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ABSTRACT

SEARCH FOR LONG-LIVED, MASSIVE PARTICLES
DECAYING INTO µ+µ� IN PP COLLISIONS ATp

S = 13 TeV WITH THE ATLAS DETECTOR AT THE
LHC

FEBRUARY 2018

NATHAN ROGERS BERNARD

B.Sc., UNIVERSITY OF CALIFORNIA LOS ANGELES

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Carlo Dallapiccola

A search for long-lived, massive particles decaying into dimuon pairs, in 32.9 fb�1

of data analyzed from the ATLAS detector is presented. Two signal models are

considered: GGM SUSY, where the long lived particle mass is between 300-1000

GeV, and the dark photon model, where the ZD mass is between 20-60 GeV. An

excess over the predicted background is observed in the GGM channel, however the

angular/kinematic distributions of the excess vertices are consistent with a detec-

tor/conditions related issue. A modified selection is used for the GGM channel which

increases the signal sensitivity. 95% confidence level (CL) upper limits on the signal

cross sections times branching fraction are set as a function of c⌧ for both benchmark

models. The c⌧ limits for the GGM channel extend from 2.57-1050 cm, and the c⌧

limit for the ZD channel extends from 0.32-1572 cm. 95% CL upper limits on the ZD

cross section are also set in the coupling-c⌧ plane, for a range of BF(H! ZDZD).

v
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CHAPTER 1

INTRODUCTION

The primary goals of the ATLAS and CMS experiments [1, 2] at the Large Hadron

Collider (LHC) are to gain a better understanding of physics at the electroweak scale

[3–5]. Not only how well the Standard Model (SM) of particle physics performs

under testing, but to search for signs of beyond standard model (BSM) physics. The

discovery of a Higgs boson [6, 7] with quantum numbers and couplings to other

particles consistent with those predicted by the SM is, at the time of this writing, the

crowning achievement of the LHC physics program. While a Higgs boson explains

how the masses of the quarks and leptons, as well as gauge bosons, are generated,

it also raises questions [8]. What stabilizes the electroweak scale against quantum

corrections that would push it to the highest known energy scale, the Planck scale?

Is there a natural way of understanding the tuning of the SM parameters?

The most popular class of BSM theories that provide answers to these questions is

Supersymmetry (SUSY) [9], an extension of spacetime symmetry, that relates bosons

to fermions and vice versa. SUSY is favorable in the particle physics community since

many instances naturally contain a dark matter candidate [10], however after Run 1

of the LHC there has been no evidence of SUSY [11, 12]. As a result, there is an

increasing emphasis on the exploration of unusual final state signatures that would

elude the searches based on the standard algorithms that reconstruct objects such as

tracks, jets, muons, electrons, etc.

Long-lived (c⌧ & 1 cm) massive particles (LLPs) that decay to SM particles often

have unsual final state signatures and are featured in a number of proposed BSM

1



models [13, 14]. The mass of the LLP will impact the final state topologies, and so

when searching for such models it is useful to break them in to two categories: low

and high mass LLPs. Models featuring low mass LLPs include dark photons [14,

15], hidden-valleys [16], and stealth SUSY [17]. Models with high mass LLPs include

general gauge mediated SUSY [18], R-parity violating SUSY [19], and split SUSY

[20].

The di�culty in searching for LLPs lies with the standard ATLAS tracking al-

gorithms [21, 22]. They assume that particles originate from interactions relatively

close to the beamline and make use of this as a constraint in discriminating against

combinatoric, cosmic, and beam-related backgrounds. Inner detector (ID) tracks

with transverse impact parameter, d0, larger than about 1 cm are e↵ectively rejected,

as displayed in Fig. 1.1 (a). Note that the small but non-zero e�ciency for com-

bined muons above 1 cm is due to how the ”true” d0 is calculated. It assumes a

straight line extrapolation from the displaced vertex back towards the IP. Further-

more, most analyses consider only those tracks that originate from a reconstructed

“primary vertex,” as a means to suppress background from multiple pp interactions

(“pileup”) [23]. Fortunately, muon candidate tracks are reconstructed independently

in the muon spectrometer, without imposing the requirement that there be an asso-

ciated ID track (stand-alone muon (MuSA) tracks). Though track reconstruction in

the MS does reject candidates that do not extrapolate back to a region near the IP,

there remains significant e�ciency even for muons with transverse impact parameters

as large as 400 cm, as can be seen in Fig. 1.1(b).

For the purposes of this analysis, an approximate classification of particle decays

into “prompt,” “long lived” (or metastable) and “stable” is as follows, based on the

particle’s mean proper lifetime, c⌧ :

• Prompt: c⌧ < 1 cm (c⌧ < 30ps for � ⇠ 1 particles);

• Long lived: 1 cm < c⌧ < 100m;
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(b) Stand-alone muons

Figure 1.1: The distribution of true transverse impact parameter, d0, for (a) combined
muon tracks and (b) stand-alone muon spectrometer tracks, that have been truth-
matched to a muon in simulated events. The muons tracks are reconstructed in events
with a BSM long-lived neutralinos, �̃

0
1 (m�̃0

1
= 700 GeV and c⌧T = 1m) decaying to

a Z boson (with Z ! µ+µ�) and a gravitino. Note that the non-zero e�ciency for
combined muons above 1 cm is due to simple analytic calculation of the ”truth” d0.
The shaded bands represent the statistical uncertainty only.

• Stable: c⌧ > 100m.

The categorization of a prompt decay is driven by the standard ID track reconstruc-

tion algorithm, which assumes that particles originate from the interaction point (IP)

and discards tracks with large d0, as described above. A stable particle is defined as

one that decays predominantly outside of the detector fiducial volume. Generically,

a particle decay is non-prompt for one (or, more commonly, a combination) of the

following reasons:

• The available phase space for decays is very constrained (e.g. neutrons);

• Small coupling parameters are involved (e.g. weak coupling constant);

• A conserved (or nearly-conserved) quantum number suppresses the decay (e.g.

protons, neutrinos).
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In most models of BSM physics there are a number of free parameters (masses of

particles, coupling parameters, etc.) that influence the lifetimes of the new particle

states, according to the schemes described above, with no strong motivation for as-

suming that all of the particles are either promptly decaying (leading to final states

with tracks found by the standard reconstruction software), or very stable (leading to

Emiss
T signatures). Particle lifetimes in the SM, for instance, span roughly 66 orders

of magnitude.

Members of the ATLAS collaboration have performed numerous searches for LLPs

with a wide range of experimental signatures. The SM decay products will primarily

feature hadrons, due to the large number of degrees of freedom in the color sector.

The displaced jets [24] and multitrack displaced vertex (DV) searches [25] exploit

these large hadronic branching fractions to enhance signal sensitivity, however ac-

curate modeling of interactions with detector material are needed. The branching

fractions for LLPs to decay to leptonic final states are smaller, but leptonic final

states are much cleaner. The displaced lepton-jet [26] and displaced dilepton [25]

analyses exploit the minimal background contamination to e↵ectively increase sig-

nal sensitivity. All of these searches have used various methods of circumventing

the pointing requirements of the nominal ATLAS track reconstruction. The primary

method being the reprocessing of raw ATLAS data with looser pointing requirements

[27]. Of course this increases the detector acceptance for LLP signals over the nom-

inal reconstruction, however any analysis utilizing the ID will eventually be limited

by the physical dimensions of the ID itself.

The unique design of the ATLAS muon detector allows for a very striking and

compelling detection of the µ+µ� + X final state within an unusually large decay

volume. An excess of a few events over expected background in a topological multi-

track displaced vertex search, for instance, would have to be very carefully scrutinized

in order to provide confidence that it constituted a signal of new physics. A handful
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of µ+µ� vertices highly displaced from the IP would, on the other hand, be nearly

unexplainable except as evidence of new physics.

1.1 Analysis overview

A search for beyond Standard Model physics in the form of massive (& 15 GeV),

long-lived (c⌧ & 1 cm) particles is described. The search is performed using pp

collision data collected by ATLAS at
p
s = 13 TeV in 2016, equivalent to 32.9 fb�1.

The essential element of the analysis is the exploitation of the unique capabilities

of the ATLAS muon spectrometer (MS) by reconstructing final states that include

pairs of oppositely-charged muons originating from a common vertex significantly

displaced from the IP. By not requiring that muon candidates be combined with an

inner detector track, we successfully reconstruct dimuon vertices nearly all the way

out to the inner layer of the MS, as far as 4 (6)m from the IP for the barrel (endcap)

region. The analysis strategy consists of selecting events with one or more displaced

µ+µ� vertices and minimal requirements on other aspects of the event (to retain the

greatest possible model independence).

In order to maintain high e�ciency for finding dimuon vertices displaced from

the IP as far out as the inner radius of the muon spectrometer, while also ensuring

the best possible resolution on the vertex position and mass, the following techniques

(described in detail in Sect. 5) are employed:

Displaced dimuon selection

1. MS only muons: Muon spectrometer tracks that are not associated with an

ID track (denoted here as “MuSA” tracks) are considered as muon candidates

for use in the displaced vertex search. Track quality criteria are employed to

ensure that the track parameters are well-measured. The veto of MS tracks

that are associated with an MS-ID combined muon is a critical component of
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the analysis as otherwise one would be overwhelmed by SM backgrounds that

feature prompt muons.

2. Vertexing: Pairs of muon candidates with pT > 10 GeV selected in the previous

step are passed to a vertexing algorithm that determines the location of the

point of closest approach (vertex) of the two muons and its distance from the

IP, Lvtx.

3. Statistical analysis: A simple cut-and-count analysis is performed, whereby the

number of events observed in data, after the selection criteria has been applied,

is compared with the predicted number of events from background. In the event

that a significant excess over background is observed, the dimuon invariant mass

distribution and Lvtx distribution will be studied in order to determine the mass

and lifetime of the state. Otherwise, the CLS technique will be used to set

upper limits on the product of production cross section and dimuon branching

fractions for the selection of signal models under consideration.

Triggers

The algorithm described above is a candidate-driven approach to finding suitable

dimuon vertices, irrespective of whether or not other tracks originate from the same

vertex or of any other activity in the event (number of jets, additional leptons, missing

energy, etc.). In this way, we ensure the best possible model independence of the

search, as noted above. We are, however, limited by the set of triggers employed to

identify and save events of interest [28]. Fortunately, a number of trigger algorithms

in the menu exhibit relatively high e�ciency for most BSM signal events of interest,

without unduly compromising the model independence of the search.

Signal events targeted by this analysis feature muons with large d0 and moderate

to large pT, which in connection to prompt hadronic activity often contribute to

significant jet transverse momentum imbalance, ⇢
⇢HT . For signal events with pair
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production of long-lived particles, there may be additional sources of ⇢⇢HT associated

with the other BSM particle (the one not identified with the dimuon pair) – it may e.g.

decay far enough away from the IP that the jet reconstruction fails, to some extent,

and therefore contributes to the ⇢
⇢HT . The triggers used in this analysis are based on

either muon tracks reconstructed solely in the MS or on jet transverse momentum

imbalance.

Signal Models

Two benchmark models are used to guide decisions on optimal selection criteria

and to translate observed yields in data to BSM cross sections, via e�ciencies and

acceptances obtained from MC-simulated samples. The chosen models represent both

a variety of BSM physics possibilities, as well as final state topologies and kinematics,

to which the analysis may be sensitive. A brief summary is provided here, and further

details can be found in Sect. 6.

• Dark gauge bosons : This is a class of Higgs-portal models in which the SM

Higgs boson mixes with a new scalar S associated with a “dark” sector. The

Higgs boson will then have an exotic decay mode to a pair of dark photons:

H ! ZDZD. Assuming small kinetic mixing between the ZD and the SM Z, the

ZD will be long-lived and decay into kinematically-allowed pairs of SM particles,

including µ+µ�. Events of this type feature only moderately-large Emiss
T and

little jet activity [14, 15].

• Gauge-mediated SUSY breaking : Similar to the SUSY model described above,

except that the �̃0
1 is the next-to-lightest SUSY particle (NLSP), and it decays

to a very light (sub- GeV) gravitino LSP and a gauge or Higgs boson: �̃0
1 !

G̃ �/Z/H. These events feature large⇢⇢HT , a number of prompt high-pT jets and

a displaced Z ! µ+µ� vertex [18].

Backgrounds
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The dominant sources of background are:

• SM processes with relatively large cross sections that produce isolated muons

in the final state (most importantly Drell-Yan and Z + jets production)

• QCD Multijet

• cosmic muons

The methods used to predict the contribution of each background to the analysis are

detailed in Sect. 6.

Systematics

The data-driven background prediction techniques used in this analysis reduce

the sources of systematic uncertainty in this analysis, however the following sources

remain:

• Luminosity

• Pileup reweighting (PRW)

• Trigger and MuSA reconstruction e�ciency

• Fake vertices

• ABCD region size

Further description of how each of these systematic uncertainties are evaluated in

the analysis are given in Sect. 8. The systematics are used as nuisance parameters in

the profile likelihood used for the statistical analysis.

Results

The results of this analysis are given in Sect. 9 and their interpretation in terms

of our bench mark models is given in Sect. 10.
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CHAPTER 2

THEORY

2.1 Higgs Portal

The Higgs mechanism for spontaneous symmetry breaking was first postulated

in 1964 [29–31] as a way of generating mass for the gauge bosons. The mechanism

functions as follows [32]:

• Standard mass terms for gauge bosons violate local gauge symmetry and require

the gauge bosons be massless.

• One can introduce a complex scalar SU(2) doublet that couples to itself, via

the potential V (�) = µ2�†�+ �(�†�)2, and to gauge bosons and leaves the SM

lagrangian invariant under gauge transformations.

• When µ2 > 0, the state of lowest energy is the vacuum, � = 0. If µ2 < 0,

however, the higgs picks up a vacuum expectation value (VEV) of < � >=
q

�µ2

2� , and breaks the global SU(2)L ⇥ U(1)Y symmetry down to U(1)EM .

• A redefinition of fields can be performed to describe the complex scalar doublet

instead as four real scalar fields. Gauge transformations are used to remove the

dependence of the langrangian on three of the four components of the higgs field.

This is typically described as the fields being ”eaten” by the massless gauge

bosons, since the transformations result in mass terms for the gauge bosons.

Only the W+,W-, and Z fields gain a mass the photon remains massless.
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• The result is a model with three massive gauge fields, one massless gauge field,

and one real scalar higgs field.

• In the SM left and right handed fermions transform di↵erently under SU(2)L

and U(1)Y , and so gauge invariance doesn’t allow for standard mass terms.

• The Higgs mechanism introduces Yukawa couplings between left and right

handed fermions and the higgs field, which are interpreted as generating gauge

invariant mass terms for fermions.

The 2012 discovery of a SM Higgs boson at the LHC by the ATLAS and CMS

experiments [6, 7] opened a whole new sector of the SM to study. The most exciting

aspect of the new Higgs sector, is whether it couples to BSM physics in a directly

observable manner.

2.1.1 Dark gauge bosons

A number of BSM theories feature a “hidden” or “dark” sector of matter that is

SM-neutral but may nevertheless interact, weakly, with SM matter via coupling to

the Higgs field. These are so-called “Higgs portal”[33] models that address the dark

matter problem, electroweak baryogenesis, etc. The model we consider, relevant for

this analysis, is one in which there exists a U (1)D symmetry in the dark sector, and

the dark vector gauge boson ZD, often called a “dark photon,” is given mass via a

singlet scalar field S that breaks the symmetry and is analogous to the Higgs field

in the visible, SM sector [14, 15]. The BSM terms in the Lagrangian density are as

follows:

LBSM = �1

4
ẐDµ⌫ Z

µ⌫
D +

1

2

✏

cos ✓W
B̂µ⌫ Ẑ

µ⌫
D � µ2

D|S|2 + �D|S|4 + ⇣|S|2|H|2 . (2.1)

Included are both a Higgs portal (last term above) and hypercharge portal (second

term above), providing for kinetic Z-ZD mixing (i.e. mixing between U(1)Y and
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U(1)D) and H-S mixing, regulated by the small coupling parameters ✏ and ⇣, respec-

tively. There are two vector-boson mass eigenstates, one that is dominantly ZD and

another that is dominantly SM Z, as well as two scalar mass eigenstates, one that is

dominantly S and another that is dominantly H. For simplicity, the physical (mass)

states will be denoted H, S, Z and ZD.

Considering the scenario where the singlet scalar S is heavier than the SM H,

which means that the process H ! SS is kinematically forbidden, and ZD is lighter

than half the H mass, events with a displaced dimuon vertex signature would be

observable in experiments at the LHC, via the process given in Fig. 2.1, wherein the

ZD are produced on-shell and decay to SM fermions due to their induced couplings to

the electroweak current. A small value of ✏ (. 10�5) would result in a long-lived ZD

state, and for even small, O (1%), exotic branching fractions for H ! ZDZD, not yet

ruled out by constraints from Higgs couplings fits, enough events would be produced

in Run 2 of the LHC to be observable:
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� (H ! ZDZD) =
⇣2
q

M2
H � 4M2

ZD

��4M2
HM

2
ZD

+ 12M4
ZD

+M4
H

�

64⇡� (M2
H �M2

S)
2

(2.2)

�
�
ZD ! ff̄

�
=

Nc

24⇡MZD

s

1� 4m2
f

M2
ZD

�
M2

ZD

�
g2L + g2R

��m2
f

��6gLgR + g2L + g2R
��

(2.3)

gL,R = gZDfL,Rf̄L,R
=

✏g0
�
c2wM

2
Z (T3 + Y )� YM2

ZD

�

cw
�
M2

Z �M2
ZD

�

(2.4)

BF (H ! ZDZD) / ⇣
m2

H

|m2
S �m2

H |
(2.5)

c⌧ZD
=

~c
�ZD

=
MZD

✏2
f (MZD

)

(2.6)

H
ZD

p

p

ZD

µ

µ

�

�

Figure 2.1: Feynman diagram for the dark sector model considered as possible signal
in this analysis.
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2.2 Supersymmetry

The coupling of the Higgs boson to SM fields explains how particle masses are

generated, but it also raises questions [9]. In quantum field theory (QFT) the cou-

plings between fields receive higher order corrections due to virtual interactions. For

example, the correction to m2
H from a loop containing a Dirac fermion f with mass

mf will be:

�m2
H = � |�f |2

8⇡2
⇤2

UV + ... (2.7)

Where �f is the Yukawa coupling and ⇤UV is the ultraviolet momentum cuto↵

used to regulate the loop integral. If the ultraviolet cuto↵ is at the planck scale,

MP , then the quantum corrections to m2
H will be 30 orders of magnitude larger than

the mass itself. One possibility is that there is a whole sector of new particles that

also couple to the Higgs and whose contributions to �m2
H cancel those of the SM

fermions. Systematic cancellations often occur in physics as the result of symmetry.

The problem at hand requires symmetry between fermions and bosons because of the

relative minus sign between fermion and boson loop contributions to �m2
H . Such a

symmmetry is called ”supersymmetry” and its study has resulted in a strikingly large

number of BSM models over the last 50 years.

2.2.1 General Gauge-mediated (GGM) SUSY

In RP-conserving SUSY models where gauge interactions mediate the breaking of

the supersymmetry, the gravitino acquires its mass from a “super-Higgs” mechanism

[34] and is very light (mG̃`
+`�1 GeV), as indicated by the formula:

mG̃ =
F0p
3MPl

=

✓ p
F0

100 TeV

◆2

· 2.4 eV , (2.8)

where
p
F0 is the fundamental scale of supersymmetry breaking (typically & 100 TeV)

and MPl is the gravitational scale (the Planck mass). Hence, the gravitino is the

13



LSP. All supersymmetric particles decay promptly through cascades leading to the

NLSP, which then decays into the LSP gravitino via an interaction with a 1/F0

suppression. The NLSP, depending on model choices, is either the lightest slepton

or lightest neutralino, �̃
0
1. For the latter case, described in more detail in [18], if �̃

0
1

has a signficant Wino or Higgsino component the branching fraction for the decay

�̃0
1 ! ZG̃ can be O (1). For example, for tan � = 2 and µ > 0, the branching fraction

is approximately 90%. The lifetime of �̃
0
1 is determined by F0 (or, alternatively, by

mG̃, according to Eqn. 2.8) and m�̃0
1
,

c⌧�̃0
1
=

1

��̃0
1

=
16⇡F 2

0

m5
�̃0
1

⇡
 
100 GeV

m�̃0
1

!5✓ p
F0

300 TeV

◆4

· 10mm , (2.9)

and hence �̃0
1 is long-lived (i.e. non-prompt) for natural values of the parameters.

The Feynman diagram for pair production of gluinos, followed by a cascade of

decays leading to �̃0
1 ! ZG̃ is shown in Fig. 2.2 (note that a simplified model is

used whereby the cascade of decays of SUSY particles is reduced to a single vertex:

g̃ ! qq0�̃
0
1).
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Figure 2.2: Feynman diagram for the GGM SUSY model considered as a possible
signal in this analysis.
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CHAPTER 3

DETECTOR

The ATLAS (A toroidal LHC ApparatuS) Detector is a general purpose particle

detector located at CERN’s Large Hadron Collider (LHC) [35]. It is the largest of

the seven detectors located at the LHC, measuring roughly 46 meters in length, 25

meters in diameter, and weighing about 7,000 tons. A more detailed description of

the detector is available in [1, 36–39].

3.1 Coordinate system

The ATLAS coordinate system has its origin at the nominal interaction point,

which is located at the center of the detector. The x-axis points towards the center

of the LHC ring, and the y-axis points upward, normal to the plane of the LHC ring.

A right handed coordinate system, the z-axis points parallel to the beamline in the

anti-clockwise direction (w.r.t. LHC ring).

Cylindrical coordinates are used to describe the detector given its cylindrical

shape. The radial and azimuthal (�) directions are defined in the x-y plane with

the azimuthal angle originating from the x-axis and increasing clockwise w.r.t. the

positive z direction.

Physics analyses often assume particles originate from the IP, and as a result

only require two angles to describe their location within the detector. The azimuthal

angle is the same as in the cylindrical parameterization, however instead of the typical

polar angle (✓) formed w.r.t. the positive z-axis, pseudorapdity is used for the second
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coordinate. Pseudorapidity is defined as ⌘ = �log(tan( ✓
2
)). The choice of ⌘ over ✓ is

due to particle multiplicity being approximately constant as a function of ⌘.

The described analysis studies particles not originating from the IP and therefore

typically requires coordinate transformations in order to make comparisons between

objects.

3.2 Inner detector

The Inner detector (ID) [40, 41] surrounds the beampipe and is the first set of

detectors particles traverse leaving the interaction point (IP). The layout of the ID is

shown in Fig. 3.1, profiled in both r and z.

A 2 Tesla solenoid magnet [42] encases the ID and delivers a field along the z-axis

of the ATLAS coordinate system. The magnetic field causes charged particles to

travel in helical trajectories whose curvature depend on the particles momentum. By

recording the trajectory of charged particles using the ID, their momentum can be

determined. Following is a description of the detector technologies used in the ID.

3.2.1 pixel detector

The pixel detector [43, 44] is located closest to the beam pipe, and therefore needs

to be resilient against radiation with a fine enough granularity to distinguish the large

flux of traversing particles. Semiconductor pixels are the only technology available

that is capable of meeting these needs. Pixels are layered onto rectangular modules

which are then stacked paralell to the beampipe, staved in the azimuthal direction.

Each module holds 46,080 of the 50 µm by 400 µm pixels. There are four layers of

pixel modules in the radial direction and three disks of modules in the z direction (on

each side of the IP). The inner most radial cylinder is called the Insertable B-Layer

(IBL) [45] and was installed in 2014 to improve the granularity of the pixel system.
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(a)

(b)

Figure 3.1: The layout of the inner tracking system profiled in (a) r and (b) z. Note:
the diagrams do not show the Insertable B Layer (IBL) which is a fourth layer of
pixel detector that sits closest to the beam pipe.

3.2.2 semiconductor tracker (SCT)

The SCT [46–48] also uses semiconductor (silicon) to detect charged particles,

with a coarser granularity than the pixel detector. There are four layers of SCT in

the radial direction and nine disks of modules in the z direction (on each side of the

IP).

3.2.3 transition radiation tracker (TRT)

The TRT [49–51] consists of Polyimide drift tubes of 4 mm diameter. The tubes

are 144 cm in the barrel and 37 cm in the end-caps. A Xe-based gas mixture is
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used for the TRT. The tubes are packed into three radial sections and twenty endcap

sections (on each side of the IP).

3.3 Calorimetry

The calorimetry of the ATLAS detector [52] surrounds the ID and is used to

measure of the energy of traversing particles. The layout is shown in Fig. 3.2.

(a)

Figure 3.2: The layout of the ATLAS calorimetry, including both the inner electro-
magnetic component (yellow) and the outer hadronic component (gray).

Calorimeters function by interleaving absorbing and sensing layers. The absorb-

ing layer is made of dense material that induces showering of the incident particle,

while the sensing layers are used to measure the energy profile of the shower as it

develops. The material used for the abosrbing layer has a characteristic radiation

length which determines how much energy incident particles lose per unit depth into

the calorimeter. The choice of abosrbing and sensing material as well as number of

layers of each is determined from the expected energy spectra of particles arising from
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LHC collisions, i.e. knowing how many radiation lengths the calorimeter must be to

contain the vast majority of showers.

3.3.1 Electromagnetic

The electromagnetic calorimeter (ECAL) [53] is used for measuring the energy of

incident electrons/positrons and photons. It has an accordian geometry to provide

full coverage in the azimutal angle. The absorbing material is lead, and the sensing

material liquid argon (LAr). LAr is used for its intrinsic linear behavior and radiation-

hardness, as well as the stability of response over time. Using LAr however requires

that the calorimeter be housed within a cryostat to keep the detector su�ciently cool.

Three cryostats are needed: one to house the barrel ECAL, and one for each of the

endcap ECAL systems. The endcap cryostats also hold components of the HCAL

system described in the next section.

3.3.2 Hadronic

The hadronic calorimeter (HCAL) [54] is used for the measuring the energy of

incident hadronic particles ranging from baryons (i.e. protons/neutrons) to mesons

(pions/kaons). The absorbing and sensing materials are di↵erent for the various

components of the HCAL. The barrel uses steel for absorber and scintillator tiles

for the sensing material. This is broken into three sections, one central, and one

”extended barrel” section per endcap. The Hadronic endcap calorimeter (HEC) is

made of copper/LAr and the forward calorimeter (FCal) of copper-tungsten/LAr.

Both of these components are mounted inside the endcap cryostats and extend the

HCAL pseudorapidity coverage to 4.9.

3.4 Muon spectrometer

The Muon spectrometer (MS) [55] is the outermost system of the ATLAS detector.

The MS tracks charged particles traversing its volume similar to the ID however with
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coaser granularity. The primary purpose of the MS is to identify muons. Since muons

are much more massive than electrons they do not shower inside calorimeters, and will

therefore pass through with minimal energy loss (roughly 3 GeV on average). The

granularity of the ID provides superior momentummeasurements, however associating

MS measurements with ID tracks allows analyzers to identify ID tracks as originating

from a muon. In order to measure the momentum of charged particles a magnetic

field is required. The MS field is supplied by three superconducting toridal magnets

(one in the barrel and one in each endcap) [56, 57]. The magnets are each 4 T and

provide a field in the azimutal direction (and hence bending in the r-z plane). There

are two main classes of detector used in the MS, precision chambers, named for their

precision in bending plane, and trigger chambers, used for triggering and providing

reliable phi measurements. The MS consists of three layers (stations) in the barrel

and three in the endcap, each containing a mixture of the two classes of MS detector.

The r-z profile of the MS is shown in Fig. 3.3.

(a)

Figure 3.3: The r-z profile of the ATLAS muon system showing the three barrel
stations in green and the three endcap stations in cyan.
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3.4.1 Precision chambers

The primary precision chamber is the monitored drift tube (MDT) [58]. MDTs

are roughly 3 cm in diameter and filled with an ArCO2 gas mixture. The cross section

of an MDT tube is shown in Fig. 3.4.

µ

29.970 mm

Anode wire

Cathode tube

Rmin

(a)

Figure 3.4: Cross section of MDT tube.

The relation between the minimum radius of a traversing particle, and the drift

time of electrons towards the anode wire is refered to as the R-T relation and provides

a very precise radial measurement of where the particle passed through the tube

(hence precision chambers). The MDT tubes are used in all three stations of both

the barrel and endcap MS systems. In both cases the tubes are oriented with the tube

length along the azimuthal direction. This orientation allows for precise tracking in

the bending plane, while in the azimuthal direction the tracking resolution is only as

good as the tube length.

Cathode strip chambers (CSCs) [59] are the other type of precision tracking cham-

ber used in the MS. The high track occupancy in the forward region (|⌘| > 2) is not
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suitable for the MDT chambers. The CSC can handle the higher rate as well as

provide precision measurements compable to the MDT technology.

3.4.2 Trigger chambers

The Resistive plate chamber (RPC) [60] and thin gap chamber (TGC) [61] tech-

nologies are used for muon triggering in the barrel and endcap respectively. The

bending of particles in a magnetic field is inversely proportional to their total mo-

mentum. This means that for a fixed pT the bending of a particle is dependent on

eta. To maintain consistent pT-resolution in both the barrel and endcap di↵erent

technologies must be used.

The barrel has three trigger layers. Two on the middle station and one on the

outer station. The two layers in the middle station are used for the low pT trigger,

while the large lever arm of the third layer on the outer station is used for the high

pT trigger. All three layers are positioned inside the barrel toroid’s field. The RPC

is a gaseous parallel electrode-plate detector. Each RPC layer has two indepedent

detector layers measuring both ⌘ and �, giving a total of six (⌘,�) measurements for

each track crossing all three MS barrel stations.

The endcap has four trigger layers. Three on the middle station and one on the

inner station. The two closest layers in the middle station are used for the low pT

trigger, while the two furthest layers in the middle station are used for the high

pT trigger. All four layers are positioned outside of the endcap toroid’s field. The

TGC is a gaseous multi-wire proportional detector with strips and wires oriented

perpendicular to one another in the local plane of the chamber. The strips measure

the azimuthal coordinate while the wires measure the radial coordinate. Each TGC

layer is considered a doublet or triplet depending on whether it has two or three layers

of strips/wires. There is one triplet in the middle station and two doublets. The inner

station’s trigger layer holds a doublet.
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3.5 Trigger

The ATLAS trigger system [62] has two main components called the Level 1 (L1)

trigger and Higher level trigger (HLT). The L1 trigger is hardware based while the

HLT is completely software based. An diagram of the ATLAS trigger logic is shown

in Fig. 3.5.

(a)

Figure 3.5: Diagram of the ATLAS trigger logic.

The L1 trigger can handle an accept rate of 75 kHz and processes reduced-

granularity information from the MS (muons) and calorimetry (electron,photon,jets,⌧ ,Emiss
T ).

The HLT reduces the event rate to 200 Hz and utilizes the full granularity of the

MS and calorimetry as well as ID data. The HLT trigger objects are similar (and

in some cases identical) to the physics objects reconstructed by the nominal ATLAS

o✏ine reconstruction software.
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CHAPTER 4

DATA AND MONTE CARLO SIMULATION SAMPLES

4.1 Data

Proton-proton collision data collected during 2016, in Run 2 of the LHC, at
p
s = 13 TeV, were analyzed. The requirement that the data were collected during

stable beam conditions, and that all relevant detector components were su�ciently

functional, results in a total integrated luminosity of 32.9 fb�1 for the analyzed sam-

ple. The uncertainty on the integrated luminosity is 2.2%. It is derived, following

a methodology similar to that detailed in [63], from a preliminary calibration of the

luminsoity scale using x-y beam-separation scans performed in May 2016. Events are

required to contain at least one reconstructed pp collision vertex candidate with at

least two associated ID tracks, each with pT > 400 MeV. The vertex with the largest

sum of p2T of tracks is considered the primary vertex.

4.2 MC-simulated samples

All simulated samples were processed through the full ATLAS detector simulation

[64] based on Geant4 [65]. Multiple overlaid pp collisions are simulated with the

soft QCD processes of Pythia 8.186 [66] using tune A2 [67] and the MSTW2008LO

PDF set[68]. MC simulations are then reweighted so that the distribution of the

average number of interactions per bunch crossing matches what is found in data.

MC simulated samples from the two benchmark signal models considered in this

analysis are used to tune selection criteria and to evaluate signal e�ciencies for use

in converting signal yields into cross sections.
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4.2.1 Signal samples

Signal events for both benchmark models are generated with MadGraph5 aMC@NLO

[69] using the NNPDF23LO PDF set [68] and Pythia8 [66] for parton showering and

hadronization. The EvtGen generator [70] is used for weak decays of heavy mesons.

The hadronization and underlying-event parameters were set according to the A14

tune [67]. The signal samples are normalized to their predicted cross sections times

branching ratio.

A total of 10 signal samples have been produced for the ZD model with ZD masses

and lifetimes taking on the values given in Tab. 4.1. A total of 6 signal samples have

been produced for the GGM SUSY model with mg̃ = 1.1 TeV and �̃0
1 masses and

lifetimes taking on the values given in Tab. 4.2.

mZD
[ GeV] c⌧ZD

[m] BF (ZD ! µ+µ�) � ⇥ BF [fb] #dimuonvtx

20 0.5 0.1475 1300.36 >= 1
20 0.5 0.1475 95.90 2
40 0.5 0.1370 1207.79 >= 1
40 0.5 0.1370 82.73 2
40 5 0.1370 1207.79 >= 1
40 5 0.1370 82.73 2
60 0.5 0.1066 939.79 >= 1
60 0.5 0.1066 50.09 2
60 5 0.1066 939.79 >= 1
60 5 0.1066 50.09 2

Table 4.1: MC signal samples for the dark sector interpretation. For all samples,
mS = 300 GeV, � (pp ! H) = 44080 fb, BF (H ! ZDZD) = 0.10.

4.2.2 SM background samples

Many of the variables used in selecting vertices are tracking based and di�cult

to simulate which leads to disagreement between data and MC simulation. For this

reason MC simulations are used sparingly in this analysis, and the background is

predicted from data-driven techniques. When comparisons are made, the MC simu-

26



m�̃0
1
[ GeV] c⌧�̃0

1
[m] � ⇥ BF [fb]

300 1 11.12
300 5 11.12
700 1 11.12
700 5 11.12
1000 1 11.12
1000 5 11.12

Table 4.2: MC signal samples for the GGM SUSY interpretation. For a given m�̃0
1
,

the gravitino mass is chosen to give the desired lifetime. For all samples, mg̃ =

1100 GeV, � (pp ! g̃g̃) = 163.5 fb, BF
⇣
�̃0
1 ! ZG̃

⌘
= 1.0, BF (Z ! µµ) = 0.034

lations are normalized to data as described in App. B. The MC generators [71, 72],

hadronization and showering software packages [66, 73], underlying event simulation

[67], choice of PDF [68], cross section and e↵ective integrated luminosity Lint are

given in Tab. 4.3 for all the samples considered in this analysis.

Sample DSID MC Generator Hadronization and Showering tune/PDF Filter �prod [pb] Lint [fb�1]

Z+jets 361107 Powheg Pythia8 AZNLOCTEQ6L1 Z ! µµ 1950.63 19.28
DY 361666 Powheg Pythia8 AZNLOCTEQ6L1 DY ! µµ; 6 GeV < mll < 10 GeV 717.45 9.72
DY 361667 Powheg Pythia8 AZNLOCTEQ6L1 DY ! µµ; 10 GeV < mll < 60 GeV 1763.35 5.98
tt̃ 410000 Powheg Pythia8 P2012 semileptonic 451.69 131.95

W+jets 361101 Powheg Pythia8 AZNLOCTEQ6L1 W+ ! µ⌫ 11500.91 2.59
W+jets 361104 Powheg Pythia8 AZNLOCTEQ6L1 W� ! µ⌫ 8579.0 2.32

ZZ 361603 Powheg Pythia8 CT10/AZNLOCTEQ6L1 ZZ ! llll 1.2673 3140.53
ZZ 361604 Powheg Pythia8 CT10/AZNLOCTEQ6L1 ZZ ! vvll 0.918 1083.94
WW 361600 Powheg Pythia8 CT10/AZNLOCTEQ6L1 WW ! lvlv 10.64 558.01
WZ 361601 Powheg Pythia8 CT10/AZNLOCTEQ6L1 WZ ! lvll 4.51 1084.07

single top 410011 Powheg Pythia P2012 leptonic; t channel; t 44.15 114.31
single top 410012 Powheg Pythia P2012 leptonic; t channel; t̃ 26.28 193.96
single top 410015 Powheg Pythia P2012 leptonic; wt channel; t 3.78 279.06
single top 410016 Powheg Pythia P2012 leptonic; wt channel; t̃ 3.78 279.22
single top 410025 Powheg Pythia P2012 leptonic; s channel; t 2.06 487.4
single top 410026 Powheg Pythia P2012 leptonic; s channel; t̃ 1.29 792.71

Upsilon 424102 Pythia8B – A14/CTEQ6L1 ⌥(1S) ! µµ; µ pT > 4 GeV – –
Upsilon 424105 Pythia8B – A14/CTEQ6L1 ⌥(2S) ! µµ; µ pT > 4 GeV – –
Upsilon 424106 Pythia8B – A14/CTEQ6L1 ⌥(3S) ! µµ; µ pT > 4 GeV – –

QCD Multijet 427000 Pythia8 – A14NNPDF23LO µ filter – –
DY 361476 Sherpa – CT10 DY ! µµ; 10 GeV < mll < 40 GeV – –

Table 4.3: The MC generators, hadronization and showering software package, un-
derlying event simulation, PDF sets, cross section �prod and e↵ective integrated lu-
minosity Lint used for the nominal simulated samples described in this document.
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4.3 Object Reconstruction

Reconstruction is the process of taking the raw data collected by the various

subsystems of the ATLAS detector and constructing physics objects (i.e. muons, jets,

photons...) to be used by analyzers. Physics objects are formed by either connecting

hits together in one of the tracking systems to form a particle trajectory, or clustering

nearby energy deposits together in the calorimeters.

4.3.1 Tracking

The presence of a non-uniform magnetic field throughout the volume of the AT-

LAS geometry [74] requires a localized parameterization of particle trajectories. The

perigee parameterization is defined by (d0, z0,�, ✓,
q
|P |), where d0 is the transverse

impact parameter, z0 is the longitudinal impact parameter, � and ✓ are the typical

spherical coordinates given at the perigee point, and finally q
|P | holds the charge and

momentum information. As a local description these 5 track parameters (TPs) de-

scribing the perigee point must always be given w.r.t. a reference point (vx, vy, vz).

That reference point is typically near the IP, however depending on where knowledge

of the particles trajectory is required can be anywhere. A Runge-Kutta propagator

[75] is used to find TPs at di↵erent points along a given particle trajectory. A cartoon

describing the TPs is given in Fig. 4.1.

For each set of TPs there is a corresponding 5⇥5 covariance matrix that describes

the uncertainties of the TPs. When TPs are given for di↵erent locations along a

particle trajectory the uncertainties must be propagated using the jacobian of the

coordinate transformation as shown below:

Cf = JT
fi Ci Jfi (4.1)
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(a) (b)

Figure 4.1: Illustration of the perigee parameterization in both the (a) x-y and (b)
r-z planes.

4.3.1.1 Inner detector

The primary track finding scheme within the ID starts near the IP and moves

outward. Track seeds are formed using hits from the first few layers of silicon. The

Kalman filtering technique [76] is used to add hits to the initial seed in an iterative

process. The seed TPs are propagated to the next layer of detectors where hits near

the expected position of the extrapolated TP are combined with the seed to form a

new set of TPs. The technique is repeated through all layers of the silicon.

The final TP are then extrapolated through the TRT where hits close to the

trajectory are grouped together. All hits associated with the trajectory, including

silicon and TRT, are fit using the ATLAS global �2 fitter [77] to give an ID track.

Many of the track candidates will share hits or be incomplete. A scoring mech-

anism is used to rank the track candidates, and remove ambiguity that might exist

between candidates. More information about the performance of the ID during Run

2 can be found here [78].
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4.3.1.2 Muon spectrometer

The Muon reconstruction chain starts by grouping patterns of hits within each

MS station. The hits are then fit to a ”segment” within the given station. Another

stage of pattern recognition then groups segments in di↵erent MS stations together.

The collection of hits in all the grouped segments are fit to a track using the ATLAS

global �2 fitter [77]. The track is defined using the perigee parameterization w.r.t. a

position in the inner station of the MS.

These tracks are then extrapolated back toward the IP [79], where the fitted track

parameters (TPs) are compared with the TPs of inner detector (ID) tracks. If a

compatible ID track is found, the hits in the MS and ID tracks are refit to form

a combined muon track, again with the global �2 fitter. Muons reconstructed in

this way have an author of muId [80]. If the refit fails, a statistical combination

of the separate MS and ID track fits is attempted. The muons reconstructed from a

statistical combination have an author of STACO [81]. The match �2 distributions for

both muId and STACO combined muons are given in Fig. 4.2. The STACO algorithm

parameters are set extremely loose; as can be seen in the match �2 distribution.

For this reason combined muons of author STACO are not used in computing the

�R(combMu,MuSA) quantity as described in Sect. 5.1.

In addition to these two types of combined muons the muon reconstruction chain

creates segment-tagged and calo-tagged muons [80], in which an ID track is matched

to a MS segment (i.e. a fit of hits in one particular station of the MS) or a calo-

cluster consistant with muon energy deposition, respectively. These ”tagged” com-

bined muons recover ine�ciency in the MS system, however our analysis is only con-

cerned with combined muons overlapping with MuSA tracks. Therefore, the tagged

class of combined muons are not considered in the analysis. An illustration of the

various types of muon objects is displayed in Fig. 4.3. A more detailed review of the

muon reconstruction chain is given in [82].
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Figure 4.2: Match �2 distributions for combined muon tracks reconstructed with the
(a) muId and (b) STACO algorithms. Note the di↵erence in horizontal axis scales for
the two distributions.
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Figure 4.3: Illustration of the type of objects produced by the muon reconstruction
chain.
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4.3.2 Clustering

The calorimeters are used for measuring the energy of traversing particles. Each

calorimeter subsystem is divided into cells. The anti-kt [83] algorithm is used to

form clusters of nearby active cells that are associated to physics objects (elec-

trons,photons,jets,taus). Jets are the only clustered objects used by this analysis,

and even then only the location of the jets are used (to find and reject overlapping

MuSA objects) not their kinematic properties.

4.4 MuSA Extrapolation

The physics objects used in the analysis are MuonSpectrometerTrackParticles. In

the nominal muon reconstruction the track parameters of MuonSpectrometerTrackParticles

are extrapolated towards the IP using the ATLAS extrapolator software. Tracks

that pass certain pointing requirements are saved for physics analyses and labeled,

ExtrapolatedMuonTrackParticles. Our signal models contain muons that would often

fail these pointing requirements.

To retain signal e�ciency we rerun the ATLAS extrapolator software on the

MuonSpectrometerTrackParticles and save the non-pointing objects. The resulting

tracks are then the primary physics objects used in the analysis, and referred to as

MuSA tracks. The pull distributions and residual distributions for the extrapolated

track parameters are shown in Fig 4.4 and Fig 4.5 respectively. Both pulls and

residuals use the post-extrapolation TPs, and the truth track parameters taken with

respect to the truth vertex. Since we are using prompt Z+jets events, the truth ver-

tices are located su�ciently close to the IP for this approximation to be valid. The

pull distributions fit well to a gaussian (unit width, centered at zero) confirming the

sucess of the extrapolation procedure.
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(a) (b)

(c) (d)

(e)

Figure 4.4: Pull distributions of extrapolated track parameters for : (a) d0, (b) z0,
(c) �, (d) ✓, and (e) |P | . All distributions are fit to a gaussian, with scale and width
parameters included.
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Figure 4.5: Residual distributions of extrapolated track parameters for : (a) d0, (b)
z0, (c) �, (d) ✓, and (e) |P | .
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4.5 Lifetime reweighting

The signal samples described in Sect. 4.2.1 are generated with only a few di↵erent

choices of lifetime for the LLP: c⌧gen = 0.5, 1.0 or 5.0 m. Determining the sensitivity of

the analysis to other lifetime choices is necessary for limit setting, however generating

a very large number of high-statistics samples spanning many orders of magnitude in

c⌧gen is not feasible. We instead adopt the standard procedure of reweighting the few

existing samples to mimic di↵erent lifetimes of interest c⌧new. The weight assigned to

any given displaced vertex i associated to an LLP generated with a lifetime of c⌧gen

is given as:

wi (t) =
⌧gen

e�ti/⌧gen
· e

�ti/⌧new

⌧new
, (4.2)

where the first factor is used to reweight the decay to a flat distribution and the

second factor is used to reweight to the desired lifetime. The quantity ti is the proper

decay time of the LLP that gives rise to displaced vertex i and is calculated from the

mass and momentum of the LLP.

In the models considered the LLPs are always pair produced. The proper treat-

ment requires two weights to be applied per event, one for each LLP, as shown below.

w0
i (t1, t2) = wi (t1) · wi (t2) (4.3)

The e�ciency for selecting signal events of a given lifetime ⌧new is given by:

"new =

P
i=selectedw

0
iP

i=allw
0
i

, (4.4)

where the summation in the numerator is over events that pass a given selec-

tion criteria and the summation in the denominator is over all LLP that have an

opportunity to decay to the final state of interest.
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CHAPTER 5

SELECTION

As described in Sect. 1.1, the aim of the analysis is to study events with displaced

vertices, that include a pair of muons, in the most model-independent way possible.

The event selection should rely dominantly on identification of the dimuon DV as

opposed to other activity in the event, such as the presence of jets, heavy-flavor

tagging, etc.

5.1 Minimum �R

The reconstruction of combined muons is described in Sect. 4.3.1.2. The dom-

inant reasons why a combined track might not be found given a MuSA track are:

combined reconstruction ine�ciency, that the muon is not ”pointing” (i.e. a track

with displacement and momentum vectors that are not colinear), or that the track

originates su�ciently far from the IP so that there are not enough hits in the ID to

make a track. For these reasons a good discriminant against background (i.e. prompt

muons) will reject MuSA tracks matched to combined muons.

The track level variable that defines a ”match” between MuSA tracks and com-

bined muons is the �R =
p

��2 + �⌘2 between the MuSA track in question and the

closest combined muon track. An illustration of this quantity is shown in Fig. 5.1. If

�R < 0.1 then the combined muon is considered matched to the MuSA track.

The quantity min(�R) = min{�R1,�R2} is formed to provide a vertex level

object that can discriminate against prompt muon background. An illustration of

min(�R) is shown in Fig. 5.2. The benefit of using min(�R) versus min(d0) or
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MuSA track

combMu track

ΔR

Figure 5.1: Illustration of �R discriminant.

rvtx is that min(�R) incorporates the measurements from nearby ID tracks. This

extra information allows for better separation between signal and background. The

dark photon model provides additional motivation for choosing �R. The model

features large physical decay lengths, which limits the formation of ID tracks, and

small dimuon opening angles, which results in small d0 MuSA tracks. Therefore a

large fraction of signal vertices would pass a �R cut yet fail any d0 requirement.

A final benefit of using the min(�R) is that it describes the combined reconstruc-

tion ine�ciency which allows for a straightforward data-driven background estimation

as described in Sect. 6.2.

MuSA track

combMu track

ΔR1

ΔR2

min(ΔR) = ΔR2

Figure 5.2: Illustration of min(�R) discriminant.
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Trigger Description

HLT mu60 0eta105 msonly MuSA trigger restricted to the barrel region.
HLT xe110 mht L1XE50 Jet pT imbalance trigger with L1 requirement.

HLT mu20 msonly mu15noL1 msonly nscan05 noComb MuSA trigger requiring second stand alone muon with �R < 0.5
HLT 3mu6 msonly MuSA trigger requiring three SA objects.

Table 5.1: Description of triggers used in the analysis.

5.2 Triggers

We make use of the logical OR of four HLT trigger objects [84] in order to achieve

the best possible e�ciencies for a wide variety of signal topologies and kinematics.

A list of the triggers used and their descriptions are given in Tab. 5.1. The first

two triggers in Tab. 5.1 are highly e�cient for signals with “high mass” states (mass

> 100 GeV) with high pT displaced muons (e.g. the GGM SUSY model), while

the final two allow for e�cient selection of signals featuring “low mass” states, and

therefore lower pT muons (e.g. the dark gauge boson model). All of the muon triggers

used are of the ”msonly” type. The HLT software trigger utilizes nearly the same

muon reconstruction code as does the o✏ine reconstruction. This means the pointing

requirements for msonly trigger objects are similar to those of MuSA tracks, and as a

result the msonly triggers are necessary for sensitivity to displaced muon signatures.

The thresholds for the ⇢
⇢HT and ”narrow scan” triggers changed during the course

of 2016 data taking. To account for these changes the highest available threshold

for each trigger chain is used and o✏ine requirements are imposed corresponding to

the thresholds listed above for each chain. (i.e. the highest thresholds used in 2016

data taking). Additional o✏ine requirements are imposed in conjunction with each

trigger to ensure that the trigger is operating at a uniform maximum e�ciency. The

additional requirements, described in detail below, are based on where the trigger

e�ciency plateaus with respect to the most relevent distribution for that trigger. (i.e.

lead MuSA pT for the single muon trigger)

The increase in instantaneous luminosity for Run 2 requires higher than desired

trigger thresholds and unfortunately the e�ciency of the HLT mu60 0eta105 msonly
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trigger is relatively low for the signals we are interested in. The pT > 60 GeV and

barrel-only requirements significantly reduce the e�ciencies for many signal model

parameter points; additionally the muon trigger object makes use of an IP con-

straint to reduce combinatorics which also suppresses selection of muons with large

d0 and/or z0 (this is, however, also true for the o✏ine MS track reconstruction). The

HLT xe110 mht L1XE50 trigger requires missing transverse hadronic energy, ⇢⇢HT , to

fire. This trigger is most e�cient for events with multiple high pT muons and addi-

tional jets, typical features of the GGM SUSY model. Fig. 5.3 shows the e�ciencies

for the HLT mu60 0eta105 msonly and HLT xe110 mht L1XE50 triggers, as func-

tions of the pT of the leading MuSA muon in the event and the reconstructed ⇢
⇢HT

respectively. The HLT mu60 0eta105 msonly e�ciency is calculated with respect to

all truth muons in the barrel. Both e�ciency distributions are made using the dark

gauge boson model with mZD
= 20 GeV, since that model has more vertices near the

plateau of each trigger. The HLT mu60 0eta105 msonly trigger distribution plateaus

at pT ⇠ 60 GeV and so an o✏ine requirement that the lead MuSA pT > 60 GeV,

in conjunction with this trigger passing, is used. The HLT xe110 mht L1XE50 trig-

ger distribution plateaus at ⇢
⇢HT ⇠ 130 GeV and so an o✏ine requirement that the

⇢
⇢HT > 130 GeV, in conjunction with this trigger passing, is used. Note that the

HLT mu60 0eta105 msonly trigger reaches a maximum e�ciency well below 100%

due to a fall-o↵ in the e�ciency to reconstruct MS trigger objects with large d0.

The HLT mu20 msonly mu15noL1 msonly nscan05 noComb trigger is based on

reconstruction of MuSA tracks with low pT thresholds. The large rates associated

with the low pT thresholds are o↵set by requiring two muons in the MS that are

“near” each other, i.e. within a cone of �R < 0.5. The narrow scan trigger e�ciency

is displayed in Fig. 5.4. The HLT mu20 msonly mu15noL1 msonly nscan05 noComb

trigger distribution plateaus at pT ⇠ 35 GeV and so an o✏ine requirement that the

lead MuSA pT > 35 GeV, in conjunction with this trigger passing, is used. Note that
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the e�ciency of this trigger on a given signal model is strongly dependent on the size

of the boost of the particle decaying to the dimuon final state, as this determines

the likelihood of the two muons being found within a cone of size �R < 0.5. The

HLT 3mu6 msonly trigger benefits from the higher branching fraction to dimuon final

states of the ZD as opposed to the SM Z boson. The result being more events featuring

at least three muons than in our high mass baseline models. The triple muon trigger

e�ciency is displayed in Fig. 5.5. The HLT 3mu6 msonly trigger distribution plateaus

well below the analysis selection requirement on MuSA tracks that pT > 10 GeV,

described in Sect. 5.4, making an additional o✏ine requirement redundant.

The total trigger e�ciencies for the two representative baselines models are shown

in Fig. 5.6 as functions of the physical decay length of the long-lived BSM particle.

The additional o✏ine requirements specified for each trigger above are only imposed

when that is the only trigger passed for the event/vertex in question.
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Figure 5.3: The e�ciencies of the (a) HLT mu60 0eta105 msonly trigger, as
a function of the pT of the leading MuSA track in the vertex, and (b)
HLT xe110 mht L1XE50 trigger, as a function of the reconstructed ⇢

⇢HT in the event.
The distributions are derived from signal events with a BSM long-lived dark gauge
boson, ZD (mZD

= 20 GeV and c⌧ZD
= 0.5m), that decays to µ+µ�. The shaded

bands represent the statistical uncertainty only.
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Figure 5.4: The e�ciency of the low-mass trigger,
HLT mu20 msonly mu15noL1 msonly nscan05 noComb, as a function of (a)
the pT of the leading MuSA track in the vertex and (b) the opening angle of the two
muons in the vertex. The distributions are derived from signal events with a BSM
long-lived dark gauge boson, ZD (mZD

= 20 GeV and c⌧ZD
= 0.5m), that decays to

µ+µ�. The shaded bands represent the statistical uncertainty only.
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Figure 5.5: The e�ciency of the triple muon trigger, HLT 3mu6 msonly, as a function
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signal events with a BSM long-lived dark gauge boson, ZD (mZD

= 20 GeV and
c⌧ZD

= 0.5m), that decays to µ+µ�. The shaded band represents the statistical
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Figure 5.6: The total trigger e�ciencies as a function of the true decay length Ltrue
vtx

for (a) signal events with a BSM long-lived dark gauge boson, ZD (mZD
= 20 GeV

and c⌧ZD
= 0.5m), that decays to µ+µ�, and (b) signal events with a BSM long-

lived neutralino, �̃
0
1 (m�̃0

1
= 700 GeV and c⌧�̃0

1
= 1m) decaying to a Z boson (with

Z ! µ+µ�) and a gravitino. The shaded bands represent the statistical uncertainty
only.

5.3 Isolation

Fake muons from pion/kaon decays constitute a major background for the analysis.

Applying an isolation criteria for muons will directly reduce this background. The

muon combined performance (MCP) group does not provide isolation working points

for MuSA tracks [82], and so we have created one. The isolation variable is defined as

the scalar sum of pT for all ID tracks with pT > 0.5 GeV in a �R cone of 0.4 around

the MuSA track in question. ID tracks associated with a muId combined muon within

�R = 0.1 of the MuSA track are not used in constructing the isolation variable. The

goal of this is to remove the contribution from the muon itself. The isolation variable

is normalized with respect to the pT of the MuSA track and a cut value of 0.05 is used

as part of the signal region selection, in order to minimize background and maximize

signal sensitivity.

42



The same isolation requirement is imposed on combined muons that are considered

in constructing the �R(comb,MS) variable, except with a looser cut value of 0.10.

This is done to keep the isolation definitions from sculpting the �R variable.

5.4 O✏ine selection

Events from both data and MC simulation are skimmed according to the trigger

requirements described above. O✏ine preselection requirements are applied to obtain

smaller samples of events that have characteristics matching what we expect to ob-

serve from signal processes. This begins with generic requirements on data quality.

Events must be on the good runs list and not have TileCal, Lar, or SCT Corruption

problems.

After passing initial quality requirements events must contain a primary vertex

(PV), (i.e. the vertex with the largest value for the scalar sum of the pT of tracks).

Other vertices likely come from additional softer pp interactions in the event (i.e.

’pileup’ interactions).

Track candidates with impact parameters d0 and/or z0 larger than the values

allowed in the standard combined muon reconstruction are selected by making use of

MS stand-alone tracks (MuSA), extrapolated as described in Sect. 4.4, with selection

criteria applied in order to ensure that the track parameters are well measured and

consistent with a signal-like, non-prompt decay.

Vertices are formed from all possible pairs of MuSA candidates. We use a simple

and e�cient algorithm that assumes a straight-line extrapolation of the muon trajec-

tory from the MS inner surface towards the IP. The midpoint between the points of

closest approach along the back extrapolated trajectories of the two muon candidates

is taken to be the three-dimensional location of the vertex. This simple approach

is su�cient for the purposes of this analysis, as the location of the putative dimuon

vertex is only used in defining the geometrical acceptance of the analysis. Any func-
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tion of the muon’s pT, ⌘, or � (i.e. mll) is calculated using the values expressed at

the IP after passing through the ATLAS extrapolator. The decay length Lvtx and

projections onto the x-y plane and z-axis, rvtx and zvtx respectively, are taken to be

with respect to the IP.

Category Cut Name Requirement
Event trigger Logical OR of triggers in Tab. 5.1

Preselection cleaning GRL, TileCal, LAr, SCT Corruption
PV At least one vertex reconstructed with 2 or more tracks

Baseline pT > 10 GeV
Jets |⌘| < 2.4

jvt > 0.59 when pT < 60 GeV
Baseline pT > 10 GeV

Combined Muon |⌘| < 2.4
Tracks isolation sumTrkPtCone40

µpT
< 0.1

jet-muon overlap min{�R(jet , µCO)} > 0.41

Baseline pT > 10 GeV
MuSA Tracks |⌘| < 2.4

trigger layers � 3 � layers; � 3 ⌘ layers
precision layers � 3

MCP recommendations chamber and transition region removal
additional region removal veto if |⌘| < 0.33 & 0.63 < � < 1.26 (See Sect. 6.2)

�d0 < 20 cm (See App. D)
isolation sumTrkPtCone40

µpT
< 0.05

jet-muon overlap min{�R(jet , µMS)} > 0.42

Vertex make vertices from all possible pairs of MuSA tracks
Formation
Baseline closest approach < 20 cm
Vertex ✓µµ > 0.1 rad

Selection geometrical acceptance r < 4 m; |z| < 6 m
mµµ > 15 GeV

vertex charge |qvtx| = 0

cosmic �RCOS(µ1, µ2) =
p
(⌃⌘)2 + (⇡ ���)2 > 0.1

SRZD min �R > 0.1
Selection min pT > 10 GeV

mµµ 15� 60 GeV
SRGGM min �R > 0.1
Selection min pT > 20 GeV

mµµ > 60 GeV

Table 5.2: Summary of event and objection selection criteria used in the analysis.

2The actual requirement is that min{0.4, 0.04 + 10
µ pT

} < min{�R(jet, µMS)} as recommended
by the jetEtMiss group, however the simpler requirement is used throughout the text for brevity.

44



Signal is characterized by vertices composed of muons that are not associated with

an ID track, hence, the primary selection criteria of our signal regions is that 0.1 <

min{�R(µCOMB, µMS)}. The min{�R(µCOMB, µMS)} requirement unavoidably leads

to a drop in e�ciency for decays close to the IP. Displaced vertex analyses that make

use of ID tracks e↵ectively recover such signal events. The min{�R(µCOMB, µMS)}
distribution for vertices passing the baseline selection is shown in Fig. 5.7 for both

SM MC simulation and our bench mark signal models.
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We use two signal regions to increase the sensitivity to low and high mass signal

models. All of the event and object selection for both the baseline and signal regions

are described in Tab. 5.2.

5.5 Signal e�ciencies

Using MC-simulated signal events, the vertex-finding e�ciencies (relative to all

signal vertices) as functions of true d0, true Lvtx, true pT, and the opening angle

between the two muons in the vertex are given in Fig. 5.8, for the GGM SUSY

model, and Fig. 5.9, for the dark boson model. The corresponding signal truth

distributions are given in App. C to aid in understanding these e�ciencies. The
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loss of e�ciency for small decay lengths/opening angles is due to the veto of prompt,

combined muons, while the drop-o↵ at large decay lengths/opening angles reflects

the falling MuSA e�ciency for tracks that do not point to the IP. Due to the large

di↵erence in boost for the di↵erent ZD mass points the peaks in e�ciency are located

at noticably di↵erent values.

The residual distributions for the physical decay length Lvtx and radial vertex

positions rvtx are shown in Fig. 5.10. The residuals demonstrate that the average

resolution is about 2 � 3 cm. The resolution has little dependence on the physical

decay length, but does deteriorate significantly for small dimuon opening angle, for

the reasons described above.

The selection requirements, along with cutflows, for vertices entering our signal

region are summarized in App. A for the primary SM backgrounds estimated using

MC simulation as well as for our two benchmark signal models. The total e�ciencies,

trigger and o✏ine selection criteria applied, as functions of the lifetime of the long-

lived BSM particle, are given in Fig. 5.11, for both baseline models that have been

considered. The reweighted samples, as described in Sect. 4.5, have been used to

estimate the e�ciencies for values of the lifetime that were not used in generating the

simulated samples. Various distributions for simulated signal vertices in SRGGM and

SRZD
are displayed in Fig. 5.12 and Fig. 5.13 respectively.
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Figure 5.8: The e�ciencies to select a displaced dimuon vertex that satisfies the
requirements of the SRGGM , as function of (a) true d0, (b) true Lvtx, (c) true pT,
and (d) the opening angle between the two muons in the vertex. These e�ciencies
are calculated relative to all generated signal vertices. The distributions are derived
from signal events with a BSM long-lived neutralino, �̃

0
1, decaying to a Z boson (with

Z ! µ+µ�) and a gravitino. The shaded bands represent the statistical uncertainty
only.
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Figure 5.9: The e�ciencies to select a displaced dimuon vertex that satisfies the
requirements of the SRZD

, as function of (a) true d0, (b) true Lvtx, (c) true pT, and
(d) the opening angle between the two muons in the vertex. These e�ciencies are
calculated relative to all generated signal vertices. The distributions are derived from
signal events with a BSM long-lived dark gauge boson, ZD, that decays to µ+µ�. The
shaded bands represent the statistical uncertainty only.
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Figure 5.10: The residual distributions (reconstructed value minus true value) for (a)
rvtx and (b) Lvtx. The distributions are derived from signal events with a BSM long-
lived neutralino, �̃

0
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1
= 700 GeV and c⌧�̃0
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= 1m) decaying to a Z boson (with

Z ! µ+µ�) and a gravitino. The shaded bands represent the statistical uncertainty
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Figure 5.11: Overall e�ciencies (combining trigger and o✏ine selection), as a function
of the lifetime of the long-lived BSM particle, c⌧BSM, for (a) the GGM SUSY model
and (b) the dark gauge boson model. The shaded bands represent the statistical
uncertainty only.

49



 [cm]vtxr
400− 300− 200− 100− 0 100 200 300 400

Ve
rti

ce
s 

/ 1
0 

cm

2−10

1−10

1

10

210
 = 13 TeVs -1Ldt = 32.9 fb∫ =1 mτ=300 GeV,cχGGM: m

=1 mτ=700 GeV,cχGGM: m

=1 mτ=1000 GeV,cχGGM: m

(a)

 [GeV]vtxm
20 40 60 80 100 120 140 160 180 200

Ve
rti

ce
s 

/ 2
 G

eV

2−10

1−10

1

10

210
 = 13 TeVs -1Ldt = 32.9 fb∫ =1 mτ=300 GeV,cχGGM: m

=1 mτ=700 GeV,cχGGM: m

=1 mτ=1000 GeV,cχGGM: m

(b)

 [GeV]
T

 pµlead 
100 200 300 400 500 600

Ve
rti

ce
s 

/ 1
0 

G
eV

2−10

1−10

1

10

210
 = 13 TeVs -1Ldt = 32.9 fb∫ =1 mτ=300 GeV,cχGGM: m

=1 mτ=700 GeV,cχGGM: m

=1 mτ=1000 GeV,cχGGM: m

(c)

 [GeV]
T

 pµsubleading 
50 100 150 200 250 300 350 400

Ve
rti

ce
s 

/ 1
0 

G
eV

2−10

1−10

1

10

210  = 13 TeVs -1Ldt = 32.9 fb∫ =1 mτ=300 GeV,cχGGM: m

=1 mτ=700 GeV,cχGGM: m

=1 mτ=1000 GeV,cχGGM: m

(d)

 [rad]φ µlead 

3− 2− 1− 0 1 2 3

Ve
rti

ce
s 

/ 0
.3

 ra
d

0.5

1

1.5

2

2.5

3

3.5

4
 = 13 TeVs -1Ldt = 32.9 fb∫ =1 mτ=300 GeV,cχGGM: m

=1 mτ=700 GeV,cχGGM: m

=1 mτ=1000 GeV,cχGGM: m

(e)

η µlead 

1.5− 1− 0.5− 0 0.5 1 1.5

Ve
rti

ce
s

1

2

3

4

5

6  = 13 TeVs -1Ldt = 32.9 fb∫ =1 mτ=300 GeV,cχGGM: m

=1 mτ=700 GeV,cχGGM: m

=1 mτ=1000 GeV,cχGGM: m

(f)

Figure 5.12: Distributions of (a) rvtx, (b) mvtx, (c) lead µ pT, (d) subleading µ pT,
(e) lead µ �, and (f) lead µ ⌘ for signal vertices in SRGGM with a BSM long-lived
neutralino, �̃

0
1 decaying to a Z boson (with Z ! µ+µ�) and a gravitino. The signal

is scaled to 32.9 fb�1.
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Figure 5.13: Distributions of (a) rvtx, (b) mvtx, (c) lead µ pT, (d) subleading µ pT,
(e) lead µ �, and (f) lead µ ⌘ for signal vertices in SRZD

with a BSM long-lived dark
gauge boson that decays to µ+µ�. The signal is scaled to 32.9 fb�1.
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CHAPTER 6

ESTIMATION OF BACKGROUNDS

As there are no long-lived SM particles that decay to final states with a dimuon

pair, it is to be expected that the dominant backgrounds in this analysis fall into the

following categories: SM Drell-Yan (DY) or Z+jets production, where a Z ! µ+µ�

vertex is erroneously reconstructed far from the IP (prompt muon background); ran-

dom pairing of MuSA tracks that are not associated with a true muon (e.g. fake muon

background from QCD events); pairing of unrelated muon tracks in SM background

events (e.g. muons from two semileptonic top decays in tt̄ events); or non-beam-

related events (e.g. cosmic muons). The following sections describe the methods used

to estimate the number of background vertices entering our analysis.

6.1 Fake muons

MuSA tracks for which no matching ID track is expected are referred to as ”fake”

muons. The primary sources of fake muons are cosmic/BIB muons and those arising

from pion/kaon decay. Cosmic and BIB (Beam Induced Background) muons are not

expected to pass the pointing requirements associated with ID tracks, and as a result

produce MuSA tracks that enter our signal selection. Pions and kaons have non-

negligible lifetimes and feature large branching fractions to final states with at least

one muon. Such decays often feature a kinked track which can result in either no

ID track being present, or the ID track failing to be associated to the MS track. In

either case a MuSA track will be produced and might enter the signal selection.
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Vertices that contain one, in the case of W+jet events, or two, in the case of

QCD dijet events, fake muons are referred to as ”fake” vertices. The correlation of

track charge in fake vertices is quantified using the ratio of opposite sign (OS) to

same sign (SS) vertices, Rq = NOS

NSS . This ratio can be used to predict the number

of fake vertices entering our signal selection (i.e. NOS = Rq ⇥ NSS), however the

ratio will depend on the what the source of the fake vertices is. If the vertex contains

cosmic/BIB like muons the charge of the two tracks will clearly be uncorrelated,

(i.e. RCOS
q = 1). For fake vertices arising from pion/kaon decay RQCD

q must be

calculated. We expect muons from pion/kaon decay to be non-isolated, and so we

study RQCD
q in data as a function of the minimum vertex isolation (min µiso). For

the vertex selection we impose the preselection criteria, except for the isolation, jet-

muon overlap requirement, and vertex charge cuts. We then perform a linear �2 fit

to the min µiso distribution above 0.1 (i.e. where the contribution from the prompt

tails becomes negligible), and take RQCD
q = f(0.025) as our prediction, (i.e. at the

midpoint of our preselection’s isolation range). The fits/distributions are shown for

each of the ABCD regions defined in the subsequent section in Fig. 6.1.

Since we do not know the composition of our fake background, we use RAvg
q =

RQCD
q +RCOS

q

2
for the central value and �Rq =

RQCD
q �RCOS

q

2
as the uncertainty. The Rq

values used for each of the ABCD regions defined in the subsequent section are given

in Tab. 6.1.

Region RQCD
q RAV G

q

A 1.47 ± 0.01 1.24 ± 0.24
B 1.55 ± 0.03 1.28 ± 0.28
C 1.39 ± 0.03 1.20 ± 0.20
D 1.39 ± 0.09 1.20 ± 0.20

Table 6.1: Comparison of RAV G
q for each of the ABCD regions.
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(a) (b)

(c) (d)

Figure 6.1: The distributions of (a) RA
q , (b) R

B
q , (c) R

C
q , and (d) RD

q for displaced
vertices with preselection criteria enforced, except for the isolation, jet-muon overlap
requirement, and vertex charge cuts, for an integrated luminosity of 32.9 fb�1. The
uncertainty on data is purely statistical.

6.2 Prompt muons (ABCD method)

The dominant SM backgrounds that give rise to dimuon vertices are Z+jets/DY,

ttbar, and diboson. While none of these processes create real displaced dimuon ver-

tices, ine�ciency in the combined muon reconstruction creates displaced dimuon pairs

that enter the signal region. Prompt muons can be background like (�R < 0.1) and

referred to as µCO since a combined muon is matched to the MuSA track, or signal

like (�R > 0.1) and will be referred to as µMS since only a MuSA track is present.

Fake muons, as described in Sect. 6.1, will be referred to as µF .

Vertices passing the preselection requirements will exist in one of the four quad-

rants of the �RL ��RS plane shown in Fig. 6.2. Region A coincides with the signal

region. Regions B and C contain the vertices with one signal like muon and one back-

ground like muon. Finally, region D contains well reconstructed real dimuon vertices.
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All of the regions in the figure have the types of vertices they contain listed using

the convention that the first and second muon type represent the lead and subleading

muon respectively. These regions are used to determine the ratio (i.e. transfer factor)

of vertices with signal like muons to those without, but first the number of ”fake”

vertices must be removed. This is done using the following equation:

X⇤ = XOS �XSS ⇥RX
q , X = B,C,D (6.1)

where XOS gives the number of OS vertices in a region, XSS is the number of

SS vertices in that region and RX
q is the appropriate OS/SS ratio described in the

previous section. While we expect little to no fake vertices in region D we still subtract

o↵ the appropriate SS contribution to keep the method consistant.

Region B⇤ contains lead muons that fail combined reconstruction, while region D⇤

contains lead muons that pass the combined reconstruction. In both regions the sub-

leading muon passes combined reconstruction. Region C⇤ contains subleading muons

that fail combined reconstruction, while region D⇤ contains subleading muons that

pass the combined reconstruction. In both regions the lead muon passes combined

reconstruction. With these definitions the subleading and lead transfer factors are

given respectively in the following equations:

fL =
B⇤

D⇤ , fS =
C⇤

D⇤ (6.2)

The lead transfer factor multiplied by the C⇤ yield or the subleading transfer

factor multiplied by the B⇤ yield will predict the number of µMS � µMS vertices in

region A as shown in the following equation:

AµMS�µMS
=

B⇤ ⇥ C⇤

D⇤ (6.3)

The ⌘ � � distributions for lead muons in region B⇤ and subleading muons in

region C⇤ are displayed in Fig. 6.3. As can be seen in the figures, the bins with
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Figure 6.2: Illustration of the �RL ��RS plane divided into regions A,B,C and D.

|⌘| < 0.33 & 0.63 < � < 1.26 have significantly more muons than the rest of the

detector. Since it is not clear what is causing this (i.e. alignment or resolution

e↵ects) the region has been vetoed from the preselection.
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Figure 6.3: ⌘ � � distributions for (a) lead MuSA tracks in region B⇤ and (b)
subleading MuSA tracks in region C⇤. The distributions are derived from data using
32.9 fb�1.
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6.3 Cosmic Muon Background

Due to the pointing requirements within the muon reconstruction software, it is

more probable that a cosmic muon traversing the detector will only be reconstructed

in one hemisphere of the detector as opposed to both. The fake vertex background

prediction will account for signal vertices containing one leg of a cosmic muon and

another uncorrelated muon. It will not account for cases when both legs of a cosmic

muon are reconstructed, and so their contribution to the signal yield must be pre-

dicted. MC generation of such a signal is di�cult and unreliable and so a data driven

method is used.

Cosmic muons create two MuSA tracks that are nearly colinear. This means the

two tracks will be back to back in � and have ⌘ values that sum to zero. The discrim-

inant �RCOS =
p

(⌃⌘)2 + (⇡ ���)2 is created to separate cosmic muon background

(cosmic muons have �RCOS ⇠ 0). The flux of cosmic muon tracks primarily come

through the access shafts at the top of the ATLAS cavern, due to minimum shielding,

and therefore have an asymmetric � distribution, and ⌘ values corresponding to the lo-

cation of the access shafts (|⌘| ⇠ 0.7). The �RCOS distribution for events passing the

preselection (except for the �RCOS cut) with the SR min(�R) requirement inverted

is given in Fig. 6.4. For �RCOS < 0.1 the distribution has a cosmic component which

is evident from the data/MC ratio. This illustrates why the �RCOS > 0.1 selection

requirement is part of the preselection. Additional distributions are displayed in Fig.

6.5 with the preselection requirements enforced, except that the �RCOS requirement

is inverted to highlight cosmic dimuon vertices.

6.4 BIB (Beam Induced Background)

BIB events occur when interactions between one of the proton beams and a

beampipe mask upstream of the collision point create high energy muons entering

the ATLAS detector nearly parallel to the beampipe. The Non-Collision Background
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Figure 6.4: The distributions of �RCOS. The stacked histograms represent the
contributions from SM background processes and are derived from MC-simulated
samples scaled to an integrated luminosity of 32.9 fb�1. The observed distribution in
data is given by the points with error bars. The lower pane displays the ratio of data
(point) to predicted background (histogram), bin-by-bin. The uncertainties on data
and MC simulation are purely statistical.

(NCB) group have created the ”Two-sided no-time method” of identifying such events

[85]. This method reconstructs the BIB muon trajectory by finding a coincidence of

muon segments in the endcap muon system and jet objects in the calorimeters. While

this method is primarily used to tag jets that have resulted from BIB muons, we em-

ploy the method to remove any possible MuSA objects arising from BIB events. This

is performed by removing any MuSA objects from the analysis that contain muon seg-

ments identified by the above procedure. Any vertices arising from BIB muons that

are not removed will be accounted for with the fake vertex background prediction.

6.5 Estimation of background in the signal regions

The number of fake vertices in the SRs is predicted using the number of SS vertices

passing the SR requirements and the appropriate Rq, as described in Sect. 6.1. The

predicted yields for both SRs are given in Tab. 6.2. Various distributions for SS
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vertices in SRZD
are displayed in Fig. 6.6 and for SRGGM in Fig. 6.7. The low

statistics limits what can be inferred from these distributions, however the lack of

clustering of vertices at particular values give confidence that there is not a major

systemic e↵ect that has been ignored regarding this prediction.

The number of prompt vertices in the SRs is predicted using the ABCD method

described in Sect. 6.2. The BCD region yields as well as the predictions for region

A are summarized in Tab. 6.2. The leading and subleading transfer factors used

for the ABCD prediction are given in Tab. 6.3. The distribution of vertices in

the ABCD plane, passing the preselection and all SR requirements except for the

min(�R) requirement, is given for both benchmark signal model selections in Fig.

6.8.

Region OS yield SS yield Fake muon estimate
(= SS ⇥Rq)

Prompt muon estimate
(= OS - SS ⇥Rq)

Fake + prompt
muon estimate

B 123 65 83± 21 40± 24
C 450 331 397± 70 53± 73
D 19035 3233 3880± 650 15155± 665

A XXXX 12 14.9± 5.2 0.14± 0.21
(= B ⇥ C / D)

15.0± 5.2

(a) SRZD

Region OS yield SS yield Fake muon estimate
(= SS ⇥Rq)

Prompt muon estimate
(= OS - SS ⇥Rq)

Fake + prompt
muon estimate

B 1830 2 2.6± 2.0 1827± 43
C 1698 21 25± 6.9 1673± 42
D 395341 407 488± 85 394853± 634

A XXXX 2 2.5± 1.9 7.7± 0.3
(= B ⇥ C / D)

10.2± 1.9

(b) SRGGM

Table 6.2: Yields for (a) SRZD
and (b) SRGGM in regions A,B,C, and D of transfer

factor method given an integrated luminosity of 32.9 fb�1. All quoted uncertainties
are purely statistical.
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SRZD
SRGGM

fL(= B ⇤ /D⇤) 0.0026± 0.0016 0.0046± 0.0001
fS(= C ⇤ /D⇤) 0.0035± 0.0048 0.0042± 0.0001

Table 6.3: The Lead and subleading transfer factors of the ABCD method are shown
for both SRZD

and SRGGM, given an integrated luminosity of 32.9 fb�1. All quoted
uncertainties are purely statistical.
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Figure 6.5: The distributions of (a) mll, (b) rvtx, (c) lead µ �, (d) lead µ ⌘, (e)
lead µ �R, (f) subleading µ �R, (g) ��, and (h) ⌃⌘ for displaced vertices with
the preselection requirements enforced, but the �RCOS requirement inverted. The
stacked histograms are derived from MC-simulated samples scaled to an integrated
luminosity of 32.9 fb�1. The observed distribution in data is given by the points with
error bars. The uncertainties on data and MC simulation are purely statistical.
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Figure 6.6: The distributions of (a) mll, (b) rvtx, (c) lead µ pT, (d) subleading µ pT,
(e) lead µ ⌘, (f) subleading µ ⌘, (g) lead µ �, (h) subleading µ � for displaced vertices
passing the preselection and SRZD

requirements, with the vertex charge requirement
inverted. The observed distribution in data is given by the points with error bars.
The uncertainty on data is purely statistical.
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Figure 6.7: The distributions of (a) mll, (b) rvtx, (c) lead µ pT, (d) subleading
µ pT, (e) lead µ ⌘, (f) subleading µ ⌘, (g) lead µ �, (h) subleading µ � for displaced
vertices passing the preselection and SRGGM requirements, with the vertex charge
requirement inverted. The observed distribution in data is given by the points with
error bars. The uncertainty on data is purely statistical.
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Figure 6.8: �R��R distributions for (a) SRZD
and (b) SRGGM. The distributions

are derived from data using 32.9 fb�1.
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CHAPTER 7

VALIDATION

7.1 ABCD transfer factor profiling

The ABCD method defines the lead and subleading transfer factors which are

used to predict the prompt background in region A. The nominal case assumes that

the transfer factors are constant, however they might vary as a function of vertex

level variables. It is necessary, therefore, to validate the assumption by profiling the

transfer factors.

7.1.1 ⌘ � � profiling

To include detector e↵ects that might go unaccounted for in our global prediction

the transfer factors are profiled using ⌘ � �. The logic of the method is given in the

following equations:

i 2 {⌘}, j 2 {�}, X⇤L
ij = (XOS)

L
ij � (XSS)

L
ij ⇥RX

q , X = B,C,D

fL
ij =

B⇤L
ij

D⇤L
ij

, fS
ij =

C⇤S
ij

D⇤S
ij

AL
µMS�µMS

=
X

ij

fL
ijC

⇤L
ij , AS

µMS�µMS
=
X

ij

fS
ijB

⇤S
ij (7.1)

The ⌘ � � distributions for the lead/subleading transfer factors and yields are

given in Fig. 7.1 for SRGGM . SRZD
does not contain enough statistics to profile in

⌘ � �. The integrated yields for SRGGM are displayed in Tab. 7.1. While there are
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some bins with seemingly large transfer factors, both leading and subleading methods

give results consistant with each other and with the global prediction.
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Figure 7.1: The distributions of (a) fL, (b) fS, (c) AL
µMS�µMS

, and (d) AS
µMS�µMS

as
functions of ⌘ and � for the GGM selection. White bins signify that at least one of
the inputs to that bin is zero.

AL
µMS�µMS

7.8± 0.3
AS

µMS�µMS
7.8± 0.3

Table 7.1: SRGGM predictions for µMS�µMS vertices using ⌘�� dependent transfer
factors, given an integrated luminosity of 32.9 fb�1. All quoted uncertainties are
purely statistical.

7.1.2 pT profiling

It is also important to consider any pT dependence that might be lost in a global

prediction. The logic of the method is given in the following equations:

66



i 2 {pT}, X⇤L
i = (XOS)

L
i � (XSS)

L
i ⇥RX

q , X = B,C,D

fL
i =

B⇤L
i

D⇤L
i

, fS
i =

C⇤S
i

D⇤S
i

AL
µMS�µMS

=
X

i

fL
i C

⇤L
i , AS

µMS�µMS
=
X

i

fS
i B

⇤S
i (7.2)

The pT distributions for the lead/subleading transfor factors and yields for SRZD

and SRGGM are given in Fig. 7.2 and Fig. 7.3 respectively. The integrated yields are

displayed in Tab. 7.2. The transfer factors are constant for the range of pT associated

with SM Z boson decay. Both predictions are consistant with each other and with

the ⌘ � � dependent and global predictions.
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Figure 7.2: The distributions of (a) fL, (b) fS, (c) AL
µMS�µMS

, and (d) AS
µMS�µMS

as
functions of pT for the ZD selection.
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Figure 7.3: The distributions of (a) fL, (b) fS, (c) AL
µMS�µMS

, and (d) AS
µMS�µMS

as
functions of pT for the GGM selection.

Region SRZD
SRGGM

AL
µMS�µMS

0.08± 0.06 7.8± 0.3
AS

µMS�µMS
0.10± 0.11 7.7± 0.3

Table 7.2: SRZD
and SRGGM predictions for µMS�µMS vertices using pT dependent

transfer factors, given an integrated luminosity of 32.9 fb�1. All quoted uncertainties
are purely statistical.

7.1.3 run profiling

We also consider any time dependence that might have resulted from degrading

detector conditions over the data taking period. The logic of the method is given in

the following equations:
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i 2 {run number}, X⇤
i = (XOS)i � (XSS)i ⇥RX

q , X = B,C,D

fL
i =

B⇤
i

D⇤
i

, fS
i =

C⇤
i

D⇤
i

AµMS�µMS
=
X

i

fL
i C

⇤
i =

X

i

fS
i B

⇤
i (7.3)

The run number distributions for the lead/subleading transfor factors and pre-

dicted number of vertices for SRGGM are given in Fig. 7.4. The integrated yield is

displayed in Tab. 7.3. The transfer factors are consistent thoughout all runs with

the exception of one. The outlier is still within 2 � of the nominal value, and the

integrated yields agree with the nominal prediction.
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Figure 7.4: The distributions of (a) fL, (b) fS, and (c) AµMS�µMS
as functions of run

number for the GGM selection.
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AµMS�µMS
8.3± 0.3

Table 7.3: SRGGM predictions for µMS � µMS vertices using run number dependent
transfer factors, given an integrated luminosity of 32.9 fb�1. All quoted uncertainties
are purely statistical.

7.1.4 pile-up profiling

We also consider any dependence on pile-up that might a↵ect our background

prediction. The logic of the method is given in the following equations:

i 2 {pile� up}, X⇤
i = (XOS)i � (XSS)i ⇥RX

q , X = B,C,D

fL
i =

B⇤
i

D⇤
i

, fS
i =

C⇤
i

D⇤
i

AµMS�µMS
=
X

i

fL
i C

⇤
i =

X

i

fS
i B

⇤
i (7.4)

The µ distributions for the lead/subleading transfor factors and predicted number

of vertices for SRGGM are given in Fig. 7.5. The integrated yield is displayed in Tab.

7.4. The transfer factors do feature a slight trend of increasing with pile-up however

the impact of this trend is negligible as the integrated yield agrees with the nominal

prediction.

AµMS�µMS
7.8± 0.3

Table 7.4: SRGGM predictions for µMS � µMS vertices using pile-up dependent
transfer factors, given an integrated luminosity of 32.9 fb�1. All quoted uncertainties
are purely statistical.

7.2 ABCD region size

The size of the ABCD regions (i.e. �R > 0.1 or �R < 0.1) for our prompt

background estimate is based on a reasonable division between prompt and displaced
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Figure 7.5: The distributions of (a) fL, (b) fS, and (c) AµMS�µMS
as functions of

pile-up for the GGM selection.

vertices. It is important, however, to check that this choice does not bias the back-

ground prediction method. To do this two of the regions (either C & D or B &

D) are divided in half as shown in Fig. 7.6 which gives two lead transfer factors

and two subleading transfer factors. The regions are divided in a way that roughly

splits the statistics in half. This procedure allows for four predictions of the prompt

background in region A (i.e. either A1,2 = B ⇥ C1,2

D1,2
or A3,4 = C ⇥ B3,4

D3,4
) which are

summarized in Tab. 7.5. All four predictions are in good agreement with the nominal

prediction. This validation study is only performed for the GGM selection since the

prompt background is neglible for the ZD selection.
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(a) fS
1,2 (b) fL

3,4

Figure 7.6: The distribution of displaced vertices in the ABCD plane with either
regions (a) C and D or (b) B and D bisected.

Region OS SS OS - Rq⇥ SS Region OS SS OS - Rq⇥ SS
B 1830 2 1827± 43 B 1830 2 1827± 43
C1 1185 15 1167± 35 C2 513 6 506± 23
D1 282352 279 282017± 536 D2 112989 128 112835± 337

Apred
1 7.6± 0.3 Apred

2 8.2± 0.4

(a) fS
1,2

Region OS SS OS - Rq⇥ SS Region OS SS OS - Rq⇥ SS
B3 873 1 872± 30 B4 957 1 956± 31
C 1698 21 1673± 42 C 1698 21 1673± 42
D3 181888 194 181655± 429 D4 213453 213 213197± 464

Apred
3 8.0± 0.3 Apred

4 7.5± 0.3

(b) fL
3,4

Table 7.5: The BCD yields as well as region A prediction with either regions (a) C
and D or (b) B and D bisected.

7.3 MC validation

As shown in App. B MC simulations are not capable of reproducing the �R

distributions as seen in data. This is why data-driven methods are used for the

background prediction. It is still important, however, to validate the consistency of

the background prediction methods using our MC simulation samples.

72



The number of fake vertices in the SRs is predicted using the number of SS vertices

passing the SR requirements and the appropriate Rq, as described in Sect. 6.1. The

predicted yields for both SRs are given in Tab. 7.6. The number of prompt vertices in

the SRs is predicted using the ABCD method described in Sect. 6.2. The BCD region

yields as well as the predictions for region A are summarized in Tab. 7.6. The leading

and subleading transfer factors used for the ABCD prediction are given in Tab. 7.7.

The distribution of vertices in the ABCD plane, passing the preselection and all SR

requirements except for the min(�R) requirement, is given for both benchmark signal

model selections in Fig. 7.7.

Region OS yield SS yield Fake muon estimate
(= SS ⇥Rq)

Prompt muon estimate
(= OS - SS ⇥Rq)

Fake + prompt
muon estimate

B 50± 13 4.1± 2.0 5.2± 2.8 45± 13
C 164± 16 140± 16 168± 34 �4± 38
D 13497± 254 890± 56 1068± 190 12429± 317

A 0.8± 0.4 1.5± 1.5 1.9± 1.9 �0.01± 0.14
(= B ⇥ C / D)

1.9± 1.9

(a) ZD

Region OS yield SS yield Fake muon estimate
(= SS ⇥Rq)

Prompt muon
estimate

(= OS - SS ⇥Rq)

Fake + prompt
muon estimate

B 984± 51 0.2± 0.2 0.3± 0.3 984± 51
C 888± 44 10± 5.3 12± 6.7 876± 45
D 396023± 918 44± 6.4 53± 12 395970± 918

A 3.5± 2.0 0.7± 0.4 0.9± 0.5 2.2± 0.2
(= B ⇥ C / D)

3.1± 0.5

(b) GGM

Table 7.6: Yields in Z ! µµ MC simulation for (a) ZD and (b) GGM selections in
A,B,C, and D regions used for the prompt background prediction. The simulations
are scaled to an integrated luminosity of 32.9 fb�1. All quoted uncertainties are purely
statistical.

SRZD
SRGGM

fL(= B ⇤ /D⇤) 0.0036± 0.0011 0.0025± 0.0001
fS(= C ⇤ /D⇤) �0.0003± 0.0031 0.0022± 0.0001

Table 7.7: The Lead and subleading transfer factors of the ABCD method are shown
for both SRZD

and SRGGM, using Z ! µµ MC simulation scaled to 32.9 fb�1. All
quoted uncertainties are purely statistical.
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Figure 7.7: �R��R distributions for (a) SRZD
and (b) SRGGM. The distributions

are shown for Z ! µµ MC simulation scaled to 32.9 fb�1.

7.4 ABCD signal contamination

The ABCD method relies on measuring a single source of background in three

control regions (i.e. BCD) to predict that sources yield in a signal region (i.e. region

A). The fake background is subtracted from all of the BCD regions to leave only

prompt muon background, but what about signal? For shorter LLP lifetimes a larger

fraction of the signal yield from either of our benchmark models will migrate into

the BCD regions and potentially a↵ect the validity of the ABCD prediction. It is

necessary to quantify the contamination for the range of signal model parameter

space studied.

Region D is dominated by real prompt dimuon vertices coming from SM processes

(i.e. Z+jets,etc...). For the range of signal cross sections considered the maximum

contamination (i.e. Dsig = 1.0⇥ �sig ⇥BF ⇥L⇥ ✏) would be a fraction of a percent

of the SM background. For any model with a cross section large enough to not be

ignored, an excess should have already been observed in prompt analyses with dimuon

final states. For these reasons the contamination of region D is not considered.

74



For the dark photon model it is shown in Sect. 6.5 that the prompt background

prediction is negligible, with close to 100% uncertainty, and so the issue of ZD signal

contamination can safely be ignored in the statistical analsyis.

The total signal e�ciency as a function of lifetime for the GGM SUSY model

is shown in Fig. 5.11. It is negligible below 1 cm, which places a lower bound on

lifetimes for which we must consider contamination. The peak is near 50 cm. The

signal contamination defined as ↵ = Bsig+Csig

Asig+Bsig+Csig+Dsig
is shown in Fig. 7.8 as a

function of the LLP lifetime. For small lifetimes most signal events are in region D,

and for large lifetimes in region A, this leaves a peak in the contamination at⇠ 32% for

lifetimes of 2�6 cm. The convolution of the signal contamination and total e�ciency

is also given in Fig. 7.8, which shows that it is at lifetimes of ⇠ 10 cm that the prompt

background prediction is most susceptible to contamination. For cross sections less

than 1.5 pb, the contamination will be < 1%, and for 15 pb the contamination will

be < 10%. The GGM SUSY cross sections that will be considered in the statistical

analysis are at most small fractions of a pb and so signal contamination can be ignored

in this analysis.
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Figure 7.8: Distributions of (a) signal contamination, ↵ = Bsig+Csig

Asig+Bsig+Csig+Dsig
, and

(b) ↵⇥ ✏ as functions of LLP lifetime for the GGM SUSY benchmark signal model.
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CHAPTER 8

SYSTEMATIC UNCERTAINTIES

The systematic uncertainties considered in this analysis are described in detail

below and a summary is given in Tab. 8.1. These uncertainties are used as nuisance

parameters in the statistical analysis.

8.1 Luminosity

The uncertainty on the 2016 integrated luminosity is 2.2%. It is derived, following

a methodology similar to that detailed in [63], from a preliminary calibration of the

luminosity scale using x-y beam-separation scans performed in May 2016.

8.2 Pileup reweighting (PRW)

A variation in the pileup reweighting of MC is included to cover the uncertainty

on the ratio between the predicted and measured inelastic cross-section in the fiducial

volume defined by MX > 13 GeV where MX is the mass of the hadronic system [86].

The variation results in a systematic uncertainty of 0.2%.

8.3 Trigger and MuSA reconstruction e�ciency

The trigger and reconstruction e�ciencies in MC simulation will di↵er from those

observed in data due to imperfections in the simulation procedure. When MC simu-

lation is used in an analysis it must be corrected by trigger and reconstruction scale

factors (SFs) which are defined as the ratio of the relevent e�ciency in data to what is

found in MC simulation (SFi =
✏datai

✏MC
i

). The trigger/reconstruction e�ciencies are easy
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to calculate for MC simulation where the truth information is available. In data the

trigger/reconstruction e�ciency is typically calculated using a tag-and-probe method

[82]. The tag-and-probe method will ”tag” a Z ! µµ event using ID tracks, and then

for one of the ID tracks it will ”probe” whether or not there is a muon trigger object

associated to it, or a MuSA reconstructed track, and measure the relevent e�ciency.

The tag-and-probe method requires that muons have associated ID tracks, but

this is not the case for displaced muons. Since MC simulation is only used in this

analysis to determine signal yields, and such samples are full of displaced muons it

is not possible to use the tag-and-probe method to find the trigger/reconstruction

e�ciencies/SFs.

The MC simulation normalization described in App. B is considered a proxy

for these SFs (i.e. SFNorm ⇠ SF trig ⇥ SF reco). The statistical uncertainty on the

normalization SF is very small (0.3%) and so a conservative systematic uncertainty

of 1% is used in the statistical analysis.

8.4 Fake vertex prediction uncertainty

Fake vertices constitute a major background for the analysis, and the prediction

of their yield is covered in Sect. 6.1. Part of the methodology relies on knowing Rq,

the number of OS to SS vertices for a given source of fake vertices. Our background

is primarily made up of two sources of which the exact composition is not known. As

a result, we use the averge Rq, with a systematic uncertainty of half the deviation

between the two Rq’s. This results in a systematic uncertainty of 24% on the fake

background prediction.

8.5 ABCD prediction uncertainty

The other primary background in the analysis arises from combined muon recon-

struction ine�ciency and is described in Sect. 6.2. The estimation method used
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Source Signal [%] Background [%]

Luminosity 2.2 -
PRW 0.2 -
Trigger/Reco 1.0 -
Fake vertices - 24
ABCD region size - 9.1

Table 8.1: Summary of systematics evaluated in the analysis.

requires the definition of the ABCD regions. The uncertainty on this prediction is

estimated by shifting the borders of the ABCD regions and comparing the result to

the nominal prediction as described in Sect. 7.2. The systematic uncertainty is taken

as the range of the four predictions which amounts to 9.1% of the prompt background.
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CHAPTER 9

RESULTS

The yields observed in data for both SRs along with our background predictions

as described in Sect. 6 are given in Tab. 9.1. While there is no indication of an excess

of observed events for SRZD
, there is a large excess for SRGGM . Various distributions

for the vertices in SRZD
and SRGGM are shown in Figs. 9.1 and 9.2 respectively.

Region SRZD
SRGGM

AµMS�µMS
0.1± 0.2 7.7± 0.3

AµF�µX
14.9± 5.2 2.5± 1.9

Atotal 15.0± 5.2 10.2± 1.9

Data 23 74

Table 9.1: Total background predictions and observed data yields for SRZD
and

SRGGM , given an integrated luminosity of 32.9 fb�1. All quoted uncertainties are
purely statistical.

9.1 SRGGM Excess

It is clear from the distributions in SRGGM that the excess is not due to new

physics. The lead � and ⌘ distributions are asymmetric with most of the vertices

in a small region of the detector. The subleading distributions are more dispersed.

This points to an issue with the ID that must be occuring globally to not factor in

to the ABCD prediction. The invariant mass is on the Z-pole, which is predicted by

the GGM model, however GGM also predicts large pT for the resulting muons. The

vertices in SRGGM do not have significantly large muon pT. Since it is evident that

the excess of vertices are not coming from new physics then in order to set reasonable
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limits on the GGM SUSY model something is needed to discriminate against SM Z

background to bring it to negligible levels. The pT distributions hint that a cut on

the boost1 of the Z should discriminate well.

Since the analysis has already been unblinded, the application of additional se-

lection criteria is done carefully to minimize bias. The boost of the dimuon vertex

in data is shown for the BCD regions of the prompt background estimate, and in

region A for the GGM signal in Fig. 9.3. It is not straight forward to use a metric

such as Sp
B

to decide where the cut should be placed, since the boost distribution

varies as a function of the GGM model parameters. In order to signficantly reduce

the SM background (by roughly an order of magnitude) and still retain su�cient

signal e�ciency across the range of considered model parameters, a cut on the boost

is placed at ��T = 2. This additional requirement is only placed on SRGGM since

the prompt background component of SRZD
is already negligible and since as the ZD

mass approachs half the higgs mass the ZD is no longer boosted. The e↵ect of adding

the boost cut to SRGGM is summarized in the following subsections:

9.1.1 Signal E�ciency

Modified vertex e�ciency plots are shown in Fig. 9.4 and the modified total

e�ciency as a function of lifetime is shown in Fig. 9.5. The lower mass �̃
0
1 sample is

a↵ected the most by this change, as expected due to producing less boosted Z bosons.

Still this has a minimal e↵ect on the overall sensitivity given the strong background

supression.

9.1.2 Background Prediction

After changing the selection criteria the background prediction for SRGGM is

recalculated and the fake and prompt background predictions are summarized in

1The transverse boost, defined as ��T = pT

m , is used instead of the traditional boost.
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Tab. 9.2. The transfer factors of the ABCD method are given in Tab. 9.3. The new

background prediction for the GGM channel is much smaller, as anticipated, since

the boost cut significantly reduces the prompt dimuon background sources.

Region OS yield SS yield Fake muon estimate
(= SS ⇥Rq)

Prompt muon estimate
(= OS - SS ⇥Rq)

Fake + prompt
muon estimate

B 117 0 0± 1.5 117± 11
C 83 0 0± 1.4 83± 9.2
D 19195 22 26± 7.1 19169± 139

A XXXX 0 0± 1.4 0.51± 0.07 0.5± 1.4

Table 9.2: Yields for GGM selection in regions A,B,C, and D of transfer factor
method given an integrated luminosity of 32.9 fb�1 with additional boost requirement
enforced. All quoted uncertainties are purely statistical.

fL 0.0061± 0.0006
fS 0.0043± 0.0005

Table 9.3: The lead and subleading transfer factors for the GGM selection, with the
additional boost requirement, given an integrated luminosity of 32.9 fb�1. All quoted
uncertainties are purely statistical.

9.1.3 Validation

The same validation methods as presented in Sect. 7 are performed for vertices

in the GGM channel with the addition of the transverse boost requirement. These

validation methods consistently show that the prompt background is brought to neg-

ligible levels by the additional boost requirement.

9.1.3.1 ABCD profiling

The distributions of predicted vertices as functions of the profiled variables are

given in Fig. 9.6 and the comparison of the nominal SRGGM prediction with the

profiled predictions are given in Tab. 9.4. The most variation is seen when profiling

by the run number however it is still consistent with the nominal prediction.
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Anom 0.51± 0.07

AL
⌘�� 0.50± 0.10

AS
⌘�� 0.51± 0.10
AL

pT
0.51± 0.08

AS
pT

0.46± 0.07
Apile�up 0.51± 0.08
Arun num. 0.61± 0.12

Table 9.4: SRGGM predictions, with the additional boost requirement, for µMS �
µMS vertices using various profiled transfer factors, given an integrated luminosity of
32.9 fb�1. All quoted uncertainties are purely statistical.

9.1.3.2 ABCD region size

The prompt background predictions formed using from various subsets of the

ABCD regions are given in Tab. 9.5 for SRGGM with the additional boost require-

ment. This procedure is used to provide a systematic uncertainty on the prompt

background prediction. The value of the systematic is taken as the range of the

predictions relative to the nominal prediction. Incorporating the additional boost

requirement raises the uncertainty from 9.1% to 19.6%.

Region OS SS OS - Rq⇥ SS Region OS SS OS - Rq⇥ SS
B 117 0 117± 11 B 117 0 117± 11
C1 66 0 66± 8.2 C2 17 0 17± 4.4
D1 15209 17 15189± 123 D2 3986 5 3980± 63

Apred
1 0.51± 0.08 Apred

2 0.50± 0.14

(a) fS
1,2

Region OS SS OS - Rq⇥ SS Region OS SS OS - Rq⇥ SS
B3 60 0 60± 7.9 B4 57 0 57± 7.7
C 83 0 83± 9.2 C 83 0 83± 9.2
D3 10714 11 10701± 104 D4 8481 11 8468± 92

Apred
3 0.47± 0.08 Apred

4 0.56± 0.10

(b) fL
3,4

Table 9.5: The BCD yields as well as region A prediction with either regions (a) C
and D or (b) B and D bisected.
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9.1.3.3 MC validation

The closure test performed on Z ! µµ MC su↵ers from limited statistics. A

summary of the region yields is shown in Tab. 9.6 and the distribution of MC vertices

in the �R��R plane is given in Fig. 9.7.

Region OS yield SS yield Fake muon estimate
(= SS ⇥Rq)

Prompt muon
estimate

(= OS - SS ⇥Rq)

Fake + prompt
muon estimate

B 36.15± 7.03 0.23± 0.23 0.29± 0.30 35.86± 7.04
C 35.12± 8.64 0.42± 0.42 0.50± 0.51 34.62± 8.66
D 15686± 186.1 1.99± 0.99 2.39± 1.25 15684± 186.10

A 0.25± 0.25 < 0.001 < 0.001 0.08± 0.03
(= B ⇥ C / D)

0.08± 0.03

(a)

Table 9.6: Yields in Z ! µµ MC simulation for GGM selections, with additional
boost requirement, in A,B,C, and D regions used for the prompt background predic-
tion. The simulations are scaled to an integrated luminosity of 32.9 fb�1. All quoted
uncertainties are purely statistical.

9.2 Modified Results

With the modified background prediction for SRGGM complete, the SR yields in

data are again observed and shown in Tab. 9.7. Plots of the vertices in the modified

SRGGM are shown in Fig. 9.8.

Region SRZD
SRGGM

AµMS�µMS
0.1± 0.2 0.5± 0.1

AµF�µX
14.9± 5.2 0± 1.4

Atotal 15.0± 5.2 0.5± 1.4

Data 23 4

Table 9.7: Final background predictions and observed data yields for SRZD
and

SRGGM , given an integrated luminosity of 32.9 fb�1. All quoted uncertainties are
purely statistical.
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Figure 9.1: The distributions of (a) mll, (b) rvtx, (c) lead µ pT, (d) subleading µ pT,
(e) lead µ ⌘, (f) subleading µ ⌘, (g) lead µ �, (h) subleading µ � for displaced vertices
passing the SRZD

selection criteria. The observed distribution in data is given by the
points with error bars. The uncertainty on data is purely statistical.
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Figure 9.2: The distributions of (a) mll, (b) rvtx, (c) lead µ pT, (d) subleading µ pT,
(e) lead µ ⌘, (f) subleading µ ⌘, (g) lead µ �, (h) subleading µ � for displaced vertices
passing the SRGGM selection criteria. The observed distribution in data is given by
the points with error bars. The uncertainty on data is purely statistical.
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Figure 9.3: The ��T distribution is shown for the GGM selection in regions (a) A,
(b) B, (c) C, and (d) D of the transfer factor method. Only signal is shown in region
A. The uncertainties shown are purely statistical.
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Figure 9.4: The e�ciencies to select a displaced dimuon vertex that satisfies the
requirements of the SRGGM as well as the discussed transverse boost cut, as function
of (a) true d0, (b) true Lvtx, (c) true pT, and (d) the opening angle between the two
muons in the vertex. These e�ciencies are calculated relative to all generated signal
vertices. The distributions are derived from signal events with a BSM long-lived
neutralino, �̃

0
1, decaying to a Z boson (with Z ! µ+µ�) and a gravitino. The shaded

bands represent the statistical uncertainty only.
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Figure 9.5: Overall e�ciency (combining trigger and o✏ine selection), as function of
the lifetime of the long-lived BSM particle, c⌧BSM, for the GGM SUSY model with
the addition of the transverse boost requirement. The shaded bands represent the
statistical uncertainty only.
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Figure 9.6: The distributions of (a) AL
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the modified GGM selection.
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Figure 9.7: �R � �R distributions for SRGGM with additional boost requirement.
The distribution is shown for Z ! µµ MC simulation scaled to 32.9 fb�1.
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Figure 9.8: The distributions of (a) mll, (b) rvtx, (c) lead µ pT, (d) subleading µ pT,
(e) lead µ ⌘, (f) subleading µ ⌘, (g) lead µ �, (h) subleading µ � for displaced vertices
passing the SRGGM selection criteria. The observed distribution in data is given by
the points with error bars. The uncertainty on data is purely statistical.
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CHAPTER 10

INTERPRETATION

The results do not show signs of new physics and so 95 % Confidence Level (C.L.)

upper limits on the cross section times branching fraction are set on our benchmark

models. Limits are set using the CLs method [87, 88], which is summarized below:

• The analysis is described by a likelihood function, L(x|H), which represents the

likelihood of observing data x under a given model hypothesis H. There will be

two primary hypothesis: H0, the null ”background-only” hypothesis and H1,

the alternate hypothesis of ”background + signal”.

• A test statistic defined as �(�s) = �2 lnL(�s,
ˆ̂✓)

L(�̂s,✓̂)
is introduced to estimate how

probable the observed data is w.r.t. our hypotheses. �s is the parameter of

interest (signal cross section) and ✓ represents the nuisance parameters [89]. ˆ̂
✓

is the conditional maximum likelihood estimate (MLE)[90] of ✓, and �̂s and ✓̂

are the unconditional MLEs of �s and ✓ respectively.

• A range of �s is chosen for which the analysis is expected to have sensitivity.

The test statistic is then evaluated for a number of �s points within the range.

• For a given �s, toy MC simulations are used to profile the conditional MLEs

for both the null and alternate hypothesis and determine the probability dis-

tribution functions (pdfs) of the test statistic for both hypotheses, Ps+b(�) and

Pb(�).
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• Confidence Levels (CL) are defined as the probability that the test statistic is

less than or equal to the value observed in data under a given hypothesis. (i.e.

CLs+b = Ps+b(�  �obs) and CLb = Pb(�  �obs)). Small values of CLs+b favor

the null hypothesis and values of CLb close to 1 favor the alternate hypothesis.

• The CLs method uses the ratio CLs =
CLs+b

CLb
to set limits. The benefits of the

CLs method can be seen in the following example: if a search channel containing

a negligible amount of signal experiences a strong downward fluctation in back-

ground, then both the null and alternate hypotheses will be disfavored. Using

CLs+b will indicate an exlusion should be made, even though no real sensitivity

exists, while CLs will not. Although CLs lacks full frequentist coverage it only

does so when there is no sensitivity. This conservative aspect makes it favorable

for setting limits.

The likelihood function used in the analysis is given below:

L(�s, w
i, ✏,L, bF , bCO) = Poisson(NSR|(⇧iw

i)✏�sL+bF+bCO)⇥⇧i Gauss(w̃i|wi, �wi)

⇥Gauss(✏̃|✏, �✏)⇥Gauss(L̃|L, �L)⇥Gauss(b̃F |bF , �bF )⇥Gauss( ˜bCO|bCO, �bCO
)

(10.1)

�s is the parameter of interest (signal cross section) and the rest are nuisance param-

eters: wi correspond to data/MC corrections applied to the signal MC simulation

(PRW,MC normalization), ✏ is the total e�ciency (trigger and reconstruction), L is

the integrated luminosity, bF is the number of fake background vertices, and bP is the

number of prompt background vertices. Each nuissance parameter is represented by

a gaussian constraint in the likelihood, where the ⇠ variables represent the observed

value, and the other parameters represent the mean and width respectively. From a

bayesian point of view these gaussian likelihoods can be thought of as priors on the

parameters.
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10.1 Dark photon

The ATLAS and CMS collaborations have set upper limits on the invisible branch-

ing fraction of the higgs boson [91, 92] at 0.25 and 0.24 respectively. This gives a

bound on the maximum branching fraction the SM higgs boson can have to new

physics, BF(H! ZDZD) < 0.25. Below BFs of 0.01 the analysis has no sensitivity.

The expected and observed 95 % C.L. upper limits on �⇥BF , using an integrated

luminosity of 32.9 fb�1, for the dark photon model are shown in Fig. 10.1 as a function

of ZD lifetime. The expected and observed c⌧ limits for the dark photon model are

given in Tab. 10.1.

mZD
c⌧ expLL [cm] c⌧ obsLL [cm] c⌧ expUL [cm] c⌧ obsUL [cm]

20 0.30± 0.01 0.32 1877± 247 1572
40 0.78± 0.04 0.83 1450± 215 1215
60 1.67± 0.15 1.89 517± 81 426

(a)

mZD
✏expLL [⇥10�10] ✏obsLL [⇥10�10] ✏expUL [⇥10�10] ✏obsUL[⇥10�10]

20 5.37± 0.35 5.86 423± 20 410
40 6.11± 0.45 6.67 263± 15 255
60 10.2± 0.81 11.3 180± 16 169

(b)

Table 10.1: The expected and observed limits on (a) c⌧ and (b) mixing parameter
✏ using

R
L = 32.9 fb�1 for the low mass bench mark model. A branching fraction

BF(H! ZDZD) = 0.1 is assumed and BF (ZD ! µµ) is set according to the model.

10.2 GGM SUSY

The expected and observed 95 % C.L. upper limits on �⇥BF , using an integrated

luminosity of 32.9 fb�1, for the GGM SUSY model are shown in Fig. 10.3 as a function

of the �̃0
1 lifetime. The expected and observed c⌧ limits for the GGM SUSY model

are given in Tab. 10.2.
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Figure 10.1: The expected and observed 95 % C.L. upper limits on � ⇥ BF , with
BF (ZD ! µµ) set by the mass/model and

R
L = 32.9 fb�1, for the low mass bench

mark model with mZD
: (a) 20 GeV (b) 40 GeV or (c) 60 GeV as a function of ZD

lifetime. The shaded bands represent the statistical and systematic uncertainty. The
horizontal dotted lines represent � ⇥ BF with di↵erent assumptions for BF (H !
ZDZD).
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Figure 10.3: The expected and observed 95 % C.L. upper limits on � ⇥ BF , with
BF (�̃0 ! ZG̃) = 1 and

R
L = 32.9 fb�1, for the high mass bench mark model with

m�̃0 : (a) 300 GeV (b) 700 GeV or (c) 1000 GeV as a function of �̃
0
1 lifetime. The

shaded bands represent the statistical and systematic uncertainty. The horizontal
dotted line represents � ⇥ BF with �g̃(1100 GeV) = 0.163 pb.
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m�̃0
1

c⌧ expLL [cm] c⌧ obsLL [cm] c⌧ expUL [cm] c⌧ obsUL [cm]
300 2.02± 0.32 2.79 909± 189 617
700 1.83± 0.30 2.57 1275± 256 894
1000 2.09± 0.25 2.70 1498± 286 1050

Table 10.2: The expected and observed c⌧ limits using �g̃(1100 GeV) = 0.163 pb,
BF (�̃0 ! ZG̃) = 1, and

R
L = 32.9 fb�1 for the high mass bench mark model.
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CHAPTER 11

CONCLUSION

A search for non-collimated displaced dimuon vertices within the ATLAS detec-

tor during the 2016 data taking period of Run II of the LHC has been presented.

MuSA tracks are used to reconstruct displaced dimuon vertices which provides a

much higher geometrical acceptance than with ID based DV searches. The search

utilizes two benchmark signal models for interpreting the data: The ”low mass” dark

photon model and the ”high mass” GGM SUSY model. The two primary sources of

background are fake and prompt vertices. Fake vertices consist of MuSA tracks that

systematically lack ID tracks, (i.e. cosmics or pion/kaon decay). Prompt vertices

come from standard dimuon processes in which no ID track is present due to track

finding ine�ciency. Two signal selections, one for each benchmark model, are used

in the statistical analysis. The low mass selection is dominated by fake vertices while

the high mass selection is dominated by prompt vertices.

An excess of data over the expected background is seen in the high mass GGM

channel. The majority of vertices in the excess have a lead MuSA track that falls

within a very narrow region of the detector (⌘ ⇠ �0.7 and � ⇠ 0). A back of the

envelope calculation of the probability to observe such a large upward fluctuation in

any region that size, assuming vertices are distributed uniformally throughout the

detector, gives p = 3.33 ⇥ 10�45. For this reason it can safely be reasoned that the

observed excess is not due to new physics, but a detector related issue. The fact that

the ABCD prompt background estimation method does not predict these vertices

means they are correlated in �R. When one MuSA track goes through the troubled
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region of the detector, it is likely that the other MuSA track will lack an associated

ID track. This points to a global issue a↵ecting the ID e�ciency.

Once new physics has been ruled out, exclusion limits need to be placed on regions

of parameter space in the two benchmark models for which the analysis has sensitivity.

The excess in the GGM channel will result in weaker limits on that model, and so

another selection rule is added to require a boost of the dimuon system. With the

additional cut the ABCD method confirms the prompt background has been brought

to negligible levels and the observed excess disappears.

95% CL upper limits are placed on the cross section times branching fraction for

both benchmark models as functions of the LLP lifetime. The limits are placed for

multiple LLP mass hypotheses. The observed c⌧ limits for the GGM channel extend

from 2.57 to 1050 cm and for the ZD channel from 0.32 to 1572 cm. 95% CL

exclusion contours are also placed in the ✏�mZD
plane for the dark photon model.

This analysis marks the first use of MuSA tracks as primary physics objects in

ATLAS. Typically the muon system is used as a means of identifying ID tracks

consistent with a muon, and the superior pT measurement of the ID is used in analyses.

As far as long lived particle searches go, the gain in geometrical acceptence achieved

by using MuSA tracks is enormous. Additionally, the poorer pT resolution of MuSA

tracks is not an issue for a search (as opposed to a precision measurement). What is an

issue is obtaining detailed knowledge of the correlation of ID track finding e�ciency

for dimuon vertices. For most ATLAS analyses small gaps in ID e�ciency will result

in minimal e�ciency loss for the analysis. However for the analysis presented, small

correlated ine�ciences coupled with a relatively common physics process (Z ! µµ)

will systematically add background only to the signal selection. Future iterations

of the analysis will need to either, (a) develop a more detailed e�ciency map of

the ID tracking than what is currently available, or (b) use the ABCD method to
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confirm that the selection requirements of the analysis bring the prompt background

prediction to negligible levels.
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APPENDIX

A Cut Flows

The selection requirements for our analysis as well as cut flows for our benchmark

signal models and various non-QCD SM backgrounds are given in Tab. 11.1 � 11.5

for the ZD selection, and Tab. 11.6 � 11.10 for the GGM selection.

selection Cut Nevt N scaled
evt "rel [%] "abs [%]

none 99000 1469.36 1.00 1.00
Trigger 95996 1424.77 0.97 0.97

GRL & PV 95996 1424.77 1.00 0.97

> 1 MSonly tracks 48462 719.27 0.50 0.49
min pT 42529 631.22 0.88 0.43
min d0 42529 631.22 1.00 0.43

chamber removal 27803 412.65 0.65 0.28
�d0 removal 19302 286.48 0.69 0.19

fiducial volume 19242 285.59 1.00 0.19
isolation 11510 170.83 0.60 0.12

jet-muon overlap removal 10775 159.92 0.94 0.11
track separation at vertex 10095 149.83 0.94 0.10

mll 309 4.59 0.03 0.00
OS vtx 278 4.13 0.90 0.00
cosmic 278 4.13 1.00 0.00
�R 265 3.93 0.95 0.00

Table 11.1: Event-level selection cutflow, using the ZD selection, for the MC-simulated
SUSY GGM signal sample with mg̃ = 1.1 TeV, c⌧�̃0

1
= 1m and m�̃0

1
= 700 GeV. The

quantities Nevt and N scaled
evt are the raw and scaled (to 32.9 fb�1) numbers of events,

respectively, selected after applying all cuts in that row and above. The quantity
"rel [%] is the e�ciency of the cut relative to the previous row and "tot [%] is the total
e�ciency, after appling all cuts up to and including that row.
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selection Cut Nevt N scaled
evt "rel [%] "abs [%]

none 198000 42731.90 1.00 1.00
Trigger 65152 14061.00 0.33 0.33

GRL & PV 65152 14061.00 1.00 0.33

> 1 MSonly tracks 42498 9171.82 0.65 0.21
min pT 39190 8457.90 0.92 0.20
min d0 39190 8457.90 1.00 0.20

chamber removal 26229 5660.68 0.67 0.13
�d0 removal 13836 2986.05 0.53 0.07

fiducial volume 13661 2948.29 0.99 0.07
isolation 9538 2058.47 0.70 0.05

jet-muon overlap removal 9419 2032.79 0.99 0.05
track separation at vertex 8643 1865.31 0.92 0.04

mll 8194 1768.41 0.95 0.04
OS vtx 8093 1746.61 0.99 0.04
cosmic 8093 1746.61 1.00 0.04
�R 7844 1692.87 0.97 0.04

Table 12.2: Event-level selection cutflow, using the ZD selection, for the MC-simulated
dark gauge boson signal sample with mS = 150 GeV, mZD

= 20 GeV and c⌧ZD
=

0.5m. The quantities Nevt and N scaled
evt are the raw and scaled (to 32.9 fb�1) numbers

of events, respectively, selected after applying all cuts in that row and above. The
quantity "rel [%] is the e�ciency of the cut relative to the previous row and "tot [%]
is the total e�ciency, after appling all cuts up to and including that row.
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selection Cut Nevt N scaled
evt "rel [%] "abs [%]

none 1908360 3252680.00 1.00 1.00
Trigger 1683446 2869330.00 0.88 0.88

GRL & PV 1683446 2869330.00 1.00 0.88

> 1 MSonly tracks 1241530 2116110.00 0.74 0.65
min pT 1186545 2022390.00 0.96 0.62
min d0 1186545 2022390.00 1.00 0.62

chamber removal 868662 1480580.00 0.73 0.46
�d0 removal 523776 892745.00 0.60 0.27

fiducial volume 523618 892475.00 1.00 0.27
isolation 404955 690221.00 0.77 0.21

jet-muon overlap removal 314784 536530.00 0.78 0.16
track separation at vertex 310739 529636.00 0.99 0.16

mll 1348 2297.58 0.00 0.00
OS vtx 1004 1711.26 0.74 0.00
cosmic 999 1702.74 1.00 0.00
�R 0 0.00 0.00 0.00

Table 12.3: Event-level selection cutflow, using the ZD selection, for the MC-simulated
Z+jets sample. The quantities Nevt and N scaled

evt are the raw and scaled (to 32.9 fb�1)
numbers of events, respectively, selected after applying all cuts in that row and above.
The quantity "rel [%] is the e�ciency of the cut relative to the previous row and "tot [%]
is the total e�ciency, after appling all cuts up to and including that row.
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selection Cut Nevt N scaled
evt "rel [%] "abs [%]

none 83420 458414.00 1.00 1.00
Trigger 34773 191086.00 0.42 0.42

GRL & PV 34773 191086.00 1.00 0.42

> 1 MSonly tracks 29573 162511.00 0.85 0.35
min pT 12342 67822.40 0.42 0.15
min d0 12342 67822.40 1.00 0.15

chamber removal 8402 46171.10 0.68 0.10
�d0 removal 3945 21678.80 0.47 0.05

fiducial volume 3944 21673.30 1.00 0.05
isolation 2300 12639.10 0.58 0.03

jet-muon overlap removal 1803 9907.94 0.78 0.02
track separation at vertex 1771 9732.09 0.98 0.02

mll 1643 9028.70 0.93 0.02
OS vtx 1618 8891.32 0.98 0.02
cosmic 1615 8874.83 1.00 0.02
�R 0 0.00 0.00 0.00

Table 12.4: Event-level selection cutflow, using the ZD selection, for the MC-simulated
DY sample. The quantities Nevt and N scaled

evt are the raw and scaled (to 32.9 fb�1)
numbers of events, respectively, selected after applying all cuts in that row and above.
The quantity "rel [%] is the e�ciency of the cut relative to the previous row and "tot [%]
is the total e�ciency, after appling all cuts up to and including that row.
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selection Cut Nevt N scaled
evt "rel [%] "abs [%]

none 4167729 1037960.00 1.00 1.00
Trigger 3891081 969058.00 0.93 0.93

GRL & PV 3891081 969058.00 1.00 0.93

> 1 MSonly tracks 2186745 544600.00 0.56 0.52
min pT 1287150 320559.00 0.59 0.31
min d0 1287150 320559.00 1.00 0.31

chamber removal 920469 229239.00 0.72 0.22
�d0 removal 446762 111264.00 0.49 0.11

fiducial volume 444772 110769.00 1.00 0.11
isolation 91591 22810.40 0.21 0.02

jet-muon overlap removal 63447 15801.20 0.69 0.02
track separation at vertex 62667 15607.00 0.99 0.02

mll 17283 4304.26 0.28 0.00
OS vtx 16705 4160.31 0.97 0.00
cosmic 16700 4159.07 1.00 0.00
�R 3 0.75 0.00 0.00

Table 12.5: Event-level selection cutflow, using the ZD selection, for the MC-simulated
tt̄ sample. The quantities Nevt and N scaled

evt are the raw and scaled (to 32.9 fb�1)
numbers of events, respectively, selected after applying all cuts in that row and above.
The quantity "rel [%] is the e�ciency of the cut relative to the previous row and "tot [%]
is the total e�ciency, after appling all cuts up to and including that row.
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selection Cut Nevt N scaled
evt "rel [%] "abs [%]

none 99000 1469.36 1.00 1.00
Trigger 95996 1424.77 0.97 0.97

GRL & PV 95996 1424.77 1.00 0.97

> 1 MSonly tracks 48462 719.27 0.50 0.49
min pT 37296 553.55 0.77 0.38
min d0 37296 553.55 1.00 0.38

chamber removal 24027 356.61 0.64 0.24
�d0 removal 16988 252.14 0.71 0.17

fiducial volume 16944 251.48 1.00 0.17
isolation 10853 161.08 0.64 0.11

jet-muon overlap removal 10274 152.49 0.95 0.10
track separation at vertex 9651 143.24 0.94 0.10

mll 9399 139.50 0.97 0.09
OS vtx 9327 138.43 0.99 0.09
cosmic 9327 138.43 1.00 0.09
�R 8423 125.01 0.90 0.09

Table 12.6: Event-level selection cutflow, using the GGM selection, for the MC-
simulated SUSY GGM signal sample with mg̃ = 1.1 TeV, c⌧�̃0

1
= 1m and m�̃0

1
=

700 GeV. The quantities Nevt and N scaled
evt are the raw and scaled (to 32.9 fb�1)

numbers of events, respectively, selected after applying all cuts in that row and above.
The quantity "rel [%] is the e�ciency of the cut relative to the previous row and "tot [%]
is the total e�ciency, after appling all cuts up to and including that row.
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selection Cut Nevt N scaled
evt "rel [%] "abs [%]

none 198000 42731.90 1.00 1.00
Trigger 65152 14061.00 0.33 0.33

GRL & PV 65152 14061.00 1.00 0.33

> 1 MSonly tracks 42498 9171.82 0.65 0.21
min pT 26067 5625.72 0.61 0.13
min d0 26067 5625.72 1.00 0.13

chamber removal 17043 3678.18 0.65 0.09
�d0 removal 8948 1931.14 0.53 0.05

fiducial volume 8788 1896.61 0.98 0.04
isolation 6585 1421.16 0.75 0.03

jet-muon overlap removal 6502 1403.25 0.99 0.03
track separation at vertex 5915 1276.56 0.91 0.03

mll 604 130.35 0.10 0.00
OS vtx 332 71.65 0.55 0.00
cosmic 331 71.44 1.00 0.00
�R 286 61.72 0.86 0.00

Table 12.7: Event-level selection cutflow, using the GGM selection, for the MC-
simulated dark gauge boson signal sample with mS = 150 GeV, mZD

= 20 GeV and
c⌧ZD

= 0.5m. The quantities Nevt and N scaled
evt are the raw and scaled (to 32.9 fb�1)

numbers of events, respectively, selected after applying all cuts in that row and above.
The quantity "rel [%] is the e�ciency of the cut relative to the previous row and "tot [%]
is the total e�ciency, after appling all cuts up to and including that row.
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selection Cut Nevt N scaled
evt "rel [%] "abs [%]

none 1908360 3252680.00 1.00 1.00
Trigger 1683446 2869330.00 0.88 0.88

GRL & PV 1683446 2869330.00 1.00 0.88

> 1 MSonly tracks 1241530 2116110.00 0.74 0.65
min pT 1023684 1744810.00 0.82 0.54
min d0 1023684 1744810.00 1.00 0.54

chamber removal 749143 1276870.00 0.73 0.39
�d0 removal 482961 823178.00 0.64 0.25

fiducial volume 482844 822978.00 1.00 0.25
isolation 382934 652688.00 0.79 0.20

jet-muon overlap removal 298916 509484.00 0.78 0.16
track separation at vertex 295093 502968.00 0.99 0.15

mll 294884 502612.00 1.00 0.15
OS vtx 294872 502592.00 1.00 0.15
cosmic 292911 499249.00 0.99 0.15
�R 2 3.41 0.00 0.00

Table 12.8: Event-level selection cutflow, using the GGM selection, for the MC-
simulated Z+jets sample. The quantities Nevt and N scaled

evt are the raw and scaled (to
32.9 fb�1) numbers of events, respectively, selected after applying all cuts in that row
and above. The quantity "rel [%] is the e�ciency of the cut relative to the previous
row and "tot [%] is the total e�ciency, after appling all cuts up to and including that
row.
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selection Cut Nevt N scaled
evt "rel [%] "abs [%]

none 83420 458414.00 1.00 1.00
Trigger 34773 191086.00 0.42 0.42

GRL & PV 34773 191086.00 1.00 0.42

> 1 MSonly tracks 29573 162511.00 0.85 0.35
min pT 4302 23640.60 0.15 0.05
min d0 4302 23640.60 1.00 0.05

chamber removal 3009 16535.20 0.70 0.04
�d0 removal 1444 7935.14 0.48 0.02

fiducial volume 1444 7935.14 1.00 0.02
isolation 867 4764.38 0.60 0.01

jet-muon overlap removal 697 3830.19 0.80 0.01
track separation at vertex 688 3780.73 0.99 0.01

mll 18 98.91 0.03 0.00
OS vtx 18 98.91 1.00 0.00
cosmic 18 98.91 1.00 0.00
�R 0 0.00 0.00 0.00

Table 12.9: Event-level selection cutflow, using the GGM selection, for the MC-
simulated DY sample. The quantities Nevt and N scaled

evt are the raw and scaled (to
32.9 fb�1) numbers of events, respectively, selected after applying all cuts in that row
and above. The quantity "rel [%] is the e�ciency of the cut relative to the previous
row and "tot [%] is the total e�ciency, after appling all cuts up to and including that
row.
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selection Cut Nevt N scaled
evt "rel [%] "abs [%]

none 4167729 1037960.00 1.00 1.00
Trigger 3891081 969058.00 0.93 0.93

GRL & PV 3891081 969058.00 1.00 0.93

> 1 MSonly tracks 2186745 544600.00 0.56 0.52
min pT 647743 161318.00 0.30 0.16
min d0 647743 161318.00 1.00 0.16

chamber removal 457189 113861.00 0.71 0.11
�d0 removal 221849 55250.60 0.49 0.05

fiducial volume 221117 55068.30 1.00 0.05
isolation 71741 17866.80 0.32 0.02

jet-muon overlap removal 51919 12930.20 0.72 0.01
track separation at vertex 51300 12776.10 0.99 0.01

mll 41320 10290.60 0.81 0.01
OS vtx 41222 10266.20 1.00 0.01
cosmic 41009 10213.10 0.99 0.01
�R 3 0.75 0.00 0.00

Table 12.10: Event-level selection cutflow, using the GGM selection, for the MC-
simulated tt̄ sample. The quantities Nevt and N scaled

evt are the raw and scaled (to
32.9 fb�1) numbers of events, respectively, selected after applying all cuts in that row
and above. The quantity "rel [%] is the e�ciency of the cut relative to the previous
row and "tot [%] is the total e�ciency, after appling all cuts up to and including that
row.

110



B MC normalization

MC simulations are used sparingly in the analysis, however global discrepancies

between the MC simulated events and data exist and must be corrected. These

discrepancies are primarily due to trigger and reconstruction e�ciency mismodelling

in simulation. A SF correction is found by taking the ratio of data to Z+jets MC

simulation, with the preselection requirements applied, the SR min(�R) cut inverted,

and the requirement that 70 < mll < 100 GeV, as shown below.

SFZ =
Ndata � ⌃Ni,non-Z+jets

NZ+jets

(12.1)

The non-Z+jets component of the data is removed using the MC predictions from

all available non-Z+jets samples. All MC simulation samples receive the same normal-

ization SF. It is not possible to create selections that isolate the other SM backgrounds

well enough to derive accurate SFs. Additionally the minor SM backgrounds account

for less than 1% of the total SM background in the selection used for normalization.

The resulting SF from this normalization procedure is given in Tab. 12.11. A

comparison of the mll distribution before and after normalization is given in Fig.

12.1. The excess in data for mll < 60 GeV is consistant in magnitude and location

with QCD multijet events. Any further use of the above discussed MC simulation

samples refers to their normalized predictions. Various normalized distributions in

CRSM are shown for both data and MC simulation in Fig. 12.2. Discrepancies between

data and MC simulation support the need for a data-driven background estimate.

Dataset normalization range SF
Z+jets 70 < mll < 100 GeV 0.888 ± 0.003

Table 12.11: The ratio between data and MC (SF) is given for the Z+jet MC dataset.
The preselection requirements are applied, the min(�R) requirement is inverted and
an additional requirement that 70 < mll < 100 GeV is used for all events considered.
The ratio is derived using 32.9 fb�1. The quoted uncertainty is purely statistical.
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Figure 12.1: Comparison of the mll distribution (a) before, and (b) after normal-
ization for vertices passing preselection with the SR min(�R) requirement inverted.
The uncertainties on data and MC simulation are purely statistical.
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Figure 12.2: The normalized distributions of (a) mll, (b) lead µ pT , (c) lead µ �,
(d) lead µ ⌘, (e) lead µ � R, (f) subleading µ � R, (g) lead µ d0, and (h) rvtx for
displaced vertices passing preselection with the SR min(�R) requirement inverted.
The uncertainties on data and MC simulation are purely statistical.

113



C Signal truth distributions

The truth level distributions of d0, Lvtx, pT, and the opening angle between the

two muons in the vertex are given in Fig. 12.3, for the dark photon model, and Fig.

12.4, for the GGM SUSY model.
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Figure 12.3: The truth level distribution for (a) d0, (b) Lvtx, (c) pT, and (d) the
opening angle between the two muons in the vertex. The distributions are derived
from signal events with a BSM long-lived dark gauge boson, ZD, that decays to µ+µ�.
The shaded bands represent the statistical uncertainty only.
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Figure 12.4: The truth level distribution for (a) d0, (b) Lvtx, (c) pT, and (d) the
opening angle between the two muons in the vertex. The distributions are derived
from signal events with a BSM long-lived neutralino, �̃

0
1, decaying to a Z boson (with

Z ! µ+µ�) and a gravitino. The shaded bands represent the statistical uncertainty
only.
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D Diagonal covariance matrix elements

The covariance matrix expresses the uncertainties on a set of track parameters,

and is crucial in understanding their quality. Our primary physics objects are MuSA

tracks, whose track parameters and corresponding covariance matrix are given with

respect to a point in the inner most station of the MS. Both the track parameters

and covariance matrix are propagated inward until they are expressed with respect

to the IP. The original and extrapolated diagonal covariance elements are displayed

in Fig. 12.5 and Fig. 12.6 for the barrel and endcap respectively. In the barrel the

uncertainties are as one would expect (i.e. they have reasonable original values, which

then spread during extrapolation.) In the endcap however the original values for �d0

have obviously unphysical values. It is not clear what is the cause of this, but it is

beyond the scope of this analysis. For this reason a cut of �d0 < 20 cm is used to

maintain the quality of tracks used in the analysis.

In our analysis, extrapolation of MuSA tracks is done privately, however this is

also done as part of the nominal muon reconstruction chain for pointing tracks (so

called exMuSA). The diagonal covariance elements for exMuSA tracks are displayed

in Fig. 12.7 and Fig. 12.8 for the barrel and endcap respectively. In both regions,

there are large spikes for the �d0 . This implies that when the covariance elements for

a MS track are unphysically large they are artificially set to a small value (0.5992).
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Figure 12.5: The two dimensional distributions of (a) �d0 , (b) �z0 , (c) ��, (d) �✓,
and (e) � q

|P |
are shown for tracks in the barrel with the unextrapolated value on the

x-axis and the extrapolated value on the y-axis. The distributions are derived from
Z+jets events.
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Figure 12.6: The two dimensional distributions of (a) �d0 , (b) �z0 , (c) ��, (d) �✓,
and (e) � q

|P |
are shown for tracks in the endcap with the unextrapolated value on the

x-axis and the extrapolated value on the y-axis. The distributions are derived from
Z+jets events.
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Figure 12.7: Distributions of (a) �d0 , (b) �z0 , (c) ��, (d) �✓, and (e) � q
|P |

are shown

for exMuSA tracks in the barrel. The distributions are derived from Z+jets events.
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Figure 12.8: Distributions of (a) �d0 , (b) �z0 , (c) ��, (d) �✓, and (e) � q
|P |

are shown

for exMuSA tracks in the endcap. The distributions are derived from Z+jets events.
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