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ABSTRACT 

 

MECHANISM OF REGULATION OF KINESINS EG5 AND KIF15 BY TPX2 

FEBRUARY 2018 

SAI KESHAVAN BALCHAND, B.TECH., ANNA UNIVERSITY CHENNAI 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Patricia Wadsworth 

  

 Cell division is the fundamental process by which the replicated genetic material 

is faithfully segregated to form two identical daughter cells. The mitotic spindle is the 

macromolecular cytoskeletal structure that is built during every round of cell division to 

successfully separate the duplicated genome equally into the daughter cells. Errors in 

spindle formation can thus cause genetic aberrations and can potentially lead to cancer. 

Understanding the mechanisms that govern proper spindle assembly and function is thus 

important. Eg5 and Kif15 are two important kinesins which play a major role in 

establishing and maintaining bipolarity of the mitotic spindle. Both Eg5 and Kif15 have 

been shown to be regulated by the spindle assembly factor Targeting Protein for Xklp2, 

or TPX2 the mechanistic details of which remains less clear. The studies presented in this 

dissertation are aimed at understanding how TPX2 regulates Eg5 and Kif15 using a 

combination of in vitro reconstitution experiments and live cell imaging.  

 The microtubule co-sedimentation experiments show that removal of the Eg5 

interaction domain located on the C-terminus of TPX2 does not abolish the microtubule 

binding ability of TPX2. My data show that the microtubule binding of TPX2 is 



vii 
 

electrostatic but does not involve the negatively charged tubulin E-hook region. In in 

vitro reconstitution Total Internal Reflection Fluorescence (TIRF) experiments, the Eg5-

EGFP molecules derived from mammalian cells extracts display biophysical properties 

similar to the purified Eg5-EGFP molecules. In single molecule TIRF assays, full length 

TPX2 inhibited Eg5 motion on microtubules and removal of the Eg5 interaction domain 

from the C-terminus of TPX2 (TPX2-710) significantly reduced the inhibitory effect of 

TPX2 on Eg5. Data from microtubule surface gliding assays using monomeric and 

dimeric Eg5 molecules show that dimerization of Eg5 or the residues located in the neck 

and stalk region of Eg5 are important for the interaction of TPX2 with Eg5. These results 

suggest that both microtubule binding and ability of TPX2 to interact with Eg5 contribute 

to the regulation of Eg5 by TPX2. 

 My data show that the presence of C-terminus of TPX2 enhances Kif15 

recruitment of Kif15 onto spindle microtubules and is also required for Eg5 independent 

bipolar spindle assembly. Characterization of Kif15-GFP molecules from cell extracts 

suggest that the motor molecules exist as tetramers. In single molecule TIRF 

experiments, only full length TPX2 suppresses Kif15 motor walking but not the C-

terminally truncated TPX2-710. In live cells, fluorescent Kif15-GFP puncta stream 

towards microtubule plus-ends at rates consistent with microtubule growth rates. 

Treatment with Paclitaxel suppresses the motility of Kif15 puncta suggesting that 

dynamic microtubules contribute to the Kif15 behavior in cells. These results offer some 

mechanistic insights into how TPX2 regulates both the motors Eg5 and Kif15 through its 

C-terminus.    
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of cell division 

Biology of all living entities is defined by their ability to utilize energy for 

growth, interact with and adapt to the surrounding environment and reproduce. So, 

heritable traits that offer a competitive advantage in performing these functions more 

efficiently must be passed on faithfully to the next generation without errors. Hence, error 

free replication of genetic material and its subsequent segregation into its progeny 

assumes importance.  

Multicellular organisms utilize a unique type of cell division called mitosis to 

create two identical copies of the mother cell. During every round of mitotic cell division, 

the DNA is replicated and segregated equally to two daughter cells by building a self-

assembling structure called the mitotic spindle. The mitotic spindle is a macromolecular 

structure comprised of a large number of proteins. The skeletal framework of the spindle 

is formed by microtubules, which are dynamic polymers comprised of tubulin subunits. 

The microtubules get attached to specific sites on the duplicated chromosomes called 

kinetochores and separate the sister chromatids and help segregate the two sets of 

chromosomes to the opposite ends of the cell. Errors during this segregation process can 

lead to aneuploidy which is frequently observed in cancer. The microtubule cytoskeleton 

undergoes extensive structural reorganization during different stages in the cell cycle to 

remain robust and correct errors that may arise before segregation and successfully 

maintain genetic identity between the newly formed daughter cells.  



2 
 

1.2 Properties of microtubules 

Tubulin exists in the soluble fraction of cytosol as an obligate heterodimer 

comprised of one α and one β tubulin subunit. The heterodimers associate end to end 

through non covalent interactions forming a protofilament. Lateral interactions between 

the tubulin monomers in the protofilament results in the formation of a higher order 

structure namely the microtubule which is comprised of 13 protofilaments wound around 

a hollow core (Ledbetter and Porter., 1963; Ledbetter and Porter 1964). 

The growth of microtubules is governed by the recruitment of tubulin monomers 

from the solution to the ends of the protofilaments. However, the two ends of 

microtubules have dissimilar rates of polymerization thus making microtubules polar 

filaments with a fast growing plus end and a slow growing minus end. The plus end has 

an exposed β tubulin and the minus end has an exposed α tubulin subunit (Mitchison TJ., 

1993). This also gives a defined structural polarity to the microtubules. Tubulin 

polymerization is also coupled with hydrolysis of the guanosine triphosphate nucleotide 

associated with the tubulin monomers (Mitchison, 1993). The catalytic hydrolysis of this 

nucleotide generates structural changes that destabilize the lateral interactions between 

protofilaments resulting in disassembly of the microtubules (Mitchison and Kirschner, 

1984). The rate of nucleotide hydrolysis is slower than the polymerization and hence the 

microtubules grow faster after nucleation. As the available pool of soluble tubulin 

decreases due to polymerization, the growth rate slows and the rate of GTP hydrolysis 

catches up resulting in disassembly. Thus, the constant assembly and disassembly of 

microtubules during steady state gives the microtubule cytoskeleton an ability to self-
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organize and be malleable to reorganization in response to external stimuli (Mitchison 

and Kirschner, 1984). 

During interphase, the microtubules are nucleated and arranged radially around 

the microtubule organizing center (MTOC) with the minus ends anchored at the MTOC 

and the plus ends directed towards the periphery of the cells (Borisy et al., 1978; 

Heidemann et al., 1980; Euteneuer et al., 1981). In mammalian cells, the centrosome 

functions as the MTOC and is composed of a pair of centrioles surrounded by 

pericentriolar material. The interphase microtubules are still dynamic, switching between 

assembly and disassembly (Mitchison and Kirschner, 1984). As the cell enters S phase, 

the centrosomes are duplicated along with DNA and the duplicated centrosomes remain 

closely associated till the beginning of prophase when they separate towards opposite 

sides of the cell which would later become the opposite poles of poles of the spindle. The 

microtubules emanating from the centrosomes are highly dynamic especially during 

mitosis (Rusan et al., 2001). The microtubules attach onto specific sites on chromatin 

called kinetochores which facilitates the movement of duplicated chromosomes towards 

the center of the cell between the two centrosomes. The establishment of bipolar 

symmetry helps ensure the generation of tension at the kinetochores and satisfy the 

spindle assembly checkpoint following which the separated chromatids move towards the 

opposite poles of the cell during anaphase. The extensive reorganization of the 

microtubules from a radial array during interphase to a bipolar structure during mitosis is 

brought about by the concerted efforts of many proteins that include microtubules, 

microtubule based motor proteins, other non-motor microtubule associated proteins 
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called MAPs that regulate dynamics of the microtubule cytoskeleton and the microtubule 

based motors.  

1.3 Overview of microtubule motor proteins in mitosis 

The microtubule motor proteins are the family of microtubule binding proteins 

that can translocate on the microtubule tracks powered by the energy derived from 

hydrolysis of ATP. As microtubules are structurally polar filaments, motor proteins can 

be plus end directed or minus end directed with some motors capable of bidirectional 

motion (reviewed in Hirokawa and Noda, 2008). The ability of motor proteins to traverse 

microtubules directionally and bind to cargo molecules places them in a unique position 

to help achieve spatial control and non-random distribution of cellular components 

(Barlan et al., 2013). The major microtubule based motor proteins that play an important 

role in cell division include proteins from the kinesin superfamily and cytoplasmic 

dynein. Checkpoint proteins, chromosomes, and microtubules have been shown to be 

cargo molecules for some of these motor proteins. Hence, these motor proteins play an 

important role in spindle organization, chromosome alignment, spindle positioning and 

checkpoint silencing (reviewed in Welburn, 2012; Raaijmakers and Medema, 2014). 

Several non-motor microtubule associated proteins can also contribute to mitotic spindle 

formation by regulating the motor proteins that help reorganize the microtubule 

cytoskeleton.  

1.3.1 Kinesins in cell division 

 Following the initial discovery of the first kinesin protein (Vale et al., 1985), 

many kinesin like proteins have been subsequently characterized and arranged into 14 
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families (Lawrence et al., 2004). Based on sequence, structure and function, most 

kinesins are organized into different domains namely the motor head, neck linker, stalk 

region and tail. Sequence analysis has shown that the motor head region is highly 

conserved whereas the regions of the neck linker, stalk and the tail are highly variable 

giving functional versatility to the kinesin superfamily. The highly conserved kinesin 

motor head contains the nucleotide binding pocket and harbors the microtubule binding 

site. The state of nucleotide hydrolysis is sensed by the binding pocket and has been 

shown to govern the affinity of the motor head to bind to microtubules (Rice et al., 1999; 

Sindelar et al., 2002). Position of the motor head either at the N or the C terminus of the 

primary polypeptide sequence determines whether the motor is plus or minus-end 

directed. The neck linker serves as a short arm lever and helps transmit the force from the 

ATP binding pocket when the nucleotide is hydrolyzed to the stalk (Rice et al., 1999; 

Case et al., 2000). The stalk region of most kinesin like proteins contain residues that 

participate in coiled coil interactions that help the motor molecules oligomerize. Many 

kinesins have a variable tail region that binds to different accessory proteins which helps 

in cargo binding (reviewed in Hirokawa et al., 2009). The extended tail region also 

harbors sites for protein-protein interactions that help in cargo selectivity and can 

undergo post translational modifications to achieve temporal control over activity of the 

motor (Rice et al., 1999). Thus, small modulations in the ATP hydrolytic cycle and non-

motor domains can give rise to the large variety of kinesins with different biophysical 

properties like speed, processivity and load bearing capacity that is customized to suit its 

function.  
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To identify all kinesins that have important roles during mitosis, a high 

throughput siRNA screen in Drosophila S2 cells was performed (Goshima et al., 2003). 

Seven kinesins were found to have a major effect on spindle phenotypes. siRNA against 

Kinesin-5 homologue Klp61F caused monopolar spindles and prevented cell division.  

siRNA against kinesins Klp67A [Kinesin-8] and Klp10A [Kinesin-13] also caused 

monopolar spindles which later resolved to bipolar spindles through Klp61F activity. 

siRNA against CENP meta [Kinesin-7], Klp3A [Kinesin-4] and Nod [Kinesin-10] caused 

chromosome misalignment and the effects of motors were found to be additive. Depletion 

of the minus end directed kinesin Ncd [Kinesin-14] caused splayed poles. From this 

study, it was also found that functions of some kinesins were redundant and could be 

compensated by the activity of another motor. 

A subsequent high throughput siRNA screen targeting human kinesins in Hela 

cells identified additional kinesins that are involved in cell division (Zhu et al., 2005). 

Zhu et al identified 5 additional kinesins on top of the 7 which was also identified in the 

screen performed by Goshima et al. Kif14 [Kinesin-3] and Kif18A [Kinesin-8] were 

found to be required for proper chromosome alignment and congression. Kif4A and 

Kif4B [Kinesin-4 family] were found to have functions in anaphase spindle dynamics. 

MKLP1 and MKLP2 [Kinesin-6 family] were found to be essential for cytokinesis. 

Several studies have later identified the functions of these kinesins and their respective 

roles in cell division in more detail. Kinesin-8 or Kif18A is a plus-end directed kinesin 

that accumulates at the plus-ends of the kinetochore fibers and modulates the dynamics of 

the kinetochore microtubules (Stumpff et al., 2012). MCAK or Kinesin-13 localizes at 

the kinetochores and spindle poles and depolymerizes the microtubule ends to regulate 
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spindle length and microtubule dynamics (Wordeman et al., 2007). CENP-E or kinesin-7 

localizes to kinetochores and walks on the microtubules towards the plus ends thereby 

pushing the chromosomes towards the spindle equator and plays a critical role in 

chromosome alignment (Wood et al., 1997; Schaar et al., 1997). Though not identified in 

many siRNA screens for identifying kinesins with roles in cell division, Kif15 [Kinesin-

12] is plus-end directed kinesin that binds to microtubules and has been shown to be 

required to maintain spindle bipolarity in the absence of Eg5 [Kinesin-5] (Tannenbaum et 

al., 2009; Vanneste et al., 2009). Thus, the vast array of kinesins control different aspects 

of microtubule dynamics, reorganization and spindle formation. 

1.3.2 Cytoplasmic dynein in cell division 

 Cytoplasmic dynein is a major minus end directed motor protein that forms a 

large multiprotein complex. By interacting with a variety of adapter complexes, it 

performs several important functions during cell division that include spindle positioning, 

spindle pole organization, microtubule transport in the spindle and removal of mitotic 

checkpoint proteins from the kinetochores which are microtubule attachment sites located 

at the centromeres of chromosomes (reviewed in Raaijmakers and Medema, 2015). The 

minus-end directed force production by cytoplasmic dynein counters the kinesin 

dependent plus-end directed force to help stabilize the bipolar spindle (Ferenz et al., 

2009).   
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1.4 Roles played by non-motor microtubule associated proteins (MAPs) in cell 

division 

  Several non-motor microtubule associated proteins (MAPs) can associate with 

microtubules and modulate spindle architecture. These proteins, sometimes referred to as 

structural MAPs, can alter the spindle architecture by interacting directly with the 

microtubule cytoskeleton or by regulating proteins which help organize the spindle. Some 

examples of MAPs and their functions are discussed here.  MAPs like Targeting Protein 

for Xklp2 (TPX2) and augmin are necessary for nucleating microtubules around 

chromosomes without which the density of spindle microtubules is reduced (Gruss et al., 

2002; Tulu et al., 2006; Goshima et al., 2008). More recently, TPX2 and augmin have 

also been shown to be required in the nucleation of nascent microtubules from pre-

existing microtubules (Petry et al.,2013; Scrofani et al., 2015). MAPs like End Binding 

protein 1 (EB1) and XMAP 215 can associate with the growing plus ends of microtubules 

and modulate polymerization rate (Zanic et al., 2013). EB1 is also required for a host of 

other proteins to localize at the growing plus ends of the microtubules for its function and 

thus serves as an important master plus-end tip tracker of microtubules (Komarova et al., 

2005). MAPs can bind to microtubules and also increase rescue frequency as evidenced 

in the case of MAP4 (Holmfeldt et al., 2002). Proteins like CLASPs can also bind to 

microtubules and alter microtubule dynamics at plus ends (Maiato et al., 2003). MAPs 

like patronin can bind to minus ends of microtubules and act as a capping protein 

preventing depolymerization at the minus ends (Goodwin et al., 2010). Some MAPs can 

bundle selective subset of microtubules like PRC1 which preferentially binds and bundles 

anti-parallel sets of microtubules (Subramanian et al., 2010). MAPs have also been 
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shown to regulate the motor localization and function. For example, TPX2 has been 

shown to regulate the recruitment to the kinesin Eg5 to the spindle and alter its motile 

properties on microtubules (Eckerdt et al., 2008; Ma et al., 2010; Ma et al., 2011). The 

MAP She1 has been shown to regulate cytoplasmic dynein activity in Saccharomyces 

cerevisiae (Markus et al., 2012).  

 With a vast array of proteins that can govern the generation, reorganization, 

maintenance and efficient functioning of the mitotic spindle, the spindle formation 

remains robust enough to enable quick changes that allow corrections when errors occur. 

Many functions in the spindle are carried out by several redundant proteins which 

contribute to this robustness. Because of presence of multiple proteins with redundant 

functions, it is possible to achieve a functional spindle by multiple mechanisms though 

the mechanism of action of these different proteins might be different. Hence, proteins 

essential in one organism may be dispensable in another organism and can be 

compensated by another protein.  

1.5 Kinesin Eg5 

BimC was the first kinesin-5 family member identified in a genetic screen in 

Aspergillus and named thus for causing a “blocked in mitosis” phenotype (Enos and 

Morris 1990). Homologues of BimC have been identified in different organisms and 

found to be conserved from yeast to humans (Roof et al., 1992; Sawin et al., 1992; 

Blangy et al., 1995). BimC proteins are characterized by the presence of a head and a 

conserved region in the tail called BimC box which gets phosphorylated by CDK during 

mitosis. Phosphorylation of BimC box helps these proteins bind to spindle microtubules 
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(Blangy et al., 1995). BimC homologues have been later classified as members of 

kinesin-5 protein family. In most organisms, the kinesin-5 family of proteins has been 

shown to be necessary for the separation of the spindle pole bodies or centrosomes after 

duplication and is thus very important in establishing bipolarity of the spindle early in 

mitosis. In almost all eukaryotes with the exception of C.elegans, Kinesin-5 motors are 

essential to form a bipolar spindle (Roof et al., 1992; Sawin et al., 1992; Blangy et al., 

1995; Hoyt et al., 1992). 

Electron micrographs of Drosophila kinesin-5 homologue KLP61F showed that 

these molecules are homotetramers with two heads each on either end of the molecule 

separated by a long stalk formed by the coiled coil region giving it an appearance of a 

dumbbell (Kashina et al., 1996). It was postulated that this characteristic arrangement of 

motor heads could help kinesin-5 molecules to bind to two microtubule filaments 

simultaneously and slide them apart generating an outward force to help separate the 

centrosomes (Kashina et al., 1996) and was later elucidated through in vitro 

reconstitution experiments using purified Eg5 molecules (Kapitein et al., 2005).  

 The localization of kinesin-5 during interphase is cytosolic. Kinesin-5 gets 

recruited onto the spindle fibers during cell division by phosphorylation of the BimC box 

by CDK (Blangy et al., 1995). After recruitment to the spindle early in mitosis, kinesin-5 

motors help separate the duplicated centrosomes establishing bipolarity. Removal of 

kinesin-5 from cells by depletions or small molecule inhibitions give rise to monopolar 

spindles in most organisms and cells fail to complete mitosis (Mayer et al., 1999, Kapoor 

et al., 2000). However, it has also been shown that kinesin-5 is not required for 

maintenance of the bipolarity of the spindle as evidenced by the insensitivity of tissue 
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culture cells to kinesin-5 inhibitors after establishment of metaphase (Tannenbaum et al., 

2009; Ferenz et al., 2010). This suggests that though kinesin-5 is essential for 

establishment of bipolarity in most organisms, it is dispensable for maintenance of 

bipolarity. In S. cerevisiae, the kinesin-5 homologue cin8 has been shown to be also 

necessary for maintain a bipolar spindle and avoid collapsing (Hoyt et al., 1992).  

 In in vitro experiments, kinesin-5 molecules have been shown to walk on single 

microtubules at approximately 20nm/s and are slow motors in comparison with 

conventional kinesin-1 which walks at speeds greater than 350nm/s (Kapitein et al., 2005; 

Block et al., 1990). It has also been shown that Xenopus Eg5 switches from 

predominantly diffusive motion on a single microtubule to being highly directed when 

engaged between two anti-parallel microtubules (Kapitein et al., 2005; Kwok et al., 2006) 

sliding the microtubules at a maximum rate of 40nm/s. Thus, the kinesin-5 molecules can 

generate a net outward directed force in the spindle when engaged between overlapping 

anti-parallel microtubules. This outward force is countered by the minus-end directed 

motor cytoplasmic dynein (Ferenz et al., 2009). In cells, inhibition of dynein or kinesin-5 

alone results in a destabilized spindle. But, inhibition of both motors restores spindle 

bipolarity suggesting that the balance of forces is necessary for efficient spindle function 

(Ferenz et al., 2009).  

 Apart from being post translationally regulated by the kinase CDK, kinesin-5 

molecules have been shown to be regulated by the MAP TPX2 (Eckerdt et al., 2008; Ma 

et al., 2010). TPX2 enhances the localization of kinesin-5 onto spindle fibers in cells and 

has been shown through in vitro experiments to be a negative regulator of Eg5 motion on 

microtubules thereby potentially regulating its outward force generation (Ma et al., 2011). 
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Removal of the last 37 residues of TPX2 changes the localization of Eg5 on the spindle 

microtubules and causes defective spindles suggesting that these residues of TPX2 play a 

role in regulating Eg5 function (Ma et al., 2011). Thus, the kinesin-5 motors are tightly 

regulated throughout the cell cycle.  

1.6 Kinesin-12 or Kif15 

 Kinesin-12 or Kif15 is a plus end directed kinesin that was initially discovered as 

in a siRNA screen to identify proteins playing a role of maintaining the bipolarity of the 

spindle. In the screen, siRNA treated cells were first arrested in metaphase using MG132, 

then treated with STLC to inhibit Eg5 and ability of cells to maintain bipolarity was 

scored (Tannenbaum et al., 2009). While not essential for cell viability under normal 

conditions, Kif15 becomes necessary for viability when Eg5 function is compromised. In 

the absence of Eg5, exogenous expression of Kif15 was found to be sufficient to 

assemble functional bipolar spindles (Tannenbaum et al., 2009; Sturgill et al., 2013). 

 Kif15 contains a conserved kinesin motor head at its N-terminus and has a long 

C-terminal tail that contains a leucine zipper domain that helps Kif15 oligomerize. 

Though Kif15 contains a microtubule binding motor domain, the microtubule binding of 

Kif15 on the mitotic spindle depends on the presence of the microtubule associated 

protein TPX2 (Vanneste et al., 2009; Tannenbaum et al., 2009). The C terminal leucine 

zipper region of Kif15 has also been shown to be necessary for its TPX2 dependent 

localization onto the spindle microtubules (Tannenbaum et al., 2009). Initial models 

suggested that TPX2 helps the dimeric Kif15 localize to the spindle microtubules and 

help maintain bipolarity (Tannenbaum et al., 2009; Vanneste et al., 2009). Recently, it 



13 
 

was also shown that recruitment of Kif15 on the mitotic spindle microtubules is enhanced 

through post translational modifications mediated by aurora A kinase (Van Heesbeen et 

al., 2016) 

 Kif15 has been shown to bind to spindle microtubules and play a role in 

controlling pre-anaphase spindle length (Tannenbaum et al., 2009; Sturgill et al., 2013). 

Recent studies have also shown that elevated Kif15 expression can stabilize kinetochore 

microtubules bundles and help form bipolar spindles when Eg5 function is compromised 

(Sturgill et al., 2013; Gayek and Ohi, 2014). Purified molecules of Kif15 directly binds to 

microtubules and processively walk towards plus ends in in vitro reconstitution 

experiments. Kif15 binds to microtubule pairs and can bundle microtubules (Drechsler et 

al., 2014). Contradicting results have been observed for oligomeric state of purified Kif15 

molecules with two groups independently showing the molecule to be a dimer and 

tetramer respectively (Sturgill et al., 2014; Drechsler et al., 2014). Determination of the 

oligomeric state of the Kif15 molecules in their native state will help in developing 

models for the mode of action of Kif15 on the mitotic spindle.   

1.7 Targeting protein for Xklp2 (TPX2) 

TPX2 was initially discovered to be a factor essential for targeting Xenopus 

kinesin like protein 2 (Xklp2) onto the mitotic spindle poles (Wittmann et al., 1998). 

TPX2 is a microtubule associated protein that plays several important roles in mitosis and 

is necessary for cell division across different species (Wittmann et al., 2000; Gruss et al., 

2001; Gruss et al., 2002; Garrett et al., 2002; Goshima, 2011). The primary sequence of 

TPX2 contains a nuclear localization signal near its amino-terminus and thus localizes in 
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the nucleus during interphase (Trieselmann et al., 2003). After the nuclear envelope 

breaks down, Ran
GTP

 regulates the release of TPX2 from importin α near the vicinity of 

chromosomes and TPX2 subsequently localizes on spindle microtubules throughout 

mitosis (Gruss et al., 2001; Gruss et al., 2002; Schatz et al., 2003).   

In cells, TPX2 is one of the necessary components for de novo microtubule 

nucleation around chromosomes and thus plays an important role in the chromatin 

derived microtubule assembly (Gruss et al., 2002, Tulu et al., 2006, Bird and Hyman, 

2008). The role of TPX2 in microtubule nucleation has also been captured in many in 

vitro reconstitution studies. As a microtubule binding protein, TPX2 has been 

demonstrated to nucleate microtubule asters when incubated with pure tubulin (Schatz et 

al., 2003; Brunet et al., 2004). In Xenopus extracts, TPX2 is required for nucleation of 

branched microtubules from the sides of existing microtubules (Petry et al., 2013). TPX2 

has also been shown to be necessary for Ran GTP mediated microtubule nucleation in 

Xenopus extracts by acting as a scaffold and forming a complex with proteins RHAMM 

and γTURC (Scrofani et al., 2015). Further, TPX2 can also suppress microtubule 

assembly kinetics at microtubule plus ends and act synergistically with chTOG to 

promote microtubule nucleation (Roostalu et al., 2015; Reid et al., 2016).  

  TPX2 has been shown to be necessary for targeting different spindle assembly 

factors to the spindle microtubules during cell division. The N terminus of TPX2 binds 

and activates the kinase aurora A and subsequently targets it to the spindle microtubules 

(Kufer et al., 2002; Bayliss et al., 2003; Tsai et al., 2003; Eyers and Maller, 2004). TPX2 

has also been demonstrated to be necessary for effective spindle localization of kinesins 

Xklp2 and Eg5 (Wittmann et al., 1998; Eckerdt and Maller, 2008; Ma et al., 2011).  
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1.8 Motivation for the study 

 Previous works have identified Eg5 and Kif15 to be the chief plus-end directed 

force generators in the mitotic spindle and help establish and maintain bipolarity during 

the assembly process. The MAP TPX2 interestingly plays a role in localization of both 

these motors on the spindle microtubules and is known to regulate them. The C-terminal 

amino acid residues of TPX2 are required for interacting with Eg5 and regulating it on 

the spindle. However, the requirements for TPX2 regulation of Kif15 are not completely 

understood. The experiments presented in these chapters aim at understanding the 

regulation of Eg5 and Kif15 by TPX2 at the molecular level using single molecule in 

vitro reconstitution experiments. Understanding this could help elucidate how the same 

MAP TPX2 regulates two similar motors Eg5 and Kif15 using the same domain. 
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CHAPTER 2 

TPX2 INHIBITS EG5 BY INTERACTION WITH BOTH MOTOR AND 

MICROTUBULE 

This chapter is adapted from Balchand et al., 2015. The TPX2 Halo tag proteins were 

cloned, purified and labeled by Barbara J Mann. The single molecule TIRF experiments, 

experiments to determine dwell times of TPX2 and data analysis were performed in 

collaboration with Barbara J Mann. 

2.1 Introduction 

Accurate chromosome segregation during cell division requires the assembly and 

function of the mitotic spindle. The spindle is composed of a bipolar array of dynamic 

microtubules that are required for chromosome alignment and segregation. Mitotic motor 

proteins play important roles in regulating microtubule organization and dynamics and in 

generating the forces required for spindle formation and chromosome motion. Despite the 

characterization of many mitotic motor proteins, how their activity is regulated both 

spatially and temporally in the spindle remains incompletely understood (Walczak et al., 

2008). 

TPX2 is a conserved mitotic microtubule-associated protein (MAP) that was 

originally identified as a protein required for the dynein-dependent targeting of the 

Xenopus kinesin Xklp2 to mitotic spindle poles (Wittmann et al., 1998). In mammalian 

cells, TPX2 localizes to the nucleus in interphase and to the spindle in mitosis with 

enrichment near spindle poles (Gruss et al., 2002; Garrett et al., 2002). Depletion of 
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TPX2 using siRNA results in short bipolar or multipolar spindles that fail to progress 

through mitosis (Gruss et al., 2002; Garrett et al., 2002). The N-terminus of TPX2 binds 

and activates the mitotic kinase Aurora A and is required to localize the kinase to spindle 

microtubules (Kufer et al., 2002; Bayliss et al., 2003; Eyers et al., 2004). During spindle 

formation, TPX2 is required for microtubule formation near kinetochores, an activity that 

requires GTP-bound Ran, which relieves the inhibitory action of importin α/β on TPX2 

(Tulu et al., 2006). In addition, it has been demonstrated that the C-terminus of TPX2 

binds to the bipolar kinesin Eg5 and targets the motor to spindle microtubules (Ma et al., 

2010; Eckerdt et al., 2008). Expression of TPX2 lacking the C-terminal 35 amino acids, 

which contribute to Eg5 binding, results in defective spindles with greatly reduced Eg5 

on spindle microtubules, unfocussed spindle poles, and bent and buckled microtubules 

(Ma et al., 2011). 

Because Eg5 plays a critical and conserved function in establishing spindle 

bipolarity, it is important to understand how this motor is regulated in the spindle. 

Previous in vitro experiments have shown that purified TPX2 reduces the velocity of 

Eg5-dependent microtubule gliding and microtubule-microtubule-dependent sliding (Ma 

et al., 2011). Eg5 accumulation on microtubules is enhanced in the presence of full-length 

TPX2, but less in the presence of TPX2 lacking the Eg5 binding domain (Ma et al., 

2011). These results directly demonstrate that TPX2 inhibits the ability of Eg5 to 

translocate microtubules, but the mechanism of inhibition is not established.  

In this chapter, I used in vitro assays and single molecule TIRF microscopy to 

characterize the interaction of TPX2 with microtubules and to examine the behavior of 

Eg5 in the presence of TPX2. The results demonstrate that TPX2 blocks Eg5 motility 
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both by a direct interaction with Eg5 and by binding to microtubules and acting as a 

roadblock. Using microtubule gliding assays, I further show that dimeric, but not 

monomeric Eg5 is differentially inhibited by full-length and truncated TPX2. These 

experiments provide new insight into the microtubule-associated protein TPX2 and its 

regulation of the mitotic kinesin Eg5. 

2.2 Results 

2.2.1 TPX2 Binding to Microtubules  

To examine the regulation of mammalian Eg5 by TPX2, purified full-length 

TPX2 and a truncated version lacking the C-terminal 35 amino acids (referred to as 

TPX2-710) that mediate the interaction with Eg5 (Eckerdt et al., 2008; Ma et al., 2011) 

(Fig. 2.1A) was expressed and purified from sf9 cells. To characterize the microtubule 

binding of these proteins, microtubule co-sedimentation experiments were performed. 

Both full-length TPX2 and TPX2-710 co-sedimented with microtubules with apparent 

dissociation constants of 125 and 240 nM respectively (Fig. 2.1, B and C). Both full-

length and truncated TPX2 could be released from the microtubule lattice by adding 

increasing concentrations of KCl to the buffer, with negligible binding observed at 250 

mM KCl (Fig. 2.2A). This demonstrates that, like many other microtubule-associated 

proteins, TPX2 makes ionic interactions with the microtubule lattice. 

Microtubule-associated proteins are thought to make electrostatic interactions 

specifically with the negatively charged C-terminal E-hooks of tubulin, named for the 

abundance of glutamic acid residues in the tail region of tubulin (Paschal et al., 1989). To 

determine whether the E-hooks are either a requirement for or facilitate TPX2 binding to 
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microtubules, polymerized microtubules were digested with the enzyme subtilisin A to 

cleave off the E-hooks. Then, binding of fluorescently labeled Halo-tagged TPX2 and 

TPX2-710 to control and subtilisin-digested microtubules was measured. The results 

show that binding of full-length or truncated TPX2 to microtubules was not different for 

untreated when compared with subtilisin-digested microtubules (Fig. 2.2B). 

To examine the interaction of individual molecules of TPX2 with the microtubule, 

single molecule TIRF microscopy of fluorescently labeled Halo-tagged TPX2 full-length 

and TPX2-710 was performed. Individual molecules were stationary on the microtubule 

lattice, and at the concentration examined, no enrichment at either end of the microtubule 

was observed. The average dwell time of full-length TPX2-Halo, measured from image 

sequences acquired at 2-s intervals for 15 min, was 60.1 s (Fig. 2.2C). The average dwell 

time of Halo-tagged TPX2-710 was 46.6 s and was not statistically different from that of 

the Halo-tagged full-length TPX2. 

Together, these results demonstrate that TPX2 binds to the microtubule lattice 

with high affinity and that the C-terminal 35 amino acids do not contribute significantly 

to this interaction. Additionally, TPX2 does not require the tubulin E-hook for 

microtubule binding, suggesting that other tubulin residues are responsible for the 

interaction. 

2.2.2 Functional Eg5 from Mammalian Cell Extracts 

Cytoplasmic extracts (Cai et al., 2007) were prepared from a mammalian cell line 

stably expressing full-length, localization, and affinity purification- tagged Eg5 (hereafter 

referred to as Eg5-EGFP) expressed from a bacterial artificial chromosome under control 
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of the native promoter (Gable et al., 2012; Cai et al., 2007). The concentration of Eg5-

EGFP in the cell extracts was determined using Western blotting; values of 20–60 nM 

were obtained, depending on the extract (Fig. 2.3A). The concentration of TPX2 in these 

cytoplasmic extracts was less than ~1 nM, consistent with the localization of TPX2 to the 

nucleus during interphase (data not shown). 

To analyze Eg5-EGFP motors in cell extracts, the extract was diluted into motility 

buffer to achieve a final motor concentration of ~1 nM. Diluted extract was added to flow 

chambers containing rhodamine-labeled, Taxol-stabilized microtubules immobilized to 

the surface using anti-tubulin antibodies. Using TIRF microscopy, bright puncta were 

observed to bind to the microtubules in the absence of ATP. Upon the addition of ATP, 

robust motility of nearly all puncta was observed (Fig. 2.3B). Accumulation of motors at 

one end of microtubules in the field of view was frequently observed (Fig.2.3B), 

indicating that motors remain associated with the microtubule plus-end after motion. This 

is consistent with the previously observed tethering of microtubules near the microtubule 

end in sliding assays using Xenopus Eg5 (see below) (Kapitein et al., 2005). At higher 

motor concentrations, microtubules were uniformly coated with fluorescence, and 

individual puncta could not be resolved. The average velocity of individual puncta was 

14.7 ± 0.9 nm/s, (S.E.) (n = 205) similar to the velocity of purified Xenopus and 

Drosophila Eg5 motors (Kwok et al., 2006; Kapitein et al., 2008; van den Wildenberg et 

al., 2008) (Fig. 2.3D). The average association time of Eg5 with the microtubules was not 

determined because motors rarely dissociated over the course of a 10-min movie, and 

longer movies resulted in photobleaching of individual puncta. Finally, motor behavior 

was not altered following storage in liquid nitrogen for several weeks, so a single extract 
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could be used for multiple experiments, making this a robust and versatile method for 

studying motor behavior. 

To determine the directionality of motor motion, kinesin-1-EGFP, a plus-end-

directed motor, was added to the chamber, and the direction of motion was observed. 

Next, the chamber was washed with 5 chamber volumes of ATP-containing motility 

buffer to remove the kinesin-1-EGFP. Eg5-EGFP was added to the same chamber, and 

motor behavior was followed in the same field of view. In all cases, both kinesin-1-EGFP 

and Eg5-EGFP moved to the same end of the microtubule (Fig. 2.3C), demonstrating that 

the motile Eg5 puncta in the mammalian cell extract walk to the microtubule plus-end.  

Next, a single molecule TIRF microscopy based method was used to determine 

whether the Eg5-EGFP motors in the extract were present as tetramers. Because the cells 

expressing Eg5-EGFP also express endogenous Eg5, the motile motors could be 

composed of between one and four EGFP molecules. In this cell line, the Eg5-EGFP is 

not resistant to the siRNA designed to deplete endogenous Eg5 (Gable et al., 2012). 

Therefore, to estimate the number of labeled Eg5 motors in the motile puncta, 

endogenous Eg5 was depleted from parental cells cotransfected with siRNA-resistant 

Eg5-mEmerald and prepared cell extracts two days after transfection. The average 

fluorescence intensity of individual Eg5-mEmerald puncta was measured and compared 

with the fluorescence intensity of bacterially expressed kinesin-1-EGFP dimers imaged 

under identical conditions on the same day (Fig. 2.3E). On average, the Eg5-mEmerald 

puncta was twice as bright as the kinesin-1-EGFP dimers, indicating that Eg5 was 

predominately tetrameric. The increase in quantum fluorescence yield of mEmerald alone 

is not sufficient to explain the nearly 2-fold increase in fluorescence intensity (Day et al., 
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2009). Additionally, the siRNA may not deplete 100% of the endogenous Eg5, which 

could form tetramers with the Eg5-mEmerald, resulting in decreased observed 

fluorescence for some puncta.  

To determine whether the Eg5-EGFP molecules function as tetramers, the ability 

of Eg5-EGFP from extracts to cross-link and slide two microtubules was examined. To 

do this, Eg5-EGFP was added to immobilized microtubules in a flow chamber and then 

added additional microtubules. The added microtubules bound to the immobilized 

microtubules and were translocated upon the addition of ATP, demonstrating that Eg5-

EGFP was capable of cross-linking and sliding microtubules (Fig. 2.3F). In addition, the 

moving microtubule remained associated with the tip of the immobilized microtubule, 

consistent with previous observations (Kapitein et al., 2005). Together, these experiments 

demonstrate that Eg5-EGFP from extracts is tetrameric (Fig. 2.3, E and F). 

Next, size exclusion chromatography was performed on the extracts from LLC-

Pk1 cells. Due to the low abundance of Eg5-EGFP in these extracts, cells overexpressing 

Eg5-mEmerald were used to aid in the detection. The Western blots of the fractions 

obtained show that Eg5-mEmerald elutes around the same fractions as the Eg5-EGFP 

molecules, which are purified from SF9 insect cells, suggesting that the Eg5 molecules 

obtained from cell extracts are tetramers (Fig. 2.3G). To demonstrate that the bright 

motile puncta derived from the cell extract are Eg5 molecules, S-trityl-L-cysteine (STLC) 

or 2-[1-(4-fluorophenyl)cyclopropyl]-4-(pyridin-4-yl)thiazole (FCPT) was added in 

single molecule experiments, which specifically inhibit Eg5 (Groen et al., 2008; Skoufias 

et al., 2006). Each inhibitor completely stopped the motion of motile puncta (Fig.2.3H); 

in the presence of FCPT, motors remained bound to the microtubule lattice, whereas in 
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the presence of STLC, motors stopped walking and in many cases were released from the 

microtubule (Kwok et al., 2006) (Fig. 2.3H). 

Eg5 has been shown to exhibit diffusive behavior on microtubules at 

physiological salt concentration (Kwok et al., 2006; Weinger et al., 2011). To determine 

whether mammalian Eg5 present in diluted cell extracts showed similar diffusive 

behavior, increasing concentrations of KCl was added to the motility buffer and motor 

behavior was examined. At 20 mM KCl, the velocity of Eg5 was 12.1 nm/s, similar to 

that observed in 0 mM KCl, and the diffusion coefficient, D, obtained from plots of MSD 

over time, was 1588nm2/s. At 50 mM KCl, motor velocity dropped to 3 nm/s, and the 

value of D was 4556 nm2/s (Fig. 2.3I). These results demonstrate that motor processivity 

is dependent on the ionic conditions, consistent with previous results using Xenopus Eg5 

(Kapitein et al., 2008; Weinger et al., 2011). 

Together, these results show that Eg5-EGFP motors in mammalian cell extracts 

behave in a manner similar to purified Xenopus and Drosophila Eg5 tetramers. 

Specifically, the velocity, directionality, sensitivity to STLC and FCPT and diffusive 

behavior in higher ionic strength buffer are all consistent with previously reported 

properties of purified Xenopus and Drosophila kinesin-5 motors. The data presented here 

suggest that these motors are similar to insect and other vertebrate Eg5 motors and 

distinct from kinesin-5 motors from yeast that show directional switching (Roostalu et al., 

2011; Gerson-Gurwitz et al., 2011). Importantly, the similar properties of the mammalian 

motors strongly suggest that other components that are present in the cell extract do not 

have a major effect on motor behavior. 
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2.2.3 Interactions of TPX2 with the Microtubule and with Eg5 Both Contribute to 

Inhibition of Motility 

Previous work demonstrated that the gliding of microtubules by surface-attached 

Eg5 dimers is inhibited by full-length TPX2 and to a lesser extent by TPX2-710 (Ma et 

al., 2011). Full-length TPX2 also inhibits Eg5-mediated microtubule-microtubule sliding 

(Ma et al., 2011). In both of these assays, however, the behavior of populations of motors 

was examined, so how individual Eg5 molecules are regulated by TPX2 was not 

revealed. To gain a better understanding of the mechanism of inhibition of Eg5 by TPX2, 

single molecule TIRF experiments were performed combining Eg5 and TPX2 in the 

assay. 

To determine the effect of TPX2 on Eg5 behavior, the cytoplasmic extract 

containing Eg5-EGFP was diluted in motility buffer and added to chambers of 

immobilized microtubules, and motors were imaged. Next, TPX2 was added to the 

chamber during image acquisition (Fig. 2.4A). For these experiments, the velocity of 

motors following the addition of TPX2 is expressed as a percentage of the velocity prior 

to the addition of TPX2. The data show that full-length TPX2 is a potent inhibitor of the 

velocity of individual Eg5 motors; at 250 nM, TPX2 reduced Eg5 velocity by 83%, and 

at 50 nM, Eg5 velocity was reduced by 32% (Fig. 2.4B). 

To understand how the interaction of TPX2 with Eg5 contributes to motor 

inhibition, the experiment was repeated using TPX2-710. The addition of TPX2-710 also 

substantially reduced the velocity of Eg5-EGFP, indicating that microtubule binding by 

TPX2 contributes to the reduction in motor velocity. At low concentrations (50 nM), both 
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TPX2 and TPX2–710 showed similar inhibition of Eg5 (32 and 24%, respectively). 

However, at higher concentrations (250 nM), TPX2-710 was a less effective inhibitor of 

Eg5-EGFP than full-length TPX2 (inhibition of 53 and 83%, respectively) (Fig. 2.4B).  

The results further show that TPX2 reduces the velocity of Eg5-EGFP motors 

without inducing dissociation of most motors from the microtubule (Fig. 2.4A), consistent 

with the established role of TPX2 in targeting Eg5 to spindle microtubules (Ma et al., 

2011). In the presence of TPX2-710, more motors appeared to dissociate from the 

microtubule, although photobleaching precluded accurate quantification. In some cases, 

following the addition of TPX2 to the motility chamber, motors from solution associated 

with the microtubule, and these motors also moved with reduced velocity (Fig. 2.4A). 

To confirm the specificity of the Eg5-TPX2 interaction, full-length TPX2-Halo 

covalently tagged with an Alexa 660 ligand was added to kinesin-1-EGFP dimers in a 

single molecule assay (Fig. 2.4C). Consistent with prior results from microtubule gliding 

assays, TPX2 addition did not alter the motility of kinesin-1-EGFP (Ma et al., 2011).  

To visualize the interaction between Eg5 and TPX2 in the single molecule 

experiments, TPX2-Halo covalently tagged with an Alexa 660 ligand was used (Fig. 

2.4D). In this experiment, the addition of TPX2-Halo (at 20 nM) reduced the velocity of 

Eg5-EGFP. Analysis of kymographs showed that individual motors that encountered 

TPX2-Halo walked at reduced velocity. In some cases, a motor that shows reduced 

velocity can resume motion when it encounters an area of the microtubule that is 

relatively free of TPX2 (Fig. 2.4D (right panels)).  
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Experiments were also performed by premixing the motor and MAP where 50 nM 

TPX2 or TPX2-710 was premixed with the motor in motility buffer before addition to the 

chamber. This method allows Eg5 and TPX2 to potentially interact in solution, and both 

molecules are introduced to the chamber simultaneously (Fig. 2.4, E and F). This 

experiment also showed greater inhibition of Eg5-EGFP by the full-length compared with 

the truncated TPX2 (Fig. 2.4, E and F). Interestingly, premixing full-length TPX2 with 

Eg5-EGFP resulted in greater inhibition than when the same concentration of TPX2 was 

added to motors pre bound to microtubules (60% versus 32% inhibition; Fig. 2.4, B and 

F). This result indicates that when the motor and TPX2 bind to the microtubule at the 

same time, stronger inhibition results. In contrast, when TPX2 is added to motors already 

bound to microtubules, TPX2 can bind to the microtubule at sites distant from the motors 

and thus not immediately impact motor velocity. Interestingly, in the case of TPX2-710, 

inhibition of Eg5-EGFP was similar regardless of whether the motors were premixed or 

added sequentially (Fig. 2.4, B and F). 

Finally, to exclude the possibility that adding a Halo tag to TPX2 affected the 

TPX2-Eg5 interaction, as a control, inhibition of Eg5 by untagged and Halo-tagged TPX2 

was compared through single molecule experiments. As seen in Fig.2.4F, inhibition of 

Eg5-EGFP by TPX2 was not changed by the presence of the Halo tag, demonstrating that 

the Halo tag was not detectably affecting TPX2-Eg5 interaction (Fig. 2.4F). 

Together, the results of these experiments demonstrate that Eg5 in cytoplasmic 

extracts is inhibited by TPX2. Full-length TPX2, which can interact with Eg5 and with 

the microtubule, is a more potent inhibitor than TPX2-710, which lacks the Eg5 
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interaction domain. However, by binding to the microtubule lattice, TPX2-710 also 

substantially reduces the velocity of individual Eg5 puncta. 

2.2.4 TPX2 Differentially Inhibits Microtubule Gliding by Eg5 Dimers but Not 

Monomers 

To determine how Eg5-EGFP motors are inhibited by TPX2, microtubule gliding 

assays using Eg5 dimers and Eg5 monomers were performed. Dimers supported 

microtubule gliding at an average rate of ~20 nm/s. The velocity of gliding was reduced 

to ~ 6 nm/s by 250 nM full-length TPX2; the addition of the same concentration of 

TPX2-710 reduced the velocity of gliding to ~ 15 nm/s, demonstrating that TPX2-710 

was a less effective inhibitor than the full-length protein (Fig. 2.5A). This result 

demonstrates that dimeric Eg5 retains the ability to interact with TPX2, consistent with 

previous in vitro binding assays (Ma et al., 2011). In contrast, the velocity of microtubule 

gliding driven by monomeric Eg5 was inhibited to a similar extent by either full-length or 

truncated TPX2 (Fig. 2.5B). The velocity of microtubule gliding driven by monomeric 

Eg5 is approximately half the rate of the dimeric construct, presumably due to the 

uncoordinated action of monomers. Further, these results also show that monomer-driven 

microtubule gliding is inhibited at lower concentrations of TPX2 or TPX2-710 (Fig. 

2.5B). For example, the addition of 25 nM TPX2 or TPX2-710 nearly completely halted 

microtubule gliding by monomeric Eg5, whereas a 20-fold greater concentration of TPX2 

is required to result in a similar reduction in the velocity of microtubule gliding by Eg5 

dimers. The reason for this increased sensitivity is not known, but it may relate to the 

presence of a single motor head. These results suggest that the stalk region in the dimeric 
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construct or the dimer conformation is required for differential inhibition of Eg5 caused 

by TPX2 and TPX2-710. 

2.3 Discussion 

2.3.1 Requirements for TPX2 binding to microtubules  

The experiments in this chapter shed light on the strength, nature, dynamicity and 

the requirements of TPX2 binding to the microtubules. The microtubule pelleting 

experiments show that full length TPX2 binds to microtubules with a high binding 

affinity of approximately 0.125nM which is consistent with previous observations for 

Xenopus TPX2 (Wittmann et al., 2000) and the affinity falls in the range that is reported 

for other well characterized microtubule associated proteins like Tau, She1, Map2 and 

XMAP215 (Makrides et al., 2004; Markus et al., 2012; Illenberger et al., 1996; Brouhardt 

et al., 2008). Absence of large differences in the binding affinity of full length TPX2 and 

TPX2-710 suggests that the C-terminal 37 amino acids contributes very little to the 

microtubule binding ability of TPX2 and the microtubule binding site on TPX2 could be 

located further upstream.  

The single molecule TIRF experiments show that TPX2 and TPX2-710 

dynamically binds to microtubules with dwell times of approximately 60sec and that the 

nature of interaction is electrostatic as the binding of molecules is sensitive to low salt 

concentrations. Most motor and non-motor microtubule binding proteins bind to 

microtubules electrostatically by interacting with the highly charged C-terminal region of 

tubulin called E-hook which is enriched in glutamic acid residues (Wang and Sheetz, 

2000; Helenius et al., 2006; Hinrichs et al., 2012). Surprisingly, the experiments with 
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subtilisin-digested microtubules suggest that TPX2 binding to microtubules does not to 

involve the highly charged C-terminal E-hook of tubulin. This suggests that TPX2 might 

bind to regions between adjacent protafilaments unlike most other motor proteins. This is 

further supported by previous observations where Tau but not TPX2 coated microtubules 

dissociate from kinesins in a gliding assay (Ma et al., 2011). TPX2 has also been 

observed to enhance recruitment of E hook binding kinesins Eg5 and Kif15 to the spindle 

microtubules in cells (Ma et al., 2011; Tannenbaum et al., 2009; Vanneste et al., 2009). 

This further suggests that the binding site for TPX2 and other E hook binding MAPs may 

be different which if not would compete off the motors from binding to the microtubules.  

2.3.2 Mammalian Cell Extracts as a source of functional Eg5 motors 

Previous studies have shown that the biophysical properties of motors obtained from cell 

extracts are comparable with their purified counterparts (Cai et al., 2007; Gerson-Gurwitz 

et al., 2011). The experiments in this chapter show that Eg5-EGFP obtained from 

mammalian cell extracts has many biophysical properties like stepping speed, polarity of 

walking, ability to bundle and slide antiparallel microtubules and salt sensitivity that are 

very similar to properties reported for Eg5 EGFP molecules purified from sf9 insect cells 

(Kapitein et al., 2005; Kwok et al., 2006). Thus mammalian cell extracts could potentially 

offer a very quick and less arduous way of obtaining highly functional motor proteins for 

in vitro reconstitution experiments that are comparable with the purified versions. By 

combining the use of cellular extracts with the knockdown-rescue approach in cells, this 

tool can be very useful to quickly evaluate effects of many things that include post 

translational modifications, functions of specific domains and the role of interaction 

partners on motor behavior. 
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2.3.3 TPX2 regulates Eg5 by Interactions with Both the Motor and Microtubule 

The single molecule experiments in this chapter show that Eg5 walking is 

inhibited by both TPX2 and TPX2-710. This suggests that both TPX2 and TPX2-710 

inhibit Eg5 motion on single microtubules by acting as a road block as both TPX2 

constructs can bind still to microtubules (Ma et al., 2011). However, the full length TPX2 

was a much more potent inhibitor than the truncated TPX2-710. This stronger inhibition 

suggests that the C-terminal region of TPX2 may enhance the inhibition of Eg5 by 

promoting its interaction with the motor. Therefore, the inhibition of Eg5 by TPX2 is two 

pronged mediated both through its ability to bind to microtubule and its ability to directly 

interact with Eg5. The microtubule gliding experiments (Fig. 2.5D) suggest that the 

absence of stalk region in Eg5 constructs abolishes the differential inhibition of Eg5 

gliding by full length TPX2 and TPX2-710. This suggests that the stalk region may be the 

target of TPX2 regulation. Elucidating whether the residues in the stalk region is the 

direct target of physical interaction for TPX2 can be investigated in the future using 

biochemical assays.  

Recent in vitro experiments show that TPX2 inhibits the stepping behavior of the 

kinesin-12, Kif15, the human homolog of Xklp2 (Drechsler et al., 2014). TPX2 enhances 

the binding of Kif15 to microtubules in pelleting assays and increases its load bearing 

capacity on microtubules in optical trapping experiments (Drechsler et al., 2014). Though 

Eg5 is the dominant motor playing a role in the bipolarization of the spindle, Eg5 has 

been shown to have very short dwell times on spindle microtubules in live cell using 

TIRF microscopy (Gable et al., 2012). Also, Eg5 has been shown to dissociate from 

microtubule before stalling in in vitro experiments (Korneev et al., 2007) suggesting a 
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relatively low inherent microtubule affinity under load.  Thus, inhibition of Eg5 motion 

on microtubules by TPX2 may function to increase the residence time of Eg5 on 

microtubules and potentially enhance its load bearing capacity. In mitotic cells, Eg5 and 

Kif15 act redundantly to establish and maintain spindle bipolarity and are the 

predominant plus end directed force generators that balance dynein mediated minus end 

directed force. Although TPX2 slows Eg5 and Kif15 motion on microtubules, by 

increasing the force-generating capacity of these motors, it may play a key role in 

regulating forces needed for spindle bipolarity. 

2.3.4 Model for Regulation of Eg5 by TPX2 

The data presented here are consistent with the following model for the regulation 

of Eg5 by TPX2 (Fig. 2.5C). Eg5 motors step along the microtubule protofilament and 

encounter TPX2, resulting in reduced velocity without inducing motor detachment from 

the microtubule. Results showing that TPX2 does not require the E-hooks for 

microtubule binding suggest that TPX2 and Eg5 do not compete with each other for 

microtubule binding. The differential slowing of the motor by full-length and truncated 

TPX2 demonstrates that binding of TPX2-710 to the microtubule is sufficient to reduce 

motor velocity but that the C-terminus of TPX2, which interacts with Eg5, results in 

stronger inhibition (Fig. 2.5C). This suggests that TPX2-710 acts as a slowing agent, 

reducing velocity when encountered by Eg5 motors. Additionally, the data suggest that 

the C-terminal domain may contribute to the retention of the motor on the microtubule 

(Ma et al., 2011). Although these experiments and those of others (Drechsler et al., 2014) 

clearly demonstrate that TPX2 greatly reduces motor stepping on the microtubule, the 

TPX2-motor interaction must be regulated in live cells so that the motor can generate 
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sliding forces to establish and maintain spindle bipolarity. Discovering precisely how this 

MAP-motor interaction is regulated spatially and temporally will provide important 

insight into spindle function in vivo. 

2.4 Materials and methods 

2.4.1 Materials 

All chemicals, unless otherwise specified, were purchased from Sigma-Aldrich. 

2.4.2 Cell Culture 

LLC-Pk1 cells were cultured in a 1:1 mixture of Ham’s F-10 medium and Opti-

MEM (Life Technologies, Inc.) containing 7.5% fetal bovine serum and antibiotics at 1X 

and 5% CO2. Cell extracts were made from LLC-Pk1 cells stably expressing LAP-tagged 

Eg5 from a bacterial artificial chromosome (Gable et al., 2012).To prepare the extract, a 

confluent 100-mm diameter cell culture dish was washed twice with 5 ml of room 

temperature PBS. Then 300 µl of extraction buffer containing 40 mM HEPES/KOH, pH 

7.6, 100 mM NaCl, 1 mM EDTA, 1 mM PMSF, 10 µg/ml leupeptin, 1 mg/ml pepstatin, 

0.5% Triton X-100, and 1mM ATP (Cai et al., 2007) was added dropwise to the dish and 

incubated for 2 min without disrupting the monolayer. The cell extract was transferred to 

a microcentrifuge tube and centrifuged at 14,500 rpm at 4 °C for 10 min in a tabletop 

centrifuge. The supernatant was recovered and aliquoted into small tubes, flash-frozen, 

and stored in liquid nitrogen. Protein concentration was determined using the method of 

Lowry (Lowry et al., 1951). For fluorescent intensity measurement experiments with 

Eg5- mEmerald, an siRNA-resistant Eg5-mEmerald construct was transiently co-

transfected into LLC-Pk1 cells with siRNA directed against endogenous Eg5 (target 
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sequence CUGAAGACCUGAAGACAAU). The extract was made 48 h post transfection 

as described. For the extracts used in size exclusion chromatography, cells were not 

treated with siRNA against endogenous Eg5. 

2.4.3 Construction of Plasmids  

For bacterial expression, desired nucleotide sequences of human TPX2 constructs 

(full-length or truncated at amino acid 710) were cloned into a pGEX vector following an 

N-terminal GST tag and a ULP1 protease cleavage site (Markus et al., 2012). At the C-

terminus of TPX2, the stop codon was removed, and the Halo tag sequence was 

introduced. Constructs were verified by sequencing. For expression in SF9 insect cells, 

nucleotides coding for full-length human TPX2 or its first 710 amino acids were cloned 

into the pFast BacAvector after an N-terminal His6 tag, and the constructs were verified 

by sequencing. The virus for infecting the cells was obtained following the Bac-to-Bac 

protocol (Invitrogen). The plasmid for monomeric Eg5-367 containing the first 367 

amino acids of human Eg5 was a kind gift from the laboratory of Dr. Sarah Rice. The 

plasmid for the expression of dimeric Eg5-513 containing the first 513 amino acids of 

Eg5 was a kind gift from the laboratory of Dr. Susan Gilbert. 

2.4.4 Protein Purification 

Full-length TPX2 and TPX2-710 were expressed and purified from Sf9 cells 

using the Bac-to-Bac expression system (Invitrogen). Infected cells were harvested, 

washed with ice-cold water, and resuspended in lysis buffer (50 mM potassium 

phosphate, pH 8, 250mM KCl, 40mM imidazole, 1% Nonidet P-40, 10 mM β-

mercaptoethanol, and a protease inhibitor tablet (Roche Applied Science) on ice. The 
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lysate was spun at 125,000 X g for 45 min at 4 °C. The supernatant was loaded onto pre-

equilibrated nickel-nitrilotriacetic acid-agarose beads (Qiagen, Valencia, CA) and 

incubated for 90 min at 4 °C with end-over-end shaking. The flow-through was removed, 

and beads were washed with wash buffer (the same as lysis buffer with 10% glycerol and 

0.01% Nonidet P-40). The protein was eluted with elution buffer (50mM potassium 

phosphate, pH 7, 150 mM KCl, 250 mM imidazole, 10% glycerol, 10mM β-

mercaptoethanol, and 0.01% Nonidet P-40) and dialyzed in a buffer containing 25 mM 

HEPES, pH 7.6, 10 mM KCl, 2 mM MgCl2, 10% glycerol, 0.01% Nonidet P-40, and 1 

mM DTT for 4 h at 4 °C. Aliquots were flash-frozen in liquid nitrogen and stored at -80 

°C. Full-length TPX2-Halo and TPX2–710-Halo were expressed and purified from 

Escherichia coli Rosetta DE3 pLysS cells. In short, 500 ml of culture was grown to an 

optical density of 0.5–0.8 and induced with 0.1 mM isopropyl 1-thio-D-

galactopyranoside at 18 °C for 16 h. The bacteria were harvested and washed with ice-

cold distilled water. The cell pellet was resuspended in 2_lysis buffer 

(60mMHEPES,pH7.4, 0.4mMEGTA, 2 mM DTT, 1.4 _g/ml pepstatin, 1.0 mM Pefabloc, 

4 µg/ml leupeptin, and 2 µg/ml aprotinin), diluted to 1X with cold distilled H2O, 

sonicated on ice (three times for 30 s each at maximum setting), and clarified at 15,000 X 

g for 20 min at 4 °C. The supernatant was incubated for 1 h at 4 °C with glutathione- 

Sepharose beads that were pre-equilibrated in lysis buffer. The beads were then washed 

three times in wash buffer (10% glycerol, 300 mM KCl, 0.1% Triton X-100, 1 mM DTT, 

0.7 µg/ml pepstatin, and 0.5mM Pefabloc) and twice in TEV buffer (5mM Tris, pH 8.0, 

150 mM KCl, 10% glycerol, 0.1% Triton X-100, 1 mM DTT, and 0.5mMPefabloc). The 

beads were resuspended in TEV buffer and incubated with 23_M Halo tag Alexa Fluor 
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660 (Promega, Madison, WI) for 15–20 min at room temperature and then washed to 

remove unbound ligand. The beads were then resuspended in TEV buffer containing 

Ulp1 protease and incubated at 16 °C for 1 h to cleave protein off of the beads. The 

supernatant containing the protein was collected by centrifugation, and aliquots were 

flash-frozen and stored in liquid nitrogen. 

Monomeric Eg5-367 was purified from E. coli as described (Larson et al., 2010). Briefly, 

500 ml of bacteria was grown and induced at an OD of 0.5–0.8 with 0.1 mM isopropyl 1-

thio -D-galactopyranoside and incubated at 16 °C for 16 h. The bacteria were pelleted 

and washed with ice-cold water. The pellet was resuspended in lysis buffer (10mM 

sodium phosphate buffer, pH 7.2, 20mM NaCl, 2mM MgCl2,1mM EGTA, 1mM DTT, 

and 0.1mM ATP with protease inhibitor tablet) and lysed by sonication. The lysate was 

clarified by centrifuging at 15,000Xg for 30 min at 4 °C. The supernatant was incubated 

with pre-equilibrated nickel-nitrilotriacetic acid-agarose beads for 90 min at 4 °C. The 

beads were then washed in wash buffer (same as lysis buffer containing 20mM 

imidazole) and eluted in elution buffer (same as lysis buffer with 300 mM imidazole). 

The eluate was then dialyzed against buffer containing 20mM HEPES, pH 7.2, 5mM 

magnesium acetate, 0.1 mM EDTA, 0.1 mM EGTA, 50 mM potassium acetate, 1 mM 

DTT, and 5% sucrose for 4 h at 4°C. Aliquots were flash-frozen in liquid nitrogen and 

stored at -80 °C. Dimeric Eg5-513 was expressed and purified from E. coli exactly as 

described (Ma et al., 2011). 
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2.4.5 TPX2 Co-sedimentation with Microtubules 

Unlabeled tubulin prepared from porcine brains (Hyman et al., 1991) was 

polymerized and resuspended inPEM100 buffer containing 50µM Taxol. 500 nM full-

length TPX2 or TPX2-710 was incubated with indicated concentration of unlabeled 

polymerized microtubules at room temperature for 10 min. The mixture was centrifuged 

for 10 min at room temperature in a tabletop centrifuge at maximum speed. The 

supernatant and pellet fractions were carefully separated. Samples for SDS 

electrophoresis were prepared by boiling the samples with SDS protein sample buffer and 

run on an 8% polyacrylamide gel. The proteins were then transferred to a PVDF 

membrane and probed using antibodies against TPX2 (Novus Biologicals, Littleton, CO) 

and tubulin (DM1A, Sigma- Aldrich). The blots were developed by chemiluminescence 

and captured on a Bio-Rad imaging station. Analysis of band intensities were performed 

using ImageJ. Data were plotted using KaleidaGraph and fit with a quadratic equation 

(Markus et al., 2012). 

2.4.6 TPX2-Halo Microtubule Binding Assays 

For TPX2-Halo binding experiments, first 10 _l of 10% rat YL1⁄2 (0.1 mg/ml) 

anti-tubulin antibody (Accurate Chemical, Westbury, NY) was added to the flow 

chamber and incubated for 2 min. Second, 0.1 mg/ml rhodamine-labeled microtubules 

(untreated or treated with subtilisin A) were flowed in and incubated for 2 min. Subtilisin 

A-treated microtubules were prepared as described (Markus et al., 2012). Third, the 

surface was blocked by adding 5% Pluronic F-127 and incubated for 2 min. For assays 

done in epifluorescence, the chamber was incubated with the indicated concentration of 
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TPX2-Halo for 2 min in PEM 100 (100 mM K-Pipes, pH 6.8, 2 mM MgSO4, and 2mM 

EGTA) plus 0.5% Pluronic F-127, 50 µM Taxol, 5 mM DTT, 15 mg/ml glucose, 1.23 

mg/ml glucose oxidase, and 0.375 mg/ml catalase). Salt (KCl) from a 10X stock of the 

working concentration was added directly to the buffer. Wide field images were acquired 

with a constant exposure time. To measure dwell times of TPX2-Halo and TPX2–710-

Halo, experiments were performed using TIRF microscopy. 

2.4.7 Eg5 Single Molecule Experiments 

The concentrations of Eg5 in the extracts were measured by quantitative Western 

blots. For the single molecule experiments, the perfusion chambers were made from glass 

slides, silanized coverslips, and double stick tape. 10 µl of 10% rat YL1⁄2 anti-tubulin 

antibody (Accurate Chemical) was flowed into the chamber and incubated for 3 min. 

Then the chamber was blocked by flowing in 5% Pluronic F-127 for 3 min. Diluted Cy5-

labeled microtubules (composed of a mixture of Cy5 tubulin (Cytoskeleton, Inc., Denver, 

CO) and unlabeled brain tubulin) were flowed into the chamber and incubated for 3 min, 

followed by a second block of 5% Pluronic F-127. Eg5 was diluted to 1 or 1.5 nM in 

motility buffer containing PEM 50 (50mM Pipes, pH 6.9, 2mM EGTA, 2mM MgSO4), 

0.5% F-127, 5 mM ATP, 1 mM DTT, 25 µM Taxol supplemented with an oxygen-

scavenging system (15 mg/ml glucose, 1.23 mg/ml glucose oxidase, and 0.375 mg/ml 

catalase) and flowed into the chamber and imaged. For preincubation experiments with 

TPX2, the indicated concentrations of TPX2 were added to the motility buffer along with 

Eg5 in extract and incubated on ice for 2 min before flowing into the chamber. 
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2.4.8 Kinesin-1 Single Molecule Experiments 

Perfusion chambers were made as described above. 10µl of 10% rat YL1⁄2 anti-

tubulin antibody, 5% Pluronic F-127, and diluted Cy5-labeled microtubules were added 

sequentially and incubated for 5 min each. The chamber was washed with PEM100 plus 

Taxol. Kinesin-1 was diluted in PEM 100 with 10 mM DTT. This was then added to the 

motility buffer (PEM 100, 25 µM Taxol, 0.5% Pluronic F-127, 0.5 mg/ml BSA, oxygen-

scavenging system, and 0.5 mM ATP) and flowed into the chamber and imaged. For 

experiments with TPX2 addition, TPX2-Halo was diluted into the motility buffer 

(without kinesin-1) and flowed into the chamber during image acquisition. 

2.4.9 Microtubule-Microtubule Gliding Assays 

Biotinylated, Cy5- labeled microtubules were immobilized on silanized coverslips 

using anti-biotin antibody (Sigma-Aldrich). The chamber was blocked using 5% Pluronic 

F-127. Eg5-EGFP from extracts was preincubated with rhodamine-labeled microtubules 

for 3 min, and the mixture was flowed into the chamber. Finally, motility buffer was 

added, followed by acquisition on a TIRF microscope. 

2.4.10 Size Exclusion Chromatography 

Eg5-EGFP was purified from SF9 insect cells as per the manufacturer’s 

instructions (Bac to Bac, Invitrogen). The extract from LLC-Pk1 cells was prepared as 

mentioned before. The Superose 6 10/300 GL column (GE Healthcare) was pre-

equilibrated with 10mM HEPES, pH 7.6, 0.05% Triton X-100, 100 mM NaCl, 1 mM 

ATP before use. 100 µl of the purified protein was loaded onto the column and run at a 

constant flow rate of 0.2 ml/min. The elution profile of Eg5-EGFP was directly followed 
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by measuring absorbance at 488 nm. For the size exclusion of LLC-Pk1 cell extracts, 175 

µl of cell extract was loaded on the column and run under identical conditions. The 

collected fractions were separated by SDS-PAGE, transferred to a PVDF membrane, and 

probed for the presence of Eg5 using Western blot. 

2.4.11 Microtubule Surface Gliding Assays 

Perfusion chambers of 10 µl in volume were made using glass slides and 

coverslips with a double stick tape spacer. For gliding assays with the Eg5-367 monomer, 

the chamber was incubated with anti-His antibody and 2 mg/ml BSA for 3 min, followed 

by two washes with motility buffer (80 mM PIPES, pH 6.8, 2 mM MgCl2, 1 mM EGTA, 

0.2 mg/ml BSA, and 150 mM sucrose). Then the chamber was incubated with Eg5-367 

for 3 min and washed again with motility buffer. Finally, the activation mix, consisting of 

motility buffer containing oxygen-scavenging system, ATP, Taxol, and diluted Cy5-

labeled microtubules was added and imaged on a Nikon TiE microscope using 

epifluorescence. Surface gliding experiments with the dimeric Eg5-513 were performed 

exactly as described by Ma et al. (Ma et al., 2011). For the TPX2 addition experiments, 

the TPX2 constructs were added to the activation mix, incubated for 2 min on ice, and 

then flowed into the chamber. 

2.4.12 Microscope Imaging and Analysis 

TIRF microscopy was performed using a microscope (Ti-E; Nikon Instruments, 

Melville, NY) equipped with a  60X, 1.4 numerical aperture objective lens. The system 

was run by Elements software (Nikon Instruments). Images were acquired using a 512 X 

512-pixel camera (Cascade II; Photometrics, Tuscon, AZ). A _4 image expansion 
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telescope in front of the camera was used. The nm/pixel ratio was 68.5 nm/pixel. A blue 

diode laser (488 nm, 50 milliwatts) was used. Images were acquired every 2 or 3 s for 10 

min. For two-color TIRF, a 488-nm argon laser and a 647-nm diode laser were used on a 

custom-built TIRF system on a Nikon TiE stand, run by Elements software. A 60X 

objective lens was used; exposure times for both red and green illumination were 50 –100 

ms. Wide field imaging for Eg5-513 gliding assays and for binding of TPX2- Halo to 

microtubules was performed using epifluorescence illumination. 

2.4.13 Quantification of Gliding Velocity, Single Molecule Velocity, and MSD 

The velocity of Eg5-513- and Eg5-367-dependent microtubule gliding movement 

was calculated using the MTrackJ plugin in ImageJ. To calculate the velocity of Eg5- 

EGFP single molecules from TIRF images, ImageJ was used to generate a kymograph of 

moving molecules. Velocities were calculated by manually tracking individual puncta. 

The data were ported to Excel, and a polynomial 2 trend line was added to the MSD 

versus time plot to determine the diffusion coefficient (D). 
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Figure 2.1 Binding of TPX2 and TPX2-710 to microtubules. (A) schematic diagram of 

the TPX2 constructs (left) and Coomassie Brilliant Blue-stained gel of the 

purified proteins (right). (B) co-sedimentation of TPX2 with microtubules. S, 

supernatant; P, pellet. The concentration of microtubules in each pair of lanes is 

noted above. Western blots were stained for TPX2 or tubulin. (C) quantification of 

apparent affinity was performed using a quadratic fit. The experiment was 

performed twice, and the values were averaged. Error bars, S.D. 
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Figure 2.2 Binding Dynamics of TPX2 and TPX2-710. (A) box plot showing release of 

TPX2 and TPX2–710 from microtubules in the presence of the indicated 

concentration of KCl added to the buffer. TPX2 fluorescence is reported as arbitrary units 

(A.U.). Whiskers define the range, boxes encompass the 25th to 75th 

quartiles, and lines depict the medians. (B) TPX2 and TPX2-710 binding to untreated and 

subtilisin A-digested microtubules; top panels, fluorescence images of 

TPX2-Halo or TPX2–710-Halo bound to untreated and subtilisin A-digested 

microtubules; middle, quantification of TPX2 fluorescence; bottom, polyacrylamide 

gel showing digested and control microtubules. TPX2 fluorescence was measured for at 

least 60 microtubules for each of two independent experiments; error 

bars, S.D. (C) kymograph of TPX2-Halo and TPX2-710-Halo on microtubules. Vertical 

scale bar (time), 60 s; horizontal scale bar, 2 µm. 
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Figure 2.3 Characterization of Eg5 in mammalian cell extracts. (A) Western blot of 

cell extract and purified Eg5. (B) schematic diagram of the single molecule 

TIRF experiments (left) and TIRF images of Eg5-EGFP accumulating at the microtubule 

plus-end (right). (C) kymographs of kinesin-1 EGFP dimers and Eg5-EGFP 

from extracts on the same microtubule. Note the different time scale. Plus- and minus-

ends of the microtubules are indicated. (D) histogram of Eg5-EGFP motor 

velocity. (E) histogram of the fluorescence of kinesin-1 dimers (light gray) and Eg5 

molecules (dark gray) in the extract. (F) schematic diagram (left) and fluorescence 

images (right) showing microtubule-microtubule sliding by Eg5. The arrowhead marks 

the end of the sliding microtubule. (G) Coomassie Brilliant 

Blue-stained gel of Eg5-EGFP purified from insect cells and the trace of absorbance at 

488nmon the size exclusion column for the purified protein. The Western 

blot shown is for the fractions obtained from size exclusion chromatography of Eg5-

mEmerald from LLC-Pk1 extract probed for Eg5. (H) quantification of the 

velocity of Eg5-EGFP after the addition of DMSO, STLC, or FCPT (right). Error bars, 

S.E. (I) directional and diffusive motility of Eg5-EGFP in the presence of 0, 20, or 

50mMKCl added to the motility buffer. Top, kymographs; bottom, mean squared 

displacement. Horizontal scale bar (B, C, F, and I), 1µm; vertical scale bar (I), 60 s. 

Vertical scale in (C) is shown on the image. A.U., arbitrary units. 
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Figure 2.4 Inhibition of Eg5 by TPX2 requires both binding to the microtubule and 

an interaction between TPX2 and Eg5. (A) kymographs of Eg5-EGFP before 

and following the addition ofTPX2or TPX2–710; arrowhead, time of 

theTPX2addition.(B) quantification of Eg5-EGFP velocity; error bars, S.D.(C) 

kymographof kinesin-1EGFP dimers walking on microtubules before and after the 

addition of TPX2 (arrowhead). 1 nM kinesin-1 EGFP (green) and 500 nM TPX2-Halo 

(red) were used. (D) kymographs of Eg5-EGFP (green) before and following the addition 

of 20 nM TPX2-Halo (red). Right panels, enlarged view. (E) kymographs of Eg5-EGFP 

that was premixed with TPX2-Halo or TPX2–710-Halo. (F) quantification of Eg5-EGFP 

velocity in the presence of 50 nMTPX2 that was Halo-tagged (left) or untagged (right). 

Errorbars, S.E. Horizontal scale bars (A, C, and E), 1µm; horizontal scale bar (D), 2µm; 

vertical scale bar, 60 s (A, D, and E) and 5 s (C). 
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Figure 2.5 Differential regulation of Eg5 dimers, but not monomers, by full-length 

and truncated TPX2. Shown is velocity of microtubule gliding driven 

by Eg5 dimers (A) or Eg5 monomers (B). Error bars, S.E. C, model for inhibition of Eg5 

by TPX2. Top, inhibition of motor stepping by full-length (left, stop symbol) 

and truncated TPX2 (right, slow symbol) in single molecule assays. Bottom panels, 

inhibition of microtubule gliding by Eg5 dimers (top) and Eg5 monomers 

(bottom). Green, Eg5; orange, TPX2. 
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CHAPTER 3 

REGULATION OF KIF15 LOCALIZATION AND MOTILITY BY C-

TERMINUS OF TPX2 AND MICROTUBULE DYNAMICS 

The TPX2 constructs used in the single molecule experiments were purified from 

Bacteria by Barbara J Mann. The Kif15 single molecule experiments and data analysis 

presented in this chapter were performed in collaboration with Barbara J Mann.  

 

3.1 Introduction 

During mitosis, microtubules are nucleated and organized into a dynamic 

structure called the mitotic spindle, which mediates chromosome segregation into two 

daughter cells. In mammalian cells, microtubule nucleation at centrosomes, near 

chromatin, and from preexisting microtubules all contribute to spindle formation 

(Meunier and Vernos, 2016). Microtubule formation near chromatin and at kinetochores 

is regulated by nuclear localization sequence containing spindle assembly factors that are 

inactive when bound to importins α/β  (Gruss and Vernos, 2004). The small GTPase Ran, 

which is locally activated near chromatin (Kalab et al., 2006), binds to importin β and 

relieves this inhibitory effect, thus promoting microtubule formation. A well-studied Ran-

regulated spindle assembly factor is TPX2, which stimulates microtubule formation at 

kinetochores and in the chromatin region and is required for spindle assembly and 

completion of mitosis (Tulu et al., 2006; O’Connell et al., 2009). 
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During spindle formation the duplicated centrosomes separate to establish spindle 

bipolarity. Centrosome separation is driven by the kinesin-5, Eg5, a bipolar, tetrameric 

motor that cross-links and slides antiparallel microtubules (Kapitein et al., 

2005; Ferenz et al., 2010). More recently, it was shown that after bipolar spindle 

formation, the action of Eg5 is dispensable, and spindle bipolarity is maintained by a 

kinesin-12, Kif15 (Tanenbaum et al., 2009; Vanneste et al., 2009). Spindles in cells 

depleted of Kif15 are shorter than spindles in control cells, consistent with a model in 

which Kif15, like Eg5, generates outward force in the spindle (Sturgill and Ohi, 2013). 

However, in contrast to Eg5, Kif15 preferentially associates with kinetochore fiber 

microtubules. Cells overexpressing Kif15 can form a bipolar spindle in the absence of 

Eg5 activity (Tanenbaum et al., 2009; Raaijmakers et al., 2012; Sturgill and Ohi, 2013). 

The existence of two mitotic motors that can each power bipolar spindle formation may 

contribute to the lack of efficacy of Eg5 inhibitors in clinical trials, and understanding 

how these motors are regulated therefore may be of clinical significance (Waitzman and 

Rice, 2014). 

Localization of kinesin-12 and kinesin-5 motors to spindle microtubules requires 

TPX2 (Tanenbaum et al., 2009; Vanneste et al., 2009; Ma et al., 2011). In fact, TPX2 was 

initially discovered as a factor required for the dynein-dependent targeting of 

the Xenopus kinesin-12, Xklp2, to spindle poles (Wittmann et al., 1998). The C-terminal 

37 amino acids of TPX2 are required to target Eg5 to the spindle; targeting of Kif15 

requires the C-terminal leucine zipper of the motor (Wittmann et al., 1998). The C-

terminal half of TPX2 is required to localize Kif15 to the spindle (Brunet et al., 2004), 

but it was not known whether a specific domain of the protein is necessary. 
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These initial studies on TPX2 and Kif15 were consistent with the idea that dimers 

of Kif15 walked along one microtubule while tethered to a second microtubule via TPX2, 

thus generating force for spindle formation (Vanneste et al., 2009). 

Subsequently Sturgill et al. (2014) provided biochemical data showing that the motor was 

an autoinhibited dimer and identified a second, nonmotor microtubule-binding site in the 

coil 1 region of Kif15. These data led to a model in which autoinhibited Kif15 dimers 

were first unmasked and then bound to microtubule bundles via motor and nonmotor 

binding sites (Sturgill et al., 2014). More recent work, however, showed that Kif15 exists 

as a tetramer that displays processive motility along individual microtubules in vitro 

(Drechsler et al., 2014; Drechsler and McAinsh, 2016). Thus the oligomeric state of 

Kif15 and how it contributes to mitotic spindle formation remain unresolved. Finally, 

experiments using dynamic microtubules in vitro show that Kif15 accumulates at 

microtubule plus ends, suppresses catastrophe events, and can cross-link microtubules 

and move them relative to one another, promoting the formation of parallel microtubule 

arrays (Drechsler and McAinsh, 2016). Thus both Eg5 and Kif15 contribute to spindle 

bipolarity and are regulated by TPX2, but their mechanisms of action are distinct. 

To gain insight into the cellular function and regulation of the kinesin-12, Kif15, 

the experiments in this chapter investigate the behavior of the motor and its regulation by 

TPX2 in vitro and in vivo. The results presented here show that Kif15 motors, present in 

diluted mammalian cell extracts, are processive, track-switching tetramers and that the C-

terminal region of TPX2 is required to inhibit Kif15 motor stepping. Using a knockdown-

rescue approach in mammalian cells the C-terminal region of TPX2 was determined to 

contribute to targeting of the motor to the mitotic spindle and that Eg5-independent 
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bipolar spindle formation by overexpressed Kif15 requires the TPX2 C-terminal region. 

In live cells, GFP-Kif15 display robust, plus end–directed motility at a rate similar to that 

of microtubule growth, and this behavior is suppressed by paclitaxel. Together these 

results document the behavior of Kif15 in cells and demonstrate the importance of TPX2 

and its C-terminal region for motor localization and activity. 

3.2 Results 

3.2.1 TPX2 C-terminus contributes to Kif15 targeting to spindle microtubules 

The C-terminal 37 amino acids of TPX2 contribute to the targeting of the kinesin-

5, Eg5, to spindle microtubules (Ma et al., 2011), but it is not known whether this domain 

contributes to the targeting of the kinesin-12, Kif15, to the spindle (Wittmann et al., 

1998; Brunet et al., 2004; Tanenbaum et al., 2009; Vanneste et al., 2009). To address this, 

the distribution of endogenous Kif15 was examined in LLC-Pk1 cells expressing full-

length TPX2 or TPX2-710, which lacks the C-terminal 37 amino acids, from bacterial 

artificial chromosomes (BACs) and depleted of the endogenous protein using small 

interfering RNA (siRNA; Ma et al., 2011). Cells were fixed and stained for microtubules 

and Kif15 at 40 h after nucleofection with TPX2 siRNA, a time when the majority of 

TPX2 is depleted (Ma et al., 2011). Kif15 was present along spindle microtubules in 

parental LLC-Pk1 cells but not in parental cells depleted of TPX2 (Fig 3.1A). In LLC-

Pk1 cells expressing full-length TPX2 or TPX2-710 from a BAC and depleted of 

endogenous TPX2, Kif15 was detected on spindle microtubules when full-length TPX2 

was present and was reduced when TPX2-710 was expressed (Fig 3.1A). Quantification 

of the ratio of Kif15 to microtubules at the spindle pole and in the spindle midway 
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between the chromosomes and pole shows a statistically significant reduction at both 

locations in cells expressing TPX2-710 compared with cells expressing full-length TPX2 

(Fig 3.1C). As previously reported (Ma et al., 2011), expression of TPX2-710 in cells 

depleted of TPX2 resulted in aberrant spindle morphology (Fig 3.1B). These results 

demonstrate that for both Eg5 and Kif15, the C-terminal domain of TPX2 contributes to 

spindle targeting. 

A recent study has shown that the kinase Aurora A dependent phosphorylation of 

Kif15 in the tail fragment enhances the recruitment of Kif15 on the spindle microtubules 

(van Heesbeen et al., 2016). As TPX2 has been shown to activate the kinase Aurora A, 

TPX2 C terminus dependent spindle localization of Kif15 could be mediated through the 

activation of the kinase. To test this, control or siTPX2 treated TPX2-FL and TPX2-710 

BAC cells were fixed and stained for microtubules and phosphorylated Aurora A. Even 

in the absence of endogenous TPX2, phosphorylated Aurora staining was observed in 

both the TPX2-FL and TPX2-710 BAC cells suggesting that Aurora A activation is not 

compromised in these cells (Fig 3.2).  This is consistent with previous studies that 

indicate that the N terminal residues of TPX2 bind and activate Aurora A (Kufer et al., 

2002; Eyers and Maller, 2004). As a negative control, when the cells are treated with 

Aurora A inhibitor MLN8236, the phosphorylated Aurora A staining is diminished (Fig 

3.2). These results suggest that the TPX2 C terminus dependent spindle localization of 

Kif15 may not be mediated through Aurora A activation and may depend on other 

functions of TPX2.  
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3.2.2 Full-length TPX2 inhibits Kif15 motor velocity 

Next, the requirement of whether C-terminal domain of TPX2 was required to 

regulate Kif15 motor stepping in vitro was determined. To do this, LLC-Pk1 cells was 

transfected with full-length Kif15 tagged with enhanced green fluorescent protein (GFP-

Kif15; Vanneste et al., 2009) and a stable cell line was generated. These cells were used 

to prepare cytoplasmic extracts for use in single-molecule total internal reflection 

fluorescence (TIRF) microscopy experiments (Fig 3.3A; Cai et al., 2007; Balchand et al., 

2015). Rhodamine-labeled, paclitaxel-stabilized microtubules were attached to the 

surface of a microscope flow chamber, and cell extract diluted in motility buffer was 

added. Fluorescent puncta were observed to bind to microtubules and processively move 

upon addition of ATP (Fig 3.3, A, B, and F). Of note, nearly every GFP-Kif15 puncta 

that bound a microtubule was motile, demonstrating that Kif15 from mammalian cells is 

not autoinhibited (Sturgill et al., 2014) but displays robust motility. TPX2 is undetectable 

in these cytoplasmic extracts because they are prepared from asynchronous cells, >95% 

of which are in interphase, a time when TPX2 is located in the nucleus (Balchand et al., 

2015). 

GFP-Kif15 was observed to move predominantly in a plus end–directed manner 

(86% of events), with a smaller percentage of events toward the minus end (14% of 

events; Drechsler et al., 2014; Fig 3.3A). The average velocity of plus end–directed 

motion was 128.7 nm/s, and the velocity of minus end–directed motion was slower, 86.6 

nm/s. Motility was processive, with average run lengths of 1.9 and 0.9 μm in the plus- 

and minus-end directions, respectively (Fig 3.3A). In addition to directional reversals, 

Kif15 motors moving on one microtubule could switch to a neighboring microtubule and 
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continue processive motility (Fig 3.3B). In extracts prepared from LLC-Pk1 cells arrested 

in mitosis with a low concentration of nocodazole (Materials and Methods), motor 

velocity (151 nm/s, n = 54, 53 plus-end directed and 1 minus-end directed) was not 

different from that measured in interphase, with the caveat that TPX2 is present in these 

extracts. Of interest, minus end–directed motility was reduced in the mitotic compared 

with the interphase extract. These data suggest that in in vitro assays, motor microtubule 

affinity is sufficiently strong to overcome any potential mitotic regulation 

(vanHeesbeen et al., 2016). This possibility is consistent with the observation that Eg5 

prepared from interphase extracts, and thus lacking the mitosis-specific phosphorylation 

required for its spindle microtubule binding (Blangy et al., 1995), shows robust motility 

in vitro (Balchand et al., 2015). 

Kif15 was previously reported to exist as a tetramer or dimer using purified 

motors (Drechsler et al., 2014; Sturgill et al., 2014) or motors in mammalian cell extracts 

(Drechsler and McAinsh, 2016; Sturgill et al., 2016). Understanding the quaternary 

structure of the molecule is significant because tetramers can potentially interact with 

more than one microtubule simultaneously and formation of tetramers could potentially 

alter the availability of a second microtubule-binding site in the motor tail (Sturgill et al., 

2014). To determine the oligomeric state of GFP-Kif15 in our experiments, images of 

purified kinesin-1-GFP, which is known to be a dimer, and GFP-Kif15 using identical 

imaging conditions were acquired using only motors that bound to microtubules. For this 

experiment, endogenous Kif15 was depleted from the cells before preparation of the 

extract, so that the motors would be composed predominantly of the expressed GFP-

tagged protein. As shown in the histogram in Fig 3.3C, (bottom), Kif15 puncta showed a 
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range of fluorescence intensities, with an average intensity that was 1.6 times the average 

fluorescence intensity of kinesin-1–GFP (Fig 3.3C, top; average fluorescence of 220.5 

and 141.0 arbitrary units). The reason that the average value was not twice the intensity 

of kinesin-1-GFP may result from incomplete depletion of endogenous Kif15 by siRNA, 

resulting in a mixture of motors containing two, three, or four GFP-tagged motors. In 

addition, some motors may dissociate into dimers during preparation (Drechsler et al., 

2014; Sturgill et al., 2014, 2016). To determine whether Kif15 exists as a tetramer, cell 

extract was added to microtubules in chambers without ATP and the number of bleach 

steps was counted. In this experiment, more than half the particles observed displayed 

greater than three bleach steps (Fig 3.3D), demonstrating that in cell extracts, some of the 

Kif15 motors exist as tetramers. 

In summary, these data show that GFP-Kif15, prepared from mammalian cells, 

moves rapidly and processively toward microtubule plus ends and can both switch 

microtubule tracks and reverse direction. The motile parameters of Kif15 prepared from 

mammalian cells are strikingly similar to motors purified from Sf9 cells and indicate that 

the native state of Kif15 in interphase and mitotic mammalian cells is likely a tetramer 

(Drechsler et al., 2014) that can dissociate into dimers depending on the experimental 

conditions (Drechsler et al., 2014; Drechsler and McAinsh, 2016; Sturgill et al., 

2014, 2016). 

To identify the region, or regions, of TPX2 that regulate Kif15 motility in vitro, 

different TPX2 constructs were incubated with diluted extract containing GFP-Kif15 and 

then introduced it into the motility chamber. When full-length TPX2 was present in the 

reaction, motor velocity was reduced to ∼65% of controls (Fig 3.3, E and F). Next, 
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TPX2-710 which binds microtubules (Balchand et al., 2015) and contributes to motor 

targeting was added (Fig 3.1) to determine whether it also regulates motility in vitro. 

Incubation of TPX2-710 with GFP-Kif15 before addition to the motility chamber did not 

result in a statistically significant reduction in motor velocity (Fig 3.3 E and F) 

demonstrating that full-length TPX2 is required for motor inhibition. Two additional 

constructs, one lacking a larger C-terminal region (TPX2-657) and one containing a 

deletion of a conserved PFAM domain near the C-terminus (TPX2-ΔPFAM), also failed 

to inhibit Kif15 (Fig 3.3 E and F). The lack of inhibition with the ΔPFAM construct, 

which is missing only part of the region deleted in TPX2-710, indicates that these nine 

amino acids may play a role in motor inhibition. Both TPX2-657 and TPX2-ΔPFAM 

bound microtubules after expression in mammalian cells depleted of endogenous TPX2 

(Data not shown), demonstrating that failure to inhibit Kif15 did not result from failure of 

these proteins to bind microtubules. In summary, these experiments show that full-length 

TPX2 is required to inhibit Kif15 motor stepping in vitro. 

3.2.3 TPX2 is required for bipolar spindle formation in cells overexpressing Kif15 

Previous work showed that bipolar spindle formation can proceed in cells lacking 

Eg5 activity and overexpressing Kif15, demonstrating that Kif15 can generate force for 

spindle formation in vivo (Tanenbaum et al., 2009; Sturgill and Ohi, 2013). To 

understand how TPX2 contributes to Kif15-dependent spindle formation in vivo, spindle 

formation in LLC-Pk1 cells overexpressing GFP-Kif15 was examined. In these cells, the 

distribution of GFP-Kif15 on spindle microtubules was similar to the distribution of 

Kif15 in the parental cells, showing a punctate staining pattern with enrichment along 

kinetochore fiber microtubules and near spindle poles (Fig 3.4A). This distribution is 
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equivalent to that observed in Xenopus cultured cell spindles (Wittmann et al., 2000) and 

similar to the distribution in other cultured mammalian cells (Tanenbaum et al., 

2009; Vanneste et al., 2009; Sturgill and Ohi, 2013). Western blots of an extract of GFP-

Kif15 cells show that GFP-Kif15 is present at approximately 10 times the level of 

endogenous Kif15 in the parental cells (Fig 3.4B). 

Treatment with siRNA targeting TPX2 resulted in a dramatic reduction in GFP-

Kif15 on spindle microtubules and an ensuing increase in the level of cytoplasmic 

fluorescence (Fig 3.4C). In some cells, residual GFP-Kif15 was detected near spindle 

poles (Fig 3.4C). These results demonstrate that TPX2 contributes to the localization of 

GFP-Kif15 to spindle microtubules, even when high levels of the motor are present. 

In control cells, Kif15 is enriched on kinetochore fiber microtubules (Sturgill and 

Ohi, 2013) and when overexpressed, Kif15 binds and stabilizes nonkinetochore 

microtubules as well, where it is believed to play a key role in Eg5-independent spindle 

formation (Sturgill and Ohi, 2013). In cells depleted of Nuf2, a treatment that prevents 

kinetochore fiber formation, GFP-Kif15 remained associated with the spindle (Fig 3.4C, 

left) despite the loss of kinetochore fibers and concomitant failure of chromosome 

congression (Fig 3.4C, right). Then the requirement for kinetochore fibers for Kif15 

spindle localization was tested in parental cells by depleting Nuf2 and staining for Kif15 

(unpublished data); in these cells, the spindle localization of Kif15 is reduced but not 

completely abolished, consistent with previous observations (Vanneste et al., 2009). 

Together these results show that overexpressed GFP-Kif15 is distributed in a manner 

similar to that of the endogenous protein and that TPX2, but not kinetochore fibers, is 

required for spindle localization. 
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To examine Kif15-dependent spindle formation in LLC-Pk1 GFP-Kif15 cells, 

parental and GFP-Kif15 cells were treated with 1 μM S-trityl-L-cysteine 

(STLC; DeBonis et al., 2004) for 18 h and spindle morphology was quantified (Fig 

3.4D). In parental cells treated with STLC, 96% of spindles were monopolar. In STLC-

treated GFP-Kif15 cells, the majority of spindles were bipolar (87%), demonstrating that 

GFP-Kif15 can support bipolar spindle formation in these cells, consistent with results in 

other mammalian cells either overexpressing Kif15 or treated to develop resistance to 

STLC (Vanneste et al., 2009; Raaijmakers et al., 2012; Sturgill and Ohi, 

2013; Sturgill et al., 2016). Next, the ability of STLC-treated, GFP-Kif15–expressing 

cells to form bipolar spindles after siRNA-mediated depletion of TPX2 was assessed. 

97% of spindles were monopolar (Fig 3.4D), indicating that TPX2 is required for Kif15-

dependent bipolar spindle formation (Tanenbaum et al., 2009). It should be noted, 

however, that depletion of TPX2 in control cells also leads to defects in spindle 

formation, resulting in short bipolar spindles, multipolar spindles, and monopolar 

spindles (Gruss and Vernos, 2004) 

As previous results in this chapter showed that the C-terminal 37 amino acids of 

TPX2 are important for spindle localization of Kif15 and inhibition of Kif15 motility in 

vitro, cell lines expressing full-length or truncated TPX2-710 from a BAC were next used 

to determine whether the C-terminal region is important for force generation by Kif15 in 

these cells. Full-length TPX2 and TPX2-710 Bac Cells were co-nucleofected with siRNA 

to deplete endogenous TPX2 and with a plasmid encoding mCherry-Kif15. 40 h after 

nucleofection, cells were treated with STLC for 18h and spindle morphology distribution 

was scored. Bipolar spindles were present in the majority of cells expressing full-length 
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TPX2 but not in cells expressing TPX2-710 (Fig 3.4D). This result demonstrates that the 

C-terminal region of TPX2 is necessary for Eg5-independent bipolar spindle formation in 

cells expressing elevated levels of Kif15. 

The mechanism by which Kif15 promotes spindle bipolarity in the absence of Eg5 

activity is not known but has been proposed to result from Kif15 action on parallel, 

bundled microtubules (Sturgill and Ohi, 2013). Consistent with this, recent work shows 

that some kinesin-5 inhibitor–resistant cell lines express low levels of a rigor mutant of 

Eg5 that promotes microtubule bundle formation (Sturgill et al., 2016). To determine 

whether microtubule bundles are sufficient for Kif15 localization in the absence of TPX2, 

endogenous TPX2 was depleted from cells and were then treated with 2-[1-(4-

fluorophenyl)cyclopropyl]-4-(pyridin-4-yl)thiazole (FCPT), which induces microtubule 

bundle formation by promoting rigor binding of Eg5 to microtubules (Groen et al., 2008). 

Treatment of parental cells with FCPT alone promoted microtubule bundle formation as 

expected; however, very few bundles were observed in the absence of TPX2 (Fig 3.4E). 

Immunostaining showed that Eg5 bound to microtubule bundles in FCPT-treated control 

cells, was reduced in siTPX2-treated cells, and bound to residual bundles in cells treated 

with both FCPT and siRNA to TPX2 (Fig 3.4E). Although Kif15 was detected on 

bundles in FCPT-treated control cells, it was not detected in cells treated with siRNA 

targeting TPX2, even when FCPT was added to promote bundle formation (Fig 3.4E). 

These results show that Eg5 can bind to spindle microtubules in the absence of TPX2 

when rigor binding of Eg5 to microtubules is promoted by FCPT treatment. However, in 

cells lacking TPX2, the formation of microtubule bundles using FCPT treatment alone 

may not be sufficient to localize Kif15 properly to the spindle. 
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3.2.4 Dynamic microtubules contribute to Kif15 behavior in vivo 

Although Kif15 motility in vitro has been characterized (Drechsler et al., 

2014; Sturgill et al., 2014), the motile behavior of Kif15 in vivo has not been reported. To 

investigate this, time-lapse confocal microscopy was performed on GFP-Kif15–

expressing LLC-Pk1 cells, which remain relatively flattened during mitosis, facilitating 

imaging. Rapid motion of fluorescent particles of GFP-Kif15 moving toward the spindle 

equator were observed, where microtubule plus ends are located (Fig 3.5A). Close 

inspection of the confocal image sequences revealed some variation in the fluorescence 

intensity and morphology of the motile particles (Fig 3.5A). The larger or brighter 

particles may represent clusters of Kif15 tetramers, a possibility that is consistent with 

recent in vitro experiments that show accumulation of Kif15 at intersections of dynamic 

microtubules and at microtubule plus ends (Drechsler and McAinsh, 2016). However, the 

fluorescent puncta move rapidly and photobleach quickly, so variation in morphology of 

individual puncta could not be quantified. When cells progressed into anaphase, GFP-

Kif15 was enriched along kinetochore fibers and in some cases showed an accumulation 

near kinetochore fiber plus ends (Fig 3.5B). 

TIRF microscopy of live cells was performed to visualize motors on microtubules 

that extended to the peripheral regions of the cell (Gable et al., 2012). In accord with 

results from confocal microscopy, GFP-Kif15 motors appeared to move in a directed 

manner, away from the centrosome, consistent with predominantly plus end–directed 

motion (Fig 3.5D). 

To determine whether the fluorescent particles of GFP-Kif15 were walking along 

the lattice of spindle microtubules or moving with the tips of growing microtubules, the 
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velocity of GFP-Kif15 in vivo from kymographs from fluorescent particles were 

measured in the image sequences taken of metaphase and anaphase cells (Fig 3.5C). 

Using identical imaging parameters, LLC-Pk1 cells expressing GFP-EB1 was also 

imaged to determine the rate of microtubule growth (Piehl et al., 2004). This analysis 

showed that particles of GFP-Kif15 moved in a processive manner at a velocity of 133 ± 

43 nm/s. This value was not different from the rate of microtubule growth determined 

from the GFP-EB1 movies, 119 ± 26 nm/s (p = 0.09) suggesting that Kif15 motility 

results from association with growing microtubule ends. When imaged at room 

temperature to reduce photobleaching, velocities observed for both GFP-Kif15 and GFP-

EB1 were not different (unpublished data). The relatively wide distribution in the 

velocities of GFP-Kif15 puncta could reflect different rates for single or multiple motors, 

for motors walking on one microtubule with a second microtubule as cargo, or because 

some motors are moving on microtubule growing ends and others are walking along the 

microtubule lattice (Drechsler and McAinsh, 2016). To determine whether this motile 

behavior is unique to GFP-Kif15, Eg5-Emerald was overexpressed from a plasmid and 

the cells were then imaged. In this case, plus end–directed motile behavior was not 

observed (unpublished data), consistent with previous work demonstrating that Eg5, 

expressed from a BAC, bound and unbound rapidly from mitotic microtubules and 

showed dynein-dependent minus-end motion (Uteng et al., 2008; Gable et al., 2012). 

To determine whether GFP-Kif15 motility results from motors associating with 

dynamic microtubule plus ends (Drechsler and McAinsh, 2016), GFP-Kif15 cells were 

treated with nanomolar concentrations of paclitaxel to suppress microtubule dynamics 

(Yvon et al., 1999). Under these conditions, the velocity and number of growing 
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microtubule plus ends measured in GFP-EB1–expressing LLC-Pk1 cells was reduced, 

confirming a suppression of microtubule dynamics (Data not shown). Time-lapse movies 

of paclitaxel-treated GFP-Kif15 cells showed a dramatic reduction of Kif15 motility on 

the spindle, which precluded tracking (Fig 3.6A). This result shows that microtubule 

dynamics contributes to GFP-Kif15 behavior in vivo. Because of the high density of 

microtubules in the spindle and the fact that the Kif15 antibody is compatible only with 

methanol-fixed cells, colocalization of Kif15 and GFP-EB1 in fixed cells could not be 

observed, and in live cells, expression of both GFP-Kif15 and mCherry-EB1 resulted in 

aberrant spindle morphology. 

To determine whether the distribution of Kif15 and TPX2 was altered in 

paclitaxel-treated cells, as might be expected if the motors preferentially associate with 

dynamic microtubules, LLC-PK1 parental cells were fixed and stained for microtubules 

and TPX2 or Kif15. The results show that suppression of dynamics with paclitaxel 

resulted in an increase in TPX2 and Kif15 near the spindle poles and a reduction along 

spindle microtubules (Fig 3.6B). To quantify this, TPX2 and Kif15 fluorescence intensity 

levels was normalized to tubulin and the ratio of each protein in the half-spindle and at 

the pole was determined. The results show that paclitaxel treatment reduced this ratio for 

both Kif15 and TPX2 (Fig 3.6C). Thus the distribution of TPX2 and Kif15 is affected by 

microtubule dynamics, consistent with the enrichment of TPX2 and Kif15 at plus ends of 

dynamic microtubules observed in vitro (Roostalu et al., 2015; Drechsler and McAinsh, 

2016; Reid et al., 2016). Kif15 and TPX2 lack a short amino acid motif composed of 

serine, any amino acid, isoleucine, and proline (SxIP) that is commonly found in proteins 

that localize to microtubule plus ends in an EB-1–dependent manner (Honnappa et al., 
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2009). This suggests that the association of TPX2 and Kif15 with microtubules may be 

direct rather than mediated by EB1. TPX2 has been reported to associate with dynamic 

microtubule ends in vitro at low concentrations (Roostalu et al., 2015; Reid et al., 2016) 

but has not been reported to tip track in vivo, where it is present at higher concentrations. 

One possibility is that TPX2 is required to load Kif15 onto microtubules but not for it to 

remain at the growing plus end (Fig 3.6B); alternatively, TPX2 may remain at the plus 

end with Kif15 (Fig 3.6B) but not be detectable in vivo (Roostalu et al., 2015; Drechsler 

and McAinsh, 2016; Reid et al., 2016). 

3.3 Discussion 

3.3.1 Role of TPX2 C-terminal region in recruiting Kif15 onto the spindle 

 The experiments in this chapter show that Kif15 requires the C-terminal 

region of TPX2 for its localization onto the spindle microtubules. Hence, the same region 

of TPX2 plays an important for regulating two kinesins Eg5 and Kif15 in cells. This 

effect is also supported by in vitro experiments which show that TPX2 is able to regulate 

these molecules only when the C-terminal region of amino acids is present. Though the 

motion on microtubules of both motors is inhibited by full length TPX2, there are 

differences in the level of inhibition achieved by C-terminally truncated TPX2-710. 

TPX2-710 does not show an inhibitory effect of Kif15 motion on single microtubules but 

shows inhibitory effect on Eg5. This difference in regulation of Eg5 and Kif15 observed 

in vitro could be attributed to the differences in the structure and biophysical properties of 

the two motors. Eg5 has been shown to have unique sequences in the neck linker and 

stalk region which may account for this (Waitzman and Rice, 2011).  
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The kinase Aurora A phosphorylates Kif15 in the tail region and enhances the 

localization onto the spindle and thus plays a role in recruiting the motor molecules onto 

the microtubules in cells. As TPX2 is necessary for activating Aurora A, it is possible 

that the inability of TPX2-710 to recruit Kif15 onto the spindle could be an indirect 

consequence of Aurora A inactivity. However, the staining experiments with phospho 

Aurora A antibody show that there is a pool of active Aurora A found near the spindle 

poles. This suggests that mode of action TPX2 C-terminus is recruiting Kif15 onto the 

spindle may be independent of the Aurora A activation by TPX2. One potential way by 

which TPX2 C-terminus can enhance Kif15 recruitment could be through formation of 

microtubule bundles as this region has been demonstrated to be necessary to form cold 

stable K-fibers (Ma et al., 2011) and Kif15 has been shown to be acting predominantly on 

parallel bundles of microtubules (Sturgill and Ohi, 2013; Sturgill et al., 2014).  

3.3.3 How TPX2 effects in Kif15 force generation in Kif15 overexpressing cells 

In Kif15-overexpressing cells have been shown to form bipolar spindles in an Eg5 

independent manner as evidenced by formation of bipolar cells when they are treated 

with STLC. In these cells, spindle formation is believed to occur when a monopolar 

spindle breaks symmetry, driven by Kif15 acting on parallel, bundled microtubules 

(Sturgill and Ohi, 2013; Sturgill et al., 2014). Results here show that when TPX2 is 

depleted from these Kif15-overexpressing cells, bipolar spindles are not observed. One 

possibility is that TPX2 is needed to generate microtubule bundles to which Kif15 binds 

(Sturgill et al., 2014) and once bound to these microtubule bundles, Kif15 may act to 

generate outward force required for the break of symmetry. Alternatively, TPX2 may 

play a more direct role in promoting force generation by Kif15 by modulating the stall 
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force of the motor on the microtubule (Drechsler et al., 2014). As the experiments in this 

chapter show that only full length TPX2 has any significant effect on Kif15 motion on 

microtubules, it is possible that direct role if any of TPX2 in modulating the force 

generation capacity may be mediated through the C-terminal residues of TPX2.  

 3.3.3 Behavior of Kif15 on spindle microtubules in vivo  

The results in this chapter show that GFP-Kif15 particles demonstrated plus-end 

directed motion in different stages of cell cycle. In live cells, Kif15 puncta moved at a 

rate (133 nm/s) that was indistinguishable from microtubule plus-end growth in LLC-

PK1 cells (119 nm/s) suggesting that the some Kif15 puncta may be plus-end tip 

tracking. This is supported by the observation that treatment with paclitaxel to reduce 

microtubule dynamics also reduced the plus-end directed streaming motion of Kif15 

punctae. Thus, these observations support the idea that motion of Kif15 is due, at least in 

part, to tracking with microtubule plus ends. This interpretation is also consistent with 

previous in vitro experiments which show that Kif15 tracks, and accumulates at, the plus 

ends of dynamic microtubules, independent of any other microtubule-associated proteins 

(Drechsler and McAinsh, 2016). The velocity of GFP-Kif15 puncta in live cells overlaps 

with the velocity of GFP-Kif15 from cell extracts measured in vitro on stable 

microtubules (∼130 nm/s).  The similarity of the velocities of microtubule growth and 

Kif15 puncta motility is these cells is thus consistent with motors tracking plus ends, but 

the possibility that Kif15 particles are also walking on spindle microtubules in vivo 

cannot be eliminated. Because puncta composed of multiple tetramers of GFP-Kif15 are 

easier to detect in live cells, our imaging experiments may preferentially capture the 
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brighter puncta at microtubule ends, and individual motors on the microtubule lattice may 

be insufficiently bright to track.  

If Kif15 molecules tip tracks the plus-ends of growing microtubules in addition to 

its walking on the spindle microtubules, the functional relevance of this behavior is a 

very interesting question. One possible explanation is that Kif15 can walk along a 

kinetochore microtubule while being associated with the growing end of a dynamic 

microtubule. Such an action of Kif15 would result in aligning of microtubules as bundles 

in the half spindle. This is especially relevant because in cells as nascent microtubules 

can be formed from existing microtubules through branching (Petry et al., 2015) and this 

mode of action of Kif15 can help in aligning them to form microtubule bundles which 

may contribute to increased k-fiber stability.  

3.4 Methods 

3.4.1 Materials 

All chemicals, unless otherwise specified, were purchased from Sigma-Aldrich. 

3.4.2 Cell culture, nucleofection, and inhibitor treatments 

LLC-Pk1 cells were cultured in a 1:1 mixture of F10 Ham’s and Opti-MEM 

containing 7.5% fetal bovine serum and antibiotics and maintained at 37°C and 5% CO2. 

LLC-Pk1 cells were nucleofected using an Amaxa Nucleofector (Lonza, Basel, 

Switzerland) using program X-001 and Mirus nucleofection reagent (Mirus Bio, 

Madison, WI) according to the manufacturers’ recommendations. The following siRNAs 

were used: TPX2, GGACAAAACUCCUCUGAGA; Nuf2, AAGCAUGCCGUG-
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AAACGUAUA; and Kif15, UGACAUCACUUGCAAAUAC. siRNAs were purchased 

from Dharmacon (GE Healthcare Life Sciences, Pittsburgh, PA). 

LLC-Pk1 cells expressing full-length TPX2 or TPX2-710 from a BAC were 

grown as previously described (Ma et al., 2011). To generate cells expressing GFP-Kif15, 

parental cells were nucleofected with GFP-Kif15 and selected using the appropriate 

antibiotic; cells were subcloned to enrich for GFP-Kif15–expressing cells. For some 

experiments, GFP-Kif15 cells that had been further selected for fluorescence using cell 

sorting were used. mCherry-Kif15 was prepared by subcloning of GFP-Kif15 into the 

appropriate vector. 

Paclitaxel, FCPT, and STLC were prepared as stock solutions in dimethyl 

sulfoxide, stored at –20°C, and diluted with culture medium before use. FCPT was used 

at 200 μM, paclitaxel at 330 nM, and STLC at 1 μM. 

3.4.3 Preparation of cell extracts 

Cell extracts for TIRF experiments were prepared from LLC-Pk1 cells expressing 

GFP-Kif15. A confluent 100-mm-diameter cell culture dish was washed twice with 

calcium and magnesium-free phosphate-buffered saline (PBS), and then 300 μl of 

extraction buffer (40 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid/KOH, pH 

7.6, 100 mM NaCl, 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml 

leupeptin, 1 mg/ml pepstatin, 0.5% Triton X-100, and 1 mM ATP) was added dropwise 

to the dish and incubated with gentle rotation for ∼2 min (Cai et al., 

2007; Balchand et al., 2015). The extract was transferred to a microcentrifuge tube on ice 

and centrifuged at 15,000 rpm at 4°C for 10 min in a tabletop centrifuge. The supernatant 
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was recovered and used immediately or stored in aliquots in liquid nitrogen; protein 

concentration was determined using the method of Lowry et al. (1951). For quantification 

of the fluorescence intensity of individual puncta using TIRF microscopy, the cells were 

treated with siRNA targeting endogenous Kif15 72 h before preparation of the extract. 

To prepare mitotic extracts, GFP-Kif15 cells were treated with siRNA targeting 

endogenous Kif15 and synchronized using 330 nM nocodazole for the final 18 h of the 

72-h siRNA treatment. Extracts were prepared as described, with the addition of Simple 

Stop 1 Phosphatase Inhibitor Cocktail (1X; Gold Biotechnology, St. Louis, MO) to the 

extract buffer. 

3.4.4 Protein purification 

Full-length and truncated TPX2 were expressed and purified from bacteria as 

previously described (Balchand et al., 2015). Kinesin-1–GFP was prepared using the 

dimeric construct as previously described (Balchand et al., 2015). To generate TPX2-657, 

a stop codon was introduced at amino acid 657 in the bacterially expressed full-length 

TPX2 construct. To generate TPX2-ΔPFAM, PCR was used to remove amino acids 662–

719 from full-length TPX2. Proteins were run on 8% polyacrylamide gels using 

appropriate molecular weight standards and stained with Coomassie brilliant blue. 

3.4.5 Single-molecule experiments 

The single molecule experiments were performed as described in chapter 2. 

Briefly, perfusion chambers (∼10-μl volume) were made from glass slides, silanized 

coverslips, and double-stick tape (Balchand et al., 2015). 10 μl of 10% rat YL ½ anti-
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tubulin antibody followed by 5% Pluronic F-127 and the by Diluted rhodamine-labeled 

microtubules composed of 10% rhodamine tubulin were flowed into the chamber with 3 

min incubations. Following a second block of 5% Pluronic F-127 for 3 min, cell extract 

containing GFP-Kif15 diluted in PEM 20 motility buffer (20 mM 1,4-

piperazinediethanesulfonic acid, pH 6.9, 2 mM ethylene glycol tetraacetic acid, 2 mM 

MgSO4) containing 0.25% F127, 100 μM ATP, 1 mM dithiothreitol, and 25 μM 

paclitaxel and supplemented with an oxygen-scavenging system (15 mg/ml glucose, 1.23 

mg/ml glucose oxidase, and 0.375 mg/ml catalase) was flowed into the chamber, and 

imaged. To determine the directionality of Kif15, polarity-marked microtubules were 

used, and it was confirmed that Kif15 walked toward the plus end for the majority of 

excursions. For preincubation experiments with TPX2, the indicated concentrations of 

TPX2 were added to the motility buffer containing GFP-Kif15 and incubated on ice for 2 

min before flowing into the chamber. Single-molecule imaging of kinesin-1–GFP was 

performed as described previously (Balchand et al., 2015). 

3.4.6 Microscope imaging and analysis 

TIRF microscopy was performed using a Nikon (Melville, NY) Ti-E microscope 

with a 100×/1.49 numerical aperture (NA) objective lens and an Andor (Belfast, UK) 

Zyla scientific complementary metal-oxide semiconductor camera; the system was run by 

Nikon Elements software. TIRF imaging was performed at room temperature; images 

were collected at 1 frame/s for a total of 300 s. To measure motor velocity, individual 

puncta were tracked using the Particle Tracking function of Nikon Elements software and 

exported to Excel for analysis. For the experiment with mitotic extract, a Nikon Ti-E 
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microscope run by MetaMorph software and with a Hamamatsu Flash 4.0 camera was 

used. 

Live and fixed cells were imaged using either spinning-disk confocal microscopy 

or point-scanning confocal microscopy. For spinning-disk confocal microscopy, two 

different systems were used, either a Nikon Ti-E microscope with a CSU-X1 Yokogawa 

spinning-disk confocal scan head (PerkinElmer, Wellesley, MA), an Andor iXon+ 

electron-multiplying charge-coupled device camera (Andor), and a 100×/1.4 NA 

objective lens or a CSU-10 Yokogawa spinning-disk confocal microscope on a Nikon 

TE300 as previously described (Tulu et al., 2003). For live-cell imaging, exposures were 

adjusted without saturating the camera’s pixels; typical exposures were 50–800 ms. For 

point-scanning confocal microscopy, a Nikon A1R system with a 60×/1.4 NA objective 

lens was used. Images of live cells were acquired every 2 s at room temperature or every 

3 s at ∼34°C; images were typically collected for 2–5 min. For both fixed- and live-cell 

imaging, a laser power of 1–2% was used. For heating the cells during imaging, a 

Nicholson Precision Instruments (Bethesda, MD) Air Stream Stage Incubator was used; 

temperature was measured using a thermistor probe taped to the microscope stage outside 

of the cell chamber. When the thermistor temperature is 37°C, the temperature inside the 

chamber is ∼34°C. 

To quantify the fluorescence intensity of tubulin and Kif15, a 1 × 1 μm box was 

placed midway between the spindle pole and the chromosomes or at the spindle pole, and 

the ratio of Kif15 to tubulin fluorescence was measured after background subtraction. 

Statistical analysis was performed in Excel. Velocity of GFP-EB1 dashes and Kif15 

puncta were tracked in ImageJ using the M Track J plug-in. 
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3.4.7 Immunofluorescence 

LLC-Pk1 cells were plated on #1.5 glass coverslips ∼48 h before experiments. 

For Kif15 staining, cells were rinsed twice with room temperature PBS lacking calcium 

and magnesium, fixed in −20°C methanol for 5–10 min, and rehydrated in PBS 

containing 0.1% Tween and 0.02% sodium azide (PBS-Tw-Az). Kif15 primary 

antibodies (Cytoskeleton, Denver, CO) were used following the manufacturer’s 

recommendation and subsequently stained with fluorescent secondary anti-rabbit 

antibodies (Ma et al., 2011). For TPX2 staining, cells were fixed in 2% 

paraformaldehyde, 0.25% glutaraldehyde, and 0.5% Triton X-100 made fresh daily in 

PBS lacking calcium and magnesium. TPX2 antibodies were obtained from Novus 

Biologicals (Littleton, CO); Hec1 antibodies (Abcam, Cambridge, MA) were the kind gift 

of T. Maresca (University of Massachusetts). Microtubules were stained with either 

DM1a mouse anti-tubulin (Sigma Chemical Co.) or YL1/2 rat anti-tubulin (Accurate 

Chemical and Scientific, Westbury, NY) and appropriate secondary antibodies as 

previously described (Ma et al., 2011). Stained cells were mounted on glass slides using 

Fluomount G (Southern Biotech, Birmingham, AL) to which 4′,6-diamidino-2-

phenylindole was added to stain DNA. 

3.4.8 Western blotting and detection 

Whole-cell extracts of control or siRNA-treated cells were prepared by adding 

SDS sample buffer to 35-mm dishes of cells, followed by sonication. Extracts were run 

on 8% SDS polyacrylamide gels using the formulation of Laemmli (1970). Gels were 

transferred onto Amersham Hybond-P membrane (GE Healthcare, Waukesha, WI). Blots 
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were probed with Kif15 or TPX2 antibodies used at 1:1000 for 1 h at room temperature 

in 5% nonfat dry milk dissolved in Tris-buffered saline containing 0.02% Tween-20 

(TBS-Tween). The blots were then probed with goat anti-rabbit horseradish peroxidase–

conjugated secondary antibody (1:5000; Jackson ImmunoResearch Laboratories, West 

Grove, PA) for 1 h at room temperature in 5% nonfat dry milk dissolved in TBS-Tween 

and detected using chemiluminescence. 
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Figure 3.1 The C-terminal region of TPX2 contributes to spindle localization of 

Kif15. (A) Immunofluorescence staining for microtubules (left) and Kif15 (right). Top, 

parental cells; the remaining three rows show cells depleted of TPX2 and expressing no 

transgene (parental), transgene encoding full-length TPX2 (middle), or TPX2-710 

(bottom). Scale bar, 2 μm. (B) Spindle morphology for parental cells and cells expressing 

full-length or truncated TPX2; cells on the right were additionally treated with siRNA 

targeting TPX2. (C) Quantification of fluorescence ratio of Kif15 to tubulin at pole and in 

the half-spindle. Error bars are SD. Parental cells depleted of TPX2 were only measured 

at spindle pole due to loss of spindle microtubules. 
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Figure 3.2 Removal of TPX2 C terminus does not abolish Aurora A kinase activity.  

Immunofluorescence staining of microtubules and p Aurora A of control or siTPX2 

treated LLCPK1 cells expressing TPX2 FL or TPX2 710 bacterial artificial chromosome 

transgene. The bottom panel shows the staining in LLCPK1 parental cells treated with 

Aurora A inhibitor MLN8236. 
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Figure 3.3 Inhibition of Kif15 motor stepping requires full-length TPX2. (A) 

Histograms of GFP-Kif15 velocity (left) and run length (right) for plus end– and minus 

end–directed motion; n = 261 and 43 motors, respectively. Data from two independent 

experiments. (B) GFP-Kif15 switches microtubule tracks; arrow marks moving GFP-

Kif15 puncta. Time in minutes:seconds. Bar, 1 μm. (C) Histogram of fluorescence 

intensity of kinesin-1–GFP (top) and GFP-Kif15 (bottom); fluorescence in arbitrary units 

(A.U.). For kinesin-1–GFP, n = 295, and for GFP-Kif15, n = 652, from two independent 
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experiments. (D) Photobleaching of microtubule-bound GFP-Kif15 from interphase and 

mitotic extracts. Horizontal pink lines show bleach steps. For interphase, n = 11 particles, 

five with more than three steps and six with fewer than three steps; data from two 

independent experiments; for mitotic extracts, n =15 particles, 10 with more than three 

steps and five with fewer than three steps. (E) Schematic diagram of constructs used for 

inhibition experiments (top) and bar graph (bottom) showing ratio of velocity without and 

with added proteins; error bars, SEM. (F) Kymographs showing motility of GFP-Kif15; 

added TPX2 construct indicated at the top; vertical axis marker bar, 15 s; horizontal axis 

marker bar, 1 μm. 
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Figure 3.4 TPX2 is required for bipolar spindle formation in cells overexpressing 

Kif15. (A) LLC-Pk1 cells expressing GFP-Kif15 (left) and parental cells fixed and 

stained for Kif15 (right). (B) Western blot of extracts from parental and GFP-Kif15–

expressing cells; blot stained for Kif15 (top) and tubulin as loading control (bottom). (C) 

Images of GFP-Kif15–expressing cells treated with siRNA targeting TPX2 (top) or Nuf2 

(bottom); GFP-Kif15 (left) and co-nucleofected mCherry-H2B to label chromosomes 

(right). (D) Bar graphs showing percentage of bipolar, monopolar, and multipolar 

spindles for each treatment condition. Error bars show SD. (E) Parental cells treated with 

FCPT, with siRNA targeting TPX2, or with both. Cells were stained for microtubules 

(bottom) and either Kif15 or Eg5 (top). Bar, 2 μm. 
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Figure 3.5 Dynamics of GFP-Kif15 in vivo. (A) Selected frames from a movie of GFP-

Kif15 expressing cells; red and yellow arrowheads mark fluorescent particles traveling 

toward the chromosome region (spindle equator to the right; dark ovals are 

chromosomes). (B) Live cell expressing GFP-Kif15 progressing from prometaphase 

(0:00) to metaphase (3:30) and anaphase (9:00); arrows show accumulation of 

fluorescence near the kinetochores. (C) Kymographs from movie sequences of GFP-

Kif15–expressing metaphase and anaphase cells; dark regions are chromosomes; spindle 

midzone to right. (D) TIRF microscopy of GFP-Kif15 expressing cells; Kymograph of an 

individual puncta of GFP-Kif15 (right panel). (E) Region marked with red box in (D) is 

shown enlarged in panels; red arrowhead shows initial position of puncta (contrast 

inverted); yellow arrow marks puncta. Time in sec. Time: vertical axis; distance: 

horizontal axis. Scale: Horizontal bar 2 μm. Vertical Bar 30s in (C) and 2s in (D). 
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Figure 3.6 Microtubule dynamics contribute to spindle distribution of Kif15. (A) 

Sequential frames (2-s interval) from movies of GFP-Kif15 expressing control and 

paclitaxel-treated cells (inverted contrast); motion of fluorescent particles toward the 

kinetochore region (right) in control but not paclitaxel-treated cells. Green arrowheads 

mark moving puncta. (B) LLC-Pk1parental cells fixed and stained for microtubules and 

Kif15 (top) or TPX2 (bottom); control and paclitaxel as indicated; merged images to the 

right. (C) Bar graph showing ratio of fluorescence intensities of Kif15 and TPX2 to 

microtubules of images shown in (B). Scale Bar, 2 μm. 
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CHAPTER 4 

GENERAL DISCUSSION 

4.1 Chapter summaries 

 Eg5 and Kif15 are the two major motor proteins that generate plus-end directed 

forces on the spindle and are necessary for generation and maintenance of spindle 

bipolarity. Both Eg5 and Kif15 have been previously demonstrated to be regulated by the 

microtubule associated protein TPX2. How TPX2 molecules interact with the motors Eg5 

and Kif15 on the microtubules is incompletely understood. Through a combination of in 

vitro reconstitution TIRF experiments and live cell imaging, the results presented in these 

chapters help in understanding the mechanism and requirements for the regulation of both 

Eg5 and Kif15 by TPX2.  

 In chapter 2, the microtubule co-sedimentation experiments showed that TPX2 

binds tightly to microtubules with nanomolar affinity and that the C-terminal residues of 

TPX2 do not play a significant role in the microtubule binding in bulk sedimentation 

assays. This binding interaction was found to be electrostatic but independent of the 

charged C-terminal E-hook region of tubulin. Characterization of Eg5-EGFP from cell 

extracts showed that cell extracts can be an excellent source of highly functional Eg5 

motor proteins with very similar biophysical properties compared to Eg5 molecules 

purified from Sf9 insect cells. In vitro TIRF experiments showed that full length TPX2 is 

a more potent inhibitor of Eg5 motion on single microtubules than the C-terminally 

truncated TPX2-710, which also inhibits Eg5 motion albeit to a lesser extent. This 
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differential inhibition by TPX2 molecules was also observed in microtubule surface 

gliding experiments with Eg5 dimers but not Eg5 monomers.   

The results from these experiments suggest a model where both full length TPX2 

and TPX2-710 can bind to microtubules and inhibit Eg5 motion on microtubules by 

acting as a road block. The more potent inhibition of Eg5 achieved by full length TPX2 

which contains the Eg5 interaction domain suggests that the C-terminal amino acids of 

TPX2 may act as tether or brake on Eg5 molecules resulting in the stronger inhibition. 

The microtubule surface gliding experiments, using dimeric and monomeric constructs of 

the motor, suggest that the amino acid residues present in the stalk and neck-linker region 

of Eg5 are involved in Eg5-TPX2 regulation. These residues on Eg5 could be directly 

involved in Eg5-TPX2 interaction. Alternately, they may be involved in the formation of 

a specific Eg5 conformation that TPX2 recognizes resulting in the inhibition of Eg5 

motion on microtubules. The results from these experiments help characterize how TPX2 

regulates Eg5 by acting as a brake and a tether at the molecular level.  

 In chapter 3, results show that the C-terminal region of TPX2 that regulates Eg5 

also regulates Kif15 localization to the spindle. Consistently, only full length TPX2 and 

not truncated constructs of TPX2 were able to regulate motion of Kif15 molecules in in 

vitro TIRF experiments. Aurora A kinase activity was not compromised in the presence 

of TPX2-710 suggesting that TPX2 mediated regulation of Kif15 may involve a more 

direct role for TPX2 in localizing Kif15 molecules onto the spindle. Elevated expression 

of Kif15 has been shown to induce parallel microtubule bundle formation even under the 

absence of proper microtubule attachments at kinetochore. This chapter shows that even 

under elevated levels of expression, Kif15 requires TPX2 to localize to microtubules. 
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When TPX2 is depleted in parental cells, artificial bundling of microtubules in the 

spindle using FCPT treatment recruits only Eg5 to the spindle but not Kif15. This 

suggests that within cells, microtubule bundling alone may not be sufficient to recruit 

Ki15 onto the microtubules. Observation of the dynamics of Kif15-GFP particles in cells 

revealed plus-end directed streaming motion of the Kif15 particles, which was affected 

by dampened microtubule dynamics following treatment with paclitaxel. This suggests 

that some population of the motor may be associated with the growing plus-ends of 

microtubules and contribute to the observed plus-end streaming motion of Kif15 

particles. Thus, the results from this chapter show that TPX2 C-terminus and microtubule 

dynamics play a role in regulating Kif15 localization and behavior on the spindle. 

4.2 Discussion 

4.2.1 Microtubule binding of TPX2 

 The experiments in these chapters show that full length TPX2 binds tightly to 

microtubules with affinities comparable to some of the other microtubule associated 

proteins like XMAP215(2μM), She1(.77μM), SKAP(2μM) (Spittle et al., 2000; Markus 

et al., 2012; Schmidt et al., 2010). Results show that removal of Eg5 interaction domain 

in TPX2 does not have a large effect on the microtubule binding ability of TPX2. 

However, removal of Eg5 interaction domain causes significant changes in microtubule 

organization in mammalian cells and in Xenopus extract. Truncation of Eg5 interacting 

domain in TPX2 abolishes microtubule nucleation from pre-existing microtubules in 

Xenopus extracts (Alfaro-Aco et al., 2017). In mammalian cells, loss of this domain in 

TPX2 causes loss of cold stable K-fiber formation but does not compromise chromosome 
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dependent nucleation of microtubules (Ma et al., 2011). Thus, in mammalian cells, the 

removal of Eg5 interaction domain in TPX2 affects stability of K-fibers but not the 

nucleation of microtubules around chromosomes. It is not completely clear why the 

removal of Eg5 interaction domain in TPX2 affects microtubule nucleation only in 

Xenopus extracts but not in cells. It is possible that the last 37 amino acids of TPX2 is 

essential for microtubule nucleation only in the context of nucleation from pre-existing 

microtubules but is dispensable for nucleation of microtubules directly from tubulin 

solutions. Consistent with this, Alfaro-Aco et al., showed that there are constructs of 

TPX2 lacking the C-terminal region of TPX2 that are capable of binding and nucleating 

microtubules in vitro from tubulin solutions but not form branched microtubules from 

pre-existing microtubules. These observations suggest that the C-terminal region of 

TPX2 is involved in nucleation of branched microtubules. TPX2 may also play a role in 

formation of microtubule bundles by directly binding two or more microtubules through 

its different microtubule binding domains (Alfaro-Aco et al., 2017) or by recruiting 

crosslinking motor proteins like Eg5 and Kif15 to these bundles. TPX2 binds to 

microtubules independent of the charged E-hook region in tubulin, which is required for 

microtubule binding by most kinesins. As TPX2 binding to microtubules did not prevent 

microtubule binding of kinesins Eg5, Kif15 or kinesin-1, TPX2 may not occupy the same 

binding region on microtubules as the kinesins. As most kinesin heads bind along the 

outer ridge of the microtubule with the binding interface situated in a groove between α 

and β tubulin heterodimer (Kikkawa et al., 2000), TPX2 may bind to an interface located 

between the protofilament. I also speculate that the binding of TPX2 on the microtubules 

could be specifically on the left side of the protofilaments as TPX2 binding to 
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microtubules does not involve the E-hook which is located on the right side of the 

protofilaments (Nogales et al., 1998; Kikkawa et al., 2000; Nogales et al., 2016). This 

may allow TPX2 to regulate kinesins Eg5 and Kif15 without affecting its role in 

microtubule binding and organization.  

4.2.2 Similarities and differences between Eg5 and Kif15 

 In vitro TIRF experiments discussed in these chapters demonstrate that Eg5 and 

Kif15 molecules obtained from cell extracts exhibited some similarities and differences 

in their biophysical properties. Both, Eg5 and Kif15 molecules walked processively 

towards microtubule plus-ends predominantly and accumulated at plus-end tips of 

microtubules. Both motors obtained from native cell extracts were mostly tetrameric 

suggesting that the physiologically relevant oligomeric state for both Eg5 and Kif15 is a 

tetramer. Eg5 was very slow (14nm/s) when compared with Kif15 (120nm/s) consistent 

with previous studies (Kwok et al., 2006; Dreschsler et al., 2014). Short minus-end 

directed runs and microtubule track switching were observed only for Kif15 molecules 

but not Eg5 which could have some functional consequences. Eg5 molecules are thought 

to be active mainly on anti-parallel microtubules and Kif15 to be active on parallel 

microtubules in the spindle (Sturgill et al., 2012). Plus-tip tracking behavior was 

observed in vivo only for Kif15 but not Eg5. Recently, plus end tip tracking was observed 

for Kif15 molecules in vitro and was reported to contribute to sorting and aligning 

microtubules into parallel bundles (Drechsler et al., 2016). To my knowledge, the results 

presented here are the first observations of plus-end tip tracking of Kif15 particles within 

cells which lends support to the in vitro study by Drechsler et al., 2016.  
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4.2.3 How does TPX2 regulate both Eg5 and Kif15 activity in cells 

 Both Eg5 and Kif15 bind to microtubule pairs and slide them to generate force 

(Kapitein et al., 2005; Drechsler et al., 2016). However, the orientation of the 

microtubule pairs required for activity in in vitro studies is different for both motors as 

Eg5 preferentially binds to anti-parallel microtubules and Kif15 preferentially binds to 

parallel microtubules (van den Wildenberg et al., 2008; Kapitein et al., 2005; Drechsler et 

al., 2016). When Eg5 binds to anti-parallel microtubules, the motor is switches from a 

diffusive to directional state and the motor head pairs become engaged on both 

microtubules resulting in microtubule sliding (Kapitein et al., 2008; Kapitein et al., 

2005). The Eg5 motor heads move simultaneously on both microtubules at roughly the 

same rate and thus the Eg5 dependent microtubule sliding involves coordinated 

movements of all active motor heads on both microtubules (Kapitein et al., 2005). Eg5 

molecules when bound to parallel bundles do not show any microtubule sliding activity 

and exhibit overlap length dependent resistance to microtubule sliding (Shimamoto et al., 

2015). Hence, in this parallel geometry, Eg5 when slowed by TPX2 may just serve to 

crosslink the microtubules and consequently stabilize parallel microtubule bundles and 

help form cold stable K fiber.  

Unlike Eg5, Kif15 preferentially binds to parallel microtubule pairs. Though 

Kif15 actively walks on both microtubules, a velocity differential exists between the 

motor head pairs engaged on the two microtubules (Drechsler et al., 2016). And this 

velocity differential is necessary for sliding microtubules and generating force 

specifically when microtubule pairs are in parallel orientation (Drechsler et al., 2016). 

Thus, for Kif15 dependent sliding of parallel microtubules, one pair of motor heads 
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walking on the microtubule should be walking slower and for Eg5 dependent anti-parallel 

microtubule sliding, all motor heads need to engage at roughly the same velocity.  

In the context of the cell, Eg5 dependent microtubule sliding is essential for 

separating the centrosomes and establishing bipolarity early in the cell division but this 

activity is not essential for maintenance of bipolarity once it is established. Thus, Eg5 

activity should be maximal during early stages of cell division and negatively regulated 

once bipolarity is established. Within cells, Kif15 activity is dispensable for 

establishment of bipolarity under normal conditions but is required for maintenance of 

bipolarity after initial establishment. So, Kif15 molecules must stay active during later 

stages of cell division for maintenance of bipolarity.  

Data presented in Chapters 2 and 3 show that TPX2 inhibits motility of Eg5 and 

Kif15 molecules on single microtubules in vitro. However, the inhibitory effect of TPX2 

on Eg5 is stronger than its effect on Kif15. This could potentially explain subtle 

differences in regulation of Eg5 and Kif15 activity within cells. I hypothesize that in 

cells, TPX2 being a weak inhibitor of Kif15 motion on microtubules, could potentially 

slow down but not completely stop the Kif15 motor heads on microtubules and create the 

velocity differential that would aid in Kif15 dependent bundling and sliding of parallel 

microtubules. Thus, Kif15 regulation by TPX2 may help rearrangement of dynamic 

microtubules on the spindle into parallel bundles and help stabilize K fibers and maintain 

bipolarity. By being a stronger inhibitor of Eg5, it could prevent defective spindles from 

being formed when Eg5 activity is excessive and unregulated (Ma et al., 2011). I also 

speculate that by strong inhibition of Eg5, TPX2 may force an Eg5 conformation that 
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helps crosslink parallel bundles during later stages of cell cycle and aid in stabilization of 

K-fiber.  

 4.2.4 Future directions 

Previous studies have shown that Eg5 and Kif15 possess a second microtubule 

binding domain in located in their tail region which helps the molecules bundle 

microtubules with a specific preference to parallel or anti parallel orientation even in the 

absence of the motor domains (van-Den Wildenberg et al., 2008; Weinger et al., 2011; 

Sturgill et al., 2014). As regulation of Eg5 and Kif15 by TPX2 have been shown to 

involve regions other than the motor head, it will be of interest to find the effect of TPX2 

on the second microtubule binding domains located in the tail region of both Eg5 and 

Kif15. The geometry of microtubule orientation is very critical for both Eg5 and Kif15 to 

elicit proper physiological function and future studies aimed at understanding the effect 

of TPX2 on Eg5 and Kif15 engaged on microtubule bundles with specific geometries 

could offer useful insights. Recently Kif15 was shown to be regulated by another MAP 

called Kinesin Binding Protein (KBP). Interestingly, KBP regulated localization of Kif15 

in the equatorial region of the spindle around the chromosomes by interacting directly 

with the kinesin motor head (Brouwers et al., 2017). TPX2 dependent regulation of Kif15 

does not show such specific regional preference and involves the leucine zipper region in 

the tail region of Kif15 (Tannenbaum et al., 2009). Future in vitro studies to determine 

whether KBP alters motility of Kif15 alone or in conjunction with TPX2 will be of 

interest. Both Kif15 and TPX2 have been shown to track growing plus-ends of 

microtubules in in vitro experiments (Drechsler et al., 2016; Reid et al., 2016; Roostalu et 
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al., 2015). It remains to be tested whether TPX2 also plays a role in regulating Kif15 at 

the microtubule plus-ends thereby potentially altering microtubule dynamics.  

4.3 Proposed Model 

 Based on the results presented here and previously published work, I propose the 

following model (Fig 4.1). In the presence of full length TPX2 (Left panels), 

microtubules are nucleated around chromosomes. Presence of full length TPX2 also 

enhances Eg5 and Kif15 localization onto the spindle microtubules. In the presence of 

full length TPX2, Kif15 molecules align microtubules into parallel orientation and helps 

stabilize K fibers. Strong inhibition of Eg5 by full length TPX2 slows Eg5 and inhibits 

microtubule sliding activity on antiparallel microtubule overlaps. Proper regulation of 

Eg5 and Kif15 by full length TPX2 thus leads to formation of a functional bipolar 

spindle. In the presence of TPX2 710 (Right panels), microtubules are nucleated in the 

vicinity of chromosomes. But, absence of TPX2 C-terminus fails to localize Eg5 and 

Kif15 on the spindle microtubules properly. In the presence of TPX2 710, reduced 

targeting of Kif15 prevents Kif15 dependent parallel bundle formation and prevents 

proper formation of stable K fiber. Tpx2-710 inhibits Eg5 molecules less effectively and 

the results in excessive Eg5 activity which causes disorganized and multi-polar spindles.  
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Figure 4.1 Proposed Model. Schematic representation of spindle formation in the 

presence of full length TPX2 (Left panels) and TPX2-710 (Right panels). Top row shows 

the microtubule nucleation around the chromosomes. Middle row shows the recruitment 

of motors Eg5 and Kif15 onto spindle microtubules and formation of microtubule 

bundles. Bottom row shows the regulation of motor activity by full length TPX2 and 

TPX2-710 and the resulting spindle morphology. 
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