
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations 1896 - February 2014

1-1-1980

Design and simulation of an experimental
microcomputer-based instructional system for
music.
Irwin Stuart Smith
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Smith, Irwin Stuart, "Design and simulation of an experimental microcomputer-based instructional system for music." (1980).
Doctoral Dissertations 1896 - February 2014. 3621.
https://scholarworks.umass.edu/dissertations_1/3621

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F3621&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F3621&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F3621&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1/3621?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F3621&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu




DESIGN AND SIMULATION
OF AN

EXPERIMENTAL MICROCOMPUTER-BASED
INSTRUCTIONAL SYSTEM FOR MUSIC

A Dissertation Presented

By

IRWIN STUART SMITH

Submitted to the Graduate School of the

University of Massachusetts in partial fulfillment
of the requirements for the degree of

DOCTOR OF EDUCATION

February 1980

School of Education



Irwin Stuart Smith

All Rights Reserved

1980

ii



DESIGN AND SIMULATION
OF AN

EXPERIMENTAL MICROCOMPUTER-BAS ED
INSTRUCTIONAL SYSTEM FOR MUSIC

A Dissertation Presented

By

IRWIN STUART SMITH

Approved as to style and content by:

\A lA- ^SLqJlLs^

Howard A. Peelle, Chairperson

Portia C. Elliott, Member

iii



To Betty, Marge, and Irwin

iv



ACKNOWLEDGMENTS

Somewhat to my surprise, the pursuit of an advanced degree has

turned out to be not at all an unpleasant experience. I attribute

this happy circumstance in no small measure to the many able and

congenial people with whom I have had an opportunity to work. Several

of these people made very significant contributions to this project,

and I want to thank them here for their efforts on my behalf.

Howard Peelle, chairman of my dissertation committee, offered

dozens of excellent ideas for all aspects of the music system. His

timely and perceptive criticisms of the project as it developed

spared me what otherwise would have been countless hours of fruitless

labor. Committee members Portia Elliott and Robert Mallary, who

brought two quite different and uniquely valuable points of view to

this work, gave me sound practical advice throughout the project.

Jake Epstein, who graciously agreed to serve as an unofficial consul-

tant on this project, added a much-needed professional musician's

perspective on my activities and ideas.

My friend David Wright, a software engineer with the Digital

Equipment Corporation, suggested several important simplifications of

the internal architecture of the original music system design.

Conrad Wogrin, Director of the University Computing Center, and UCC

staff members Jim Burrill, Pat Driscoll, Judy Smith, and Clark

Wiedmann helped me solve the inevitable technical problems that

arose during the project. Susan Lander typed the intermediate and

final drafts of the dissertation and also served as expert advisor

V



on matters of manuscript form and layout. My mother, Marge Smith,

read the next-to-f inal draft and did a thorough critique of the

entire text. Her emendations of the latter make the present document

considerably more readable than my original.

I want to give special thanks to those of my students who

participated in the pilot studies; these kids took their roles as

consultants and test subjects seriously and provided me with a great

deal of useful information and encouragement. I also want to thank

my boss, Tom Elliot, Dean of ULowell's College of Music, and John

Ogasapian, chairman of the College’s Academic Studies department, for

helping to arrange my sabbatical leave during the 1977-78 academic

year and for making the adjustments in my 19 78-79 duty assignment

that allowed me to complete this project on schedule.

VI



ABSTRACT

Design and Simulation
of an

Experimental Microcomputer-Based
Instructional System for Music

(February, 1980)

Irwin Stuart Smith, B.A., Rutgers University

M.F.A., Brandeis University, Ed.D., University of Massachusetts

Directed by: Dr. Howard A. Peelle

Designs for two computer-based music instruction systems are

presented. One design is for a hypothetical hand-calculator-like

device, while the other is for a prototype system that was actually

built. The prototype simulates the projected hand-held device, and

the former served as a vehicle for testing the basic design ideas of

the latter.

The proposed "music calculator" can be programmed to provide

conventional drill and practice in traditional musical skills, but

the resources of the system are organized in such a way that it is

not locked into any one instructional mode. Among the features

offered by the proposed system are (1) an on-line library of musical

pieces that can be accessed by their incipits, (2) an "undo function

or "panic button"— that exactly reverses the effects of the last

operation performed, and (3) a two-leveled programming mechanism

with a set of general purpose music functions which users can employ

to create their own programs and with an additional set of specialized

functions that courseware authors can use to create lessons and games.

vii



The prototype is a computer-based music system designed to be

operated in connection with a time-sharing computer. It consists of

a simple four-voice tone generator, a special keyboard and interface,

a standard CRT- type computer terminal, and some APL software. Although

the prototype simulates most of the essential features of the "music

calculator", its behavior differs in several key respects from that

planned for the hand-held device. These departures are largely

caused by the characteristics of the time-sharing environment in

which the prototype was implemented.

Two informal pilot studies conducted with the prototype show

that the concept of a powerful instructional computer music system

has genuine appeal for the two groups of college students who parti-

cipated in the studies. The pilot studies also show, however, that

the prototype is not a good model of the projected hand-held device

and that a better research tool is needed before the "music calculator"

idea can be developed further.



TABLE OF CONTENTS

ACKNOWLEDGMENTS

ABSTRACT . . .

LIST OF TABLES

ILLUSTRATIONS .

Chapter

V

vii

xi

xii

I. INTRODUCTION 1

Focus of the Project 1

Background 2

Statement of the Problem 5

Proposed Solution to the Problem 7

Scope and Activities 11

II. REVIEW OF THE LITERATURE 15

Introduction 15

Systems for Instruction in Traditional Music Subjects. . 16

Composition-Oriented Systems 19

"Responsive Environment" Systems 24

Miscellaneous Music Devices 29

III. DESIGN 31

Introduction
The Theoretical System •

The Prototype
Unresolved Design Issues

31

35

64

81

IV. TESTING: METHODS AND RESULTS 87

Introduction • • •

Pilot Study I • •

Pilot Study II • •

Concluding Note

87

89

103

109

V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR

FURTHER RESEARCH . Ill

Summary
Conclusions
Recommendations for Further Research

. Ill

. 112

. 118



Table of Contents (continued)

BIBLIOGRAPHY 121

Appendix
A. MUSIC FUNCTION SUMMARY 127

B. LISTINGS OF THE APL SIMULATION 148

C. PILOT STUDY QUESTIONNAIRE 177

D. SUGGESTED APPLICATIONS OF THE MUSIC SYSTEM 181

E. LIBRARY AND PROGRAM CATALOGS 184

F. PROGRAMMING EXAMPLES 187

X



LIST OF TABLES

1. Operational Modes of the Music System 52
2. Identifiers Used in the APL Simulation 75

xi



ILLUSTRATIONS

Figure
1. The Theoretical System 37
2. Flowchart of the Executive Routine 60
3. APL Version of the Executive Routine 61
4. Prototype Keyboard Layout 71

Photograph
1. The GUIDO Intervals Lesson Display 18

2. The Prototype 68

xii



CHAPTER I

INTRODUCTION

Focus of the Project

The principal focus of the project described here is the design

of a completely self-contained, hand-calculator-sized music instruction

system. Although the proposed system can be programmed to provide

conventional drill and practice in traditional musical skills, the

resources of the system are organized in such a way that it is not

locked into any one instructional mode. People can use the system in

whatever way they wish to learn and explore music on their own.

Since the calculator-sized music system cannot be realized with

existing electronic components, this project also focused on the

design, construction, and testing of a prototype music system to

simulate the hand-held device. The prototype served as a test

vehicle for the basic design ideas of the hand-held music system.

It was also used in two pilot studies that were conducted in order

to evaluate the music system design and to gather information that

will be helpful in improving it.

The "music calculator" concept provided a readily grasped image

that quickly conveyed the essence of this project. As such, it was

both goal and point of reference for all those who participated in

the project, and it was a useful guide in organizing and directing

the diverse activities that had to be undertaken. Consequently,

although the actual music calculator could not be brought into

1



being, the concept of such a device remains the central unifying idea

of the work reported here.

2

Background

Over the past twelve years there has been a growing effort to

develop computer-based instructional systems for music. Several

of the major research projects in this area have produced systems

which are now in actual use as part of regular college-level programs

in music (see, e.g., the summary in Hofstetter, 1979b). On the

whole, however, the computer has so far had a negligible impact on

musical instruction.

Some idea of the extent of computer use in musical instruction

can be gained from three recent studies. Jones (1976) conducted a

survey to determine the status of computer-assisted instruction

within the 429 colleges and universities then accredited by the

National Association of Schools of Music (NASM) . Of the 389 schools

that responded to the survey, only fourteen said that they employ

computer-assisted instruction. Arenson (1978) conducted a survey

to determine what equipment is available for computer-based musical

instruction at the schools of each of the 139 members of the National

Consortium for Computer-Based Musical Instruction (NCCBMI) . Although

twenty-eight schools indicated that they have an appropriate computer,

only sixteen said that they have a computer-controlled audio device

suitable for musical instruction. Finally, Taylor and Parrish (1978)

conducted a nation-wide study of attitudes toward, and the uses of



3

computer assisted instruction in public schools and in college

music departments. They found that 79% of the respondents among both

the public school districts and the college music departments do

not use a computer for any purpose, and that only 43% of the school

districts and 31% of the college music departments believed the

computer to be a necessary instructional tool for music.

It is evident from studies like these that the computer does

in fact play a very small role in musical instruction at present.

A significant reason that the computer has not made more headway

as an instructional tool is that many educators are simply unaware

of its potential uses. Taylor and Parrish make the following

observation based on their analysis of the data gathered during the

study mentioned above:

An important result of this study was the very strong
indication that a large number of respondents had little

understanding of the computer and its applications in

music education. This was not the case for programmed

instruction. But it is not particularly surprising that

music educators do not know how to deal with the computer

—

it has not been considered an essential tool in their

profession, as it has been in the sciences and business

(1978, p. 20)

.

Lack of "computer literacy" is by no means the only reason

that computer-based instructional systems are not more widely

used in music. Other factors responsible for slowing the diffusion

of computer-based musical instruction are the following:

1) computer-based music systems of all kinds are expensive.

Except for devices that are properly considered toys (Parker Brothers

Merlin, for example), existing computer-based music systems are



4

priced out of the reach of ordinary individuals and, in many cases,

out of the reach of educational institutions as well. Two of the

best and most widely available computer-based music systems— the

SYNCLAVIER and GUIDO—are a case in point. The SYNCLAVIER (Alonso,

Appleton, and Jones, 1977) is oriented mainly toward the learning

of techniques of musical composition. The purchase price of a

minimum configuration that can be used by one person at a time is

about $15,000 as of this writing. The GUIDO system (Hofstetter, 1975)

is a PLATO-based ear-training facility. At the University of

Delaware, where GUIDO was originally developed, it costs $3,850

per year to operate each of eight student terminals, for a total

cost of $30,800 per year (Hofstetter, 1979b).

2) computer-based music systems require special knowledge and

skills . Many computer-based music systems require of their users

knowledge and skills unrelated to the musical tasks to be accomplished.

For example, some typing ability is needed in order to use the

computer terminals associated with several of the systems discussed

in Chapter II. Some of these systems also require their users

to know something about the operating system of the host computer

and about certain programming languages, the text editor, the

file system, etc. Much of this is of course completely unfamiliar

to musicians and music educators, many of whom regard computer-based

music systems as being difficult to use. The twin concerns of

high cost and difficulty of use are a familiar motif running through



5

studies of computer use in music from the earliest (Ihrke, 1972)

to the most recent (Jones, 1976; Arenson, 1978; and Taylor and

Parrish, 1978).

3) many computer-based music systems are not "portable".

Many computer-based music systems are inextricably embedded in the

unique set of conditions at the installations where they were

developed. That is, they are tied to a specific make and model

of computer, or to a particular programming language, or to a

special piece of hardware used for music, and so on. As a result

it is difficult or impossible to duplicate such music facilities

elsewhere. For example, the Stanford ear-training system (Herrold,

1974; Kuhn, 1974; Killam, Lorton, and Schubert, 1975) is written

in the relatively rare SAIL language. It also uses an expensive

electronic organ and custom interface. In addition this system

ties up two time-sharing ports on the host computer, one for the

student terminal and one for the organ. Although this system does

work rather well, it would be very difficult to set up anywhere

else. Several of the systems described in Chapter II present

similar situations.

Statement of the Problem

While systems like SYNCLAVIER and GUIDO have essentially solved

the portability problem and made a good start on the dif ficulty-of-use

problem, n^ existing computer-based music system can be said to

have overcome the cost problem. The purchase price and/or annual



6

operating cost of every system reported in the literature to date

is measured in the thousands of dollars. Clearly if the potential

of the computer as an educational tool in music is to be realized,

a determined effort must be made to bring the cost down, but without

sacrificing the capabilities that have attracted musicians and

music educators to the computer in the first place.

The problem to be addressed here, then, is how to produce a

computer-based musical instruction system that is simultaneously

low in cost, easy to use, and portable. In order to be considered

a "solution” to this problem, a system should meet the following

requirements

:

1) It must support conventional instructional applications,

particularly ear-training, but it must also permit compositional

activities and free experimentation with music. Formal "lesson"

programs must not be hard-wired into the system but rather imple-

mented through some more general programming mechanism that is also

available to users for creating their own programs.

2) It must not require any special skills such as typing

ability or facility on a musical keyboard. Furthermore the system

must not require any special knowledge of computers or computer

programming

.

3) It must cost no more than, say, a basic home computer

system or scientific calculator ($500 or less)

.



7

Proposed Solution to the Problem

The solution proposed to the problem outlined above is a

completely self-contained, hand-calculator-sized computer music

system. The proposed system has its own multi-voice music synthe-

sizer, keyboard, and operating controls. It also provides a number

of single-keystroke music functions and the means for running

both pre-programmed and user-defined lessons, games, exercises, etc.

The model for the proposed solution . The model underlying the

proposed solution is the ubiquitous mathematical hand-calculator.

The calculator is of course inherently portable and, judged by

the overwhelming number of examples around us, can be made and

sold at a price that individuals can afford. Moreover the calculator

is evidently a device that people find easy to use.

Instructional systems have already been successfully developed

using this approach. Perhaps the best examples are the calculator-

like "electronic learning aids" manufactured by Texas Instruments

(Texas Instruments, 1978). Among these are Speak and Spell,

Spelling B, Dataman, and Li'l Professor. Speak and Spell is

especially significant for this project since it contains a complete

speech synthesizer and a pre-programmed vocabulary of over 200 words,

features resembling those that would be needed in a hand-held

music system.

The key characteristic of both the mathematical calculator

and the electronic learning aids is that they are special purpos_e



8

devices. They are tailored to specific applications and groups of

users. Also they economize by providing only those resources actually

needed to accomplish their designed functions. Virtually all

existing music systems, however, are based in general-purpose

computers—often large mainframes. Consequently there is usually

a good deal of expensive "overhead” in the form of excess computa-

tional capacity and unused features in these systems. Moreover,

unless the creator of the system has been extraordinarily thorough,

the user of a system based in a general-purpose computer must

contend directly with some of the technical aspects of the computer

system itself (e.g., the operating system, the file system, a text

editor, language translators, etc.). For all of these reasons, then,

the calculator provides a more attractive model to follow.

Features of the proposed system . The system proposed here has a

short (1-octave) musical keyboard used to enter notes into the

system's memory, and an internal music synthesizer for playing

stored musical pieces. The system provides a number of single-

keystroke compositional functions that can be used to modify existing

musical pieces or to create entirely new ones. The system has

access to libraries of musical compositions and application programs

which are stored externally in interchangeable plug-in memory

modules. In addition, the proposed system has three features not

found in any computer music system as of this writing.



1)

^ library of musical compositions accessed through a

"hum a few bars" retrieval scheme . In order to retrieve a musical

9

piece from the system's library, the user need not look up a file

name or file number (although the system does provide a conventional

numbered file retrieval feature) . Instead the user can simply key

in the first few notes of the desired composition and then have the

system find the corresponding piece automatically. Since the system

attempts to find the best match between the user-supplied notes and

the items listed in the library catalog, mistakes in the user's

input will not necessarily prevent the system from finding the piece.

2) an "undo" operation . The "undo" operation permits users

to exactly reverse the effects of the last operation executed.

If, for example, while working on a complex musical piece, a user

inadvertently invokes some procedure which damages or destroys the

piece, the user can restore the piece to its original form simply

by pressing the "undo" button.

3) two levels of programmability . The music system can be

programmed to perform entire sequences of actions automatically.

Users can construct their own programs from any valid combination

of the functions and data accessible via the keys on the device s

front panel. The system also has a second group of specialized, or

"privileged" functions that professional programmers can employ

to create complex games and lessons.

Feasibility of the proposed system . As noted at the outset, the

hand-held system cannot be built at this time. The principal



10

reason is that the tiny music synthesizer required by the design

does not yet exist. In fact, as of this writing, it takes upwards

of twenty individual integrated circuits to implement a barely

adequate four-voice tone generator. Of course this number of

integrated circuits would by itself fill up most of the room inside

the system’s case.

A secondary problem is that at present the large memory capa-

city required to implement all of the desired functions of the

music system cannot be provided within a calculator-sized case at

reasonable cost. A potentially suitable memory component does exist,

Texas Instruments’ TMS-4164 (which is capable of storing 65,536 bits

of information) . However, these are currently priced at $125

each, and eight of them are required to form the complete memory

unit. Obviously this component alone would drive the price of the

hand-held unit out of reach and thus defeat one of the main design

goals: low cost.

Most of the remaining components—microprocessors, displays,

p re-programmable memory modules, etc.—needed to realize at least

a preliminary version of the hand-held music system are available

as standard parts . Since both the sound synthesis and memory

technologies needed to complete the device are being developed

right now (see, e.g.. Computer Music Journal ,
passim, and Hodges,

1977)

,

it is reasonable to predict that it will be possible to

build a completely self-contained, calculator-sized music system

some time in the mid-1980’s.



11

simulation of the proposed system . For the purposes of this project,

a prototype music system was designed and built to simulate the

hand-held system. The prototype consists of a simple four-voice

tone generator, a special keyboard and interface, an ordinary CRT

computer terminal, and some APL software. The prototype permits

entry of music via its 1-octave musical keyboard. It can play

music consisting of up to four independent voices. The operation

of the prototype’s hardware is controlled by APL programs running

on the Cyber 175 time-sharing computer system at the University of

Massachusetts-Amherst. The APL routines provide all of the musical

and data processing functions attributed to the final calculator-

sized device, and APL files provide the necessary libraries of

musical compositions and application programs (games, lessons, etc.).

A full description of the prototype, its use, and the differences

between it and the ultimate system envisioned in the design is given

in Chapter III.

Scope and Activities

The overall process of producing the music system design can

be resolved into three distinct, but interrelated tasks:

1) design of the abstract structure of the music system

2) physical realization of the prototype

3) testing of the prototype

Below are a summary of the methodologies used at each step and an

overview of the actual activities undertaken.



12

Design of the abstract structure . The design of the abstract

structure of the music system employed both "top down" and "bottom

up" strategies. On the one hand, the author started with a very

general idea of how the system should be structured and how it

should work, and then gradually filled in the details at progressively

lower levels. On the other hand, the author also initially developed

a list of the desirable functions and then progressively integrated

these into a complete system.

When this preliminary design work was completed, both the

"top down" and "bottom up" structures were translated into APL

functions that could be executed on the University of Massachusetts'

time-sharing system (the "top down" structure became what in

Chapter III is called the "executive routine", and the "bottom up"

structures became the "regular" and "privileged" functions of the

music system) . Together these APL functions constitute a simulation

of the music system.

Having all of the music system functions available in the form

of executable APL routines made it possible to interact with the

hypothetical music system and observe its behavior. Thus the APL

simulation became the most important tool for the further development

of the music system design. Moreover, since the APL simulation

provided the most comprehensive definition of every aspect of the

design, changes in the simulation were therefore equivalent to

changes in the design itself.



13

Physical realization of the prototype . The three principal tasks

involved in producing the prototype were:

1) designing a keyboard suitable for research purposes

2) building the actual keyboard and a simple synthesizer for

audio output

3) substituting the prototype keyboard for the standard computer

terminal as the principal device used to interact with the

APL simulation

Except for the first task, the design of the keyboard, this

work was all straightforward. The design of the keyboard, however,

required the resolution of many issues. Among these were the most

appropriate physical form for each control, the proper grouping

and spacing of sets of controls, and the best way to indicate the

function of each control. All of these issues and the solutions

finally adopted are discussed in detail in Chapter III.

The prototype system is primarily a research tool, not the

penultimate step in the development of a marketable product. The

prototype has certain physical and functional characteristics that

differ from those envisioned for the final hand-held music system.

These differences must be taken into account in drawing conclusions

about either system.

Testing of the prototype . Two pilot studies were conducted as part

of the overall design process. Each of these studies employed a

group of college students who were asked to perform a set of typical

musical tasks with the prototype. These studies did not set out



14

to prove or disprove any specific hypotheses concerning the music

system. Instead they were intended to elicit information that would

be helpful in evaluating the design and in furthering its development.

The results of the pilot studies are therefore not necessarily

generalizab le outside the confines of this project.

Three principal kinds of data were gathered during the pilot

studies

:

1) spontaneous comments by users . These were noted down as

the subjects worked with the prototype.

2) answers to specific questions . Each subject filled out a

questionnaire that asks about the ease or difficulty of using

certain system features, the need for changes or improvements in

the system, the possible uses of the system, etc.

3) the actual interactions with the system . The prototype has

a record-keeping facility which automatically records the date and

time of every session and every interaction with the system during

each session. It also tags any erroneous operations (e.g., errors

in syntax or attempts at "illegal" procedures)

.

The methods and results of both pilot studies are covered in

detail in Chapter IV.



CHAPTER II

REVIEW OF THE LITERATURE

Introduction

Since the earliest projects in the late 1960's, work in

instructional applications of computers in music has proceeded

in three different directions:

1) enhancement of instruction in traditional music subject

areas such as basic terminology, musical notation, and

ear- training

2) development of systems to facilitate the learning of

compositional techniques

3) creation of "responsive environments" in which people

can learn and explore music on their own

While these three categories of activity are not mutually exclusive,

most of the existing instructional applications of computers in

music do fall quite clearly into one or another of them. Although

there are indications of growing interaction and coalescence of

interests among workers in these three areas, certainly the grand

synthesis of the principal achievements of these areas into the

"complete computer music system" envisioned by Peters (1977) has not

yet been accomplished.

The music system design reported in this study belongs primarily

to the third, "responsive environment" category. Work in each of

the other areas has had an influence on the evolution of this

15



design, however. Accordingly this chapter summarizes the relevant

work in all three areas.

Systems for Computer-Based Instruction
in Traditional Music Subjects

Over the past decade, several schools have developed computer-

based instructional systems for music and have introduced them as a

regular part of their curricular programs. These systems provide

instruction in one or more of the following areas of the usual

college music curriculum:

1) music fundamentals (notation, terminology, scale and chord

structures, etc.)

2) ear-training (aural recognition of intervals, chords,

melodic and rhythmic patterns, etc.)

3) teacher training (methods, tests and measurement, etc.)

A comprehensive survey of these instructional systems can be found

in Hofstetter (1979b). With two exceptions, these systems are

implemented on large time-sharing computers. The two exceptions are

the CLEF system (Hultberg, Hultberg, and Tenny, 1979), which is

based in a dedicated minicomputer, and AVICOM (Peters, 1979), which

is a microprocessor-based system. Most of the systems listed by

Hofstetter employ drill and practice as the dominant instructional

mode. Reports of the educational performance of the principal

instructional systems can be found in Deihl (1971), Delhi and Ziegle

(1973), Peters (1975), Placek (1974), Kuhn (1974), Hofstetter



(1975, 1976, 1977a, 1977b, 1978, 1979a), Herrold (1973), Killam,

Lorton, and Schubert (1975), Vaughn (1977), and Arenson (1979).

Most of the workers in this field belong to the National

17

Consortium for Computer-Based Musical Instruction (NCCBMI)

,

a special interest group within the Association for the Development

of Computer-based Instructional Systems (ADCIS) . NCCBMI members

regularly report their activities in the ADCIS Newsletter ; many

members also publish the results of their research in ADCIS'

Journal of Computer-Based Instruction .

A selected bibliography of the entire field of computer

applications in musical instruction can be found in Peters and

Eddins (1978).

Since most of the work in this field has had very little direct

influence on the music system project reported here, this work

will not be described further. However, the subject of computer-

based instruction in traditional music subject areas could not be

left without mentioning the unique PLATO-based "GUIDO" system

developed by Hofstetter (1975). GUIDO (Graded Units for interactive

Dictation Operations) is a set of musical games and exercises

designed to teach basic aural skills. GUIDO takes full advantage

of the resources provided by PLATO to achieve its objectives.

Photograph 1 shows the "GAME" display used with the GUIDO

intervals lesson (i.e., this is the picture students see in the

screen of the PLATO terminal) . In this GUIDO lesson, the intervals

to be identified by the students are played on a synthesizer connected



18

game Tot s I

T

BASIC
I

PI
II

m2
II

ri2
II

m3
||

[13
||

P4
||

Tt
| |

PS
||

m6
||

M6
||

m7
|[

H?
| |

P3

HAPMONIC FIX TOP COMPOUND

MELODIC T FIX BOTTOM
1

SIMPLE

HELODIC 4
j

RANDOM PLAY AGAIN

MELODIC m> intepvhls LENCTH

Pr«ss shift-ND<T to »«« a list of the best game players.

Photo. 1. The GUIDO intervals lesson

display. 1977 by the

University of Delaware.

Authored by Fred T. Hofs tetter

and William H. Lynch (used by

permission)

.



19

to the PLATO terminal. Students enter their responses by touching

the appropriate answer boxes on the GAME display, which employs

the PLATO touch panel. The display brightens around each box

touched to confirm that the answer has been received by the system.

The box in the upper left corner maintains a running total of the

number of items attempted, and the box in the upper right corner

shows the total amount of time used to guess all items so far.

Students can also touch certain "control" boxes to make the problems

easier or to make them more difficult, to move to new material, or

to repeat the same items.

A novel feature of the GAME display is the musical keyboard

at the bottom: students can play it just like a real one. It is

available at all times as a diagnostic aid, and it can be used

in many other ways, too. Students are free to employ it in whatever

manner they feel will help them with their musical problems.

As of this writing, GUIDO represents the state of the art in

computer-based instruction in traditional music subjects. All of

the lessons are well thought out. The GAME and other displays

are exemplary for their economy and clarity.

Composition-Oriented Systems

Ever since the origins of "computer music" in the late 1950' s,

great effort has been exerted in the development of powerful

computer-based sound-generating facilities for composers. As a

result there is now a large inventory of technologies which offer



20

the composer an unprecedentedly rich palette of musical sonorities

and effects. The digital computer has in fact become one of the

most versatile and precise instruments composers have ever had

for translating their musical ideas into sound.

In the last few years, work, in the field of computer music

has gradually broadened its scope to include the entire process

of creating musical works. Consequently, in addition to the basic

sound synthesis capability, many computer music systems now also

provide other facilities to assist the composer in his task. Among

these aids are interactive editing of musical scores, automatic

score printing (of publishable quality) , direct capture and display

of input from musical keyboards, entry of music in traditional staff

notation, automatic compositional manipulations, and analysis of

acoustic waveforms.

The literature of computer music is so extensive that any

attempt to summarize it would go well beyond the scope of this

survey. A selected bibliography of the field can be found in

Snell (1977) . Since 1977 the major work in this field has been

reported in Computer Music Journal (CMJ) . In addition to publishing

new work CMJ from time to time reprints relevant documents from

other publications. The seminal work in this field is Mathews'

The Technology of Computer Music (1969) ,
which describes the

fundamental techniques of computer sound synthesis.

Most of the work in computer music has not been oriented

towards instructional applications but rather toward musical



21

composition. However, computer music systems are used increasingly

as a regular part of college-level music composition, electronic

music, and advanced music theory courses. Moreover the newer

computer music systems contain features which were originally

designed as aids to the composer but which make these systems

attractive for a variety of educational uses as well. Two systems

in particular, the SYNCLAVIER and MPL, lend themselves especially

well to instructional uses in both musical composition and other areas.

The SYNCLAVIER (Alonso, Appleton, and Jones, 1977) is produced

by the New England Digital Corporation, of Norwich, Vermont. It

includes a complete minicomputer system, an 8-voice real-time

digital sound synthesizer, a standard 5-octave organ keyboard, and

a set of 90 controls used to set the operating parameters of the

machine and to store and retrieve musical compositions. The SYNCLAVIER

is an interactive facility that allows the user to create compositions

by playing successive voices (or "tracks”) on the organ keyboard.

Notes are stored in the system’s memory as they are played.

Since each of the voices (tracks) can be manipulated independently

of the others, it is relatively easy to make corrections on,

additions to, or deletions from a work in progress. A handy feature

of the SYNCLAVIER is that playback tempo can be changed without

affecting the pitches of the notes. As a result a user with limited

keyboard skill can play very slowly while entering the individual parts

of a composition but then have the system play the final piece back at

desired faster tempo. Since all of the SYNCLAVIER’ s functions
any



22

are directly accessible via the 90 operating controls, there is no

need for students to learn a progrannning language before they can

use the system. The minicomputer system which is at the heart of

the SYNCLAVIER is provided with a compiler for the XPL language and

a set of subroutines to control the synthesizer, however. Thus

many other kinds of musical applications can be implemented simply

by writing the appropriate programs.

MPL (Musical P^rogram Library) is a comprehensive computer music

system implemented on the Xerox/Honeywell time-sharing system at

Oberlin College by Gary Nelson (1977) . MPL offers quadraphonic

sound synthesis, interactive musical score editing, automatic

score printing, and a number of musical composition and analysis

functions. The key feature of MPL is that almost the entire system

is written in APL. This gives the user access to both the full

musical resources of MPL and all the resources of APL in a single,

unified interactive environment. Further, because APL is the host

language, MPL inherently has the desirable characteristic that users

who know APL can write their own custom interfaces ("front ends")

to the system. One drawback of MPL, however, is that it does not

generate sound in real time. Instead there is a variable delay

for computation between the time a musical score is given to the

computer and the time the final output is played. The actual length

of the delay depends on both the length and the complexity of the

composition

.



23

One other composition-oriented system should be mentioned

here, Harold Alles* Portable Digital Sound Synthesis System (Alles,

1977a, 1977b, 1977c; Alles and diGiugno, 1977; Lawson and Mathews,

1977; Bayer, 1977). This extremely powerful system is quite possibly

the first member of a whole new family of musical instruments:

small, portable devices capable of producing in real time sound

approaching the complexity of a modest orchestra. The Alles machine

accomplishes this through compact and very high speed digital

modules such as its synthesizer, which contains 64 complete

Chowning-type FM "voices" on one 8-1/2" x 10" circuit board. Other

essential sound generating and processing functions are packed in

a similarly dense fashion into the system. A performer plays this

machine in much the same manner as any other keyboard instrument,

except that he or she can program its internal computer to carry

out certain operations automatically on command (e.g., to execute

a passage that is too difficult for the performer to play) . The

entire machine weighs about 300 pounds, including its integral CRT,

ASCII keyboard, dual floppy disk drives, two musical keyboards, and

complement of real-time operating controls. In size, weight, and

portability it is comparable to many of the vastly less powerful

electronic keyboard instruments that rock bands routinely travel

with (e.g., the ubiquitous Hammond "B-3" organ).



24

"Responsive Environment" Systems

The term "responsive environment" is due to David Ashton (1973),

who defines a responsive environment as one which "permits the

learner to explore freely, to freely manipulate objects, to receive

immediate feedback, to make full use of his capacity for discovering

relations of various kinds, and to progress at his own speed" (1973,

p. 1). This is an apt description of the ideals which motivated

the design of several learner-oriented music systems, including of

course the one David Ashton himself helped to design.

Ashton's definition immediately distinguishes responsive

environments from the traditional musical instruction systems

described above. In all of the latter, the major emphasis has been

placed on careful design of lessons and on analysis of student

performance. All of these systems (including GUIDO) teach specific,

isolated, discrete bits of musical knowledge and specific musical

skills. The student has little control over the choice of subject

matter, lesson sequence, or the directions taken within each lesson.

The definition less clearly distinguishes the responsive

environment from the composition-oriented systems, however. The

most important practical differences are ones of emphasis . In

composition-oriented systems, for example, the ability to synthesize

sound in real time has often been sacrificed for the sake of

achieving the most powerful sound synthesis capability. In respon-

sive environments, on the other hand, a lesser sound synthesis



25

capability has always been accepted so that music can be played

immediately and modified interactively.

A responsive environment can be realized in many ways. The

following features, however, appear to be the minimum any such

system must possess:

1) interactive operating environment . In order to permit

truly free exploration, the user must be able to "converse"

easily with the system and must have rapid access to all

pertinent system resources. An especially important require-

ment is that the user be able to interrupt any system

operation and to re-direct the system's activities into

other desired directions.

2) real-time sound generation . In order to achieve the educa-

tional benefits of prompt feedback, sound must be available

immediately on demand. The sound need not be of the

highest quality, however.

3) on-line "archive" of music and a set of functions for

manipulating music . Together these two features allow

learners to play and manipulate whole musical structures

without having first to acquire facility on a musical

instrument; learners can proceed directly to fairly high-

level musical operations. Without this pair of features,

any computer music system remains essentially a tool for

specialists

.



26

The three music systems described below have all three of these

features in common.

The music system for which the term "responsive environment"

was coined was developed by A.C. Ashton (1970), Knowlton (1971),

and D. Ashton (1971) at the University of Utah. This system is now

a continuing joint endeavor of the University of Utah and Brigham

Young University. A concise discussion of the design and uses of

this system can be found in Knowlton (1972)

.

The Utah/BYU system combines two minicomputers, a CRT terminal,

a graphics stylus and tablet, and an electronic organ. Music can

be entered into the system in any of three ways:

1) by playing on the organ keyboard

2) by pointing to staff positions on the graphics tablet

3) by typing an encoded form of the music on the terminal

The system provides a variety of interactive musical tranformations

such as transposition, tempo change, etc. Music output can be in

any of three forms:

1) sound (the electronic organ plays the composition under

computer control)

2) standard score (the computer generates the ordinary musical

notation for the piece and displays it on the CRT or prints

a hard copy)

3

)

graphic score (the computer makes an X-Y plot of the music

similar in appearance to a piano roll, and displays it on



27

the CRT or prints a hard copy. The CRT graphic score can

be displayed in real time, i.e., while music is playing)

The Utah/BYU system has an archive of more than 100 musical works

which can be accessed for performance and manipulation.

^i^bro Grossi and a group at the National University Computing

Center (CNUCE) in Pisa, Italy, have developed three interactive

music systems over the past decade. The two earlier systems,

developed between 1969 and 1975, are discussed in Baruzzi, Grossi,

and Milani (1975), and Grossi and Sommi (1974). The most recent

system, called "TAUMUS", is described in Grossi (1976). TAUMUS

employs a portable 12-voice "audio terminal". Thus, although TAUMUS

is based in a large IBM 370 time-sharing system located in Pisa,

Grossi has been able to travel all over Europe giving live demonstra-

tions of the music system.

TAUMUS has a musical archive capable of storing up to three

million notes. Since this archive is on-line, users can call up

and immediately play either their own stored pieces or any of the

hundreds of works from the standard literature stored there. A

unique feature of the archive is that more than one file can be

retrieved at a time. This means, for example, that two pieces

can be called up simultaneously and played either in counterpoint

or with notes interleaved (one note from piece "A", followed by

one note from piece "B", followed by one from A , etc.).

TAUMUS offers a set of musical data processing functions.

This set of functions includes all of the standard manipulations



28

of musical material (transposition, inversion, retrograde, etc.)

as well as a number of unusual operations such as symmetrical

expansion or contraction of the intervals between tones. The

system also has some high-level compositional routines which can,

for example, systematically produce complex variations of given

musical material or automatically generate entire new compositions.

Jeanne Bamberger (1972, 1974a, 1974b, 1975, 1976) has developed

a responsive environment capability within LOGO (Papert, 1970, 1972).

LOGO itself is a general-purpose computational system which includes

the LOGO evaluator, a time-sharing computer system, and various

special devices such as robot "turtles", CRT displays, plotters,

and a "music box" (a simple 4-voice tone generator) . LOGO was

designed to introduce beginners to the fundamental ideas of compu-

tation. The music features are only a small part of its overall

capabilities

.

The LOGO language (Abelson, Goodman, and Rudolph, 1974)

contains a number of primitive operations for controlling the

functions of the music box. These music primitives and the arith-

metic, logical, and sequence-control operations of LOGO can be

formally combined into procedures to play and transform music. The

LOGO file system makes it quite easy to set up libraries (archives)

of musical pieces.

Bamberger's approach differs from that of the CNUCE and Utah/BYU

groups in that the computer and computer-controlled devices are not

always the center of attention. Instead Bamberger uses the computer



29

music system as only one part of the total learning environment,

which also includes bells, drums, a piano, etc.

One additional system that should be mentioned under the

"responsive environment" heading is Xerox's "Dynabook" (Xerox

PARC/LRG, 1976; Kay, 1977) and its "Smalltalk" programming language

(Goldberg and Kay, 1977). If the final goal of the designers is

attained, Dynabook will contain all of the features of LOGO, and

much more, in a package the size of an ordinary loose-leaf notebook.

The present, interim versions of Dynabook are about the size of

the typical small-business minicomputer system.

Music can be played, edited, and composed on Dynabook. The

system provides for real-time capture and display of music perfomed

on its musical keyboards. Users can also enter music into the

system by drawing pitch vs. time "scores" (similar to those of the

Utah/BYU system) with the system's graphic input device. Finally,

music can also be entered in an encoded form on Dynabook 's alpha-

numeric keyboard. Once music has been entered into the system,

it can be displayed on the CRT screen and edited with the graphic

input device. The "Smalltalk" language provides ample capabilities

for writing procedures that will perform interesting manipulations

of musical material.

Miscellaneous Music Devices

Two recently developed devices deserve mention here if for no

other reason than that they are small and inexpensive. The first is



30

Parker Brothers' microprocessor-based game, Merlin, a hand-held

device about the size of an ordinary telephone handset. Among the

games offered by Merlin is one which requires the user to match a

sequence of random pitches played on the unit's internal tone

generator. After hearing each sequence, the user responds by touching

the keys corresponding to the notes just played. Merlin then indi-

cates if and when the user gets a note wrong. The user can replay

a pitch sequence as many times as desired and can set sequences to

any length up to a maximum of 48 notes. If its pitches were a

bit more accurate. Merlin could be used as a rudimentary ear-training

system.

The other device that should be mentioned here is Videobrain,

a home microcomputer-based television game manufactured by Umtech, Inc.

Though Videobrain can be programmed by the user in a hybrid language

unique to the system, it is designed mainly to run a variety of

professionally-written games and application programs stored on

plug-in program modules. One of these program modules contains

a set of four lessons in music fundamentals. These lessons,

written by Wolfgang Kuhn of Stanford, play tones over the tele-

vision's loudspeaker and also display notes in traditional staff

notation on the TV screen.



CHAPTER III

DESIGN

Introduction

This chapter presents designs for two computer-based music

systems. One of these systems is a first approximation to the

self-contained, hand-held device that is the ultimate goal of the

work reported in this study. This system will be called the

"theoretical system" here because, for the reasons enumerated in

the first chapter, it cannot be built at this time; it exists only

in the form of the description given in this chapter. The other

system, an interim facility used for research, was actually built

and tested during the 1978-1979 academic year. This system will

be called the "prototype".

Design principles . Two general principles have guided the design

of both music systems to this point. They are: (1) keep the system

simple, and (2) tailor every aspect of the system to the non-music-

specialist. The first principle entered the design process as a

persistent effort to limit the knowledge required to operate the

system to a small number of uncomplicated rules and to stay as

close as possible to familiar musical concepts and usages. The

second principle manifested itself as an attempt both to provide

practical, layman-oriented musical resources and to avoid esoteric

or very specialized features.

31



32

Design Issues . The issues which had to be addressed in designing

the music systems can be grouped into categories corresponding to the

three major stages of the design process, i.e.

:

1) specification of the set of operations to be performed

by the system

2) organization of the set of operations into a unified

abstract system

3) physical realization of the abstract system

In the case of the prototype, all three stages were carried through

to completion, while, in the case of the theoretical system, the

third stage was carried only as far as a detailed written description,

a flowchart, and a drawing of one possible physical embodiment of

the abstract structure.

Specification of the function set . In specifying the operations

to be performed by the music system, the hard work began after the

preliminary list of functions had been developed. With so many

existing computer music systems available as models, it was no

trouble at all to develop a long list. The central issue at this

stage of the design process was the tradeoff between the number

of functions it would be desirable for the device to perform and

the number of functions that (1) can be mentally grasped as a

meaningful whole and (2) can actually be accommodated on a calculator-

sized device. The function set must of course be sufficient to

perform all of the musical manipulations that could reasonably be

expected to be required by the typical instructional and recreational



33

applications of the device. On the other hand, the set of functions

must not be so large as to lead to an overcrowded, over-complex

device.

Organization of the system . The second stage, organizing the

selected functions into a unified abstract system, involved three

distinct but interrelated tasks and their associated design

issues, i.e.

:

1) devising a uniform set of rules for function behavior (e.g.,

where functions get their arguments from, where they leave

their results, what they do when an error condition is

detected, etc.)

2) devising an overall process within which the functions can

operate and communicate with one another (i.e., a "meta-

function" or "executive routine" that runs the whole system

of functions)

3) devising a simple, uniform set of rules for using the

functions (syntax)

The abstract system developed at this stage was translated into a

working computer-based simulation. The music system functions and

the executive routine were written up as APL functions while the

various necessary memory components were simulated by APL variables

and files. A standard computer terminal acted as keyboard, controls,

and display. Since this APL simulation made it possible to interact

with a hypothetical music system and observe its behavior, it

became a valuable design tool (and arbiter of design issues) for



the remainder of the project. The APL simulation also became the

basis of the prototype system.

3A

Physical realization of the system . The third stage, the actual

physical realization of the abstract system, involved resolution of

the following issues:

1) format of controls . Should the control for a given function

be implemented in a discrete form (pushbutton, toggle switch,

etc.), or in a continuous form (rotating knob, slider, etc.)?

Are there particular controls that should be given a

special size, shape, or color?

2) organization and layout . Which controls should be clustered

together, and which should be set apart by themselves? What

is the proper spacing and geometric arrangement of the

controls?

3) identification of functions . How should the function of

each control be indicated: should each one be identified

by (a) a descriptive word or abbreviation, or (b) a graphic

symbol, or (c) a shape-coded control, or (d) some combination

of the above, or (e) some entirely different notation?

Since the prototype and the theoretical system differ somewhat in

both size and shape, two sets of solutions had to be found for

these issues.

Status of the present designs . The theoretical system and the proto-

type are shown in this chapter in the state of development at which

they had arrived by the end of the 1978-1979 academic year. At



35

this point the prototype had been used by the author, his students

and colleagues, and others on an almost daily basis for more than

two months. All of the essential features attributed here to the

theoretical system were tested in one form or another on the proto-

type during this period. Similarly the prototype's APL programs

are shown with all of the modifications that were made on the

basis of the experience gained during the same time. Certain

design issues were not resolved in an entirely satisfactory manner

during this period, however. The chapter concludes with a discussion

of these issues.

The Theoretical System

The theoretical system is a self-contained computer music

system the size of an ordinary hand calculator. It has a short

(1-octave) musical keyboard used to enter notes into the system's

memory, and an internal multi-voice synthesizer for playing stored

musical pieces. The system provides a number of compositional

functions that can be used to modify existing musical pieces or to

create entirely new ones. The system has access to libraries of

musical compositions and application programs which are stored

externally in interchangeable plug-in memory modules. In addition

the theoretical system has three features not found in any computer

music system as of this writing:

1) a "hum a few bars" library retrieval scheme. Musical pieces

in the library can be accessed by their incipits.



36

2) an ''undo" function . The system provides a "panic button"

that exactly reverses the effects of the last function

executed.

3) two levels of programmability . Users can construct their

own programs from any valid combination of function and

data keys. The system also has a second group of specialized

or "privileged" functions that professional programmers can

use to create games and lessons.

Physical components of the system . Fig. 1 shows the present concep-

tion of the overall physical configuration of the theoretical system.

The external features illustrated in this drawing and the major

internal hardware components other than the computer are discussed

below.

Musical keyboard . The musical keyboard comprises the first

three rows of keys along the bottom of the unit. The musical

"white notes" (second row from the bottom) are labeled with the

appropriate pitch names, while the identities of the black notes

(third row from the bottom) may be inferred simply from their

relative positions. As can be seen, this keyboard spans only one

octave. The range of the keyboard can be extended upward one

additional octave, however. Keys struck while the "shift" button

on the right hand side of the case is depressed will sound one

octave higher than unshifted notes. The musical keyboard is always

"live" in the sense that tones are always sounded by the system’s

internal synthesizer when the keys are pressed.



37

UNDO

r

I ibra ry
module

connector
.n: z=L

or
DEF

7 8 9

T _ _ idJU GO
4 5 6

PROG
1 2 3

©
LIB

0 STORE RECALL

%

0 B El 0 0 0

0

tern po

vol ume

shift

T
keyboard
connector

output
jack

Figure 1. The Theoretical System



38

The bottom row contains three additional keys essential to

the operation of the musical keyboard. The circular button on the

Isft, which activates the DATA function (q.v.), is used to indicate

to the system that it should record whatever is played on the

keyboard. The circular button on the right, which activates the

INSERT function (q.v.), is used to indicate that recording is complete

and that no further notes are to be stored. A lamp under the left-

hand button is turned on whenever the keyboard is recording.

The third key, marked "R", is for entering rests. The rest

key is needed because of the peculiar manner in which the musical

keyboard works. When the system is in "data entry mode" (q.v.), a

standard 1-beat-long note is entered into the system's memory

each time a note key is pressed. The actual length of time a key is

held down and the actual length of time between keypresses are not

recorded; the notes are simply strung together one after another in

memory. The rest key is therefore necessary in order to provide a

means for separating notes in time; it is the musical equivalent

of the typewriter’s space-bar. When the rest key is pressed while

the system is in data entry mode, a standard 1-beat-long rest is

entered into the system's memory.

The reason for having the musical keyboard work in this way is

that it requires none of the manual skills needed to play a conven-

tional musical keyboard. Since this tiny keyboard has very obvious

limitations, however, tentative provision has been made for plugging

a real musical keyboard into the system.



39

The PLAY and cursor controls . Immediately above the black

notes of the musical keyboard is a set of five circular buttons

(fourth row from the bottom) . The center button, which bears the

loudspeaker symbol, is the PLAY button. Pressing this button

causes the system to perform whatever piece of music is currently

stored in the "working area" (q.v.) of the system's memory. The

other four buttons are used to move the "cursor" (q.v.), an imaginary

place marker that can be moved among the notes in the working area.

Function keypad . Above the circular buttons is a 4 x 4 array

of keys. These are used to call most of the other functions of

the music system and to enter the numeric parameters required by

some of the functions. Note that this is a two-level keypad: each

of the keys in the three leftmost columns has two distinct functions,

as indicated on the upper and lower portions of each key. The

"normal" function of each key is the one shown on the lower half of

the key (the functions associated with the graphic symbols used on

the keys are all described in Appendix A) . The function shown on the

upper half is selected by holding down the shift button while striking

the key. The functions associated with this set of keys are discussed

below. (The upper portions of the keys in the rightmost column are

spare positions that may be used for functions added in the future)

.

Display . Directly above the 4x4 keypad is a display unit

used to communicate various kinds of information to the user.

Among the items that may appear in the display are (1) prompts to

enter commands or data, (2) pitch and time parameters of notes



40

played, (3) error messages, (4) elapsed time readouts, and (5)

ro3-tch/no~match indications (which usually will result from correct/

incorrect responses to lesson and game problems) . The display can

be enabled and disabled under program control so that, for example,

information about notes being played can be concealed from the

user during games and lessons designed to done entirely "by ear".

The UNDO button . The UNDO button (near the top left corner)

is a sort of "panic button": it activates a function that exactly

reverses the effects of the previous function executed. Since an

inadvertent use of UNDO can be as devastating as the unintentional

use of any other system function, this button is placed in a

relatively out-of-the-way spot so that it is less likely to be

hit accidentally.

Tempo and Volume controls . On the right-hand side of the

case are two rotating controls. The Tempo control regulates the

playback speed of music performed by the system. When the pointer

on this control is straight up, the tempo will be 60 beats per

minute. At this setting, the standard 1-beat-long notes and rests

entered on the musical keyboard will each be 1 second long.

Turning the Tempo control clockwise increases the tempo up to a

maximum of about 600 beats per minute, while turning it counter-

clockwise decreases the tempo down to a minimum of about 6 beats per

minute. The actual playing durations of the standard notes and

rests will vary accordingly. The Volume control (immediately below



41

the Tempo control) serves as both the overall loudness control

and the on/off switch.

In the present conception of the theoretical system, the Tempo

and Volume controls are the only ones that can affect music while

it is being played by the system.

Shift button . As mentioned above, the shift button has two

functions: (1) it selects the functions indicated on the upper

halves of the keys in the 4x4 array, and (2) it transposes the

pitches of the notes played on the musical keyboard up one octave.

Output jack . The quality of the sound generated by the tiny

synthesizer contained within the system is expected to be quite

good. Since no loudspeaker small enough to fit into a unit of the

size shown in fig. 1 is capable of reproducing sound of the anti-

cipated quality, no attempt was made to include a loudspeaker in

the design. Instead the output of the synthesizer is simply brought

out to a jack near the right-hand corner of the case. The user

can plug an earphone into this jack or run a patchcord from the

jack to an amplifier/loudspeaker system.

External keyboard connector . The external keyboard connector

on the bottom left of the case is provided so that the system can

be connected to a full-sized musical keyboard and used as a real

musical instrument. This is presently considered an optional

feature, however, and the details of its implementation have not

been worked out

.



42

The tempo clock . The tempo clock, which functions as the

metronome of the music system, consists of two main components:

3- variable-frequency oscillator (VFO) and a counter register.

The operating frequency of the VFO is set externally with the

Tempo control. The output of the VFO is sent directly to the

counter register, which is incremented by 1 every time the clock

emits a pulse. The register can be cleared to zero at any time,

and the current contents of the register can be read at any time.

During musical performances, the tempo clock interrupts the

processor every hundredth of a beat. The processor then reads

the value in the counter register and compares it with the starting

time of the next event (beginning or ending of a note) in the working

area. If the two numbers are the same, the processor takes the

appropriate action (turning a note on or off) . When the tempo

clock is not being used to control the speed of a musical performance,

it is available for other uses, such as measuring the user’s

response times during games and lessons.

The synthesizer . The synthesizer generates four independently-

controllable musical "voices”. These voices each have a range of

eight octaves. They are, however, limited to the pitches of the

equal-tempered chromatic scale. Each voice has its own envelope

shaper, but the actual contour of the envelope is the same for all

four voices. An essential feature of the synthesizer is that, once

it receives the pitch, duration, and channel assignment data for a



43

note, it is able to produce the note entirely without further

intervention from the computer.

Internal architecture . The final, hand-held version of the music

system would undoubtedly be built around a standard general-purpose

microprocessor and its associated support components. As a result

the algorithms and data structures of the music system would not be

directly represented in the physical hardware of the system's

computer. Instead major features of the music system would have

to be partly or wholly simulated in software. For example, while

the data type "integer" could probably be represented directly

in the form of the computer's own digital storage "word", it is

extremely unlikely that there would be a direct hardware representa-

tion of the type "music". Similarly, while the ten branching

functions provided by the music system would probably all have

fairly close equivalents in the computer's own instruction set,

the higher level music functions would all have to be simulated by

procedures containing dozens of individual machine instructions.

Accordingly this section describes the conceptual internal

structure of the music system, the way things appear to be laid

out from the user's standpoint. The manner in which this structure

is actually realized will depend on the resources provided by the

processor, memory, and other devices ultimately chosen for use in

implementing the music system.

Memory . From the user's point of view, the system's memory

is divided into the following functionally distinct regions:



44

^o^tcing area. The working area is the place in memory where

music is created, edited, transformed, etc. All music

data moving into, out of, or within the system must pass

through the working area. The working area is an implicit

operand of all the musical and data processing functions

performed by the system. The function of the working area

is therefore analogous to that of the accumulator in a

single-address computer. The key difference is that the

actual size of the working area varies, shrinking or expanding

within the limits of available memory to accommodate whatever

music data are placed in it.

2) user memory locations . The user memory locations are those

areas of memory set aside for users to store their musical

work. Each of these memory locations is identified by its

own number. These locations function primarily as "scratch-

pads" for tentative or incomplete work and as temporary

storage for components of larger objects being formed in

the working area. The user memory locations are analogous in

function to the numbered memories found in some electronic

hand calculators. However, like the working area, the user

memory locations grow or contract within the limits of avail-

able memory to accommodate whatever music data are placed

in them.

3) backup area . The backup area is a special place in memory

set aside for use by the UNDO function (q.v.). With one

exception, the backup area always contains a copy of the



45

contents of the working area as they stood just before the

last function was executed. Thus the consequences of any

operation on the contents of the working area can be reversed

simply by copying the contents of the backup area into the

working area. In the case of the single exception, the

STORE function (q.v.), the backup area receives a copy of

the contents of a specific user memory location. The reason

for this difference is that the STORE function destroys

the information previously contained in the user memory

location while leaving the working area intact. Consequently

it is the previous contents of the user memory location which

must be saved if UNDO is to be able to reverse the effects

of STORE.

4) keyboard buffer . When the system is in data entry mode,

the character codes associated with keys played on the

musical keyboard are temporarily stored in this special

area of memory.

5) program buffer . When the system is in "program definition

mode" (q.v.), the character codes associated with keys

that are struck are stored in this special area of memory.

Previously written programs can also be read into the

program buffer from an external library module via the

PROGRAM function (q.v.). The data stored in the program

buffer remain there until they are either erased from the

buffer or overwritten by new data.



46

number buffer . The number buffer is a temporary storage

area for the digits of the numeric parameters required by

several system functions. Whenever a digit key is struck

while the system is in direct execution mode, the character

code corresponding to that digit is catenated to the

digit string in the number buffer.

7) music and program libraries . The system’s libraries of

musical pieces and application programs are stored externally

in interchangeable read-only memory modules

.

Special registers . The music system requires the following

special registers:

1) loop counter . This special register is a down-only counter

that can be (a) preset to any non-negative integer smaller

than its modulus, and (b) decremented by 1. The loop

counter can be tested for both zero and non-zero conditions.

2) program counter . This special register is an arithmetic

unit capable of performing addition and subtraction. It

is used as a pointer to the next program step to be executed

when the system is running a program stored in the program

buffer.

3) cursor . The cursor is a pointer used by several of the

music system's functions. The cursor always points between

notes in the working area. Notes can be inserted at the

place indicated by the cursor, and the note immediately to



47

to the right of the cursor can be changed or deleted. The

PLAY function always begins its performances from the note

immediately to the right of the cursor.

Flags . The operation of the music system requires the

following 1-bit registers, or logical "flags":

1) program flag . When this flag is set, the system is said

to be in program definition mode.

2) data flag . When this flag is set, the system is said to

be in data entry mode

.

3) match flag . The state of this flag indicates whether the

last matching operation performed by the MATCH function

(q.v.) succeeded or failed (1 = success, 0 = failure).

Data types . The music system has only two elementary data types,

the single character and the single note. Data structures are

correspondingly restricted to strings of characters and matrices

of notes. Internally the system also uses both single- and double-

precision integers and character matrices, but these data types are

not directly accessible to the user.

Character data . A unique character code is associated with

each key on the system's front panel and with each of the "privileged"

functions (q.v.). The type character is divided into the following

sub-types

:

1) music - 24 pitch characters and the rest character

2) digit - the digits 0 through 9



48

3) function - the characters corresponding to the remaining

keys and to the privileged functions

The underlined sub-type names above are used throughout this chapter

to designate both the characters belonging to each sub-type and

their associated keys. Which meaning is intended should always be

clear from the context.

Under the appropriate conditions, characters in one or more of

the sub-types can be catenated into meaningful strings. In all

cases the rule for forming a string is the same: each successive

character entered is catenated to the right-hand end of the existing

string.

Note data . A note is actually a composite entity consisting

of at least four elementary parts:

1) starting time

2) channel assignment

3) pitch (which is itself a composite of octave register

and pitch class)

4) duration

Each of these elementary parts, or parameters, is represented

within the music system as an integer. The user cannot get at

these numbers directly, however. The individual parameters of a

note (or matrix of notes) are accessible only through music functions

which take the entire note (or note-matrix) as an argument but

then operate only on a specific parameter or parameters.



Notes can be catenated into matrices of any length within

available storage. Each row of such a matrix contains the data

for a specific individual note, and each column contains the

values of a specific parameter for all the notes. The rows are

ordered from top to bottom by starting time.

Data structures . Because of the calculator-like format of

the music system, the ability to create data structures is very

restricted. Note-matrices can be created only in the working area,

and they can be stored only in the predefined user memory locations.

Similarly character strings can be created only in the "buffer"

areas specifically provided for them and only when the system is

in the correct operational mode (q.v.). In order to mitigate the

effects of these restrictions, the final implementation of the music

system must have a memory management scheme that will allow data

structures to grow and shrink arbitrarily within the limits of

available memory. It is absolutely essential that this scheme

include some kind of "garbage collection" facility to reclaim the

unused areas of memory that are created as by-products of operations

such as clearing the working area or storing a null program in the

program buffer.

Operational modes . The music system has three distinct patterns

of behavior, or "operational modes": direct execution mode, data

entry mode, and program definition mode. Direct execution mode is

the "normal" operating mode of the system. In direct execution mode

the system immediately executes the operations corresponding to



50

keys pressed. The system is automatically initialized in direct

execution mode when it is turned on. Function keys are provided

to move the system back and forth between direct execution mode

and each of the other two modes. The details of all three modes are

discussed below.

Direct execution mode . In direct execution mode, the operations

corresponding to function keys are executed immediately when these

keys are pressed. The characters corresponding to digit keys are

automatically catenated to the right-hand end of the string in the

number buffer. As successive digits are entered, this string will

continue to grow until any function key is pressed. Once this

happens the digit string is immediately evaluated as an integer

and stored in a global variable. The number buffer is then cleared.

Music keys pressed while the system is in direct execution mode will

cause tones to sound, but they are otherwise ignored by the system.

The user can interrupt an executing procedure simply by pressing any

key; the latter action causes an immediate transfer of control to

the "wait" step of the system’s executive routine (q.v.). The DATA

function (q.v.) key moves the system from direct execution mode to

data entry mode, while the DEFINE function (q.v.) key moves it to

program definition mode.

Data entry mode . In data entry mode, the characters corre-

sponding to any music keys played are automatically catenated to

the right-hand end of the string in the keyboard buffer. As successive

notes or rests are entered, this string will continue to grow until

the INSERT function key is pressed. INSERT translates the character



51

string in the keyboard buffer into the corresponding note-matrix

and inserts this note-matrix into the working area at the place

indicated by the cursor. INSERT then clears the keyboard buffer and

returns the system to direct execution mode.

Program definition mode . In program definition mode, the system

catenates the character associated with each key pressed to the

right-hand end of the string in the program buffer. The system does

not execute the procedure associated with any function key except

DEFINE, nor does it put the characters corresponding to digit and

music keys in their respective buffers. The character string

stored in the program buffer constitutes a program which can be

executed when the system is returned to direct execution mode. Once

in program definition mode, the system stays in this mode until the

DEFINE function key is pressed again. DEFINE closes the definition

of the program and returns the system to direct execution mode. The

program which has been defined can now be executed at any time and

any number of times.

The operational modes of the music system are summarized in

Table 1.

Function Repertoire . The music system has two broad categories of

functions, "regular" and privileged". The regular functions are

those directly accessible to the music system user, while the

privileged functions are those accessible only to the programmers

who create the games, lessons, utility programs, etc., for the

system’s plug-in memory modules. The regular functions are



52

Table 1. Operational Modes of the Music System

DATA
ENTRY
MODE

DIRECT
EXECUTION
MODE

PROGRAM
DEFINITION

MODE

entered via DATA —
, _ "normal"^

mode

^ entered via DEFINE

- left via DEFINEleft via INSERT

1) all functions
except INSERT are
ignored

1) all functions
are executed
immediately

1) all function key-
codes except
DEFINE are cate-
nated to right-hand
end of the string
in the program
buffer

2) all digits are

ignored
2) all digits are

catenated to the

right-hand end

of the string

in the number
buffer

2) all digits are

catenated to the

right-hand end

of the string

in the program
buffer

3) all music key-
codes are cate-

nated to the

right-hand end

of the string
in the keyboard
buffer

3) music keys are

ignored
3) all music key-

codes are cate-

nated to the

right-hand end

of the program
buffer

Note: the musical keyboard is "live" in all three modes; the

tone corresponding to any music key pressed is always played

by the system.



53

predominantly high level musical and data processing operations like

playing a piece of music, recording music, or accessing a music

library file. The privileged functions, on the other hand, are

low level machine-oriented operations such as setting a flag,

decrementing a counter, branching, etc. Appendix F contains

programming examples utilizing both types of functions.

Since the syntactical and operational characteristics of all

functions in both categories are identical, the assignment of a

function to one category or the other is not irrevocable. Any

function in the privileged category can be moved into the regular

category merely by providing a suitably encoded key or other device

to represent it on the system's control panel. Similarly the

removal of an existing key or control immediately puts the corre-

sponding regular function into the privileged category.

Syntax . The syntax employed by the music system is very

simple. Functions are executed in the order that they are called;

there are no precedence rules or parenthesization. If a function

requires a numeric parameter, the value of this parameter can be

provided in either of two ways. The value can be entered immediately

before the call to the function that will use it, or the value can

be determined by the system itself. In the latter case, the system

will use the normally assumed, or "default" value of the parameter

for the function. Any numeric data entered immediately before a

function that does not take a numeric parameter will simply be

ignored. In the function summary below, the letter "n" before a

function name indicates that the function takes a numeric parameter.



54

Regular functions . The following summary of the regular functions

is intended only as an overview. A more formal and detailed descrip-

tion of each function can be found in Appendix A.

1) basic music functions . The functions in this group enable

the user to change the pitches and durations of notes in

the working area. Ordinarily these functions apply only

to the note immediately to the right of the cursor. To

apply any of them to the entire contents of the working

area, precede the function call with END (q.v.). The functions

in this group are:

(a) nAUGMENT - multiplies note durations by n (default = 2)

(b) nDIMINISH - divides note durations by n (default = 2)

(c) nRAISE - transposes pitches up n semitones (default = 1)

(d) nLOWER - transposes pitches down n semitones (default = 1)

2) music transformation functions . The functions in this

group operate on the entire contents of the working area,

and they typically produce musical results very different

in character from the original object. The functions in

group are:

(a) INVERT - inverts all pitches about the first pitch

(b) REVERSE - reverses the order of the notes

(c) nVERTICALIZE - changes a linear sequence of notes into

a series of n-note chords (default = 1)

(d) nSHUFFLE - partitions a series of notes into groups

consisting of n notes each, and then randomly rearranges

the n-note groups (default = 1)



55

niemory reference Instructions . The functions in this group

move, combine, and compare music data within the system.

Each of these functions takes a numeric parameter, n, which

specifies the user memory location to be employed. If no

value is provided for the parameter, the system assumes

location 0. The functions in this group are:

(a) nSTORE - puts the contents of the working area into

user memory location n

(b) nRECALL - brings the contents of user memory location n

into the working area

(c) nCOMBINE - contrapuntally combines the notes stored in

user memory location n with those already stored in the

working area

(d) nMATCH - compares the notes in user memory location n

with those in the working area and displays

match!

if corresponding notes are identical, but

no match

if they are not.

4) cursor functions . The cursor is an imaginary marker that

indicates where in the sequence of notes in the working area

insertions, deletions, changes, etc. are to be made. The

cursor is always positioned to the left of the next note

that can be changed or deleted. New notes can be added at

the place the cursor points to. Using the functions in



56

this group, the cursor can be stepped forward or backward

one or more notes at a time. Each note is played as the

cursor traverses it. The cursor can also be moved by a

single command to a point immediately before the first note

in the working area or to a point immediately after the last

note in the working area. The functions in this group are;

(a) nSTEP - advances the cursor n notes (default = 1)

(b) nBACK - backs the cursor up n notes (default = 1)

(c) RESET - moves the cursor to a point immediately

before the first note in the working area

(d) END - moves the cursor to a point immediately after

the last note in the working area

5) external library functions . The system has two external

libraries: a library of musical compositions, or "archive”,

and a library of programs. Although both libraries would

be physically contained in the same external read-only

memory module, each may have its own directory, storage for-

mats, access rules, etc. The following functions are used

to access items in these libraries:

(a) nLIBRARY - if preceded by a number, n, LIBRARY retrieves

piece no. n from the library of musical compositions.

If n is not specified, LIBRARY retrieves the piece

whose eight-note incipit most closely matches the first

eight notes of whatever music is in the working area.



57

(b) nPROGRAM - retrieves program number n from the program

library (n must be specified)

.

6) execute functions . The execute functions perform entire

sequences of actions specified by the user. The functions

in this group are:

(a) PLAY - causes whatever music is presently in the

working area to be performed on the system’s synthe-

sizer. The performance begins with the note immediately

to the right of the cursor.

(b) GO - initiates execution of the program currently stored

in the program buffer.

7) editing functions . The editing functions enable the user

to drop specified notes or groups of notes from the working

area. The functions in this group are:

(a) CLEAR - clears the working area (i.e., deletes its

entire contents)

(b) nDROP - deletes n notes from the piece in the working

area, beginning with the note immediately to the right

of the cursor (default = 1)

8) mode switches . When it is first powered up, the music system

is in direct execution mode. The functions in this group

are used to get the system into and out of its two other

operational modes. These functions are:

(a) DEFINE - switches the system back and forth between

direct execution mode and program definition mode



58

(b) DATA switches the system from direct execution mode

into data entry mode

(c) INSERT - switches the system from data entry mode back

into direct execution mode. INSERT also translates

the character string in the keyboard buffer into note-

matrix form, and inserts this note-matrix into the working

area at the place indicated by the cursor.

9) the UNDO function . UNDO is a function designed to help

users extricate themselves from a troublesome situation into

which they have strayed. UNDO exactly reverses the effects

of the last function performed by the system. Thus, for

example, it can be used to recover the previous contents of

a user memory location that was accidentally overwritten or

to restore a musical piece damaged by inadvertent use of

one of the music functions.

Privileged functions . The privileged functions are a group of

system operations available only to the creators of library programs.

There are no keys on the system's front panel for the privileged

functions ;
these functions are accessible only through whatever

equipment is used to program the read-only memory modules which

form the external libraries of the music system.

The privileged group contains functions which are absolutely

essential for the creation of game and instructional programs but

which are not necessarily of interest to the non-computer-specialists

who are expected to be the primary users of the system. Included in

the privileged group are:



59

1) conditional and unconditional branching functions

2) functions that provide access to the system's tempo clock

3) a software interrupt

There is no inherent reason why any of the privileged functions

”^^st be withheld from the user of the system. The decision to establish

a privileged group was based primarily on a desire (1) to restrict

the number of keys on the front panel to about the same number as a

typical "scientific" calculator has, and (2) to avoid presenting the

user with any functions requiring prior knowledge of computers and

computer programming.

The privileged functions will not be discussed further here. See

Appendix A for a full description of this group.

Executive routine . All of the operations of the music system, both

the ones consciously initiated by the user and the "invisible" ones

performed internally by the system itself, are coordinated by an

overall "executive routine". Within the structure provided by the

executive routine, the functions the user sees—the procedures

represented by keys on the front panel—are actually subroutines called

by the executive routine. Thus the executive routine is a level of

conceptual structure lying between the regular and privileged functions

and the actual computer hardware.

The operation of the executive routine is illustrated in two

different ways here t a flowchart (fig. 2) and a set of APL functions

(fig. 3). Both of these descriptions are intended only to show the

essential structure and functioning of the executive routine.



Figure 2. Flowchart of the Executive Routine



lEXECUTIVElUl^
'^EXECUTIVE

[I] UNITIALIZE
1.2J WAIT:

[3] TESTl: ^{-'PROGRAMFLAG) /TEST2
[4] ^iKEY = DEFINE'> /TEST2
[5] PROGBUF^PROGBUF ,KEY
[6] -^WAIT
[7] TEST2: -^{-KEYeMUSIC) /TEST3
[8] ^(--DATAFLAG) /WAIT
[9] KBDBUF^KBDBUF ,KEY
[10] - WAIT
[II] TESTd: -^(-KEYeDIGIT) /EXECUTE
[12] NBUF^NBUF ,KEY
[13] -^WAIT
[14] EXECUTE: SETUP
[15] tFUNCTIOUlIi:^
[16] -^iKEYeCONTROL) /WAIT
[17] ^ERRORFLAG /ERROR
[18] WRAPUP
[19] -^WAIT
[20] ERROR: ERRORFLAG^O
[21] -^WAIT

V

VIi7I2’I^LIZff[D]V
VINITIALIZE

[ 1 ] PROGRAMFLAG^DATAFLAG^ERRORFLAG^O
[2] NUMBER^PREVNUM^PREVFUNC^I^O
[3] WORKER ACKUP^USERLOCS^\0
[4] NBUF^PROGBUF^KBDBUF^'

'

V

VSETUPlUlN
1 SETUP

[1] NUMBER^tNBUF
[ 2 ] NBUF^' '

[3] I^FUNCZlQNiKEY
V

VWRAPUPiU:\V
IWRAPUP

[1] PREVNUM^NUMBER
[2] PREVFUNC^-I

V

Figure 3. APL Version of the Executive Routine.



Numerous details have been omitted so that the basic algorithm can

be seen clearly.

62

The identifiers used in both the flowchart and the API functions

are

:

1) CONTROL - a character vector that contains the character

constants associated with the PLAY, STEP, BACK, RESET, and

END functions

2) DATAFLAG - data flag (q.v.)

3) DEFINE - the character constant associated with the DEFINE

function

4) DIGIT - a character vector containing all the members of the

sub-type digit

5) ERRORFLAG - a logical flag that is set whenever an error

condition is detected during the execution of any regular

or privileged function

6) FUNCTION - a character matrix containing the names of all

the regular and privileged functions

7) FUNCTION - a character vector that contains all the members

of the sub-type function

8) I - the numerical index of KEY in the character vector FUNCTION

9) INITIALIZE - a routine that zeroes-out all working storage and

clear all flags

10) KBDBUF - keyboard buffer (q.v.)

11) KEY - a character variable that always contains the code of

the most recently pressed key of the code corresponding to

the most recently executed privileged function



12 )

63

3 character vector containing all the members of the

sub-type music

13) NUMBER - an integer variable which contains the numeric

parameter (if any) of the function about to be executed

14) NUMBUF - number buffer (q.v.)

15) PREVFUNC - an integer variable used to store the value of I

after the execution of any regular or privileged function

(except PLAY and the cursor functions)

16) PREVNUM - an integer variable used to store the value of

NUMBER after the execution of any regular or privileged

function (except PLAY and the cursor functions)

17) PROGBUF - program buffer (q.v.)

18) PROGRAMFLAG - program flag (q.v.)

19) SETUP - a routine that evaluates the digit-subtype character

string in the number buffer as an integer, stores the

integer in the global variable NUMBER, and then clears the

number buffer

20) USERLOCS - user memory locations (q.v.)

21) WRAPUP - a routine that saves the values of KEY and NUMBER for

possible use by the UNDO function

22) WORK - working area (q.v.)

Several important features of both the regular and privileged

functions are implicit in the flowchart and APL routines. First of

all it can be seen that each function is a self-contained subroutine

called by the executive routine. Thus each of these functions is



64

a replaceable module which can be rewritten without affecting any

other part of the system. Moreover a new function can be added to

the set simply by catenating its name to the FUNCTION matrix and

catenating its character code to the FUNCTION vector.

It can also be inferred from the flowchart and the APL listings

that all of the functions share common duties above and beyond their

individually assigned tasks. Specifically, every function is respon-

sible for detecting its own error conditions and for setting the

error flag if necessary. In addition each function is responsible

for copying the contents of the working area (or user memory

location) into the backup area this information is necessary to

undo the function’s effects. If the function does not need the

backup area, it is responsible for clearing it so that the system's

"garbage collector" can reclaim the unused storage space.

Finally it can be seen that the information used by UNDO

(PREVFUNC, PREVNUM) is not updated after the execution of PLAY or

any of the cursor functions (STEP, BACK, RESET, and END). The

primary reason for this feature is that it allows the user to step

back and forth through a piece and to play it any number of times

before deciding whether or not to UNDO the function that put the

piece into its present form.

The Prototype

The prototype is a computer-based music system designed to be

operated in connection with a time-sharing computer. The prototype



65

was actually run on the CDC Cyber 175 computer system at the

University of Massachusetts, but the characteristics of both its

hardware and software components are such that it could employ any

Cyber system which offers APLUM (the University of Massachusetts

version of APL, which is also a standard product of CDC) .

Although the prototype is not hand-held, it portable. It

breaks down into six lightweight parts, which are easily reassembled

in about fifteen minutes. Moreover the prototype can be operated

virtually an3where since it incorporates an acoustic coupler which

gives it access to the computer over the regular telephone network.

The prototype was in fact set up and run at the author's home, at

the University of Lowell's College of Music, and at the School of

Education at the University of Massachusetts/Amherst.

The main purpose of the prototype was to act as a test vehicle

for the basic design ideas of the theoretical system. Accordingly

the prototype was designed to simulate the intended functional

characteristics of the theoretical system as nearly as possible.

There are, however, significant differences between the theoretical

system and the prototype, as will be explained in detail below. Most

of these differences are an inevitable consequence of the fact that

while the theoretical system is designed around a dedicated micro-

computer, the prototype is embedded in a large time-sharing computer

system. Other important differences arose from the fact that the

design of the prototype had to be frozen early in 1979 so that the

prototype could actually be built and tested while the theoretical



66

system's design was (and is) free to continue its evolution.

Moreover, once it was built and running, the prototype itself became

one of the prime motivating factors behind changes and improvements

in the design of the theoretical system.

The actual construction of the prototype began with the design

of the keyboard layout. No attempt was made to condense the keyboard

to the projected size of the hand-held unit. Instead the configura-

tion was deliberately made larger and more open because this

arrangement would make the keyboard easier to change and maintain.

It was also felt that a large, single-level (one function per key)

keyboard would be simpler to use, and therefore, better for research

purposes than a device which economizes on space by using a

multiple-level keyboard and selector button(s) . Once the keyboard

layout was established, it was a relatively straightforward matter

to construct the device from standard electrical hardware components.

The completed keyboard was substituted for the computer

terminal as the device used to interact with the APL simulation.

This substitution was readily accomplished since the correspondence

between specific character codes and specific functions performed

by the APL simulation had already been established within the

simulation itself. It was only necessary to arrange for the keyboard

to transmit the character associated with the function designation

of each of its keys. This was easily accomplished with an

interface built from a few standard electronic parts.



67

The only remaining component that had to be provided in order

to complete the prototype was some kind of sound output device.

This had to be a multi-voice, or "polyphonic” device in order to

mirror the corresponding feature of the hand-held system. On the

other hand, this device did not have to be a professional studio-

quality music synthesizer in order to fulfill the prototype's function

as a research tool. Accordingly a four-voice adaptation of a simple

single-voice circuit designed by Lancaster (1974) was constructed.

Physical components of the system . Photograph 2 shows the physical

components of the prototype as they were arranged during the pilot

studies reported in the next chapter. From left to right, the

devices shown in this photograph are:

1) the synthesizer (far left, in what looks like a loudspeaker

cabinet)

2) the prototype keyboard and interface (the box with the

buttons on it, and the box directly behind it)

3) the CRT terminal

4) the acoustic coupler

Each of the devices is described below.

The synthesizer . The synthesizer is a simple four-voice music

device. It has four square-wave generators, each of which can be

turned on and off independently of the others. Each tone generator

can play any note of the equal-tempered chromatic scale over a range

of eight octaves, with middle-C being the center of each tone

generator’s range. The synthesizer is controlled directly by the



68

I

i

Photo.

2.

The

Prototype

(Photo:

Jay

Forrest)



69

same ASCII character codes sent to the CRT terminal. Certain codes

turn voices on or off, other codes select the pitches of notes,

and still other codes select the octave registers of notes. The

synthesizer is capable of operating at data rates from 150 to 4800

baud (a jumper inside the case is used to select the appropriate

rate). The synthesizer has no provision for regulation of loudness;

consequently no volume control is provided on either the synthesizer

itself or the prototype's keyboard.

The synthesizer received frequent criticism during the pilot

studies reported in the next chapter. The principal objections

were that all of the pitches were slightly out of tune, that note

durations were not accurate, and that notes which should have been

simultaneous were always separated by a perceptible delay.

Although these problems could not be corrected during the

pilot studies, they are actually moderately easy to fix. The

synthesizer's pitches could be brought up to professional musical

standards simply by providing the synthesizer with more accurate

frequency dividers. Nothing more would be required than the

addition of four integrated circuits and some consequent juggling

of the existing circuitry inside the synthesizer's case.

The two other problems, inaccurate durations and lack of simul-

taneity, could both be solved merely by connecting the synthesizer

to a high-speed computer port. Because it was connected to the

computer over ordinary telephone lines during the pilot studies, the

the standard 300 baud (30 characters/sec)synthesizer had to be run at



70

rate. At this relatively slow speed, the time resolution of

notes is very crude. In fact, note durations can be approximated

only to the nearest tenth of a second, and "simultaneous" notes

cannot be made to start less than a tenth of a second apart.

However the synthesizer is capable of operating at up to 4800 baud

(480 characters/sec) without any modification. At this higher speed,

note durations would be accurate to better than 0.01 second, and

the delay between notes intended to be simultaneous would be less

than 0.01 second. Since human hearing cannot resolve such small

time differences, both of the time-related problems would disappear.

The prototype keyboard and interface . Fig. 4 is a drawing of

the prototype's keyboard (shown about three-fourths its actual size).

As can be seen, this keyboard is laid out differently from the

theoretical system's: it is larger and less dense, and it contains

some buttons not present on the theoretical system and is missing

some others that are. The prototype keyboard unit contains only

switches; all of its electronic components are contained on the

"breadboard" directly behind it. The breadboard is an interface

that translates keyboard switch closures into the ASCII codes

associated with the specific keys pressed and then transmits these

codes to the CRT terminal. For example, when any of the musical

"white note" keys along the bottom of the keyboard is pressed, the

interface transmits the ASCII code for "C", "D ,
E ,

F ,
G ,

A ,

"gii—whichever is appropriate. Similarly, when any of the ten

numeric keys is pressed, the interface transmits the ASCII code for



71

o SHUFFLE

i
-i

1
^mm

s

m^m

MATCH

VERTICALI2E RAISE X COMBINE

REVERSE
DIMINISH

l-<i> 1

1U3ANI9e AUGMENT

cm
CLEAR

LU
if)

i'

7^

^ 5

>
cr

A **V s

H i

£>

-e-

^9

9

9

«! + i

|» -f- 2

|o+ iu
Q

Figure

4.

Prototype

Keyboard

Layout.



72

the corresponding digit, 0-9. Each of the other keys also has

associated with it a unique ASCII code that is transmitted whenever

it is pressed. The entire set of codes and the associations of

specific codes with specific keys on the prototype's keyboard are

of course known to the APL simulation which actually runs the

prototype

.

The prototype keyboard is a single-level device; each key has

only one function. Accordingly there is no shift button. The lack

of a shift button necessitates the addition of two special purpose

keys , one to place the keyboard in its low octave and another one

to place it in its high octave. These two keys are paired together

between the DEL key and the "C” key of the musical keyboard. When

one of these octave keys is pressed, all subsequent notes sound in

the corresponding register until the opposite key is pressed. A

single key could have been used to toggle the keyboard back and

forth between octaves , but two keys—each of which forces the keyboard

into a specific register—seemed like a more reliable way of handling

this problem.

The CRT terminal . The CRT terminal has two principal functions:

1) It serves, as the primary means for communicating with the

remote time-sharing computer. It is used, for example, to

log on and off the system, to access files, to edit programs,

etc

.

2) It serves as the prototype's display unit (the prototype's

keyboard does not have a display of its own)

.



73

The specific terminal used with the prototype, a Lear-Siegler model

ADM-3A, offers one especially handy feature : an extra RS-232C

interface. This extra interface allowed the prototype's electronics

to be plugged directly into the terminal itself. Without the extra

interface an additional device would have to have been built to permit

both the CRT terminal and the prototype's keyboard interface to be

connected to the same data transmission line.

Acoustic coupler . The acoustic coupler gives the CRT terminal

(and therefore the prototype's entire array of electronic components)

access to the computer via telephone.

Software-simulated components of the system . All of the remaining

parts of the prototype are either embodied in APL functions and APL

files created by the author or else derived from features provided

by the APL system itself. Taken together these components constitute

a software simulation of the theoretical system. The purposes of

this section are (1) to describe each of the software components,

(2) to show the relationship of each software component to the

corresponding aspect of the "real" theoretical system as described

earlier in this chapter, and (3) to explain any differences

between the two. All of the software-simulated components of the

prototype are found in the APL listings of Appendix B.

Tempo clock . Because of the fixed and relatively slow rate of

data transmission at which the prototype was forced to operate, it

was not possible to implement the tempo clock feature in the proto

type's hardware (note that the prototype's keyboard does not have



74

a Tempo control) . The principal features of the tempo clock were

therefore simulated in software.

The effect of the Tempo control is simulated by the assignment

of a value to the global variable TEMPO. This is accomplished by

first entering the code for the USR function (q.v.) on the CRT

terminal and then typing in the appropriate APL assignment statement.

This procedure is of course very cumbersome and, unlike the manipu-

lation of the Tempo control of the theoretical system, is incapable

of performance while music is playing.

The effect of the tempo clock's counter register (which continu-

ously accumulates clock pulses) is simulated by the global variable,

TIMER, and APL's QTS system variable. Whenever the value of TIMER

is needed, the DST function (q.v.) derives the updated value of

TIMER from DtS as shown in the listing.

Memory, special registers and flags . With one exception, the

APL simulation has a counterpart for each of the memory components,

special registers, and flags described above in the section on the

internal architecture of the theoretical system. The various

regions of random access memory are simulated as global variables

in the workspace, as are the special registers and the flags. The

two libraries are simulated as APL files (see Appendix E for a

listing of the items in each library). The exception is the

"program counter", which is not implemented in the simulation.

Table 2 summarizes the correspondences between the theoretical

system and the APL simulation.



75

Table 2. Identifiers Used in the APL Simulation

THEORETICAL
SYSTEM
COMPONENT

APL
IDENTIFIER

TYPE

working area X n X 4 numeric matrix

user memory locations VO through V9 n X 4 numeric matrix

backup area U n X 4 numeric matrix

keyboard buffer KBDBUF n X 4 numeric matrix

program buffer PROGBUF character vector

number buffer NBUF* character vector

music library MUSLIB APL file

program library PROGLIB APL file

loop counter COUNTER

.... ,

numeric scalar

program counter (not implemented) N/A

cursor CURSOR numeric scalar

program flag MODEFLAG logical/ numeric

data flag DATAFLAG AND
KBDFLAG**

logical/ numeric

match flag MATCHFLAG logical /numeric

*In the APL simulation, NUMFLAG is used to indicate the presence

of at least one character in the number buffer.

**In the APL simulation, KBDFLAG indicates that data entry mode

has been entered via the musical keyboard rather than through

a call to the DATA function.



76

The reason that the "program counter" was not implemented is

that the simulation's executive routine, MACHINE (q.v.), already

provides a string-interpretation mechanism that does not require a

counter. So, instead of providing a second mechanism to execute

programs, the author used the tools that were already available.

The simulation s XCT function (q.v.) simply puts the contents of the

program buffer (PROGBUF) into the global variable INPUT at which

point MACHINE interprets the program character string just as if it

had been entered at the terminal.

One other difference between the theoretical system and the

simulation that can be seen here is that the simulation's keyboard

buffer (KBDBUF) is a numeric matrix instead of a character vector.

This is merely an anomaly left over from an earlier version of the

simulation.

Data types . In the simulation, the treatment of data types

corresponds quite closely to that of the theoretical system. The

only elementary data types directly accessible to the user are the

single character and the single note, and the only data structures

are the character string and the note matrix.

A "note" in the simulation is a numeric vector of length 4.

The elements of the vector are: (1) starting time, (2) channel

assignment, (3) pitch, and (4) duration. Both starting time and

duration are expressed in terms of the reciprocal of the current

data rate. If, for example, the prototype is running at 30 characters

per second (300 baud), the starting time of a given note is the



77

number of thirtieths of a second from the beginning of the piece

until it is this note’s turn to be played; the duration of the note

is how long it lasts in terms of thirtieths of a second. "Channel

assignment" is an integer in the range 0-3 that indicates which of

the synthesizer’s four voices is to play the note. "Pitch" is an

integer in the range 0—95 that indicates which tone within the

eight-octave (96 note) range of the voice is to be played. Indivi-

dual note vectors can be catenated to form n x A note matrices.

Operational modes . The theoretical system and the prototype

differ most widely in the respective patterns of behavior each

exhibits in each of the three operational modes. Most of these

differences were not intentionally created; they are rather the

unavoidable result of the decision to base the prototype in a time-

sharing computer system.

The fundamental cause of all the differences in behavior is the

fact that the time-sharing computer does not respond immediately to

each character transmitted to it. Instead it waits for a specific

character, the "carriage return", which indicates the end of a

message from the user. The immediate consequences of this fact for

the prototype are:

1) the musical keyboard cannot cause notes to sound when it is

played (the prototype’s musical keyboard is never "live")

2) the STEP and BACK function keys cannot cause notes to sound

when they are pressed

3) functions cannot be executed when their keys are pressed



78

In each of these three cases, the reason that the particular action

cannot take place is that a carriage return must always be trans-

mitted before the computer will respond. Naturally the prototype

needs its own carriage return button; it is marked SEND in fig. 4.

The pattern of behavior imposed on the prototype by the time-

sharing environment affects all three of the prototype's operational

modes, but none more than direct execution mode. Indeed, direct

execution mode typically appears to be anything but direct. Not

only is a carriage return (SEND) interposed between command and

execution, but so also is a delay whose length depends on the number

and types of users simultaneously on the time-sharing system.

In an attempt to compensate for these drawbacks, some features

differing from those of the theoretical system were implemented in

the prototype's hardware and in the APL simulation. The first such

feature is a provision to allow any number of keys to be entered

before pressing SEND. This feature spares the user the bother and

delay of having to press SEND after each and every keystroke, as

would otherwise be the case. This "string interpreter" is a real

convenience, but it has two less desirable side effects:

1) it blurs the distinction between direct execution mode on

the one hand and program definition and data entry modes

on the other because all three modes now permit entry of

multiple keystrokes

2) it opens up the possibility of erroneous keystrokes being

buried several characters back in a string, out of the reach

of the UNDO function



79

The first problem still stands. The second was alleviated somewhat

by providing the DEL ("delete") button on the prototype's keyboard.

DEL issues the ASCII escape" code, which causes the computer to

ignore the entire input string.

Another, less drastic difference in behavior between the theore-

tical system and the prototype lies in the mechanism for getting

from direct execution mode to data entry mode. The difference is

that the simulation immediately moves from direct execution mode

to data entry mode when any one of the music keys is pressed. The

reason for this is that, since the prototype has a non-playing musical

keyboard (notes do not sound when the keys are pressed) , its music

keys can have no plausible purpose other than to enter the corresponding

notes into memory. Therefore the striking of any of the prototype's

music keys can be used as a signal to the simulation to go immediately

into data entry mode. Accordingly the key corresponding to the

DATA function is omitted from the prototype's keyboard (the DATA key

is the one in the lower left-hand corner in the drawing of the

theoretical system, fig. 1). The INSERT key is retained in the

prototype, however, since there must still be some way to get back

to direct execution mode.

A final difference in behavior between the theoretical system and

the prototype is that in the prototype neither an executing program

nor a piece being played can be stopped by striking a key on the

keyboard. In the theoretical system, on the other hand, pressing any

key during program execution or musical performance causes an



80

immediate jump to the "wait” step of the executive routine. This

feature was omitted in the prototype since there did not appear to

be any reliable way to interrupt the computer at a specific desired

point in a program or musical piece.

Function repertoire . The function repertoire of the API simulation

is almost identical to that of the theoretical system. The simu-

lation has one additional function, USR (USeR) . The USR function,

invoked at the terminal, permits any valid single-line APL

expression to be entered and executed within the simulation. USR

was designed mainly as a debugging tool and diagnostic aid. It

can be used, for example, to examine the contents of specific

variables and to set variables to particular values of interest.

The simulation does not have the privileged NOTE function (q.v.).

This function is not needed because the simulation assumes that

all music characters are to be stored in the keyboard buffer

unless the system is in program definition mode.

Executive routine . The simulation's executive routine, MACHINE, is

not quite the same as the one shown for the theoretical system

in figs. 2 and 3. The major difference is that the APL simulation's

executive routine has a built-in record-keeping facility. The

record-keeping facility stores (in the variable RECORD) the numeric

index of the character code of every key pressed by a user

during an entire session with the prototype, and it tags any entries

that caused error conditions by storing the negative of the index.



81

The record-keeping facility was put in to keep a history of user

interactions with the system and to serve as a diagnostic aid in

case any unusual bugs were discovered in the simulation.

Unresolved Design Issues

As of this writing, a number of design issues remain unresolved.

Unlike the various flaws, inconsistencies, and bugs discovered

the testing phase, these problems have no "right” solutions.

Instead each of these issues hinges on one or more of the basic

design points that determine the fundamental character of the

music system as a whole. Resolution of each of these issues

therefore involves a decision as to what the music system is, how

it can be used, who can use it, etc. The pros and cons of each

issue are stated briefly below.

The musical keyboard . When the music system is in data entry mode,

it records a standard one-beat-long note or rest for each music

key pressed. Some people feel that this arrangement is unnatural

and that the system should be changed so that it would record the

actual durations of the notes and rests played on the keyboard. The

argument against this change is that it would require users to

develop some manual skill in order to be able to use the keyboard

effectively. This change would therefore move the music system in

the "specialist” direction.

The keyboard was also criticized for the means it employs to

change register: the HIGH and LOW keys on the prototype and the



82

shift key on the theoretical system. Both techniques are awkward

and they gain only one additional octave. Clearly there is room

for improvement here.

INSERT . The INSERT function takes the sequence of notes in the

keyboard buffer and inserts it into the sequence of notes already

in the working area at the place indicated by the cursor. It then

clears the keyboard buffer and returns the system to direct execution

mode

.

A frequent complaint was that this procedure is too complicated

and that INSERT should simply overwrite or replace the contents of

the working area. This suggestion was rejected, however, because it

would make the process of adding or changing individual notes in the

working area awkward and roundabout. For example, under the suggested

version of INSERT, the following steps would be needed to insert a

single note into a piece of music in the working area:

1) STORE the piece in a user memory location

2) switch to data entry mode (via the DATA function)

3) hit the desired note

4) switch back into direct execution mode (via the INSERT function)

5) STORE the note in the working area in a different user memory

location

6) CLEAR the working area

7) RECALL the piece from the user memory location

8) STEP the cursor to the desired place

9) RECALL the note from the user memory location



83

With the present version of INSERT, however, the steps required are:

1) STEP the cursor to the desired place

2) switch into data entry mode

3) hit the note

4) switch back into direct execution mode.

The END - (function) - RESET sequence . The AUGMENT, DIMINISH, RAISE,

and LOWER functions have as their default argument the note

immediately to the right of the cursor. To cause any of these four

functions to operate on the entire contents of the working area

simultaneously, it is necessary to precede the desired function

with END, and then follow it with RESET. Many people feel that

this three-keystroke sequence is inconvenient and that it should be

eliminated by making the entire contents of the working area the

default argument of these four functions.

The case for keeping the single-note argument for AUGMENT and

DIMINISH is that (1) the Tempo control already provides a means

for making overall changes in the speed of performances, and (2)

AUGMENT and DIMINISH are the only mechanisms available for making

accurate changes in the values of individual notes and for setting

up precise duration relationships between notes.

The case for keeping the single-note default for RAISE and

LOWER is not quite so strong since the system provides no other

mechanism for transposing a whole piece. Perhaps what is really

needed, however, is a "transpose" control that can raise or lower

pitches while they are playing.



84

SHUFFLE . The present version of the SHUFFLE function is sufficient

for randomizing the presentation of musical items in simple lesson

or game programs. To some extent SHUFFLE can also be used composi—

tionally . For example, by having it work on carefully prepared

musical source data, SHUFFLE can approximate some of the effects

achieved by the more sophisticated probabilistic procedures devised

by Hiller (1969), Xenakis (1971), and Gross! and Sommi (1974). The

unresolved question here is whether such procedures are too esoteric

to be implemented in a device like the present one, or whether the

curiosity about such things shown by several of the people who tried

the prototype is an indication that additional composition-generating

functions should be added to the present design.

Subsidiary issues .

"Stop" function . In the prototype there is no mechanism for

stopping the system while it is playing music or executing a program.

It is clearly necessary, however, to have some kind of "stop"

mechanism. Accordingly, in the theoretical system, both musical

performance and program execution can be stopped simply by striking

any key on the control panel (this causes control to be passed

immediately to the "wait" step of the executive routine). While

this takes care of the problem, it might be better to have a

specific STOP button analogous to the ones found on most tape

recorders and cassette players.

COIffilNE. The present version of the COMBINE function is not

that its two arguments are not in general
symmetrical, in the sense



85

interchangeable. While the notes and rests in the working area may

represent any number of independent musical voices, the notes and

rests in the user memory location must represent a single musical

voice. This restriction seems unnecessary in the present design

though it might make sense in a system each of whose output channels

could be given its own distinct timbre, envelope shape, volume

level, etc. in this case COMBINE would have to make sure that each

new voice part added was assigned to the proper channel.

LIBRARY . The "hum a few bars" library accessing facility is

based on a simple algorithm devised by Bridgman (1950) and subse-

quently employed by Bryden and Hughes (1969). This algorithm does

not search the musical pieces themselves for the notes that match

the user's input, but rather a directory of musical incipits pro-

vided by the person who created the library. Although this procedure

is a reasonable first approximation to the desired facility, it is

too limited. This algorithm will fail to find a piece in the

library if, for example, the user provides it with any important

thematic idea from the piece other than the one(s) in the directory.

The final hand-held unit should therefore employ more sophisticated

pattern-matching techniques which are capable of searching the

musical pieces themselves.

UNDO . The present version of UNDO exactly reverses the effects

of the last function executed. Thus users can easily recover from

any single mistake they make if they catch it in time. Although

UNDO in this form is already costly in terms of the storage space



86

it consumes, there is some educational justification for increasing

its power. If UNDO could "reverse-execute" an entire session step-

by-step all the way back to the point when the music system was

first turned on, it would be a powerful tool for helping users to

discover the causes of the mistakes they make. Such an UNDO would,

however, make extravagant demands on the system's memory.



CHAPTER IV

TESTING: METHODS AND RESULTS

Introduction

In order to test and evaluate the prototype music system, two

pilot studies were conducted at the University of Lowell during

1979. Although the basic format of both studies was the same,

each study was intended to elicit a different kind of information

about the prototype and each study drew upon a different population

of students for its subjects.

The first pilot study was essentially a shakedown test of the

prototype. The purposes of this study were (1) to give the entire

system a rigorous workout in order to uncover any problems with its

hardware or software components, and (2) to determine whether the

prototype had any awkward, illogical, or otherwise poorly human-

engineered features.

The originally intended purposes of the second pilot study were

(1) to discover what kinds of approaches a group of college students

would take in solving a set of typical musical problems, and (2) to

determine whether or not the prototype lent itself readily to the

particular approaches selected. The knowledge gained in observing

the students' problem-solving behavior and reactions to the system

was then to have been used as a basis for refining the design of

the theoretical music system. Unfortunately, because of certain

87



88

operational characteristics of the prototype, this plan could not

be carried out. These characteristics, all derived from the time-

sharing environment in which the prototype functions, prevented the

subjects from using the system at the level of efficiency necessary

to achieve the original objectives. Consequently, the second pilot

study was limited to elaborating and confirming information gained

in the first pilot study.

Both pilot studies had the same three major components:

1) a 50-minute lecture/discussion on the music system project

(given to the entire group of potential subjects)

2) a one-hour individual session, during which each subject

was asked to perform a series of typical musical tasks

using the system

3) a questionnaire which each subject filled out after his/her

individual session with the system

The purpose of the lecture/discussion was to give the subjects all

the information they would need in order to make an informed

decision concerning whether or not to participate in this study.

The purpose of the individual sessions was of course to provide an

opportunity to observe the subjects and the prototype system in

action. And, finally, the purposes of the questionnaire were (1) to

gather essential background information on the subjects, and (2) to

get the subjects' own reactions, observations, thoughts, etc. on key

aspects of the prototype. The differences between the two studies

lay mainly in the types of activities that were emphasized in the



89

individual sessions. In the first study, the subjects were

encouraged to try a wide variety of operations with the prototype

so that the whole system would be exercised. In the second study,

activity during the individual sessions was confined mainly to the

prescribed set of musical tasks.

Both pilot studies employed University of Lowell undergraduates

as subjects. The majority of students who participated in the

first pilot study were music majors, all enrolled in the author's

Electronic Music course. All of the students who participated in

the second pilot study were non-music majors, enrolled in the

author's History of Jazz course.

Although a number of difficulties were encountered in both

pilot studies, the overall response of the participants was positive

and encouraging. Evidently most of the participants were intrigued

by the idea of a powerful computer music system that you can hold

in your hand, and consequently they were willing to overlook the

flaws—some quite serious—that they found in the prototype system

they actually worked with.

Pilot Study I

The first pilot study had two main purposes. The first was to

exercise every part of the prototype system thoroughly in order to

bring to light any problems the system might have. Among the major

questions to be answered were:



90

1) Do the APL functions, which are the real heart of the

prototype, work properly in a variety of situations?

2) Do all of the prototype's hardware components function

correctly, and can they withstand continuous usage?

3) Is the telecommunications link between Lowell and Amherst

reliable?

The second major purpose of this study was to discover whether

the prototype had any features that were poorly designed from the

human engineering standpoint. Among the questions to be answered

in this connection were:

1) Is the keyboard layout clear and logical?

2) Are all of the necessary system functions provided, and are

they in an appropriate form?

3) Is all of the information necessary to operate the system

provided, and is it readily available?

Subject profile . The subjects employed in the first pilot study

were eighteen of the twenty- four students enrolled in the author's

Electronic Music course during the Spring 1979 term. All twenty-four

students signed up for the study. Unfortunately problems with the

computer system and the telephone link prevented completion of six

individual sessions. Since Electronic Music is offered by the

College of Music as an upper-level music theory elective, the

majority of the students (sixteen) were juniors and seniors in the

College. Of the two non-music students, one was an electrical



91

engineering major and the other was an undeclared liberal arts

major who has since declared music as his major. The students

ranged in age from 20 to 23. Their average age was 21.3 years.

As would be expected, the musical background listed by the

sixteen music majors was considerable. Every music student of

course plays a musical instrument, with twelve of the students

playing two or more. All of the music students indicated at

least three years of formal training on their principal musical

instrument, and three students claimed as much as thirteen years.

The average for the whole group of music majors was about 8.4

years of formal lessons on the principal instrument. All but one

of the music students had participated in their high-school’s music

program. The liberal arts student who subsequently changed his

major to music said that he plays two musical instruments and that

he has had formal lessons on the principal one for two years. Like

the music majors, he had also participated in a high-school music

program. The remaining student, the electrical engineering major,

claimed to have no previous musical experience of any sort.

Four students indicated that they had had some experience with

computers. The electrical engineering student said that he was an

assistant computer operator at the University of Lowell Computer

Center and that he had done a good deal of programming in FORTRAN

and assembly language. Two of the music students said that they

had done some computer programming: one student said that he had

used BASIC and FORTRAN, the other that he had used XPL and FORTRAN.



92

A third music student said that he had done a little bit of pro-

gramming in BASIC as part of a high-school mathematics course.

The most significant common denominator among all eighteen

students was the fact that they had all been working with the

College's SYNCLAVIER system for two months prior to the pilot

study. Consequently these students were acquainted with many of

the fundamental ideas involved in using a computer to store,

transform, and play music.

Activities . The first group lecture was given on April 3, 1979,

during the regular meeting of the author's Electronic Music class.

The lecture covered (1) the basic ideas of both the theoretical

and the prototype systems, (2) related work in instructional appli-

cations of computers in music and in other fields, and (3) the

nature of the pilot study in which the group was being asked to

participate

.

Following the lecture the floor was opened for question and

discussion. Since the students in this class were relatively

sophisticated vis-a-vis the type of work undertaken in the music

system project, the discussion focused on a few fairly technical

points. Some students, for example, were interested in the inte-

grated circuits used in the prototype's synthesizer. Other students

wanted to know about the computer in Amherst and how it was hooked up

to us in Lowell. Still others were concerned with how best to

market the final hand-held system.



93

At the end of the meeting, the students were asked to sign up

for one-hour individual sessions. These sessions began the next

day, April 4, and ran through April 11. During this period,

eighteen individual sessions were completed. The sessions were

conducted in the author’s office in Durgin Hall, which houses the

College of Music on the University of Lowell's south campus. The

prototype was set up in the office exactly as shown earlier in

photograph 2. The author was present to answer questions and

provide assistance throughout all of the sessions.

Because one of the main purposes of this study was to test

the prototype fully, the activities undertaken during each session

varied considerably. However, the following four activities were

used as guidelines for all of the sessions:

1) Pick a tune in the system catalog and play it.

2) Play the pitch-matching game (i.e., match a set of notes

picked at random by the system)

.

3) Retrieve the "tune with mistake(s)" from the system's

library and then correct all of the wrong notes found in

the tune

.

4) Make a full three-part performance of one of the rounds

listed in the catalog ("Are You Sleeping" or "Three Blind

Mice") .

These particular activities were chosen for two reasons. The first

is that together they require the use of all of the basic system

operations (performance of music, storage and retrieval of music



94

data, editing, entry of music data, and program execution). The

second reason is that, since these tasks are representative of the

kinds of things that might be done with the hand-held system, they

constitute a realistic test of the prototype design.

^ishteen students performed all four tasks. Most of the

students also tried other things, largely of the undirected,

what-happens-if-l-push-this-button sort. Far from being pointless,

the latter activities often forced malfunctions that led to the

discovery of significant faults in both the hardware and software

components of the system.

Upon completing the individual session, each student was

asked to fill out a two-part questionnaire (Appendix C) . Part I

of the questionnaire requests information about the subject's

academic and musical background and about his/her previous experience

with computers. This background information is summarized in the

"Subject Profile" section above. Part II of the questionnaire asks

the subject to comment on various aspects of the prototype design

and to suggest uses for the final hand-held system. The comments

are summarized in the "Results of the Questionnaires" section below.

The suggested uses are included in Appendix D, which is an informal

compilation of ideas offered by students in both pilot studies, as

well as by friends, colleagues, and other students of the author.

Results of the individual sessions . Although there was considerable

experimentation with the prototype during the individual sessions.



95

most of the activity centered around the four prescribed tasks.

These were:

1) Pick a tune in the system catalog and play it.

2) Play the pitch-matching game.

3) Correct all the mistakes found in a familiar tune.

4) Make a full three-part performance of a well known round.

All of the students tried at least these four activities with the

prototype.

All of the students found it trivially easy to retrieve a

library tune and play it. Most also found it very easy to retrieve

and play one or more variants of the pitch-matching game.

Accordingly both of these activities were accomplished in the first

few minutes of each individual session and with only minimal assis-

tance from the author. However, most of the students expressed

some irritation at the slow response of the system and at the

necessity to press the SEND button before anything would happen.

The third task involved fixing the wrong notes in a familiar

tune ("Yankee Doodle", but with two notes a semitone flat). During

the first day of individual sessions (April 4) ,
the students found

this problem almost impossible to solve. The main reason was that

there was no easy or reliable way to move the cursor to a given note.

Because of the inherent characteristics of the time-sharing system,

STEP and BACK cannot cause tones to sound when these keys are pressed

as a carriage return must be transmitted first. Consequently it is

almost impossible to find a wrong note "by ear", i.e., by stepping



96

the cursor one note at a time while listening for the mistake.

Thus about all the students could do was play the entire melody

several times in order to memorize it and then mentally count up

the number of STEPs required to get the cursor over to the wrong

note. Needless to say this made the process of fixing even a single

note quite painful. All of the first day's students said that they

needed some kind of visual display of the notes and some kind of

feedback on cursor movement.

Two different displays were implemented after the April 4

sessions were completed. One is intended to assist with coarse

movement of the cursor, the other with fine movement. The first

display, generated by the PLAY function, gives just the letter

pitch of each note played. This information is simply strung out

across the CRT screen on as many lines as are needed. The resulting

panoramic picture shows all of the notes in an entire composition

(unless it is very long) , which makes finding the approximate

position of any given note fairly easy. The second display,

generated by the STEP and BACK functions, shows the complete pitch,

octave register, and duration data of each note traversed by the

cursor. The information for each note is displayed on its own

line. Each line begins with the ordinal number of the note within

the entire sequence of notes currently in the working area. This

second display makes it relatively easy to home in on a specific

note once its approximate position has been determined.



97

Although the editing process still moved rather slowly after

the displays were provided, the remaining students in the study had

much less difficulty solving the fix-the-notes problem. Generally

the only assistance they required was a brief explanation of the

cursor functions and the DROP and/or RAISE functions. In solving

this problem, most of the students at first ignored the music

functions altogether. The typical first stab at correcting a

wrong note involved (1) stepping the cursor over to the wrong

note and then (2) pressing the key of the presumably correct note.

Most of the students assumed that simply keying the correct note

would automatically replace or overwrite the wrong one. Since the

system does not work this way, the author had to explain to the

students who tried this approach that they had merely inserted an

additional new note and that the wrong note was still there. The

author then directed the students’ attention to the 3x4 array of

music function keys on the upper right portion of the panel. At this

point the majority of these students "discovered" the DROP button.

While some first asked about the action performed by DROP, others

went directly ahead and fixed the wrong notes. The remaining

students had noticed the RAISE button and had correctly guessed that

it could be used to fix the wrong notes since they were both a semi-

tone flat. Again, some went directly ahead with the repairs while

others first asked about the action performed by the function.

An unanticipated consequence of providing the note displays just

described was that the next day, April 5, the students demanded the



98

capability to step precise multiples of notes back and forth through

the working area via a single command as at this point STEP and

BACK could move the cursor only one note at a time. Since they could

see exactly where a given note was, these students felt that it was

a needless inconvenience to have to press the STEP and BACK keys

several times to move the cursor to that note. They felt that,

instead, it should be possible simply to precede the STEP and BACK

commands with the proper number of steps to accomplish the desired

move. Since this was clearly a more efficient way of handling STEP

and BACK, these functions were changed accordingly at the end of the

second day’s sessions.

Several students suggested that a repetition factor also be

implemented for notes' and rests entered on the musical keyboard.

This suggestion was rejected. The reason is that the author wanted,

and still wants, to save numeric information interspersed with input

from the musical keyboard for purposes such as change of octave

register, assignment of output channel, and choice of timbre.

The final task, creating the three-part round, turned out to be

a real struggle for most of the students. In fact only two of them

were able to solve this problem without assistance. Not surprisingly

these two were the music majors who had had significant computer

programming experience. The difficulties here were evidently

conceptual. Before beginning this task in each session, the author

asked each student to describe how he or she would go about creating

the three-part round. Many of the procedures offered were vague or



99

insufficient certainly incapable of being translated into a program

that could be executed by a machine. A typical suggested "procedure"

was: Somebody starts singing, and then somebody else starts."

A complete and logically correct procedure was proposed, however,

in more or less the same form by several students. Although this

procedure is not possible with the prototype—or with the theoretical

system as presently conceived— it suggests a fundamentally different

and possibly better way of organizing the operations of the music

system. The idea is to put some kind of "marker" into the working

area at the point where each voice after the first is to begin. As

each marker is encountered during a performance, the marker causes

successive voices, previously stored elsewhere in memory, to be

started at the right time. A more active variant of the same idea

was also expressed by several students. The latter said that it

should be possible to start the pre-stored voices manually while the

first voice is already playing. A special "cue" button or buttons

could be provided for this purpose.

The most frequent activity spontaneously undertaken by the

students was the attempt to play a tune on the prototype's 12-note

musical keyboard. Most of the students who tried this were dismayed

by the fact that tones do not sound when the keys are struck. This

peculiarity is derived from the same characteristic of the time-

sharing environment that prevents STEP and BACK from sounding tones,

i.e., the necessity for the user to transmit a carriage return before

the system will act. Many of the students who tried to pick out



100

tunes were inunediately discouraged from further playing by this

delay. Other students persisted in their attempts, but, because of

the lack of immediate acoustic feedback, they were unable to hear

when they had hit a wrong key or when an insufficiently depressed

key had failed to register. As a result most of these students were

disappointed when they finally heard their melodies.

Before the end of the individual sessions, it was obvious that

the problem of the non-playing keyboard and the problem of the

inaudible cursor movements performed by STEP and BACK were seriously

hindering the students in performing the prescribed tasks, especially

numbers 3 and 4, and discouraging them from experimenting with the

prototype. Taken together with the often sluggish response of the

computer system, these problems were acting as a sort of "governor"

that prevented the students from operating the prototype beyond a

certain speed or level of performance. There was nothing that could

be done about this situation, however, since the difficulties grow

directly out of inherent features of the time-sharing system in which

the prototype is based.

Results of the questionnaires . After completing the individual

session, each student filled out a two-part questionnaire (Appendix C)

.

The responses to the first part, which asks for the details of each

subject’s academic, musical, and computer background, are summarized

above in the "Subject Profile" section. The responses to the second

part are summarized here.



101

Part II. of the questionnaire asked the following questions:

1) Is the music system easy or difficult to use? Consider, for

example, keyboard layout, the functions provided, the

information shown in the CRT, the music "synthesizer", etc.

2) What additions and/or changes would improve the music system?

3) What could the music system be used for? How would you use it?

4) If the hand-calculator-sized music system described to you

earlier were available, would you like to own one? If yes,

how much would you be willing to pay for it?

Most of the students did not write at great length in answering these

questions. This did not pose a problem for the study, however, since

the students had already communicated a great deal of useful infor-

mation verbally during the individual sessions.

Concerning the ease or difficulty of using the prototype (question

1) ,
six of the eighteen students pointed to the various time-sharing

problems as major obstacles. Five students said that the CRT display

was confusing. Readers who did not see the prototype in action may

wonder about the meaning of this particular criticism. The students

were alluding to the great deal of meaningless information displayed

on the CRT screen when the synthesizer is playing. The reason this

information appears is that both the synthesizer and the CRT

terminal are connected to the same telecommunications line and

both respond to the same ASCII character codes. Unfortunately the

useless information is interspersed with significant items such as

prompts to enter commands or data, error messages, match/no match



102

indications, and elapsed time readouts. Several students complained

that they could not easily distinguish the meaningful information

from the garbage.

Six students commented favorably on the layout of the prototype's

keyboard, while eleven others said that the keyboard was easy to use,

but only after a little practice. Only one student felt that the

keyboard needed major reorganization. Three students said that the

procedures required to accomplish the four prescribed tasks appeared

roundabout

.

A variety of suggestions for improving the music system was

offered in response to question 2. The four most frequent suggestions

were

:

1) provide a better synthesizer (eleven students)

2) provide an instruction manual and/or more instruction in the

use of the system (six students)

3) simplify the system (three students)

4) provide more game and lesson programs (two students)

The remaining suggestions, each made by just a single student, were

predominantly recommendations to add to the system what the students

thought were new features. Actually all but two of the features

proposed are already a part of the theoretical system design (e.g.,

ability to interface with a tape recorder, stereo system, or

synthesizer; provision for a full-sized keyboard; graphic display of

music; etc.). The two genuinely new proposals were (1) to make the

keyboard velocity sensitive so that it can register the loudness of



103

notes played on it, and (2) to provide the ability to list and edit

programs created in program definition mode.

The responses to question 3 heavily emphasized training in basic

musicianship. Eleven of the eighteen students, for example, said

that they would use the system for ear-training, and four students

said they would use the device to improve their sight-singing skills.

Many other suggestions were made by individual students. These are

included in the general compilation of suggested applications in

Appendix D.

The responses to the two parts of question 4 were as follows:

1) Thirteen students indicated that they would like to own one

of the hand-held units while two students said they would

have no use for it. Three students gave no response to this

part of the question.

2) Fourteen students suggested price figures ranging from $15 to

$200. The average was approximately $85. Four students did

not respond to this question.

Pilot Study II

Many problems with the prototype were discovered during the first

pilot study. Although most of these had been rectified well before

the second pilot study was begun, the hard core of problems related

to time-sharing remained. It had been observed in the earlier study

that these difficulties materially impeded man-machine interaction,

and the same pattern was found in this study too. The student



104

subjects, through no fault of their own, were simply unable to interact

with the system at any higher a level than had their predecessors.

The net result was that the amount of new information gained during

the second pilot study was much less than had been hoped for.

Subject profile. The subjects employed in the second pilot study

were thirteen of the twenty-five students enrolled in the author’s

History of Jazz course at the University of Lowell during the Spring

1979 term. A total of fifteen students volunteered, but once again

computer and telephone problems prevented completion of all the

individual sessions.

Since History of Jazz is a "service" course offered by the

College of Music to the entire University community, the academic

backgrounds listed by the participants in this study were quite

varied. Of the thirteen students, five major in art, three in

sociology, two in psychology, two in health professions, and one in

economics. Since History of Jazz fulfills one of the University’s

"core" requirements, which are typically completed during the freshman

and sophomore years, this second group was younger on the whole

than the first group. The ages of the members of the second group

ranged from 18 to 21. The average age was 19.8 years.

Of the thirteen students who participated in this study, only

two indicated that they had had no previous musical background. All

of the others said that they play, or have played, at least one

musical instrument and that they have had formal lessons on the

instrument. The lengths of formal training ranged from less than a



105

year to over eleven years. Eight of the students said they had

in a high-school music program: four in performing

ensembles, two in academic music courses, and two in both. Of

these eight, three had also participated in one or more College of

Music performing ensembles. Finally, one of the students, the

economics major, had been a music major during his freshman year

at Lowell.

It is not unusual to find this degree of musical experience

among the non-music major students who take courses in the College

of Music. Because of the strong professional orientation of the

College—four of its five undergraduate programs prepare students

for specific careers in music—even service courses tend mainly to

attract students who have some prior musical background and are

therefore reasonably confident of their ability to get good grades.

Ten of the students indicated that they had had no experience

with computers, and two others said they had only run a few packaged

programs on a time-sharing system. One student was taking a FORTRAN

course during the pilot study and another had learned BASIC in

high-school. The latter student had also worked with a process

control computer during a summer job in a textile mill.

Activities. The second pilot study followed the same format used in

the first, i.e., group lecture/discussion, individual sessions, final

questionnaire. The lec ture/discussion was given on April 18, 1979,

during the regular meeting of the author's History of is-zz class.

This lecture covered the same topics as the first one, but it was



106

less technical in nature since the students in the Jazz class were

not music specialists and since they did not have the electronic and

computer music technology background of the members of the first

group. The lecture also covered the time-sharing problems encoun-

tered in the first pilot study. Most of the questions following the

lecture revolved around what the students were going to be asked to

do in the individual sessions. Accordingly the author gave a

summary of the tasks that were to be performed with the prototype.

Following the lecture/discussion, the students were asked to sign

up for individual one-hour sessions. These began the next day,

April 19, and continued through April 25. Again the sessions were

conducted in the author's office, with the prototype set up exactly

as before. And, once again, the author was present throughout all

of the sessions.

Reflecting both the experience gained during the first study and

the fact that the students this time were not music specialists, the

tasks prescribed for the second set of individual sessions were

slightly different from those of the first pilot study. The tasks

were as follows:

1) Pick a tune from the library and play it.

2) Pick a different tune from the library. Play it backwards

and then play it upside down.

3) Play one or more versions of the pitch-matching game.

4) Get the "tune-with-mistake(s) '' from the library and then

correct the wrong notes in the tune.



107

5) Make a two-part performance of one of the rounds stored in

the library ("Are You Sleeping" or "Three Blind Mice").

Task no. 2 was added in order to make sure that this group would

try at least two of the music functions. Task no. 3, the pitch-

matching game, was required in the first pilot study, with a simpler

version of the game (program no. 9) added to the program library

specifically for this group. Finally, the round problem, task no. 5

here, was reduced to making only a two-part performance. This

simplification was effected because of the difficulty the first test

group experienced in making a three-part round.

All thirteen students performed all five tasks. In most cases

just about the entire length of the session was required to complete

them all. Although the sessions were generally uneventful, there was

one surprise. Evidently the author had described the five tasks to

the class in very nearly the same words used in the list above. As

a result the first three or four students showed up for their sessions

carrying pieces of music that they had just taken out of the

University '

s

library ( ! )

.

Just as in the first study, each student filled out a question-

naire after finishing his/her individual session. The questionnaire

form was exactly the same as that used in the first study.

Results of the individual sessions . All of the individual sessions

proceeded smoothly and uneventfully. As was noted above, however,

very little new information emerged from these sessions. Instead

the sessions merely confirmed the earlier observation that the



108

time-sharing problems imposed a disappointingly low upper limit on

the "energy level" of the overall man-machine system.

Nevertheless, one session proved to be moderately interesting.

In this session it quickly became obvious that the student knew

her way around the kinds of equipment used in the prototype.

Though she had said that she had no previous experience with

computers, she always seemed to know which button to press and when.

To questioning she replied that she is a salesperson in a local

department store and that her department contains electronic calcu-

lators, electronic games, and the complete line of Texas Instruments

"electronic learning aids" (Speak and Spell, Dataman, Li'l Professor,

etc.). Often when business is slow, she either takes out a new device

and learns to use it or she experiments with one already familiar

to her.

Results of the questionnaires . The questionnaires, like the indi-

vidual sessions, elicited little new information. As with the first

group, the majority (seven students) felt that the keyboard was easy

to use, but only after a little practice. Two students found the

CRT display confusing. There were no comments on the time-sharing

problems, probably because the students had been warned about them

in the introductory lecture.

The students' suggestions for improving the system essentially

duplicated those offered by the first group. The most frequent

suggestion, made by four students, was that more instruction and/or

an instruction manual are needed. Since this comment was also made



109

by six of the eighteen students in the first study, it is clear

that this is an area in need of immediate attention. The only

entirely new proposal was a suggestion by two of the art majors that

the keys should be color-coded.

The responses to question 3 emphasized basic musicianship, just

as in the first study. Eight students mentioned ear-training as a

use of the system. Five students said that the hand-held unit would

be good for interesting children in music and introducing them to

fundamental musical skills. Other uses suggested by individual

members of the second group are included in the compilation in

Appendix D.

In response to the first part of question 4, seven students said

unconditionally that they would buy the hand-held unit while three

others said they would buy it if the price were low enough. One

student said he would not buy it, and two gave no answer at all.

All but one of the students responded to the second part of question 4

which concerned the suggested price of the hand-held unit. The prices

proposed ranged from $20 to $150, with the average being a little

under $70.

Concluding Note

Although the record-keeping facility of the prototype was active

during all of the individual sessions in both pilot studies, the

data gathered were not used for any purpose in the work reported here

The reasons for this are the following:



110

1) The data were collected only to provide a history of each

student s interactions with the prototype. It was thought

that these histories could be useful in determining the

causes of any anomalies in system behavior and any errors

consistently made by the study subjects. As it turned out

the histories were not needed to solve the problems that

actually arose.

2) The author had proposed no hypotheses which could be

tested by analyzing the data.

3) The data are not a complete record of the pilot studies.

About a third of the histories were lost because the record-

keeping facility was not designed to withstand either

interruptions of telephone service or equipment failures

at the central computer site, both of which occurred more

than once during the studies.

4) The problems of the time-sharing environment are so severe

that the data gathered with the prototype can have little

value in predicting how people would use the final hand-held

system.

All of the data have nevertheless been preserved in hard-copy form

and they are available for inspection.



CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
FOR FURTHER RESEARCH

Summary

The two music systems described here evolved in parallel over

the course of the 1978-1979 academic year. The original concept of

bhe theoretical system of course provided the fundamental guidelines

for the development of the prototype. Once the prototype was built

and running, however, the growing experience gained in using it

began to reflect back on the theoretical system. As a result both

systems metamorphosed quite far from the forms envisioned when this

project was first proposed.

Before the design of the prototype finally crystallized

(January 1979), it went through four distinct keyboard layouts, two

revisions of the function repertoire, and one major change in

internal architecture. After the prototype hardware was built and

the APL simulation was completed in February 1979, the design

underwent further changes as a result of the testing done during

the pilot studies. All of these changes were reflected in appropriate

ways in the design of the theoretical system. By the middle of

May 1979, both systems had reached the form in which they are

presented here.

The two pilot studies conducted during April 1979 generated a

good deal of information about the prototype. As expected the first

111



112

pilot study uncovered some problems In the prototype. Among these

were program bugs, confusing or inadequate information in the CRT

display, and inconsistencies in the treatment of certain music

system functions. To the extent that it was possible to do so, each

problem was remedied as soon as it was found. As a result the parti-

cipants in the second pilot study had a slightly better system to

work with than their predecessors did.

There were, however, persistent problems that could not be

corrected because they are inherent in the time-sharing environment

in which the prototype is embedded. These time-sharing-related

problems absorbed so much of the participants' attention that the

goals of the second pilot study had to be scaled down. It had been

hoped that the second study would provide an opportunity to observe

the students' problem-solving behavior with the system. Because the

prototype had proved to be more difficult to use than had been

anticipated, however, the second pilot study became mainly an

occasion to confirm and refine the Information gathered during the

first study.

Conclusions

Two principal conclusions may be drawn from the work reported

here:

1) On the whole the students who participated in the two pilot

studies found the concept of a powerful instructional com-

puter music system appealing. The responses observed during



113

the individual sessions and the answers given in the

questionnaires bear evidence that the basic idea of the

theoretical system struck a responsive chord in the

majority of the students.

2) The prototype is not a good model of the theoretical system

and, consequently, the data gathered in the course of testing

the prototype cannot be directly used in improving the design

of the theoretical system or in predicting how people would

use the ultimate hand-held device. Instead most of the

information generated by the pilot studies is primarily

useful in pointing out areas within the prototype itself that

could be improved to make it a better research tool.

The author underestimated the difficulties of modeling a real-

time system in a time-sharing environment. During the planning and

building of the prototype, the normal operating characteristics of

time-sharing were expected to be nothing more than a minor nuisance.

In reality these characteristics turned out to be major stumbling

blocks and they dominated the subjects* perception of the prototype.

The overall effect of the time-sharing-related problems is to

obscure the structure and functioning of the prototype. Ironically,

the "string interpreter" feature, added to the prototype specifically

to help people work more efficiently, actually contributed to this

obscurity. The reason is that, because strings of commands could be

entered at the keyboard before a SEND was finally transmitted.



114

confusion often arose over which of several observed musical effects

to attribute to which of the several keystrokes

.

The most disappointing effect of the time-sharing-related

problems was that students were forced to work "by eye". The feeble-

ness of the means for generating prompt acoustic feedback—particularly

the non-playing keyboard and the non-playing STEP and BACK functions—
frustrated all efforts to work by ear and compelled the students to

rely primarily on visual information to navigate their way through the

musical tasks.

In retrospect it is obvious that the prototype should have been

built around a suitable dedicated mini- or micro-computer. Had this

been done, the problems associated with time-sharing would never

have arisen, and the resulting version of the prototype would have

been a much more effective research tool.

The prototype as an instructional tool . Although the prototype was

intended primarily as a vehicle for testing the basic design ideas

of the theoretical system, it can also be considered as an instructional

system in its own right. As such, the following conclusions concerning

the prototype can be drawn from its observed performance during the

pilot studies:

1) The prototype is a good medium for games, lessons, exercises,

etc. that require the user to enter only a few notes at a

time. The two- and three-note versions of the pitch-matching

game, for example, were quite successful; throughout the pilot

studies, the students found it easy to play these games. On

)



115

the other hand, the prototype is not well suited to any

activity that requires the entry of more than, say, a dozen

notes at a time, or that requires extensive changing or

of notes. The means for entering and editing notes

are simply too weak and unreliable: there is no substitute

for the feedback provided by a "live" keyboard and audible

cursor.

2) Because of the limited facilities for entering and editing

notes, the prototype does not lend itself to the traditional

procedures of musical composition. The prototype does,

however, support a certain kind of compositional experimen-

tation. It is easy for example, to create "new" compositions

by retrieving pieces from the system’s library and then

subjecting them to transformation by such functions as INVERT,

REVERSE, or SHUFFLE. Several of the people who tried this

procedure expressed some interest in having more composition-

generating functions.

Biases in the music system designs . Despite the obvious differences

between the two systems, the theoretical system and the prototype share

some significant family resemblances. In fact it can be said that the

theoretical system is in some ways just a compact version of the proto-

type, not a fundamentally different animal. The reason for these

similarities is that the same biases or assumptions underlie both

designs

.



116

The "scientific Instrument" model . Both systems share a rather

square
, scientific-ins trument-like appearance. There is no reason

why the systems must be this way; this particular model was adopted

mainly because it provided a familiar starting point. Actually, if

the work reported here is carried all the way through to successful

realization of a hand-held music system, it is unlikely that the

final device will have this rectangular configuration. Instead it is

more likely to have a shape reminiscent of some traditional musical

instrument or, possibly, a shape with flowing, biomorphic contours.

Moreover the controls would almost certainly not be switches laid

out in a rectangular grid. Instead a variety of pressure- and motion-

sensitive controls would be employed, and they would be deployed in

an arrangement designed to conform to the human hand.

The "composer" model . Both music systems are essentially devices

for creating and manipulating musical scores which, however, have the

peculiar property that they can play themselves via the PLAY function.

Although these "scores" may consist of only a few notes, as do, for

example, the typical responses required by game and lesson programs,

the fact remains that all the resources of both systems are organized

around one central activity, forming some desired musical object in

the working area. Accordingly the present systems put the user in

the role of composer , i.e., someone who is active during the creation

of a work but relatively passive during performance. The user's role

during musical performance by the present systems is in fact restricted

to adjusting the overall tempo and volume of the music.



117

Some of the comments elicited during the pilot studies suggest

that the "composer" model may be the wrong one for the system to

embody. For example, the "marker" and "cue" ideas proposed by some

of the students during the studies lead to a conception of the music

system as a set of robot performers who can be given parts and told

when to play. In such a system, the user would be cast in the very

different role of conductor, i.e., someone who directs activities

while they are happening.

Pitch bias . Both of the music systems make it much easier to

deal with the pitch dimension of music than with its time dimension.

This bias in favor of pitch phenomena can be seen in both of the

following aspects of the systems:

1) The pitches of notes can be specified directly merely by

striking the correct note keys. Durations, however, can be

specified only by stepping note-by-note through a previously

entered string of notes and applying the AUGMENT or DIMINISH

function to each note in turn.

2) The music system provides six functions (INVERT, REVERSE,

VERTICALIZE, SHUFFLE, RAISE, and LOWER) that are primarily

concerned with pitch, but only two (AUGMENT and DIMINISH)

concerned with time.

The design could be brought into better balance vis-a-vis the time

dimension by providing a single "rhythm button". In data entry mode

users could record rhythms by tapping them out on this button. The

recorded rhythms could then be manipulated and played independently,



118

or they could be combined with some existing pitch structure in the

working area.

Recommendations for Further Research

The results of the work reported here suggest that there is

need for further research directed toward both the short-term goal

of refining the original music system design and the long-term goal

of producing the ultimate system. Five key areas of work are

outlined below.

New prototype system . Design, build, and test a new prototype music

system based in a dedicated mini- or micro-computer. The following

hardware improvements might be included in the new system:

1) a more powerful synthesizer

2) real-time controls for tempo, volume, and pitch

3) graphic display of music

4) a "rhythm key" for recording note values

5) a keyboard color-coded by categories of functions

In addition the new prototype might make the privileged functions

available either on the front panel or in some other readily accessible

place. If this were done, the testing of the new device could

include an experiment to determine if people who have no background

in computer programming can understand the privileged functions and

use them effectively.



119

Symbolic notation . Taking as a starting point the symbols presently

used on the panels of both systems, develop a complete set of symbols

to represent the operations of the music system. Couple this symbol

set with some appropriate symbolic means for representing music

itself. Keep in mind that both the musical and the operation symbols

^Iti^bely have to be displayed in a tiny screen such as the one

depicted in fig. 1.

Physical configuration . Design and test alternate physical con-

figurations for the final system. Some possibilities are shapes

derived from those of traditional musical instruments and shapes

evolved purely from human factors and human engineering considerations.

In any case begin with a different physical model from that of the

electronic hand calculator.

Artificial intelligence features . Explore the possibility of building

certain artificial intelligence features into the music system. Some

good candidates are:

1) a facility that automatically corrects obvious errors made

by the user. This facility would correct both system-type

errors (e.g., incorrect command syntax) and musical errors

(such as completely unmotivated chromatic notes in an

otherwise wholly diatonic context)

.

2) self-instructional features to help users learn how to

operate the system. The internal "teacher” might, for

example, attempt to diagnose the causes of a particular kind



120

of error made by the user and then display a short warning

message just before the user is about to make that error

again

.

3) an acoustic input facility that can transcribe music directly

from live performance. This would permit music to be entered

into the system by such means as playing, singing, whistling,

or others. This facility might include a "normalizing"

function to translate the acoustic input into the nearest

approximation of standard pitches and note values.

"Conductor"-model system . Design a revised system which focuses on

real-time manipulation of music. Many of the functions available in

the present system could be converted into procedures that can be

applied to music during performances. In addition new functions could

be added to allow musical voices to be entered from the keyboard or

brought in from memory while other music is already playing. The

SHUFFLE function might be extended to include generation of random-

note patterns in real time. This extension would form the basis of

an automatic composition facility that users could control and

experiment with as notes are playing.



BIBLIOGRAPHY

Abelson, H., N. Goodman, and L. Rudolph. LOGO Manual. LOGO Memo No. 7.
Cambridge: MIT Artificial Intelligence Laboratory, 1974.

Allfis , H.G. A modular approach to building large digital synthesis
systems. Computer Music Journal , 1977a, 1(4), 10-13.

• A portable digital synthesis system. Computer Music
Journal , 1977b, 1(4), 5-6.

• A 256-channel performer input device. Computer Music
Journal , 1977c, 1(4), 14-15.

and P. diGiugno . A one-card 64-channel digital synthesizer.
Computer Music Journal , 1977, 1(4), 7-9.

Alonso, S., J.H. Appleton, and C. Jones. A computer music system for
every university. Creative Computing , 1977, 3(2), 57-60.

Arenson, M. Computer-based ear-training instruction for non-music
majors. Proceedings of the 1979 Winter Conference of the
Association for the Development of Computer-Based Instructional
Systems . San Diego, CA, February, 1979, 949-958.

. An examination of computer-based educational hardware
at twenty-eight NCCBMI member schools. Journal of Computer-Based
Instruction , 1978, 5(1,2), 38-40.

Ashton, A.C. Electronics, music, and computers. Unpublished doctoral

dissertation. University of Utah, 1970.

Ashton, D.M. Design of an Educational Environment with a Computer-

Controlled Organ . Salt Lake City: Intermountain Regional Medical

Program, 1973. (EDRS No. ED 079 173).

. Teaching music fundamentals using a computer, controlled

organ, and display scope. Unpublished masters thesis. University

of Utah, 1971.

Bamberger, Jeanne. Capturing intuitive knowledge in procedural

description. Artificial Intelligence Memo No. 38 ,
LOGO Memo No. 42 .

Cambridge: MIT Artificial Intelligence Laboratory, 1976.

. Developing a musical ear: A new experiment.

Artificial Intelligence Memo No. 264 ,
LOGO Memo No . 6 . Cambridge:

MIT Artificial Intelligence Laboratory, 1972.

121



122

Bamberger, Jeanne. The development of musical intelligence I:
Strategies for representing simple rhythms. Artificial Intelli-
gence Memo No. 342 , LOGO Memo No. 19 . Cambridge : MIT Artificial
Intelligence Laboratory, 1975.

^

• The luxury of necessity. LOGO Memo No. 12 .

Cambridge: MIT Artificial Intelligence Laboratory, 1974a.

_• What s in a tune? LOGO Memo No. 13 . Cambridge:
MIT Artificial Intelligence Laboratory, 1974b.

Baruzzi, G., P. Grossi, and M. Milani. Musical Studies: Summary of the
Activity from 1967-1975 . Pisa: CNUCE/CNR, 1975.

Bayer, D. Real-time software for a digital synthesizer. Computer Music
Journal . 1977, 1(4), 22-23.

Bridgman, N. L' Etablissement d'un catalogue par incipit musicaux.
Musica Disciplina , 1950, 4, 65.

Bryden, J.R. and D.G. Hughes. An Index of Gregorian Chant, Volume II :

Thematic Index . Cambridge: Harvard University Press, 1969.

Deihl, N.C. Computer-assisted instruction and instrumental music:
Implications for teaching and research. Journal of Research in
Music Education , 1971, 19, 299-306.

and R.H. Ziegler. Evaluation of a CAI program in articu-
lation, phrasing, and rhythm for intermediate instrumentalists.
Council for Research in Music Education Bulletin , 1973, 31, 1-11.

Goldberg, A. and A.C. Kay. Teaching Smalltalk . Palo Alto: Xerox
Palo Alto Research Center, 1977.

Grossi, P. Studi Musicali: Modalita Operative del TAUMUS, Software di

Gestione del Terminale Audio TAU2 . Pisa: CNUCE/CNR, 1976.

and G. Sommi. Studi Musicali: DCMP—Versione per il Sistema

360/67 . Pisa: CNUCE/CNR, 1974.

Herrold, R.M. Computer-assisted instruction in music: A study of

student performance in the Stanford ear-training program.

Unpublished doctoral dissertation, Stanford University, 1974.

Hiller, L. Some compositional techniques involving the use of

computers. Music by Computer . Ed. H. von Forster. New York:

John Wiley, 1969, 71-83.

Hodges, D.A. Microelectronic Memories. Scientific American , 1977,

237(3), 130-145.



123

Hofstetter, F.T. Computer-based recognition of perceptual patterns
in harmonic dictation exercises. Journal of Research in Muslr
Education . 1978, 26, 111-119.

_. Controlled evaluation of a competency-based approach
to teaching aural interval identification. Proceedings of the 1979
V^inter Conference of the Association for the Development of
Computer-Based Instructional Systems. San Diego, CA, February
1979a, 935-948.

— • Foundation, organization, and purposes of the
National Consortium for Computer-Based Musical Instruction.
Journal of Computer-Based Musical Instruction . 1976, 3(1) , 21-33.

.• GUIDO: An interactive computer-based system for
instruction and research in ear-training . Journal of Computer-
Based Instruction . 1975, 1(4), 100-106.

_• Interactive simulation/games as an aid to musical
learning. Proceedings of the 1977 Winter Conference of the
Association for the Development of Computer-Based Instructional
Systems. Wilmington, DE, February, 1977a, 104-117.

• Microelectronics and music education. Music Educators
Journal , 1979b, 65(8), 39-45.

. Music dream machines: New realities for computer-
based musical instruction. Creative Computing , 1977b, 3(2), 50-54.

Hultberg, M.L., W.E. Hultberg and T. Tenny. Project CLEF: CAI in
music theory—update 1979. Proceedings of the 1979 Winter
Conference of the Association for the Development of Computer-
Based Instructional Systems . San Diego, CA, February, 1979, 928-934.

Ihrke, W.R. A Study of the Present State of Electronic Music
Training, Including Computer-Assisted Instruction: A Bibliography.

Final Report . Washington, D.C.: National Center for Educational

Research and Development, 1972. (EDRS No. ED 063 806).

Jones, M.J. Computer-assisted instruction in music: A survey with

attendant recommendations (Doctoral dissertation. Northwestern

University, 1976). Dissertation Abstracts International , 1976,

36, 7264A-7265A. (University Microfilms No. 76-11,899)

Kay, A.C. Microelectronics and the personal computer. Scientific

American , 1977, 237(3), 231-244.

Killam, R. ,
P. Lorton and E. Schubert. Interval recognition: A

study of student accuracy of identification of harmonic and

melodic internals. Journal of Music Theory, 1975, 19(2), 212-234.



124

Knowlton, P.H. Capture and display of keyboard music. Datamation.
1972, 18(5), 56-60.

^
. Interactive communication and display of keyboard

music. Unpublished doctoral dissertation, University of Utah,
19 71 •

Kuhn, W.E. Computer-assisted instruction in music: Drill and practice
in ear-training. College Music Symposium . 1974,14, 89-101.

Lancaster, D.E. TTL Cookbook . Indianapolis: Howard W. Sams, 1974.

Lawson, J. and M.V. Mathews. Computer program to control a digital
real-time synthesizer. Computer Music Journal . 1977, 1(4), 16-21.

Mathews, M.V. The Technology of Computer Music . Cambridge: MIT Press
1969.

Nelson, G. MPL: A program library for musical data processing.
Creative Computing , 1977, 3(2), 76-81.

Papert, S. Teaching children thinking. IFIP Conference on Computer
Education . Amsterdam: North-Holland, 1970.

. Teaching children to be mathematicians versus teaching
about mathematics. International Journal of Mathematical
Education in Science and Technology , 1972, 3, 249-262.

Peters, G.D. Courseware development for micro-computer based educa-
tion in music. Proceedings of the 1979 Winter Conference of the

Association for the Development of Computer-Based Instructional
Systems . San Diego, CA, February, 1979, 922-927.

. The complete computer-based music system: A teaching

system—a musician ’ s tool. Proceedings of the 1977 Winter
Conference of the Association for the Development of Computer-

Based Instructional Systems . Wilmington, DE, February, 1977,

93-100.

. The development of computer-assisted instructional

materials for use in the teaching of instrumental music via

PLATO IV. Final Report, Undergraduate Instructional Award .

Urbana-Champaign: University of Illinois, 1975.

and J.M. Eddins . Applications of computers to music

pedagogy, analysis, and research: A selected bibliography.

Journal of Computer-Based Instruction , 1978, 5(1,2), 41-44.



125

Placek, R.W. Design and trial of a computer-assisted lesson in
rhythm. Journal of Research in Music Education , 1974, 22, 13-23.

Snell, J. Computer music bibliography. Creative Computing, 1977,
3(2), 54-56.

Taylor, J.A. and J.W. Parrish. A national survey on the uses of,
and attitudes toward programmed instruction and computers in
public school and college music education. Journal of Computer-
Based Instruction , 1978, 5(1,2), 11-21.

Texas Instruments. Electronic Calculators and Learning Aids from
Texas Instruments . Houston: Texas Instruments Inquiry Answering
Service, 1978.

Vaughn, A.C. A study of the contrast between computer-assisted
instruction and the traditional teacher/ learner method of

instruction in basic musicianship (Doctoral dissertation,

Oregon State University, 1977) . Dissertation Abstracts

International , 1977, 38, 3357A. (University Microfilms No.

77-25,414)

Xenakis, I. Formalized Music . Bloomington: Indiana University Press,

19 71.

Xerox PARC Learning Research Group. Personal Dynamic Media . Palo Alto

Xerox Palo Alto Research Center, 1976.



APPENDICES

126



appendix a

MUSIC FUNCTION SUMMARY

This appendix outlines all of the music system functions. The

information provided for each function is as follows!

1) function — the name of the procedure and/or a brief phrase

that describes its action(s) . The name is followed by the

graphic symbol (if any) associated with the function in the

theoretical and prototype systems.

2) mnemonic - the three-letter (upper case) identifier used to

designate the function in the APL-based prototype system (if

the identifier is preceded by a lower case "n”, this indicates

that the function takes a numeric argument)

3) description - an account of the principal action(s) performed

by the function

4) error conditions - a list of the circumstances (if any) under

which the system will abort the execution of the function

Regular Functions

function: AUGMENT '
'

mnemonic : nAUG

description: AUG multiplies the duration of the event (note or rest)

immediately to the right of the cursor by a factor of

n. If n is not specified, the traditional value of 2

is assumed. n=0 is legal but it will produce unpre-

dictable musical results. AUG can be applied to all of

127



128

error
conditions

:

function:

mnemonic:

description:

error
conditions

:

function:

mnemonic

:

description

:

the events in the working area simultaneously by

executing the END function prior to entering n and

AUG.

none

DIMINISH —

nDIM

DIM multiplies the duration of the event (note or rest)

immediately to the right of the cursor by a factor of

1/n. If n is not specified, the traditional value of

2 is assumed. DIM can be applied to all of the events

in the working area simultaneously by executing the

END function prior to entering n and DIM.

DIM is aborted if n = 0.

RAISE (transpose up)

nRAI

RAI transposes the note immediately to the right of

the cursor up n semitones. If n is not specified, it

is assumed to be 1. RAI can be applied to all of the

notes in the working area simultaneously by executing

the END function prior to entering n and RAI.



129

error
conditions

:

RAI is aborted if completion of the operation would

produce one or more notes outside the range of the

system’s music synthesizer.

function: LOWER (transpose down)

mnemonic

:

nLOW

description: LOW transposes the note immediately to the right of

the cursor down n semitones. If n is not specified,

it is assumed to be 1. LOW can be applied to all of

the notes in the working area simultaneously by

executing the END function prior to entering n and LOW.

error
conditions

:

LOW is aborted if completion of the operation would

produce one or more notes outside the range of the

system's music synthesizer.

function: INVERT (mirror inversion)

mnemonic

:

INV

description: INV inverts the pitches of all the notes in the working

area about the first pitch.

error
conditions

:

INV is aborted if completion of the operation would

produce one or more notes outside the range of the

music system's synthesizer.



130

function

:

REVERSE (retrograde)

mnemonic

:

REV

description: REV reverses the order of the events (notes and rests)

in the working area.

error
conditions

:

none

function: VERTICALIZE ^
mnemonic

:

nVER

description: VER reorganizes the events (notes and rests) in the

working area into a series of groups—single notes,

intervals, triads, or chords—consisting of n simul-

taneous events each. If n is not specified, it is

assumed to be 1.

error
conditions

:

VER is aborted under either of the following circumstances

1) n = 0.

2) the working area cannot be partitioned into a whole

number of n-event groups.

function: SHUFFLE ?
mnemonic

:

nSHU

description: SHU randomly reorders the events (notes and rests) in the

working area but leaves the order within each group of

n events intact. SHU can therefore be used to scramble



131

error
conditions

:

sequences of single notes, intervals, triads, or

chords. If n is not specified, it is assumed to be 1.

SHU is aborted under either of the following circumstances

1) n = 0.

2) the working area cannot be partitioned into a whole

number of n-event groups

.

function: STORE

mnemonic

:

nSTO

description

:

STO stores the contents of the working area in user

memory location n. If n is not specified, location 0

is assumed. The previous contents of location n are

stored in the backup area.

error
conditions

:

STO is aborted if n is not in the range 0-9.

function: RECALL

mnemonic

:

nRCL

description: RCL inserts the contents of user memory location n

into the working area at the current position of the

cursor. If n is not specified, location 0 is assumed.

error
conditions

:

RCL is aborted if n is not in the range 0-9.



132

function: COMBINE ^
mnemonic

:

nCOM

description: COM sort-merges the events (notes and rests) in user

memory location n into the events in the working area.

If n is not specified, location 0 is assumed. The key

for the sort operation is the starting time of each

event. Each time COM is invoked, the events brought

in from the user memory location are assigned to an

audio output channel which has not been allocated to

any set of events already stored in the working area.

COM assumes that the sequence of events in the user

memory location represents a single musical voice.

If this is not the case, the musical results of COM

will be unpredictable.

error
conditions

:

COM is aborted under either of the following circumstances

1) n is not in the range 0-9.

2) the total number of musical voices represnted by

the combined contents of the working area and the

user memory location exceeds the number of audio

output channels available in the system's music

synthesizer

.



133

function: MATCH _ =M
mnemonic

:

nMAT

description: MAT performs a note-by-note, rest-by-rest comparison of

the working area and user memory location n. If n is

not specified, location 0 is assumed. If the pitches

and durations of corresponding notes and the durations

of corresponding rests are identical, the MATCH flag

is set and "MATCH!" is displayed. If one or more notes

or rests do not match, the MATCH flag is cleared and

"NO MATCH" is displayed.

error
conditions

:

MAT is aborted if n is not in the range 0-9.

function: STEP ^
mnemonic

:

nSTE

description: STE advances the cursor n events (notes and rests)

through the working area. If n is not specified, it

is assumed to be 1. Each note is played as it is

traversed by the cursor (rests are "played" silently)

.

When the cursor is positioned after the last event in

the working area, calls to STE have no effect.

error
conditions

:

none



13A

function: BACK (backspace) ^
mnemonic

:

nBKS

description: BKS moves the cursor back n events (notes and rests)

through the working area. If n is not specified, it is

assumed to be 1. Each note is played as it is tra-

versed by the cursor (rests are "played" silently).

When the cursor is positioned before the first event

in the working area, calls to BKS have no effect.

error
conditions

:

none

function: RESET (home the cursor)

mnemonic

:

RST

description

:

RESET moves the cursor to a point immediately before

the first event (note or rest) in the working area.

error
conditions

:

none

function: END

mnemonic

:

END

description: END moves the cursor to a point immediately after the

last event (note or rest) in the working area. END is

also used just prior to calls to RAI, LOW, AUG, and DIM

to indicate to the system that these functions are to

operate on the entire contents of the working area.



135

error
conditions

:

none

function; LIBRARY (retrieve music file)

mnemonic: nLIB

description: LIB retrieves a specified musical piece from an external

read-only memory connected to the system and loads

the piece into the working area. If a valid n is

specified, LIB accesses the n-th item in the library

directory. If n is not specified, the system assumes

that the first eight notes in the working area are the

incipit of the desired piece. LIB extracts the melodic

intervals between these notes and then searches the

library directory for a piece beginning with these

same intervals . If the working area contains fewer

than eight notes, or if fewer than seven intervals

match any incipit in the library directory, LIB will

retrieve the piece whose incipit most nearly matches

the notes in the working area.

error
conditions

:

LIB is aborted under either of the following

circumstances

:

1) neither n nor an incipit is specified.

2) n is greater than the number of entries in the

library directory.



136

function: PROGRAM (retrieve program file)

mnemonic

:

nPRG

description: PRG retrieves the n-th program stored in an external

read-only memory connected to the system and loads

it into the system's internal program buffer. The

previous contents of the program buffer are lost.

error
conditions

:

PRG is aborted under either of the following

circumstances

:

1) n is not specified.

2) n is greater than the number of entries in the

program library directory.

function: PLAY m)
mnemonic

:

PLA

description: Starting from the event (note or rest) immediately to

the right of the cursor, PLA decodes and then plays

each of the notes in the working area on the system's

music synthesizer. The pitches of the notes will be

played exactly as specified, but starting times and

durations will vary according to the current setting

of the TEMPO control.

error
conditions

:

none



137

function: GO (execute)

mnemonic: XCT

description

:

XCT initiates execution of the program presently

stored in the program buffer. If the program buffer

is empty, XCT has no effect.

error
conditions

:

none

function: CLEAR

mnemonic : CLR

description: CLR deletes the entire contents of the working area

and repositions the cursor to a point immediately

before the beginning of the working area.

error
conditions

:

none

function: DROP

mnemonic: nDRO

description: DRO deletes n events (notes and rests) from the working

area, beginning with the event immediately to the right

of the cursor. If n is not specified, it is assumed

to be 1. Any calls to DRO when the working area is

empty have no effect.

error
conditions: none



function

:

DEFINE

mnemonic

:

description;

error
conditions

:

function:

mnemonic

:

description:

error
conditions

:

function:

mnemonic

:

description

:

error
conditions

:

DEF

DEF switches the system back and forth between direct

execution mode and program definition mode. Each time

DEF is executed, it complements the logical state of

the program flag.

none

DATA

DAT

DAT sets the system's internal flag, which switches

the system into data entry mode.

none

INSERT

INS

INS translates the character data in the keyboard

buffer into note-matrix form and inserts the note-

matrix into the working area at the point indicated

by the cursor. It then clears the keyboard buffer and

clears the data flag, which switches the system from

data entry mode back into direct execution mode.

none



139

function: UNDO

nmemonic: UND

description: UND exactly reverses the effects of the last function

executed. UND is therefore a sort of universal inverse

function. UND is not defined for PLA, STE, BKS , RSI,

or END, or for the privileged functions.

error
conditions : none

Privileged Functions

function: preset the counter

mnemonic

:

nSEC

description: SEC loads the number n into the counter. If n is not

specified, it is assumed to be 0.

error
conditions

:

none

function: decrement the counter

mnemonic: DEC

description

:

DEC subtracts 1 from the number in the counter register.

If the counter register contains zero, the DEC function

causes the counter to "wrap around" to its maximum value.

error
conditions

:

none



140

function: enable the display

mnemoni c

:

DON

description: DON enables the system's display. In the enabled state,

the display will show any information sent to it (e.g.,

the basic pitch and time data of each note as it is

played on the system's music synthesizer).

error
conditions

:

none

function: disable the display

mnemonic

:

DOF

description: DOF disables the system's display. In the disabled

state, the display will not show any of the information

sent to it.

error
conditions

:

none

function: start the timer

mnemonic

:

STT

description: STT clears the timer register to zero. Since the timer

is directly connected to the system's tempo clock.

the timer will begin counting again immediately following

the execution of the STT function.

error
conditions

:

none



141

function: display the timer

mnemonic

:

DST

description: DST displays the current contents of the timer register

on the system’s display (provided that the display has

been enabled). Since the tempo clock rate is controlled

externally by the user, the number displayed by DST

must be interpreted in relation to the current tempo

setting. When the TEMPO knob is set to 60 beats per

minute (its "normal" setting), the display reads

directly in hundredths of a second. At any other

tempo setting, the displayed number must be multiplied

by 60/TEMPO to obtain a value in hundredths of a

second

.

error
conditions

:

none

function: jump to executive

mnemonic

:

JPX

description

:

JPX causes an immediate jump out of the piece being

performed or the currently executing program and returns

control to the "wait" step of the executive routine.

error
conditions

:

none



142

function: NOTE (load music constant)

mnemonic: NOT

description: NOT permits music-type data that are incorporated

within a program to be read directly into the keyboard

buffer while the program is executing. NOT sets the

data flag, but it does not engage the mechanism that

causes the system to hang up at the "wait" step of

the executive routine. Instead, after the note function

is executed, successive music characters are simply

copied from the program buffer into the keyboard

buffer (all non-music characters except the one repre-

senting INSERT are ignored) . This process continues

until the character associated with INSERT is encountered.

error
conditions : none

Branch functions . The branch functions form a distinct subgroup within

the privileged group. Under the appropriate conditions, each of the

branch functions causes a transfer of control to a program step

located a specified number of keystrokes before or after the step

containing the branch function. The "target" of a branch function

is therefore found simply by counting keystrokes forward or backward

from the branch step. Consider, for example, the following program

segment

:



1A3

DAT

1 MAT

4 BBN

If the music entered following execution of the DAT step fails to

match the contents of user memory location 1, the BBN function

(^ranch ^ack on Not-match) will cause a transfer of control back

four keystrokes to the DAT step. Note that the branch step itself

is not counted in determining the target of the branch.

All of the branch functions have identical error conditions.

Execution of any branch function is aborted under any of the following

circumstances

:

1) the number of keystrokes to be skipped, n, is not specified.

2) the specified number of keystrokes to be skipped would

cause a branch to a point before the beginning or after the

end of the current program.

3) n = 0 (i.e., the function causes a branch back to itself).

function: unconditional branch backward

mnemonic: nBRB

description: BRB causes a transfer of control back to the program

step which is -n keystrokes from the one containing

this function.

error
conditions

:

(see discussion above)



14A

function; unconditional branch forward

mnemonic

:

nBRF

description

;

BRF causes a transfer of control forward to the program

step which is n keystrokes from the one containing

this function.

error
conditions

:

(see discussion above)

function: branch forward on counter > 0

mnemonic

:

tiBFP

description: If the number in the counter register is greater than

zero, BFP causes a transfer of control forward to the

program step which is n keystrokes from the one containing

this function. If the number in the counter register

is not greater than zero, the next program step in

sequence is executed.

error
conditions

:

(see discussion above)

function: branch back on counter > 0

mnemonic

:

nBBP

description

:

If the number in the counter register is greater than

zero, BBP causes a transfer of control back to the

program step which is -n keystrokes from the one

containing this function. If the number in the counter



145

error
conditions

:

register is not greater than zero, the next program

step in sequence is executed.

(see discussion above)

function: branch forward on counter = 0

mnemonic: nBFZ

description

:

If the counter register contains zero, BFZ causes a

transfer of control forward to the program step which

is n keystrokes from the one containing this function.

If the counter register contains anything other than

zero, the next program step in sequence is executed.

error
conditions

:

(see discussion above)

function: branch back on counter = 0

mnemonic

:

nBBZ

description: If the counter register contains zero, BBZ causes a

transfer of control back to the program step which is

-n keystrokes from the one containing this function.

If the counter register contains anything other than

zero, the next program step in sequence is executed.

error
conditions

:

(see discusssion above)



146

function: branch forward on match

mnemonic

:

nBFM

description: If the match flag is set, BFM causes a transfer of

control forward to the program step which is n key-

strokes from the one containing this function. If

the match flag is clear, the next program step in

sequence is executed.

error
conditions

:

(see discussion above)

function: branch back on match

mnemonic: nBBM

description: If the match flag is set, BBM causes a transfer of

control back to the program step which is -n keystrokes

from the one containing this function. If the match

flag is clear, the next program step in sequence is

executed.

error
conditions

:

(see discussion above)

function: branch forward on not-match

mnemonic

:

nBFN

description: If the match flag is clear, BFN causes a transfer of

control forward to the program step which is n key-

strokes from the one containing this function. If



14 7

error
conditions

:

the match flag is set, the next program step in

sequence is executed.

(see discussion above)

function: branch back on not-match

mnemonic

:

nBBN

description: If the match flag is clear, BBN causes a transfer of

control back to the program step which is -n key-

strokes from the one containing this function. If

the match flag is set, the next program step in

sequence is executed.

error
conditions

:

(see discussion above)



appendix b

LISTINGS OF THE APL SIMULATION

Global Constants and Variables

ASCII a vector containing the ASCII characters that select the

pitches of the tones produced by the synthesizer. The

characters are arranged in ascending chromatic order

starting from C (the octaves of tones are selected by the

appropriate ASCII digit codes, 0-7).

BADKEY a logical flag that is set whenever the simulation receives

a character which is not an element of KEYS (q.v.)

CHANNEL a vector containing the ASCII characters that select the

audio output channels of the synthesizer

CLEAR logical (boolean) zero

CONTROL a numeric vector containing the indices of the characters

associated with PLAY and the cursor functions in the

character vector KEYS (q.v.)

COUNTER the loop counter

CURSOR the cursor

DATAFLAG the data flag

ERRFLAG the error flag

148

[|



149

FILL a do nothing "padding" character used to fill out the

durations of notes played on the synthesizer

FMATRIX a character matrix containing the 3-letter mnemonic

names of all the regular and privileged functions

FUNCTION a numeric scalar variable which is used to hold the

index of the row in FMATRIX that contains the name of

the next function to be executed

INPUT the character vector used both to receive keyboard input

from the user and to hold the currently executing program

KBDBUF the keyboard buffer

KEY the numeric index in KEYS (q.v.) of the character most

recently entered at the keyboard or read from a program

string

KEYS

LIGHTFLAG

a character vector containing all the characters

recognized by the simulation. The associations of the

characters are:

1-13: ascending chromatic scale, C-c

14-15: low- and high-octave keyboard registers

16-25: ASCII 0-9

26-69: regular and privileged functions

a logical flag that is set to enable the displays

generated by the system and cleared to disable them

LIGHTFLAG



150

IIATCHFLAG the match flag

MODEFLAG the program flag

NBUF the number buffer

NOTES a matrix of the pitch characters used in the note displays

generated by PLAY, STEP, and BACK

NUMBER a numeric scalar variable that contains the numeric

parameter (if any) of the function about to be executed

NUMFLAG a logical flag which, when set, indicates that at least

one digit character is in the number buffer

OCTAVE a two-element numeric vector containing the offsets used

to place pitches entered from the keyboard into either the

lower or upper register

OFF a character vector containing a sequence of ASCII charac-

ters used to turn all of the synthesizer's audio output

channels off

OFFSET a numeric value chosen from OCTAVE (q.v.) which is added

tn rhp value of KEY when it represents a music—type

character to obtain a patch number in the correct octave

for notes entered at the keyboard



151

ON a character vector containing a sequence of ASCII

characters used to turn all of the synthesizer's audio

output channels on

PCOUNT the number of music characters presently in the keyboard

buffer

PREVFUNC the numeric index of the row in FMATRIX that contains

the name of the most recently executed function

PREVNUM a numeric scalar that contains the numeric parameter (if

any) of the most recently executed function

PROGBUF the program buffer

REGNO the number of the next record to be saved by the simula-

tion's record-keeping facility

RECORD a numeric vector that stores all the values of KEY during

a session with the simulation (the record-keeping facility

stores -KEY for any operation that generates an error

condition)

RHOX the number of events (notes and rests) currently in the

working area

SET logical (boolean) one

SIGN a two-element numeric vector used to tag the numeric KEY

codes as they are stored in RECORD



152

TEMP a temporary storage area used to hold the unexecuted

portion of a program string while the program pauses

to accept input from the user (DAT copies the string

into TEMP from INPUT, and INS copies the string back

into INPUT)

TEMPO a numeric scalar variable that contains the current

tempo setting (in beats per minute)

U the backup area

UMATRIX a character matrix containing the 3-letter mnemonic

names of the functions used to reverse the effects of

each of the functions named in FMATRIX

VO - V9 the user memory locations

X the working area

XEMPTY a logical flag that is set whenever the working area

is empty



VASKlUlV
'^Z^ASK B

Cl]
C2] Z^(v\S3:»

V

VAUGlUlV
VAUGiA

[1] PREVNUM^l ^NUMBER ,

2

C2] ^XEMPTY/0
[3] GETARG
[4] A TMULT PREVNUM
[5] U^\0

V

VBBCHECKiUl'^
IBBCEECK S

Cl] ^{0-^/ pNUMBER) /ERRl
[2] *(NUMBER=Q) /ERR2
[3] RHOPB^pPROGBUF
[4] RHOI^pINPUT
[5] -( iNUMBER+l)>RHOPB-RHOI) /ERR3
[6] -*•0

[7] ERRl: ' ’,5,’ NUMBER MISSING'
[8] ERRFLAG^SET
[9] *0

CIO] ERR2: ' ’,5,' BY ZERO NOT ALLOWED
Cll] ERRFLAG^SET
Cl2] -0

Cl3] ERR3: ’ ^* 3: »,5,' OUT OF RANGE'
C14] ERRFLAG^SET

V

V5BM. JV

VBBMiRHOPBiRHOI
Cl] BBCHECK 'BBM'
C2] *ERRFLAG/0
C3] PREVNUM^NUMBER
C4] U^\0
C5] ^i-'MATCHFLAG) /O

C6] BRANCHBACK
V



VSB^CDlV
IBBN \RHOFB\RHOI

[1] BBCEECK- 'SBiV'
[2] -^ERRFLAG/Q
[3] PREVNUM^NUMBER
[4] U^\0
[5] -^MATCHFLAG/Q
[6] BRANCHBACK

V

VBBPCDlV
VBBPiRHOPBiRHOI

[1] BBCHECK' BBP'
[2] -^ERRFLAG/O
[3] PREVNUM^NUMBER
[4] U^\0
C5] -^iCOUNTER^O) /O
[6] BRANCHBACK

V

vBSZ[^]V
1BBZ\RE0PB\RE0I

[1] BBCEECK 'BBZ'
[2] -^ERRFLAG/Q
[3] PREVNUM^NUMBER
[4] U^\0
[5] -^iCOUNTER^O) /O

[6] BRANCHBACK
V

[ 1 ]

C2]
[3]
[4]
[5]
L6 j

[7]
[ 8 ]

[9]
[10] -o
[11] ERR3: ’ ',5,

[12] ERRFLAG^SET
V

NUMBER MISSING'

OUT OF RANGE'

BY ZERO NOT ALLOWED'

^BFCHECKLUlV
VBFCEECK S
*(0 = ^/ qNUMBER) /ERRl
^{NUMBER>^INPUT) /ERR2
^{NUMBER<1) lERRZ
-0

ERRl: ' '.5,'

ERRFLAG^SET
-0

ERR2'. ' ',5,'

ERRFLAG^SET



VSFMCDiV
IBFM

[1] BFCHECK' BFM'
[2] -^ERRFLAG/O
[3] PREVNUM^NUMBER
[4] U^\0
[5] -^(-MATCHFLAG) /O
C6] BRANCHFWD

V

VSFil/CDJV

VBFN
[1] BFCHECK 'BFN'
[2] -^ERRFLAG/Q
[3] PREVNUM^NUMBER
C 4 ] U^\Q
[5] -^MATCHFLAGIO
[6] BRANCHFWD

V

VSFPCD3V
IBFP

[13 BFCHECK 'BFP'
[2] -^ERRFLAG/O
[3] PREVNUM^NUMBER
[4] U^\0
[5] -^iCOUNTER^O) /O
[6] BRANCHFWD

V

V5FZCD3V
IBFZ

[13 BFCHECK 'BFZ'
[23 -^ERRFLAG/Q
[33 PREVNUM^NUMBER
[43 U^\Q
[53 -^iCOUNTER^O) /O

[63 BRANCHFWD
V



Cl]

. KSLUl^
^BKSiNUMiCOUNT
*XEMPTY/0

C2] NUM^l^NUMBER,!
C3] COUNT^O
[4] OB
[5] L:^{CURS0R<1) /Q
[6] COUNT^COUNT+1
C7] *{COUNT>NUM) /Q
[8] CURSOR^CURSOR-1
[9] SSPLAY
[10] ^L

V

»Bi?flCD]V
1BRB\RH0PB\RH0I

Cl] BBCHECK 'BRB'

C2] ^ERRFLAG/0
C3] PREVNUM^NUMBER
C4] U^iO
C5] BRANCHBACK

V

VBi?FCD]V
VBRF

Cl] BFCHECK 'BRF'

C2] ^ERRFLAG/0
C3] PREVNUM^NUMBER
C4] U^iO
C5] BRANCHFWD

V

.BRANCHBA FCD]V
VBRANCHBACK

Cl] INPUTS { {-NUMBE.
V

,BRA..CHFWDLU:\^
VBRANCHFWD

Cl] INPUT^iNUMBER-
V



[1]

7CLi?[D]V
ICLR
PREVNUM^xQ

[2] U^X
C3] X^xO
[4] CURSOR^l

Cl]

V

VCOM[D]V
1C0M\T\I0^\NCEX\R0NCEX\FREECH
ERRORCEECK

[2] ^ERRFLAG/0
C3] PREVNUM^NUMBER
[4] U^X
[5] 1 ,^NUMBER
[6] -(0 = x/pr)/o
[7] 104-^14

[8] NCEX^ilO^eXl ;2] )/I04
[9] RONCEX^pNCEX
[10] ^(.i^<R0NCEX+l) /ERR
[11] FREECE^i'-ilO^eNCEX)) / 10^
[12] Tl i2l^liFREECE
[13] X^T-;X

[ 14] X^XliXlxl'l ; ]

[15] 0
[16] ERR'. ’ 5^ 3: 7: TOO MARY VOICES'
[17] ERRFLAG^SET

[1]

V

.DATIUIV
IDAT
TEMP^INPUT

[2] IEPUT^'

'

[3] ' << ENTER DATA'
[4] DATAFLAG^SET

[1]

V

VDffC[D]V
IDEC
U^PREVNUM^x^

[2] COUNTER^COUNTER-1
V



,DEC0DE\.U1^
VDECODEiPITCH

[1] -^(KEYySS) /ERROR
[2] ^{KEY>13) /NEXTl
[3] -^KBDFLAG/A
[4] KBDBUF^xO
[5] PCOUNT^O
[6] KBDFLAG^SET
[7] A:PITCH^iKEY*13)^0FFSET+KEY
[8] KBDBUF^KBDBUF , iZO^PCOUNT) ,1, PITCH ,Z0
[9] PCOUNT^PCOUNT+1
[10] RECORD^RECORD ,KEY>^SIGNLERRFLAG+ll
[11] -O
[12] NEXTl:^iKEY>15) /NEXT2
[13] OFFSET^OCTAVEiKEY-lZl
[14] ^KBDFLAG/0
[15] KBDFLAG<-SET
[16] RECORD^RECORD . KEY^SIGNlERRFLAG-^l ]

[17] -»0

[18] NEXT2:^iKEY>25) /NEXTZ
[19] NBUF^NBUF ,jKEY-1S
[20] -^NUMFLAG/O
[21] NUMFLAG^SET
[22] RECORD^RECORD ,KEY^SIGNlERRFLAG+i:i
[23] -O
[24] NEXTZ:FUNCTI0N^KEY~2S
[25] -^i^NUMFLAG) /NEXT^
[26] NUMBER^iNBUF
[27] NBUF^'

'

[28] NUMFLAG^-CLEAR
[29] NEXTi\:^{FUNCTIONxil) /Q

[30] KBDFLAG^CLEAR
[31] ->0

[32] ERRORiBADKEY^SET
7

.DEFLUIH
VDEF

[1] PREVNUM^xO
[ 2 ] U^xQ
[3] MODEFLAG^-MODEFLAG
[ 4 ] -^i-^MODEFLAG) /O

[5] PROGBUF^' '

V



159

VDIMLUlV
VDIMiA

[1] PREVNUM^l^NUMBER ,2
[ 2 ] U^\0
[3] -^XEMPTY/O
C4] -^iPREVNUM-O) /ERR
LSI GETARG
[ 6 ] A TMULTrPREVNUM
C7] -VO

[ 8 ] ERR: ' DIMINUTION BY ZERO NOT ALLOWED'
[9] ERRFLAG^SET

V

.uOFLUlV
IDOF

Cl] LIGHTFLAG *- CLEAR
V

.Z?(7A?[D]V

.^ON
Cl] LIGHTFLAG ^ SET

V

VZ?i?OCD]V

1DR0\DUR\CM1\N
Cl] PREVNUM ^14 NUMBER,!
C 2 ] U^X
C3] -y{PREVNUM^Q) /Q
C4] -^{XEMPTYyCURSOR>RHOX) /O
C5] N ^ 0

C6] LI: N ^ N+1
C7] -^(N > PREVNUM) /O
C8] ^(RHOX=l) /L2
C9] DUR^XLCURSOR;iil
CIO] CMl^CURSOR-l
Cll] X^iiCMl,^^)tX)T(CURSOR,0)iX
C12] ;i:C;l]^((7i^l+lC;l]), (CMl^XL ;i:)) -DUR
Cl3] ZC;l]^:fC;l]-lCl;l]
Cl4] RHOX - RHOX-1
Cl5] -LI
C16] L2: X ^ \ 0

V



VZ?5TCD]V
^DST ; SECONDS; MINUTES

Cl] 5ffC0;yZ?5^Dr5[6]
C2J MINUTES^UTSlbl
[3] -^iSECONDS^TIMERL?!) /DISP
C4] SECONDS^SECONDS+SO
[5] MINUTES^MINUTES-1
[ 6 ] DISP: ’

'

[7] • TIME X '
, (j {SECONDS-TIMERL2:\) + SO>^MINUTES-

TIMERll}),' SECONDS'
[ 8 ]

V

.DUMLUlV
'VDUM

Cl] -J-O

V

VENDLUlV
VEND

Cl] CURSOR^RHOX+1
V

VERRORCHECKiU:\V
,.ERRORCHECK

Cl] -^(.Oxx/ pNUMBER) /

L

C2] NUMBER ^ 0

C3] L: ^(NUMBER>9) /ERR
C 4 ] -»>0

C5] ERR: ' ILLEGAL MEMORY NUMBER'
C6] ERRFLAG^SET

V

VGETARGmV
VGETARG

Cl] A^CURSOR
C2] -^(CURSOR^RHOX) /O

C3] A^xRHOX
V



161

VIiV5;r
[ I ] FEEVNUM^xQ
C 2 ] U^X
[3] -(0 = x/pXSZ}Si/F) /C
[4] T^iPCOUNT ,i^)pKBDBUF
[5] OFFSET * 4 7

[6] STUFF
[7] KBDBUF ^ lO
[8] C: ^i'-DATAFLAC) /Q
[9] INPUT^TEMP
[ 10 ] TEMP^'

'

[II] DATAFLAG^CLEAR
7

ylNVim
. INV ; TEMP ; IRHOX ; AXIS ;

[1] -EXEMPT! /O
[2] ; 3]

[3] IRHOX^xRHOX
[4] NR^iTEMP^Q) / IRHOX
[5] AXIS^l^TEMPlHR^
[6] TEMPlHRl^^AXIS-TEMPlHR'^-AXIS
[7] -(v/(2’PA^P[iVi?]>96) ,rffMP[i7i?]<l)

[ 8 ] XlxZl^TEMP
[9] -O
[10] ERR: ' Six* ROTES OUT OF RARGE'
[11] ERRFLAG^SET

7

.I^I!ri/dLJZP[D]7
7Ii7iri/3LIZP

[ 1 ] VQ^Vl^V2^VZ<rV^^V^^V^^Vl^V%^V2^\0
[ 2 ] FURCTIOR^TIMER^PREVFURC^PCOURT^O
[ 3 ] RECORD^KBDBUF^PREVRUM^RUMBER^X^U^

i

0

[4] PROGBUF^IRPUT^RBUF^'

'

[5] LIGHTFLAG^ERRFLAG^dATAFLAG^RUMFLAG->-KBdFLAG^MATCHFLAG^
MODEFLAG^CLEAR
[6] BADKEY^CLEAR
[7] OFFSET^^l
[8] CURSOR^l
[9] TEMPO^SO
[10] PJ/^8 0

[11] URL^+/UTS
7



.e7p;i:[D]v

^JPX
[ 1 ] INPUTS'

'

7

,LJ5[D]7
'^LIB;INCIPITiCOMPiNUMiCATALOGiLEN

[1] *(Q^>^/pNUMBER) /N
[2] -^XEMPTY/ERRl
[3] ^ MUSLIB' FTIE 4

[4] LEN^QlRHOX
[5] CATALOG^FREAD 4,0
[6j CATALOG^i i{QCATALOG)rl) ,l)pCATALOG
[7] CATALOG^iO ,-8-LEN)^CATALOG
[8] INCIPIT^iLEN~l)i , (14I[;3])-("l)+;s:[;
[9] COMP^CATALOG+ .=INCIPIT
[10] NUM^l^iCOMP-[ /COMP) / \lipC ATALOG
[ 11 ]

' ’

[ 12 ] ’ PIECE NO. ' ,wNUM
[13] '*

[14] U^X
[15] X^FREAD ^,NUM
[16] ( (p;^)i4) ,4)pZ
[17] FERASE 4

[18] CURSOR^l
[19] -O
[20] N'. ' MUSLIB' FTIE 4

[21] ^iNUMBER>FFREE ^)/ERR2
[ 22 ] U^X
[23] X^FREAD ^.NUMBER
[24] ( (p;f)T4) ,4)p^
[25] FERASE 4

[26] CURSOR^l
[27] ->'0

[28] ERRl'. ' NO NOTES OR CATALOG NO.

[29] ERRFLAG^SET
[30] -*-0

[31] ERR2: ' PIECE NO. DUMBER) ,
'

CATALOG'
[32] ERRFLAG^SET
[33] FERASE 4

V

GIVEN'

NOT IN



VLOGOFFCDDV
VLOGOFF

[I] 'SYSLOG' FTIE 2
C2] RECNO^FREAD 2.0
[3] RECORD FWRITE 2^RECN0
[4] RECNO^RECNO+1
[5] QTS FWRITE 2,RECN0
[6j RECNO^RECNO+1
[7] RECNO FWRITE 2,0
[8] FUNTIE 2

[9]
[ 10 ]

’

'

[II] ' BYE '

[ 12 ]
’

'

[13] » «

V

VLOGONlUlV
VLOGON

[ 1 ]
’ ’

[2] ' WELCOME TO THE MUSIC SYSTEM'
[3]
[4] ' SYSLOG' FTIE 2

[5] RECNO^FREAD 2,0
[6] UTS FWRITE 2, RECNO
[7] RECNO^RECNO+1
[8] (ASK' NAME: ')FWRITE 2, RECNO
[9] RECNO^RECNO-^1
[10] RECNO FWRITE 2,0
[11] FUNTIE 2

[ 12 ]
'

’

[13] •'

7

VL(5{/[D]V

1L0W%A
[1] FREVNUM^1\NUMBERA
[ 2 ] U^\^
[3] -^XEMPTY/O
[4] GETARG
[5] A TRANSPOSE-PREVNUM

7



IMACHINEimi
1MACEINE\CEAR

[1] INITIALIZE
[2] LOOP: OFF
[3] INPUT^ASK')'
[4] MORE iCEAR^lfINPUT
[5] INPUT^l^INPUT
[ 6 ] ' \» )/0
[7] -^(.{CEAR-'^^ )y^MOdEFLAG) /EXEC
[8] PROGBUF^PROGBUF ,CEAR
[9] -^CONTN
[10] EXEC:KEY^KEYS\CEAR
[11] DECODE
[12] -^BADKEY /ERROR
[13] ^iNUMFLAG^KBDFLAG) /CONTN
[14] SETUP
[15] 1 ,FMATRIXLFUNCTI0N i']

[16] /KEY=CONTROL) /WRAP
[17] PREVFUNC^FUNCTION
[18] WRAPiNUMBER^xO
[19] RECORD^RECORD ,KEY^SIGNLERRFLAG+1]
[20] ERRFLAG^CLEAR
[21] -^CONTN
[22] ERROR:' NON-EXISTENT KEY CODE'
[23] BADKEY^CLEAR
[24] CONTN:^(0^>^/qINPUT) /MORE
[25] -^LOOP

V



165

vmatluav
"^MATiTXiTiTT

[ 1 ] ERRORCHECK
[2] ^ERRFLAG/0
[3] PREVNUM^NUMBER
[4] ^XEMPTY/Q
[5] NUMBER
[6] •^(RHOX=lipT) /C
[7] MATCHFLAG^CLEAR
[ 8 ]

' »

[9]
[10] ' NO MATCH'
[ 11 ]

'

'

[ 12 ]
•'

[13] -0

[14] CiTX^Xlil 3 4]
[15] TT^Tlil 3 4]
[16] TXLii:\<-TXlil']~TXllii:^
[17] TTL\ll^TTL;l2-TTll;ll
[18] MATCHFLAG^^/ ( ,TX)= ,TT
[19] -^MATCHFLAGIM
[ 20 ]

’

'

[ 21 ]
'

'

[22] ' NO MATCH'
[23] •’

[24] '

'

[25] -O
[26] M:'

'

[27] •'

[28] ’ match"'
[29] '»

[30] ’’

7



166

VPLi4[D]V
V PL A ; LEN ; TX ; RHONRiTRHONE ;NRiRHOTX ; DISPLAY iTEMP ;

NREC ; BUF ;NOWi EVCOUNT ; NCOUNT ; PTIMP ; Cff ; ; SELECT ; EVENT \RCOUNT
Cl] LEN^RHOX-CURSOR-l
[2] ^{LEN=0)/0
[3] TX^{i~LEN) ,^)iX
[4] TXlil 4]^2’A’[;1 4]x604rp/i/PO
[5] NR^{O^TXLi32) / \ LEN
[ 6 ] -^i^LIGHTFLAG) / NEXT
[7] RHOTX^l^pTX
[ 8 ] DISPLAY^iRHOTX,i^)p{i*><RHOTX)p' R '

[9] DISPLAYlNR; :\^N0TESL(1 + 12
\ TXLNR;3l)

CIO] NEXTiRHONR^qNR
Cll] TRH0NR^2^RH0NR
Cl2] TEMP^iTRHONR, Z)pO
C 13] rP^PC ;l]^!Z’J^CiVP;l] ,!Z’;s:CiVi?;l] + r;s:Ci7/?;4]-l
Cl4] Tff^^PC ;2]-<-r;srCi7P;2] ,r;i:Ci7P;2]

Cl5] TEMP[;31^TXLNR\3:1 ,RH0NRp~l
Cl6] TEMP^TEMPliTEMPi;llil
Cl7] TX^xO
Cl8] NREC^O
C 19] BUF^' '

C20] ' TOOTS' FCREATE 1

C21] UTRAP 52

C22] NOW^lTEMPllill+O .S

C23] EVCOUNT^O
C24] NCOUNT^Q
C25] XF0RM:NC0UNT^NC0UNT+1
C26] ^iNCOUNT>TRHONR) /WRAP
C27] STIME^lTEMPLNCOUNT;l}+0 .5

C28] CH^CHANNELlTEMPlNCOUNT ;2ll
C29] FUNC^TEMPlNC0UNT;3l
C30] SELECT^iFUNC<0) ,2pFUNC>0
C31] EVENT^CH , SELECT /' O' A^l\FUNCrl2) ,ASCIIll-^12 \ |

FUNCl
C32] -^iNOW^STIME) /MORE
C 33] BUF^BUF , (OC STIME-NOW+EVCOUNT) pFILL
C34] EVCOUNT^O
C35] NOW^STIME
C36] MORE : BUF^BUF , EVENT
C37] EVCOUNT^EVCOUNT+pEVENT
C38] CHECK:-^{01S>pBUF) /XFORM
C39] NREC^NREC+1
C40] iS15iBUF)FWRITE 1,NREC
C41] BUF^OIS^BUF
C42] -^CHECK



167

[43] WRAPiNREC^NREC^l
[44] (BUF ^OFF) FWRITE l^NREC
[45] DPV^iaiOVl
[46] ON
[47] RCOUNT^O
[48] LOOP: RCOUNT-^RCOUNT+1
[49] *-(RCOUNT>NREC) /EXIT
[50] FREAD l,RCOUNT
[51] -^LOOP
[52] EXITiUTRAPx^
[53] PI/'<-80
[54] FERASE 1

[55] ^{-‘LIGETFLAG) /Q
[56] »

'

[57] ^DISPLAY
[58 ]

' '

V



168

7Pi?GCD]V
VPRGiN

[ 1 ] -^(0 = ^/ pNUMBER) /ERRl
[ 2 ] ' PROGLIB' FTIE 3

[ 3 ] N^FREAD 3,0
[4] -^{NUMBER>N) /ERR2
[ 5 ] PROGBUF^FREAD 3, NUMBER
[ 6 ] FERASE 3

[7] H-O

[8] ERRl: ' NO PROGRAM NUMBER GIVEN ^

[9] ERRFLAG^SET
[ 10 ] ->“0

[ 11 ] ERRl: » PROGRAM NO. {^NUMBER) ,
' NOT IN CATALOG'

[ 12 ] ERRFLAG^SET
[ 13 ] FERASE 3

V

.i?/4I[D]V
VRAI;A

[ 1 ] PREVNUM^liNUMBER,!
[ 2 ] U^\0
[ 3 ] ^XEMPTY/0
[4] GETARG
[ 5 ] A TRANSPOSE PREVNUM

V

Vi?CL.D]V
yiRCLiT

[ 1 ] ERRORCHECK
[ 2 ] -^ERRFLAG/O
[ 3 ] PREVNUM^NUMBER
[4] U^X
[ 5 ] I'T^V' ,lNUMBER
[ 6 ] -(0 = x / p !r )/0

[7] STUFF
V

VRCMIUIV
IRCM

[ 1 ] ±'V' A^PREVNUM) ,'^U'

V



7i?c;s:[D]7
IRCX

[ 1 ] x^u
[ 2 ] I 0

7

7i?ff7[D]7
IREV \START\LAST

Cl] FREVNVM^xQ
[ 2 ] U^\Q
[3] -^XEMPTY/O
[4] START^XLl;!']
[5] LAST^XlRHOXill+XlRHOX\i^l
[6] Xi;ll^START + LAST-XL;ll+XLi^:\
[7] MCUC;!];]

7

7i?52’[D]7
7i?5T

[1] CURS0R<-1
7

75£:(7[D]7
ISEC

Cl] PREVRUM^WRUMBER.Q
C 2 ] 1 0

C3] COUNTER^PREVRUM
7

75ffri/PCa]7
.SETUP\RX

Cl] RX^qX
C2]
C3] XEMPTY^O=^/RX

7



170

»5ffi/[D]V

V SHU iTRHOX; ORDER; HINGESi ALL
[1] PREVNUM^l ^NUMBER,!
[2] U^X
[3] -^XEMPTY/O
[4] . (O^PREVNUMIRHOX) v PREVNUM=Q) /ERR
[5] TRHOX^RHOXtPREVNUM
[ 6 ] ;?[

[7] HINGES^l+PREVNUM^i'l+xTRHOX)
[8 ] ALL^ ,^{PREVNUM,TRHOX)pRHOXqHINGES
[9] X^iTRHOX ,^^^PREVNUM)p ,X

[10] X^Xi{TRHOX?TRHOX) il

[ 11 ] X^iRH0X,^)Q ,X

[12] XL HINGES ;l]-^0, + \"l + r/ iTRHOX , PREVNUM ) p , ^ [ ; 4 ]

[13] XLill ^ XLALLil']
[14] -0

[15] ERR: ' CANNOT GROUP BY '.^PREVNUM
[16] ERRFLAG-^SET

V

V55PL/1Y[D]V
V SSPLAY iCHiFUNC iOCTiPC ;I;N0TE;DISPLAY
FUNC^XLCURS0R;3:\
^iFUNC=0) /REST
1^1+12

1
FUNC

CH^CHANNELLXLCURS0R;2l ]

(7(7!r^T[FC/^(7Tl2

PC^ASCIlLll
NOTE^ ^NOTESLI ;

]

DISPLAY^' \ {^CURSOR)

.

nrr D cn /? • U 1

[9] ’z?I5PLi4y , ( (24-pZ?I5PLi4y)p
’

[10] ->“0

[11] REST: ' ',(t cursor),'. R/

[ 1 ]

[ 2 ]

[3]
[4]
[5]
[ 6 ]

[7]
[ 8 ]

,N0TE,0CT, ’
/

’
, vl[

) ,CH ,OCT ,PC ,2^^pFILL

XLCURSOR;^:)

V



[1]

VSTEiUlV
^STE;NUM;COUNT
- XEMPTY/Q

[2] NUM ^ 1 i NUMBER,:
[3] COUNT ^ 0

[4] ON
[5] L: -^(CURSOR > REOX
[6] COUNT ^ COUNT+1
[7] ^iCOUNT > NUM)/0
[8] SSPLAY
[9] CURSOR ^ CURSOR+1
[10] L

[1]

7

V5T0[D]7
ISTO
ERRORCHECK

[2] ^ERRFLAG/0
[3] PREVNUM^NUMBER
[4] I'U^V' NUMBER
[5] 1 *7’

,

(^NUMBER )

,

V

VSTTlUlV
VSTT

[1] U^PREVNUM^xO
[2] TIMER^{UTS)IS 6]

V

VSTUFFlUlV
V STUFF iCMl; RH0T;SEGliSEG2 iSEGZ; FIRST; LAST

[ 1 ] ^i~XEMPTY) /

S

[ 2 ] X^T
[ 3 ]

->-0

[4] S:CM1^CURS0R~1
[ 5 ] RHOT^l^pT
[ 6 ] X^{(CM1,^)^X)-;T-{CM1,0)^X
[7] SEGl^CMl^Xl '.ll

[ 8 ] FIRST^l^SEGl
[9] LAST^{~l^CMl^Xl;'^'])+ l+CMl+lC;!]
[ 10 ] SEG2^FIRST+LAST+RHOTiCMliXl

;

1 ]

[ 11 ] LAST^Ci^RHOT^CMI-^XL ;^^)+ l^RHOTiCMl-^XL ;ll

[ 12 ] SEG3^FIRST+LAST+ {RHOT+CMD^XL ;ll

[ 13 ] XL;i:\^SEGl,SEG2,SEGZ
V



172

ULTlUl^
VA TMULT FACTOR;PREV

[1] -^iCURSOR^RHOX) /N
[ 2 ] XlAil i^l^XlAil k^xFACTOR
C3] -O
[4] N:PREV^XlA\i\l
[5] XLAi^^:\^XLAii\lxFACTOR
[6] Z[ ;1]

7

VTRANSPOSElU:\V
VA TRANSPOSE SEMITONES \TEMP \NR

[ 1 ] TEMP^a\.A\Zl
[23 NR^iTEMP^Q)

/

xqTEMP
[33 templnr']^tempinr:\-^semitones
[43 -^-(v/ (TPMP[iyi?3>9 6) ,TEMPLNR:\<1) /ERR
[53 XiAiZl^TEMP
[63 •'0

[73 ERR: ' NOTES OUT OF RANGE'
[83 ERRFLAG^SET

7

VUDFIUIV
VUDF

[13 PROGBUF^"
7

VUNdWV
.UND

[13 -^{PREVEUNC^O) /O

[23 NUMBER^PREVNUM
[33 t.UMATRIXiPREVFUNCx'l
[43 PREVNUM^xO

7

.i/5P[D37
VUSR

[13 PREVNUM^xQ
[23 U^xO
[33 iASK' W '

7



VVERLUl^
VVER I TRHOX ; HINGES ; A LL

Cl] PREVNUM^l^NUMBER ,1

[ 2 ] U^X
[3] ^iXEMPTY^fPREVNUM=l) /O
[4] -^(OxPREVNUMlRHOX) /ERR
[5] TRHOX^RHOXiPREVNUM
[6] HINGES^l+PREVNUMx{~l)+\TRHOX
[ 7 ] ALL^ , ^9 ( PREVNUM , TRHOX ) pRHOXpHINGES
[8] XlHINGES ; 11^0, i -1) ^[ / (TRHOX, PREVNUM) p, XL;
[9] XL;i:\^XLALL;l']
[10] XL;2l^RHOXp\PREVNUM
[ 11 ] -0
[12] ERR: ’ CANNOT GROUP BY \lPREVNUM
[13] ERRFLAG^SET

V

»..cr[D]7
VXCT

[1] PREVNUM^ \0

[ 2 ] U^\Q
[3] INPUT^PROGBUF

7



174

ASCII
n AL 1 €_° V ' aDi

|

CHANNEL
<>ABC

0

CLEAR

CONTROL
41 42 43 44 45

Z

FILL

KEYS
nAL 1 e_°V • aDi 1

TO012 34567 89 h-,+ ./( ; : "*?pr~4uw=+c^->->- = PQ7?5

TUVWXYZ{-^}DEFG

NOTES
n

n <

L

L<
€

V

v<
a

a<
1

OCTAVE
35 47

OFF
00 /4050(70



175

FMATRIX
INV
REV
VER
SHU
AUG
DIM
RAI
LO\i

COM
DRO
INS
CLR
LIB
RCL
MAT
BKS
STE
PLA
END
RST
PRG
STO
DEE
XCT
UND
USR
DAT
BFM
BBM
SEC
DEC
BRF
BRB
STT
DST
DOF
IPX
BFZ
BBZ
DON
BBN
BFN
BBP
BFP



176

UMATRIX
IRV
REV
RCX
RCX
RCX
RCX
RCX
RCX
RCX
RCX
RCX
RCX
RCX
RCX
DUM
BUM
DUM
DUM
DUM
DUM
DUM
RCM
UDF
DUM
DUM
DUM
DUM
DUM
DUM
DUM
DUM
DUM
DUM
DUM
DUM
DUM
DUM



APPENDIX C

PILOT STUDY QUESTIONNAIRE

177



178

pilot study for an experimental music system

PART I. Please provide the information requested below. Leave
blank any item that does not apply to you.

1

.

) Name
:

2.

) Age:

3.

) Your major or concentration at ULowell ^ your occupation:

4.

) Musical Instrument(s) you play:

5.) Musical training:

a) private lessons (list instruments played and years studied)

:

b) high school (list any vocal or instrumental ensembles in which

you participated and any music courses you took)

:

c) college (list any college-level music courses you have taken.

Note: College of Music students need only give the name of

their major program) :

6.) Computer Background. Describe any experience you have in the use

of digital computers (e.g., programming, business data processing,

engineering or statistical computation, computer operation, etc.):



179

PART II. Please respond to the following questions:

1.) Is the music system easy or difficult to use. Consider, for
example

,

keyboard layout
the functions provided
the information shown in the CRT display
the music "synthesizer"

etc.

2.) What additions and/or changes would improve the music system?



180

(PART II., continued)

3.) What could the music system be used for? How would you
use it?

4.) If the hand-calculator-sized music system described to you
earlier were available, would you like to own one? If yes,

how much would you be willing to pay for it?

I



appendix d

SUGGESTED APPLICATIONS
OF THE MUSIC SYSTEM

1) electronic pocket metronome . The system can be made to beep

or click at precisely controlled rates.

2) pocket tuner . The system provides a very accurate source of

equal-tempered pitches.

3) "composer’s notebook" . If the system is provided with a non-

volatile memoxy, it can be used as a means for temporarily

storing musical ideas until they can be written down or recorded

in some more permanent form.

4) music student’s "assistant" . The system can be programmed to

play the solutions to typical harmony and counterpoint exercises.

This would be particularly helpful for students who have not

developed enough keyboard skill to play their homework problems

on the piano.

5) "accompanist" . The system can be programmed to play accompani-

ments for vocalists and instrumentalists.

6) audible pocket reference manual . The library could contain

entries for all common scales, chords, cadence formulas,

ornaments, etc.

7) rhythmic problem solver . The system can be used to play

rhythms that the performer cannot figure out. Typical cases

would be unusual divisions of the beat, counter-rhythms, "metric

modulation", etc.

181



182

pitch problem solver . The system can be used to play pitch

patterns that the performer cannot figure out.

9)

dictation exerciser . Standard music dictation exercises could

be implemented as stored programs.

10) electronic music sequencer . If the output of the system is

made electrically compatible with standard electronic music

equipment, the system can be used as a powerful "sequencer".

It can store and play back long sequences of notes with accurately

specified pitches and durations, and it can generate new sequences

of notes through the various musical transformation functions it

provides

.

11) portable library of music . The library can be filled with the

pieces most commonly used for study and analysis.

12) automatic "composer" . The SHUFFLE function and the other

musical transformation functions permit the user to explore

both automatic variation of existing musical pieces and auto-

matic generation of new compositions.

13) musical "subject" analyzer . The ability to combine and transform

variants of a given sequence of notes facilitates quick analysis

of the possibilities of a fugue subject or twelve-tone row.

14 ) logic game . In addition to its more or less obvious uses as a

musical game, the system could also provide games in logical

thinking. For example: given a sequence of notes with some

specific characteristic (e.g., all the notes are separated by

whole steps) ,
transform the sequence into one that has some

}



183

completely different characteristic (e.g., all the notes are

separated by major thirds)
, and do this without resort to

certain operations (e.g., entering notes at the keyboard or

bringing them in from the library)

.

15) automated thematic index . The "hum a few bars" library indexing

scheme can be used to discover the identity of a composition

which can then be obtained from an ordinary library of musical

scores and/or recordings. This would be much more convenient

than present printed thematic indexes, which require the user

to translate the theme into letters and/or numbers according

to a formula before entering the index.



APPENDIX E

LIBRARY AND PROGRAM CATALOGS

184



185

LIBRARY CATALOG

Lib rary
Number

Name of
Composition

1. C-major scale

2. c natural minor scale

3. c harmonic minor scale

4. c melodic minor scale

5. "Are You Sleeping"

6. Beethoven, "Ode to Joy" theme from
Ninth Symphony

7. "Au Clair de Lune"

8. "Yankee Doodle"

9. "Three Blind Mice"

10. "On Top of Old Smoky"

11. Haydn, theme from 2nd movement of

Symphony No. 94

12. Tune-with-mistake(s)

13. Purcell, Prelude in G

14. Monk, "I Mean You"



186

PROGRAM CATALOG

Program Number

1 .

2 .

3.

4.

5.

6 .

7.

8 .

9.

10.

Program Name/Description

Easy pitch-matching game. Repeat a 2-note
sequence played by the system. The first
note of the sequence is always C. The
system displays the letter names of the notes
on the CRT before asking you to guess the
notes

.

3-

note pitch-matching game, no display.

4-

note pitch-matching game, no display.

5-

note pitch-matching game, no display.

6-

note pitch-matching game, no display.

7-

note pitch-matching game, no display.

8-

note pitch-matching game, no display.

"Composer" (generates a 4-voice composition
consisting of random notes)

.

Beginner's pitch-matching game. Repeat a

three-note sequence which always consists of

some combination of C's, D, and E. The first

note is always C.

Another "composer" program (generates a 4-voice

composition consisting of notes drawn from the

pentatonic scale)

.



appendix f

PROGRAMMING EXAMPLES

Program to Create 2-Part Rounds

nLIB
STO
DAT
/rests/
INS

COM
PLA

Get piece no. n from the library.
Store it in user location 0.
Unlock the keyboard (i.e., go into data entry mode).
Key in the proper number of rests to delay the second part,

and insert them into the working area.
Combine 1st part (in loc. 0) with 2nd part (in working area).
Play the completed round.

Two- to Eight-Note Pitch-Matching Game

1 LIB
REV
DRO
SHU
nSEC

pDRO
DEC

>-3 BBP
NOT
'C'

INS

DOF
PLA
STO
STT
3 SEC
CLR
DAT

MAT
—7 BFM
DEC

^7 BBP
RCL
DON
PLA
DON
DST

Get C-major scale from the library.
Reverse it and

drop off C above middle-C.
Shuffle the remaining notes.
Set loop counter to no. of notes to drop from shuffled scale.

Drop one note,

decrement the counter, and
if counter is still positive, go back for more.

Otherwise, set the data flag,

copy middle C into the keyboard buffer,

and then insert it into the working area.

Make sure the display is off.

Play the sequence of notes.

Save the sequence in location 0.

Start the timer (i.e., begin measuring response time).

Set the loop counter for 3 guesses.

Clear the working area.

Get answer from user, and

match against the notes in location 0.

Skip ahead if note sequences match.

Otherwise, decrement the loop counter, and

if the counter is still > 0, go back for another try.

Otherwise, recall the original note sequence,

turn on the display, and

play the sequence.

Make sure the display is on, then

show elapsed time (user’s response time).

187



Four-Voice Random Pentatonic "Composer"

CLR
NOT
’CDEGA'

/ rests/
INS

STO
12 RAI
RCL
SHU
STO
SHU
1 STO
SHU
2 STO
SHU
COM
1 COM
2 COM
PLA

Clear the working area.
Set the data flag, and

copy the notes of the pentatonic scale (and
some rests, if desired) into the keyboard buffer
and insert them into the working area.

Store the scale in location 0.

Transpose original scale up one octave, and
join it to the un-transposed version.

Shuffle the notes (and rests) ,
and

store in location 0 as voice part no. 1.

Shuffle everything again, and
store in location 1 as voice part no. 2.

Shuffle everything again, and
store in location 2 as voice part no. 3.

Shuffle everything again to obtain last voice part.

Merge in voice part no. 1, and
no. 2, and
no . 3.

Play the entire "composition".

Program to Generate and Play All 48 Forms

of a 12-Tone Row

CLR
DAT
/row/

12 SEC
STO
PLA
INV

1 STO
PLA
CLR
RCL
REV
PLA
CLR
1 RCL
REV

PLA

Clear the working area.

Go into data entry mode and

get prime set from user.

Set the loop counter for 12 iterations.

Store a copy of the prime set, and also

play it.

Invert the prime set,

store a copy of the inversion, and also

play it.

Clear the working area.

Recall the prime set,

reverse (retrograde) it, and then

play the retrograde.

Clear the working area again.

Recall the inversion,

reverse (retrograde) it, and then

play the retrograde inversion.

(continued)



DEC

2 BFP
JPX
CLR
RCL
END
RAI
RST

26 BRB

Decrement the loop counter, and
if it is still > 0, skip the next step.

Otherwise, Jump out of the program (program complete).
Clear the working area.
Recall the prime set, and

transpose it up a semitone.

Go back and repeat the procedure.






	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1-1-1980

	Design and simulation of an experimental microcomputer-based instructional system for music.
	Irwin Stuart Smith
	Recommended Citation


	Design and simulation of an experimental microcomputer-based instructional system for music

