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ABSTRACT  

REGULATION OF KATANIN ACTIVITY ON MICROTUBULES 

SEPTEMBER 2017 

MADISON A. TYLER, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Jennifer Ross 

The cytoskeleton is a dynamic network of microtubules constantly being 

reorganized to meet the spatiotemporal demands of the cell. Microtubules are organized 

into subcellular highways to control cell processes such as cell division, cargo transport, 

and neuronal development and maintenance. Reorganization of this intricate network is 

tightly regulated by various stabilizing and destabilizing microtubule-associated proteins 

that decorate the network. Katanin p60 is a microtubule destabilizing enzyme from the 

ATPases Associated with various Activities (AAA+) family. It can both sever and 

depolymerize microtubules. In order to sever microtubules, katanin recognizes the tubulin 

carboxy-terminal tails (CTTs) and hydrolyzes ATP. Using super-resolution microscopy 

and image analysis, we find that the tubulin CTTs are not required for katanin to 

depolymerize microtubules. We also characterize the regulation of microtubule severing 

and depolymerization by katanin in various nucleotide states. A better understanding of 

how CTTs and nucleotides regulate microtubule severing and depolymerization by katanin 

will help future research aimed to correct katanin activity when these processes goes awry 

as in improper chromosome segregation during mitosis or loss of microtubule integrity in 

neuronal diseases. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Cytoskeleton 

In order to function properly, the cell must coordinate itself in a spatiotemporal 

manner. The cell must change shape, move, and be able to reorganize its components. 

Hundreds of cellular processes occur in a given day, therefore cells must be highly 

dynamic in order to coordinate these processes and meet their immediate needs for 

survival. Eukaryotic cells have evolved to become very good at coordinating essential 

cell processes that depend on the cytoskeleton, a complex network of filaments. One 

component of the cytoskeleton is microtubule filaments. Microtubules are critical 

components to important cellular processes including cell division, neuronal maturation, 

and intracellular transport (Sharp & Ross, 2012). Microtubules are so essential that 

almost any mutation in microtubules results in death (one results in blindness only) 

(Tischfield, Cederquist, Gupta, & Engle, 2012). 

One example of rapid and seamless reorganization of microtubules is in a 

healthy cell undergoing cell division. After chromosomes and other cellular organelles 

are duplicated, the microtubules of the cell organize themselves into bipolar mitotic 

spindles. In this arrangement, microtubules extend out from the microtubule organizing 

center and attach to chromosomes at the kinetochore (Tanaka & Desai, 2008). These 

microtubules are responsible for proper segregation of chromosomes into daughter cells. 

After cell division, the two daughter cells should contain one copy of each chromosome. 

The cell even has error correction pathways to biorientation in which sister kinetochores 

attach to dynamic microtubules from opposite spindle poles (Ye & Maresca, 2015). 

However, when the microtubule array fails to properly segregate the chromosomes, this 
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can lead to conditions defined by aneuploidy, where the cell has too many or too few 

copies of a chromosome. One such condition is Down’s Syndrome.  

Tight regulation of the microtubule network is essential to avoid the disease 

states that can arise when microtubules are misregulated. Microtubule-associated 

proteins (MAPs) are proteins that control the assembly of microtubule filaments. They 

are responsible for creating new interactions between proteins and breaking interactions 

with other proteins to ensure the success of the cellular process. There are many types 

of MAPs, with jobs such as promoting nucleation, promoting and speeding up growth, 

guarding against catastrophe (switching between growth state and a shrinkage state), 

promoting catastrophe, speeding or slowing depolymerization, promoting rescue 

(switching between shrinkage state and the growth state), bundling microtubules, 

crosslinking microtubules, moving microtubules relative to each other, stiffening 

microtubules, or spacing microtubules.  

For example, tau is a MAP abundant in neurons and promotes microtubule 

assembly and stabilization while is also spaces and stiffens microtubules (Hawkins, 

Sept, Mogessie, Straube, & Ross, 2013; Paglini, Peris, Mascotti, Quiroga, & Caceres, 

2000; Ross, Santangelo, Makrides, & Fygenson, 2004). Kinesin-5 is a microtubule 

crosslinking and transporting motor enzyme that encourages polymerization by sliding 

antiparallel microtubules during spindle assembly and regulates nascent axon branching 

(Chen & Hancock, 2015; Kapoor, Mayer, Coughlin, & Mitchison, 2000; Nadar, Ketschek, 

Myers, Gallo, & Baas, 2008). Of the destabilizing proteins, all are enzymes that use 

ATP. Some are from the kinesin-family. An interesting family of destabilizing proteins, is 

the microtubule severing enzymes, including katanin, spastin, and fidgetin. Although the 

mechanism of severing remains poorly understood, these enzymes play crucial roles in 

major cellular processes including chromosome segregation in mitosis, neurogenesis, 
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cilia control, and spindle scaling (Hu, Wen, Pomp, Oz, Ben-Omran, Tawfeg, Kodani, 

Andrew, Henke, Katrin, Mochida, Ganeshwaran H., Yu, Timothy W., Woodworth, Mollie 

B., Walsh, 2015; Loughlin, Heald, & Nédélec, 2010; Loughlin, Wilbur, McNally, Nédélec, 

& Heald, 2011; Sharp & Ross, 2012; Zhang, Rogers, Buster, & Sharp, 2007). 

 

1.2 Microtubules 
Microtubules are hollow cylinders made of the protein tubulin. They vary in 

length, but can be as long as 50 μm in vivo. The microtubule polymer is made up of 

alpha and beta subunits. One alpha and one beta subunit come together to form a dimer 

of 110 kilodaltons. The alpha-beta dimers assemble into protofilaments that bind side-to-

side to form a sheet that rolls into a tube with 13-protofilaments around (Fig. 1). The 

microtubule measures 25 nm in width in the outer diameter, with the hole down the 

center about 17 nm is diameter. The hollow center gives microtubules a rigid structure 

that results in a long persistence length, a mechanical property based on the stiffness of 

the polymer.  

Each microtubule has structural asymmetry and has a plus end and a minus end. 

Tubulin dimers associate with one another such that the alpha subunit comes into 

contact with a beta subunit of another dimer that is already part of the microtubule 

lattice. The dimers always bind with the same directionality which causes structural 

polarity. Thus, there is a microtubule end with a ring of beta tubulin, named the plus end, 

and a microtubule end with a ring of alpha tubulin, named the minus end (Fig. 1).  

Changes in microtubule length are driven by GTP-hydrolysis at the plus end of 

the microtubule (Mitchison, 1993). Both alpha and beta tubulin have GTP-binding sites, 

however the alpha tubulin GTP-binding site is called non-exchangeable and the beta 

tubulin GTP-binding site is called exchangeable. After polymerization, the GTP in the 
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exchangeable site is hydrolyzed and becomes nonexchangeable (Nogales, 1999; 

Nogales, Whittaker, Milligan, & Downing, 1999). This makes the body of the microtubule 

GDP-tubulin that energetically favor depolymerization. Thus, the microtubule will 

continue to grow as long as the ring of GTP-tubulin remains at the plus-end. This is 

called the GTP cap. Evidence for the GTP cap comes from experiments with the 

nonhydrolyzable GTP analogue GMPCPP that show that GTP-tubulin is stable in the 

cylinder structure (Hyman, Salser, Drechsel, Unwin, & Mitchison, 1992). However, when 

the GTP cap is lost, the microtubule rapidly depolymerizes or undergoes catastrophe. 

This constant flux of microtubule growing and shrinking is called dynamic instability and 

is an important inherent property of microtubules (Mitchison & Kirschner, 1984).  

In our experiments, microtubules are stabilized with Taxol. Taxol is a 

chemotherapeutic drug used in cancer patients and patients with neurological diseases 

where microtubules are not properly regulated (Arnal & Wade, 1995). Taxol stabilizes 

microtubules by binding to a site that is different from the GTP-binding site and prevents 

microtubule catastrophe. We also have not added free tubulin dimers and GTP to these 

assays, which prevents polymerization. We restrict the inherent ability of the microtubule 

to grow and shrink because we want to study just the activity of katanin on microtubules.  

Each alpha and beta tubulin monomer has a negatively charged carboxy-terminal 

tail (CTT) which makes the microtubule negatively charged on its surface. Alpha and 

beta CTTs are extremely important to the microtubule structure. The alpha and beta tails 

are different and can be post-translationally modified in the cell. This is important 

because many enzymes are thought to recognize the microtubule through its CTT, 

including the severing enzymes (Bailey, Sackett, & Ross, 2015; Valenstein & Roll-

Mecak, 2016). In fact, our lab has found that katanin preferentially binds to the beta CTT 

(Bailey et al., 2015). We can study the effects of the carboxy-terminal tail by cleaving it 
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with a protease called subtilisin (Bhattacharyya, Sackett, & Wolff, 1985). Therefore, we 

can polymerize microtubules in a test tube and cleave off the CTT, leaving just the 

hollow cylinder structure. 

 
Figure 1. Microtubule Structure. 
Microtubules are dynamic filaments composed of dimers of alpha and beta subunits. 
Tubulin dimers associate with one another such that the alpha subunit comes into 
contact with a beta subunit of another dimer that is already part of the microtubule 
lattice. This gives the microtubule polarity with a beta tubulin ring at the plus end and an 
alpha tubulin ring at the minus end. The GTP-bound beta tubulin ring at the plus end is 
called the GTP cap. The presence or absence of this cap drives dynamic instability, the 
inherent property of microtubules to grow and shrink.  
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1.3 Microtubule Severing Enzymes  

In healthy cells, microtubule dynamics are coordinated in space and time by 

stabilizing and destabilizing MAPs. The microtubule severing enzymes are important 

destabilizing MAPs. There are three severing enzymes named katanin, spastin, and 

fidgetin. They are ATPases Associated with diverse cellular Activities (AAA+ family 

proteins) and are involved in many cellular processes because of their roles in regulation 

of microtubule networks (Roll-Mecak & McNally, 2010; Sharp & Ross, 2012). When the 

severing enzymes are mutated or improperly regulate microtubules, disease states can 

occur. One disease state that can occur is hereditary spastic paraplegia, which is 

characterized by progressive weakness and stiffness of the legs. The most commonly 

mutated gene to cause hereditary spastic paraplegia is the spastin gene (Hazan et al., 

1999). Studying these enzymes is certainly important and research may lead to new 

insights as to how to treat these diseases. Future work may allow us to use severing 

enzymes as a tool to target specific microtubules for reorganization to help people with 

these disorders.  

Our lab is particularly interested in the severing enzyme katanin. Katanin has 

been implicated in many important cellular processes including meiotic spindle shape 

and size, mitotic progression, cytokinesis, cilia biogenesis, and neuronal processes 

(Ahmad, Yu, Mcnally, & Baas, 1999; Loughlin et al., 2011; Matsuo et al., 2013; Rogers, 

Rogers, & Sharp, 2005; Sharma et al., 2007). Ultimately, our lab aims to elucidate the 

mechanism of katanin activity on microtubules. There are two types of activity katanin 

can have on microtubules: severing and depolymerization (Fig. 2). Katanin severs 

microtubules by localizing to the CTT of tubulin and removing a tubulin dimer 

somewhere in the middle of the microtubule to create two shorter microtubules. In 

depolymerization, katanin loosens tubulin dimers from either end of the microtubule and 
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the same microtubule gets shorter. Less is known about mechanism of katanin 

depolymerization on microtubules. 

The amino-termini of the three enzymes are different. Katanin contains a 

microtubule interacting and trafficking (MIT) domain in its amino-terminus, which enables 

it to dock onto the microtubule (Fig. 3).  In human katanin the MIT has been mapped to 

amino acids 55-180 (Eckert, Le, Link, Friedmann, & Woehlke, 2012; Mcnally & Thomas, 

1998). At the far end of the amino-terminus is the katanin p80 interacting region. Katanin 

p80 is the regulatory protein of katanin p60 (McNally, Bazirgan, & McNally, 2000). It 

regulates katanin p60 by modulating severing activity and directing p60 severing activity 

in the cell. Our assays contain only katanin p60. 

The severing enzymes have sequence and structural similarities that enable 

activity on microtubules. Their similar carboxy-terminal AAA domains are responsible for 

the catalytic activity. The AAA domain hydrolyzes ATP and uses the chemical energy of 

ATP to translate into mechanical energy of severing. The AAA domain contains the 

Walker A motif, which is responsible for ATP binding and the Walker B motif, responsible 

for ATP hydrolysis (Frickey & Lupas, 2004) (Fig. 3). In our assays, a Walker B mutant 

katanin can bind to but not hydrolyze ATP. We use the Walker B mutant katanin to 

explore the role of ATP in katanin’s ability to bind to microtubules. The AAA domain of 

katanin also contains 2 identified pore loops (Eckert et al., 2012; Johjima et al., 2015; 

Mcnally & Thomas, 1998; Zehr et al., 2017). An aromatic amino acid residue is highly 

conserved in one of the pore loops of most AAA+ proteins and is amino acid 282, a 

tyrosine, in human katanin (Johjima et al., 2015). Interestingly, spastin has 3 pore loops, 

compared to katanin’s 2 known pore loops (Roll-Mecak & Vale, 2008; White, Evans, 

Lary, Cole, & Lauring, 2007). The conserved pore loops of AAA+ proteins are crucial to 

the protein carrying out its function in the cell. 
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Each katanin monomer contains these MIT and AAA domains (Fig. 3). In the cell, 

katanin monomers oligomerize into a hexamer on a microtubule in the presence of ATP 

(Hartman & Vale, 1999). However, whether hexamerization occurs before or after 

microtubule binding remains unknown. Once hexamerization happens, a small pore is 

formed in the middle of the enzyme where the positively charged pore loops are located. 

The pore of the assembled hexamer is thought to interact with the CTT and that starts 

the reaction of microtubule severing by some unknown mechanism. Two mechanisms 

have been proposed, however, and they are primarily based on a model that we on 

spastin severing (Roll-Mecak & Vale, 2008; White et al., 2007). One is that the tubulin is 

unfolded and translocated through the center pore, like in other AAA+ enzymes like ClpX 

(Iosefson, Olivares, Baker, & Sauer, 2015). The other suggested mechanism is that 

tubulin-tubulin interactions are destabilized when the positively charged pore loops tug 

on the CTT, releasing the tubulin dimer from the lattice.  

Previously, lack of 3D structures of katanin made elucidating the severing activity 

difficult. There has been a crystal structure of spastin with a 3D envelope structure from 

small-angle x-ray (Roll-Mecak & Vale, 2008). This spastin structure was used as the 

structural basis for katanin, as well. A very recent paper has recently shined new light on 

the structure and possible mechanism of action of katanin (Zehr et al., 2017). They 

found that via ATP hydrolysis, katanin can cycle between two conformations: open spiral 

and closed ring. Open spiral conformation is when there is a gap between katanin 

monomer 1 and 6. In this conformation, the hexamer is open and the pore loops are not 

all engaged with the CTT of tubulin. Closed ring conformation occurs when subunit 1 

and 6 make contact and the katanin hexamer is closed (Fig. 4). In this conformation, the 

pore loops of all monomers are engaged with and can tug on the CTT. This new article 

suggests that the cycling of the hexamer between open and closed conformations 
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creates the power stroke for microtubule severing (Zehr et al., 2017). More research 

should be conducted to better understand this proposed mechanism of katanin severing.  

Katanin was the first microtubule severing enzyme discovered (Vale, 1991) yet 

its mechanism of severing remains elusive. Our lab has had previous success purifying 

and studying katanin. We determined 1) katanin targets microtubule defects (Diaz-

Valencia et al., 2011), 2) free tubulin inhibits katanin activity (Bailey et al., 2015), 3) 

katanin prefers beta tubulin tails to alpha tubulin tails (Bailey et al., 2015), 4) ATP 

concentration affects katanin activity (unpublished data). This is an exciting time to be 

studying katanin, as a partial structure of katanin p60 in C. elegans has just been solved 

(Zehr et al., 2017). Yet, even with the structure and research that has been conducted 

thus far, many questions remain. We are interested in further elucidating the mechanism 

of katanin activity on microtubules. Using in vitro microtubule severing assays and TIRF 

microscopy, we aim to answer some of these important questions to better understand 

how microtubules are coordinated in space and time.  
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Figure 2. Katanin Severing and Depolymerization Activity on Microtubules. 
Katanin can either A) sever or B) depolymerize microtubules. In severing, katanin 
hexamerizes on a CTT in the middle of the microtubule to remove a tubulin dimer. The 
removal of a dimer induces a break in the microtubule lattice, causing two shorter 
microtubules to form. In depolymerization, katanin loosens tubulin dimers from either 
end of the microtubule. These mechanisms are thought to be distinct and regulated 
differently.  
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Figure 3. Domain Diagram of Katanin p60.  
The microtubule interacting and trafficking (MIT) domain is located at the carboxy-
terminus (red). A fishhook region (orange) located on the microtubule-interacting side 
near the MIT domain is probably one of the first structural elements to interact with the 
microtubule. The alpha 1 (yellow) and alpha 12 (blue) helices act as linkers to the 
fishhook region structurally linking the microtubule-binding face of katanin with the 
outward face of katanin. The AAA domain contains also the Walker A and B regions 
(black) for ATP binding and hydrolysis, respectively. Katanin contains arginine fingers 
(black) that contact ATP phosphates. The pore loops are located in the AAA domain as 
well (purple). 
 
 

 
Figure 4. 3D Models for Katanin Hexamer in the Ring Conformation. 
Katanin p60 in closed ring conformation. In this conformation, each of the six subunits 
interface and the pore loops in the center of the protein are engaged with the CTT of 
tubulin (PDB, Zehr et al., 2017). 
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1.4 Biophysics of Microtubules 

Biophysics, or biological physics, is an inherently interdisciplinary field where the 

techniques and theories of physics are used to study biological processes. Our lab is a 

biophysics lab that uses high-resolution microscopy to study microtubules and their 

associated proteins and enzymes. We use methods of physics to collect, analyze, and 

present the data. This is a useful way to study microtubules and other aspects of biology 

for several reasons. 1) Biology is traditionally a qualitative field, yet using physics to 

study these processes allows us to quantify inherently qualitative biological processes. 

This is important because it allows us to share unsubjective, verifiable results. 2) Biology 

and physics are not two mutually exclusive disciplines. The laws of physics apply in 

biology and therefore it is important to study biological processes with physics. 3) We 

can answer more interesting questions with greater depth with interdisciplinary work. Our 

lab is highly collaborative and interdisciplinary and as such, biologists and physics 

interact daily to answer important questions about the regulation of microtubules. 

In this thesis, I aim to describe how I employed biophysical techniques to better 

understand katanin’s role in microtubule regulation. I use total internal fluorescence 

microscopy with single molecule sensitivity to study katanin’s interactions on single 

microtubules. Specifically, this thesis elucidates katanin’s mechanism of binding to the 

microtubule and to further distinguish its severing activity from depolymerization activity 

on microtubules. Presently, this work will provide new insight to important questions 

about the mechanism of severing enzymes on microtubules and how microtubules are 

organized by this mysterious protein. In the future, this work will help us answer complex 

questions about entire microtubule networks and how other proteins interact with katanin 

to regulate microtubules in cells.  
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CHAPTER 2 

ATP CONCENTRATION REGULATES KATANIN ACTIVITY 

2.1 Introduction 

 ATP is an important energy source for many proteins, including microtubule 

severing enzymes. Severing enzymes convert the chemical energy from ATP to 

mechanical energy to sever microtubules (Eckert et al., 2012; Hartman & Vale, 1999; 

Roll-Mecak & Vale, 2008). Although it is known that katanin requires ATP to sever 

microtubules, the amount of ATP required has not been explored. Our assays normally 

contain 2 mM ATP, which is often considered within the range of physiological 

concentration of ATP. However, the cell is highly transient with hundreds of thousands of 

molecules shifting and interacting at once. Local concentration gradients are in constant 

flux (Ross, 2016).  

Work in our lab by a former graduate student performed an ATP scan to test the 

activity of a X. laevis katanin. She performed experiments with 28 μM, 100 μM, 500 μM, 

1 mM, 2 mM, 5 mM, 10 mM, and 20 mM ATP. She found that the loss of polymer 

increased as the concentration of ATP is increased, up to a certain point (Fig. 5). 

Interestingly, the loss of polymer was due to different mechanisms at low and high ATP 

concentrations: microtubule depolymerization at low concentrations of ATP and 

microtubule severing at medium concentrations of ATP (Fig. 5A). Severing is expected 

at 1 mM and 2 mM because this is the concentration of ATP typical in our microtubule 

severing assays and prior work (Bailey et al., 2015; Eckert et al., 2012; Loughlin et al., 

2011; Valenstein & Roll-Mecak, 2016). As the concentration of ATP was increased 

beyond 2 mM ATP, however, activity on microtubules ceased (Fig. 5B). This data is 

interesting because it suggests ATP may play a role in regulating katanin activity. 
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This prior work was not yet published because we used an unlabeled version of 

katanin, which did not allow us to directly monitor the binding of katanin to microtubules. 

It is possible that the katanin was not severing because it was not binding to 

microtubules at high ATP concentration. To better understand the role of ATP 

concentration in regulating katanin activity on microtubules, we performed an ATP scan 

using a GFP-labeled human katanin in a microtubule severing assay. We performed 

experiments with 28 μM, 100 μM, 500 μM, 1 mM, 2 mM, 5 mM, 10 mM, and 20 mM 

ATP, as before. Using this fluorescently-labeled human katanin, we were able to study 

the characteristics of katanin binding to microtubules.  
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Figure 5. Katanin Activity on Microtubules is Dependent on Concentration of ATP. 
Previous work by Megan Bailey from our lab found that katanin activity on microtubules 
is dependent on concentration of ATP. A) Time series of katanin activity on microtubules 
at low-medium concentrations of ATP. B) Quantification of total loss of polymer over time 
shows that the fraction of microtubules remaining decreases as the concentration of ATP 
increases from low to medium levels. However, at higher concentrations of ATP, 
including 5 mM, 10 mM, and 20 mM ATP, katanin activity is reduced. C) Quantification of 
rate of polymer loss and D) final polymer density show that there are three phases of 
katanin activity on microtubules. This includes the basal phase where little to no polymer 
is lost, the depolymerization phase where polymer is lost only from the ends of 
microtubules, and the severing phase where katanin severs microtubules.  
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2.2 Methods  
2.2.1 Protein Purification 

The pMAL-c2x human p60 construct containing an ampicillin resistance 

sequence was created in our lab. It contains a maltose binding protein for purification 

and a sfGFP tag for visualization in TIRF microscopy. We used an IPTG inducible 

expression system to express and purify katanin. The plasmid was transformed into 

BL21 competent E.coli cells (New England BioLabs) and plated with carbenicillin, an 

ampicillin-like molecule with improved stability in growth media. A starter culture 

containing a single colony and a 1:1000 dilution of carbenicillin to Lysogeny broth (LB) 

was incubated at 37°C overnight and added to a 400 ml culture the next day. This 

culture was grown at 37°C until it reached an OD of 0.8 and then it was induced with 1 

mM IPTG. The culture was allowed to continue to grow at 16°C for 16 hours. Cells were 

pelleted then lysed in resuspension buffer (20 mM Hepes pH 7.7, 250 mM NaCl, 0.5 mM 

BME, 10% glycerol, 0.25 mM ATP) via sonication. The lysate was incubated at 4°C with 

amylose resin (New England BioLabs) for 1.5 hours to encourage maltose binding 

protein to bind to amylose. Next, the mixture was added to the column and allowed to 

enter the column completely. Once excess lysate had passed through the column, the 

column was washed with 20 ml of resuspension buffer (20 mM Hepes pH 7.7, 250 mM 

NaCl, 0.5 mM BME, 10% glycerol, 0.25 mM ATP). Then the protein was eluted in elution 

buffer which contains maltose, for which maltose-binding protein has a higher affinity (20 

mM Hepes pH 7.7, 250 mM NaCl, 0.5 mM BME, 10% glycerol, 0.25 mM ATP, 10 mM 

Maltose). The approximate concentration of katanin was measured by a Bradford assay. 

Later, the exact concentration was found using SDS-PAGE gel analysis.  
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2.2.2 Katanin Storage 

Directly after purification, we tested katanin to find the working concentration. We 

then added glycerol to 50%, aliquotted, drop froze in liquid nitrogen, and stored at -80°C. 

It was previously believed that katanin could not be stored because of total loss of 

activity. However, we found that purified katanin in 50% glycerol could be saved up to 1 

month after the date of purification with minimal activity loss if used within this time 

period. 

 
2.2.3 Taxol-stabilized Microtubule Polymerization  

Taxol-stabilized microtubules were made by combining a 1:10-1:20 ratio of 

labeled rhodamine tubulin (Cytoskeleton) or homemade Dylight 649 (Thermo Scientific) 

tubulin with unlabeled tubulin (Cytoskeleton). Both the unlabeled and labeled tubulin 

were resuspended in PEM-100 (100 mM K-Pipes, pH 6.8, 2 mM MgSO4, 2 mM EGTA) 

to a concentration of 5 mg/ml (45.5 μM). Both were incubated on ice for 10 minutes. The 

labeled and unlabeled tubulin were combined to the appropriate ration and centrifuged at 

366,000 xg, 4°C for 10 minutes. To polymerize the microtubules, 1 mM GTP was added 

to the tubulin and it was incubated at 37°C for 20 minutes. To further stabilize the 

microtubules, 50 μM Taxol was added and incubated for another 20 minutes at 37°C. 

The microtubules were centrifuged at 16,200 xg, 25°C for 10 minutes. The pellet was 

resuspended in PEM-100 and 50 μM Taxol. The microtubules were sheared with a 

Hamilton syringe and incubated at 37°C overnight for a maximum of three nights.  

 
2.2.4 In vitro assays  

A 10 μl flow chamber was made with double stick tape, a coverglass 

(Fisherbrand) and a coverslip (Fisherbrand) that was treated with Ultra Violent light and 

Oxygen plasma (UVO) and silane (Dixit & Ross, 2010). The coverslips were UVOed for 
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20 minutes. Coverslips were then coated with 2% dimethyldichlorosilane (GE 

Healthcare) to create a hydrophobic surface to enable specific binding of hydrophobic 

proteins and polymers. The surface of the chambers were made to specifically bind 

microtubules by first incubating 2% (w/v) MAB1864 tubulin antibody in Katanin Activity 

Buffer (20 mM Hepes pH 7.7, 10% glycerol, 2 mM MgCl2) for 5 minutes. Then 5% (w/v) 

Pluronic F-127 in Katanin Activity Buffer (20 mM Hepes pH 7.7, 10% glycerol, 2 mM 

MgCl2) was added to block the surface. Next, a 1:50-1:100 dilution of Taxol-stabilized 

Rhodamine or Dylight 647 microtubules in PEM-100 were incubated in the chamber for 5 

minutes. To remove excess unbound microtubules, Katanin Severing Buffer (Katanin 

Activity Buffer with 2 mM ATP, 0.025 mg/mL BSA, 0.05% F-127, 10 mM DTT, 15 mg/mL 

glucose, 0.15 mg/mL catalase, 0.05 mg/mL glucose oxidase) was washed through the 

chamber. After 30 seconds of imaging, Katanin Severing Buffer with p60 (usually 100-

400 nM GFP-p60) was added. 

Three videos of 10 different conditions for a total of 30 same-day videos were 

collected. All concentrations were kept the same except for ATP concentration. In these 

assays, a constant concentration of 250 nM katanin was maintained and only the 

concentration of ATP-Mg2+ (Sigma) was adjusted. The concentrations of ATP-Mg2+ were 

28 μM, 100 μM 500 μM, 1 mM, 2 mM, 5 mM, 10 mM, and 20 mM. There was also a 2 

mM ATP-γ-S (Jena Bioscience) control and a control without katanin. Montages of the 

conditions are shown below (Fig. 6,9,11). An image was taken before and after each 

video in the EPI fluorescence to compare the state of the microtubules since intense 

laser illumination can photodamage microtubules. 
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2.2.5 Microscopy 

Data was collected with a home-built, single molecule total internal reflection 

fluorescence laser system. The microscope is a Nikon Ti-E with automated fluorescence 

turret and z-scanner with Perfect Focus. A 60x objective (NA 1.49) is used for total 

internal reflection fluorescence (TIRF) microscopy. The microscope has an Intenselite 

XeHg light source and light guide for illumination in the epi-fluorescence path. The 

microscope has dichroic cubes for TIRF and epi-fluorescence emission in green, red, 

and far-red wavelengths. The blue (488 nm, 50 mW) TIRF laser was used to excite the 

GFP-labeled p60. The microscope system is run by a Windows PC computer using 

Nikon Elements software. This software allows the automation of fluorescence, 

exposure, and shutters to the sample. The software also runs the cameras, of which the 

lab has two. This system has an Andor EM-CCD for single molecule imaging. There was 

a 2.5x magnifier in front of the camera resulting in a 108 nm effective pixel size. 

All images were obtained using identical camera, microscope, and lens 

hardware. All same day imaging criteria such as gain, ND filters, and exposure time was 

kept the same and efforts were made to minimize differences across data sets. Efforts 

were made to ensure that the images were not saturated and that minimal bleaching of 

the fluorescence occurred before image acquisition. Same day controls were performed 

to address photobleaching. Digital gray values of image pixels representing arbitrary 

fluorescence units (AFUs) were obtained using Nikon Elements software. Fluorescence 

intensity was quantified for fluorescently labeled microtubules and GFP-katanin to 

quantify severing and binding, respectively. 
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2.2.6 Katanin Binding Analysis 

Katanin binding analysis was performed in ImageJ. Movies were taken without 

delay between frames for 10 minutes in the 488 nm TIRF channel to assess katanin 

activity on microtubules. An image was taken of the microtubules before and after the 

movie to ensure photodamage did not occur while imaging. In conditions where there 

were a low levels or no binding to the microtubule, before images showed exactly where 

to measure in the TIRF channel. We used the line tool to draw a segmented line over the 

entire length of the microtubule. The Multi Measure plugin was used to measure multiple 

microtubules (or ROIs). The mean intensity of each microtubule was measured over time 

during the time series. A line of the same length was moved off of the microtubule to 

measure the background intensity near the microtubule to assess background noise. 

The intensity on the microtubule was divided by the intensity in the background to get 

the signal to noise ratio for each frame. That value was subtracted by 1. The data from 

many microtubules in the same experimental parameters were averaged together. The 

maximal GFP fluorescence was determined from the averaged data. Data were fit over 

time, and the association rate, oligomerization rate, and severing rate were determined 

by fitting the data. 

 

2.2.7 SDS-PAGE Gel Analysis 

Purified katanin was quantified by SDS-PAGE gel and analysis using ImageJ. 

The amount of protein in each well totaled less than 1 μg, because this is the limit 

beyond which Coomassie staining cannot resolve. The intensity of the bands for the 

BSA standards were plotted and fit to a line to determine the linear regime of Coomassie 

staining. Only protein dilutions within this linear regime were used to calculate the 

concentration of katanin. Several dilutions were in the linear regime of the BSA 
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standards. Using a molecular weight of 126 kD and the known volume and dilution of the 

sample loaded into each gel well, we calculated a yield of 5.3 μM katanin. This is similar 

to the 6.3 μM of protein calculated via the Bradford assay. Minimal impurities were seen 

on the Coomassie gel.   
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2.3 Results 
2.3.1 Katanin Binds to and Severs Taxol-stabilized Microtubules in the Presence of 
ATP 

 It is well-known that katanin requires ATP to sever microtubules. Yet, it is 

necessary that we check the activity of katanin on Taxol-stabilized microtubules. 

Previous studies have shown that katanin can sever Taxol-stabilized microtubules in 

vitro (Bailey et al., 2015; Diaz-Valencia et al., 2011; Eckert et al., 2012; Loughlin et al., 

2011; Mcnally & Thomas, 1998; McNally et al., 2014; McNally et al., 2000; Whitehead, 

Heald, & Wilbur, 2013; Zhang et al., 2011). In our assays, we always perform a control 

to test the activity of katanin, as each preparation of protein shows slightly different 

activity. Some preps are highly active while others are only moderately active. This also 

demonstrates that our protein is indeed functioning as expected and there are no 

functionally silent mutations in katanin. In our experience, katanin is prone to collecting 

mutations that disrupt its severing ability.  

The concentration range of ATP for which severing occurred was 500 μM to 2 

mM (Fig. 6B,C,D). We conclude also that this is an active batch of protein, as total 

severing of microtubules occurs in around 130 seconds in the presence of 2mM ATP 

(Fig. 6D). This is important for the assay because we want to measure katanin binding to 

microtubules before photobleaching occurs. In control assays without any katanin 

present, no microtubule binding occurs and no microtubule severing occurs (Fig. 6A). 

However, we see the effect of some photobleaching on microtubules in our after picture 

of microtubules after illuminating them with 488 nm laser for 10 minutes (Fig. 8A,B). We 

have controlled for this photobleaching to make sure that it is not a product of katanin 

activity or some other enzyme by taking a picture of the same chamber in a different 

location (Fig. 8C). Here we see no microtubule damage. Therefore, we can conclude 
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that the loss of signal to microtubules in this control is due to the laser and not enzymatic 

activity. 

We quantified the amount of katanin bound to microtubules over time (Fig. 7A). 

The data can be categorized into three phases: binding phase, oligomerization or 

constant phase, and decay phase. The data before the decay phase was masked and 

the decay phase data was fit to a single exponential in the form:  

I(t) = Aexp(-t/τ) (Eq 1) 

where I is intensity as a function of time, t, and τ is the characteristic decay constant. 

The characteristic decay constant provides information about katanin activity on 

microtubules and is also influenced by photobleaching. We determined the characteristic 

decay constant for 2 mM ATP to be 46 ± 0.1 s. The characteristic decay constant in the 

presence of 1 mM ATP was similar at 44 ± 0.4 s. However, the characteristic decay 

constant was only 29 ± 0.3 s in the presence of 500 μM ATP. This suggests katanin 

activity on Taxol-stabilized microtubules is greatest in the presence of 500 μM ATP. This 

may be due to an increase in severing events which frees more microtubule ends to be 

depolymerized. 

We then extract the relative maximum GFP (Fig 7B). We measured the relative 

maximum GFP over microtubules when no katanin is present and determined the value 

to be 0.04 ± 0.01. This confirms that there is nothing that is GFP-emitting that is 

interfering with our assays and that nothing is spontaneously binding to the 

microtubules. The relative maximum katanin bound in the presence of 2 mM ATP is 2.8 

± 0.1. The relative maximum katanin bound was higher for the lower ATP concentrations 

of 500 μM and 1 mM ATP, both 3.2 ± 0.1. This data suggests katanin binds to 

microtubules more readily in a range between 500 μM and 1 mM ATP.  
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We also quantified the time spent in the constant phase, which is the time spent 

at relative maximum GFP intensity. This constant phase may be the time the enzyme 

needs to oligomerize and fully bind to the microtubule, and only after this can katanin 

begin activity on microtubules. The time in this constant phase was only 8 seconds in the 

presence of 500 μM ATP. At 1 mM ATP it is 17 seconds in the constant phase and at 2 

mM ATP katanin is bound in the constant phase for 33 seconds, again demonstrating 

katanin is most active at 500 μM ATP because the constant phase is shortest. This 

suggests katanin may oligomerize fastest at this concentration of ATP.  
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Figure 6. Representative Time Series of Katanin Binding to and Severing Taxol-
stabilized Microtubules. 
Time series representative of Taxol-stabilized microtubules in a severing assay A) with 
no katanin and in the presence of katanin and B) 500 μM ATP, C) 1 mM ATP, or D) 2 
mM ATP. In the range of 500 μM to 2 mM ATP, katanin binds to and severs 
microtubules. The time between images is as stated below each time series and all 
scale bars are 5 μm.  
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Figure 7. Quantification of Katanin Binding to Taxol-stabilized Microtubules with 
Moderate Concentrations of ATP. 
A) Total katanin bound to microtubules over time for each of the conditions. The first 
thirty seconds of each video was used as a control to make sure that nothing was 
binding to the microtubules before GFP-katanin was flown in. Katanin with: 500 μM ATP 
is light blue (N=43 in 3 different chambers); 1 mM ATP is dark blue (N=103 in 3 different 
chambers); 2 mM ATP is purple (N=102 in 3 different chambers); and no katanin control 
is dark purple (N=77 in 3 different chambers). Only in chambers where katanin was 
present were microtubules completely destroyed throughout the chamber. The error bars 
are lighter versions of their marker colors and represent the SE. B) Relative maximum 
GFP intensity from A). Error bars represent ± SE of same microtubules measured in A).  
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Figure 8. Representative Images of Photobleaching on Taxol-stabilized Microtubules. 
Images of Taxol-stabilized microtubules without katanin A) before imaging, B) after 
imaging in the same spot, or C) after imaging in a different location in the same 
chamber. Microtubules are subject to photobleaching by the 488 nm laser. An image in a 
different region of the same chamber serves as an important control. All scale bars are 5 
μm.  
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2.3.2 Katanin Depolymerizes Microtubules at Low Concentrations of ATP 

 We show that katanin binds to microtubules at low concentrations of ATP, 

including 28 μM and 100 μM ATP (Fig. 9). Qualitatively, the type of katanin activity on 

Taxol-stabilized microtubules appears similar to that which our lab previously measured 

(Fig. 5). At 28 μM ATP, katanin is only able to depolymerize microtubules, which is what 

our lab previously found (Fig. 9A). At 100 μM ATP, the primary activity is 

depolymerization, however there are some severing events (Fig. 9B). To make sure that 

katanin activity was the reason for microtubule polymer loss and not the laser, we looked 

around at different locations in the same chamber and saw no microtubules remaining.  

We quantified the amount of katanin bound to microtubules over time (Fig. 10A) 

and fit the decay phase data to a single exponential decay (Eq. 1) to extract 

characteristic decay times. We determined the characteristic decay time for katanin on 

Taxol-stabilized microtubules in the presence of 28 μM ATP and 100 μM ATP to be 121 

± 0.4 s and 111 ± 0.2 s, respectively. The characteristic decay times for katanin on 

Taxol-stabilized microtubules in the presence of low concentrations of ATP are nearly 

three times longer than those for moderate concentrations of ATP. Katanin remains 

bound to microtubules for longer under low concentrations of ATP perhaps because 

depolymerization activity is slower than when katanin has the ability to sever 

microtubules. Severing events make new ends for katanin to depolymerize, potentially 

increasing activity. 

We also extracted the relative maximum intensity of GFP-labeled katanin on 

microtubules (Fig. 10B). Relative maximum intensity for bound katanin was 3.5 ± 0.2 and 

3.5 ± 0.1 in the presence of 28 μM ATP and 100 μM ATP, respectively. These values 

are comparable to values for 500 μM ATP and 1 mM ATP and higher than the 2 mM 

ATP control, in which case relative maximum GFP intensity is only 2.8 ± 0.1 (Fig. 10B). 
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This data provides new insight on katanin’s depolymerization activity as a function of 

ATP concentration. It will also help elucidates katanin’s mechanism of depolymerization, 

as it is distinct from severing activity. 

 
2.3.3 Katanin Depolymerizes Microtubules in the Presence of ATP-γ-S 
 We used ATP-γ-S to study the effect of a non-hydrolyzable ATP-analogue on 

katanin activity on Taxol-stabilized microtubules. ATP-γ-S has a sulfur instead of oxygen 

on the gamma phosphate making ATP-hydrolysis difficult for enzymes, including katanin. 

Prior work has shown that ATP-γ-S inhibits katanin hydrolysis and binding (Eckert et al., 

2012). We show that katanin can depolymerizes, but not sever, microtubules in the 

presence of ATP-γ-S (Fig. 9C). In this sense, the activity of katanin in the presence of 2 

mM ATP-γ-S is similar to the activity of katanin in the presence of 28 μM ATP. To get a 

better sense of katanin activity, we also quantified binding over time (Fig. 10A) and fit the 

data to a single exponential decay (Eq. 1) to extract a characteristic decay time. We 

show that in the presence of ATP-γ-S, the characteristic decay time for katanin on Taxol-

stabilized microtubules is 181 ± 0.4 s, which is slightly longer than those of the 28 μM 

and 100 μM ATP conditions. This suggests katanin remains bound to microtubules 

longer in the presence of ATP-γ-S. The relative maximum GFP-labeled katanin bound to 

microtubules in the presence of ATP-γ-S is 3.1 ± 0.2 (Fig. 10B). This value is 

comparable to the values for relative maximum GFP intensity for katanin on 

microtubules in the presence of low concentrations of ATP. These results suggest ATP-

γ-S is a good inhibitor of katanin severing activity but not of depolymerization activity. 

Because ATP-γ-S inhibits ATP-hydrolysis, perhaps only binding in the ATP-site is 

required for depolymerization activity. 
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Figure 9. Representative Time Series of Katanin Binding to and Depolymerizing Taxol-
stabilized Microtubules. 
Time series representative of katanin on Taxol-stabilized microtubules in a severing 
assay with A) 28 μM ATP B) 100 μM ATP, or C) 2 mM ATP-γ-S. Low concentrations of 
ATP, from 28 to 100 μM, katanin activity is restricted primarily to depolymerization of 
microtubules. Some severing occurs at 100 μM ATP. The non-hydrolyzable ATP 
analogue ATP-γ-S prevents katanin severing but not depolymerization. The time 
between images is as stated below each time series and all scale bars are 5 μm.  
 



 

31 
 

 
Figure 10. Quantification of Katanin Binding to Taxol-stabilized Microtubules with Low 
Concentration of ATP.  
A) Total katanin bound to microtubules over time for each of the conditions. The first 
thirty seconds of each video was used as a control to make sure that nothing was 
binding to the microtubules before GFP-katanin was flown in. Katanin with: 28 μM ATP 
is red (N=39 in 2 different chambers); 100 μM ATP is orange (N=85 in 3 different 
chambers); 2 mM ATP-γ-S is pink (N=52 in 3 different chambers); and 2 mM ATP 
control is purple (N=102 in 3 different chambers). Microtubules were completely 
destroyed in 100 μM and 2 mM ATP chambers only. In chambers with 28 μM ATP and 2 
mM ATP-γ-S, microtubules were not completely destroyed after looking through the 
chamber after imaging. The error bars are lighter versions of their marker colors and 
represent the SE. B) The maximum GFP intensity from A) was plotted in B) and the error 
bars represent the SE of that value.  
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2.3.4 Katanin Binding and Activity is Inhibited at High Concentrations of ATP 

 Previously, our lab identified that katanin severing and depolymerization activity 

is inhibited at high concentrations of ATP including 5 mM, 10 mM, and 20 mM (Fig. 5). 

However, we were interested in further investigating the mechanism of inhibition. We 

studied katanin activity on Taxol-stabilized microtubules in the presence of the same 

concentrations of ATP with our fluorescently-labeled katanin to understand if katanin 

was binding to the microtubules. Representative time series of show katanin binding is 

affected at high concentrations of ATP (Fig. 11A,B,C). We examined the rest of the 

chamber and microtubules remained in all conditions, indicating katanin activity was 

indeed inhibited.  

 The data was quantified as relative GFP intensity over time (Fig. 12A). We 

quantified the exponential decay phase of the data, that is, after maximum binding of 

GFP-katanin and fit the data to a single exponential decay (Eq. 1). Characteristic decay 

times were extracted and compared. Compared to the characteristic decay time of the 2 

mM ATP control, all conditions with a higher concentration of ATP had significantly 

longer characteristic decay times.  The characteristic decay time of the 2 mM ATP 

control is 46 ± 0.1 s. The characteristic decay times of 5, 10, and 20 mM ATP are 102 ± 

0.5 s, 159 ± 0.2 s, and 210 ± 1.0 s, respectively. Clearly, as ATP concentration 

increases, characteristic decay time increases as well. This is further evidence that 

katanin activity on microtubules is decreasing as ATP concentration increases.  

Compared to the 2 mM ATP control, there was significantly less katanin bound to 

microtubules at 5, 10, and 20 mM ATP. In addition, as ATP concentration increased, the 

amount of katanin bound to microtubules decreased. The relative maximum GFP 

intensity was extracted (Fig. 12B) and the same trend was observed. In the presence of 

5 mM ATP, the relative maximum katanin bound was 1.6 ± 0.06 compared with 2.8 ± 0.1 
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for 2 mM ATP. Similarly, the relative maximum katanin bound was 1.2 ± 0.05 in the 

presence of 10 mM ATP. At 20 mM ATP, the relative maximum katanin bound was 0.2 ± 

0.02, comparable to that of the no katanin control 0.01 ± 0.05. This data clearly identifies 

that an increase in ATP concentration leads to reduced binding of katain on microtubules 

and thus reduces katanin activity. 

 

 
Figure 11. Representative Time Series of Inhibition of Katanin Binding and Severing on 
Taxol-stabilized Microtubules. 
Time series representative of katanin on Taxol-stabilized microtubules in a severing 
assay with A) 5 mM ATP B) 10 mM ATP, or C) 20 mM ATP. Binding to microtubules 
decreases as the concentration of ATP increases. This inhibits katanin activity on 
microtubules, consistent with previous findings from our lab. The time between images is 
25 seconds for each time series and all scale bars are 5 μm.  
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Figure 12. Quantification of Katanin Binding to Taxol-stabilized Microtubules with High 
Concentration of ATP. 
A) Total katanin bound to microtubules over time for each of the conditions. The first 
thirty seconds of each video was used as a control to make sure that nothing was 
binding to the microtubules before GFP-katanin was flown in (not shown). Katanin with 5 
mM ATP is light green (N=67 in 2 different chambers); 10 mM ATP is olive green (N=71 
in 3 different chambers); 20 mM ATP is dark green (N=79 in 3 different chambers); and 2 
mM ATP control is purple (N=102 in 3 different chambers). Only in chambers with 2 mM 
ATP were the microtubules completely destroyed. The error bars are a lighter version of 
the color of their markers and represent the SE. In the case of 20 mM ATP, error bars 
are so small that most are smaller than the marker itself. B) The relative maximum GFP 
from A) is plotted and the error bars are ± SE. 
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2.3.5 Mechanism is Conserved in Xenopus and Human Katanin p60 

Our results show that the activity of katanin is dependent on the concentration of 

ATP. At low concentration of ATP or in the presence of the non-hydrolysable ATP 

homologue ATP-γ-S, there is microtubule depolymerization (Fig. 9A,B,C). However, at 

moderate concentrations of ATP, there are distinct severing events (Fig. 6B,C,D). At 

high concentrations of ATP, there is neither depolymerization nor severing because the 

binding of katanin is inhibited (Fig. 11 A,B,C). These results are consistent with our 

previous results with X. laevis-p60 without a GFP tag (Fig. 5). Our lab previously showed 

polymer loss of microtubules was dependent on ATP concentration and there is a 

depolymerization regime and a severing regime. This data coupled with the data shown 

here demonstrates that ATP-bound katanin binds to microtubules and is in fact leading 

to these regimes of depolymerization and severing. This is important evidence that will 

be useful in elucidating katanin’s mechanism of depolymerization. It suggests ATP-

binding may regulate the type of katanin activity exhibited on a microtubule. This may be 

important to the cell as the cell could regulate dynamic cellular processes by increasing 

or decreasing the local concentration of ATP. 
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2.4 Discussion  

Katanin binding decreases at high concentrations of ATP (Fig. 12A). A couple of 

possibilities exist to explain this: 1) the motor is jammed with ATP, preventing 

hexamerization of katanin on the microtubule, 2) increasing the ionic strength of the 

chamber screens the interaction of katanin and the microtubule. First, we will discuss 

evidence for ATP jamming the motor. Crystal structures of katanin show there may be 

cycling of the hexamer between open spiral and closed ring where there is 5 ATP and 6 

ATP molecules bound, respectively (Zehr et al., 2017). It was proposed that this cycling 

between conformations may provide the power stroke necessary for microtubule 

severing. High concentrations of ATP may encourage all katanin monomers to bind to 

ATP causing katanin to hexamerize in solution in the closed ring conformation. However, 

if hexamerization must occur on the carboxy-terminal tail in the open spiral conformation 

then these high concentrations of ATP would encourage hexamerization before docking 

and thus, katanin would be left in the closed ring position. It is possible that in this 

conformation, katanin would not be able to bind to the carboxy-terminal tail.  

There is also evidence that the ionic strength of the buffer affects binding. ATP-

Mg2+ is high in magnesium ions, which are good for screening. For every ATP molecule, 

there is one magnesium counterion with a valence of two. Therefore, as we increase the 

ATP concentration, we are also increasing the ionic strength of the buffer. Previous 

results have shown that the ionic strength of the buffer does affect the binding and 

diffusion of individual katanin monomers (Eckert et al., 2012). In that study, the ionic 

strength of their base buffer (50 mM HEPES) was similar to ours (20 mM HEPES), and 

they added NaCl (valence of +1) to 80 mM, 160 mM, or 300 mM. At 80 mM NaCl, they 

saw a typical landing rate for katanin in your microscopic assays, which decreased as 

the ionic strength increased. The ionic strength of their buffer (50 mM HEPES) with 80 
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mM NaCl is far higher than our buffer (20 mM HEPES) with 20 mM ATP-Mg2+, implying 

that the ionic strength in our assays is not high enough to be the cause of the reduced 

dissociation rate. A number of cytoskeletal enzymes have an ATPase cycle where the 

affinity of the motor is lower in the ATP-state, including dynein for microtubules and 

myosin for actin filaments. It is possible that katanin also has a lower affinity with ATP at 

saturating concentrations.  

As expected, katanin activity decreases when katanin binding is decreased. 

Katanin is a cooperative enzyme, and its activity depends on the concentration of 

hexamers present on the filaments. This is consistent with all the data collected thus far. 

There seems to be a critical concentration for ATP switching the enzyme from 

depolymerizing to severing. Additionally, when finding the working concentration of the 

enzyme in the beginning of every assay, the enzyme appears to have an on/off switch 

for severing very quickly upon increasing the concentration of katanin. There appears to 

be a “critical concentration” at which katanin severs. In the cell, this would more likely 

look like an “optimal ratio” of katanin to ATP. This may be evidence for the jammed 

motor hypothesis, however, it is more than likely that multiple methods of regulating 

katanin are employed.  
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CHAPTER 3 

KATANIN DEPOLYMERIZES TAIL-LESS MICROTUBULES 

3.1 Introduction 

The cell is dynamic and is constantly being remodeled to undergo different 

cellular processes. Katanin is an essential regulator of the microtubule cytoskeleton by 

helping to remodel microtubule networks to meet the demands of the cell. Because 

katanin is a catastrophe factor, it was originally and is still often thought of as quickly 

destroying microtubules. Indeed, katanin can remove tubulin dimers causing microtubule 

catastrophe. However, a different purpose for katanin severing was recently found. In 

addition to destroying the entire polymer, katanin severing can also create short 

microtubule seeds for new growth (Roll-Mecak & Vale, 2006; Srayko, Buster, Bazirgan, 

Mcnally, & Mains, 2000). This new understanding of katanin severing activity on 

microtubules helped researchers better understand katanin’s role in many cellular 

processes. 

We have some understanding about how severing happens. To sever 

microtubules, katanin uses ATP to oligomerize into a hexamer and then disassembles 

microtubules by threading the carboxy-terminal tail (CTT) of tubulin through its pore 

(Roll-Mecak & Vale, 2008). Our lab showed that katanin binds to free-dimers of tubulin 

or CTTs, which turns off microtubule severing (Bailey et al., 2015). Clearly, katanin has a 

preference for CTTs of free tubulin. In addition, previous research also showed that 

subtilisin-treated microtubules, which lack the CTTs of tubulin, were safe from severing 

(McNally & Vale, 1993). These data all imply that the CTT is the essential target for 

katanin severing. 

         However, several groups have noticed that katanin has the ability to 

depolymerize microtubules in addition to severing (Diaz-Valencia et al., 2011; McNally & 



 

39 
 

Vale, 1993; Zhang et al., 2011). Depolymerization may be especially important in 

regulating microtubule length, such as at the cortex in interphase cells and kinetochore 

fibers in mitosis. Spastin, fidgetin and katanin are all required for proper chromosome 

segregation during the anaphase of mitosis (Zhang et al., 2007). Katanin stimulates 

plus-end depolymerization at the kinetochores of spindles by uncapping microtubules 

(Zhang et al., 2007). This stimulates chromosome-attached microtubules to 

depolymerize at their plus ends, a type of motility termed Pacman. It is thought that 

kinesin-13 is a primary depolymerizer of microtubule plus-ends in mitosis, but it is 

possible katanin plays more of a role active role in aiding kinesin-13 in depolymerizing 

microtubules in addition to uncapping microtubules.  

To depolymerize, katanin acts at microtubule ends, depolymerizing microtubules 

in an ATP-dependent manner (Diaz-Valencia et al., 2011; Zhang et al., 2011). This type 

of katanin activity may be distinct from severing because it occurs at the ends of 

microtubules. Likewise, the mechanism is likely also different. We use in vitro 

reconstitution assays to probe whether katanin targets microtubules that lack the CTT of 

tubulin and altered the nucleotide state bound to katanin. We provide evidence that the 

CTT is not necessary for depolymerization, as it is in severing.  

 

  



 

40 
 

3.2 Methods 
3.2.1 Protein Purification  
 Our lab received the X. laevis katanin construct from the Heald lab. It has a 

maltose binding protein on the N-terminus for purification and is a full-length katanin p60. 

Megan Bailey purified the katanin with a maltose binding protein and chromatography 

system. After transforming the plasmid into BL21 competent E.coli cells (New England 

BioLabs), she grew the culture in a 5 ml LB starter culture overnight. She grew a larger 

culture at 37°C until it reached an OD of 0.8 and then induced with IPTG. The culture 

was allowed to shake at 16°C for 16 hours. Cells were pelleted then lysed in 

resuspension buffer (20 mM Hepes pH 7.7, 250 mM NaCl, 0.5 mM BME, 10% glycerol, 

0.25 mM ATP) via sonication. The lysate was mixed with amylose resin beads on a 

rocker for 1.5 hours. The mixture was passed through a chromatography column to 

collect maltose-bound katanin and washed with 20 ml of resuspension buffer. The 

protein was eluted in elution buffer (20 mM Hepes pH 7.7, 250 mM NaCl, 0.5 mM BME, 

10% glycerol, 0.25 mM ATP, 10 mM maltose) and the concentration of protein was 

determined via Bradford assay. The protein was used the same day and later, a gel was 

run to check protein purity.  

 

3.2.2 Taxol-stabilized Microtubule Polymerization 
 Megan Bailey made Taxol-stabilized microtubules by combining a 1:3-1:20 ratio 

of labeled rhodamine tubulin (Cytoskeleton Inc.) or homemade Dylight 649 (Thermo 

Scientific) tubulin with purified unlabeled tubulin made from porcine brains in house 

using the method described in (Peloquin et al., 2005). She resuspended both the 

unlabeled and labeled tubulin in PEM-100 (100 mM K-Pipes, pH 6.8, 2 mM MgSO4, 2 

mM EGTA) to a concentration of 5 mg/mL (45.5 μM) and incubated it on ice for 10 

minutes. We combined the labeled and unlabeled tubulin and centrifuged at 366,000xg 
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at 4°C for 10 minutes to remove aggregated or insoluble tubulin. 1 mM GTP was added 

to the tubulin and incubated at 37°C for 20 minutes to polymerize the microtubules. 

Then, 50 μM Taxol was added and incubated for 20 minutes at 37°C to stabilize the 

microtubules. Microtubules were centrifuged at 16,200xg at 27°C for 10 minutes to 

remove tubulin aggregates and further purify microtubules. The microtubule pellet was 

resuspended in PEM-100 and 50 μM Taxol to further stabilize microtubules. 

 

3.2.3 Subtilisin-treated Taxol-stabilized Microtubule Polymerization 

Microtubules lacking the carboxy-terminal tails were made by treating 

microtubules with subtilisin. After polymerizing Taxol microtubules, we incubated them 

with 100 μg/mL subtilisin for 45 minutes. The reaction was stopped using 2 mM PMSF. 

We further removed the subtilisin by centrifuging the microtubules for 30 minutes at 

16,200xg 27°C. We resuspended the pellet in PEM-100 and 50 μM Taxol.  

 
3.2.4 In vitro assays  

 Megan Bailey collected the data using in vitro katanin severing assays. 

Coverslips were cleaned and silanized with 2% dimethyldichlorosilane (GE Healthcare) 

to block the surface and prevent proteins from sticking to the surface of the coverslips. 

Silanized coverslips are assembled onto glass slides using double-stick tape. This 

provides space in between the slides to flow buffers and proteins and keeps the 

coverslip stuck to the slide. Then, she flowed 10 ul washes as follows with five minute 

incubation periods between. First, she flowed in an antibody to tubulin, MAB1864 

(Sigma) at 2% (w/v) in Katanin Activity Buffer (20 mM Hepes pH 7.7, 10% glycerol, 2 

mM MgCl2) to stick the microtubules to the surface. Then, she flowed in 5% (w/v) 

Pluronic F-127 in Katanin Activity Buffer (20 mM Hepes pH 7.7, 10% glycerol, 2 mM 

MgCl2) to block the surface. Next, she flowed in a 1:100 dilution of labeled microtubules 
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to stick to the antibody surface. Finally, she washed the chamber to flow out excess 

unbound microtubules with wash buffer (20 mM Hepes pH 7.7, 10% glycerol, 2 mM 

MgCl2, 2 mM ATP, 0.025 mg/mL BSA, 0.05% F-127, 10 mM DTT, 15 mg/mL glucose, 

0.15 mg/mL catalase, 0.05 mg/mL glucose oxidase). 

 

3.2.5 Microscopy 
Our lab houses a Nikon Ti-E microscopy with a 60x objective (NA 1.49) which 

was used coupled with a 4x expander, and an iXon EM-CCD camera. The microscope 

has an epi-fluorescence light source which we used to image microtubules. The 

chamber was imaged prior to adding katanin to check the microtubules and to make 

sure our imaging conditions did not damage the microtubules. We captured images of 

fluorescent microtubules every 5 s with shuttering between. This ensured that 

photodegradation did not occur. We imaged for 3 minutes before flowing in the 

experimental buffer to make sure the microtubules were not falling apart due to 

something other than katanin. The experimental buffer contained either no katanin or 

250 nM katanin (wild type katanin or mutant E306Q katanin). If a different nucleotide 

was being tested, the enzymatic mix was made without ATP and another nucleotide was 

substituted in instead (5 mM AMPPNP or 5 mM ADP). Movies were taken at 5 second 

intervals for 10 minutes. 

 
3.2.6 Loss of Polymer Data Analysis 

 Megan Bailey completed the loss of polymer analysis in ImageJ as previously 

described (Bailey et al., 2015). Time series data were imported into ImageJ as nd2 files. 

She used the line tool to draw a segmented line, 3 pixels wide, over the length of the 

microtubule. We used the macro “measure stacks” to measure the mean intensity of the 

line for each frame of the movie. The same line was moved to a location without 
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microtubules to measure the background intensity near the microtubules. The intensity 

was normalized by dividing the intensity by the background (Imeasured/IBG) and then 

subtracted from 1 so that all the data sets started at a normalized intensity of 1. The 

individual, normalized microtubule intensity data were then averaged together and the 

error bars represent the standard error of the mean. The data was either fit to a linear 

approximation (chambers with no katanin) or an exponential decay (chambers with 

katanin).  

 

3.2.7 Depolymerization Speed Analysis 

Depolymerization speed analysis was performed in ImageJ. I used the line tool to 

draw a 3-pixel wide line over the microtubule and used the “Reslice” function to make a 

kymograph with distance on the x axis and time on the y axis. The microtubule polymer 

loss has good signal to noise in kymographs making it relatively easy to distinguish the 

microtubule from the background. Using the box tool, we measured the number of pixels 

of the height and width of the box corresponding to the time and distance of 

depolymerization, respectively. The pixel conversion in the x-axis is 67.5 nm per pixel. 

The pixel conversion in the y-axis is 5 s per pixel.  We calculated the depolymerization 

speed in nm/s by dividing the distance by the time. Each end was measured separately 

and averaged. The data was fit to a rising exponential decay function to determine the 

best fit using least squares fitting routine in KaliedaGraph. 
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3.3 Results 
3.3.1 Katanin Depolymerizes Tail-less Microtubules 

We are interested in understanding the mechanism of katanin depolymerization 

on microtubules and how it may be different from the mechanism of severing. First, we 

must quantify total loss of polymer to then distinguish microtubule severing from 

depolymerization. We show that wild type katanin is able to sever Taxol-stabilized 

microtubules but not subtilisin-treated microtubules (Fig. 13A). I hand-counted the 

number of severing events. The number of severing events on microtubules was 94 and 

0, on Taxol-stabilized microtubules and subtilisin microtubules, respectively. We also 

quantified total katanin activity by plotting total loss of polymer over time (Fig. 13B). 

Taxol and subtilisin-treated microtubules alone did not lose significant amounts of 

polymer. This is an important control that shows the microtubules do not fall apart over 

time.  Microtubules alone were best fit was to a linear approximation: 

I(t)=Imax(1-(t/τ)) (Eq. 2) 

where I is intensity as a function of time, t, Imax is the maximum intensity, and τ is the 

characteristic decay constant. The characteristic decay time for Taxol microtubules 

alone is 3,220 ± 80 s and is 22,000 ± 5,000 s for subtilisin microtubules alone. These 

values are very large and the data suggests tail-less microtubules are more stable than 

Taxol microtubules. This is consistent with previous work (Bhattacharyya et al., 1985; 

Maccioni, Serrano, Avila, & Cann, 1986; Serrano, Valencia, Caballero, & Avila, 1986). 

Measuring microtubule fluorescence over time is an important control, however, we are 

interested in the effect of katanin on these microtubules. 

Thus, we also quantified microtubule loss in the presence of katanin. In the 

presence of katanin, Taxol-stabilized microtubules and subtilisin microtubules were 
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destroyed (Fig. 13B). Loss of polymer data in the presence of katanin was fit with 

exponential decay parameters for a single exponential similar to (Eq. 1): 

I(t)=Imaxexp(-t/τ)+I∞ (Eq. 3) 

where I is intensity as a function of time, t, and τ is the characteristic decay constant. Imax 

is the maximum amplitude and I∞ represents the final intensity of microtubules not fully 

degraded by katanin. From this equation, we extracted characteristic decay times. The 

characteristic decay time for katanin on Taxol microtubules and subtilisin microtubules is 

97 ± 2 s and 105 ± 8 s, respectively (Fig. 13C). Surprisingly, these quantitative results of 

the rate of the loss of polymer are not significantly different. This suggests the rate of 

katanin activity on microtubules with and without tails is similar. Yet, we observe that the 

mechanism of the loss of polymer is distinct for subtilisin-treated microtubules and Taxol 

microtubules. Specifically, in control microtubules, the filaments are severed, but 

subtilisin-treated microtubules are only depolymerized (Fig. 13A, 14A). To further 

investigate katanin activity, we also quantified the percent total loss of polymer (Fig. 

13D). Wild type katanin could completely destroy Taxol microtubules but destroyed only 

50 ± 10% of subtilisin-treated microtubules. Although characteristic decay times are the 

same, this evidence suggests katanin is acting on subtilisin microtubules in a way that is 

distinct from severing. 

Our metric to measure the loss of polymer does not distinguish severing from 

depolymerization. Thus, we used kymographs (space-time projections) to measure 

depolymerization from the ends of microtubules. We show that microtubules alone do 

not depolymerize (Fig. 14A). However, upon the addition of katanin, both control and 

subtilisin-treated microtubules are depolymerized. We quantified the depolymerization 

speeds using cumulative distributions (Fig. 14B). Data with katanin was fit with a single 

rising decay: 
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CDF(v)=1-Aexp(-v/v*) (Eq. 3) 

where the cumulative distribution function (CDF) is a function of depolymerization 

velocity, v, v* is the characteristic velocity of the rising decay, and A is the amplitude of 

the exponential. We compared the characteristic speeds of depolymerization we 

extracted from this fit (Fig. 14C). In the presence of katanin, Taxol-stabilized 

microtubules and subtilisin microtubules exhibited similar characteristic velocities of 2.3 

± 0.02 nm/s and 1.89 ± 0.07 nm/s, respectively.  

We also quantified the percent of microtubule ends that displayed 

depolymerization (Fig. 14D). Only 31 ± 6% of Taxol-stabilized microtubule ends and 10 ± 

6% of subtilisin microtubule ends depolymerized on their own. In comparison, 96 ± 2% 

Taxol-stabilized microtubule ends and 91 ± 5% of all subtilisin microtubule ends were 

depolymerized in the presence of katanin. These values are within statistical significance 

and therefore suggest katanin can depolymerize control microtubules and subtilisin 

microtubules to the same degree. Our research suggests katanin does not require the 

CTT to depolymerize microtubules, which is evidence for a mechanism that is different 

than that of severing. 
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Figure 13. Wild Type Katanin Total Loss of Polymer on Taxol and Subtilisin 
Microtubules. 
(A) Time series representative of microtubules over time in a severing assay. (i) Taxol-
stabilized microtubules alone, without katanin, or (ii) with  katanin. (iii) Taxol-stabilized 
subtilisin-treated microtubules alone, without katanin, or (iv) with katanin. The time 
between images is as stated below each time series and all the scale bars are 5 μm.  (B) 
Quantification of the total loss of microtubule polymer over time for each condition. (i) 
Taxol microtubules without katanin (dark red circles, N=33 in 6 different chambers) and 
Taxol microtubules with katanin (dark blue circles, N=51 in 8 different chambers). (ii) 
Subtilisin-treated microtubules without katanin (light red squares, N=30 in 3 different 
chambers) and subtilisin-treated microtubules with katanin (light blue squares, N=35 in 9 
different chambers). Error bars represent the standard error of the mean. Data without 
katanin were fit with a linear approximation to an exponential decay (Eq. 2, green lines). 
Data with katanin present were fit with an exponential decay (Eq. 3, red lines). All fit 
parameters can be found in Appendix A. (C) Characteristic decay times from (B) are 
plotted as bars for Taxol microtubules without katanin (dark red), Taxol microtubules with 
katanin (dark blue), subtilisin-treated microtubules without katanin (light red), and 
subtilisin-treated microtubules with katanin (light blue). Error bars represent the 
uncertainty of the fit parameters from least-squares fitting. (D) The fraction of the initial 
microtubule polymer left after 10 minutes of experiment from (B) are plotted as bar 
graphs for Taxol microtubules without katanin (dark red), Taxol microtubules with katanin 
(dark blue), subtilisin-treated microtubules without katanin (light red), and subtilisin-
treated microtubules with katanin (light blue). The error bars represent the uncertainty of 
the fit parameters from least-squares fitting. 
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Figure 14. Wild Type Katanin Depolymerization on Taxol and Subtilisin Microtubules. 
(A) Kymographs representative of microtubule severing and depolymerization. (i) Taxol-
stabilized microtubule alone, (ii) Taxol-stabilized microtubules with katanin and ATP, (iii) 
subtilisin microtubules alone, and (iv), subtilisin microtubules with katanin and ATP. The 
horizontal white lines seen in the kymographs denote when the room lights were turned 
on to flow katanin into the flow chamber. The total height of the kymographs represent 
600 s. Horizontal scale bars represent 5 μm. (B) Cumulative distributions of the 
depolymerization speeds of (i) Taxol and (ii) subtilisin microtubules with and without 
katanin. (i) Taxol-stabilized microtubules without katanin (dark red line, N=54 in 7 
different chambers) and Taxol-stabilized microtubules with katanin (dark blue line, N=66 
in 10 different chambers). (ii) Subtilisin microtubules without katanin (light red line, N=30 
in 3 different chambers) and subtilisin microtubules with katanin (light blue line, N=35 in 
9 different chambers). Data was fit with a single rising decay (Eq. 4) (C) Quantification of 
characteristic depolymerization times from (B) are plotted as bars for Taxol microtubules 
without katanin (dark red), Taxol microtubules with katanin (dark blue), subtilisin-treated 
microtubules without katanin (light red), and subtilisin-treated microtubules with katanin 
(light blue). The error bars are the error associated with the rising decay time of the fits 
in (B). (D) Percent of microtubules depolymerized (considered any value above 0.1125 
nm/s). This value was determined based on the smallest speed of depolymerization that 
can be calculated with one pixel wide measurement using the box tool. Error bars 
represent the standard error of proportion. 
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3.3.2 Enzymatically Dead Katanin Depolymerizes Microtubules 

We seek to better understand the mechanism of microtubule depolymerization by 

katanin. Therefore, we also assessed the activity of the enzymatically dead Walker B 

mutant katanin on microtubules. The X. laevis E306Q mutant is deficient in ATP-

hydrolysis, and therefore cannot sever microtubules (Loughlin et al., 2011). However, 

the ability of the X. laevis Walker B mutant to depolymerize microtubules has not yet 

been assessed. Therefore, we characterized the activity of the Walker B mutant X. laevis 

p60 on both Taxol-stabilized and subtilisin microtubules. 

Time series of microtubules show that the Walker B mutant is unable to sever 

any type of microtubule, as expected (Fig. 15A). To verify this, we recorded the total 

number of severing events by hand. There was a total of 4 severing events on Taxol-

stabilized microtubules and 0 severing events on subtilisin microtubules. However, we 

noticed significant microtubule loss when we quantified the total loss of polymer (Fig. 

15B). Since the Walker B mutant katanin was unable to sever microtubules, the loss of 

polymer is due to endwise depolymerization. We fit the data to a single exponential 

decay (Eq. 3) to extract the characteristic decay times. The characteristic decay time of 

Taxol-stabilized microtubules and subtilisin microtubules in the presence of the Walker B 

mutant is 290 ± 20s and 240 ± 40s, respectively (Fig. 15C). This suggests the rate of 

activity of the Walker B katanin is similar on both microtubules with and without CTTs. 

Although the characteristic decay times are similar on both Taxol-stabilized and subtilisin 

microtubules, the total loss of polymer is significantly different. The total loss of polymer 

in the presence of the Walker B mutant katanin was 37 ± 7% for Taxol-stabilized 

microtubules but only 9 ± 6% subtilisin-treated microtubules (Fig. 15D). This suggests 

that the degree to which microtubules are degraded by the Walker B mutant katanin is, 

in fact, dependent on the CTT.   
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We continued to investigate the hypothesis that the Walker B mutant katanin 

could depolymerize, although not sever, microtubules. Kymographs of Taxol-stabilized 

and subtilisin microtubules show slight loss of polymer from both ends (Fig. 16A). We 

used a cumulative distribution function to quantify the depolymerization speeds (Fig. 4B). 

We fit the data to the single rising decay (Eq. 4) to extract the characteristic times. The 

characteristic speed of the Walker B mutant katanin is 0.43 ± 0.02 nm/s on Taxol-

stabilized microtubules and 0.31 ± 0.02 nm/s on subtilisin microtubules (Fig. 16C). 

These values are significantly lower than the characteristic depolymerization speeds for 

wild type katanin (Fig. 16C). We also examined the percentage of filaments that 

depolymerized and find 57 ± 6% of Taxol-stabilized microtubules depolymerized and 55 

± 9% of subtilisin microtubules depolymerized (Fig. 16D). For each type of microtubule, 

the wild type katanin was more efficient at depolymerizing microtubules (Fig. 16D), but 

the effect was negated by the ATP-deficient mutation. This implies that the 

depolymerization depends on the ability to use ATP and the availability of tubulin CTTs. 

  
3.3.3 Activity of ADP-bound Wild Type Katanin is Similar to Enzymatically Dead 
Mutant 

It has long been known that katanin’s ability to sever microtubules is strictly 

nucleotide dependent and requiring ATP and a functional AAA enzyme domain (F. J. 

McNally & Vale, 1993). Our lab has shown that both severing and depolymerization are 

ATP-dependent (Diaz-Valencia et al., 2011). 

We tested the ability of wild type katanin to sever and depolymerize in the 

presence of ADP. We expected that the ADP-bound wild type katanin would be similar to 

the enzymatically dead mutant (E309Q) in both lacking of microtubule severing and 

reduced depolymerization of microtubules. As expected, we observed a lack of severing 
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by wild type katanin when ADP was present consistent with our prior results and those 

from other groups (Johjima et al., 2015) (Fig. 15A). We quantified the total loss of 

polymer fit the data to a single exponential decay (Eq. 3), and the characteristic times 

were extracted (Figs. 15B). The characteristic decay times in the presence of ADP-

bound wild type katanin on Taxol-stabilized microtubules is 560 ± 70 s and 410 ± 40 s on 

subtilisin microtubules. 

The ADP-bound katanin and Walker B mutant katanin was within statistical 

significance for all time points during total loss of polymer of Taxol-stabilized 

microtubules. Data were similar but statistically different for the ADP-bound katanin and 

Walker B mutant katanin on subtilisin microtubules. The data from the characteristic 

decay times suggests that the loss of polymer due to depolymerization depends more on 

the enzymatic activity of katanin than the presence of the CTT. We next compared the 

total loss of polymer (Fig. 15D). We found that the total loss of polymer was higher on 

Taxol-stabilized microtubules 50 ± 10% than subtilisin-treated microtubules 37 ± 7%, but 

they were within uncertainty of each other. 

We quantified the depolymerization rates for wild type katanin in the presence of 

ADP using kymographs (Fig. 16A). The were plotted in a cumulative distribution and fit 

to a rising exponential decay (Eq. 4) (Fig. 16B).  The characteristic depolymerization 

speeds were 1.5 ± 0.03 nm/s for Taxol-stabilized microtubules and 0.4 ± 0.02 nm/s for 

subtilisin-treated microtubules (Fig. 16C). We also quantified the percentage of 

microtubule ends that displayed depolymerization and found that 94 ± 4% of Taxol-

stabilized microtubule ends were depolymerized with ADP-bound wild type katanin, and 

this value is not statistically different from ATP-bound wild type katanin. For subtilisin-

treated microtubules, 76 ± 9% were depolymerized with ADP-bound katanin. 
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Figure 15. ADP-bound Wild Type Katanin and Enzymatically Dead Katanin (E309Q) 
have Similar Activity. 
(A) Time series representative of a severing assay experimental parameters. (i) Taxol-
stabilized microtubules in the presence of katanin with ADP, and (ii) Taxol microtubules 
in the presence of enzymatically dead mutant (E306Q) katanin with ATP. (iii) Subtilisin-
treated microtubules in the presence of katanin with ADP (iv) Subtilisin-treated 
microtubules in the presence of E306Q katanin with ATP. The time between images is 
as stated below each time series and all the scale bars are all 5 μm. Neither the ADP-
bound katanin nor the E306Q katanin, unable to hydrolyze ATP, was able to sever 
microtubules, but both displayed some depolymerization. (B) Quantification of total loss 
of polymer for (i) Taxol-stabilized microtubules and (ii) subtilisin microtubules. (i) Taxol-
stabilized microtubules with wild type katanin and ADP (dark red circles, N=30 in 6 
different chambers) and Taxol-stabilized microtubules with E306Q katanin with ATP 
(dark green circles, N=66 in 9 different chambers). (ii) Subtilisin microtubules with wild 
type katanin and ADP (light red squares, N=24 in 4 different chambers) and subtilisin 
microtubules with mutant katanin E306Q with ATP (light green squares, N=33 in 5 
different chambers). Error bars represent the standard error of the mean. Data was fit 
with an exponential decay (Eq. 3). (C) Quantification of the characteristic decay times of 
exponential decay fits. (D) Percent total loss of polymer of the different conditions. The 
error bars are the uncertainty given from the least squares fitting routine. 
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Figure 16. ADP-bound Katanin and Enzymatically Dead Katanin Depolymerize Similarly. 
(A) Kymographs representative of microtubule depolymerization. (i) Taxol microtubule 
with ADP-bound katanin and (ii) Taxol-stabilized microtubules with E306Q katanin. (iii) 
Subtilisin microtubules with ADP-bound katanin and (iv) subtilisin microtubules and 
E306Q katanin. The horizontal white line is when the lights were turned on to flow 
katanin into the flow chamber. The time is 600 s from the top of the kymograph to the 
bottom and all the scale bars are 5 μm. Movies were taken at 5 second intervals for 10 
minutes. Each pixel is 5 seconds in the x direction and 67.5 nm in the y direction. (B) 
Cumulative distribution of the depolymerization speeds of (i) Taxol and (ii) subtilisin 
microtubules with either ADP-bound katanin or E306Q katanin. Taxol microtubules with 
ADP-bound katanin (dark red line, N=30 in 6 different chambers) and Taxol microtubules 
and E306Q katanin (dark green line, N=66 in 9 different chambers). (iii) Subtilisin 
microtubules with ADP-bound katanin (light red line, N=24 in 4 different chambers) and 
(iv) subtilisin microtubules with E306Q katanin (light green line, N=33 in 5 different 
chambers). Data was fit with a single rising decay (Eq. 4) (shown) (C) Quantification of 
characteristic depolymerization times for all conditions. The error bars are the error 
associated with the rising decay time of the fits in (B). (D) Percent of microtubules 
depolymerized (considered any value above 0.1125 nm/s). This value was determined 
based on the smallest speed of depolymerization that can be calculated with one pixel 
wide measurement using the box tool. Error bars represent the standard error of 
proportion. 
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3.3.4 AMPPNP is a Modest Inhibitor 

We imaged wild type katanin in either the presence of ATP (Fig. 13,14) or 

AMPPNP and observed katanin was capable of severing (Fig. 17A). The total number of 

severing events of wild type X. laevis katanin on Taxol stabilized microtubules was 94 

events in the presence of ATP and 88 events in the presence of AMMPNP over the 

observation time, so the ability to cause breaks was similar. We quantified the total loss 

of polymer over time and fit the data to an exponential decay (Eq. 3) (Fig. 17B). Although 

AMPPNP was a useable nucleotide for severing Taxol microtubules, the efficiency was 

reduced resulting in a longer decay time for AMPPNP (330 ± 30 s) compared to ATP (97 

± 2 s).  We further quantified the total loss of polymer over the observation time for ATP 

and AMPPNP on Taxol microtubules (Fig. 17D). We observed that wild type katanin 

degraded 106 ± 9% of Taxol-stabilized microtubules in the presence of ATP but only 75 

± 6% of Taxol-stabilized microtubules in the presence of AMPPNP. Thus, the AMPPNP 

is not as good an energy course as ATP for loss of polymer in total, including severing 

and depolymerization. 

We also measured the ability of wild type katanin to sever or destroy polymer on 

subtilisin microtubules in the presence of AMPPNP. Zero severing events were observed 

with ATP, and only 2 events were observed in the presence of AMPPNP. Loss of 

polymer data was fit to an exponential decay (Eq. 3) (Fig. 17B) and the characteristic 

decay times were quantified to reveal 105 ± 8 s with ATP and 360 ± 20 s with AMPPNP 

(Fig. 17C). On the other hand, subtilisin microtubules were unaffected by total loss of 

polymer upon changing nucleotide conditions. Wild type katanin degraded 47 ± 7% of 

subtilisin microtubules in the presence of ATP and 53 ± 5% in the presence of AMPPNP. 

Since depolymerization is the only mechanism available to account for the loss of 

polymer on the subtilisin microtubules, this suggests AMPPNP does not inhibit 
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depolymerization. Comparing the subtilisin-treated microtubules to Taxol microtubules, 

we observe that the characteristic loss of polymer depends more on the presence of the 

nucleotide than the presence of the carboxy-terminal tail. Indeed, the main difference 

between the Taxol and subtilisin microtubules is the overall loss of polymer, which is 

always higher for Taxol microtubules because those microtubules allow severing to 

occur in addition to depolymerization. 

Thus, we quantified characteristic depolymerization rates to further tease out the 

differences between severing and depolymerization in the different nucleotide states by 

quantifying the depolymerization rates from kymographs of the movie data (Fig. 18A) 

using cumulative distributions (Fig. 18B) The cumulative distribution data was fit to rising 

exponential decays to determine the characteristic depolymerization rates (Fig. 18B). 

The characteristic depolymerization speed is 2.3 ± 0.02 nm/s for wild type katanin p60 

on Taxol-stabilized microtubules in the presence of ATP and 1.0 ± 0.009 nm/s with 

AMPPNP. Clearly, AMPPNP slows the rate of depolymerization. Similar trends are 

observed for subtilisin microtubules: wild type katanin depolymerizes subtililsin 

microtubules with a characteristic speed of 1.90 ± 0.07 nm/s in the presence of ATP and 

0.78 ± 0.01 nm/s in the presence of AMPPNP. 

We also characterized the percent of microtubule ends depolymerized to see if 

AMPPNP affected the number of microtubule ends depolymerized (Fig. 18D). The data 

show that 96 ± 2% Taxol-stabilized microtubules are depolymerized in the presence of 

ATP, while 88 ± 5% are depolymerized in the presence of AMPPNP. These data are 

likely not statistically significant. Further the percent of subtilisin-treated microtubules 

depolymerized is not statistically significant when comparing ATP (91 ± 5%) with 

AMPPNP (92 ± 5%).  Thus, neither the presence of the CTT of tubulin nor the presence 

of AMPPNP affects the number of microtubule ends depolymerized. 
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Taken together, this data suggests that AMPPNP slows the rate of 

depolymerization slightly (Fig. 18C), and that is what causes the difference in the total 

loss of polymer (Fig. 17C). This data further suggests that the presence of ATP is 

important for end-depolymerization. Further, there is only a minor effect on the 

depolymerization speed due to the lack of the CTT (Fig. 18C,D). This implies that 

depolymerization is not just end-severing, but must have a different mechanism that is 

independent of the CTT. 
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Figure 17. Wild Type Katanin Activity in AMPPNP-bound State.   
(A) Time series representative of a severing assay experimental parameters. (i) Taxol 
microtubules with ATP-bound katanin, and (ii) Taxol microtubules with AMPPNP-bound 
katanin. (iii) Subtilisin microtubules with ATP-bound katanin and (iv) subtilisin 
microtubules with AMPPNP-bound katanin. The time between images is as stated below 
each time series and all the scale bars are all 5 μm. Movies were taken at 5 second 
intervals for 10 minutes. The first three minutes of each movie was used a control to 
make sure that the microtubules were stable and not falling apart due to something other 
than katanin. As shown in Figure 1, katanin was able to sever Taxol microtubules in the 
presence of ATP. Katanin was also able to sever Taxol  microtubules in the presence of 
the slowly hydrolyzable ATP-analogue, AMPPNP. We observed depolymerization in all 
conditions. (B) Quantification of loss of polymer for (i) Taxol microtubules and (ii) 
subtilisin microtubules. Only in chambers with ATP-bound katanin were microtubules 
completely destroyed during the 10 minutes of the assay. The error bars represent the 
standard error of the mean. Data was fit with exponential decay parameters for a single 
exponential (Eq. 3). (i) Taxol microtubules with ATP-bound katanin (dark blue circles, 
N=66 in 10 different chambers) and (ii) Taxol microtubules AMPPNP-bound katanin 
(dark green circles, N=47 in 7 different chambers). (iii) Subtilisin microtubules ATP-
bound katanin (light blue squares, N=35 in 9 different chambers) and subtilisin 
microtubules AMPPNP-bound katanin (light green squares, N=33 in 4 different 
chambers). (C) Quantification of the characteristic decay times (tau) of the exponential 
decay fits. The characteristic decay times are from the exponential decay fits. The error 
bars represent the standard error of the mean. (D) Percent total loss of polymer of the 
different conditions. The error bars are the uncertainty given from the least squares 
fitting routine. 
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Figure 18. Wild Type Katanin Depolymerization in AMPPNP-bound State. 
(A) Kymographs representative of microtubule depolymerization in severing assays. (i) 
Taxol microtubule with ATP-bound katanin, and (ii) Taxol microtubules with AMPPNP-
bound katanin. (iii) Subtilisin microtubules with ATP-bound katanin and, (iv) subtilisin 
microtubules with AMPPNP-bound katanin. The horizontal white line is when the lights 
were turned on to flow katanin into the flow chamber. The time is 600 s from the top of 
the kymograph to the bottom and all the scale bars are 5 μm. Movies were taken at 5 
second intervals for 10 minutes. Each pixel is 5 seconds in the x direction and 67.5 nm 
in the y direction. (B) Cumulative distribution of the depolymerization speeds of (i) Taxol 
and (ii) subtilisin microtubules with katanin in either the ATP- or AMPPNP-bound state. 
Taxol microtubules with ATP-bound katanin (dark blue line, N=66 in 10 different 
chambers) and Taxol microtubules with AMPPNP-bound katanin (dark green line, N=47 
in 7 different chambers). Subtilisin microtubules with ATP-bound katanin (light blue line, 
N=35 in 9 different chambers) and subtilisin microtubules with AMPPNP-bound katanin 
(light green line, N=33 in 4 different chambers). Data was fit with a rising decay (Eq. 4). 
(C) Quantification of characteristic depolymerization times for all conditions. The error 
bars are the error associated with the rising decay time of the fits in (B). (D) Percent of 
microtubules depolymerized (considered any value above 0.1125 nm/s). This value was 
determined based on the smallest speed of depolymerization that can be calculated with 
one pixel wide measurement using the box tool. Error bars represent the standard error 
of proportion. 
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3.4 Discussion 

Most studies on katanin have focused on its ability to sever microtubules and on 

elucidating the mechanism of severing. However, depolymerization could be an 

important mechanism that katanin uses in the cell. For example, katanin is required for 

proper chromosome segregation during anaphase (Zhang et al., 2007). Katanin 

stimulates plus-end depolymerization at the kinetochores of spindles, a type of motility 

termed Pacman (Zhang et al., 2007). It is then thought that other depolymerizing motors 

like kinesin-13 depolymerize microtubule plus ends to move chromosomes poleward 

(Rogers et al., 2004). It is possible katanin plays a role after uncapping microtubules by 

aiding kinesin-13 in actively depolymerizing microtubule plus-ends. 

We have shown that depolymerization is a separate activity from severing and 

that katanin depolymerization and severing have distinct mechanisms. Our evidence for 

this is 1) depolymerization rates are ATP-dependent; 2) depolymerization rates do not 

depend on the presence of a CTT whereas severing does; 3) we have evidence that 

katanin works better as a hexamer than a monomer, but this should be tested further.  

The majority of loss of polymer is due to depolymerization in our assays – not 

severing. We believe severing enables more depolymerization because it allows for 

more free microtubule ends. The depolymerization rates and the loss of polymer rates 

are similar for both Taxol microtubules and subtilisin microtubules. However, the amount 

of polymer lost is lower with subtilisin microtubules, because new ends cannot be made. 

Such a mechanism might be used in live cells, since severing events would likely trigger 

catastrophes (depolymerization) of microtubules in cells. 

CTTs are not required for depolymerization of microtubules. The negatively 

charged CTT and the sequence of the CTT is important in regulation of katanin severing. 

Our assays suggest neither the negatively charged region nor the sequence of the CTT 
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is important for depolymerization activity. This may have physiological relevance and 

suggests depolymerization is a more robust mechanism than severing.  

 

 

Figure 19. Summary of Preferred Nucleotide States in Katanin Depolymerization of 
Microtubules. 
Preferred nucleotide states in depolymerizing A) Taxol-stabilized microtubules and B) 
sutilisin microtubules. Based on the data, katanin in the presence of ATP depolymerized 
microtubules with and without the CTT the best. ADP-bound katanin depolymerized 
Taxol-stabilized microtubules second best while AMPPNP-bound katanin depolymerized 
subtilisin microtubules second best. The E306Q mutant katanin in the presence of ATP 
was the worst at depolymerizing microtubules.  
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CHAPTER 4 

FUTURE OUTLOOK 

The studies in this thesis have addressed some of the ways in which katanin 

regulates microtubule dynamics. We have explored the mechanism of katanin 

depolymerization on microtubules and identified ways in which it is different from the 

mechanism of katanin severing. The data presented in Chapter 1 demonstrate that the 

type of katanin activity, either severing or depolymerization, and the level of activity is 

regulated by concentration of ATP in vitro. The data presented in Chapter 2 show that 

katanin’s mechanism of depolymerization is dependent on the nucleotide present and 

does not depend on the CTT. Despite the progress made in this thesis, many questions 

remain unanswered, about both the mechanism of katanin severing and 

depolymerization. 

One question that remains is whether subtilisin microtubules are depolymerized 

at similar rates from both ends of the microtubule. The data shown in Fig.14A is 

representative of Taxol-stabilized and subtilisin treated microtubules. However, we did 

not have polarity marked microtubules in this assay, therefore there is no way to tell 

which end is the plus end and which is the minus end. However, by grouping the data 

into the fast end and the slower end, we may be able to identify trends to see if subtilisin 

microtubules are indeed depolymerized from either end at similar rates.  

Our lab continues to be interested in understanding the mechanism of katanin 

severing in addition to elucidating the mechanism of depolymerization. We have created 

a fluorescently-labeled CTT construct that is a CTT attached to a fluorescent protein. 

The protein is made to unfold if tugged upon and therefore will extinguish upon 

unfolding. This will allow us to test the unfoldase mechanism of katanin severing (Bailey, 

Jiang, Dima, & Ross, 2016). We also aim to better understand the process of katanin 
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hexamerization on the CTT. Whether full or partial hexamerization occurs before or after 

katanin lands on the CTT of tubulin remains unknown. We will test this with 

fluorescently-labeled construct and others given to us by Dr. Dan Sackett at NIH. 
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APPENDIX A 
 

Constant Phase 
ATP Concentration Average (I) Standard 

Deviation 
Time Averaged 

Over (s) 
28 μM 3.366210263 0.917633831 50.22 

100 μM 3.448877821 0.913512218 15.36 
500 μM 3.125571429 0.707393459 7.92 
1 mM 3.170679021 0.917520699 17.1 
2 mM 2.649513309 1.060412608 33.3 
5 mM 1.521344622 0.512732128 26.16 

10 mM 1.127938021 0.398858062 28.74 
20 mM 0.15232578 0.177450655 60.36 

2 mM ATP-γ-S 2.949652941 1.266139538 14.22 
No Katanin 0.009587052 0.045075332 573.12 

Exponential Decay Phase 
Fit: I(t) = Aexp(-t/τ) 

ATP 
Concentration 

A τ (s) 
 

χ2 

 
R2 

28 μM 4.9366 ± 0.014734 121.26±0.43978 482.73 0.95118 
100 μM 5.1283± 0.006793 111.59±0.16484 47.447 0.99297 
500 μM 6.1774± 0.069544 28.725±0.29553 73.266 0.93488 
1 mM 5.7904± 0.052638 43.8±0.41887 224.73 0.91307 
2 mM 5.7679± 0.019368 46.335±0.13221 25.506 0.98813 
5 mM 1.7024± 0.006946 101.96±0.47596 30.883 0.9388 

10 mM 1.3789± 0.001731 159.35±0.24817 7.3085 0.98859 
20 mM 0.18465±0.000615 210.28±0.98453 0.96298 0.89361 

2 mM ATP-γ-S 3.0387±0.0053589 181.08±0.43442 97.967 0.97454 
Fit parameters for Constant Phase and Exponential Decay Phase for Katanin on Taxol-
stabilized Microtubules. Data in Chapter 1. 
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Maximum Katanin Bound 
ATP Concentration Average Standard Error 

28 μM 3.5308 0.15355 
100 μM 3.5292 0.10045 
500 μM 3.2224 0.10244 
1 mM 3.2413 0.095513 
2 mM 2.8289 0.10362 
5 mM 1.6198 0.056775 

10 mM 1.1726 0.04951 
20 mM 0.17975 0.022847 

2 mM ATP-γ-S 3.1302 0.1775 
No katanin 0.03837 0.005644 

Maximum GFP-Katanin Intensity at various concentrations of ATP. Data in Chapter 1. 
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Exponential decay fit: y=Aexp(-t/τ)+B 
Linear fit: y=A(1-(t/τ))  
Condition Fit R R2 χ2 A τ (s) B 
Taxol MTs Linear 

Approximation 
0.971 0.944 0.00433 

 
0.840 ± 
0.002 

 

3224.1 ± 
83.226 

 

Taxol MTs Exponential 
decay 

0.972 0.944 0.00426 0.482 ± 
0.362 

1615.4 ± 
1400.4 

0.361 ± 
0.365 

Taxol MTs + 
WT katanin 

Exponential 
Decay 

0.997 
 

0.994 
 

0.0413 1.450 ± 
0.0172 

97.428 ± 
2.241 

-0.0130 ± 
0.00629 

Sub MTs Linear 
Approximation 

0.434 0.189 0.0114 
 

1.107 ± 
0.003 

 

22187 ± 
5159.8 

 

 

Sub MTs + 
WT katanin 

Exponential 
Decay 

0.97217 0.94512 0.05928 0.49536 ± 
0.0082946 

105.17 ± 
7.7913 

0.54759 ± 
0.019147 

Total Loss of Polymer Fits for Wild Type Katanin on Taxol and Subtilisin Microtubules. 
Data in Chapter 2. 
 
Rising decay fit: y=1-Aexp(-t/τ) 
Double rising decay fit: y=1-Aexp(-t/τ)-A2exp(-t/τ2) 
Condition Fit R R2 χ2 A τ (s) A2 τ2 (s) 
Taxol MTs Rising 

Decay 
0.831 

 
0.690 2.349 0.828 ± 

0.0502 
0.139 ± 
0.0298   

Taxol MTs 
+ WT 

katanin 
Rising 
Decay 

 

0.998 

 
0.996 0.0577 0.979 ± 

0.00351 
2.300 ± 
0.0178   

Sub MTs Rising 
Decay 

0.717 

 
0.515 2.345 3.143 ± 

2.701 
0.0181± 
0.00930   

Sub MTs 
+ WT 

katanin 
Rising 
Decay 

0.984 

 
0.969 0.180 0.980 ± 

0.0160 
1.886 ± 
0.0712   

Sub MTs 
+ WT 

katanin 

Rising 
Double 
Decay 

0.993 
 

0.986 0.0790 0.795 ± 
0.0680 

1.268 ± 
0.128 

0.220 ± 
0.0713 

8.881 ± 
3.447 

Loss of Polymer Due to Depolymerization Fits for Wild Type Katanin on Taxol and 
Subtilisin Microtubules. Data in Chapter 2. 
 
Exponential decay fit: y=Aexp(-t/τ)+B 
Condition Fit R R2 χ2 A τ (s) B 

Taxol MTs + 
WT katanin 

+ ADP 
Exponential 

Decay 
0.996 

 
0.991 0.0137 0.974 ± 

0.0737 
556.14 ± 
65.676 

0.0221± 
0.0784 

Taxol MTs + 
E306Q 

katanin + 
ATP 

Exponential 
Decay 

0.99398 

 
0.98799 

 
0.012465 

 
0.49176 ± 
0.020324 

 

284.81 ± 
20.675 

0.57166 ± 
0.016091 

Sub MTs + 
WT katanin 

+ADP 
Exponential 

Decay 
0.993 0.986 0.0132 0.647± 

0.0375 
408.85 ± 

44.38 
0.407± 
0.0421 

Sub MTs + 
E306Q 

katanin + 
ATP 

Exponential 
Decay 

0.960 

 
0.921 

 
0.0126 

 
0.206 ± 
0.0110 

 

240.19 ± 
39.81 

0.829 ± 
0.0149 

Total Loss of Polymer Fits for ADP-bound Katanin and E306Q Mutant Katanin. Data in 
Chapter 2. 
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Rising decay fit: y=1-Aexp(-t/τ) 
Double rising decay fit: y=1-Aexp(-t/τ)-A2exp(-t/τ2) 
Condition Fit R R2 χ2 A τ (s) A2 

Taxol MTs + 
WT katanin 

+ ADP 
Rising 
Decay 

 

0.99785 

 
0.9957 

 
0.057713 

 
0.97935 ± 

0.0035058 

 

2.3001 ± 
0.017769 

 

Taxol MTs + 
E306Q 

katanin + 
ATP 

Rising 
Decay 

 

0.958 

 
0.918 

 
0.745 0.870 ± 

0.016281 
0.430 ± 
0.0240  

 Rising 
Double 
Decay 

0.995 0.989 

 
0.0975 1.144e+08 

± 
2.154e+08 

0.00221 ± 
0.000208 

0.695 ± 
0.00842 

Sub MTs + 
WT katanin 

+ ADP 
Rising 
Decay 

 

0.99553 

 
0.99109 

 
0.033404 

 
1.0181 ± 
0.011223 

0.30217 ± 
0.0068272 

 

Sub MTs + 
E306Q 

katanin + 
ATP 

Rising 
Decay 

 

0.97407 

 
0.94881 

 
0.22599 

 
0.88329 ± 
0.018764 

0.31483 ± 
0.018331 

 

Loss of Polymer Due to Depolymerization Fits for ADP-bound Katanin and E306Q 
Mutant Katanin. Data in Chapter 2. 
 
Exponential decay fit: y=Aexp(-t/τ)+B 
Condition Fit R R2 χ2 A τ (s) B 
Taxol MTs + 
WT katanin 

+ ATP 
Exponential 

Decay 
0.997 

 
0.994 

 
0.0413 1.450 ± 

0.0172 
97.428 ± 

2.241 
-0.0130 ± 
0.00629 

 
Taxol MTs + 
WT katanin 
+ AMPPNP 

Exponential 
Decay 

 

0.991 

 
0.981 0.0918 1.334 ± 

0.0621 
332.1 ± 
34.277 

 

0.151 ± 
0.0740 

Sub MTs + 
WT katanin 

+ ATP 
Exponential 

Decay 
0.972 0.945 0.0593 0.548 ± 

0.0191 
105.17 ± 

7.791 
0.495 ± 
0.00829 

Sub MTs + 
WT katanin 
+ AMPPNP 

Exponential 
Decay 

 

0.998 0.996 0.00702 0.871 ± 
0.0210 

363.38 ± 
17.995 

 

0.180 ± 
0.0244 

Total Loss of Polymer Fits for Katanin in ATP- and AMPPNP-bound States. Data in 
Chapter 2. 
 
Rising decay fit: y=1-Aexp(-t/τ) 
Double rising decay fit: y=1-Aexp(-t/τ)-A2exp(-t/τ2) 
Condition Fit R R2 χ2 A τ (s) A2 τ2 (s) 
Taxol MTs 

+ WT 
katanin + 

ATP 

Rising 
Decay 

 

0.998 0.996 0.0577 0.979 ± 
0.00351 

2.300 ± 
0.0178   

Taxol MTs 
+ WT 

katanin + 
AMPPNP 

Rising 
Decay 

 

0.998 0.996 0.0441 1.011 ± 
0.00403 

1.034 ± 
0.00858 

  

Sub MTs 
+ WT 

katanin + 
ATP 

Rising 
Double 
Decay 

 

0.993 0.986 0.0790 0.795 ± 
0.0678 

1.268 ± 
0.128 

0.221 ± 
0.0713 

8.878 ± 
3.444 

Sub MTs 
+ WT 

katanin + 
AMPPNP 

Rising 
Decay 

 

0.996 0.993 0.0398 1.0542 ± 
0.00882 

0.748 ± 
0.0118   

Loss of Polymer Due to Depolymerization Fits for Katanin in ATP- and AMPPNP-bound 
States. Data in Chapter 2. 
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Condition % Total Loss of 

Polymer 
SE of Proportion % MT Ends 

Depolymerized 
SE of Proportion 

Taxol MTs 13.289 6.8597 30.769 6.281 
Taxol MTs + WT 

katanin 
105.74 12.272 96.273 2.332 

Taxol MTs + E306Q 
katanin 

36.984 7.3171 57.273 6.090 

Taxol MTs + WT 
katanin + ADP 

46.934 10.020 93.75 4.419 

Taxol MTs + WT 
katanin + AMPPNP 

74.559 7.4544 88.148 4.715 

Sub MTs 3.6700 10.663 10.345 5.560 
Sub MTs + WT 

katanin 
47.082 9.9853 91.304 4.763 

Sub MTs + E306Q 
katanin 

9.0390 5.7877 54.717 8.665 

Sub MTs + WT 
katanin + ADP 

37.552 9.3430 75.56 8.772 

Sub MTs + WT 
katanin + AMPPNP 

52.606 5.5367 92.187 4.672 

Sub MTs + WT 
katanin + AMPPNP 

52.606 5.5367 92.187 4.672 

Percent Total Loss of Polymer and Percent Microtubule Ends Depolymerized in All 
Conditions.  Data in Chapter 2.  
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APPENDIX B 
 

UVO and Silanization of Coverslips Protocol:  
 
*It is important to clean the racks and glass containers thoroughly before silanization.  
*Do not let anything that is not dry come in contact with the silane.   
*Rinse container 3X with water then 3X with ddH2O for each step.  
 
UVO Coverslips: 

1. Load bent metal coverslip rack with coverslips.  
2. UVO for 20 minutes.  

 
Biologically Clean Coverslips: 

1. Transfer coverslips from UVO rack to Silane racks. 
2. Immerse the coverslips in 100% acetone for 1 hour. 
3. Immerse the coverslips in 100% ethanol for 10 minutes. 
4. Rinse 3X in ddH2O for 5 minutes each. 
5. Immerse the coverslips in 0.1M KOH for 15 minutes (prepare just before use).  
6. Rinse 3X in ddH2O for 5 minutes each. 
7. Air Dry Coverslips. 

 
Silanization of Coverslips:  

1. Once cleaned coverslips have dried completely, immerse in 2% DDS 
(dimethyldichlorosilane) for 5 minutes.  

2. Use a funnel to pour the silane solution back into the bottle to reuse.  
3. Immerse the coverslips in 100% ethanol for 5 minutes.  
4. Immerse the coverslips in another 100% ethanol for 5 minutes.  
5. Rinse 3X in ddH2O for 5 minutes each.  
6. Air Dry.  
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BL21 Cell Transformation for Low Copy Plasmid Protein Purification: 
 
1.     Incubate LB/agar plate at 37°C. 
2.     Dilute DNA to 1 ng/ul in molecular biology water optimize transformation efficiency. 
3.     Thaw one aliquot of BL21 cells on ice. 
4.     Once thawed, immediately add 1 ul of diluted DNA to BL21 cells.  
5.     Leave on ice for 30 min. While cells are incubating with DNA, add 20-30 ul  
 antibiotic to plate. (For high copy plasmids, add 50 ul.) 
6.     Heat shock at 42°C for EXACTLY 45 sec. 
7.     Add 250 ul LB/SOC media to cells. Incubate at 37°C for 30 min (incubation  
 optional). 
8.     Plate 50 ul cell/media mix.  
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Stbl2 Cell Transformation for Low Copy Plasmid Midiprep: 
  
1.     Incubate LB/agar plate at 37C. 
2.     Dilute DNA to 1 ng/ul in molecular biology water optimize transformation efficiency. 
3.     Thaw 25 ul of Stbl2 cells on ice. 
4.     Once thawed, immediately add 1 ul of diluted DNA to Stbl2 cells. 
5.     Leave on ice for 10 min. While cells are incubating with DNA, add 20-30 ul antibiotic  
 to plate. (For high copy plasmids, add 50 ul.) 
6.     Heat shock at 42C for EXACTLY 30 sec. 
7.     Add 250 ul LB/SOC media to 25 ul cells. Incubate at 37C for 30 min. 
8.     Plate 100 ul cell/media mix. 
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GenCatch Midiprep for Low Copy Plasmid:  

Buffers:  
VP1: 
50mM Tris-HCl, pH 8.010mM EDTA 
Add 100ug/mL RNase A 
  
VP2: 
0.2N NaOH 
1% SDS 
 
VP3: 
3M KoAc, pH 5.5 
 
VPN: 
0.1M NaoAc, pH 5.1 * need 
1.2M NaCl 
 
VPE: 
0.1M Tris-HCl, pH8.5 * pH 
1.35M NaCl 
15% Isopropanol 
  
1. Put VP3 Buffer on ice before use. Then, transform DNA into DH5a E. coli cells, XL10 
gold cells, or Stbl2 cells. 
2. Culture plasmid-containing bacterial cell in 100 ml of LB medium. Grow no more than 
16 hours with vigorous shaking at 37°C. 
3. In the morning, harvest the bacterial cells by centrifugation at 6,000 x g for 15 minutes. 
Rotor: F13S-14x50cy in 50 ml conical tubes. 
4. Shake the GenCatchTM Midi column vigorously then equilibrate the column by 
applying 3 ml of 98% ethanol. Allow the column to be empty by gravity flow and discard 
the filtrate. 
5. Equilibrate the Midi Columns by applying 5-10 ml of VPN Buffer. Allow the column to 
empty by gravity flow and discard the filtrate. 
6. Resuspend the cell pellet in 4 ml of VP1 Buffer. The bacterial cells should be 
completely resuspended before adding VP2 Buffer. 
7. Add 4 ml of VP2 Buffer, mix gently by rotating the lysate and stand for 5 minutes. Do 
not vortex, vortexing will shear genomic DNA. The lysate should be clear and viscous. 
8. Add 4 ml of ice-cold VP3 Buffer, mix gently by rotating. After adding VP3 Buffer, white 
precipitate should be formed. 
9. Centrifuge at 20,000 x g for 15 minutes at 4°C. 20,000 x g corresponds to 12,000 and 
13,000 rpm in Beckman JA-17 and Sorvall SS-34 rotors, respectively. 
10.  Apply the supernatant to the midi column and allow it to flow through by gravity flow 
and discard the filtrate. 
11.  Wash the column once with 15 ml of VPN Buffer by gravity flow and discard the 
filtrate. 
12.  Apply 5 ml of VPE Buffer to elute DNA by gravity flow. 
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13.  Precipitate DNA by adding 3.75 ml (0.75 volumes) of room temperature isopropanol 
to the eluate. Mix and centrifuge at 15,000xg for 30 minutes at 4°C. Carefully remove the 
supernatant. 
14.  Wash the DNA pellet with 5 ml of room temperature 70% ethanol and centrifuge at 
15,000 x g for 10 minutes. Carefully remove the supernatant. Pulse spin and remove 
remaining ethanol. 
15.  Dissolve the DNA in 100 μl or a suitable volume of TE or ddH2O. 
16.  Some insoluble material may also elute out from the column at step 10. To eliminate 
the insoluble material, load the dissolved DNA sample into a Spin Column (sitting in a 
1.5 ml tube) and spin at full speed in a microcentrifuge for 20 seconds, collect the eluted 
DNA sample in the 1.5 ml tube. 
17.  Store DNA at -20°C. 
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Bacterial Katanin Purification Protocol:  

Resuspension Buffer:        Katanin Activity Buffer (KAB):  
20 mM     Hepes pH 7.7        20 mM   Hepes pH 7.7  
250 mM   NaCl           2   mM   MgCl2  
10%         glycerol           10 %      glycerol  
*0.5 mM   BME           
*0.25 mM ATP  
*Protease inhibitors:   
  25uL 2 mg/mL Aprotinin   
  25uL 2 mg/mL Pepstatin   
  25uL 2 mg/mL Leupeptin            
* Add on Day 4 to 25mL of Resuspension buffer  
  
  
Day 1:  

1. Incubate LB/carbenicillin plate upside down at 37°C.  
2. Thaw BL21 cells and pMAL-c2x-MBP-sfGFP-p60 plasmid (dated 7/1/14 MB in 

DNA stocks box). 
3. Immediately add 2μL plasmid and let incubate for 30 minutes on ice. 
4. Immediately heat shock the cells for EXACTLY 45 seconds @ 42°C in the water 

bath then place on ice for 2 minutes. 
5. Add 400μL of LB media to the tube & place in the incubator for 1 hour 

(incubation optional). 
6. Plate 100μL of the cells onto LB/carbenicillin plate & spread thoroughly, then 

place in the 37°C incubator for the night. 
  
Day 2:  

1. In the morning, check that colonies have started growing on the plate. If they are 
abundant, wrap the edge of the plate in parafilm and place in the deli fridge. If 
they are small, allow them to grow for a few more hours, then do the same. 

2. Email someone from Tom’s lab to use the incubator tomorrow. 
3. Make 1-2 flasks of 400mL LB media for use on day 3 & autoclave 

a. Each LB media consists of 4g Tryptone, 4g NaCl & 2g Yeast Extract 
4. In the afternoon, make 1-2 Falcon tubes each containing 5 ml of LB & 5μl of 

carbenicillin. 
5. Pick 3 colonies from the plate (try and take colonies that are not surrounded by 

satellite colonies and are somewhat secluded) and put them in the Falcon tubes. 
6. Put the Falcon tubes in the incubator @ 37°C to shake overnight.  

  
Day 3:  

1. In the morning, add 400 μl of carbenicillin to the starter cultures & dump them 
into the 400 ml LB flasks from yesterday (careful not to dump the pipette tip or 
toothpick you used to pick the colonies into the larger flask) 

2. Allow the flasks to shake in the 37°C incubator until the OD reaches 0.8, this 
usually takes around 3-4 hours. 
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3. Add 400 μl IPTG (1 mM final concentration from a 1M stock) to each flask.  
4. Shake @ 16°C overnight in incubator in centrifuge room for 15-18 hours (or in 

Tom Maresca’s lab - code is 7995).  
Day 4:  

1. Gather cells from incubator. Transfer into white capped centrifuge tube. 
2. Pellet bacteria at 5,000 rpm for 15 min. DO NOT FREEZE.   
3. Make up 25 ml of resuspension buffer.  
    *Remember to add Protease inhibitors, ATP, and BME.  
4. Resuspend pellets in ~15 ml of Resuspension Buffer.   
5. Lyse cells using the sonicator every 20 seconds for 20 seconds for a total of 3 

minutes on level 4.  
6. Transfer sonicated lysate to small, red capped centrifuge tube.  
7. Centrifuge in T865 at 13,000 rpm for 30 minutes.  
8. Incubate lysate with ~1 ml bed volume of amylose resin for ~1.5-2 hours at 4°C.   

*Wash resin before in column/resuspension buffer 3x. 2x with water, 1x with 
resuspension buffer at 3,000 RPM for 5 minutes each.  

9. Pour lysate into column and wash with ~20 mL of resuspension buffer.  
* Remember to add ATP and BME to new 25 mL of RB. 

10. Elute with 10 mM Maltose in resuspension buffer (50 μl of 1 M maltose to 5ml of 
completed resuspension buffer).  

11. Perform a dot blot to prove most concentrated elution. 
12. Perform a Bradford at 600 nm and note concentration.  
13. Store protein in 50% glycerol aliquots in -80°C.  
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Tubulin Purification from Pig Brains Protocol:  

Stock Solutions:                       PM Buffer (200mL)                              PMG 
Buffer (200mL) 
200mM PIPES                            100mL                                                   76mL 
200mM EGTA                             2mL                                                       2mL 
100mM MgSO4                          2mL                                                       2mL 
13.7M Glycerol                          -------                                                     116mL 
  
                                                    Super PMG (200mL) 
1M PIPES                                    16mL 
1M MgSO4                                  2mL 
200mM EGTA                             2mL 
13.7M Glycerol                          175.2mL 

  
  

1. Clean brains (3) and put in pre-tared 1L beaker 
2. Weigh cleaned brains: _______g 
3. Put brains in blender 
           Add 0.5mL PM buffer per 1g of brain.  Volume of PM: ______mL 
4. Pulse blender to homogenize brains 
5. Pour blended brains into ultracentrifuge tubes (T865 rotor) 
6. Balance tubes 
7. centrifuge at 100,000 xg for 45 minutes at 2oC 
8. Pour supernatant into 500mL graduated cylinder (use pasteur pipettes to get all sup) 
           Volume of sup: ________mL 
9. Add same volume of PMG to the sup (1:1 PMG:sup ratio) 
           *If sup volume is greater than 100 mL, add ½ volume of sup as super PMG 
10. Add GTP to final concentration of 1mM 
           ______mL of 100 mM GTP stock 
11. Mix by inverting cylinder (cover with parafilm) 
12. Put sup into new T865 centrifuge tubes and balance 
13. Polymerize MTs for 45 minutes at 37oC in water bath 
14. Set ultracentrifuge to 37oC, place T865 rotor in 37oC incubator to warm up 
15. Centrifuge at 100,000xg in T865 rotor for 45 minutes at 37oC 

These are the 1X Pellets (can drop freeze and store at -80oC or continue) 
  

2X Pellets: 
1. Add PM to pellets using 1/5 volume of original homogenate (step 3) 
           Volume of PM Buffer added: ______mL 
2. Using a thin, pointed spatula, scrape pellet off side of centrifuge tube and into PM  
 buffer 
           Lightly shake tube to make sure pellet is loose 
           Quickly dump PM buffer + pellet into 15mL dounce in ice slurry 
           Repeat for each pellet 
3. Homogenize pellets in cold dounce until no large chunks seen (will be cloudy) 

Incubate on ice 30 minutes and homogenize every 2-3 minutes (avoid excessive 
bubbling) 

4. Put homogenized tubulin into ultra (T865) centrifuge tubes 
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5. Centrifuge 100,000xg for 30 minutes at 2oC 
6. Pour sup into graduated cylinder and approximate volume 
           Volume of supernatant: ________mL 
7. Add PMG buffer 1:1 with supernatant 
           Add ______mL PMG 
8. Add GTP to final concentration of 1mM 
           Add ______mL 100mM GTP stock 
9. Mix by inverting 
10. Put supernatant into new ultra T865 centrifuge tubes and incubate 45 minutes at  
 37oC in water bath  
11. Centrifuge at 37oC for 45 minutes at 100,000xg 
12. Remove most of sup, leaving a small amount to cover pellets 
13. Drop freeze pellets in liquid nitrogen and store at -80oC 
  

High Salt Purification 
1. Quickly thaw pellets at 37oC (in water bath), dump excess supernatant that froze with  
 pellet 
2. Take 2X pellets (2) and homogenize in 5mL PM buffer for 30 minutes on ice (as in   
 step 3 above) 
3. Spin at 100,000xg at 4oC (T865 rotor) for 30 minutes 
4. Save sup and add:   5.5 mL 1M PIPES 
                                      1.2 mL DMSO 
                                      120 uL 100mM GTP 
                                      120 uL 200mM EGTA 
                                      12 uL 1M MgSO4 
5. Incubate at 37oC for 10 minutes 
6. Spin 20 minutes at 20,000xg at 37oC (T865 rotor) 
7. Homogenize pellet in 4 mL PEM-100 on ice for 30 minutes 
8. Spin 30 minutes at 100,000xg at 4oC (T865 rotor) 
9. Bradford of tubulin 
           Dilute to 5 mg/mL using PEM-100 
           Drop freeze in liquid nitrogen and store in -80oC 
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Resuspension of Tubulin for Higher Concentration: 

1. Prewarm rotor T865 in the incubator at 37°C. Fill the centrifuge tubes halfway 
with a glycerol cushion consisting of 60% glycerol in PEM-100. Place these in the 
rotor and allow them to equilibrate to 37°C. While this is happening, proceed with 
the polymerization of tubulin. 

2. Thaw tubulin rapidly using a waterbath at 37°C until the tube is half full of ice. 
Continue to thaw the remainder on ice.  

3. Add 1mM GTP and polymerize microtubules for 40 minutes at 37°C waterbath. 
4. Layer the polymerized tubulin onto the prewarmed cushions using tips with large 

openings to avoid shearing. Centrifuge at 226,240xg for 60 minutes. 
5. Aspirate away the supernatant above the cushion and the cushion. Resuspend 

the pellet in PEM-100 so that the final concentration of tubulin is between 10-20 
mg/ml.  

6. Incubate on ice for 15 minutes to depolymerize microtubules. 
7. Snap freeze and aliquot. Store in -80°C. 
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Making Cytoskeleton Taxol Stabilized Microtubules: 11% labeled 

Unlabeled Cytoskeleton Tubulin:  The stock comes in a pellet that needs 200 uL of PEM-
100 added to it to be at 5 mg/mL (on ice).  Aliquot and drop freeze from stock.  Keep 
sticker on tube in notebook. Only use unlabeled house tubulin if very clean with no 
MAPs. 
 
Labeled Cytoskeleton Tubulin:  Add 4 uL PEM-100 to resuspend pellet to 5 mg/mL 
before use.  Keep sticker on tube in notebook.  
   
1.     Turn on large Sorvall Discovery M120 centrifuge, set to 4°C.  Make sure vacuum is 
 on. 
2.     Thaw/resuspend tubulin on ice.  Transfer: 
                     2 uL labeled + 16 uL unlabeled = 18 uL Total 
         into open round-bottom centrifuge tubes.  (Make balance of same volume!) 
3.     Incubate on ice for 10 min. 
4.     Using the small S120AT2-0449 rotor in deli fridge, centrifuge @ 90,000 rpm  
 (366,000xg) for 10 min. Thaw aliquot of 100 mM GTP for next step. 
5.     Discard pellet & transfer sup to a 1.5 mL epp. tube.  Add 0.2 uL 100mM GTP (1mM  
 GTP Final).  From this point on DO NOT PUT MICROTUBULES ON ICE. 
6.     Incubate for 20 min in 37°C water bath. 
7.     Add 0.2 uL 2mM Taxol (50μM Taxol Final). 
8.     Incubate for 20 min in 37°C water bath. 
9.     Using table-top centrifuge 5415 R, centrifuge at 13,200rpm (16,100xg) (top speed) 
 @ 25°C for 10 minutes. (Make a balance of same vol.!) 
10.  Discard sup & resuspend pellet in: 
                     0.2 uL 2 mM Taxol + 17.5 uL PEM-100 = 18 uL Total 
         *Use same vol. of Taxol as in step 6 and add PEM-100 to the same total vol. in  
 step 2. 
11.  **Clean 25 uL Hamilton syringe with ddH2O (fill and expel at least 3x).  Use syringe 
 to resuspend pellet (fill and expel at least 3x - try not to introduce bubbles).** 
12.  Incubate overnight in 37°C water bath (~1 night max) after keep at room temp (if too 
 cold keep in incubator). 
13.  **Use pipette to declump again before use.** 
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Assay Protocols:  

Severing Assay ATPase 

* Chambers are assembled on glass slides that have been washed with 70% ethanol. 
Use double stick tape to make a chamber with a UVO & silanized coverslip.  
  
1. Flow in 2% anti-tubulin antibody (0.4 μL YL1/2 MAB 1864 tubulin antibody + 9.6 μL 

PEM-100.  
Incubate 5 minutes.  

2. Flow in 5% F-127 in PEM-100. Incubate for 5 minutes.  
3. Flow in 1:100 MTs in PEM-100. Incubate 5-7 minutes.  
4. Flow in KAB-rxn #1 buffer.  
5. Image 3 minutes.  
6. Flow in Katanin in KAB-rxn buffer #2 (1:10 katanin:rxn buffer). 
 
10x katanin solution:   
2.5 μL        Maltose (1μM in KAB) 
1 μL      DTT (1 M stock)  
__ μL KRB 
__ μL  katanin 
50 μL TOTAL     
 
10x free tubulin solution:   
__ μL        Unlabeled tubulin (5 

mg/mL) 
__ μL      BSA (10 mg/mL in KAB)  
__ μL TOTAL    
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For (0 added) 28μM ATP:  
KAB-rxn Buffer 1:  
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
0 μL     ATP 
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
13.5 μL  KAB  
20 μL TOTAL         

 
KAB-rxn Buffer 2:  
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
0 μL     ATP  
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
2 μL   Katanin (10x stock)  
11.5 μL  KAB  
20 μL TOTAL 
 
For 100μM ATP:  
KAB-rxn Buffer 1:  
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
1.0 μL     ATP (2 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
12.5 μL  KAB  
20 μL TOTAL         
 
KAB-rxn Buffer 2:  
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
1.0 μL     ATP (2 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
2 μL   Katanin (10x stock)  
10.5 μL  KAB  
20 μL TOTAL 
 
 
 

 
For 500μM ATP:  
KAB-rxn Buffer 1:  
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
1.0 μL     ATP (10 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
12.5 μL  KAB  
20 μL TOTAL         
 
KAB-rxn Buffer 2:  
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
1.0 μL     ATP (10 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
2 μL   Katanin (10x stock)  
10.5 μL  KAB  
20 μL TOTAL 
 
For 1mM ATP:  
KAB-rxn Buffer 1:  
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
1.0 μL     ATP (20 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
12.5 μL  KAB  
20 μL TOTAL         
 
KAB-rxn Buffer 2:  
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
1.0 μL     ATP (20 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
2 μL   Katanin (10x stock)  
10.5 μL  KAB  
20 μL TOTAL 
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For 2mM ATP:          
KAB-rxn Buffer 1: 
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
1.0 μL     ATP (40 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
12.5 μL  KAB  
20 μL TOTAL         
 
KAB-rxn Buffer 2:  
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
1.0 μL     ATP (40 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
2 μL   Katanin (10x stock)  
10.5 μL  KAB  
20 μL TOTAL 
 
For 5mM ATP:  
KAB-rxn Buffer 1:  
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
1.0 μL     ATP (100 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
12.5 μL  KAB  
20 μL TOTAL         
 
KAB-rxn Buffer 2:  
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
1.0 μL     ATP (100 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
2 μL   Katanin (10x stock)  
10.5 μL  KAB  
20 μL TOTAL 
 
 
 
 

For 10mM ATP:  
KAB-rxn Buffer 1: 
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
2.0 μL     ATP (100 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
11.5 μL  KAB  
20 μL TOTAL         
 
KAB-rxn Buffer 2: 
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
2.0 μL     ATP (100 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
2 μL   Katanin (10x stock)  
9.5 μL  KAB  
20 μL TOTAL 
 
For 20mM ATP: 
KAB-rxn Buffer 1: 
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
4.0 μL     ATP (100 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
9.5 μL  KAB  
20 μL TOTAL         
 
KAB-rxn Buffer 2:  
2 μL        5% F-127  
1 μL      DTT (1 M stock)  
1 μL    BSA (100 mg/mL stock)  
0.5 μL    Taxol (2 mM stock)  
4.0 μL     ATP (100 mM stock)   
1 μL       glucose (300 mg/mL stock)  
1 μL   deoxy  
2 μL   Katanin (10x stock)  
7.5 μL  KAB  
20 μL TOTAL 
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Single molecule katanin binding CTT assay 

*Chambers are assembled on glass slides that have been washed with 70% ethanol. 
Use double stick tape to make a chamber with a silanized coverslip. 
  
1.      Flow in 2% anti-BSA antibody (0.4uL 50% glycerol antibody at 1 mg/mL + 9.6 uL  
 KAB). Incubate 5 minutes. 
2.      Flow in 5% F-127. Incubate 5 minutes. 
3.      Flow in ______ dilution BSA-CTT-Alexa647. Incubate 5 minutes. 

a.       Full strength 8.3μM 
b.      1:10 (830 nM) 
c.       1:100 (83 nM) 
d.      1:1,000 (8.3 nM) 

4.      Flow in KAB-rxn #1 buffer. 
5.      Take a picture. Image 5 minutes (no delay) to check single molecules and  
 photobleaching. 

a.       Use red laser, four colour TIRF 648 cube for CTT channel. Exposure 300 ms 
6.      Move to a new spot. Flow in katanin in KAB-rxn #2 buffer. 

a.       With ATP-γ-S to trap katanin on the CTT 
b.      With ATP 

7.      Image 5 minutes (no delay) in two channels.  
a.       Use red laser, four colour TIRF 648 cube for CTT channel. Exposure 300 ms 
b.      Use green laser, GFP TIRF cube for katanin channel. Exposure 30 ms  .   

  
KAB-rxn Buffer 1: 
2 μL   5% F-127 
1 μL   DTT (1 M stock) 
1 μL   BSA (100 mg/mL stock) 
1 μL   ATP (40 mM stock) 
1 μL   glucose (300 mg/mL stock) 
1 μL   deoxy 
13 μL   KAB 
20 μL TOTAL 
  
KAB-rxn Buffer 2: 
2 μL   5% F-127 
1 μL   DTT (1 M stock) 
1 μL   BSA (100 mg/mL stock) 
1 μL   ATP-γ-S (40 mM stock) 
1 μL   glucose (300 mg/mL stock) 
1 μL   deoxy 
2 μL   Katanin (10x stock) 
11 μL   KAB 
20 μL TOTAL 
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KAB-rxn Buffer 2: 
2 μL   5% F-127 
1 μL   DTT (1 M stock) 
1 μL   BSA (100 mg/mL stock) 
1 μL   ATP (40 mM stock) 
1 μL   glucose (300 mg/mL stock) 
1 μL   deoxy 
2 μL   Katanin (10x stock) 
11 μL   KAB 
20 μL TOTAL 
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Analysis Protocols 

Single Molecule Photobleaching:  
1. Make sure you have version 1.33 or later of ImageJ. 
2. Down plugin “Multimeasure”. 
3. Open your first time series as a stack of .tif files. 
4. Copy your first image of stack and paste into new file of the same width and 

height. 
5. Threshold image so that the background is dark and you select the shoulder of 

the intensity profile. Click apply. 
6. Invert the image if it is not already inverted. If it is, skip this step. 
7. Analyze particles. Select a minimum size of 3-5, click show masks and record 

starts. 
8. On mask, dilate ROIs. 
9. Watershed ROIs. 
10. Open Multimeasure plugin. 
11. Click “Add particles” to bring over ROI information on the left menu. 
12. Click on your stack. 
13. In the left menu, highlight ROIs you want to measure intensity of (skip 

undesirable ROI blobs). 
14. Click the “Multi” button and save results as a .txt file. 
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Microtubule Intensity Over Time: 
1. Open FIJI. 
2. Click file, open the nd2 file you want to analyze.   
3. Click split channels, hyperstack, and leave all other settings. 

a. Split channels will be: TIRF channel (with katanin, green) and 
HL647/rhodamine (with MTs, red/purple). The two channels are analyzed 
in the same way. 

2. Click on image, adjust, brightness/contrast, auto. 
3. Find the first frame after the lights turn off and adjust the brightness/contrast 

if necessary again. 
4. Click plugins, registration, StackReg, translation, OK. The StackReg function will 

eliminate microtubule drift. 
5. Click on line tool, segment line, and trace a microtubule, and double click to set 

line at the end. 
6. Set the measurements you want to analyze. Click analyze, set measurements. 
7. Click on plugins, macros, measure stack.  
8. Copy and paste the values into the template excel document as signal for that 

channel.  
9. Mark the microtubule on an image of the first frame only (not your video) with a 

number by using the Text Tool. Type in the number you wish to label the 
microtubule and click (simultaneously) Command and D.  

10. Back in your StackReg’ed video, with arrow keys, move the segmented line on 
the microtubule next to the filament but in the background.  

11. Again, click plugins, macros, measure stack. Control, shift, E pastes the line to 
the video so you can measure the same line segment.  

12. Copy and paste the measurements into the template excel document as noise for 
that channel.  

13. Repeat steps 4 through 14 for the same microtubule in the other channel (either 
TIRF or Epi channel, whichever was not done first). 

Repeat steps 7 through 14 for each microtubule in the video. 
It may also be necessary to collect data before the lights turn on in the 

HL647/rhodamine channel. To do so, perform steps 1 through 6 (open the same 
video again and perform the StackReg function, this time find the very first 
frame - only copy and paste data from the first 6 or so frames before the 
lights turn on).  

14. Calculate the average signal/noise - 1 for each microtubule per frame. There will be 
no data for when the light is on. To do this, find the average of the values of signal/noise 
- 1 for the first six frames. Normalize by dividing each value of signal/noise - 1 by this 
average. Plot intensity on the y axis and frame number on the x axis. Do this for both 
channels and an exponential decay curve (katanin severing) and an inverted parabola 
with decay on the end for the second one (katanin binding). 
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Measure Stack Plugin 
 
// Measure Stack 
// 
// This macro measure all the slices in a stack. 
 
  macro "Measure Stack" { 
       saveSettings; 
       setOption("Stack position", true); 
       for (n=1; n<=nSlices; n++) { 
          setSlice(n); 
          run("Measure"); 
      } 
      restoreSettings; 
  } 
 
 
 
  



 

87 
 

Fit a Curve and Export Variables in KalediaGraph 

* To get accurate tau values, open your video in FIJI and check out the properties to find 
the frame interval (scroll all the way to the bottom) first. Add a column in Excel that is 
time (seconds), start at t=0 and add the number of seconds of each frame interval to the 
one above it. 

 
1. Open Kaleidagraph. Click File, open, select the Excel document of interest. Each 
tab should appear in a new Kaleidagraph window.  
2. Copy and paste Time into column 1 and Fraction of Microtubule Remaining 
(Signal/Noise - 1) into column 2. Any other averages can go in subsequent columns 
after column 2.  
3. Relabel the boldfaced cells at top of columns before continuing.  
4. Highlight ALL cells and click the I for info and select “Float”. This allows 
Kaleidagraph to read the numbers in the document and up to five decimal places, if 
you want. 
5. You CAN Mask the data in the first few time points before the lights come back on. 
Highlight the cells, click “Command” and “[“ at the same time. I have found it is better 
to delete these time points and make t=0 the time when the lights are turned off, for a 
more accurate tau value. 
6. Click Gallery, Linear, Scatter to plot a scatter plot. Select the x value (column 1) 
and the y value you wish to plot (column 2). Each window will have options to select 
the data from the columns you want. 
7. Curvefit, general, exponential fit (or other fit). 
8. Click define and enter the following equation with predicted variables:  

m1*exp(-x/m2)+m3; m1=1; m2=1; m3=0.15; m0=0.2; 
9. Select Plot, display equation. Click Function, export all curve fits. 
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Measuring Depolymerization Speeds in FIJI 

1. Open Fiji. File, open, select ND2 file or TIF file to open. 
2. Click command + C to copy the first frame. 
3. Click File, new, image. Click on the new, black image. Click command + V to 

paste. Click image, adjust, brightness/contrast. Click auto. 
4. Using the text tool, label this with MT number and save labeled image.  
5. To make a kymograph, draw a segmented line along the microtubule of the 

video, make sure to draw slightly past the MT edge, and double click the final 
point to end the segment.  

6. Click on image, stacks, reslice (using 1 pixel wide slice). Distance is on the 
horizontal and time is on the vertical. 

7. Save kymograph image with detailed naming system. 
8. Click on analyze, set measurements, then click OK. 
9. Click on the rectangular tool.  
10. In this data set, there is a brighter horizontal line in the middle of the kymograph, 

where the lights were turned on and something flown into the chamber. Start 
from right under the line and click and drag to make a box from the edge of the 
microtubule at t=0 to t=final.  

11. Click on analyze, measure. 
12. Repeat the process until all desired measurements for the single video are in the 

measurements box. Save results. 
13. Click on the video, click image, show info. Record frame interval.  
14. Calculate depolymerization speed: where distance (nm) = w 
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Cumulative Distribution Graph in KaleidaGraph 

1. Input data to be sorted into column 1. Label column. 
2. Highlight column and select Functions → ascending sort. This will put all the data 

in order of lowest to highest. 
3. In column 2 measure number of items/count. Select Functions → create series → 

set initial value to 1 and increment to 1 and make sure final value is unclicked → 
enter. Note the final count number. 

4. Bring up the Formula Entry window. Go to windows → formula entry. Make sure 
any columns are deselected. Set column three equal to column 2 divided by the 
total number of counts. Enter the formula: c3=c2/#counts, for #counts enter an 
actual number. Hit run in the Formula Entry window and the Cumulative 
Distribution results will be tabulated. 

○  How to read your results: 
• Column 3 multiplied by 100 is a percentage. Column 1 is in this 

case depolymerization speed. Therefore, some percent of 
depolymerization speeds is equal to or less than the column 1 
value in that row. 

• Ie. 31% of depolymerization speeds are equal to or less than 
0.030037 nm/s.  

  
1. Go to Gallery → Linear → Line. Select the depolymerization speeds/column 1 as X 

and the cumulative distribution/column 3 as Y. Hit Plot. 
2. To fit the curves you may have a Rising Decay or Double Rising Decay. Go to 

Curve fit → General → Edit General → Rising Decay/Double Rising Decay. Click 
Define to make sure equations are correct then click OK. 

○  Rising Decay equation: 1-m1*exp(-m0/m2);m1=0.5;m2=3 
○  Double Rising Decay equation: 1-m1*exp(-m0/m2)-m3*exp(-

m0/m4);m1=0.5;m2=3;m3=.5;m4=10 
3. Record values in boxes by clicking Curve Fit → Export all Curve Fits. 

○  M0=x or depolymerization speed in this case 
○  M1=weight of first rising decay 
○  M2=time to reach ⅓ the way up the graph; slow ething time 
○  M3=weight of second rising decay 
○  M4=time to reach ⅓ the way up the graph; fast ething time 
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Making a Montage with a Scale Bar 

1. Select area to be cropped using rectangle tool. 
2. Hold shift+x to crop image stack. 
3. Click Image, stacks, make montage. 
4. For the following, enter these values: 
5. columns: 10, rows: 1, first slice: first image after katanin added, last slice: last 

image, increment: 8 (5 sec between raw images x 8 = delta 40 sec between 
montage images) 

6. Click Analyze, tools, scale bar. 
7. Enter these values: Width in microns: 1, Height in pixels: 74 pixels is 5μM (67.5 

nm per pixel) 
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