

the rebuferring ratio is determined by:

Tbuffer = Nseg × (Epred + Ebudget)× Ttranscode, (6.1)

where Ttranscode denotes the required transcoding time that is determined by requested bi-

trates and resolutions.

Figure 6.8 shows the Cumulative Distribution Function (CDF) of rebuffering ratio for

transcoding with solar and wind renewable power in comparison with the case of unlimited

power. Since we have known that dynamic policies always provide better performance

comparing to static policies [97], we only show the performance of dynamic policies in

this section. Most of the policies work better in the case of solar energy due to its higher

stability. The agile policy performs significantly better than other policies. It provides an

average rebuffering ratio of 0.041% and 0.052% under solar and wind renewable energy

sources, which is very close to the unlimited power case with average rebuffering ratio of

0.035%. In addition, all the policies can achieve a rebuffering ratio<0.5%, which is known

to be very low in video streaming scenarios [25].

85

In addition to the rebuffering ratio, we show the total energy consumption and cost for

each of the policies in Table 6.3. As can be observed, the power management policies can

greatly reduce the grid energy consumption and therefore lead to a significant energy cost

reduction. The renewable energy policies can reduce grid energy usage by 73-83%, which

leads to electricity cost reductions of 14-28% compared to unlimited grid power.

6.4 Summary

In this chapter, we look into real time ABR video transcoding on large scale, renew-

able energy powered data centers in combination with grid energy sources. We show that

transcoding services are suitable to be conducted on green clusters. With the effective use

of power management policies, the grid energy usage can be reduced by 73-83%, and the

corresponding energy cost can be reduced by 14-28% while sacrificing little to none of the

user experience.

86

CHAPTER 7

EXTENSION OF ENERGY MANAGEMENT FOR PARALLEL
CLOUD APPLICATIONS

7.1 Introduction

In Chapter 6, we show that, for cloud based transcoding services, through a set of

power management policies, the energy consumption can be significantly reduced by either

turning idle nodes off, or limiting the CPU capacity of idle nodes. In this chapter, we

generalize the power management policies to parallel cloud applications.

As outlined below, cloud based applications are well-suited to exploit such demand-side

optimizations for four reasons.

• Sophisticated Power Management. Cloud platforms already include advanced,

remotely programmable power management mechanisms, making them capable of

rapidly and precisely controlling their energy usage over a wide dynamic range.

• Delay-Tolerant Workloads. Many cloud workloads consist of non-interactive batch

jobs that are tolerant to delays in execution, providing them the flexibility to adjust

their energy usage over time [103]. The price elasticity of demand is higher for these

workloads than many household and industrial loads, which are often interactive and

not highly responsive to price fluctuations.

• Large Energy Consumers. The power requirements of future cloud platforms (>20MW)

will position them as some of largest industrial energy consumers with the highest

electricity costs. As a result, they will have the most to gain from adapting their

energy usage in response to changing grid conditions.

87

• Rapid Growth Sector. Despite energy-efficiency improvements, the power de-

mands of cloud data centers continue to rise, increasing by an estimated 56% from

2005-2010 and accounting for 1.7-2.2% of U.S. electricity usage [57], with usage

expected to double every five years [93]. Thus, regulating their demand holds signif-

icant potential to improve grid efficiency, and reduce costs.

Thus, in this chapter, our goal is to provide insights into utilizing the energy man-

agement policies to efficiently execute parallel tasks. Our hypothesis is that a policy that

combines active power capping—to continuously reallocate available power among nodes

based on their real-time utilization—with inactive power capping—to minimize the ag-

gregate power consumption overhead—outperforms other policies in the design space. In

evaluating our hypothesis, we make the following contributions in this chapter.

• Green Energy Challenges. We outline the challenges associated with optimizing

parallel applications for green energy sources with variable power. In particular, we

focus on parallel applications that exhibit cross-node dependencies during execution,

since these applications complicate both active and inactive power capping. We then

present a model for a representative parallel application that leverages MPI (Message

Passing Interface) as a reference for presenting our energy management policies.

• Dynamic Energy Management Policies. We extend the dynamic energy manage-

ment policies from Chapter 6 to maximize parallel application performance subject

to variable power constraints.

• Implementation and Evaluation. We implement our policies on a real, 65-node

prototype cluster, and evaluate their performance using multiple parallel applica-

tions. Our results demonstrate the importance of designing energy agile management

policies for variable power. For example, we show that the Graph500 benchmark re-

quires 17% more time and 9% more energy to complete when power varies based on

88

real-time electricity prices than the case with unlimited power. However, since real-

time prices are lower than fixed prices, the total cost of our best energy management

policy when using real-time prices is 67% less than when using unlimited power.

Our results show that, for rigid jobs, and representative solar/wind power signals, a dy-

namic policy, which continuously reallocates power based on node utilization, outperforms

a static policy, which only reallocates power when available power changes, by 55%. We

also show that an elastic task that uses inactive power capping outperforms an equivalent

rigid task by 41%, which demonstrates the importance of elasticity to energy-agile design.

7.2 System Architecture

In this section, we present our problem statement, as well as provide background infor-

mation on power capping techniques and our general model for parallel tasks.

7.2.1 Problem Statement

In this chapter, our work assumes a parallel application that is subject to dynamic power

constraints, which may arise from either the use of renewable energy sources or partic-

ipation in a utility demand response program. Our goal is to finish executing a parallel

application as fast as possible given these dynamic constraints. More formally, we aim to

minimize a parallel task’s running time given a power signal P (t), which dictates an aver-

age power cap over each interval (t − τ, t]. Here, τ is the length of each interval, which

we assume is dictated by the amount of energy storage capacity available. Since energy

storage is expensive to install and maintain, smaller values of τ are better. The application

defines its power constraint for each interval (t, t+ τ] based on the energy it stored during

the previous interval (t − τ, t]. Thus, the power constraint at each interval is known at the

beginning of the interval.

89

7.2.2 Parallel Task Model

We utilize the energy management policies presented in Chapter 6 to determine how

to distribute the available power for each interval [t − τ, t). The goal of our policies is

to minimize the running time of a parallel task. Unlike the the cloud video transcoding

tasks introduced in Chapter 6, the parallel cloud application workloads are usually inter-

active, i.e., the tasks may exhibit a wide variety of communication patterns and inter-node

dependencies during their execution. Below, we illustrate key elements of our energy man-

agement policies using a simple representative example—a parallel breadth first search

(P-BFS) algorithm—which serves as a building block for designing policies for tasks with

more complex communication patterns.

P-BFS and other graph algorithms are a frequent subproblem in a variety of data-

intensive cloud analytics applications, which is the primary reason P-BFS was chosen as

the foundation of the recently introduced Graph500 benchmark [5]. In practice, P-BFSs

are often massive in scope, searching graphs with tens of billions of edges and vertices on

platforms with tens of thousands of cores [32]. Importantly, since the classic P-BFS [76]

implementation is “level-synchronous,” it requires all-to-all communication among nodes

at each level of the graph to determine whether a remote vertex has already been visited,

i.e., by transmitting all remote edges on each node to the node that owns them, or transmit-

ting all remote edges to a master node. Most non-embarrassingly parallel tasks will include

similar types of barriers to synchronize their operation between phases.

While all-to-all synchronization barriers, which represent a dependency between each

pair of nodes, are already the primary bottleneck for a P-BFS, consider the implications

when using variable power. When using active power capping, reducing the power cap and

performance level of one node will affect the performance of all other nodes, since to com-

plete each level-synchronous step at each level of the graph, each node must communicate

with all other nodes. However, setting all active power caps to the same value for each node

may not guarantee the same per-node progress, since each nodes’ progress depends on the

90

portion of the input graph it is given at each level. As a result, each node’s utilization and

power will vary within each phase. Inactive power capping imposes a similar constraint,

since a parallel task cannot continue until every node completes its work. Thus, tasks may

be finished with different speeds which creates synchronization barriers, and the overall

progress is dictated by the slowest node to complete any phase.

Thus, the presence of both inter-node dependencies and unpredictable performance

across nodes (due to differences in the partition of input data they receive) poses chal-

lenges when power varies. Any data-intensive application, such as P-BFS, which consists

of a series of synchronization barriers will exhibit such inter-node dependencies. Of course,

optimizing embarrassingly parallel tasks, where each node operates at 100% utilization and

exhibits no inter-node dependencies, is straightforward, since any policy that uses all the

available energy will yield the same performance. We also note that the all-to-all barriers

in a P-BFS are a particularly challenging type of communication pattern, since they require

synchronization across every node. Thus, our energy-agile policies may be extended to a

broader range of parallel computing applications with more complex communication pat-

terns. In fact, patterns that do not require all-to-all synchronization should permit more

flexibility and greater performance improvements when optimizing for energy-agility.

7.3 Implementation

In this section, we discuss our reference cloud applications, and the input power signal

that we use for further evaluations.

7.3.1 Reference Applications

We prototype our policies on a real cloud platform with all dedicated servers, and eval-

uate the policies using three parallel, MPI based applications: Graph500, WRF and Jacobi,

with a single process on each node. The Graph500 benchmark [5] implements a P-BFS

and forms the basis for a large set of data-intensive parallel applications. We use Graph500

91

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700

P
o
w

e
r

G
e
n
e
ra

te
d
 (

k
W

)

Time (minutes)

(a) Solar energy

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700

P
o
w

e
r

G
e
n
e
ra

te
d
 (

k
W

)

Time (minutes)

(b) Wind energy

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 100 200 300 400 500 600 700

P
u
rc

h
a
s
e
d
 P

o
w

e
r

(k
W

)

Time (minutes)

(c) Spot price based

Figure 7.1: The solar (7.1a) and wind power (7.1b) generated over a day, as well as a
power signal based on using a fixed budget to purchase electricity at real-time prices in the
five-minute spot market (7.1c).

as the main benchmark in this work, since it is a widely-accepted platform benchmark for

parallel application performance. We make use of a moderate input graph scale of 26, i.e.,

the input graph contains 226 vertices. The Weather Research and Forecasting (WRF) ap-

plication [15] is a mesoscale numerical weather prediction application. In our prototype,

we make use of WRF with an input scale of 1km×1km, and time step of 60 seconds. The

Jacobi algorithm is a well-known numerical method for solving linear algebraic systems of

n equations with n unknowns. We make use of an MPI based parallel Jacobi implementa-

tion with random input matrix size n = 10, 000. The WRF power consumption behavior

is relatively stable; while the communication pattern of Jacobi is similar to Graph500 with

synchronization barriers that make power consumption more variable. By default, the three

MPI applications are rigid, i.e., we cannot adjust the number of worker nodes during its ex-

ecution. However, we also experiment with an elastic variant of Graph500 by applying a

method proposed by Raveendran et al. [79] to transform a rigid parallel task into an elastic

one. In this case, the elastic MPI applications add a decision layer to decide the amount

of jobs to be performed for each iteration, and then collect current result and automatically

redistribute the tasks to the new set of nodes for the next iteration.

92

7.3.2 Input Power Signal

Our experiments utilize power signals from real solar and wind deployments, as well

as signals based on real power prices from the wholesale electricity market. For each

power signal, we select a representative day-long period with average power readings ev-

ery minute.1 The power signal for the solar and wind traces are collected from the solar

panel and wind turbine deployments located in western Massachusetts, United States, and

are shown in Figure 7.1a and Figure 7.1b. For the energy price trace, we use the five-minute

spot price from the New England Independent System Operator (ISO) on October 1, 2014

from 12am to 11:59pm. In this case, we assume our system has a fixed budget for purchas-

ing energy, such that during a low price period it may purchase more power, and during a

high price period it must purchase less. The resulting power signal is shown in Figure 7.1c.

Finally, to make a fair comparison among different power signals, we normalized all three

traces such that they have the same average power.

7.4 Performance Evaluation

We evaluate our prototype policies in the CloudLab testbed [80] using two types of

servers: the ARM-based HP Moonshot servers with 8 cores and 64GB memory, which

are low-power nodes designed for energy-efficiency, and the Intel-based Dell R720 servers

with 32 cores and 64GB memory, which are high-power nodes designed for maximum

performance. The low-power cluster consists of 65 nodes, while the high-power cluster

consists of 6 nodes. The servers in each of the two clusters are equipped with IPMI man-

agement card in order to monitor and control the real time power consumption of each

node. We use MPICH-3.2 [11] for all three MPI based applications. We use the CloudLab

public interface with a star topology. All the nodes are connected to the main switch via a

10 Gbps bandwidth link. Our 6-node small scale experiments are conducted on the Mas-

1For solar power, we selected an early Fall day, September 28, 2014 from 12am to 11:59pm. For wind
power, we selected a typical spring day, April 26, 2014 from 12am to 11:59pm.

93

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100
A

v
e

ra
g

e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 (

W
)

CPU Utilization Percentage

High Power Node
Low Power Node

Figure 7.2: Power usage at different CPU load levels.

sachusetts Green High Performance Computing Center (MGHPCC) [75], where 94.3% of

the electricity is generated from carbon-free sources including hydro-electric, nuclear and

solar. For the Utah CloudLab cluster, the energy generation mix is unknown to us.

7.4.1 Node Power Usage

To determine the correlation of CPU load and power consumption, we perform a CPU

stress experiment on a single node. In the future experiments, we collect the real time

power readings from each node, and enforce the active power capping by limiting the CPU

frequency on the corresponding nodes. For each CPU level, we add synthetic workload, and

measure the CPU utilization over 10 minutes period. Figure 7.2 shows the dynamic power

range of the two types of servers, where the x axis is the average CPU utilization across all

cores, and the y axis shows the average and standard deviation for power consumption. As

shown, the high-power nodes have a significantly greater dynamic power range. The idle

power usage is 85W and the peak power usage is 235W. Thus, the dynamic power range is

150W/63% of peak power. The active power range decreases to 14W/21% in the case of

the low-power nodes, which gives our power policies less room to reallocate the power.

94

 0

 50

 100

 150

 200

 250

 300

 350

 400

Solar Wind Price

R
u

n
ti
m

e
 (

m
in

u
te

s
)

High-Static
High-Dynamic

Low-Static
Low-Dynamic

(a) Solar energy

 0

 50

 100

 150

 200

 250

 300

 350

 400

Solar Wind Price

R
u

n
ti
m

e
 (

m
in

u
te

s
)

High-Static
High-Dynamic

Low-Static
Low-Dynamic

(b) Wind energy

 0

 50

 100

 150

 200

 250

 300

 350

 400

Solar Wind Price

R
u

n
ti
m

e
 (

m
in

u
te

s
)

High-Static
High-Dynamic

Low-Static
Low-Dynamic

(c) Spot price based

Figure 7.3: Runtime of rigid Graph500 (7.3a), WRF (7.3b) and Jacobi (7.3c) for solar,
wind and spot price-based power signals using both the dynamic policy and static balanced
policy that employ active power capping.

7.4.2 Rigid Parallel Applications

In this section, we evaluate the performance of our power management policies for rigid

applications, which only employs active power capping, with solar, wind, and price-based

power signals. We show the runtime and total energy consumption in both the low-power

cluster and the high-power cluster. To make them comparable, we utilize 6 nodes on each

cluster, i.e., 1 master node and 5 worker nodes.

Figure 7.3 compares the runtime between static-balanced, which sets the power cap at

the beginning of each interval based only on available power, and dynamic-balanced policy,

which continuously shifts power based on which nodes are most effectively using it. All

three applications show similar behavior. In the low-power cluster, the dynamic balanced

policy reduces the runtime by up to 17% for solar, 21% for wind, and 14% for price-based

power traces, compared to the static balanced policy. Likewise, in the high-power cluster,

the dynamic balanced policy reduces the runtime by 23%, 27% and 20% for the three power

signals, respectively. Similarly, Figure 7.4 shows Graph500 consumes less overall energy

when using a dynamic balanced policy. All three applications show a similar runtime and

energy consumption behavior. The runtime of the WRF application is slightly longer than

the other two, which imposes a higher total energy consumption.

95

 0

 0.2

 0.4

 0.6

 0.8

 1

Solar Wind Price

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

k
W

h
) High-Static

High-Dynamic
Low-Static

Low-Dynamic

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

Solar Wind Price

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

k
W

h
) High-Static

High-Dynamic
Low-Static

Low-Dynamic

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

Solar Wind Price

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

k
W

h
) High-Static

High-Dynamic
Low-Static

Low-Dynamic

(c)

Figure 7.4: Energy consumption of rigid Graph500 (7.4a), WRF (7.4b) and Jacobi (7.4c)
for solar, wind and spot price-based power signals using both the dynamic and static poli-
cies.

This experiment demonstrates the effectiveness of fine-grained power capping adjust-

ment. By continuously reallocating power based on node utilization via active power cap-

ping, the application is able to make better use of the available power and improve its per-

formance. The high-power cluster shows more improvement for two reasons: its servers i)

exhibit a higher power variance between nodes, which provides better opportunity to adjust

the power, and ii) have a wider active power range, enabling the power policies to reallocate

more power among nodes.

Results: Our energy management policies significantly decrease both the runtime and the

energy consumption and improve the performance of rigid applications by continuously re-

allocating power (using active power capping) to the nodes that can use it most effectively.

7.4.3 Elastic Parallel Applications

The results above are limited to rigid parallel applications that cannot handle activating

and deactivating nodes while the application is running. In this section, we demonstrate

the effectiveness of our energy management policies when employing both active and in-

active power capping for elastic applications. To maximize the flexibility, we make use

of all the 65 nodes in the cluster with low-power nodes. The experiments again use solar,

wind, and price-based power signals from Figure 7.1. In addition, we run multiple parallel

96

 0

 50

 100

 150

 200

 250

 300

G
reedy(1-app)

G
reedy(2-app)

G
reedy(3-app)

Balanced(1-app)

Balanced(2-app)

Balanced(3-app)

Agile(1-app)

Agile(2-app)

Agile(3-app)

R
u
n
ti
m

e
 (

m
in

u
te

s
) Static

Dynamic

(a)

 0

 50

 100

 150

 200

 250

 300

G
reedy(1-app)

G
reedy(2-app)

G
reedy(3-app)

Balanced(1-app)

Balanced(2-app)

Balanced(3-app)

Agile(1-app)

Agile(2-app)

Agile(3-app)

R
u
n
ti
m

e
 (

m
in

u
te

s
) Static

Dynamic

(b)

 0

 50

 100

 150

 200

 250

 300

G
reedy(1-app)

G
reedy(2-app)

G
reedy(3-app)

Balanced(1-app)

Balanced(2-app)

Balanced(3-app)

Agile(1-app)

Agile(2-app)

Agile(3-app)

R
u
n
ti
m

e
 (

m
in

u
te

s
) Static

Dynamic

(c)

Figure 7.5: Runtime of elastic Graph500 for greedy, balanced and agile policies with so-
lar (7.5a), wind (7.5b), and spot price-based power signals (7.5c) for cases with multiple
applications.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

G
reedy(1-app)

G
reedy(2-app)

G
reedy(3-app)

Balanced(1-app)

Balanced(2-app)

Balanced(3-app)

Agile(1-app)

Agile(2-app)

Agile(3-app)

C
o
n
s
u
m

e
d
 E

n
e
rg

y
 (

k
W

h
)

Static
Dynamic

(a)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

G
reedy(1-app)

G
reedy(2-app)

G
reedy(3-app)

Balanced(1-app)

Balanced(2-app)

Balanced(3-app)

Agile(1-app)

Agile(2-app)

Agile(3-app)

C
o
n
s
u
m

e
d
 E

n
e
rg

y
 (

k
W

h
)

Static
Dynamic

(b)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

G
reedy(1-app)

G
reedy(2-app)

G
reedy(3-app)

Balanced(1-app)

Balanced(2-app)

Balanced(3-app)

Agile(1-app)

Agile(2-app)

Agile(3-app)

C
o
n
s
u
m

e
d
 E

n
e
rg

y
 (

k
W

h
)

Static
Dynamic

(c)

Figure 7.6: Total energy consumption for greedy, balanced and agile policies with solar
(7.6a), wind (7.6b), and spot price-based power signals (7.6c) for cases with multiple ap-
plications.

applications in parallel, including Graph500, WRF, and the Jacobi solver. We show the per-

formance of power policies when running a single application (Graph500), two applications

(Graph500 + WRF), and three applications (Graph500 + WRF + Jacobi), respectively. In

all cases, we monitor the overall power consumption, and apply the policies on the nodes,

regardless of which applications they are running. We examine the impact of elasticity,

power variations, energy storage and transition time on the performance.

Impact of Elasticity. Figure 7.5 shows the runtime of three policies: the dynamic balanced

policy (rigid), greedy (elastic) and agile (elastic) policies. Comparing the elastic policies

with rigid policy quantifies the benefit of elasticity: our elastic energy management policies

97

Balanced Greedy Agile

Solar
Static 66.2 42.3 42.4

Dynamic 56.3 35.9 32.8

Wind
Static 75.2 55.9 45.2

Dynamic 68.6 37.6 35.6

Price
Static 62.6 44.5 41.8

Dynamic 56.8 37.0 34.5

Table 7.1: Comparison of overhead power for all policies in terms of percentage of total
available power (%).

achieve up to 40% less runtime for solar power signals, 35% less runtime for wind power

signals, and 31% less runtime for price-based power signals.

Here we take Graph500 as an example to show the overhead power improvement for

each of the policies as summarized in Table 7.1. For rigid tasks, the dynamic policies can

reduce the power overhead by 14.9%, 12.1%, and 9% for solar, wind, and price power

cases, respectively, while the average reduction of overhead power can be up to 18.8%,

23.0%, and 15.1% in the case of elastic application. In other words, the wasted power can

be effectively reduced by dynamic energy management.

Due to the high fluctuation of available energy in the case of wind-generated energy, the

static rigid balanced policy can waste up to 75% of total power as overhead, i.e., only 25%

of the total available power was consumed for actual computational work. However, when

using the agile policy running with elastic applications, only 35.6% of total power was

consumed as overhead. The effective power for computational workload has increased by

over 150%. With the significant reduction of power overhead, more energy can be devoted

into actual computational workload.

The benefit of elasticity derives from reducing the overhead power by deactivating

nodes and concentrating more power on performing actual computation. While many par-

allel applications may not be elastic, our results indicate the importance of elasticity when

designing systems for variable power.

Result: Energy management policies that are capable of elasticity, i.e., activating and

98

deactivating entire nodes, further improve performance over rigid policies that are only

capable of active power capping (by 33%-41% for our power signals).

Impact of Power Variations. Next, we examine the impact of power variations on perfor-

mance in two scenarios: when power is stable and when power is unlimited. For the stable

power budget, we set a static power cap equal to the average available power of the variable

power signal. For the unlimited power budget, the nodes are free to use as much power as

necessary. Figure 7.7a and Figure 7.7b show the runtime and energy consumption, respec-

tively, of Graph500 when running i) with unlimited power and ii) with a fixed power cap

equal to the average power.

As expected, when using variable power, as shown in Figure 7.5, the applications take

longer to finish and consume more energy than with unlimited power or with a stable power

cap. In particular, in comparison to unlimited power, the greedy elastic policy takes up to

30% longer and uses 21% more energy, the balanced rigid policy takes up to 77% longer

and uses up to 72% more energy, and the agile elastic policy takes up to 26% longer and

uses up to 17% more energy. Likewise, comparing to a stable power cap, the greedy elastic

policy takes up to 27% longer and uses up to 25% more energy, the balanced rigid policy

takes up to 74% longer and uses up to 67% more energy, and the agile elastic policy takes

up to 13% longer and uses up to 9% more energy.

The results illustrate the importance of energy agile design for variable power. Since

adapting to variable power introduces overheads that slows down an application, it typically

uses more energy overall than in the case of unlimited or stable power. The goal of our

policies is to limit this additional energy; results show that our agile elastic policy uses

only 17% more energy than when using unlimited power and only 9% more energy than

when using stable power. These comparisons are based on the worst case scenario, i.e., we

compare the unlimited and stable power policies with the longest runtime and the highest

energy usage among the three power varying cases.

99

 0

 5

 10

 15

 20

 25

FullPower FixedPower

R
u

n
ti
m

e
 (

m
in

s
)

Graph500
WRF

Jacobi

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

FullPower FixedPower

C
o

n
s
u

m
e

d
 E

n
e

rg
y
 (

k
W

h
)

Graph500
WRF

Jacobi

(b)

Figure 7.7: The runtime (7.7a) and power consumption (7.7b) of elastic Graph500 when
operating under full power and fixed power budget.

Power Policy Energy Cost (cents)
Full Power 21.27

Stable Power 27.44
Spot Price Greedy 15.62

Spot Price Balanced 42.07
Spot Price Agile 12.77

Table 7.2: Comparison of energy cost of each application running for non-renewable energy
powered cluster.

Based on the energy consumption data and energy prices in Figure 6.1, we calculate the

overall energy cost for our policies when using unlimited power and stable power, as well

as using our price-based power signal with the greedy, balanced, and agile policies. The re-

sults in Table 7.2 show that although using unlimited power yields the shortest runtime and

lowest energy consumption, it costs 36% more than using the greedy policy and 67% more

than using the agile policy. This price advantage occurs because using unlimited power or

stable power does not react to changes in price.

Result: Adapting to a variable power source introduces overheads that increase applica-

tion runtime and energy consumption (by 9%-17% in our experiments). Our policies aim

to reduce these overheads and reduce the overall cost of non-renewable energy usage.

Energy Storage. Our elastic policies are able to activate and deactivate a subset of nodes.

100

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400

R
u

n
ti
m

e
 (

m
in

u
te

s
)

Stored Energy Period τ (s)

Solar
Wind
Price

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400

R
u

n
ti
m

e
 (

m
in

u
te

s
)

Stored Energy Period τ (s)

Solar
Wind
Price

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400

R
u

n
ti
m

e
 (

m
in

u
te

s
)

Stored Energy Period τ (s)

Solar
Wind
Price

(c)

Figure 7.8: The runtime of elastic Graph500 (7.8a), WRF (7.8b) and Jacobi (7.8c) with
different energy storage capacities (τ).

However, as discussed earlier, activating and deactivating nodes imposes a long transition

time along with the overhead power, which may impact overall performance. One way to

reduce the number of transitions is to introduce energy storage capacity, which we capture

using the time interval τ over which power is known and stable. In Figure 7.8, we show

how the application runtime vary for different values of τ . In this dissertation, we assume

a transition time of 10 seconds between active and inactive states, which can be achieved

by ACPI’s S3 state transitions or S4 for servers with SSDs [84].

As shown, when τ increases, the application runtime decreases, due to fewer numbers

of transitions. For example, in the wind power trace, the runtime decreases by up to 7×

when τ increases from 5 to 100 seconds. The results show that the energy storage capacity

has a significant affect on performance, and a relatively small amount of energy storage

capacity (<200 seconds) can provide significant performance improvements. In particular,

in this experiment, the runtime decreases to nearly the minimum for τ = 200 seconds.

Since storage is expensive to install and maintain, quantifying the effect of energy storage

capacity on performance is important in assessing its costs and benefits.

Result: A small amount of energy storage capacity (enough to support τ = 200 seconds

in our experiments) can significantly improve the runtime performance in the case of using

variable power.

101

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250

R
u

n
ti
m

e
 (

m
in

u
te

s
)

Transition Time (s)

Solar
Wind
Price

(a)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250

R
u

n
ti
m

e
 (

m
in

u
te

s
)

Transition Time (s)

Solar
Wind
Price

(b)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250

R
u

n
ti
m

e
 (

m
in

u
te

s
)

Transition Time (s)

Solar
Wind
Price

(c)

Figure 7.9: The runtime of elastic Graph500 (7.9a), WRF (7.9b) and Jacobi (7.9c) as a
function of the inactive transition time.

Transition Time. In Figure 7.9, we show the impact of transition time, i.e., the time re-

quired for servers to change states between active and inactive, on the 64-node cluster.

The runtime increases relatively slow when the transition time is low (< 160 seconds), but

beyond that, the increment of application runtime becomes significantly greater as the tran-

sition time increases. This is because the transition time is approaching the energy storage

capacity τ (200 seconds), which makes the system less resilient to the power variations.

Result: Shorter transition times can greatly improve the performance of energy-agility.

Value of K. In Figure 7.10, we show the impact on performance when varying the value of

CPU threshold, i.e., the parameter K. Here, we use Graph500 as an reference application.

In our system, we determine if a node is busy or not using a pre-assigned K value. The

power cap is adjusted only when a node’s CPU utilization is less thanK%. In this set of ex-

periments, we vary the K value from 80% to 98% to evaluate how the runtime varies with

different K values. The figures show similar behavior for all three policies. The runtime

is inversely correlated to K when K is low. The runtime stays low for a K value between

90 and 94 (90-96 for greedy and agile policies). The runtime increases again when the

K value is close to 100. This is because for a low K value, the system reallocates power

less often, which usually causes certain nodes to be power hungry and therefore reduces

their program execution speed; when the K value approaches 100, the system frequently

102

 0

 20

 40

 60

 80

 100

 120

 140

80 82 84 86 88 90 92 94 96 98

R
u
n
ti
m

e
 (

m
in

u
te

s
)

Balanced
Greedy

Agile

(a)

 0

 20

 40

 60

 80

 100

 120

 140

80 82 84 86 88 90 92 94 96 98

R
u
n
ti
m

e
 (

m
in

u
te

s
)

Balanced
Greedy

Agile

(b)

 0

 20

 40

 60

 80

 100

 120

 140

80 82 84 86 88 90 92 94 96 98

R
u
n
ti
m

e
 (

m
in

u
te

s
)

Balanced
Greedy

Agile

(c)

Figure 7.10: The runtime of elastic Graph500 with different K values when utilizing solar
energy (7.10a), wind energy (7.10b) and spot price-based energy (7.10c) sources.

switches the power cap, i.e., even when the nodes are busy, it is still possible to take energy

away, which increases runtimes.

Result: For lowest runtime, the value of K should be in the 90-96 range.

Impact of Available Power. In the previous evaluations, we only consider the available

power with a fixed power budget, i.e., solar, wind and spot price based traces. In this sec-

tion, we consider the impact of power budget on the application performance. We employ

agile policy for this evaluation. We vary the total available power, in kW, for the cluster.

The total power budget stays the same throughout the application runtime.

As shown in Figure 7.11, when the power budget is in the low region (¡3 kW), the run-

time can be significantly improved if the power budget increases: in our case, the runtime

is reduced by 94% when the power budget increases from 0.5 kW to 3 kW. When the power

budget is in the high region (over 3 kW), the runtime can further reduce, but the reduction

is less significant: the runtime decreases by 65% when the power budget increases from 3

kW to 6 kW.

Result: The application runtime has a better improvement when the power budget in-

creases in the low-power region.

103

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6

R
u

n
ti
m

e
 (

m
in

u
te

s
)

Average Available Power (kW)

Graph500
WRF

Jacobi

Figure 7.11: The application runtime with different power budgets.

Scalability. We further evaluate the policies on the 64-node CloudLab cluster to test its

scalability. Since the Agile policy is known to perform the best among all three policies,

in this section, we only compare the performance of individual applications between agile-

static and agile-dynamic policies. In addition, we show the runtime of our algorithm in

case of different sizes of data centers.

 0

 20

 40

 60

 80

 100

 120

8 16 24 32 40 48 56 64

R
u
n
ti
m

e
 (

m
in

s
)

Number of Workers

Agile-Static
Agile-Dynamic

(a)

 0

 20

 40

 60

 80

 100

 120

8 16 24 32 40 48 56 64

R
u
n
ti
m

e
 (

s
)

Number of Workers

Agile-Static
Agile-Dynamic

(b)

 0

 20

 40

 60

 80

 100

 120

8 16 24 32 40 48 56 64

R
u
n
ti
m

e
 (

m
in

s
)

Number of Workers

Agile-Static
Agile-Dynamic

(c)

Figure 7.12: The runtime of our elastic agile policy when running Graph500 with solar
(7.12a), wind (7.12b), and spot price based power signal (7.12c).

Figure 7.12, 7.13 and 7.14 present the runtimes for three individual applications (Graph500,

WRF and Jacobi) as the number of worker nodes changes from 8 to 64. For the three ap-

plications, the runtime decreases smoothly while the number of worker nodes increases.

The runtimes for both agile static and agile dynamic policies are lower for the case with

104

 0

 20

 40

 60

 80

 100

 120

 140

8 16 24 32 40 48 56 64

R
u
n
ti
m

e
 (

m
in

s
)

Number of Workers

Agile-Static
Agile-Dynamic

(a)

 0

 20

 40

 60

 80

 100

 120

 140

8 16 24 32 40 48 56 64

R
u
n
ti
m

e
 (

s
)

Number of Workers

Agile-Static
Agile-Dynamic

(b)

 0

 20

 40

 60

 80

 100

 120

 140

8 16 24 32 40 48 56 64

R
u
n
ti
m

e
 (

m
in

s
)

Number of Workers

Agile-Static
Agile-Dynamic

(c)

Figure 7.13: The runtime of our elastic agile policy when running WRF with solar (7.13a),
wind (7.13b), and spot price based power signal (7.13c).

 0

 20

 40

 60

 80

 100

8 16 24 32 40 48 56 64

R
u
n
ti
m

e
 (

m
in

s
)

Number of Workers

Agile-Static
Agile-Dynamic

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

8 16 24 32 40 48 56 64

R
u
n
ti
m

e
 (

s
)

Number of Workers

Agile-Static
Agile-Dynamic

(b)

 0

 20

 40

 60

 80

 100

8 16 24 32 40 48 56 64

R
u
n
ti
m

e
 (

m
in

s
)

Number of Workers

Agile-Static
Agile-Dynamic

(c)

Figure 7.14: The runtime of our elastic agile policy when running Jacobi with solar (7.14a),
wind (7.14b), and spot price based power signal (7.14c).

the price-based power traces. This is because there are fewer power variations and higher

overall power availability in the price-based signal.

For all three applications, the dynamic agile policy results in significantly less running

time than the static due to the freedom of changing power allocations in fine granularity.

In the case of price based power signal, the runtime for both agile static and agile dynamic

policies is lower for the case of the price-based power trace in comparison to the solar and

wind traces. This is because there are fewer power variations and higher overall power

availability in the price-based signal. By contrast, the solar power signal shows slightly

longer runtime than the price signal (shown in Figures 7.12a, 7.13a) and 7.14a. This is

because available solar power gradually increases and then decreases, providing more time

for an energy agile policy to adjust the power allocation across the nodes. Figures 7.12b,

105

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14 16 18 20

R
u

n
ti
m

e
 (

1
0

-2
 s

e
c
o

n
d

s
)

Datacenter Node Number (x10
3
)

Balanced
Greedy

Agile

Figure 7.15: Our algorithm runtime for different data center scales.

7.13b, and 7.14b show that the wind-based power trace results in the longest runtime and

highest variation. The long running time is consistent with the high variation, and low

availability of wind power.

Finally, we show the runtime of our algorithm in case of different data center scales

in Figure 7.15. As can be observed, the balanced and greedy policies run in O(1) time

complexity, therefore, their runtime stays low when data center scale increases. The agile

policy runtime increases linearly when number of nodes increases. However, even for the

data center with 20,000 nodes (the current fastest Tianhe-2 cluster has 16,000 nodes), the

runtime is less than 0.1 seconds.

Result: Regardless of cluster scale, energy agile policies significantly benefits from being

dynamic. The proposed light-weight energy management policies can determine the power

allocation strategy in a relatively short time.

7.5 Summary

In this chapter, we extend the energy management policies introduced in Chapter 6 to

support parallel cloud applications that run on green energy sources. We implement our

energy management policies on two different clusters in the CloudLab testbed with three

different applications, and evaluate the effectiveness of proposed policies based on real so-

106

lar, wind, and spot-price-based power signals. We show that P-BFS application Graph500

requires 17% more time and 9% more energy to complete when power varies based on

real-time electricity prices versus when power is unlimited at a fixed price. However, since

real-time prices are lower than fixed prices, the total electricity cost of our energy-agile

policy with real-time spot prices is 67% less than when using fixed prices.

107

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, we presented a set of studies on the performance of ABR streaming

and cloud parallel applications. In the first part of this dissertation, we present a measure-

ment study for ABR streaming applications in a long distance, wireless, mobile scenario.

Using data collected from the application, network, and physical layers, we identify charac-

teristics of the network that directly impact the quality of video services. Then we develop

and evaluate a new quality adaption algorithm, named SQUAD, to provide users a smooth

playback experience. Our results show that the proposed adaptation algorithm significantly

improves Quality of Experience (QoE) by up to 96% in terms of QoE metric spectrum.

In the second part of this dissertation, we explore the options for better application

efficiency for ABR video transcoding services from the renewable energy perspective. We

define a series of dynamic and static energy management policies that apply to distributed

ABR video transcoding tasks. In addition, we extend the these policies to the parallel cloud

applications and show the general applicability of our approach. We show that, by utilizing

the renewable energy sources, the transcoding grid energy usage can be reduced by 73-

83%, and the corresponding energy cost can be reduced by 14-28% with satisfying viewer

experience. When coming to the parallel cloud applications, with the effective use of power

management policies, the total cost can be reduced by up to 67% comparing to when using

fixed prices. This can be achieved by only increasing up to 17% of the application runtime

time and 9% of the total energy consumption.

As future work, we intend to further investigate the possible ways to improve the per-

formance of ABR streaming and transcoding services. This includes using QoE metrics to

108

achieve a balance between variable renewable power and the price variation of grid power.

Also our energy management policies can be further extended for increasing the resilience

of renewable energy powered data centers and handling grid failure, e.g., in case of haz-

ardous weather or intermittent grid brownouts.

109

BIBLIOGRAPHY

[1] Adobe HTTP Dynamic Streaming. http://www.adobe.com/products/hds-dynamic-
streaming.html.

[2] Amazon’s Elastic Compute Cloud. http://aws.amazon.com/ec2/.

[3] ExoGENI. http://wiki.exogeni.net.

[4] FFmpeg. https://www.ffmpeg.org/.

[5] The Graph 500 List. http://www.graph500.org/.

[6] Harmonic free 4K demo footage center. https://www.harmonicinc.com/free-4k-
demo-footage/.

[7] IRODS. https://www.irods.org/.

[8] ISO New England energy generation mix. https://www.iso-ne.com/about/key-
stats/resource-mix.

[9] Large-scale GENI Instrumentation and Measurement Infrastructure. http://
gimi.ecs.umass.edu/.

[10] Levelized cost of energy analysis 10.0. https://www.lazard.com/perspective/levelized-
cost-of-energy-analysis-100/.

[11] MPICH 3.2. https://www.mpich.org/.

[12] Preset settings in x264: the quality and compression speed test.
http://www.videoquality.pl/preset-settings-x264-quality-compression-speed-test/.

[13] Rackspace Cloud. http://www.rackspace.com.

[14] Sandvine global Internet phenomena report 2016.
https://www.sandvine.com/downloads/general/global-internet-
phenomena/2016/global-internet-phenomena-report-latin-america-and-north-
america.pdf.

[15] The weather forecasting model. http://www.wrf-model.org.

[16] X264. http://www.videolan.org/developers/x264.html.

110

[17] The Opportunities and Challenges of Exascale Computing: Summary Report of
the Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee.
Tech. rep., U.S. Department of Energy, Office of Science, Fall 2010.

[18] U.S. Department of Energy, Office of Science. The Challenges of Exascale.
http://science.energy.gov/ascr/research/scidac/exascale-challenges/, Accessed Jan-
uary 2017.

[19] Adhikari, V.K., Guo, Yang, Hao, Fang, Varvello, M., Hilt, V., Steiner, M., and
Zhang, Z. Unreeling Netflix: Understanding and improving multi-CDN movie de-
livery. In INFOCOM, 2012 Proceedings IEEE (March 2012), pp. 1620–1628.

[20] Akhshabi, S., Anantakrishnan, L., Begen, A. C., and Dovrolis, C. What happens
when HTTP adaptive streaming players compete for bandwidth? In Proc. of NOSS-
DAV (2012), pp. 9–14.

[21] Akhshabi, S., Begen, A. C., and Dovrolis, C. An experimental evaluation of rate-
adaptation algorithms in adaptive streaming over HTTP. In Proc. of MMSys (2011),
pp. 157–168.

[22] Andersen, D. G., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., and Va-
sudevan, V. Fawn: A fast array of wimpy nodes. In Proceedings of SOSP (2009),
pp. 1–14.

[23] Andrews, J. G., Ghosh, A., and Muhamed, R. Fundamentals of WiMAX: Under-
standing Broadband Wireless Networking (Prentice Hall Communications Engineer-
ing and Emerging Technologies Series). Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2007.

[24] Apple and the Environment. http://www.apple.com/environment/renewable-energy/,
Accessed January 2017.

[25] Balachandran, A., Sekar, V., Akella, A., Seshan, S., Stoica, I., and Zhang, H. Devel-
oping a predictive model of quality of experience for Internet video. In Proceedings
of SIGCOMM (2013), pp. 339–350.

[26] Beben, A., Wiśniewski, P., Batalla, J. Mongay, and Krawiec, P. ABMA+:
Lightweight and efficient algorithm for http adaptive streaming. In Proc. of MM-
Sys (2016), pp. 2:1–2:11.

[27] Berman, M., Chase, J. S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D.,
Ricci, R., and Seskar, I. GENI: A federated testbed for innovative network experi-
ments. Computer Networks 61, 0 (2014), 5 – 23. Special issue on Future Internet
Testbeds – Part I.

[28] Berman, M., Demeester, P., Lee, J. W., Nagaraja, K., Zink, M., Colle, D., Krish-
nappa, D. K., Raychaudhuri, D., Schulzrinne, H., Seskar, I., and Sharma, S. Future
Internets escape the simulator. Communications of the ACM 58, 6 (May 2015), 78–
89.

111

[29] Bhanage, G., Seskar, I., Mahindra, R., and Raychaudhuri, D. Virtual basestation:
architecture for an open shared WiMAX framework. In Proceedings of the second
ACM SIGCOMM workshop on Virtualized infrastructure systems and architectures
(New York, NY, USA, 2010), VISA ’10, ACM, pp. 1–8.

[30] Bhat, D., Wang, C., Rizk, A., and Zink, M. A load balancing approach for adaptive
bitrate streaming in information centric networks. In International Conference on
Multimedia Expo Workshops (ICMEW) (June 2015), pp. 1–6.

[31] Bitmovin, Inc. Optimal segment length for adaptive streaming formats like MPEG-
DASH & HLS, 2016.

[32] Buluç, A., and Madduri, K. Parallel breadth-first search on distributed memory
systems. In Proceedings of SC (November 2011), pp. 65:1–65:12.

[33] Chetto, H., and Chetto, M. Some results of the earliest deadline scheduling algo-
rithm. IEEE Trans. Softw. Eng. 15, 10 (Oct. 1989), 1261–1269.

[34] Cho, Y., Mikhail, O., Paek, Y., and Ko, K. Energy-reduction offloading technique
for streaming media servers. Mobile Information Systems (2016).

[35] Cisco. Cisco visual networking index: Global mobile data traffic forecast update,
20152020 white paper. Cisco white paper (2016).

[36] De Cicco, L., Mascolo, S., and Palmisano, V. Feedback control for adaptive live
video streaming. In Proc. of MMSys (2011), pp. 145–156.

[37] DMR. DMR Netflix statistic report 2016. Accessed: Jan, 30, 2016.

[38] DMR. DMR YouTube statistic report 2016. Accessed: Jan, 30, 2016.

[39] Erman, J., Gerber, A., Ramadrishnan, K. K., Sen, S., and Spatscheck, O. Over the
top video: the gorilla in cellular networks. In Proceedings of IMC (2011), ACM,
pp. 127–136.

[40] Fund, F., Wang, C., Korakis, T., Zink, M., and Panwar, S. GENI WiMAX per-
formance: Evaluation and comparison of two campus testbeds. In Proceedings of
GREE Workshop (2013).

[41] Fund, F., Wang, C., Liu, Y., Korakis, T., Zink, M., and Panwar, S.S. Performance of
DASH and WebRTC video services for mobile users. In IEEE Packet Video Work-
shop (PV) (Dec 2013), pp. 1–8.

[42] Ganjam, A., Siddiqui, F., Zhan, J., Liu, X., Stoica, I., Jiang, J., Sekar, V., and Zhang,
H. C3: Internet-scale control plane for video quality optimization. In Proceedings
of NSDI (May 2015).

[43] Gao, G., Wen, Y., and Westphal, C. Dynamic resource provisioning with QoS guar-
antee for video transcoding in online video sharing service. In Multimedia Confer-
ence (2016), pp. 868–877.

112

[44] Giambene, G. Queuing Theory and Telecommunications: Networks and Applica-
tions. Springer US, 2005.

[45] Goiri, I., Katsak, W., Le, K., Nguyen, T., and Bianchini, R. Parasol and
GreenSwitch: Managing Datacenters Powered by Renewable Energy. In Proceed-
ings of ASPLOS (March 2013), pp. 51–64.

[46] Govindan, S., Sivasubramaniam, A., and Urgaonkar, B. Benefits and Limitations of
Tapping into Stored Energy for Datacenters. In Proceedings of ISCA (June 2011),
pp. 341–352.

[47] Hanks, S., Li, T., Farinacci, D., and Traina, P. Generic Routing Encapsulation
(GRE). RFC 1701 (Informational), Oct. 1994.

[48] Huang, J., Qian, F., Gerber, A., Mao, Z. M., Sen, S., and Spatscheck, O. A close
examination of performance and power characteristics of 4G LTE networks. In Pro-
ceedings of MobiSys (2012), pp. 225–238.

[49] Huang, T., Handigol, N., Heller, B., McKeown, N., and Johari, R. Confused, timid,
and unstable: Picking a video streaming rate is hard. In Proc. of IMC (2012),
pp. 225–238.

[50] Huang, T., Johari, R., McKeown, N., Trunnell, M., and Watson, M. A buffer-based
approach to rate adaptation: Evidence from a large video streaming service. In Proc.
of ACM SIGCOMM (2014), pp. 187–198.

[51] ITU. E.800: Terms and definitions related to quality of service and network perfor-
mance including dependability. Accessed: Jan, 30, 2016.

[52] Jain, M., and Dovrolis, C. End-to-end available bandwidth: Measurement method-
ology, dynamics, and relation with TCP throughput. IEEE/ACM Transactions on
Networking 11, 4 (Aug. 2003), 537–549.

[53] Jain, R. The art of computer systems performance analysis - techniques for exper-
imental design, measurement, simulation, and modeling. Wiley professional com-
puting. Wiley, 1991.

[54] Juluri, P., Tamarapalli, V., and Medhi, D. Sara: Segment-aware rate adaptation algo-
rithm for dynamic adaptive streaming over HTTP. In IEEE ICC QoE-FI Workshop
(June 2015), pp. 1765–1770.

[55] Kappiah, N., Freeh, Vincent W., and Lowenthal, D.K. Just in time dynamic voltage
scaling: Exploiting inter-node slack to save energy in MPI programs. In Proceedings
of Supercomputing, (Nov 2005), pp. 33–33.

[56] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F. The Click modular
router. ACM Trans. Comput. Syst. 18, 3 (Aug. 2000), 263–297.

113

[57] Koomey, J. Data Center Electricity Use 2005 to 2010. Tech. rep., Analytics Press,
August 2011.

[58] Krioukov, A., Alspaugh, S., Mohan, P., Dawson-Haggerty, S., Culler, D. E., and
Katz, R. H. Design and Evaluation of an Energy Agile Computing Cluster. In
Technical Report UCB/EECS-2012-13, EECS Department, University of California,
Berkeley (January 2012).

[59] Krishnan, S. S., and Sitaraman, R. K. Video stream quality impacts viewer behavior:
inferring causality using quasi-experimental designs. In Proceedings of IMC (2012),
pp. 211–224.

[60] Krishnappa, D. K., Zink, M., and Sitaraman, R. K. Optimizing the video transcoding
workflow in Content Delivery Networks. In MMSys (2015), pp. 37–48.

[61] Le, K., Bianchini, R., Zhang, J., Jaluria, Y., Meng, J., and Nguyen, T. D. Reducing
electricity cost through virtual machine placement in high performance computing
clouds. In Proceedings of Supercomputing (2011), pp. 22:1–22:12.

[62] Lederer, S., Mueller, C., Rainer, B., Timmerer, C., and Hellwagner, H. An exper-
imental analysis of Dynamic Adaptive Streaming over HTTP in Content Centric
Networks. In Proceedings of ICME (July 2013), pp. 1–6.

[63] Lederer, S., Müller, C., and Timmerer, C. Dynamic adaptive streaming over HTTP
dataset. In Proceedings of MMSys (2012), pp. 89–94.

[64] Lederer, S., Müller, C., and Timmerer, C. Towards peer-assisted dynamic adaptive
streaming over HTTP. In Packet Video Workshop (PV), 2012 19th International
(2012), pp. 161–166.

[65] Li, Z., Begen, A. C., Gahm, J., Shan, Y., Osler, B., and Oran, D. Streaming video
over HTTP with consistent quality. In Proceedings of MMSys (2014), pp. 248–258.

[66] Li, Z., Zhu, X., Gahm, J., Pan, R., Hu, H., Begen, A.C., and Oran, D. Probe and
adapt: Rate adaptation for HTTP video streaming at scale. IEEE JSAC 32, 4 (April
2014), 719–733.

[67] Liebeherr, J., Fidler, M., and Valaee, S. A system-theoretic approach to bandwidth
estimation. IEEE/ACM Transactions on Networking 18, 4 (2010), 1040–1053.

[68] Liu, X., Dobrian, F., Milner, H., Jiang, J., Sekar, V., Stoica, I., and Zhang, H. A case
for a coordinated internet video control plane. In Proceedings of SIGCOMM (2012),
pp. 359–370.

[69] Marpe, D., Wiegand, T., and Sullivan, G. J. The h.264/mpeg4 advanced video coding
standard and its applications. IEEE Communications Magazine 44, 8 (Aug 2006),
134–143.

114

[70] Mehani, O., Jourjon, G., Rakotoarivelo, T., and Ott, M. An instrumentation frame-
work for the critical task of measurement collection in the future internet. Tech. rep.,
NICTA, Eveleigh, Sydney, NSW, Australia, October 2012.

[71] Mok, R. K. P., Luo, X., Chan, E. W. W., and Chang, Rocky K. C. QDASH: a
QoE-aware DASH system. In Proceedings of MMSys (2012), pp. 11–22.

[72] Müller, C., and Timmerer, C. A VLC media player plugin enabling dynamic adaptive
streaming over HTTP. In Proc. of MMSys (2011), pp. 723–726.

[73] Nygren, E., Sitaraman, R. K., and Sun, J. The akamai network: A platform for
high-performance Internet applications. SIGOPS Oper. Syst. Rev. 44, 3 (Aug. 2010),
2–19.

[74] Oyman, O., and Singh, S. Quality of experience for HTTP adaptive streaming ser-
vices. IEEE Communications Magazine 50, 4 (April 2012), 20–27.

[75] Pegus, II, P., Varghese, B., Guo, T., Irwin, D., Shenoy, P., Mahanti, A., Culbert, J.,
Goodhue, J., and Hill, C. Analyzing the efficiency of a green university data center.
In Proceedings of ICPE (2016), pp. 63–73.

[76] Quinn, M., and Deo, N. Parallel Graph Algorithms. ACM Computing Survey 16, 3
(1984), 319–348.

[77] Rakotoarivelo, T., Ott, M., Jourjon, G., and Seskar, I. OMF: a control and manage-
ment framework for networking testbeds. SIGOPS Oper. Syst. Rev. 43, 4 (Jan. 2010),
54–59.

[78] Rao, A., Legout, A., Lim, Y., Towsley, D., Barakat, C., and Dabbous, W. Net-
work characteristics of video streaming traffic. In Proceedings of CoNEXT (2011),
pp. 25:1–25:12.

[79] Raveendran, A, Bicer, T., and Agrawal, G. A Framework for Elastic Execution of
Existing MPI Programs. In In proceedings of IPDPS (May 2011), pp. 940–947.

[80] Ricci, R., Eide, E., and the CloudLab Team. Introducing CloudLab: scientific in-
frastructure for advancing cloud architectures and applications.

[81] Richey, E. Why big tech companies are investing in renewable energy, July 2014.

[82] Roettgers, J. To stream everywhere, Netflix encodes each movie 120 times.
https://gigaom.com/2012/12/18/netflix-encoding/.

[83] Sharma, N., Barker, S., Irwin, D., and Shenoy, P. Blink: Managing Server Clusters
on Intermittent Power. In Proceedings of ASPLOS (March 2011), pp. 185–198.

[84] Sharma, N., Barker, S., Irwin, D., and Shenoy, P. A Distributed File System for
Intermittent Power. In Proceedings of IGCC (June 2013), pp. 1–10.

115

[85] Shehabi, A., Walker, B., and Masanet, E. The energy and greenhouse-gas impli-
cations of Internet video streaming in the United States. Environmental Research
Letters 9, 5 (2014), 054007.

[86] Sodagar, I. The MPEG-DASH standard for multimedia streaming over the Internet.
IEEE MultiMedia 18, 4 (April 2011), 62–67.

[87] Song, M., Lee, Y., and Park, J. Scheduling a video transcoding server to save energy.
ACM Trans. Multimedia Comput. Commun. Appl. 11, 2s (Feb. 2015), 45:1–45:23.

[88] Spiteri, K., Urgaonkar, R., and Sitaraman, R. K. Bola: Near-optimal bitrate adapta-
tion for online videos. In Proc. of IEEE INFOCOM (April 2016), pp. 1–9.

[89] Stockhammer, T. Dynamic Adaptive Streaming over HTTP –: Standards and Design
Principles. In MMSys (February 2011).

[90] Tian, G., and Liu, Y. Towards agile and smooth video adaptation in dynamic HTTP
streaming. In Proceedings of CoNEXT (2012), pp. 109–120.

[91] Tolia, N., Wang, Z., Marwah, M., Bash, C., Ranganathan, P., and Zhu, X. Deliver-
ing Energy Proportionality with Non-Energy-Proportional Systems: Optimizing the
Ensemble. In Proceedings of HotPower (December 2008), pp. 2–2.

[92] Tudor, P. N., and Werner, O. H. Real-time transcoding of MPEG-2 video bit streams.
In International Broadcasting Convention (Sep 1997), pp. 296–301.

[93] U.S. Environmental Protection Agency, Report to Congress on Server and Data Cen-
ter Energy Efficiency: Public Law 109-431.

[94] Villa, B.J., and Heegaard, P.E. Group based traffic shaping for adaptive HTTP video
streaming by segment duration control. In Proc. of AINA (March 2013), pp. 830–
837.

[95] Vulimiri, A., Godfrey, P. B., Mittal, R., Sherry, J., Ratnasamy, S., and Shenker, S.
Low latency via redundancy. In Proc. of CoNEXT (2013), pp. 283–294.

[96] Wang, C., Rizk, A., and Zink, M. SQUAD: A Spectrum-based Quality Adaptation
for Dynamic Adaptive Streaming over HTTP. In Proc. of MMSys (2016), pp. 1:1–
1:12.

[97] Wang, C., Zink, M., and Irwin, D. Optimizing parallel HPC applications for green
energy sources. In IGSC (2015), pp. 1–8.

[98] Wei, L., Cai, J., Foh, C. H., and He, B. QoS-aware resource allocation for video
transcoding in clouds. IEEE Transactions on Circuits and Systems for Video Tech-
nology 27, 1 (Jan 2017), 49–61.

[99] White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., and Joglekar, A. An integrated experimental environment for dis-
tributed systems and networks. In Proc. of OSDI (Dec. 2002), pp. 255–270.

116

[100] Whiteaker, J., Schneider, F., and Teixeira, R. Explaining packet delays under virtu-
alization. SIGCOMM Computer Communication Review 41, 1 (Jan. 2011), 38–44.

[101] Xiang, S., Cai, L., and Pan, J. Adaptive scalable video streaming in wireless net-
works. In Proceedings of MMSys (2012), pp. 167–172.

[102] Xu, J., Xing, L., Perkis, A., and Jiang, Y. On the properties of mean opinion scores
for quality of experience management. In Proceedings of IEEE ISM (Dec 2011),
pp. 500–505.

[103] Yao, Y., Huang, L., Sharma, A., Golubchik, L., and Neely, M. Data centers power
reduction: A two time scale approach for delay tolerant workloads. In Proceedings
of INFOCOM (March 2012), pp. 1431–1439.

[104] Yin, X., Jindal, A., Sekar, V., and Sinopoli, B. A control-theoretic approach for
Dynamic Adaptive Video Streaming over HTTP. In Proceedings of SIGCOMM
(2015), pp. 325–338.

[105] Zambelli, A. IIS smooth streaming technical overview. Microsoft Corporation 3
(2009).

[106] Zhang, Y., Zhang, J., Dong, D., Nie, X, Liu, G., and Zhang, P. A novel spatial au-
tocorrelation model of shadow fading in urban macro environments. In Proceedings
of GLOBECOM (2008), pp. 1–5.

[107] Zink, M., Schmitt, J., and Steinmetz, R. Layer-encoded video in scalable adaptive
streaming. IEEE Transactions on Multimedia 7, 1 (Feb 2005), 75–84.

117

	On the Performance of Adaptive Bitrate Streaming and Parallel Cloud Applications
	Recommended Citation

	tmp.1514604723.pdf.pJP8n

