The role of information in choice behavior.

Patricia Ann Butler
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

Recommended Citation

Butler, Patricia Ann, "The role of information in choice behavior." (1969). Doctoral Dissertations 1896-February 2014. 3345.
https://scholarworks.umass.edu/dissertations_1/3345

FIVE COLLEGE DEPOSITORY

R-3080

A Dissertation

By

Patricia A. Butler

Thesis submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the decree of DOCTOR OF PHILOSOPHY.

$$
\text { August 1, } 1959
$$

Major Subject: Psychology

A lisssertation

By

Patricia A. But]ex
R.pproved as to style and content by:

$\frac{\text { Akmu- Al Chumbles }}{\text { (nenber }}$

Date July 31, 1969

ACK:OWLEDGMEITS

The author wishes tio express hor appreciation to Dr. Jerome I. Hyers whose research sucgested the present problen ard whose advice and encouragemert were indispensebi. to the completion of this project.

The author also wishes to thank "Drs. James I. Chumbley, Stanley M. Moss and Nancy A. Myers for cooperation and cuidance in planning and carrying out this project.
LIST OF FIGURES
IIST OF TABLESvi
LIST Or APENDICES vis
ThTRODUCTION].
HETHOD 19
Subjects. 29
Apparatus 19
Design. 19
Yrocedure 20
FUSULIS 21
Anticipatory Errors 21
Ferseverative Errors. 26
Repetition Responses at the Uncertainty Point 30
Conditjonel Response Data 33
Analysis of Pre-uriterion Data. 42
Data Fits of the Generalization Kodel 45
DISCUSSION. 49
SUMMARY 61
REFERENCES 62
APYENDIX A 67
APYENDIX B 68
APPENDIX C 77
APPENDIX D 80
APPENDIX E 83
APPENDIX F \&9
APPENDIX G c5

LISJ OF FIGURES

Figure Pace
1 Anticipatory error proportions for StandardHistory and Run Eroups in each Instruction xRun Length cundition...............................22
2 Anticiaptory error proportions as a functionof trial blocks for Standard, History and Rungroups pooled over levels of instruction andrun length combination conditions............273 Perseverative error proportions for Standarủ,History and Run groups in each Instruction xRun Lengith condition.29
Repetition response proportions at the un-certaint: point for Standard, Iistor" and
if Run groups in each Instruction x Run Length
condition32
TABLE1 Group anticipgtory error proportions as afunction of trial block25
2. Group persevcrative error proportions over trial bloc's 31
3 Group repetition response proporticms over trial blocks 3%
4 Differcnces betwean long and short probaicili- tjes 36
5 Conditional perseverative error proportions for 2-6 sroups 39
6 Chi-square statistics for tests of stationerity.. 能
7 Farameter estinates and variance statistics for data fits of the generalization model 47

APPEIDIX

A

$$
\begin{aligned}
& \text { Pattern of Long and Short runs for } \\
& \text { All Group Sequences }
\end{aligned}
$$

3 Instructions $6 i$
C Summaries of Analyses of Variance 77
D) Repetition Responses as a Furnction of Current Run Length 80
E Repetition Response Proportions as a Function of the Preceding and Current Run Length 83
F Pre-criterion Ernor Frequencies and Proportions iv Position for üninformed Groups 59
G Data Fits of the Gencralization Piodel: Ocserved and Predicted Repetiticn Response Proportions 5

INPHODUCTION

Until relatively recently, theoretical accounts of rinery preaiction behavior vere dominated by model.s winn were or: \sim inally formulatod to descrite so-called ainple essociativo or S--R Icarning (e.g., the lincar model of Bush and Mosteller, 1955: the stimulus sampling model of Estes and Burke, 1953). Such models, whother linear or Harkov, typically conceptualized reinforcement in terms of single trial outcomes. More specifically, models of this class assumed that the presentation of some event, Σ_{i}, on trial \underline{n} increased the probability of the occurrence of i ts corresponding response, A_{i}, on the folloming trial. Two obvious implications of this traatment are that (I) the proportition of repetjition responses or precicticns of tho imediately precedine cvent, $P\left(A_{i, n+1} / I_{i, n}\right)$ should axceod the proportion of altemation responses, $P\left(A_{j, n+1} / I_{i, n}\right)$ arce (2) conetitional response data should show evide ice of vositive recency, an increase in $P\left(A_{1}\right)$ as the number of successive occurrences of E_{i} increases.

While the predicted rank ordering of $P\left(A_{i, n+1} / E_{i, n}\right)$ and $P\left(\Lambda_{j, n+i} / \Xi_{j, n}\right)$ has often been observed (e.g., Anderson, 1960; Estes \& Straughan, 1954; Feldman, 1959), the applicability of this notion of reinforcement appears questionable in view of the findine that event contingencies exert an effect on conditional response probabilities which is, in great part., inciependent of the effects of marginal or overall event
provabilitjes (Anderson, 1960; Eneler, 1958; Hake \& Hyman, 155j; Wi.tte, 1964). Norcover, the data of Ereler (1958) indicited some tendency for event contingencies to influence mareinal response probabilities, particularly for eroups exposed to sequences in which the two events occurred equally often. As inderson (1964) has pointed out with reforence to the stimulus sampling theory framework, the inability of simple S-R models to account for differeritial effects of event dependericies reflects the inadequacy of the implicit assumption of no memory for past events, which is fundamental to these models. Althouch sone theorists, notakly Jush and Zistes (Ic57), have developed models rhich incornorate a minimal acount of memori which is sufficient to permit prediction of first-orior event contineency effects, the ability of these models to deal with more complex aspects of the data has not been jmpressive (see, for example, Witte, 1964).

An equally serious indictment of the single event view of reinforcement is provided by the frequent finding of necative recency, a decline in repetition response proportions with increases in the number of adjacent identical events (Anderson, 1960; Jarvik, 1951; Nicks, 1959). Although several invostications have demonstrated the predicted positive recency late in training (Anderson \& Whalen, 1960; Edwards, 1061; Derks, 1263), the predominance of negative recency over a sizcable number of carlier trials in these experimente is inconsistent with the characterization of reinforcement as
set forth in simple $S-R$ model.s.
A wore adequate conceptualization of reinforcenerst dio not occur until the early sixties. However, the rescarch Which laid the foundation for the development of a new class of choice models keran with the work of Hake and Hyman (1953), Who redefined the functional stimulus in prokakility learnine. In order to account for the akility of $S s$ to predict event repotjtions approximotely as of ten as they occurred, Fake and Fyman postulater that the S's choice on each trial is based on short, discriminakle sequerses of events which precede that triai. They pointed out, moreover, that because of greater discriminakility, certain pattems such as runs, that is successive occurnences of the same event, exert a greater determining efrect on the response em tted on a given trial. Thus, accoróing to their analysis, the functional stimuli in probarility lecrring are not the kinary events comprisine the sequence, but temporal patterns formed by these events over a series of trials.

Goodnow (J.955), following this line of reasoning, hypothesized that whether positive or negative recency will occur In a given situation depends on the nature of run structure. Manipulations of the distribution of run lengths have yielded support for this vien (Derks, 1963; Goodnow \& Fettigrer, 1955; Goodnow, Rubenstein, \& Lukin, 1960; Nicks, 1959), as have replications of the conditions under which negative recency was orfeinally okserved (Feldman, 1959). The results of these
experiments are quite nioely summarized by Nicks' statcment (1959) that the "... prediction or a given event nay incrage or decrease following the cocurrence of thet event, depencine upen whether the occurrence was at the tecinning of a run or not."

Subsequent to much of this experimental work, Restic (1961) proposed a schemata model of binary choice which assumes that the critical cue for response is the lencth of a run in progress, and which views reinforcement in terms of the continuation and breaking off of runs. Essentially, the model holds that the \underline{S} remembers all events since the last event alternation, and predicts the continuation of a current run in proportion to the number of tines that runs of that lencti sontinued on earlier occurrences. In order to account for the finding that S s tend to overshoot objective probabil. ities of rur continuation (Anderson, 1960; Encler, 1958), Festle assumes a bias toward predicting long runs, and represents this bias mathematically by a weight which is equal to the number of events in the run in question. Accordine to this model, the probability of a repetition response following a run of length $\underline{m}, P\left(A_{i} / \mathrm{mE}_{1} s\right)$, is obtained as follows:

$$
P\left(A_{i} / m E_{i} s\right)=\frac{(m+1) W_{m+1}+(m+2) W_{m+2}+\ldots}{m W_{m+(m+1)} W_{m+1}+\ldots}
$$

where H_{j} is the number of runs of length \mathcal{J} that have been presented over previous trials.

Tests of the schemata nodel have yiclded results which have not been entirely supportive. Witte (1964) pitted the model acainst data obtained using sequences in which the two events occurred equally often and in which event repotition probabilities were varied. The model not only over-precisted the total proportion of repetition responses, but failed to acoquately describe repetition responses as a function of the lencth of the current rur. Deviations of predicted from otserved run statistics were smaller for the schemata model, however, than for the Burke-Estes (1057) trace corditioninc stimulus sampline model.

Perhaps the most critical tests of the run or schemata. model involved the use of sequences in which run length information greatly reduced stimulus uncertainty and could be easily extracted. Typically, these sequences have been partjally learnable in the sense that the number of lencths in which runs could occur was restricted by the experimenter. Such sequences can be characterized as having two types of trials: determinate trials, on which E_{i} occurs with certainty, and indeterminate trials, on which E_{i} occurs with some probability greater than zero but less than unity. In a sequence involvine runs of lencth 2 and 5 which are equally probable, the outcome on trials following exactly $1,3,4$, or 5 consecutive $E_{i} s$ are completely determined. Following $2 E_{i} s$, however, the
outcome is indeterminate: here an additional \mathbb{E}_{1} occurs with probability . 50 .

For cases in which such sequences are used, the schemata model waires a very strong prediction; nanely, that repetition response probarilities should conform completely to event repotition probabilities. This predjction has been consistently contradicted by the finding of anticipatory and perscrerative errors (Butler, Nyers, \& Hyers, 1969; Gambino \& ilyers, 1966; Myers, Butler, \& Olson, 1969; Restle, 1966; Rose ie Vitz, 1966). Retuming to the example of a $2-5$ sequence, enticipatory errors, or failures to predict the continuation of a run When it will continue with probability 1.0 can occur followine runs of leneths l, 3 and 4. Perseverative errors, failures to predict a break in the run given the longest possible run in the sequence, can occur following runs of leneth 5 .

A very stringent test of the schemata model was conducted by Rose and Vitz (1966), who attempted to determine the extent to which information concerning current run lencth is used to the exclusion of other stimulus information. On half of the trials in this series of experiments, the two events occurred randomly and with equal probability, while on the other half of the trials, rules dictated event patterns. Rules were formulated in such a way that two types of determinate trials occurred. For trials of the first type, knowledge of current run length was sufficient for generating a correct response.

For the second type; both current run leneth and the prececine K events dotermined the trial outcome. In one sequence, for example, trials followine runs of loncth 1 wore indetermirate with rospect to current run longth. Hovever, on all occassions on which $\operatorname{en} E_{i}$ run of longth l was the last menter of the $H_{i}-$ turie $\mathbb{E}_{i} \mathbb{E}_{i} \mathbb{E}_{j} \mathbb{E}_{i}(i \neq j)$, rules dictated an event alteriation. Although the schernata model predicts perfect learmine of points determined by current run length, it cannot precict learning of points which are jointly determined by curront run length and the patterm of events precedine this run. Aralysis of the data indicated that points of the latter type were learned to some extent. Alternation responses occurred more frequently following the 4 -tuple $E_{i} E_{i} E_{j} E_{i}$, for example, than followine trials on which the last two events of this pattern were preceded by non-rule combinations of events. Fowever, error rates were nuch higher for rule trials of this type than for those requiring only knowledge of the current run lencth. Thus, at the very least the results did indicate that current run lensth information is processed more accurately than other information. The fact that perseverative and anticipatory errors occurrea even at late stages of practice was inconsistent with predictions of the model.

The results of research conducted with partially learnable sequances has tro-fold implications for the run model. First of all, the well replicated finding that repetition response

Mobabilities tend to covary with run continuation mrobabilities suggests that the nodel does provide an adequate represertation oi the critical aspect of the stimulus situation, and of the nature of the reinforcing event. On the other hand, the persistence of errors over the course of hundreas of trials suggests that the processine of critical stinulus infornatior is less perfect than is implied by the model. It appearis t,hat some form of interference either distorts the perception of run length, or prevents completely efficient usage of correctly perceived run information.

The study reported in this paper attempted to examine three possible sources of this interference: generalization, miscounting, and inefficient information utilization. The major proponents of the generalization position are Gambino and Hyers (1967). Their.view is that errors at determinate points occur because of imperfect discriminations among run lengths. Accordingly, each trial outcome is assumed to affect the S's expectancy avout the continuation of runs of the sampled length and of every other length occurring in the sequence. Although Gambino and Nyers are unclear as to the exact locus of this generalization, the mathematical statement of the model implies that the initial perception of run length is correct, but that either the storage of this information or its translation into an overt response is affected by the similarity of a given run length to other run lengths, where the similarity dimension is defined in terms of the number of events comprising any given run.

Like Restle, Gambino and hyors assume that run length is the criticai cue in the ifnary choice situation, and that reinforcererti is constituted by the continuation and creakine off of runs. Expectancies or suljective probabilities of rur. cortjructions are represented in the muciel by a vector con.. taininc repetition response probarilities associated with each run length. If the prediction on trial \underline{n} is preceded by a rum of length 트 and that run coibinues, $P_{n}(m)$, the assccietoc repotition respars? probability, is increased to forn the corresponijue entry, I'ntl (n), of the vector for triel n+1. If the run breaks off, $P_{n}(\mathbb{L})$ is decreased. $P_{n}(j)$, the expectancy for any other run length, \dot{L}, is also affected by whether the run of length \underline{m} breaks off. The magnitude of this generalized effect is determined by the distance betwoen this run length and the sampled run length, m. The transformation of the typical vector entry, $P_{n}(j)$, over trials is Eiven in the model as

$$
\begin{equation*}
P_{n+1}(j)=P_{n}(j)[1-\gamma|j-m|]+\lambda \gamma_{0}|j-w|, \tag{2}
\end{equation*}
$$

where θ is the learning rate, γ the generalization parameter, and $\boldsymbol{\lambda}$ is set at one if the run of leneth m continues and zero if it does not. Note that when i is equal to \underline{m}, the magnitude of the change in repetition probability is completely determined by the learning rate parameter, which reflects the effoctiveness of direct reinforcement. As the distance ketween \mathcal{I} and \underline{m} increases, the amount of generalized change decreases. The data of three experiments (Gambino ic Viyers, 1966;

Hyers, Butler, is Olson, 1969; Restle, 1966) have been used to evaluate the model. Although fits were rather poor in instances in which event alternation occurred on a large percentace of the trials, quantitative and qualitative descriptions of the ciata were quite good for the most part. For example, the model was able to predict differences in error proportions as a function of the variability of run lengths, and as a function of both the relative frequency of long runs, and the distance between the two run lengths comprising the sequence. The model also provided a fairly accurate picture of variations in run curves cver trials, and of run curves conditionalized on the lereth of the run preceding the run in progress.

Despite the rather impressive support that can be ainassed for the goneralization view, other factors can not be ruled out as alternative, or at least additional, sources of errors. The most definitive evidence for the Gambino-ilyers model rests on its ability to deal with systematic differences in repetition response probabilities as a function of the relationship between current run length and over-all run structure. To illustrate, in the Myers et. al. experiment (1969), Ss were exposed to sequences composed of runs of lengths 4 and 5 or 1 and 5. Because runs of length 5 never continued, and because they occurred with equal probability in the two sequences, the Gambino-Hyers model would hold that any differences in perseverative errors are attributable to differences in the length of the shorter run. Due to the fact that reinforcement from the kreaking off
of this run would have to generalize over a greater distance in a $1-5$ than in a $4-5$ sequence, greater decrements would accrue to $\mathcal{Y}_{n}(5)$ in $4-5$ groups. Therefore, fewer perseverative errors wolia be predicted for these groups than for $1-5$ groups. lhis prediction was upheld.

As has been pointed out by lifyers et. al., certain types of wiscounting models would make an identical prediction. Consider a model which treats the effective stimulus and the reinforcing event as the Gambino-Hyers wodel does. In this cese, however, the model assumes (1) that errors are the result of misperceptions of run length, (2) that only the repetition probabijity associated with the perceived run length is affected by any trial outcone, and (3) that the probability that the S's count is off by \underline{k} events is a decreasinc function of \underline{k}, where \underline{k} is bounded by l and the maximum run length occurring ir the sequence. In this context, differences in error rates can be accounted for in terars of the likelihood of wistaking the longer run for the shorter run. Because of the similarity of the basic assumptions and the similarity of the generalization and the miscounting graaients, the two models would yield very similar predictions despite major theoretical differences in conceptualizing the nature of the interference process.

Even though the generalization and miscountins models appear equivalent in some very important respects, they would make different predictions in instances in which the \underline{S} percejves
run leneth accurateiy. Ir this circumstance, assumire that the S has learned the leneths in which runs can occur, the wiscounting model presented above would predict no errors. The cerrain?ization rodel, on the other hand, would make no detcroinistic prediction. Within this fremework, generalizod response tendencies could result in errors evon if the \underline{S} has correctly identificd current run lencth. Unfortunately, since orrors are nevor completaly eliminated, it is not safe to rule out the possibility thot s s have feiled to loarn the run loneths due to frequent counting eriors. For this reason, the present experjwert included a condition in which Ss kere provided with a count on evexy trial, and were told the run lengths prior to the stari of tho experiment.

If one accepts the possibility that wiscountine can prevent the S from learning evont contingencies at detorwinate points, a rather perplexing problom is introduced. Research with pexrectly learnable sequences has shown that Ss senerally master fairly complox tasks after fewer than 10 exposures to the basic pattern (e.e., Derks \& House, 1965, 1967). In sone instances, these sequences were composed of as many as 10 runs. It seems clear, therefore, that \underline{S} s are certainly capable of leorning two run lencths after sevoral hundred trials. The pussibility that they do not--or what is at least as likely, that they err in spite of having learned the run lengths-suggests that something wore than simple miscounting or .misperceptions or run length is involved.

A very likely candidate for this "something wore than" is hypothesis corplexity, the third source of crrors examined in this study. Because the basic difference betwoen perfectij and partially learnable sequences is that the letter contein an uncertainty point, it is quite possible that the perfornance differences noted in situations involving the two types of sequences are relatod to this factor. The plausibility of this assumption is supported by the finding that with completely predictable sequences, errors are elimjnated nore slowly at points which are determined by optional rules (Restle, 1967). For example, if the pattern AA-BB-AAA-BB forns the basic unit of a recursive sequence, errors would occur wore frequently following the second A in a series. At all other points, rules are inandatory: after a single A, another A occurs: erter a single 3 , another B occurs; after $2 B s$, an A occurs. Aitor 2 As, however, either a B or an additional A can occur denending on whether the most recent run of A s was of length 2 or lenath 3.

In order to perforr without error on a sequence of this type, the \underline{S} must not only learn the leneths in which runs can occur, but must also learn the order in which these run lengths occur. In view of the fact that S s exposed to partially learinable sequences cen learn to respond differentially to a eriven run length depending on the events preceding this run leneth (Butler, iHyers, \& Hyers, 1\&69; Rose \& Vitz, 1C66), it appears that even in this situation, \underline{S} s concern themselves with order or pattern information.

When faced with a sequence in which runs form no predictatle pattern over trials, the most efficient approach would involve concentrating on current run Jength and on the proportion of runs of each length occurring in the seguence. However, because instructions generally emphasizo maximi:ine the nuorer of correct predictions, Ss may be encouraged to seek soiutions which include rules for generating correct responses even at uncertainty pcints. To the extent that this is the case, the ㅡ is forced to assemble information spannine a large nunber of tria?s and, what way be even more important (see Derks and Holise, 1965, 1867), a large number of event rurs. Attempts to solve the prediction problen would clearly tax the S's information processing ability. Processing limitations imposed by factors such as the discriminability of patterns of runs, imnediate memory span, short-term memory capacity, and the amount of time available for encodine could easily prevent the \underline{S} from extractince all of the information required by his approach. Moreover, unless the \underline{S} discovers a very ingenious method for organizing and storing information which is successfully extracted, he would undoubtedly have trouble retainine it over trials.

Placing heavy demands on memory could have several consequences which would interfere with performance at determinate points. First of all, the \underline{S} might devote so much attention to rehearsing pattern inforwation in order to retain it, that he could simply lose track of current run length. This loss,
in turn, could result in subsequent counting errors which could not be corrected until a new run started. Nencry overloads could also produce interference which recults in the S temporarily forgetting which response is appropriate to a particular run length. Furtherroore, if the \underline{s} uses the sewe sncoding schene for rewembering information relcvant to acterwirate and indeterwinate points, he could easily becone confused as to the level on which a rule applies. For example, he could forget whether a rule such as "alternate after 3 in a. row" refers to like events or to like run lengths. Whatever the specific consequences of memory overlocis are, if the use of complex hypotheses does interfore with perfornance, it should be possicle to influence error lates by varying the degree of suphasis placed on the optimal set of information.

The present experiment attempted to determine the relative importance of generalization, miscounting and hypothesis complexity by providing S with (a) one of three types of displays: the correct event for the current trial (Stanarad condition), all events comprising a run in progress (Run condition, or all events which occurred within the 12 most recent trials (History condition); (b) instructions which were neutral or which specified the lengths in which runs could occur; and (c) sequences composed of runs of lengths 2 and 6 or lengths 5 and 6 . On the assumption that Ss provided with information concerning current run length will use this information and will generally perceive it accuratcly, a comparison of error
proportions of the Standard crouns with those of other crours should provicie some indication of the influence of simple miscouniting. If errors are a reflection of the S's inability to keep track of temporally constitutod patterns, as Garner (1962) has sugested, error rates of the Standard condition should be highest, and those of the two multiple display conditions should not differ narkedly from each other.

If errors are aporeciably affected by the extent to which current ruil lencth is emphasized, the performance of Run groups should alr:ays be superior; the method of event presentation in these groups not only provides ss with a countine aid, but defines the optimal set of information so precisely that it could stress its juportance. The relationship of İistory and Stancard "roups is somerhat more complicated. "hile Wistcr" Ss would have the advantage of counting information on all trials, this advantage might well be counteracted ky the development of overly complex hyrotheses based on the additional information displared.

Comparisons of Informed and Uninformed groups could also aid in determining the relative influence of hypothesis complexity. However, the exact effect of providing detailed instructions cannot be predicted in advance. Although such instructions could orphasize the importance of current run lensth and, as a result, could reduce the tendency to form complex hypotheses, Ss could also interpret instructions as implying that their task is to predict patterns of long and
short runs. If this is the case, at the loter staces of practice, Uninformed croups should have fever errors. On the other hand, if detailed instructions discourace complexity, the opposite relationshio lould be expected. If thesc instructions merely make it unnecessary for \underline{S} s to Jearn the run lengths, Informed and Uninformed groups should be similar.

Besides making it possible to determine whether instructions can influence hypothesis behavior, the inclusion of an Informed condition has an additional advantage. As was pointed out earlicr, the ceneralization and miscountine models make difforent predictions under conditions in which current run length has been perceived accurately. Becouse the miscountine rosition holds that errors are attributable to countine feilures, it predicts no errors in this situation. However, because there is no way to guarantee that the S perceives current run lencth correctly on every trial, it is possirle that the S may know the current run leneth kut may not have learned the approuriate response kecause frequent miscounting on earlier trials has distorted his perception of event contingencies. The presence of an Informed condition controls for this possibility.

Assuming that $\underline{S} s$ in the Informed A condition will identify current run length correctly on most trials, the miscountine model would predict very low error rates. In addition, recause the model accounts for sequence effects ky nostulatine a miscountine gradient, it would preỉict no differences in errors as
a function of current run leacth. To the extent that multiple event displays exeatly reiuce miscountine in cenoral, this prediction should hold for H end A eroups under both levels of instruction. Furthermore, an all-or-none model should describe the learning of determinate points about as well as such models describe the learning of mandatory points in periodic sequences (see Restle, 1967; Vitz and Todi, 1067). On the other hand if generalization is a relatively potent variable, and if it operates along a similarity dimension such as that defined in the Gambino-liyers model, repetition response probabilities should conform approximately to the predictions of this model and, therefore, should differ for $2-6$ and $5 . .6$ groups.

In sumbary, the effects of miscountinct will be examined by comparing the performance of Ss provided with a countine aid with the performance of Ss who must track a run in prorress over trials. The effects of rypothesis complexity will be evaluated by conparing croups whose displays involve varied degrees of emphasis on current run length, and ky comparine Inforved and Uninformed groups. Finally, the effects of generalization will be inferred from comprisons of repetition response proportions for $2-6$ and $5-6$ groups under conditions in which wiscounting and failures to focus on the critical stimulus should be relatively rare.

METHOD

Subjects -- The Ss were 240 students at the University of Massachusetts who served for $\$ 1.50$ or for one experimental credit toward fulfillment of a course requirement.

Anneratus -- Events were presented using a $371 / 2^{\prime \prime} \approx 81 / 2^{\prime \prime}$ cisplay panel which was mounted at a height of 81 at the front of the experimental room. The display was divided into two rows of 12 compartments each. A 6 watt, 120 volt licht kulb was mounted in each of the 24 compartments. The display case was covered with a sheet of frosted glass which prevented uniljuminated kulbs from being visible. Sequences of lights were presented ky means of Tally and Western Union trpe readers.

Each was seated at a partially separated booth beside a response console containing two momentary togele switches which were seperated by a vertical distance of $3^{\prime \prime}$. Responses were entered ky deflecting these switches and were registered by an Esterline-Angus operations recorder.

Design -- Twenty Ss were assigned to each of 12 groups which differed with respect to instructions, type of event display, and run lencth combinations occurring in the sequence. All groups were exposed to an 1dentical pattern of long and short runs (see Appendix A). In one condition these runs were of lengths 2 and 6, and in the other condition, of lencths 5 and 6 . In both conditions long and short runs were equelly probable. In the $2-6$ condition, sequences consisted
of 384 trials, and in the $5-6$ condition, of 528 trials. Sutjects received either neutral instructions, or a detailed explanation of the lengths in which runs could occur. Events were presented according to one of three schemes: the display indicated only the correct event for the current trial (Standard condition), the correct event for the current trial and all other events in the run in progress (Run condition), or the correct event for the current trial and the outcomes of the preceding ll trials (History condition).

Procedure .- The Ss in each group were run four to eicht at a time. Upon entering the room, they were given written instructions explaining the method of event presentation and the operation of response consoles. At the start of the session, Ss were permitted to make inquiries about pojnts which may not have keen clear. After ensiering questions, the experimenter read either neutral or detailed instructions and responded to additional. questions. Instructions given to \underline{S} s in each condition are presented in Appendix B. During the task, $\underline{\text { s }}$ were required to operate the top switch to predict a light in the top row of the display, or the bottom switch to predict a light in the bottom row. Display exposure times were set at 1, 3 and 4 sec . for Standard, Run and History groups, respectively. The response interval was held at 2 sec . for all groups, and event lights remained off throughout this period.

RESULTS

Only those aspects of the data that are particularly relevant to error sources and models discussed in the IntroGuction will be considered in detail. Other results will be sumparized briefly and appear in more detail in the fopendix. section. The Appendix also contains summaries of the analyses of variance conducted on anticipatory exrors, perseverative errors, and repetition responses at the uncertainty point. Therefore, $\mathrm{F}-\mathrm{ratios}$ and levels of significance are not reported in the text.

Anticioatory errors -- Anticipatory error proportions for each of the 12 groups are plotted in Fig. l. Comparisons of errors as a function of display type supported the hypothesis that the presence of a countinc eid facilitates performances. Run (R) groups were superior to History (H) groups which, in turn, were superior to Standard (S) groups. There error rates, pooled over instruction and run length (RL) combination conditions were .024 for the R group, .039 for the H group, and .048 for the S group. The fact that error rates for the H and R Eroup differed suggests that the degree of facilitation may denend on the cortext in which counting information is presented.

As Fig. I shows, however, if comparisons of display types are limited to the Uninformed condition, it is clear that H and R groups were nearly identical within each RT, condition. Moreover, in the $5-6$ condition, where errors were somewhat infrequent in general, performance of the S group was roughly

-INFORMED ロ-UNINFORMED

[^0]equivalent to that of other display crouns. Comperisons of Informed groups provided a somewhat different picture of display relations. In this case, S and R groups were more similar, while H groups had slightly higher error rates. Due to these differences, the interaction of display type and instructions, and the interaction of RL combination with these two variables were significant.

As the results reported above would sugcest, the overail effect of RL combination was significant, with 5-6 groups having lower error rates than $2-6$ groups. It should be noted, however, that when groups are equated for the number of exposures to lorg and short runs, $2-6$ groups would have less experience with three of the four anticipatory points (runs of lengths 3 , 4 and 5) than $5-5$ groups would have on comparable points. On the cther hand, additional considerations suggest that practice is not the only factor involved. Comparisons of terminal error proportions for $2-6$ groups with klock 3 proportions for 5-5 groups were indicative of superior performance in 5-6 groups for the most part. Moreover, in Uninformed conditions, 5-6 Ss generally required fewer exposures to each comparable anticipatory position to reach a criterion of 10 successive correct responses. Althouch sequence structure effects did vary over display conditions and over dependent measures, with the exception of overall error proportions for Informed R groups, trends were generally in the direction favorine 5-6 groups.

As was expected, Informed groups were superior to Uninforued groups. The effects of instructions, however, appeared to be most powerful in groups in which errors occurred most frequently. In the $2-6$ condition, Informed instructions led to a .065 reduction in error rate relative to the Uninformed instruction group. As a consequence, the interaction of iristructions and RL combination was significant. As noted above, the interaction of instructions with display type was also significant, reflecting the fact that detailed instructions produced larger decrements in error rate in the S condition.

The proportion of anticipatory errors, pooled over groups, declincd monotonically over the six trial blocks. Error proportions for each group are presented as a function of blocks in Table 1. Although errors did decline from the initjal level in every group, the rate at which they cecreased varied over experimental conditions. The $2-6$ groups, for exanple, generally showed larger net reductions in error rate then 5-6 groups. Furtherwore, although the most appreciable decrements generally occurred from the first to the second block of trials in both conditions, these decrements tended to be ereater in $2-6$ groups. The Trials x RI interaction, therefore, was significant.

The interaction of trials and instructions was also primarily attributable to differences in the magnitude of the block 1 to block 2 reduction. Pooled over groups, in the Uninformed condition, this reduction was approzimately four

Table 1

Group Anticipatory Error Proportions as a
Function of a Trial Block

Trial Block.

Group	1	2	3	4	5	6
$2-6 S I$.054	.041	.018	.015	.018	.018
$2-6 S U$.255	.088	.106	.105	.100	.088
$2-6 \mathrm{HI}$.161	.015	.026	.021	.022	.015
2.6 HU	.236	.046	.022	.024	.026	.014
$2-6 \mathrm{RI}$.039	.004	.002	.001	.004	.014
$2-6 \mathrm{RU}$.198	.025	.038	.035	.039	.025
$5-6 \mathrm{SI}$.024	.025	.006	.008	.003	.007
$5-6 \mathrm{SU}$.095	.025	.018	.024	.006	.009
$5-6 \mathrm{HI}$.086	.006	.003	.001	.001	.001
$5-6 \mathrm{HU}$.152	.005	.016	.019	.007	.009
$5-6 \mathrm{RI}$.022	.002	.003	$.000 *$.009	.008
$5-6 \mathrm{RU}$.078	.007	.007	.003	.004	.003

*Zero proportion did not result frow rounding.
times as great as in the Informed condition. As Fig. 2 shows, the interaction of display type with trials had a nore cowplicated source. It appeared to reflect the fact that H erours had the highest initial error rate, the lowest terminal error rate, and the gratest decline in error rate fron the first to the second block of trials. Because those groups with the hichest initial crror rates generally changed most markedly ovei trials, only the error rate of the Uninformed $2-6 \mathrm{~S}$ eroup exceeded .02 by the end of the session.

The results descriied so far were based on errors pooled over the four anticipatory points. Because other research indicates that crrors are not generally uniforw over these points, run curves (repetition responses as a function of chrrent run Iometh) were computed and are shown in Apoenciar D. Althouch rew clear-cut trends were evident in these data, there was some tendency for the fifth pojnt to have a higher crror rate than other points in the $2-6$ groups; in $5-6$ groups, the fourth point had this distinction. It should be noted, however, that these trends occurred primarily in S groups. It should also be noted that the rank order of errors for the four positions was fairly constant over blocks only in S and in Uninformed groups. These results suggest that the typical finding that anticipatory errors cluster around run break-off points may only be characteristic of situations in which errors are relatively frequent, or alternatively, situations in which Ss are forced to track run length temporally.

Fig. 2. Anticipatory error proportions as a function of trial blocks for Standard (S), History (H), and Run (R) groups pooled over levels of instruction and run length combination conditions.
for each Group are presented in Fici. 3. As this figure indicates, perseverative errors displayed the sane overall treads as amticipatory errors. R grouns crrea last often (.057), S most often (.248), and H groups at an internediate leval (.121). The error rate of $2-6$ groups (.182) exceeded that of $5-6$ groups (.121), and Informed groups (.096) were superior to Uninformed eroups (.187). Furtherwore, differences between $2-6$ and $5-6$ groups were most dramatic in the S condition. In this case, however, differences were sufficiently large for the interaction of display type and RL combination to be siguificant.

The two error measures showed additional differences in the pattern of interactions. First of all, neither differences between RiL conditions nor differences among display types varied significantly as a function of instructions. In addition, instructions apparently had no effect on the relationship between 2-6 and 5-6 groups as a function of display type. This was not the case on anticipatory errors. Thus, it seems that the advantage provided by detailed instructions is relatively independent of overall error rate here. Perseverative errors may be such a stable phenomenon that certain manipulations can reduce their absolute level, but not in a nanner which would alter characteristic relationships among groups.

Like anticipatory errors, perseverative errors, pooled. over groups, decreased at each trial block. Due to thé complexity of group differences in the pattern of decline,

Fig. 3. Perseverative error proportions for Standard (S), History (H), and Run (R) groups in each Instruction x Run Length condition.
only first-order interactions involving trials will be described. A more complete picture of performance can be obtained by referring to Table 2. Because $2-6$ crror proportions declined at every trial block, while 5-6 proportions exhibited an upturn in the last half of the session, the interaction of trials and RL combination was signiricant. The interaction of trials and instructions also reflected difference in the continuity and direction of change. In Uninformed groups, error rates dropped at each successive block, while in Informed groups, error rates tended to fluctuate.

Repetition responses at the uncertainty point.-- Because a probabilistic rule governs outcomes at the uncertainty point, the dependent measure of interest here is the deviation of repetition response proportions from the objective probakility of a run continuation, 50 in this experiment. Figure 4 contains reoetition probabilities for each croup. Unlike the measures considered above, repetition proportions, $P(R)$, revealed no offect of RL corabination: A significant display effect, howevor, was observed. H groups most closely approximated matching with $P(R)$ equal to .575 , followed by R groups at .608 , and S groups at .661 . As is apparent in Fig. 4, this effect was primarily the result of differences in the $2-6$ condition. Duc to the fact that $P(R)$ was much less variable in the 5-6 condition, the interaction of display type and RL combination was significant. The instruction effect was also signiricant. In Informed Eroups, $P(R)$ was .595 , and in U_{n-} informed eroups, .634.

Takle 2

Group Perseverative Error Proportions Over Trial Blocks
Trial Block

Group	1	2	3	4	5	5
$2-6 \mathrm{SI}$.481	.225	.306	.212	.150	.225
$2-6 \mathrm{SU}$.494	.488	.412	.331	.350	.300
$2-6 \mathrm{HI}$.150	.081	.094	.056	.081	.056
$2-6 \mathrm{HU}$.388	.219	.200	.181	.181	.156
$2-6 \mathrm{HI}$.025	.025	.006	.019	.006	.012
$2-6 \mathrm{HU}$.269	.144	.081	.062	.044	.031
$5-6 \mathrm{SI}$.156	.144	.056	.109	.156	.131
$5-6 \mathrm{SU}$.356	.256	.162	.181	.150	.112
$5-5 \mathrm{HI}$.1 .69	.019	.019	.019	.019	.031
$5-6 \mathrm{SU}$.281	.106	.119	.100	.106	.069
$5-6 \mathrm{RI}$.119	.031	.006	.012	.044	.019
$5-6 \mathrm{RU}$.188	.069	.019	.056	.019	.056

[^1]From the first to the second block of trials, $P(R)$, pooled over groups, increased by .10, an exact reversal of the directional trend noted on both error measures. After the second block, $P(R)$ declined, reachine a terminal level of . 588, which was quite close to its initial value, . 594. Although block 2 increases in overshooting occurred in all except the Informed $2-6 \mathrm{~S}$ group, changes over trjals were highly dependent on group. For example, the initial increase in $P(R)$ was somewhat smaller in S grolips, and the variakility of $P(R)$ over blocks was less marked in H groups. The trials main effert and all except first.. and second-order interactions involvine instructions were significant. The changes in $P(\Omega)$ which produced these effects are reported in Table 3. Conditional response data -- Appendix C conteins conditional run curves for each of the 12 groups. The first set of statistias for each group are repetition response proportions st each poirit in an event run, given that the preceding run was short. The second set are corresponding proportions, Eiven that the preceding run was long. Myeṛs, Butler, and Olson (1969) noted that for $1-5$ groups in their experiment, repetition response probabilities at early points in a run were higher following long than following short runs. With increases in the length of the current run, the advantage associated with the long run decreased, and by the perseverative point, probabilities associated with the short preceding run were higher.

Table 3

Group Repetition Response Proportions Over Trial blocks

Trial Block

Group	1	2	3	4	5	6
$2-6 \mathrm{SI}$.844	.822	.653	.609	.569	.531
$2-6 \mathrm{SU}$.675	.856	.791	.753	.715	.759
$2-6 \mathrm{HI}$.481	.584	.578	.553	.581	.556
$2-6 \mathrm{HU}$.475	.625	.544	.581	.516	.528
$2-6 \mathrm{RI}$.550	.622	.519	.509	.522	.491
$2-6 \mathrm{RU}$.712	.838	.619	.569	.544	.469
$5-6 \mathrm{SI}$.625	.638	.628	.588	.624	.569
$5-6 \mathrm{SU}$.622	.678	.597	.569	.594	.562
$5-6 \mathrm{HI}$.459	.572	.591	.603	.616	.619
$5-6 \mathrm{HU}$.594	.669	.600	.622	.581	.666
$5-6 \mathrm{RI}$.525	.656	.594	.653	.640	.647
$5-6 \mathrm{RU}$.572	.725	.634	.678	.650	.656

In this experiment, the $2-6$ groups are most comparable to those in which Myers et. al. observed this lone-short effect, as the phenomenon has been termed. In order to sivplify the task of comparing the two sets of curves for the 2-6 groups, probabilities corresponding to a short run (hereafter referred to as short probabilities) have been subtracted from those corresponding to a lone run (long probabilities) and are presented in Table 4.

As Table 4 indicates, with the exception of R groups, long probabilities tended to be greater than short probabilities for at least the first two positions in a run. By the sixth position, short probabilities were generally greater. However, several differences from the expected pattern of results were evident. First of all, even when differences were in the predicted direction, very of ten they were smaller at anticipatory points than was the case in the Myers et. al. 1-5 eroups. Secondly, and perhaps as a consequence of the small differences noted in this experiment, the macnitude of the effect did not change systematically over anticipatory points. Finally, the effect did not seem to diminish over trial blocks in an orderly fashion.

In an attempt to better understand the source of the lone-short effect, an additional analysis was performed on perseverative errors. This analysis was motivated by the finding that despite the occurrence of perseverative errors, Ss in memory probe experiments rarely reported runs longer

Table 4

Differences Between Lone and Short Probabilities for 2-6 Groups ${ }^{1}$

	1	.017	.127	.150	.117	.083	-.067
$20.6 S U$	2	.019	.052	.038	.050	.000	.000
	3	.031	.006	-.012	.000	-.088	-.088
	4	.067	.081	.062	-.038	-.112	-.033
	5	.094	.031	.088	.050	-.025	-.088
	6	.035	.019	.088	-.038	.012	-.078

	1	.120	.042	.038	.058	.054	-.067
2	2	.006	.006	.025	.000	.012	-.062
	3	.050	.181	.000	.000	.012	-.012
	4	.000	.094	.000	.025	.038	-.083
	5	.025	.025	.012	.000	-.012	-.125
6	.071	.138	.012	.012	.000	-.102	

[^2] greater than short probabilities

Table \& (cont.)

	1	.050	-.162	.048	.012	.009	-.017
20	2	.012	-.069	-.012	.000	.000	.025
	3	.006	-.050	.012	.000	.000	.012
	4	.006	.019	.000	.000	.000	-.030
	5	-.006	-.094	.012	.000	.012	-.012
	6	.000	-.007	.025	-.012	-.025	-.002

	1	.179	.142	.142	.125	.104	.017
20	2	.031	-.050	-.025	.000	.012	-.050
	3	-.031	.000	.012	.000	.000	-.062
	4	-.012	.025	-.075	-.012	-.012	.007
	5	-.006	.012	.000	.000	.000	.025
	6	-.018	.096	.025	.000	.000	.002

than those in the sequence (Fllis and Myors, manuscript in preparation). Vitz and Hazon (1969), usine completcly randomized event sequences, observed a similar rosult. In their experiment, subjective estiwates of the proportion of runs loneer than leneth 9 were obtained from memory probe data and from prediction data. While the menory data showed .02 undershooting of the objective proportion, prediction data showed . 04 overshooting.

In view of these results, it appeared plausible to assume that perseverative errors are attributable to \underline{S} s losing a count when tracking current run length. It was also assumed that count losses are indicative of disruption, and that disruption occurs primarily following errors. Yellot (1969) has provided evidence which is consistent with the notion that errors produce some type of interference. An additional but non-essential assumption underlyine this analysis was that the disruptive effect of an error does not depend on the point at which the error occurs. Because errors are more probakle at run transition points, particularly when the outcome at such points is indeterminate, it follows that the disruption which results in perseverative errors should occur more often when a preceding run was short.

Table 5 presents perseverative error proportions conditionalized on the length of the preceding run and on the responsc which occurred at the break-off point of that run. To summarize these data, errors were typically more frequent

Table 5
Conditional Perseverative Error Proportions for 2-6 Grcups

$I_{P(E / E)}$ js the probability of a perseverative error given an error at the preceding break-off point. $P(E / C)$ is the corresponding probability given a correct response. F_{2} is the frequency of errors at the preceding break-off point. F_{2} Is the frequency of correct responses at the preceding break-of point.

```
Table 5 (cont.)
```

GROUP	$\begin{aligned} & \text { TRIAL } \\ & \text { BLOCK } \end{aligned}$	PRECEDING RUN IENGTP	P(E/E)	F_{1}	$P(E / C)$	F_{2}
$\begin{aligned} & \text { INFORMED } \\ & 2 .-6 \\ & \text { HTSTORY } \end{aligned}$	1	$\begin{aligned} & \text { SHORTT } \\ & \text { LONG } \end{aligned}$	$\begin{aligned} & 0.2444 \\ & 0.4000 \end{aligned}$	$\begin{aligned} & 45 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.1143 \\ & 0.1000 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \end{aligned}$
	2	$\begin{aligned} & \text { SHORT } \\ & \text { IONG } \end{aligned}$	$\begin{aligned} & 0.11 .54 \\ & 0.11111 \end{aligned}$	$\begin{gathered} 52 \\ 9 \end{gathered}$	$\begin{aligned} & 0.1071 \\ & 0.0423 \end{aligned}$	$\begin{aligned} & 28 \\ & 71 \end{aligned}$
	3	SHORT LONG	$\begin{aligned} & 0.1200 \\ & 0.3750 \end{aligned}$	$\begin{array}{r} 50 \\ 8 \end{array}$	$\begin{aligned} & 0.0667 \\ & 0.0556 \end{aligned}$	$\begin{aligned} & 30 \\ & 72 \end{aligned}$
	4	SHORT LONG	$\begin{aligned} & 0.1282 \\ & 0.0000 \end{aligned}$	$\begin{array}{r} 39 \\ 6 \end{array}$	$\begin{aligned} & 0.0732 \\ & 0.0135 \end{aligned}$	$\begin{aligned} & 47 \\ & 74 \end{aligned}$
	5	$\begin{aligned} & \text { SHORT } \\ & \text { LONG } \end{aligned}$	$\begin{aligned} & 0.2083 \\ & 0.1667 \end{aligned}$	$\begin{array}{r} 48 \\ 6 \end{array}$	$\begin{aligned} & 0.0313 \\ & 0.0135 \end{aligned}$	$\begin{aligned} & 32 \\ & 74 \end{aligned}$
	6	SHORT LONG	$\begin{aligned} & 0.1860 \\ & 0.0000 \end{aligned}$	$\begin{array}{r} 43 \\ 3 \end{array}$	$\begin{aligned} & 0.0270 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 37 \\ & 77 \end{aligned}$
$\begin{gathered} \text { UNIFFORMED } \\ 2-6 \\ \text { HISTORY } \end{gathered}$	1	$\begin{aligned} & \text { SHORT } \\ & \text { LONG } \end{aligned}$	$\begin{aligned} & 0.7568 \\ & 0.3462 \end{aligned}$	$\begin{aligned} & 37 \\ & 26 \end{aligned}$	$\begin{aligned} & 0.4651 \\ & 0.1471 \end{aligned}$	$\begin{aligned} & 43 \\ & 34 \end{aligned}$
	2	SHORT I.ONG	$\begin{aligned} & 0.2272 \\ & 0.5833 . \end{aligned}$	$\begin{aligned} & 54 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.3077 \\ & 0.0179 \end{aligned}$	$\begin{aligned} & 26 \\ & 56 \end{aligned}$
	3	SHORT LONG	$\begin{aligned} & 0.3590 \\ & 0.4762 \end{aligned}$	$\begin{aligned} & 39 \\ & 21 \end{aligned}$	$\begin{aligned} & 0.1707 \\ & 0.0169 \end{aligned}$	$\begin{aligned} & 41 \\ & 59 \end{aligned}$
	4	$\begin{aligned} & \text { SHORTT } \\ & \text { TON } \end{aligned}$	$\begin{aligned} & 0.2500 \\ & 0.5333 \end{aligned}$	$\begin{aligned} & 48 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.1250 \\ & 0.0769 \end{aligned}$	$\begin{aligned} & 32 \\ & 65 \end{aligned}$
	5	SHORT LOING	$\begin{aligned} & 0.3500 \\ & 0.5385 \end{aligned}$	$\begin{aligned} & 40 \\ & 13 \end{aligned}$	$\begin{aligned} & 0.1000 \\ & 0.0597 \end{aligned}$	$\begin{aligned} & 40 \\ & 67 \end{aligned}$
	6	$\begin{aligned} & \text { SHORTT } \\ & \text { LONG } \end{aligned}$	$\begin{aligned} & 0.3143 \\ & 0.6667 \end{aligned}$	$\begin{aligned} & 35 \\ & 12 \end{aligned}$	$\begin{aligned} & 0.0444 \\ & 0.0588 \end{aligned}$	$\begin{aligned} & 45 \\ & 68 \end{aligned}$

Tablo 5 (cont.)

GROUP	$\begin{aligned} & \text { TRIAL } \\ & \text { BLOCK } \\ & \hline \end{aligned}$	PRECEDIIIG RUN LEIGGTH	$P(E / E)$	F7	$P(E / C)$	F
$\begin{gathered} \text { INFORMED } \\ 2-6 \\ \text { RUN } \end{gathered}$	1	SHORT	0.0227	44	0.0000	36
		LONTG	0.0000	0	0.0000	60
	2	SHORT	0.0000	55	0.0400	25
		LONG	0.0000	2	0.0385	78
	3	Stiors	0.0000	37	0.0000	42
		I.OITG	0.0000	1	0.0250	80
	4	SHORT	0.0227	44	0.0270	37
		LON:G	0.0000	2	0.0000	76
	5	SHORT	0.021 .7	46	0.0303	33
		L.ONG	0.0000	1	0.0000	81
	5	SHORT	0.0400	25	0.0000	55
		LONG	0.0000	1	0.0127	79
	1	SHORT	0.2778	54	0.1154	26
		LONG	0.6364	11	0.1224	49
	2	SHORT	0.1692	65	0.0000	15
		LONG	0.6000	15	0.0462	65
$\begin{aligned} & \text { UNTNFORNED } \\ & 2-6 \\ & \text { RUN } \end{aligned}$	3	SHORT	0.1500	40	0.0750	40
		LONG	0.3333	9	0.0141	71
	4	SHORT	0.0667	45	0.0571	35
		LONG	0.1429	7	0.0548	73
	5	SHORT	0.0286	35	0.0222	45
		LONG	0.6667	3	0.0390	77
	6	SHORT	0.0741	27	0.0189	53
		LONG	0.0000	4	0.0263	76

followng errors than following correct responses. However, it is quite clear that the disruptive erfect of an error depended on whether that error occurred at a determinate or an indeterminate point. As Table 5 shows, in most instences involving non-zero probabilities, errors followed errors wore of ten when the preceding run was long. Althouch these results indicate that simple frequency notions cannot account for the lone-short effect, the basic point of view implied by this analysis was supported. Count losses could result in perseverative errors, and errors apparently do lead to further interference.

Analysis of pre-criterion data -- In the Introduction, it was maintained that if miscounting is the primary source of errors, the learning of determinate points should be adequately described by an all-or-none model. The all-or-none position requires that two basic conditions be met: error probabilities should be indopendent of responses occurrinc on earlier trials, and should be constant over trials which precede the error which mariss the beginning of the criterion run of correct responses. The conditional perseverative error data presented earlicr indicate that this first condition was not satisfied. Although the perseverative error analysis was based on 2.11 trials, this conclusion appears valid in view of the fact that this relationship was evident at those trial blocks which constituted the pre-criterion phase for most \underline{S} s in each group.

In order to test the remaining condition, a criterion of 10 successive correct responses was established. A cycles to criterion measure was computed for each i at each of the 5 determinate points. Here a cycle corresponds to a single occurrence of a particular position. For example, if a S reached criterion on the third position after having been exposed to one lone and one short rum, his cycles to criterion score would be l if he is in a $2-6$ group; he would have seen a run length of 3 only once. In a $5-6$ group, his score would be 2 ; runs of length 3 are embedded in both the lone and the short run in $5-6$ sequences.

For each position, cycles prior to the last error berore criterion were divided into four segments for every S-position pair. The croup error proportions for each position are tabulated in Appendix F. Informed groups were not included in this analysis because so few exposures were needed to reach criterion that the data could not be easily divided into four segments. The results of the X^{2} tests of stationarity appear in Table 6. In the $2-6 \mathrm{R}$ group, only position 6 had nonstationary error probabilities, and in the 5-6 R group, only position 3. In roth cases, the lack of stationarity appeared related to the large decrease in errors at the second quarter. In the latter case, however, the data for the third position were based on only two si and on only two cycles per quarter for each. Prior to the last error, only two errors occurred

Table 6

Chi-square Statistics for Tests of Stationarity ${ }^{1}$

Position ivumber (Current Run Length)

${ }^{1} X^{2}$ baseà on 3 dif.

* p. $<.05$

兴 $\mathrm{p} .<.01$.
*** p. < . 001
at this position and both occurred durinc the first quartor. Therefore, the error proportion dropped from .50 to zero.

In the il eroups, a different pattorn of rosults caused departures from stationarity. For the $5-6 \mathrm{H}$ eroup, a . 73 increase in errors at the sccond quarter as well as a sizcable decrease at the third quarter seened to be responsible. For the 2-6 H group, positions 2,3 and 4 were non-stationary. At the first position, error proportions declined continuously, while at the third and fourth positions, large declines at the second quarter appeared to be the source of the sicrificent x^{2}. Althouch the niscourtine notion outlired in this paper would not predict all-or-none learning in S grouos, stationarity was found at all points except positior 3 in the $2-6 \mathrm{~S}$ eroup, and positions 1 and 4 in the 5-5 S group. Error proportions underwent continuous decline in only one of these cases. In the remaininc instances, reductions at the second quarter appeared to result in lack of stationarity.

Data fits of the feneralization model -- Predictions of the generalization model were generated by reading group event sequences into a CDC 3600 computer. Trial 1 entries for the vector of repetition response probabilities were initialjzed at . 50. On each trial, a new entry was obtained by operating on the existing value with the expression designated Equation 2 in the Introduction. The selection of parameter estimates was based on a variance minimization criterion, and was accomplished usine search routine STEPIT,
cieveloped by Chendler (1965). The variance criterion involved we ghtinc the squared deviation for each position in a run by the relative frequency with which thet position occurred in the event sequence. Table 7 presents paramoter estinates and variance statistics for each group.

As Table 7 indicates, both the ostimates of the learninc rete parameter, $\hat{\theta}$, and the generalization paraweter, $\hat{\gamma}$, varied widely over groups. If one eliminates the Informed R groups, however, the range for $\hat{\theta}$ narrows substantially and is comparable to that cisserved in the Myers et. al. (1969) experiment. The fact that $\hat{\theta}$ was consistentily hicher in $R, 5-6$, and Informed groups suggests that this paraneter variability is not random, but is systematically related to task difficulty. The variability of $\hat{\gamma}$ seems to have a similar source. Generalization was evidently greatest in S groups and least in R groups, greater in Uninformed then in Informed groups, and with two exceptions, greater in $2-6$ than in $5-6$ groups.

Predicted and observed repetition response probabilities are presented as a function of current run length and trial block in Appendix G. As comparisons of these statistics indicate, the model generally described the wore gross characteristics of the data. In addition, parameter estimates and variance statistics for the Uninformed S groups were quite similar to those of groups receiving comparable treatment in other experiments (e.E., Gambino \& Niyers, 1967 ; Fiyers, Butler, ¿ Olson, 1969).

Tabie 7

Parameter Estimates and Variance Statistics

for Data Fits of the Generalization Model

Group	$\hat{\theta}$	$\hat{\boldsymbol{\gamma}}$	Variance
$2-6 \mathrm{SI}$.455	.160	.0107
$2-6 \mathrm{SU}$.160	.360	.0051
$2-6 \mathrm{HI}$.395	.055	.0010
$2-6 \mathrm{HU}$.175	.088	.0021
$2-6 \mathrm{RI}$.997	.014	.0011
$2-6 \mathrm{RU}$.240	.092	.0052
$5-6 \mathrm{SI}$.620	.118	.0022
$5-6 \mathrm{SU}$.265	.175	.0015
$5-6 \mathrm{HI}$.434	.038	.0016
$5-6 \mathrm{HU}$.195	.125	.0022
$5-6 \mathrm{FI}$	1.000	.023	.0028
$5-6 \mathrm{HU}$.361	.084	.0041

One surprising findine was that the model did not provide better fits for R groups than for other groups. The generalizetion model, it will be recalled, assunes that the \underline{S} focuses on current run length and perceives it accurately. It further assumes that the response on every trial is determined only by the reinforcement history of the current run length. Certainly these assumptions are most realistic for R groups. As the sum of squares entries in Table 7 show, within each RL x Instruction conditici, fits of the R data were eenerally equivalent to or worse then those of H and S groups; they were rarely better.

DISCUSSION

Before attemptine to discuss the implications of the results, it would be worthrilile to sumarize the major trends apparent in the data. Accordine to both error measures and the cycles to criterion measure, performance vas better in Informed than in Uninformed groups, and was rest in R groups and poorest in S groups. Sequence structure effects, however, were somewhat more complicated. In all conditions, perseverative errors excceded anticipatory errors, and in most cascs, 5-6 groups were somewhat better than $2-6$ groups. The advantage of 5-6 Eroups was typically smaller under Informed instructions and in the F display condition. At the uncertainty point, overshooting was most pronounced in S ard Uninforned eroups, and least pronounced in II and Informed eroups. However, the complex pattcrn of group relationships noted at the uncertainty point sugcests that overall trends may have been an artifact oi pooling over conditions.

The error data suggest several characteristics of the interference which operates in the learning of run sequences. The magnitude of this interference appears to depend on both the amount of information provided, and the context in which this infornation is presented. Furthermore, this interference appears sensitive to run structure, but to an extent which depends on the method of event presentation. Althouch it mould be desirable to specify the efrects of interference on
pewiormance at indeterninate points, the data of this experiment were not particularly helprul in this rospect.

The finding that repetition response proportions varied With current run length even in the Inrormed R cordition is consistcut with the assumption that eeneralized response tendencies are a source of interference. However, the specific treatment of generalization given in the Gambino-Myers model was contradicted by the finding that differences in overall error rates for $2-6$ and $5-6$ groups were not only negligible, but were indicative of slightly better performance in $2-6$ groups. In addition, despite the fact that the model's assumptions are most tenable for R groups, and that the H displey would seemingly encourage behavior which is inconsistent with the model's assumption that Ss process only current run length, on the average, fits of the H data were generally better than those of other groups.

The Gambino-iyers conceptualization provides an unsatisfactory account of the interference process for still another reason. Although there is no a priori reason for expecting the magnitude of generalization to depend on the lengths of the two runs occurring in a sequence, $\hat{\boldsymbol{\gamma}}$ generally varies over groups. Furthermore, the model inevitakly yields higher values of $\hat{\gamma}$ for conditions in which the two run leneths should be most discriminable. Surely if the model must predict differences in the amount of generalization, these differences should be in the opposite direction.

The miscounting conception of interference was supported ky the fact that countine aids facilitated performance and that differences between $2-6$ and 5-6 groups were consiclerably reduced in the R condition. However, this conception could not easily encompass the finding that even in Informed P groups, error rates varied with current run length. While this result inoiies that very simple interpretations of riscountine may Le inappropriate, the better performance of II and R groups sucgests thet countine failures do contribute to errors in the usual experimental situation.

Recent evidence suggests that if counting failures are involved, these failures are probably indicative of interference processes which affect memory. Ellis and Hyers (manuscript in preparation) heve found that low error groups ($2-3$ and $4-5$ in their experiment) could better recall the current run leneth and the four precedine runs than could groups with internediate errer retes $(2-5$ and $4-7)$. The latter groups, in turn, had more accurate rocall than did hich error groups (2-3-1-5 and 4-5-6-7). Although it is not possible to specify the reasons for this covariation of sequence structure and retention, an experiment conducted by Colker and Fyers (manuscript in preparation) suceests one possibility. After several hundred trials, Ss in treir experiment were swj.tched to non-contingent reinforcement schedules in which every response was designated correct. Prior to this change, as would be expected, error rates were hicher for $2-5$ than for $4-5$ groups. During the second stage
of the experiment, S in $\hat{z}-5$ groups displayed nore complex response patterns than did those in $4-5$ groups. Moreover, Ss within both groups who exhibited periodic "solutions" (e. E., $2 E_{1} s-5 E_{2} s-2 E_{1} s-5 E_{2} s \ldots$) fell below the croup modion on both the anticipatory and perseverative error measures computed for the acquisition phase of the experiment. Althouch Ss who emitted wore complex solutions fell below group medians in some cases, the averace error rates and the variability of error rates for this sub-group were always greater than for sub-grouns composed of \underline{S} giving simpler solutions.

These findings suceest that the relationship between sequence structure and error rates may reflect differences in the extent to which certain patterns of everits induce corplex hypothesis behavior on the part of $\underline{S} s$. As the complexity of such hypotheses increases, the demands placed on meroory would increase, thereby reducing both retention and prediction accuracy. The contention that performance is adversely affected by increasing memory lead is supported by the finding that error rates increase with the number of run lengths occurring in a partially learnable sequence (Gambino and Myers, 1966) and the finding that cycles to solution increase whith the number of structural units forming the kasic pattern of a recursive sequence (Derks and House, 1965; 1967).

Under circumstances in which the number of runs in various sequences is held constant, differences in memory requiréments
would secmingly be attributable to differences in the relationship of the long and short run. Ir sequences in which the two run lengths are soparated ky a minimal distance, it would be difficult for S s to discrimirate between the locec and short run. Therefore, it would be quite difficult for $\underline{\text { S }}$ s to detect temporal patterns formed by the tino run lencths over a scries of trials. As the distence between rur leneths is increased, discriminability would also increase, and \underline{S}_{s} would find it less difficult to compile the type of inionration necessary for formulating hypotheses regarding patterns of runs. As the task of compiling this inforgation becomes vore feasible, \underline{S} s should be able to detect increasing degrees of complexity in the event sequence.

The notions sketched out above succecest a theoretical framerork for interpretinc the results observed in this experiment. First of all, the results sumarized above suggest that Ss atteapt to generate hypotheses which include rules for predicting outcomes at indeterminate points. Secondly, they suggest that hypothesis complexity is determined by the discriminability of the run lengths which comprise the sequence. Finally, these results sugerest that as hypothesis complexity increases, processing ability and/or memory load approach their limits. As a consequence, performance at determinate points deteriorates.

In this context, differences between $2-6$ and $5-6$ groups would be expected due to the fact that $2-6$ sequences would
tend to encourage more complex: hypothesis behavior and as a result, would lead to wore interference at learnable points. Differences among display conditions can also be accounted for by differences in memory load. In the H condition, the display would not only facilitate the detection of run patterns, but could conceivably alter demand characteristics of the situation in such a way that $\underline{S} s$ feel compelled to use all of the information presented. The I display could either emphasize the importance of current run length, thereby discouracing complexity, or reduce the demands placed on memory to such a degree that complex hypotheses appear feasible. In the former case, S s in S groups might be expected to entertain wore complex hypotheses than S's in R groups; in the latter case, the reverse might be true.

Due to differences in hypothesis load, performance should be better in R groups than in Fi groups. Due to the fact that SIs in the S condition must remember current run length without visual aicis, performance in the H groups should be better than in S groups. Although overall trends supported this prediction, initial error rates indicated that the advantage of a counting aid in II groups may have been outweighed by interference effects during the earliest stage of practice. In the Informed condition, with only one exception, perseverative and anticipatory errors occurred more frequently in these groups than in S groups.

The effects of instruction can also be interpreted in this framework. To the extent that detailed instruciions emphasized current run length at the expense of pattern information, Informed groups should porforn better than Uninformed groups. In the S condition, an additional factor could contribute to differences in the two instruction conditions. In the absence of a counting aid, some proportion of the Uninformed Ss could very well fail to learn the run lengths durine the course of the experiment. However, as noted in the Introduction, these failures can probably be attributed to the interfering effects of overly complex strategies. Therefore, even failures to learn can be treated as indications that the demands placed on memory exceed processing limitations.

Although only $2-6 \mathrm{~S}$ groups showed sizeable differences in anticipatory error rates by the end of the session, initia? ard terminal error rotes woro generally sowewhat hicher in Uninforwed croups. In adicition, althouch differences between Informed and Uninformeć eroups did not vary markedly with display type, in the $2-5$ condition, where interference would be greater, perseverative error rates at most trial blocks suggested that detailed instructions were most beneficial in H groups and least beneficial in R groups. This relationship is consistent with the assumption that hypothesis complexity is jointly determined by the erphasis placed on current run length and the discriminability of temporal patterns formed by runs.

Although the interpretations offerred for the results of this experiment suggest that information processing conceptions
of prediction behavior may be fruitful, the foregoing remarks do not dictate exact lines that such models should follow. Perhaps the most critical choice point in developing a formal model involves the representation of the basic learning process. It could be assumed that learning is an incremental process. In this case, the learning of certainty points could be described using a system which is similar to the direct reinforcement assumptions of the generalization model. To idescribe the hypothesis structure developed by S, the mociel could incorporate a parallel set of assumptions which treat expectandies about run repetitions in a manner which is analogous to the treatment of expectancies about event repetitions at determinate points.

Alternatively, learning could be conceived of as a discrete process, and the S could be viewed as in a guessing state for each run length until some trial on which reinforcement becomes effective. If the run of length i continued on that trial, a repetition response would be conditioned to that run length; if the run broke off, an alternation response would be conditioned. To account for performance at indeterminate points, the model could assume that with some probability the conditioning process leads the \underline{S} to expect either a short or a long run to follow a particular pattern of long and short runs.

Discrete conceptions of the learning process may be pereferable for several reasons. First of all, they could more easily cope with the stationarity of error probabilities observed
in this experiment and in experiments involvine perfectiy learnakile sequences. Secondy, assumptions regaraing mewory and hypothesis cehavior may actually be more compatible with discrete analyses of learning. This possibility is suggested by the fact that most recent models which have incorporated information processing assumptions have been cast in such a framerori. Furthermore, as Rumejhart's (1967) review of nemory models of paired associate learning and Chumbley's (1967) review of the concept identification literature will substantiata, much of the impetus for the investigation of the cognitive processes involved in learning has been provided by theories which view the learning process as composed of stages which corrospond to the operation of different psychological and behavioral processes.

Another choice point in developing a. formal model involves deciding whether interference effects should be independent of responses and sequence constraints. The finding that perseverative error rates in this experiment were higher when an error occurred at the preceding break-off point suggests that it may be profitakle to assume that interference occurs primarily when the information used to generate a response is invalidated by the trial outcome. In order to account for differences noted as a function of preceding run length, it could also be assumed that disruption is more probable when the hypothesis that is disconfirmed has been supported on most previous occassions. Due to the covplete preaictability
of outcomes at determinate points, this assumption would lead one to expect nore frequent disruption when an error occurs at a certainty point.

It would also be necessary for a formal model to malic some statement regarding the consequences of interference. If the model either implicitly or explicitly assumes that the \underline{S} is awaxe of disruption when it occurs, it follows that the contents of memory would be unaffected by the trial outcowe. On the other hand, if the mociel holds that disruption goes unnoticed, then it follows that stored information would be changed in a manner which is consistent with the trial outcome and with the faculty information upon which the response was based. The latter assumption, however, implies that Ss never become familiar enough with run structure to be able to detect counting fajlures. In so doing, it not only implies that most Śs fail to learn event contingencies at determinate points, but it also suggests that the hypothesis structure of \underline{s} s exposed to 2-5 sequences would be almost as complex as that of S s exposed to 2-3-4-5 sequences. In view of the Colker and liyers (manuscript in preparation) finding that Ss rarely use incorrect run lenetins in generating solutions when all responses are reinforced, and in view of the differences in retention and error rate reported by Ellis and Fyers (manuscript in prepar.ation), both of these possibilities seem unlikely.

In addition to having to specify how disruption would affect memory, a formal model would also have to specify how
the response selection process is affected. When disrupted, the $\underset{i}{ }$ could simply guess at random, could basc his response on an estimate of nverall event repetition probabilitics, or could base his response on the last run Jength he rewombers seeing. The latter alternative seems particularly well suited to information processing notions in that it is competicle with recency assumptions generally incorporated in theorios of forgetting (see, for example, Nelton, 1963). Furtherinore, it is consistent with two of the major findings of the Ellis and Myers experiwent: that Ss rarely report runs longer than the curent run length when memory is probed, and that the proportion of S reporting the current run as being of lengith i decreases with the distence of ifrom true run lencth. Both of these results imply that when the S loses track, he is most likely to xetrieve the run leath for which memory should be nost accurate--the one which was most rocontly experienced. It is no doubt evident that the status of the wiscounting position has been left rather vague. While the results of this experiment strongly sucgest that no simple interpretation of countinc feilures would be adequate, these results are competible with the assumption that the processing of complex information may cause attentional fluctuations and/or memory overloads which make it difficult for the \underline{S} to keep track of current run lencth. Thus, it can be concluded that the results of this experiment are consistent with the following assumptions: (I) interference may be caused by the S's attempts
to generate hypotheses that contain information recardine outcomes at both determinate and indeterminate points; (2) the complexity of these rijpotheses may ho dotornined by the discriminability of the run lengths which occur in the sequince; (3) interference may increase with the complexity of the hypotheses developed, and (4) interference may be benifasted by the \underline{s} losing track of current run leneth. Although these assumptions can provide guide lines for formulating models of the learninc situation, they do not greatly restrict the range of additional assumptions which could be entertained. Several alternatives are available in deciding on how to view the learning process, whether the likelihood of disruption depends on the response occurring on a particular trial and on the series of events preceding that trial, how disruption would alter the contents of memory, and how it would affect the response selection process.

SUMMARY

Twelve groups of 20 . Ss were exposed to partially learnable sequences composed of runs of lengths 2 and 6 or 5 and 6. The $\underline{S} s$ were given either neutral instructions or instructions which specified the lengths in which runs could occur. Either a single event, all events comprising the run in progress, or all events occurring within the 12 most recent trials were displayed after each prediction. The major resuits were that differences among the two run length conditions depended on levels of the other independent variables, and that providing information either through instructions or via the event display improved performance. Results were discussed with reference to information processing conceptions of binary choice behavior.

REFERENCES

Anderson, N. H. An evaluation of stimulus sampling theory: comments on Professor Estes' paper. In A. W. Wilton (Ed.) Categories of Human Learning. Academic Press: New yo\%, 1964, Pp. 130-145.

Anderson, N. II. Effect of first-order conditional probability in a two-choice learning situation. Journal of Experimental Psychology, 1960, 52, 73-91.

Anderson, N. F., \hat{i} Whaler, R. E. Likelihood judgements and sequential effects in a two-choice probability learning situation. Journal of Experimental Ps cholccy, 1950 , 60, 111-121.

Burke, C. J., er Estes, W. K. A component model for stimulus variables in discrimination learning. Psychometrika, 1957, 22, 133-145.
Bush, R. R., \& Hosteler, F. Stochastic Models for Learning. New York: Wiley, 1955.

Butler, P. A., Myers, H. A., \& Myers, J. L. Contingencies among event runs in binary prediction. Journal of Experimental Psychology, 1969, 29, 424-429.

Chandler, J. P. Subroutine STEPIT, Program QCPE 66. Quantum Chemistry Program Exchange. Indiana University, Bloomington, Indiana, 1965.
Chumbley, J. I. The memorization and manipulation of sets of hypotheses in concept learning. Unpublished doctoral dissertation, Indiana University, Bloomington, Indiana, 7067.

Desks, P. L. Supplementary report: effect of run length on the "gambler's foilany." Journal of Experimartif Psychology, 1963, 65, 213-214.

Dorks, P. L., \& House, J. I. Effect of event run structure on prediction of recursive binary sequences. Psycholosital Reports, 1965 , 17, 447-456.
Derks, P. L., $\hat{\text { a }}$ House, J. L. The acquisition of recursive binary sequences. Paper presented at a meeting of the Eastern Psychological Association, 1967.

Edwards, W. Probability learning in lCOC trials. Journal of Experimental Psychology, 1961, 52, 385-394.
Angler, i. Marginal and conditional stimulus and response probabilities in verbal conditioning. Journal of Experimental Psychology, 1958, 55, 303-317.
Estes, W. K., $¿$ Eurke, C. J. A theory of stimulus variability in learning. Psychological Review, 1953, 60, 276286.

Estes, W. K., \& Straughan, J. H. Analysis of a verbal conditionine situation in terms of statistical learning theory. Journal of Experimental Psychology. 1954, 47, 225-234.
Feldman, J. On the negative recency hypothesis in the prediction of a series of binary symbols. American Journal of Psychology, 1959, 72, 597-599.

Gambino, B., \& fiyers, J. L. Effect of mean anù varlability of event run length on two-choice learnine. Journal of Experimental Psychologv, 1966, 22, 904-902.
Gambino, P., \& Myers, J. L. Role of event runs in probakility learning. Psychological Review, 1967, 34, 410-419. Garnor, V. R. Uncertainty and Structure as rsychological Concepts. Hew York: Viley, 1962.
Goodnow, J. J. Response sequences in a pair of two-choice probability situations. American Journal of Esychology, 1955, 68, 624-630.
Goodnow, J. J., \& Pettigrew, T. F. Efrect of prior patterns of experience upon strategies and learnine sets. Journal of Experimental Psychology, 1955, 42, 381-389. Goodnow, J. J., Rubenstein, I., \&iLikin, A. Response to changing patterns of events. American Journal of Psychology, 1960, 73, 56-67.
Hake, H. .i., $\dot{\text { i Hyman, R. Perception of the statistical }}$ structure of a random series of binary symbols. Journal of Experinental. Psychology, 1953, 45, 64-74. Jarvik, \therefore. Probability learinine and a neqative recency effect in the serisl anticipation of alternative symbols. Journal of Experinental Psycholocy, 1051, 41, 291-297. Meltion, A. W. Implications of short-term wemory for a ceneral theory of menory. Journal of Verbal Iearnine and Verbal Behavior, 1963, 2, 1-21.

Myers, J. L., Butler, P.A., \& Olson, D. E. Run leneths and probabilities in binary choice prediction. Journal of Mathematical Psychology, 1969, in prose.
Nicks, D. C. Prediction of sequential two-choice decisions frow event runs. Journal of Experimental Isychojog\%. 1555, 57, 1.05-114.

Restyle, F. Grammatical analysis of the prediction of bine ry events. Journal of Verbal Learning and Verbal behavior, 1967, 25, 1.08-117.

Restyle, F. Psycholney of Judgement and Choice. New York: Wiley, 1961.

Restive, F. Run structure and probacility learning: disproof of Restyle's model. Journal of Experimental pstcholocy, 1866, 72, 392-389.
Rose, R. if., a Vita, P. C. The role of events in probability learning. Journal of Experimental Psychology, 1966, 22, 382-389.
Runelhart, D. E. The effects of interpresentation intervals on performance in a continuous paired-associates task. Technical Report No. 116, August, 1967. Stanford University, Stanford, California.
Vitz, P. C., \& Hazan, D. N. Memory during probability learning. Journal of Experimental Psychology, 1969, 80, 52-58.

Vitz, P. C., \& Todd, T. C. A model of learning for simple repeating binary patterns. Journal of Experimental Psychology, 1967, 6, 17-25.

Witt, R. S. Iong-term effects of patterned reward schedules. Journal of Experimental Psychology, 1964, 68, 588-594. Yellott, J. I. Some effects of noncontingent success in human probability learning. Journal of Mathematical Psychology, 1969, in press.

APPENDIX A

Pattern of Long (L) and Short (S) Runs for All Group
Sequences.
Trial Block:

I		2	L	L	$\underline{6}$
L	L	I	S	S	S
S	L	S	L	S	S
S	L	L	S	L	L
S	S	L	S	L	L
L	S	S	L	L	S
S	L	S	L	L	L
S	S	L	L	S	S
L	L	L	S	L	S
L	L	S	S	S	I
S	S	S	S	S	S
S	L	S	L	S	S
L	S	L	L	S	L
L	S	L	S	L	L
L	S	S	S	S	L
S	S	S	L	L	L
L	L	L	L	S	

APPENDIX B

Instructions
General Instructions for All Groups
In this experiment you will be presented with a series of lights. On each trial, you are to predict whether a light will come on in the top row or in the bottom row of the display panel at the front of the room.

How to make rredictions. Next to you, there is a console containing two switches. To record your prediction, you are to flip one of the switches downward. If you think a lisht in the top row will come on, flip the top switch. If you think a light in the kottom row will cowe on, fijp the botion suitoh. It is importert that you weve only sone switch on each trial.

When to nake a prediction. Between trials, the lights on the display mill co off and will remain off for 2 soconds. You are to matre your prediction in this 2 second interval. After 2 seconds have gone by, the display will show the correct prediction for that trial. There will be no warning signal to tell you when to respond or when to check the display for the correct prediction. So wake your predictions rapidy. Remember, as soon as the lights go out, make your prediction, look up immediately, and wait for the correct prediction to appear on the display.

APPENDIX B (cont.)
 Instructions for Standard Groups

Only the lights for the leftmost position will be used, so be sure to look at the appropriate area of the display. Either a licht in the top row or in the botton row will come on after you have made your prediction. We will start with one light on. As soon as it goes off, make your first prediction.

APPENDIX B (cont.)

Instructions for History Groups

On every trial, several lights will appear on the display. The correct prediction for the present trial will appear in the rightmost position to the right of the black line. The correct prediction for the preceding trial will occur in the next position, and so on. In other words, you will be able to see the correct prediction for the present trial and for each of several preceding trials, ordered from right to left in terms of the most recent to the least recent. For example, suppose we start off with all of the lights in the first row on. The display would look like this.

Trial 1
When these lights went off you would make your first perediction. If a light in the second row is now correct, the display would look like this after your prediction.

00000000000

If a light in the second row is also correct on the next trial, after your second response, the display would look like this.

0000000000

Trial 3
Event for Trial 1
Fvent for Trial
Fvent for Trial 3
Notice that after each response interval, the lights
move over one position to the left in order to make room for the new event. Notice also that the same number of lights will be on for every trial, so that the leftmost light will move off the display when a new event is added. We will stert with the display lighted. As soon às the lights go off, make your first prediction.

Instructions for Pun Groups

Whenever a light in a particular row is followed by a light in the sane row, these lights will be shown together. For example, suppose that we start off with a light on in the first row. The display would look like this.

Trial 1
After your first prediction, if the top row is correct, the display would look like this.

00

Trial 2
If the bottom row is correct next, after your prediction, the display would look like this.

O
Trial 3
We will start off with a single light on. As soon as it goes off, make your first prediction.

APPENDIX B '(cont.)

Specie? Instructions: Uninformed $2 . .6$ and $5-6$ Groups
Are there any questions? (E responds by paraphrasing written instructions.) I would like to point out that it is not possible to be correct on every trial, but it is possible to be correct most of the time. Remember, you must make one and only one response on every trial and you must make that response during the lights off period. We will begin now.

APPENDIX B (cont.)

Special Instructions: Infortoed 2-6 Croups

Are there any questions? (E responds by paraphrasine written instructions.)

This group will be given special information that other groups will have to learn. Exactly two or exactly six lights in the same row will be correct on successive trials. When you see the first light come on in a particular row, there will always be a secord one in that same row on the next trial. After 2 Iichts in the same row, there will sometimes be a third one in that rov, and at other times, the lichts in the alternate row will kecin to come on. Whenever you have seen 3 lizhts in the same row, there will always ce a fourth, a fifth and a sixth light in that row on the following trials. In other words, there will never be fewer than 2 or more than 6 lights in the sane row occurring on successive trials. When you have seen 1,3 , 4 or 5 lights in a particular row, there will always ke another one in that row on the next trial. When you have seen exactly 2 , there may or may not be a third. When you have seen six, the lights in the other row will besin to be correct next. The sign at the front of the roow will remind you of these rules. I would also like to point out that it is not possible to be correct on every trial, but it is possiblc to be correct most of the time. Remember,
you wist make one and only one response on every trial and you rust wake that response during the lights of period. We will begin now if you have no questions.

Special Instructions: Informed 5-6 Groups
Are there any questions? (E responds by paraphrasing written instructions.)

This group will be given special information that other groups will have to learn. Exactly five or exactly six lights in the same row will be correct on successive trials. When you see the first light come on in a particular row, there will always be a second, a third, a fourth and a fifth light in the same row on the following trials. After 5 trials in the same row, there will sometimes be a sixth one in that row, and at other times, lights in the alternate row will begin to come on. In other words, there will never be fewer than 5 or more then 6 lights occurring in the same row or successive trials. When you have seen $1,2,3$ or 4 lights in a particular row, there will always be another one in that row on the next trial. When you have seen exactly 5 , there may or may not be a sixth. When you have seen 6 , the lights in the other row will begin to be correct next. The sigh at the front of the room will remind you of these rules. I would also like to point out that it is not possible to be correct on every trial, but it is possible to be correct most of the time. Remember, you must make one and only one response on every trial, and you must make that response during the lights off period. We will begin now if you have no questions.

APPENDIX: C

Sumaries of Analyses of Veriance
 Anticipatory Errors

Source of Variance
df
SS
ms
f

Between

Run Lengtr Comb. (RL)	1	.4384	.4384	$31.54 \% \%$
Display (D)	2	.1463	.0732	$5.27 \% \%$
Instructions (I)	1	.4367	.4367	$31.42 \% \%$
RL x D	2	.0702	.0351	2.52
RL X I	1	.1400	.1400	10.07%
I X I	2	.0962	.0481	3.46%
RL X D X I	2	.0952	.0476	3.42%
S/(RL)DI	228	3.1708	.0139	\cdots

Within

Trials (T)	5	1.8341	. 3668	244.53%
RI. \times T	5	. 1555	. 0311	20.73***
D \times T	10	. 2401	. 0241	16.07\%**
$\mathrm{I} \times \mathrm{T}$	5	. 3556	. 0711	47.40\% \%
RL $\times \mathrm{D} \times \mathrm{T}$	10	. 0064	. 0006	1.00
RLX $\mathrm{I} \times \mathrm{T}$	5	. 0322	. 0064	4.27\%
D $\mathrm{XI} \times \mathrm{T}$	10	. 0209	. 0021	1.40
PL $\times \mathrm{D} \times \mathrm{I} \times \mathrm{T}$	10	. 0218	. 0022	1.47
S/(RL)DIT	1140	1.7623	. 0015	-----

$\begin{array}{ll}* & p<.05 \\ * * & p<.01 \\ * * * & p<.001\end{array}$

APPENDIX C (cont.)
 Perseverative Errors

Source of Variance
df

Between

RL	1	2.3017	2.3017	$17.00 \% \% \%$
D	2	9.0714	4.5357	$33.50 \% \%$
I.	1	2.9631	2.9631	$21.88 \% \% \%$
PL X D	2	1.5667	.7834	5.78%
RL X I	1	.2621	.2621	1.94
D X I	2	.1790	.0895	<1.00
RL X D X I	2	.0019	.0010	<1.00
S/(RL)DI	228	30.8820	.1354	$\ldots \ldots$

Within

T	5	4.1404	. 8281	52.74\%\%*
RL \times T	5	. 1917	. 0383	2.44\%
D x T	10	. 2190	. 0219	1.39
I x T	5	. 4476	. 0895	$5.70 \% \%$
RL \times I) \times T	10	. 2446	. 0245	1.56
RL $\times 1 \times \mathrm{T}$	5	. 0756	. 0151	<1.00
DxIy T	10	. 2159	. 0216	1.38
RL $\times \mathrm{D} \times \mathrm{I} \times \mathrm{T}$	10	. 5637	. 0564	$3.59 \div \%$
S/(RIJ)DIT	1240	17.9060	. 01.57	----

APPIMDIX C (cont.)

Repitition Responses at the Uncertainty Point
Source of Variance
dr
ss
f

Between

RL
D

I

RI x D
RL x I
D x I
RI x D x I
$S /(R L) D I$
Vithin

T	5	1.7444	. 3489	19.71 \% $\%$ \%
FIL \times T	5	. 8674	. 1735	9.80 \% \%
D x T	10	1.0042	. 1004	5.67 \% $\%$ \%
I x T	5	. 1814	. 0363	2.05
RRL x D x ${ }^{\text {T }}$	10	. 4625	. 0462	2.61%
RLX $\mathrm{I} \times \mathrm{T}$	5	. 1789	. 0358	2.02
D x I x T	10	. 7729	. 0773	4.37 米
RI $\times \mathrm{D} \times \mathrm{I} \times \mathrm{T}$	10	. 5659	. 0566	3.21 \%
S/(RL)DIT	1140	20.1583	. 0177	-----

Current
Trial Block

O NOONM 0 oucochrr
0 onchr c）O，OO ONO rioririoi
$-100 r \mathrm{men}$
 co 0 OUV oririooio
binvoinin

OOOOVN 0000 wint
$0000 r^{2} 1$ 01000 Wo ० HनH
 0.0960
0.9969
0.9969
0.0969
0.5938
0.0063

N0000
 000000

 000000 $\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ acios．r －． 0 0

 0.

 orncmrios olovino .10000
 HOCWJ murinown OHNHMO 0.0000
$\Rightarrow H 0 m \infty \mathrm{~m}$ fringmot
andmos $\infty \infty \infty$ a） inc .10000
 Nぁmへッヘ Hmino roo かのaか 以nt $\dot{0} 0000$

Dun
 Informed
$5-6$
History Uninformed 1
1
1 H1story

	OONOOO	\Rightarrow
	-0Nonv	- Morsoro
	c)woun	cinuoumat
	-00rioi	

curvionm co (1) o)wo ricorió jo jo jóc
 jocióo óojcioj

Nminoin	T-NOOOM
mrnovin	Mingown
o movo	Ono 0 Na
oviour.	arnocurt

Mongoo nnougin Monuinin जrincoun a) CIOOOOO OOCOOCO o oorioo ooririoo

oriouno numoon
 OUOOOO OOOU00

uic, outum munnumin moomuno n muming minonvo mrin
 0. NMOK MN o
 $\dot{O C O O O} O O O C O O$

(1) WU()OM NMONMIN
 a) r^{r} a in araono (icicióO $\dot{O} \dot{O}$ (ió
HNMA ทᄂ

Group	$\begin{gathered} \text { Prececine } \\ \text { Run } \end{gathered}$	Current Run Lenath	2	$?$	3	15	5	6
$\begin{gathered} \text { Informed } \\ 2-6 \\ \text { Run } \end{gathered}$	Shori	1	0.9355	0.0875	0.9937	0.9937	1.0000	7.0000
		2	0.6787	0.5563	0.5437	0.5000	0.5587	0.5077
		3	c. 9357	1.0000	0.9875	1.0000	0.9375	c. 0500
		4	0.9875	1.0000	1.0000	1. 0000	1.0000	0.5875
		5	c. 0747	1.0000	1. 0000	1.0000	0.9575	1.0000
		6	0.0157	0.0125	0.0000	0.0300	0.0125	0.0125
	Lont		0.9855	1.0000	1.0000	1.0000	0.0937	1.0000
		2	0.4571	0.5375	0.4938	0.5188	0.4750	0.5000
		3	0.9831	0.0875	1.0000	1.0000	1.0000	C. 9750
		4	1.0000	1.0000	1.0000	1.0000	1.0000	0.9750
		5	0.9833	2.0000	1.0000	1.0000	1.0000	0.9750
		6	0.0000	0.0375	0.0125	0.0000	0.0000	0.0100
$\begin{gathered} \text { Uninformed } \\ 2-6 \\ \text { Pun } \end{gathered}$	Short			0.9500	0.9625	0.9750	0.9688	0.9786
		2	0.6438	0.8625	0.6187	0.5562	0.5375	0.4286
			0.7250	0.9525	0.9750	1.0000	0.9625	C. 9750
		4	0.8250	1.0000	1.0000	0.9750	C. 6.625	7. 0000
			0.8125	0.9875	0.9375	0.9625		
		5	0.2000	0.2000	0.1125	0.0500	0.0250	0.0375
	Lone				0.9312	C.9625	0.9525	0.9611
		2	0.7857	0.8125	0.6187	0.5813	0.5500	0.5250
		3	c. 2657	0.9375	0.9575	0.9250	0.6525	1. coco
		4	0.9500	1. .0000	1.0000	0.625	0.9525	-. crac
		5	0.9167	1.0000	0.9375	0. 5500	-	c. ciec
		6	0.2167	0.1500	0.0500	$0.066 ?$	0.0500	

Groun	$\begin{gathered} \text { Preceding } \\ \text { Run } \\ \hline \end{gathered}$	Current Run Lensth	1	2	3	4	5	6
```Informed 5-6 Standard```	Short	1	1.0000	0.0625	1.0000	1.0000	1. 2.0000	0.9857
		2	1.0000	0.9688	1.0000	7.0000	1.0000	1.0000
		3	0.9937	0.9688	1.0000	7.0000	1.0000	1.0000
		4	0.9563	0.2438	0.9875	0.9686	0.9937	0.9786
			0.6250	0.5562	0.5750	0.5813	0.6250	0.5429
		6	0.2000	0.1375	0.0750	0.1100	0.1750	$0.1250$
	Long	1	0.9929	0.9875	0.9937	1.0000	1.0000	1.0000
		2	1.0000	0.9937	0.9937	1.0000	1.0000	1.0000
		3	0.9357	0.9937	0.9937	1.0000	1.0000	1.0000
		4	0.0643	0.9812	0.9812	0.9686	0.9811	0.9778
		5	0.5929	0.7188	0.6812	0.5949	0.6226	0.5750 0.1500
		6	0.0167	0.1375	0.0625	0.1000	0.1013	0.1500
$\begin{gathered} \text { Uninformed } \\ 5-6 \\ \text { Standard } \end{gathered}$	Short	1	0.8931	0.9563	0.9812	0.9750	1.0000	0.0857
		2	0.9563	0.9683	0.9937	1.0000	0.593?	7.0000
		3	0.9438	0.9688	1.0000	0.9250	$\bigcirc . .0037$	0. 0.857
		4	. 0.5250	0.6312	0.5500	0.4812	0.6125	0.5726
		6	0.3000	0.2250	0.1875	0.1100	0.1125	0.1000
	Lone	1	0.9786	0.9875	0.9688	0.0812	7.0000	0. 5944
		2	0.9500	1.0000	0.9937	0.0375	+.0000	0.0944
		3	0.9500	7.0000	0.9875	1.0000	-. 060	0.977
		4	0.8929	0.9625	0.9750	0. 0750	0.5750	C. .5375
		5	0.7143	0.7250	0.6438		0.2000	0.1200
		6	0.3333	0.2625	0.1875	0.2833	0.2000	0.1200

C7.
APDENDIX E (cont.

Groun	$\begin{gathered} \text { Ireceaine } \\ \text { nun } \\ \hline \end{gathered}$	Current   Funs Lencth	1	2	3	4	5	6
$\begin{aligned} & \text { Informed } \\ & 5-6 \\ & \text { History } \end{aligned}$	Short	1	0.9500	0.9937	0.9812	1.0000	0.9937	1.0000
		2	0.9683	0.9937	0.9937	1.0000	1.0000	1.0000
		3	0.9750	1.0000	1.0000	1.0000	1. 1.000	1.0000
		4	0.9688	0.9937	1.0000	1.0000	1. 6000	2. 0000
			0.5313	0.5687	0.5875	0.6125	0.6687	0.7000
		5	0.0833	0.0125	0.0000	0.0100	0.0125	0.0500
	Lons	1	0.8357	0.9875	1.0000	1.0000	1.0000	1.0000
		2	0.8429	0.9937	1.0000	1.0000	1.0000	0.9044
		3	0.8500	0.9937	1.0000	1.0000	1.0000	1.0000
		4	0.0429	0.9937	1.0000	0.9937	1.0000	7.0000
		5	0.3000	0.5750	0.5938	0.5938	0.5625	C. $568 ?$
		6	0.0333	0.0250	0.0250	0.0333	0.0375	
$\begin{gathered} \text { Uninformed } \\ \text { 5-6 } \\ \text { History } \end{gathered}$	Short		0.8625	0.9812	0.9937	0.9778	0.9937	0.9786
		2	0.8625	1.0000	0.9937	0.9944	1.0000	1.0000
		3	0.8875	1.0000	0.9312	7.0000	1. 1000	?. Cc 00
		4	0.8108	1.0000	0.5750			
				c. 6563	0.5607	0.6833	0.6250	C. $76+3$
		6	$0.2333$	0.2000	0.2125	c. 1500	0.2000	
	Long		0.7786	0.9937	0.9812	0.9929	c. 9375	0.9889
		2	0.8214	1.0000	0.9875	0.5929	0.9937	1.0000
		3	0.8429	1.0000	0.9875	0.9929	7. 0000	1. $\operatorname{COCO}$
		4	0.8214	0.9875	0.9750	0.9000	0.0605	0.9011
		5	0.5429	0.6812	0.6312	0.5429	0.5315	c. C 300
		6	0.1333	0.0125	0.0250	0.0500	0.0125	c. 6300

```
APPENDIX F
Pre-criterjon Error Frequencies and Proportions for
 Uninformed Groups }\mp@subsup{}{}{1
 UNINFORMED 2-6 STANDARD
```

Quarter PositionNo. of   Errors   Occurrences


	1	11	27	. 407
	2	160	303	. 528
1	3	19	41	. 463
	4	24	53	. 453
	5	33	64	. 516
	6	65	109	. 506
	1	13	27	. 481
	2	146	303	. 482
2	3	12	41	. 293
	4	23	53	. 434
	5	26	64	. 406
	6	67	109	. 615
	1	11	27	. 407
		154	303	. 508
3	3	8	41	. 195
	4	16	53	. 302
	5	34	64	. 531
	6	60	109	. 550
	1	6	27	. 222
	2	141	303	. 465
4	3	7	41	. 171
	4	24	53	. 453
	5	27	64	. 422
	6	53	109	. 486

[^3]
## APPENDIX F

## UNINFORMED 2-6 HISTORY

Quarter	Position	No. of Errors	Position Occurrences	Error   Proportion
1	1	24	- 40	. 600
	2	168	320	. 525
	3	17	23	. 789
	4	15	31	. 484
	5	9	16	. 562
			59	.474
2	1	15	40	. 375
	2	190	320	. 504
	3	7	. 23	. 304
	5	3	31	. 161
	6	40	59	. 678
3	1	18	40	. 450
	2	152	320	.475
	3	6	23	.261
	4	6	31	. 194
	5	4	16	. 250
	6	33	59	. 559
4	1	5	40	. 125
	2	154	320	. 481
	3	7	23	.304
	4	8	31	. 258
	5	4	16	. 250
	6	31	59	. 525

## AFPENDIX F

## UNINF'OTMED $2-6$ RUN

cuarter	Position	$\begin{aligned} & \text { No. of } \\ & \text { Errors } \end{aligned}$	$\begin{aligned} & \text { Position } \\ & \text { Occurrencos } \end{aligned}$	$\begin{gathered} \text { Error } \\ \text { Proportion } \end{gathered}$
1	1	13.	28	. 393
	$?$	153	309	. 495
	3	9	14	. 643
	4	2	2	1.000
	5	2	3	. 667
	6	16	36	. 444
2	1	10	28	. 357
	2	160	300	. 518
	3	6	14	. 428
	4	1	2	. 500
	5	2	$3{ }^{3}$	. 667
	6	119	36	. 528
3	1	$?$	28	. 250
	2	129	309	. 417
	3	3	14	. 214
	4 5	$\frac{1}{2}$	2 3	. 500
	6	6	36	. 444
4	1	9	28	. 321
	2	147	309	. 476
	3	6	14	. 428
	4	0 1	2 3	. 000
	6	4	36	. 111

## APPEIDIX F

## UNINFORIED 5-6 STAMDARD

Quarter	Position	No. of Errors	Position Cccurrences	Error Proportion
1	1	7	13	
	2	1	1	1.000
	3	3	5	1. 600
	4	12	23	. 522
	5	177	320	. 553
	6	30	61	. 492
2	1	4	13	. 308
		0	1	0.000
	3	2	5	. 400
	4	9	23	. 391
	5	171 29	320 61	. 534
3	1	2	13	. 154
	2	0	1	. 000
	3	2	5	. 400
	4	4	23	. 174
	5	181 24	320	. 566
				- 393
4	1	1	13	. 077
	2	1	1	1.000
	3	1	5	. 200
	4	${ }^{2}$	23	. 087
	5	168 29	320 61	. 525

## APPENDIX F

## UNINFORMEU 5-6 HISTORY

Quarter	Posjtion	No. of Errors	Dosition Occurrences	Error   Proportion
1	1	6	19	. 316
	2	1	11	. 091
	3	1	6	. 167
	4	5	15	. 333
	$5$	153	318	. 481
		23	61	. 377
2		10	19	. 526
	2	9	17.	. 818
	3	5	6	. 833
	4	10	15	. 667
	5	182	31.8	. 572
	6	17	61	. 279
3			19	. 368
	2	4	11	. 364
	3	5	6	. 833
	4	5	15	. 333
	$5$	$161$	318	. 506
	$6$	15	61	.246
4			$19$	$\begin{array}{r} 158 \\ 454 \end{array}$
	2	5	11	. 454
	3	4	6 7	. 667
	4	5	15	. 333
	5	159	318	. 500
	6	21	61	. 344

## APPEILIX. F

## UNINFORAED 5-6 RUN



## APPENDIX. G

Data Fits of the Generalization Model:
Observed (O) and Predicted (P)
Repetition Response Proportions


## APPENDIX G (cont.)

Current

## TRIAL BLOCK



## APPENDIX G (cont.)

Current
TRTAL ELOCK
Groun
Run Leneth
3 4

	1	P	$\begin{array}{r} .949 \\ .962 \end{array}$	$\begin{aligned} & .994 \\ & .993 \end{aligned}$	$\begin{array}{r} .097 \\ .993 \end{array}$	$\begin{array}{r} 1.000 \\ .993 \end{array}$	$\begin{array}{r} 1.000 \\ .993 \end{array}$	$\begin{array}{r} 1.000 \\ .994 \end{array}$
$\begin{gathered} \text { Informea } \\ 2-6 \\ \text { Ruy } \end{gathered}$	2	$\begin{aligned} & 0 \\ & \mathrm{P} \end{aligned}$	$\begin{array}{r} .550 \\ .476 \end{array}$	$\begin{array}{r} .622 \\ .507 \end{array}$	$\begin{aligned} & .519 \\ & .507 \end{aligned}$	$\begin{aligned} & .509 \\ & .507 \end{aligned}$	$\begin{array}{r} .522 \\ .507 \end{array}$	$\begin{aligned} & .491 \\ & .540 \end{aligned}$
	3	0 P	$\begin{array}{r} .936 \\ .924 \end{array}$	$\begin{aligned} & .994 \\ & .986 \end{aligned}$	$\begin{aligned} & .994 \\ & .986 \end{aligned}$	$\begin{array}{r} 1.000 \\ .985 \end{array}$	$\begin{aligned} & .994 \\ & .986 \end{aligned}$	$\begin{array}{r} .052 \\ .988 \end{array}$
	4	0	. 988	1.000	1.000	1.000	1.000	. 981
		P	. 938	1.000	1.000	1.000	1.000	1.000
	5	O	$\begin{array}{r} .981 \\ .926 \end{array}$	$\begin{array}{r} 1.000 \\ .986 \end{array}$	$\begin{array}{r} 1.000 \\ .986 \end{array}$	$\begin{array}{r} 1.000 \\ .086 \end{array}$	$\begin{aligned} & .994 \\ & .986 \end{aligned}$	$\begin{array}{r} .988 \\ .086 \end{array}$
	6	O	$\begin{aligned} & .025 \\ & .085 \end{aligned}$	$\begin{aligned} & .025 \\ & .015 \end{aligned}$	$\begin{aligned} & .006 \\ & .015 \end{aligned}$	$\begin{aligned} & .010 \\ & .015 \end{aligned}$	$\begin{aligned} & .006 \\ & .015 \end{aligned}$	$.017$


	1	0	.834	.966	.947	.959	.966	.060
		P	.844	.962	.955	.954	.958	.958
	2	0	.712	.838	.610	.560	.544	.460
Uninformed								
2-6								
Run		P	.514	.613	.538	.531	.562	.553
	3	0	.725	.950	.981	.962	.962	.988
		P	.756	.935	.918	.918	.929	.925
		0	.800	1.000	1.000	.969	.962	1.000
		P	.789	.973	.984	.985	.986	.986
	5	0	.819	.994	.938	.956	.950	.050
		P	.750	.908	.920	.921	.921	.921
	6	0	.269	.144	.081	.062	.044	.031
		P	.296	.116	.010	.094	.094	.094

## APPEIJDIX G (cont.)




## APPENDIX G (cont.)



1	0	.834	.988	.988	.984	.991	.984
	P	.859	.997	1.000	1.000	1.000	1.000
2	0	.853	1.000	.091	.004	.997	1.000
	P	.872	.998	.999	.999	.909	.999



## APPELDIX G (cont.)




[^0]:    Fig. 1. Anticipatory error proportions for Standard (S), History (II), and Run ( $\overline{\mathrm{R}}$ ) groups in each Instruction X Run Length condition.

[^1]:    Fig. 4. Repetition response proportions at the uncertainty point for Standard (S), History (H), and Run (R) groups in each $I_{n s t r u c t i o n ~}^{x}$ Run Length condition.

[^2]:    ${ }^{1}$ Positive entries indicate that long probabilities are

[^3]:    1
    Firures in the Position Occurrences colum refer to the total number of cycles per quarter summed over Ss.

