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ABSTRACT

COMPARISON OF COMPUTERIZED ADAPTIVE TESTING

AND MULTI-STAGE TESTING

SEPTEMBER 1999

LIANE PATSULA, B.COM., MCGILL UNIVERSITY, CANADA

M.A., UNIVERSITY OF OTTAWA, CANADA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professors Ronald K. Hambleton and J. Michael Royer

There is considerable evidence to show that computerized-adaptive testing (CAT)

and multi-stage testing (MST) are viable frameworks for testing. With many testing

organizations looking to move towards CAT or MST, it is important to know what

framework is superior in different situations and at what cost in terms of measurement.

What was needed is a comparison of the different testing procedures under various

realistic testing conditions. This dissertation addressed the important problem of the

increase or decrease in accuracy of ability estimation in using MST rather than CAT.

The purpose of this study was to compare the accuracy of ability estimates

produced by MST and CAT while keeping some variables fixed and varying others. A

simulation study was conducted to investigate the effects of several factors on the

accuracy of ability estimation using different CAT and MST designs. The factors that

were manipulated are the number of stages, the number of subtests per stage, and the

number of items per subtest. Kept constant were test length, distribution of subtest
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information, method of determining cut-points on subtests, amount of overlap between

subtests, and method of scoring total test. The primary question of interest was, given a

fixed test length, how many stages and many subtests per stage should there be to

maximize measurement precision? Furthermore, how many items should there be in each

subtest? Should there be more in the routing test or should there be more in the higher

stage tests?

Results showed that, in general, increasing the number of stages from two to three

decreased the amount of errors in ability estimation. Increasing the number of subtests

from three to five increased the accuracy of ability estimates as well as the efficiency of

the MST designs relative to the P&P and CAT designs at most ability levels (-.75 to

2.25). Finally, at most ability levels (-.75 to 2.25), varying the number of items per stage

had little effect on either the resulting accuracy of ability estimates or the relative

efficiency of the MST designs to the P&P and CAT designs.

vii



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT

ABSTRACT

LIST OF TABLES

LIST OF FIGURES
xii

CHAPTER

1. INTRODUCTION
1

1.1 Background
1

1.2 Multi-Stage Testing 7

1.3 Statement of the Problem 9

1.4 Purpose of the Study 13

1.5 Significance of Problem 14

2. REVIEW OF LITERATURE 15

2. 1 The Importance of Item Response Theory in

Computerized Adaptive Testing 15

2.2 Computerized Adaptive Testing 17

2.2.1 Examples of CAT 18

2.2.2 Advantages of CAT 19

2.2.3 Disadvantages to CAT 22

2.3 Multi-Stage Testing 27

2.3.1 Examples of Multi-Stage Testing 28

2.3.2 Advantages of MST 30

2.3.3 Disadvantages of MST 34

2.4 Comparison of CAT and MST 35

2.4. 1 Summary

2.5 MST Design Factors

2.6 Purpose of Study

viii



3. METHODOLOGY
48

3.1 Test Conditions

3.1.1 P&P Condition
50

3.1.2 CAT Condition
5q

3.1.3 MST Conditions 52

3. 1.3.1 Number of Stages 53
3. 1.3.2 Number of Subtests per Stage 53
3. 1 .3.3 Number of Items per Subtest 54
3. 1.3.4 Summary 55

3.2 Computer Programs 56
3.3 Procedure 57

3.3.1 Step 1 - Partition Item Pool 57

3.3.2. Step 2 - Construct Tests 58

3.3.3. Step 3 - Simulate Examinees 62

3.3.4. Step 4 - Simulate Item Responses 63

3.4 Data Analysis 63

3.4.1 Ability Estimation 72

3.4.2 Item Exposure 74

4. RESULTS 75

4.1 Ability Estimation 75

4.1.1 Accuracy 75

4.1.2 Bias 83

4.1.3 Relative Efficiency 85

4.1.4 Summary 91

4.2 Item Exposure 92

4.2. 1 Number of Items Exposed 92

4.2.2 Conditional Exposure Rates 96

4.2.3 Summary 98

4.3 Summary

IX



5. CONCLUSION
1(K)

5.1 Conclusion

5.2 Future Research
1(X)

103

REFERENCES
105

X



LIST OF TABLES

Table
Page

3.1 Content Specifications for all Test Designs

3.2 Example of Item Selection

3.3 Proportion of Items Per Subtest Per Stage

3.4 Number of Items Per Subtest Per Stage

3.5 Summary of MST Designs

3.6 Descriptive Statistics of Item Parameters in the Total Pool and

Each Subpool

3.7 CASTISEL Assemby Results for P&P and MST Designs 64

4.1 Efficiency of MST Relative to CAT 89

4.2 Efficiency of MST Relative to P&P 90

4.3 Percentage of Items Exposed to Different Numbers of Examinees

in Each Test Design 93

4.4 Number of Items Available and Number of Items Exposed 95

4.5 Conditional Exposure Rates for Each Test Design 97

XI



LIST OF FIGURES

Figure

2.1 Example of a 36-Item Multi-Stage Test with 18 Items at Each Stage 27

3.1 Subpool Information
5^

3.2 36-Item Two-Stage Test with Three Subtests at the Second Stage 60

3.3 Example of a 36-Item Multi-Stage Test with 18 Items at Each Stage 61

3.4 Frequency Distribution of b Parameters in the Pool 63

4. 1 RMSEs of All 14 Test Designs 76

4.2 Frequency Distribution of b Parameters in the Pool 77

4.3 RMSEs of Two-Stage Tests with Three Subtests in the Second Stage

MST(I-m) 78

4.4 RMSEs of Three-Stage Tests with Three Subtests in the Second and

Third Stages (MST IV-VI) 79

4.5 Comparison of Two- and Three-Stage Tests with Three Subtests in

Second and Third Stages 79

4.6 RMSEs of Two-Stage Tests with Five Subtests in the Second Stage

(MSTVn-IX) 80

4.7 Comparison of Two-Stage Tests with Three or Five Subtests in the

Second Stage 80

4.8 RMSEs of Three-Stage Tests with Five Subtests in the Second Stage

(MSTDC-Xn) 81

4.9 Comparison of Two- and Three-Stage Tests with Five Subtests in the

Second and Third Stages 82

4. 1 0 Comparison of Three-Stage Tests with Three or Five Subtests in the

Second and Third Stages ^2

4. 1 1 Bias of All 14 Test Designs

xii

84



4.12 Efficiency of MST I-ffl Relative to CAT and P&P

4. 1 3 Efficiency of MST IV-VI Relative to CAT and P&P..

4. 14 Efficiency of MST VH-IX Relative to CAT and P&P

4. 15 Efficiency of MST X-Xn Relative to CAT and P&P.,

86

87

87

88



niAi‘ri-:K i

INIROiniCTlON

1 I BiK'Isgi Qund

Traditionally, testing organizations and crcdontialing/licensing agencies have used

paper-and-pencil (P&P) tests to measure an examinee’s ability, knowledge, skill, or

competency in a particular domain Today, however, with the elViciency and alVordahility

ot computeis and the potential advantages that may he derived from testing using

computers, many testing organizations and credentialing/licensing agencies are considering

the use of computer-based testing (CBT), Advantages of C’BT include increased validity

through the computer's capacity to support new and innovative item formats, the potential

to improve test security, and its ability to obtain additional information for assessing

proficiency trom the speed of response. Other advantages include economy of paper,

improved data collection and pretesting of items, year-round testing, the convenience and

flexibility of individual scheduling, immediate feedback to examinees which can be

beneficial for diagnostic purposes, and taster score reporting services (Wainer, Dorans,

Idaugher, Green, Mislevy, Steinberg, Thissen, B)90),

Of these advantages, the greatest adv antage of CB f appears to be the potential to

increase test score validity through the computer's capacity to support new and innovative

item formats. 1 lowever, along with many new and innovative item formats comes the

need for polytomous scoring models that allow one to assess partial knowledge on more

realistic tasks than are measured by typical P&B multiple-choice tests (e.g,. computer-

based case simulations in medical licensing, Clyman, Melnick, A: Clauser,



Fortunately, as with P&P testing, CBT supports the use ofpolytomous iten, response

models to score tests.

In moving to CBT, some testing programs have simply sought to transfer their

existing P&P test onto a computer and deliver the test via the computer This type of

CBT is referred to as linear CBT. As with conventional P&P tests, all examinees who

take a linear computer-based test are administered the same fixed set of items. Usually,

after a prescribed amount of time, a new linear computer-based test is introduced. While

all of the advantages ofCBT are present in linear CBT, if one is to offer year-round

testing with the convenience and flexibility of individual scheduling, there arises a security

problem in that examinees could see the same items within a prescribed interval of time.

Examinees could then share items with future examinees taking the test within the same

interval of time, possibly causing future examinees’ test scores to be invalid (Patsula &

Steffen, 1997).

Although simply administering tests via the computer improves test security by

minimizing the chances of a test booklet “leaking” during shipping or the chances of a

proctor adjusting score sheets, the computer can enhance test security further by

minimizing the benefit of foreknowledge of items. Given a pool of precalibrated items, the

computer can design strictly parallel forms and administer the different forms to examinees

at random. This type ofCBT is known as randomly equivalent forms CBT or linear-on-

the-fly testing (LOFT).

While randomly equivalent forms CBT improves upon linear CBT, one criticism of

both approaches is that one is not using the computer to its full capacity. “The computer

can do more than simply administer a predetermined set of test items. Given a pool of
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precalibrated items to choose from, the computer can design a different test for each

examinee ” (Lord, 1980, p. 150). The advantage of designing a test for ^examinee ,s

that the test can be geared to the examinee’s ability so items that are either too easy or too

difficult for the examinee are not included in the test. An examinee’s ability is measured

most effectively this way. This type of testing is known as adaptive testing.

In adaptive testing, items are tailored to an individual examinee’s ability level

through branching to more difficult items following correct responses and branching to

easier items following incorrect responses (Lord, 1970). Consequently, each examinee

potentially sees a different form of the test. Although adaptive tests can be administered

both by P&P (Lord, 1971a, 1971b) and computer (Lord, 1970), today, they are

predominantly computerized. Thus, the term computerized adaptive testing (CAT) is

used.

A distinct advantage ofCAT is that it offers the potential of a shorter test since

items that are too easy or too difficult for the examinee are not administered, unless of

course an item is needed to satisfy some content specification or to avoid overexposure of

another item. This “tailoring” of items to an examinee’s ability level leads to adaptive

tests that are often more efficient than conventional P&P tests (Lord, 1980; Weiss, 1982),

typically requiring examinees to answer about half as many items to attain an equivalent

level of precision (Green, 1983; Olsen, Maynes, Slawson, & Ho, 1986; Schnipke & Reese,

1997).

Because of the many advantages associated with CAT, a number of organizations

have moved from P&P testing to CAT. The first known organization to commit to large-

scale CAT was the U.S. Armed Services, who currently use a CAT version the Armed

3



Services Vocational Aptitude Battery (ASVAB) for the psychological examination of

recruits to assign them to training school and job specialties. Examples of other programs

that use CAT are the National Council of State Boards of Nursing (National Council

Licensure Examination - NCLEX), the Graduate Record Examination Board (Graduate

Record Examination - GRE), and the Graduate Management Admissions Council

(Graduate Management Admissions Test - GMAT).

Although there are many advantages associated with CAT, there are four main

criticisms. First, examinees taking a computerized adaptive test are typically not permitted

to review their answers to previous questions. Not surprisingly, examinees report this as

the greatest criticism ofCAT (Lunz, Bergstrom, & Wright 1992). Although research has

shown that there are ways to allow item review in CAT and still obtain accurate estimates

of ability (Lunz et al., 1992; Stocking, 1996; Stone & Lunz, 1994, Wise, 1996), item

review has yet to be implemented in practice.

A second criticism ofCAT is that the number of items exposed in a computerized

adaptive test is quite high (Luecht, Nungester, & Hadadi, 1996). While there are

exposure controls built into CAT algorithms, the purpose of the controls tends to be to

reduce item exposure rates (i.e., the number of people seeing an item) rather than to

reduce the number of items exposed (Stocking, 1993; Stocking & Lewis, 1998).

Exposing many items, regardless of how many examinees see the items, can affect the

accuracy and validity of test scores if future examinees gain access to exposed items prior

to testing.

Third, the fact that it is sometimes difficult to content balance a computerized

adaptive test while still maximizing reliability and satisfying exposure controls is another
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criticism of CAT (Luecht et al., 1996). Content balancing a test poses a considerable

challenge in CAT, when there are many content constraints to satisfy In building a P&P

test form, test specialists focus primarily on maximizing reliability while content balancing

the test and item exposure is not an issue since items are disclosed after each test is

administered. In CAT, item pools are not disclosed after each administration and so test

specialists now need to take into account item exposure. This places considerably more

demands on the item pool. In fact, though computerized adaptive tests tend to be shorter

than P&P tests, overall, more items are required to maintain an operational CAT program

than a P&P testing program.

Finally, in CAT, millions of different test forms are possible from a single item

bank and it is, therefore, not feasible for test specialists or committees to review every test

form for quality assurance purposes (Luecht & Nungester, 1998). Although a CAT item

selection algorithm can provide some quality assurance by the inclusion of specified

content and other categorical constraints in the item selection algorithm (Stocking &

Swanson, 1993), the algorithm is limited to what can be coded numerically about each

item (item format, content specifications, etc).

These criticisms ofCAT are serious and have hampered the implementation of

CAT by many testing agencies. An alternative to CAT that eliminates some of the

criticisms ofCAT is multi-stage testing (MST) or what some know as testlet-based

testing. While linear CBT and CAT represent the two extremes of CBT, one variation of

CBT that lies in the middle of the continuum is computerized MST. Computerized MST

is a compromise between CBT and CAT and is, in fact, a special case of CAT that allows

for item review, reduces the number of items exposed, balances content regardless of the
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number of constraints, makes the implementation of quality assurance more feasible, and

still maintains all of the advantages of CBT, Furthermore, a multi-stage test can be

administered either by P&P or by computer.

In MST, there is partial adaptation of the test to individual examinees However,

rather than adapting the test to individuals item by item as in CAT, the test adapts to the

examinee in stages or sets of items. In MST, all examinees are administered a common set

of items known as a routing or stage-one test. Depending on examinee performance, the

examinee is routed to one of several alternative second-stage tests, each of which consists

of a fixed set of items and differs on average difficulty. Depending upon examinee

performance on the second-stage test, he or she is routed to one of several alternative

third-stage tests. This process continues depending on the number of stages in the MST

procedure. The number of stages and the number of subtests per stage, among other

factors, vary between different testing programs that utilize MST. However, what is most

commonly found among organizations that employ MST is a two-stage testing procedure

with three subtests contained in the second stage (Luecht & Nungester, 1998, Rock, 1996;

Rock et al., 1995).

While MST appears to eliminate some of the common criticisms of CAT, inherent

in MST procedures are two drawbacks: the potential decrease in accuracy of ability

estimation and a likely loss of efficiency relative to CAT (Loyd, 1984; Kim & Plake, 1993,

Luecht et al., 1996; Schnipke & Reese, 1997). Nonetheless, in weighing the advantages

and disadvantages of MST, many testing programs have either implemented MST (e g.,

National Board of Medical Examiners) or are considering the implementation ofMST

(e.g., Law School Admission Council).
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With increased interest in MST, more research is needed in MST. To date, there

appears to be less research in the area ofMST than CAT, though the history of testing

might suggest otherwise, as MST was introduced in the mid 1960s prior to CAT MST is

inundated with design issues. Examples of such issues are the number of stages to have or

the number of subtests to have for any particular stage, and the number of items to include

in each subtest to achieve accurate measurement (Luecht et al., 1996, Luecht &

Nungester, 1998). While some researchers have studied MST design issues (e g.. Lord,

1980, Loyd, 1984; Kim & Flake, 1993; Luecht et al., 1996), several questions remain to

be addressed. Since numerous testing programs are currently deciding whether to

implement MST or CAT, it seems important to compare the two forms of testing,

1.2 Multi-Stage Testing

In its earliest form, multi-stage tests were known as sequential or flexilevel tests

(Cronbach & Gleser, 1965; Lord, 1971a, 1971b) and were primarily two-stage tests that

were administered by P&P. Cronbach and Gleser (1965) introduced two-stage P&P

testing using a decision theory approach. Their purpose for testing was to pass or fail an

examinee. Since their primary interest was to classify an examinee, they used a sequential

approach of administering a second-stage test to only borderline examinees; those near,

but not quite reaching, the passing score. The advantage of this was that one could save

time by not testing people further if the first stage was definitive as to whether they were

going to pass or fail.

In contrast to Cronbach and Gleser’ s purpose for two-stage testing. Lord’s

purpose for two-stage testing was to improve measurement of an examinee’s ability.
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rather than simply to classify examinees (Lord, 1971b). Since conventional P&P tests

were judged already to measure the typical examinee well (an examinee found where the

majority of people are found, an examinee in the middle of the ability range). Lord’s intent

with two-stage testing was to improve measurement at the extreme ability levels by

matching the second-stage test to the ability level of the examinee. As in CAT, such

tailoring of a test to an examinee s ability level would produce the advantage of a

potentially shorter test. Furthermore, it would avoid the undesirable or demoralizing

effect of a test being excessively difficult or easy for an examinee (Lord, 1971b).

The potential of shorter tests and avoiding demoralization of examinees, coupled

with the advantages of item review, exposing fewer items, content balancing, and a fixed

number of test forms that test specialists can review for quality assurance purposes are the

primary reasons why testing organizations are turning to MST. Furthermore, with the

advantages associated with CBT, organizations are considering computerized MST.

More research is needed in the area of MST. While several researchers (Lord,

1980; Loyd, 1984; Kim & Plake, 1993, Luecht et al, 1996; Luecht & Nungester, 1998)

have contributed to our knowledge in terms of what factors to consider in designing a

multi-stage test, several important issues surrounding MST remain to be resolved. For

example, given limitations on the number of items in a test, how might a multi-stage test

be designed to maximize measurement accuracy or minimize classification errors?

Another question of interest may be principles for utilization of the item bank. CAT, in

principle, exposes more items than does MST (Luecht et al., 1996). Does MST offer a

better way to optimize the use of your item bank?
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1.3 Statement of the Problem

In recent years, interest has grown in the assessing of proficiency via MST rather

than P&P testing or other CBT. Medical licensing exams are important examples of such

assessments. Several issues in MST need to be addressed. In general, the following

factors need to be addressed in designing a multi-stage test (Lord, 1980);

1 • Total number of items . In general, as with any test, increasing the number of items

in a multi-stage test, by adding items of comparable quality to the existing items,

will increase the reliability of the test and, hence, improve measurement (Loyd,

1984; Kim & Plake, 1993). With regard to test length, the primary issue in MST

is: Given a test of fixed length, how many items should reside in each stage?

2. Number of items in the routing test . The number of items in a routing test can

have a profound effect on the routing of an examinee to the second-stage test, and

possibly to other stages as well, and can ultimately affect the accuracy of ability

estimation. With the total number of items fixed, if the routing test is too long,

there will few items in the second-stage test and, in essence, the test will no longer

be adaptive. Conversely, if the routing test is too short there will be poor

allocation to the second-stage test and possibly poor measurement of ability (Lord,

1980). Both Loyd (1984) and Kim and Plake (1993) varied the number of items in

the routing test and found that the longer routing test was superior. However,

neither kept total test length constant. The question now becomes, with the total

number of items in a test fixed, what portion of items should be placed in the

routing test?
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Difficulty level of the routing test . There is a consensus among practitioners that

the routing test should be of moderate difficulty. However, a question of concern

is: What type of distribution should the difficulty of the items in the routing test

have? Alternatively, what type of distribution should the information of the items

in the routing test have?

A variable of considerable importance relative to the difficulty level or

information generated by the routing test is the expected distribution of examinee

ability. Kim and Plake (1993) found that given a rectangular distribution of

examinee ability, a rectangular distribution of item difficulty produced more

accurate ability estimates than a peaked distribution of difficulties. Kim and Plake

(1993) confined their research to the case of a rectangular distribution of examinee

ability. Other distributions have yet to be investigated. One might hypothesize

that given a peaked distribution of examinee ability, a routing test with a peaked

distribution of item difficulties or information would be highly desirable. It is

common for a testing organization to know the expected ability distribution of the

population with which they are dealing. This information can be important in

designing a multi-stage test, but to date has not been investigated.

4. Routing of the examinees . It is important that the difficulty levels of the second-

stage test match the ability levels of the examinees allocated to them, as

determined by the routing of the examinees. Likewise, the difficulty levels of the

third-stage tests should match the ability levels of the examinees allocated to them.

Determining how to route examinees is an important issue, but it has received little

attention in the literature.
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5. Number of stages . While some researchers have investigated two- and four-stage

tests (Luecht et al„ 1996; Schnipke & Reese, 1997), it appears that no studies

have systematically compared the accuracy of ability estimates obtained from

varying the number of stages.

^ Number of subtests per stage . Several studies have shown that the number of

second-stage tests influences the accuracy of measurement (e.g.. Lord, 1971b, Kim

& Plake, 1993). However, there have been no studies that have investigated the

effect of the number of subtests at higher stages on ability estimation. Luecht,

Nungester, and Hadadi (1996) and Luecht and Nungester (1998) suggest that

more research is needed on the effects of the number of subtests per stage on the

accuracy of ability estimation.

7. Difficulty levels of the subtests . Lord (1971b) found that if the difficulty levels of

the second-stage tests are too close to the level of the difficulty level of the routing

test, poor measurement is obtained at the extreme ability levels; if the difficulty

levels are too extreme, there is poor measurement where the ability level of the

examinee was too near the difficulty level of the routing test. In addition to the

difficulty levels of the routing test, a concern is the distribution of difficulty levels

of the subtests. One hypothesizes that the distribution of difficulty levels of the

second-stage tests should probably be peaked according to the cut-points on the

subtests for routing examinees to a third-stage test. Similarly, the distribution of

difficulty levels of the third-stage tests should be peaked according to cut-points

on the second-stage test.
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At this point, one may foresee the problem that can arise from peaking item

difficulty of a subtest according to cut-points on the previous stage test and

peaking it according to cut-points on subsequent stage tests. It would lead to a

multi-modal distribution of item difficulties, which would be the same as having a

uniform distribution of item difficulties. Hence, a uniform distribution of item

difficulties is desirable.

Alternatively, one may want to consider the distribution of information of

the subtests rather than distribution of item difficulties. In this way, information

obtained from item discrimination and guessing are taken into account along with

information from the item difficulty.

8 Overlap of difficulties of subtests at the same stage . If, for example, the routing

test is fairly long, then overlap of difficulties in subtests at the next stage may not

be very important. However, the overlap may be integral if the routing test is short

since there will be less confidence in the ability estimates obtained from the first

stage (Lord, 1980). There appear to be no studies in the literature that have

investigated the effect of the amount of overlap on the accuracy of ability

estimation.

9. Method of scoring the total test . Today, it is most common to use maximum

likelihood scoring procedures for estimating ability (Loyd, 1 984; Kim & Flake,

1993, Schnipke & Reese, 1997). The reason for such usage is twofold; one, it is

easier to implement maximum likelihood scoring procedures than expected a

posterior procedures, and two, there is little difference between the two in the

estimation of ability (Luecht et al., 1996).
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1.4 Purpose of the Study

The topic of this study was the design and evaluation of multi-stage tests. Section

1 .3 listed many variables that enter into the design of a multi-stage test. For any given

multi-stage test, some variables may be fixed, while others may vary. The purpose of this

study was to compare the accuracy of ability estimates produced by MST and CAT while

keeping some variables fixed and varying others. In this study, item information rather

than item difficulty was considered since item information encompasses more information

about an item than does item difficulty alone.

The variables that were held constant were the total number of items in the test,

the methods for determining the distribution of information of the subtests, the amount of

overlap of information between subtests at the same stage, the method for routing

examinees, and the method utilized in scoring the total test. In MST, total test length is

usually fixed and, thus, was fixed in this study. Secondly, the same empirical method for

determining the distribution and amount of overlap of information for each subtest was

used. In addition, the method for routing examinees was not varied. A method that

routes examinees to the stage test that provides maximum information given the

examinee’s ability estimate was used (R. Luecht, personal communication, November 16,

1998). Finally, since little difference was found between ability estimates obtained from

maximum likelihood and expected a posterior estimation (Luecht et al., 1996), method of

scoring total test was not manipulated.

In summary, only the following factors were systematically varied:

a. number of stages.
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b. number of subtests per stage, and

c. number of items per subtest.

The above noted factors appear to be the most salient factors in MST design and appear

to be factors that researchers believe deserve more attention in designing multi-stage tests

(Luecht et al., 1996; Luecht & Nungester, 1998).

The primary question of interest was: Given a fixed total test length and controlling

for item exposure, how many stages and how many subtests per stage should there be to

maximize measurement precision? Furthermore, how many items should be assigned to

each subtest? Should there be more in the routing test or should more items be allocated to

the higher stage tests? A secondary question of interest concerned conditional item

exposure rates and the number of items exposed by CAT and the different MST designs.

1.5 Significance of Problem

There is considerable evidence that demonstrates that CAT and MST are viable

frameworks for testing. With many testing organizations looking to move toward CAT or

MST, it was important to ascertain which framework functions superiorily in different

situations in terms of measurement accuracy and item exposure. What was needed was a

systematic comparison of the different testing procedures under various realistic testing

conditions. This dissertation addressed the paramount problems of the increase or

decrease in accuracy of ability estimation and item exposure rates in using MST rather

than CAT. The expectation, too, was that some guidelines would result that would

influence multi-stage test design.
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CHAPTER 2

REVIEW OF LITERATURE

In this chapter, the importance of item response theory in computerized adaptive

testing is reviewed and computerized adaptive testing designs and multi-stage testing

designs and issues are discussed.

^ The Importance of Item Response Theory in Computerized Adaptive Testing

In 1970, Lord introduced the notion of computerized adaptive testing (CAT) with

the use of item response theory (IRT). With computerized multi-stage testing (MST)

being a special case of CAT, IRT also plays a central role in MST. When the fit between

an IRT model and test data of interest is satisfactory, IRT models are said to provide

invariant item and ability parameters (Lord, 1952). “This [invariance] property implies

that the parameters that characterize an item do not depend on the ability distribution of

examinees [sample-free item parameters] and the parameter that characterizes an examinee

does not depend on the set of test items
[
test-free ability parameters]” (Hambleton,

Swaminathan & Rogers, 1991, p. 18). Sample-free item parameters and test-free ability

parameters are further explicated, respectively.

IRT’s property of sample-free item parameters allows one to use an IRT model to

calibrate items in a bank to a common scale, even when different groups of examinees

responded to the items. Equivalence of examinee samples is achieved via statistical

adjustments obtained from a linking design. In turn, a CAT item selection algorithm can

select items from the item bank that provide the most information (based on the item
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parameters that are on the same scale) about an examinee’s ability given the examinee’s

current ability estimate from his or her responses to previous items. Information for item /

given examinee / with ability ^is expressed as:

j (0
2.89a, (1-c.)

where a,, and c, are the IRT discrimination, difficulty, and pseudo-guessing parameters

respectively, for item /.

Likewise, in MST, an examinee is routed to a stage test that provides the most

information about the examinee’s ability given the examinee’s ability estimate obtained

from the previous stage test. The information obtained from a multi-stage test for

examineej with ability 6 is simply the sum of information of each item in the stage test:

ne,) = ±i,(0,),
;=1

where n is the number of items in the stage test. It is well known that item or test

information is maximized when item or test difficulty is close to the examinee’s ability

(Hambleton et al., 1991). For this reason, item and test selection procedures in CAT or

MST are most commonly based on maximum item or test information.

The test-free ability parameter property allows one to compare examinees’ ability

estimates even when they are based on different tests of varying difficulty. Implicit in the

ability estimate is the difficulty of the items. This is crucial to the success of both CAT

and MST, since in both types of tests different examinees are administered different tests.
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Today, CAT and MST rest on IRT’s invariance property and IRT’s information

function. In the following sections, CAT and MST are described in more detail,

respectively.

2.2 Computerized Adaptive Testing

As IS evident in the measurement literature of the past ten years, the use of

computerized adaptive testing (CAT) by testing organizations and credentialing/licensing

agencies to measure an examinee’s ability, knowledge, skill, or competency in a particular

domain has become increasingly prominent. This prominence can be attributed to the

many advantages that CAT has to offer to both test takers and test developers. Such

advantages are derived from both the computer delivery of the test, as well as the adaptive

nature of the test.

In adaptive testing, examinees are administered items based on their responses to

previous items. Items in an adaptive test are tailored to an individual examinee’s ability

level through branching to more difficult items following correct responses and branching

to easier items following incorrect responses. Although adaptive tests can be administered

by paper-and-pencil (P&P) or computer, today, they are predominantly computerized.

Thus, the term computerized adaptive testing or CAT is used.

Lord introduced the notion ofCAT in 1970. In 1970, however, the idea ofCAT

was purely theoretical, as it was not “convenient to use computers to administer

achievement tests” (Lord, 1980, p. 150) due to the cost and scarcity of computers. Today,

however, with the widespread availability and use of computers, CAT is feasible. In fact,

there are many testing organizations that utilize CAT.
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2.2.1 Examples ofCAT

The first well-known organization to commit to large-scale CAT was the military

services of the United States. Since 1984, the U.S. military has had a computerized

adaptive screening test, which is an initial screening test used by army recruiters to

determine if a prospect is suitable to send to a Military Entrance Processing Station

(MBPS) for full-scale testing with the Armed Services Vocational Aptitude Battery

(ASVAB). The ASVAB is used for the psychological examination of recruits to assign

them to training school and job specialties (Sands, Waters, & McBride, 1997). The CAT

version of the ASVAB has existed since 1992, however, operational use of the CAT-

ASVAB only began in 1997. Today, the CAT-ASVAB is administered at 60 MBPS

nationwide.

Examples of other organizations that use CAT are the National Council of State

Boards of Nursing which develops the National Council Licensure Examination

(NCLEX), the Graduate Record Examination Board that develop the Graduate Record

Examination (GRE) General Test, and the Graduate Management Admission Council

which sponsors the Graduate Management Admission Test (GMAT). As of 1992, anyone

aspiring to be licensed as a registered or public nurse is required to take the CAT version

of the NCLEX (M. Potenza, personal communication, March 8, 1998). Effective in Fall

of 1993, anyone taking the GRE General Test had the option to take a CAT or P&P

version of the test (Schaeffer, Steffen, Golub-Smith, Mills & Durso, 1995). The GRE

General Test measures verbal, quantitative, and analytical skills and is designed to help

predict a student’s performance in the first year of graduate school. Finally, unlike the
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GRE, which offers test takers the option to take the test by P&P or by CAT, as of

October 1997, people who wish to take the GMAT must take the GMAT-CAT, with the

exception of people in countries where there are no testing centers (Graduate

Management Admission Council, 1997). Similar to the GRE, the GMAT measures

language, quantitative, and analytical writing skills and is designed to help predict a

student s potential academic performance in the first year of graduate management school.

There are many advantages ofCAT to both test takers and test developers.

However, inherent in CAT are some disadvantages and challenges that need to be

addressed. In the sections to follow, these issues are explained and explored.

2.2.2 Advantages ofCAT

From an examinee’s viewpoint, adaptive testing offers the advantage of a

potentially shorter test since items that are too easy or too difficult for the examinee are

not administered, unless a particular item is needed to satisfy some content specification or

to avoid overexposure of another item. This tailoring of items to an examinee’s ability

level can lead to an adaptive test that is often more efficient than conventional P&P tests,

typically requiring examinees to answer about half as many items to attain an equivalent

level of precision (Green, 1983; Olsen, Maynes, Slawson, & Ho, 1986; Schnipke & Reese,

1997; Weiss, 1982).

Other advantages ofCAT to test takers are derived from the computerized

delivery of the test. In most cases, computerized adaptive tests are administered in testing

centers that are located in major cities and towns. Each testing center is usually equipped

with a minimum of five to six computers and is open for testing Monday through Friday 9
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a.m. to 5 p.m., except for holidays; some testing centers even offer appointments on

Saturdays. This offers to test takers the advantages of year-round (daily) testing and the

convenience and flexibility of individual scheduling (Green, 1983, Wainer, Dorans,

Flaugher, Green, Mislevy, Steinberg, & Thissen, 1990), Each test taker is free to choose

what day and time (morning or afternoon) he or she would like to take the test. Some

argue that this really is not an advantage because if test takers were given the choice of

when to test, they would all choose to test Saturday morning and testing centers would

not be able to accommodate them all. The result would be that the test taker really does

not have the convenience or flexibility of scheduling. However, a counter-argument could

be made that a large percentage of the test taker population consists of students who

would most likely NOT want to schedule a test for Saturday morning. Thus, the

convenience and flexibility of scheduling remains a potential advantage to test takers.

Finally, other advantages to test takers derived from the computerized nature of

CAT are the immediate score feedback and faster score reporting to institutions (Green,

1983; Wainer et al., 1990). Since all items in a CAT item pool are precalibrated, the

computer can produce a score immediately after testing and hence there is the potential for

faster score reporting to schools and credentialing agencies.

In summary, advantages ofCAT to test takers are potentially shorter tests, year-

round testing, the convenience and flexibility of individual scheduling, immediate

knowledge of scores, and expedited score reporting services.

Advantages ofCAT to test developers include improved test reliability and validity

through improved data collection, the potential of improved test security, tightened
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controls on cheating, cost savings with regard to printing and shipping, and the

opportunity to support new measurement (Green, 1983, Lord, 1980, Wainer et al., 1990).

The opportunity for improved data collection and greater control of cheating are

derived from the computerized nature of CAT, First, data no longer need to be collected

and then shipped and scanned, but instead are simply transmitted electronically. Electronic

transmission of data eliminates errors in scanning and decreases the cost and need for

printing and shipping test booklets and answer sheets. This further makes CAT an

environmentally friendly venture, which in today’s society is highly valued. Electronic

transmission of data also improves test security by minimizing the chances of a test

booklet “leaking” during shipping or the chances of a proctor adjusting score sheets. As a

result of improved data collection, and, thus, bolstered security, there is further assurance

that examinees’ scores are valid (Federation of State Medical Boards of the United States,

Inc. & National Board of Medical Examiners, 1998). Secondly, since the proctor to test

taker ratio is very low in CAT, there is a better opportunity to control cheating from a

neighboring examinee, from notes, or from examinees misrepresenting themselves. Once

again, this increases confidence in the validity of test scores.

Although the aforementioned advantages ofCAT to test developers are important

because they can lead to increased validity in test scores, the biggest advantage ofCAT to

test developers appears to be the opportunity of the computer to support new media for

measurement purposes, such as video clips and simulations. Currently, the National Board

of Medical Examiners is developing an innovative test in which a patient-care environment

is simulated. The examinee is presented a scenario on the computer and responds by

ordering certain actions, such as taking a medical history, ordering certain tests, or
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prescribing certain medications. The patient’s condition adapts/changes (i.e., gets better

or worse) depending on the examinee’s actions. It is argued that tests such as these more

accurately reflect what the examinee will need to do in practice and, thus, increase the

validity of test scores (Clyman, Melnick, & Clauser, 1995).

In summary, for test developers, CAT offers the advantages of improved test

reliability and validity through improved data collection and test security, a better

opportunity to control cheating, and the opportunity to support new measurement. It also

offers a mean to curb costs associated with printing and shipping test booklets and answer

sheets.

2.2.3 Disadvantages to CAT

Although the abovementioned advantages to test takers and developers remain as

potential benefits to CAT, they are often overshadowed by many practical concerns and

challenges that researchers have come to learn through operational CAT programs.

Challenges to be confronted by test developers in implementing CAT include practical

issues such as selecting the first item, administering items belonging to sets, controlling

item exposure and overlap, providing item review to test takers, selecting a stopping rule

for variable length tests, scoring adaptive tests, allowing for incomplete tests, writing

enough items to provide appropriate tailoring of the test and to maintain the security of

items, developing and maintaining CAT pools, developing new item types and its

associated cost, setting up testing centers, and complying with disclosure requirements

(Mills & Stocking, 1995).
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To test takers
,
the single greatest criticism of CAT is not providing item review to

examinees. In general, examinees are not permitted to review or skip items in a

computerized adaptive test. That is to say, examinees can not go back in the test and

change their answers or “check” their answers; they usually can not skip questions either

One concern has been that reviewing and altering item responses or skipping items “may

change the estimate of examinee ability such that the sequence of items will become poorly

targeted and precision will be lost” (p. 34, Lunz, Bergstrom, & Wright, 1992). Test

developers believe that not allowing examinees to review items provides test developers

optimal psychometric control over the test (Lunz & Bergstrom, 1994). Not surprisingly,

examinees feel at a disadvantage when they cannot review and alter their responses.

While there have been many researchers who have studied the effects of reviewing

and altering responses on examinees’ ability estimates in a computerized adaptive test, the

results are inconclusive (Wise, Barns, Harvey, & Flake, 1989; Lunz et al., 1992; Lunz &

Bergstrom, 1994). Wise, Barns, Harvey, and Flake (1989) found no significant differences

in the mean scores of examinees in review and non-review conditions, while Lunz,

Bergstrom, and Wright (1992) and Lunz and Bergstrom (1994) found that examinees who

were allowed to review performed significantly better on average than the examinees who

were not allowed to review. However, within the review condition of both studies (Lunz

et al., 1992; Lunz & Bergstrom, 1994), there were no significant differences in mean ability

estimates between students who used the review option and those who did not use the

review option. This suggests that examinees simply knowing that they have the option to

review items is helpful; their actually reviewing and altering responses has no significant

impact on examinee performance.
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In addition to examining the effects of review on ability estimates, Lunz,

Bergstrom, and Wright (1992) also studied its effect on the efficiency of CAT. They found

that the average efficiency of the test decreased by only 1% after review and that on

average, the information loss could be recovered by the addition of less than one item

Based on the results of these studies (Wise et al., 1989; Lunz et al., 1992; Lunz &

Bergstrom, 1994), a solution to allowing item review may include a variable length

computerized adaptive test that continues administering items after review until ability is

estimated with a certain amount of predetermined precision (e.g., ±1 .96SEM), However,

this approach has item exposure implications - more items will be exposed. Another

concern that these researchers (Wise et al., 1989; Lunz et al., 1992; Lunz & Bergstrom,

1 994) do not take into account in supporting item review in CAT is the scenario where

examinees purposely answer all items wrong to obtain easier items and then correct

previous items to receive a new perfect raw score that can lead to a very high ability

estimate.

For test developers , two advantages ofCAT to test takers are actually

disadvantages to test developers. Initially, one might think that the reduction in items on

any given test would also be an advantage to test developers. One would think that if

examinees require shorter tests, then test developers would not need to develop as many

items. However, this is not true. Examinees span the full ability spectrum and so medium

and difficult tests are needed along with hard and easy tests to match all examinee ability

levels. In addition, the administration of “on-demand” tests discloses items on a daily

basis and large item banks therefore are needed for this reason as well. Despite the fact

that the adaptive nature ofCAT allows for the potential of shorter tests for examinees, this
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does not carry over to test developers in allowing them to develop fewer items.

Furthermore, the advantage of daily testing for test takers does not provide an advantage

in economy to test developers. To minimize item exposure rates in daily testing and,

hence, to increase test security, test developers need to develop larger items banks than

are typically needed for P&P testing.

Finally, researchers investigating multi-stage testing (MST) present three criticisms

CAT as it relates to test developers. First, since each examinee may be theoretically

administered a different test form, millions of different test forms are possible from a single

item bank, making it unfeasible for test specialists or committees to review every test form

for quality assurance purposes (Luecht & Nungester, 1998). Although a CAT item

selection algorithm can provide some quality assurance by the inclusion of specified

content and other categorical constraints in the item selection algorithm (Stocking &

Swanson, 1993), the algorithm is limited to what can be coded numerically about each

item (item format, content specifications, etc).

In defense of CAT, one must keep in mind that human review of final test forms

may not be equally valued in all testing programs. Human review can be very costly in

terms of time and efficiency. On the other hand, full computer automation is fast and

efficient (van der Linden & Boekkooi-Timminga, 1989). The amount of quality assurance

needed by humans may vary depending on the purpose of the test, on test development

policy, and financial implications. High-stakes licensing programs (e g., medical licensure

programs) would most likely hesitate to rely solely on a computer algorithm to assure

quality of a test form for fear of a computer algorithm missing “something” in such a high-

stakes licensure test.
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A second criticism ofCAT is that more items are exposed in CAT than MST

(Luecht et al., 1996). While there are exposure controls built into CAT algorithms, the

purpose of the controls tends to be to reduce item exposure rates (i .e., the number of

people seeing an item) rather than to reduce the number of items exposed (Stocking,

1993; Stocking & Lewis, 1998). Exposing many items, regardless of how many

examinees see the items, can affect the accuracy and validity of test scores if Liture

examinees gain access to exposed items prior to testing.

Finally, according to Luecht, Nungester, and Hadadi (1996), it is sometimes

difficult to content balance a computerized adaptive test while still maximizing reliability or

minimizing decision errors and satisfying exposure controls. This is a considerable

challenge in CAT, particularly if there are a multitude of content constraints to satisfy.

Nonetheless, CAT programs such as the GRE and GMAT are managing to overcome this

obstacle (personal communication, M. Steffen, March 1 1, 1998).

In summary, the criticism ofCAT by examinees is that typically they are not

permitted to review and alter their responses. Criticisms ofCAT by MST researchers are

the lack of opportunity for test specialist or committee review of final test forms, the fact

that item exposure can be large, and that it is often difficult to balance content in CAT. In

addition, the nature of administering adaptive tests on a daily basis requires larger items

banks than are typically needed for P&P testing. All of these criticisms have some validity

and may be more problematic in some testing programs than others. An alternative to

CAT, which addresses some of these issues, is MST.
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2.3 Multi-Stage Testing

In the literature, multi-stage testing (MST) chronologically followed CAT (Lord,

1970, 1971b), Without the widespread use and availability of computers, CAT was not

feasible in practice. MST was introduced as the “poor man’s version” ofCAT - a P&P

version of adaptive testing. Today, however, with the power and extensive availability of

computers, testing organizations that are considering MST are considering producing,

administering, and scoring multi-stage tests via computer.

In MST, there is some adaptation of the test to individual examinee ability level.

However, rather than adapting the test to individuals item by item as in CAT, the test

adapts to individuals in stages represented by groups of items (see Figure 2.1).

Figure 2. 1 . Example of a 36-Item Multi-Stage Test with 18 Items at Each Stage

In MST, all examinees are first administered a common set of fixed items known as a

routing test. Depending on how an examinee performs on the routing test, he or she is

routed to one of several alternative second-stage tests, each of which consists of a fixed
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set of items and differs in average difficulty level. Depending on how the examinee scores

on the second-stage test, he or she is routed to one of several alternative third-stage tests

This process continues depending on the number of stages in the MST procedure

The number of stages and the number of subtests per stage, among other factors, vary

between different testing programs that utilize MST. However, what is most commonly

found among organizations that employ MST today is two-stage testing with three

second-stage tests (Rock, Pollack, & Quinn, 1995; Luecht et al., 1996; Rock, 1996).

2.3.1 Examples of Multi-Stage Testing

Described below are two studies and one testing program that utilize MST. The

two studies used P&P multi-stage tests, whereas the testing program used a computerized

multi-stage test. The first study described is the National Education Longitudinal Study of

1988 (NELS:88; Rock et al., 1995). The NELS:88 was “designed to monitor the

transition of a national sample ofyoung adults as they progress[ed] from eighth grade to

high school and then on to postsecondary education and/or work” (Rock, et al., 1995, p.

1 ).

To minimize floor effects in eighth grade and ceiling effects in twelfth grade, to

make the assessment of gain more accurate, and to keep testing time to a minimum. Rock

and his colleagues (1995) employed MST as opposed to a very long test with many easy

items, as well as many difficult items. In particular, they used two-stage testing with three

stage-two tests in mathematics and two stage-two tests in reading at both grades 10 and

12. Students were routed to a “stage-two” test based on their ability estimate from the

previous test. For example, depending on how a student performed in grade 10, he or she

was routed to an appropriate grade 12 stage-two test. It was found that the two-stage
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procedure increased the accuracy of the measurement, and, when used in combination

with Bayesian item parameter estimation, reduced floor and ceiling effects as compared to

non-adaptive procedures (Rock et al., 1995).

Another study, also led by Rock, is the Early Childhood Longitudinal Study

(ECLS, Rock, 1996). In this study. Rock considered having a different test for each grade

level or using a procedure similar to that utilized in the NELS:88 study - a delayed two-

stage testing procedure that routed the child to a form based on how he or she performed

on the previous year’s testing,. However, he realized that in the case of testing young

children, these alternatives would not be optimal, as one could expect great variability

among the children that is typically not reflected in a standard test. Instead, he used an

individual semi-adaptive procedure that is commonly employed when testing young

children. In such a procedure, each child is given approximately five items targeted at his

or her ability level and, depending on the child’s performance on this first stage, the child

is given an ordered sequence of more difficult items or an easier sequence of items until he

or she reaches a set number of consecutively incorrect responses. A drawback of this

procedure is the lack of standardization in terms of the reliability and content coverage of

each test due to the differing number of items each child will see.

The last example of a multi-stage test comes from the National Board of Medical

Examiners (NBME). Their MST program is Computer Adaptive Sequential Testing

(CAST). Implementation of CAST in the United States Medical Licensure Examination

(USMLE) is expected to begin with the April/May 1999 administration ofUSMLE’s Step

1 exam, followed by the Step 2 Exam in July/August 1999, and the Step 3 Exam sometime

later in 1999 (Federation of State Medical Boards of the United States, Inc. & National
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Board of Medical Examiners, 1998). The USMLE is a three-step exam, which is designed

to assess a physicians’ ability “to apply knowledge, concepts, and principles that are

important in health and disease and that constitute the basis of safe and effective patient

care” (Federation of State Medical Boards of the United States, Inc. & National Board of

Medical Examiners, 1998, p. ii).

CAST is a structured approach to test construction which incorporates adaptive

testing methods with automated test assembly to allow test developers to maintain a

greater degree of control over the production, quality assurance, and administration of

different types of computerized tests” (Luecht & Nungester, 1998, p. 2). It appears that

the NBME made a conscious decision to engage in MST rather than CAT (Luecht et al.,

1996; Luecht & Nungester, 1998). Their primary reason was that with MST, it is more

feasible to have test specialists and committees review test forms as there are usually a

small fixed number of forms in MST as compared to the large number of test forms

possible in CAT. In high stakes medical testing, having humans review test forms is

considered highly necessary by medical test policy-makers and researchers.

From these examples it is clear that there are advantages associated with MST.

The advantages, as well as the disadvantages are described below, respectively.

2.3.2 Advantages ofMST

A distinct advantage ofMST is the choice of delivery mode of the test. Unlike

computerized adaptive tests that are assembled in real-time while the examinee is taking

the test (and thus need to be administered by computer), multi-stage tests are assembled

well before administration of the test and thus, may be delivered via computer or by P&P
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When administered by P&P, first-stage scoring can be accomplished by simply using total

right scoring or by attaching a weight to each item based on its difficulty and then

calculating total score. Alternatively, if stage two is delayed, as in the NELS:88 (Rock et

al., 1995) and ECLS (Rock, 1996), IRT scoring can be used.

When a multi-stage test is given by P&P, it has the additional advantage of

administering the test in a group rather than individually. In theory, one could also deliver

a computerized multi-stage test in a group. However, in practice, the number of

computers and electrical outlets that would be needed for a group administration would

exceed the capacity of any testing center or gymnasium. The advantages of a group

administration of a test are that it is more efficient and economical in terms of the number

of people you can test in a set amount of time, and that the item pool would need not be

as large. It is well known that a testing program which offers the convenience of year-

round testing requires a large item pool for reasons of test security to keep item exposure

to a minimum. While there are additional advantages to be gained by administering a

multi-stage test via P&P in a group, one would no longer be able to capitalize on any of

the advantages of computerized testing.

When a multi-stage test is administered by computer, it maintains all of the

advantages ofCAT - increased accuracy in measurement through the computer’s capacity

to support new and innovative item formats and the potential to improve test security,

providing additional information for assessing proficiency from the speed of response,

increasing economy of paper, improved data collection and pretesting of items, year-round

testing, the convenience and flexibility of individual scheduling, immediate feedback to

examinees (which can be beneficial for diagnostic purposes), and expedited score
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reporting services (Warner, Dorans, Flaugher, Green, Mislevy, Steinberg, & Thissen,

1990).

Whether MST is accomplished via computer or via P&P, it has the advantages

derived from the adaptive nature of the test, such as a potentially shorter test. Although

MST does not entail the same degree of adaptation as CAT, it maintains the advantage of

employing a potentially shorter test since items are still tailored to an examinee’s ability

level. Luecht, Nungester, and Hadadi (1996) found that a 600 to 630 item licensing

examination could be reduced to a content balanced 180-item multi-stage test without a

significant loss in precision. In fact, attenuation of reliability was only 0.03. Considering a

70% decrease in test length, they felt that moving from a reliability of 0.97 (the typical full

length reliability) to 0.94 was justified and a desirable result. Furthermore, they found that

the false positives obtained from a shorter multi-stage test closely approximated those

found in a full-length test.

A second advantage derived from the adaptive nature ofMST is heightened ability

to better control item exposure and meet content specifications than CAT (Luecht &

Nungester, 1998). Item exposure is better controlled due to the fact that only the existing

forms of a multi-stage test - rather than the entire item pool - are at risk of being exposed

on any particular day ofMST at the testing sites; thus fewer items are exposed (Luecht, et

al., 1996). With regard to content balancing, it is possible to content balance a multi-stage

test while still maximizing reliability or minimizing decision and satisfying exposure

controls (Luecht et al., 1996).

A third advantage derived from the assembly of tests “behind the scenes” is that

only a fixed number of test forms are produced. This allows the opportunity to implement
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quality assurance by having humans review test forms. However, one must view quality

assurance as a continuum rather than as a procedure that one does or does not do. On

one end of the continuum, humans have full control over quality assurance. This may be

inefficient in terms of cost and time and could lead to inconsistencies over time. However,

humans may also catch important errors like near duplicate items, items measuring

duplicate concepts, or other fuzzy features that have not been or can not be coded or

quantified and therefore can not be resolved by a computer algorithm.

On the other end of the continuum, the computer has full control over quality

assurance in the sense that quality assurance is fully automated by computer. This is fast

and efficient. Unfortunately, from a quality assurance perspective, the computer is only as

good as the codes, rules, and algorithms incorporated into the item algorithm software.

Computer automation is very good at meeting content and information constraints in the

item selection process, hence, we have such programs as ConTEST to design optimal tests

(van der Linden & Boekkooi-Timminga, 1989). However, it is not good on the quality

assurance side (i.e., garbage in, garbage out).

There needs to be a compromise between the two methods of quality assurance.

There are some things that humans do best (like resolving fuzzy logic or problems

involving incomplete, ambiguous or inconsistent data) and some things that computers do

best (like running high-speed computations and repetitive checking tasks on coded or

numeric data). The key is to find a blend that guarantees top quality test forms over time,

without high costs or wasted time.

MST allows one to implement quality assurance as they wish. A multi-stage

testing program could function in a fully automated fashion, or they could have
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committees review every test form. For example, the National Board of Medical

Examiners will want committees to review most of the test forms until they become

confident that the computer is doing the proper job 99.9% of the time (personal

communication, R. Luecht, February 18, 1998). Subsequently, they may just have

committees audit the occasional test or subtest.

In addition to the selection of delivery mode, the ability to better control item

exposure, and the opportunity to implement quality assurance as desired, MST allows for

ease of item review. Because examinees are administered fixed subtests, they can review

and alter responses within a particular subtest.

Finally, a further advantage ofMST is that it capitalizes on the use of existing

automated test assembly procedures (Luecht et al., 1996; Luecht & Nungester, 1998).

In summary, the advantages ofMST that go beyond those of CAT are allowing for

choice of delivery mode, better control of item exposure and content balancing, the

opportunity to implement quality assurance as desired, allowance for item review, and the

capitalization on existing automated test assembly procedures.

2.3.3 Disadvantages ofMST

One criticism ofMST by testing programs that use CAT is that MST does not

cover a broad ability spectrum and, thus, does not produce accurate ability estimates

across the entire range of ability. However, Luecht, Nungester, and Hadadi (1996) have

shown that MST is “nearly as good as CAT and could be made statistically better by

simply manipulating the target information functions” (p. 18) of the subtests at each stage.
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2.4 Comparison ofCAT and MST

Computerized MST (CMST) is a special case of CAT, which falls between the two

extremes of linear computer-based testing (LCBT) and CAT and is a compromise between

the two. Among the three types of computerized testing (LCBT, CAT, and CMST), CAT

and CMST are what many testing programs are striving to implement today. Since in both

CAT and MST tests can be targeted to either maximize measurement precision or

minimize pass/fail decision errors, it is a matter of weighing the advantages and

disadvantages of each in deciding which to implement.

There are many studies that have compared CAT and CMST (Kim & Flake, 1993,

Luecht et al. 1996; Schnipke & Reese, 1997). Each of these studies is described and

discussed below.

The purpose ofKim and Flake’s (1993) simulation study was twofold. Their

primary purpose was to compare the accuracy and efficiency of ability estimates obtained

from two-stage testing and CAT. Their secondary purpose was to determine under what

conditions might two-stage tests yield ability estimates as accurate as those yielded by

computerized adaptive tests. First, 1,600 examinees were generated by creating 100

thetas at each of 16 discrete ability levels at and between -3.0 and 3.0. Subsequently, they

constructed eighteen two-stage tests corresponding to three factors: length of routing test

(10, 15, and 20), distribution of item difficulties in the routing test (rectangular or

peaked), and the number of second-stage tests (6, 7, and 8). The second-stage tests

consisted of 30 items each. They also constructed three fixed-length CATs corresponding

to the total length of the two-stage tests; 40, 45, and 50 items. To make direct

comparisons between the two-stage tests and computerized adaptive tests, they used item
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pools similar to each other and equivalent in size (354 items), and they used the same

underlying statistical model (a modified one-parameter model) and maximum likelihood

estimation procedure.

Kim and Plake (1993) found that a fixed-length CAT was superior to the two-

stage tests of equivalent length in terms of accuracy and efficiency of ability estimates. In

terms of the conditions under which two-stage tests produced the most accurate ability

estimates, they found that the statistical characteristics of the routing test had a major

influence on the accuracy of ability estimation. The longest routing test with a rectangular

distribution of item difficulties, and the one with an odd number of second-stage tests

produced the most accurate ability estimates.

Unlike Kim and Plake (1993) who simulated their data, Luecht, Nungester, and

Hadadi (1996) used real data. In fact, their rationale for conducting their study was that

so much research involving practical implementations ofCMST or CAT has been limited

to simulations that do not necessarily reflect realistic testing conditions such that the

research may or may not generalize across different testing programs. In particular, they

were interested in content balancing and item pool exposure in ability estimation and

mastery decisions.

Luecht and his colleagues (1996) described and compared five methods of test

construction/item selection procedures applicable to developing and administering

computerized adaptive tests. The first three methods were variations of a computerized

adaptive test that differed in their item selection algorithm: content-constrained CAT

(CCON), heuristically content-balanced CAT (CBAL), and randomesque adaptive mastery

testing with heuristic content-balancing (RNDQ). For descriptions of each refer to
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Luecht, Nungester, and Hadadi (1996, p. 22). The last two methods were variations on a

multi-stage test. One multi-stage test was designed to maximize the accuracy of ability

estimates for most examinees (ACAST). It consisted of four stages with 1, 2, 3, and 4

subtests per stage, respectively. The second multi-stage test was designed to minimize

mastery decision errors (MCAST) and consisted of three stages with 1, 3, and 5 subtests

per stage, respectively. To make direct comparisons between the multi-stage test and

computerized adaptive tests, the same number of items («=180), the same item pool, and

the same scoring was used for each test (maximum likelihood estimation and expected a

posteriori estimation). To make the simulation realistic, an item pool consisting of 2538

previously used items that were calibrated using the one-parameter model and placed on a

common scale, 60 simultaneous content constraints, and empirical ability estimates from

20,000 examinees who were administered the items previously were used for the study.

Their results showed very little difference in mastery decisions among the five test

construction methods and that all five methods produced ability estimates which closely

approximated the true abilities. Because CCON represents the optimal statistical method

of targeting items to examinees, they used it as the baseline for comparing the efficiency of

the other methods. They found that CBAL was just as efficient, if not more efficient than

CCON and that both ACAST and MCAST were about 90% as efficient as CCON

throughout the middle ability range. This is acceptable given the additional advantages of

MST over CAT. However, both ACAST and MCAST dropped at the extremes of ability

ranges. RDNQ was the least efficient relative to CCON and showed the greatest decline

in efficiency beyond the cut-point. Finally, in terms of item exposure rates, more items

were exposed by the CAT methods than by the MST methods.
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Finally, rather than using a computerized adaptive test as a baseline, Schnipke and

Reese (1997) used two P&P tests as a baseline to compare the precision of ability

estimates obtained from three multi-stage test designs to those derived from two

computerized adaptive test designs. The multi-stage test designs consisted of a two-stage

testlet design that rerouted examinees within the second stage as needed, and a four-stage

testlet design. The two computerized adaptive test designs were a standard maximum-

information item-level design (the psychometric ideal in terms of precision and efficiency)

and a maximum-information testlet based design (adapted at the testlet level rather than

the item level). One P&P test was the same length as the other designs (25 items) and the

second P&P test was twice as long (51 items). To compare the seven test designs, a

group of 25,000 examinees at each of 25 ability levels at and between -3.0 and 3.0 and

item parameters based on a three-parameter model were simulated, and Bayes modal

scoring was used.

Similar to Luecht, Nungester, and Hadadi (1996), Schnipke and Reese (1997)

found that the item-level CAT design led to the least amount of error and bias in ability

estimates, particularly in the tails of the ability distribution, than any of the other designs.

The 25-item P&P design led to the greatest amount of error and bias in ability estimates.

The two- and four-stage tests and the testlet-based CAT led to ability estimates that were

quite similar in terms of error and bias to the 51 -item P&P design for ability estimates less

than 1.5. However, for ability estimates greater than 1.5, the 51 -item P&P design

outperformed the two- and four-stage designs.
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2.4.1 Summary

It is clear that there are many advantages associated with both CAT and CMST,

and that each is an improvement over P&P testing. Based on the studies that have

compared CAT and MST (Kim & Plake, 1993; Luecht, Nungester, & Hadadi, 1996,

Schnipke & Reese, 1997), it is apparent that a computerized adaptive test is more efficient

than an equal length multi-stage test. CAT is more efficient in terms of reducing test

length with no loss in measurement or decision accuracy. This is not surprising since

items in CAT are selected item by item rather than by fixed sets of item within stages as in

MST. However, statistical efficiency is not always the paramount concern in testing.

To those involved in high-stakes certification and licensure testing (e g., medical

licensure), there are additional criteria to be met that may take precedence over a purely

statistical view of test construction (Luecht et al, 1996). Such criteria include tighter

content balancing than is typically found in low stakes certification or licensure testing or

non-certification or non-licensure testing and a greater need to control item exposure.

These criteria are hard to meet simultaneously in CAT and therefore an alternative to CAT

seems necessary. MST is one such alternative.

2.5 MST Design Factors

There are many factors that enter into the design of a multi-stage test. Lord

(1980, p. 129) listed the following factors to consider in designing a two-stage testing

procedure:

1 . The total number of items given to a single examinee.

2. The number of alternative second-stage tests available for use.

3 . The number of alternative responses per item.
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4. The number of items in the routing test.

5. The difficulty level of the routing test.

6. The method of scoring the routing test.

7. The cutting points for deciding which second-stage test an examinee will take
8. The difficulty levels of the second-stage tests.

9. The method of scoring the entire two-stage procedure.

With the exception of the number of alternative responses per item, all of these

factors are still considered as important in designing a multi-stage test. If one would like

to extend these factors to a more general multi-stage test, one need only replace second-

stage test by stage test and consider the number of stages. In addition to these factors,

one should also consider the ability distribution of examinees and the amount of overlap of

stage tests at each stage. Each of these factors, and studies relating to each factor, are

described herein.

1 . Total number of items given to a single examinee . As with any test, increasing the

number of items in a multi-stage test, by adding items of comparable quality to the

existing items, will increase the reliability of the test and hence improve

measurement by producing more accurate ability estimates (Loyd, 1984, Kim &

Flake, 1993). However, one selling feature of a multi-stage test is that, in general,

a multi-stage test requires fewer items than a P&P test to attain a comparable level

of precision. In a study that examined balancing item information, content, and

exposure; Luecht, Nungester, & Hadadi (1996) found that a 600-item P&P

licensing exam could be reduced to a content-balanced 1 80-item multi-stage test

with reliability dropping only marginally from 0.97 to 0.94 and the number of false

positive errors remaining approximately the same.
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A question concerning the optimal total number of items in a multi-stage

test that does not appear to be addressed in the MST literature is; Given a test of

fixed length, how many items should be included in each stage?

Number of items in the routing test . The number of items in a routing test can

have a profound effect on the routing of an examinee to the second-stage test, and

possibly to other stages as well, and can ultimately affect the accuracy of ability

estimation. With the total number of items fixed, if the routing test is too long

there will not be enough items for the second-stage test and in essence the test will

no longer be adaptive. On the contrary, if the routing test is too short there will be

poor allocation to a second-stage test and possibly poor measurement of ability

(Lord, 1980). Both Loyd (1984) and Kim and Flake (1993) varied the number of

items in the routing test, but neither kept total test length constant. Not

surprisingly, a result of both studies was that the longer routing test was superior.

The purpose of Loyd’s (1984) study was to compare the consistency with

which three routing test lengths of 10, 15, and 20 items assigned examinees to the

same second-stage test and the accuracy with which they indicated the most

appropriate second-stage test. The routing test and one of six 40-item second-

stage tests were administered to 1439 students. The 20-item routing test was most

effective in routing examinees to appropriate second-stage tests.

Kim and Flake (1993) did not want to compare different routing tests, but

instead wanted to determine under what conditions a two-stage test might be

comparable to a computerized adaptive test in terms of accuracy of ability

estimates. Among other factors, the two-stage tests simulated varied in terms of
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length of routing tests (10, 15, or 20). They found that the longest routing test (20

items) produced the most accurate ability estimates. Neither Loyd (1984) nor Kim

and Plake (1993) kept total test length constant. A question of interest is; With

total number of items in a test fixed, what portion of items should be placed in the

routing test?

Difficulty level of the routing test . There is consensus among practitioners that the

routing test should be of moderate difficulty. However, another question of

concern is what type of distribution should the difficulty of items in the routing test

have? Moreover, what type of distribution should the information of items in the

routing test have? Although Luecht, Nungester, and Hadadi ( 1 996) considered

target information functions in designing multi-stage tests, they did not examine

the effect of varying information functions. Kim and Plake (1993) found that given

a rectangular distribution of ability of examinees, a rectangular distribution of

difficulties produced more accurate ability estimates than a peaked distribution of

difficulties. Kim and Plake (1993) only examined the case of a rectangular

distribution of examinees' ability. One would hypothesize that the distribution of

difficulty of the routing test would be strongly influenced by the ability distribution

of examinees. Given a peaked distribution of examinee ability, a routing test with

a peaked distribution of item difficulty would be highly desirable. It is common

that a testing organization knows the expected ability distribution of its target

population. This information is an important factor in a multi-stage test design,

but to date has not yet been investigated.
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^ Deciding which staRe test the examinee should take . It is important that the

difficulty levels of the second-stage tests match the ability levels of the examinees

allocated to them, as determined by the routing rules. Likewise, the difficulty

levels of the third-stage tests should match the ability levels of the examinees

allocated to them, as determined by the routing and second-stage test. In Lord’s

(1971) trial-and-error methods, he found that equally spaced cut-points on the

routing test resulted in better allocation to a second-stage test than did unequally

spaced cut-points. While others (e.g., Kim & Plake, 1993) seemed to arbitrarily

set cut-points, Schnipke and Reese (1997) cleverly used the mean squared errors

of ability estimates from each subtest to determine cut-points for routing

examinees to various stage tests. One could also route an examinee to the stage

test that provides the most information given the examinee’s ability estimate from

previous stages. More research is needed in this area.

5. Number of stages . While many researchers have studied the accuracy of ability

estimates obtained from two- and four-stage tests (Lord, 1980; Loyd, 1984; Kim

& Plake, 1993; Luecht et al., 1996; Schnipke & Reese, 1997), no researcher has

examined the effects of systematically varying the number of stages on the

accuracy of ability estimates or mastery decisions.

6. Number of stage tests per stage . Several studies have shown that the number of

second-stage tests influences the quality of measurement (e.g.. Lord, 1971b; Kim

& Plake, 1993). Lord (1980) stated that there cannot usefully be more second-

stage tests than the number of items in the routing test and that at least four

subtests were required to achieve good measurement over the entire ability range.
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Interestingly, Kim and Plake (1993) found that an odd number of second-stage

tests produced the most accurate ability estimates. No one has investigated the

effect of the number of stage tests at higher stages on ability estimation. More

research is needed on the effects of the number of subtests per stage on the

accuracy of ability estimation (Luecht et al., 1996; Luecht & Nungester, 1998).

Difficulty levels of the stage tests . Lord (1971b) found that if the difficulty levels

of the second-stage tests are too close to the level of the difficulty level of the

routing test, poor measurement is obtained at the extreme ability levels and if the

difficulty levels are too extreme, there is poor measurement where the ability level

of the examinee was too near the difficulty level of the routing test. In addition to

the difficulty levels of the subtests, a concern is the distribution of difficulty levels

of the stage tests on final ability estimates. No research has been done in this area.

One hypothesizes that the distribution of difficulty levels of the second-

stage tests should probably be peaked according to the cut-points on the stage

tests. Similarly, the distribution of difficulty levels of the third-stage tests should

be peaked according to cut-points on the second-stage test. One may foresee the

problem that can arise from peaking item difficulty of a stage test according to cut-

points on the previous stage test^ peaking it according to cut-points on

subsequent stage tests. Such a method would lead to a multi-modal distribution of

item difficulties, which would behave similarly to having a uniform distribution of

item difficulties. Hence, a uniform distribution of item difficulties is desirable.

Alternatively, one may want to consider the distribution of information of

the stage tests rather than distribution of item difficulties. In this way, information
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from item discrimination and guessing is taken into account along with information

from the item difficulty.

^ Overlap of difficulties of stage tests at the same stage . If, for example, the routing

test is fairly long, then overlap of difficulties in stage tests at the next stage may

not be very important. However, the overlap may be very important if the routing

test is short since there will be less confidence in routing examinees from the first

to second stage. There appear to be no studies in the literature that have

investigated the effect of the amount of overlap on the accuracy of ability

estimation or mastery decisions. Kim and Flake (1993) employed 60% of their

items overlapping with adjacent subtests with the exception of the highest and

lowest stage tests which only shared 30% of their items in common. Luecht,

Nungester, and Hadadi did not simulate overlap in items; however, they did

simulate overlap in item information. More research is needed to determine the

optimal amount of overlap in order to minimize usage of the pool while

maximizing the accuracy of ability estimates and mastery decisions.

9. Method of scoring the total test . In essence, there are « ability estimates for each

examinee for a multi-stage test with n stages. These estimates are jointly sufficient

statistics for the ability estimate of the total test and must be combined into a single

estimate. Unfortunately, there is no unique, best way to obtain a final ability

estimate (Lord, 1980). Lord (1980) suggests averaging all of the ability estimates

after weighting them inversely according to their estimated large sample variances

as it “is well known that this weighting produces a consistent estimator with

approximately minimum large-sample variance” (Lord, 1980, p. 131). Today, it is
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most common to combine all items in a multi-stage test and estimate ability with

Lord’s method. In doing this, Luecht, Nungester, and Hadadi (1996) found very

little difference between expected a posterior (LAP) and maximum likelihood

estimation (MLE) of ability. Most recent studies in the MST literature utilized

MLE scoring procedures (Loyd, 1984; Kim & Plake, 1993; Schnipke & Reese,

1997).

2.6 Purpose of Study

While there are many variables to consider when designing a multi-stage test, in

this study some variables were fixed to examine the effects of varying other variables on

the accuracy of ability estimates produced by MST. The ability estimates obtained from

various designs ofMST were compared with those obtained from CAT and a P&P test.

Total test length was kept constant. While Kim and Plake (1993) studied the number of

second stage tests systematically, they also varied test length by varying the length of the

routing test. In addition, although Luecht, Nungester, and Hadadi (1996) and Schnipke

and Reese (1997) investigated MST designs with different numbers of stages and different

numbers of subtests per stage with test length kept constant, neither factor was studied

systematically. Furthermore, no study in the literature investigated the effect of the

number of items in each stage test. The number of stages, the number of subtests per

stage, and the number of items in each subtest were manipulated in this study. Finally,

while previous studies examined the effect of item difficulty distribution in the stage tests.
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this study, similar to the Luecht, Nungester, and Hadadi (1996) study, examined the effect

of the distribution of item information in stage tests.

A simulation study, using item parameters from a real item pool and ability

parameters based on three-parameter logistic calibrations of real data, was conducted in

which total test length and the amount of overlap between stage tests was kept constant.

In addition, item information was considered rather than item difficulty. Finally, based on

the finding that there was little difference in methods of scoring the total test (Luecht et

al., 1996), the method of scoring the total test was held constant. The following factors

were varied;

a. number of stages,

b. number of stage tests per stage, and

c. number of items per stage test and routing test.

The primary question of interest was, given a fixed test length, how many stages

and how many subtests per stage should there be in order to maximize measurement

precision? Furthermore, given a fixed test length, how many items should there be in each

subtest? Should there be more in the routing test? Or should there be more in the higher

stage tests? A secondary question of interest concerned conditional item exposure rates

and the number of items exposed by CAT and the different MST designs.
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CHAPTER 3

METHODOLOGY

In this chapter, the methodology for the study is presented. The method is divided

into four sections; test conditions, computer programs, procedure, and data analysis.

3.1 Test Conditions

Data corresponding to 14 different test conditions were simulated. Each test

condition corresponded to one test design; a P&P test (1), a computer adaptive test (1),

or a multi-stage test (12). To allow for a direct comparison between test designs in this

study, all test designs had a fixed test length that were selected from the same

precalibrated (using IRT’s 3PL model) item pool.

In order to avoid confounding the study with item parameter estimation issues and

to make the simulations realistic, an existing item pool consisting of 1256 precalibrated

items from the Logical Reasoning section of the Law School Admission Test (LSAT) was

used. All items in the pool were multiple-choice items with five alternative responses and

were coded with respect to their content. To reflect what is commonly found in practice,

a 36-item test was used and the 1256-item pool was partitioned into three parallel

subpools of 418 items each and only one subpool was used in this study.

Furthermore, so that the test conditions would reflect what occurs operationally,

each of the tests was designed to satisfy certain item exposure constraints and content

specifications. Item exposure was controlled conditionally at 10 ability levels in CAT and

for building the multi-stage tests. Conditional exposure rates of .20 to .38 are commonly
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found among operational CAT programs (e g., GMAT and GRE). In this study, the

maximum conditional item exposure rate was set to .25. In addition, the same nine LSAT

content constraints were used in all test designs. They are outlined in Table 3.1.

Table 3.1

Content Specifications for all Test Designs

Content

Category

Number of

Items

1 2

2 5

3 4

4 1

5 5

6 1

7 7

8 8

9 3

Total 36

Finally, a maximum likelihood estimation procedure was used. Each test was

administered to 500 simulated examinees at each of 10 ability levels (-2.25 to 2.25 in

increments of .5). In this way, the 500 replications at each ability level provided a

convenient and accurate basis for estimating measurement precision. Estimation

procedure was not varied in this study since Luecht, Nungester, and Hadadi (1996) found

relatively little difference between expected a posterior (Bayes) and maximum likelihood

ability estimates.

There was one P&P design, one CAT design and 12 MST designs. The P&P

design would result in the poorest results, and the CAT design would produce the best

49



results. The P&P and CAT designs were used as the bases for comparing the MST

designs. Each design is described in more detail, next.

3.1.1 P&P Condition

To allow for a direct comparison among the P&P, CAT, and the MST designs, the

same content constraints and 418-item subpool were used to construct a 36-item P&P

test. Based on advice from LSAT test specialists who stated that they like to build 12 51-

item tests from their 1256-item pool (S. Luebke, personal communication, October, 28,

1998), the target in this study was to build five 36-item tests using the 418-item subpool.

To avoid building a single “best” P&P test for use in this study, information from a typical

CAT, with maximum conditional item exposure set to .20, was used to specify a target

information function for the test.

3.1.2 CAT Condition

Items for the 36-item computerized adaptive test were selected from the 418-item

subpool for each examinee based on the maximum information item selection procedure,

as specified by the 3PL IRT model and subject to the same content constraints as were

used with the P&P and MST designs and a maximum conditional exposure rate of .25. To

ensure that each test satisfied the nine content constraints, once enough items from a

content category were delivered to an examinee, items from that category were shut off

and were no longer available to be selected for that examinee.

To avoid all of the “good” (highly discriminating, highly informative) items from

being administered to the first 100 examinees, a 2: 1 weighting was given to information
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and exposure, respectively, in the item selection procedure. A selection value for each

item available for selection was calculated based upon the examinee’s ability estimate and

the number of times the item had been exposed. The selection value for item / in the

subpool, given examineey with ability 6>, was the weighted sum of information for item /

given examineej with ability (9 and an indicator of exposure, xp\

Selection, = 2*1i(6j) t l*xp„
( 3 , 1

)

where

xp,
I

- exp
(3.2)

and

exp = exposure rate,

xpmax = maximum exposure rate desired

xpmin = minimum exposure rate desired

Item information, I/Oj) was calculated at 60 values (examinee ability estimate +/- 3.0 in

increments of 0. 1) for each available item / using the formula

2.89a,'(l-c,)
(3.3)

where a,, bi, and c, are discrimination, difficulty, and guessing parameters for item /,

respectively and Oj is theyth ability value (Hambleton, Swaminathan, & Rogers, 1991).

The item with the greatest selection value corresponding to the examinees’s estimated 6

was selected and administered.
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With a 2:1 weighting of information and exposure, respectively, a less informative

item with a smaller exposure rate could be selected for administration in lieu of a more

informative item with an exposure rate close to 1.0. For example, with maximum and

minimum exposure set to 0.25 and 0, respectively. Item 2 in Table 3.2 would be selected

over Item 1, regardless of Item 1 being more informative than Item 2,

Table 3.2

Example of Item Selection

Item Information Exposure xp Selection

1 .80 .20 .45 2.0

2 .75 .10 .60 2.1

Finally, the examinee’s 0 estimate was updated after each item was administered

using a maximum likelihood estimation procedure. The examinee’s ^estimate after 36

items were administered was used as the examinee’s final (9 estimate.

3.1.3 MST Conditions

To allow for a direct comparison between MST designs and the P&P and CAT

designs, multi-stage panels were constructed using the same calibrated 418-item subpool,

taking into account the same content constraints as were used in the P&P and CAT

designs. A panel is the combination of subtests for a particular MST design. To avoid

building the “best” panel given the 418-item item pool, for each MST design, information

from a typical CAT with maximum conditional item exposure set at .25 was used to build

target information functions for each subtest. In addition, for each MST design, two multi-
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stage panels were built. Each MST design was defined by a combination of three factors

(1) number of stages, (2) number of subtests per stage, and (3) number of items per

subtest.

3. 1.3.1 Number of Stages

Two- and three-stage tests were constructed for this study. Two is the minimum

number of stages to have in a multi-stage test and is what is most commonly found in

practice and in the literature (Kim & Flake, 1993; Loyd, 1984; Luecht & Nungester, 1998,

Rock, 1996; Rock, Pollack & Quinn, 1995; Schnipke & Reese, 1997). Three stages was

chosen as the upper limit as the subpool could not support the number of items required

for more stages.

3. 1.3.2 Number of Subtests per Stage

Three and five subtests for each of the second and third stages were constructed.

The lower limit of three subtests per stage was chosen because it is what is commonly

found in practice and aside from pass/fail decisions, which might require only two

subtests, seems to be the minimum number of subtests one would desire. Five subtests per

stage was chosen as the upper limit as it seems to be the maximum number of subtests per

stage to which examinees could meaningfully be assigned and the maximum number which

the subpool could support.
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3. 1.3. 3 Number of Items per Suhte.st

The number and percent of items per subtest per stage varied depending on the

number of stages in the multi-stage test design. (Note that all subtests in a given stage

contained the same number of items.) In this study, the number of items per subtest per

stage were varied based on three rationales. A summary of these numbers can be found in

Tables 3.3.1 and 3.3.2.

One rationale for allocating the number of items to a stage is, assuming that there

is more precise measurement in the higher stages (due to examinees receiving more items

that are more closely matched to their ability in higher stages), more items should be

placed in the higher stages. Based on this rationale, the percent of items in the two-,

three-stage tests, respectively, were 1/3 and 2/3 and 1/6, 1/3, and 1/2, respectively. This

rationale is referred to as the “Higher Stage” rationale in Tables 3.3.1 and 3.3.2.

A second rationale that is in opposition to the first rationale is that there is a need

for accurate measurement in the routing test in order to properly allocate examinees to

subsequent stages and therefore, more items should be placed in the routing test than in

the other stage tests. Based on this rationale, the percent of items in the two- and three-

stage tests, respectively, were 2/3 and 1/3 and 1/2, 1/3, and 1/6, respectively. This

rationale is referred to as the “Routing Test” rationale in Tables 3.3.1 and 3.3.2.

Finally, as a compromise of the above two rationales and for completeness

purposes, the effect of placing equal numbers of items in each stage was also investigated.

Based on this rationale, the percent of items in a two- and three-stage test, respectively,

were 1/2 and 1/2 and 1/3, 1/3, and 1/3, respectively. This final rationale is referred to as

the “Compromise” rationale in Tables 3.3 and 3.4.
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Table 3,3

Proportion of Items Per Subtest Per Stage

Rationale

Number of Staees

Two Three

1 2 1 2 3

Higher Stage 1/3 2/3 1/6 1/3 1/2

Compromise 1/2 1/2 1/3 1/3 1/3

Routing Test 2/3 1/3 1/2 1/3 1/6

Table 3.4

Number of Items Per Subtest Per Stage

Rationale

Number of Stages

Two Three

1 2 1 2 3

Higher Stage 12 24 6 12 18

Compromise 18 18 12 12 12

Routing Test 24 12 18 12 6

As seen in Tables 3.3 and 3.4, the interaction of the number of stages and the

number of items per subtest per stage resulted in six test conditions.

3. 1.3.4 Summary

In summary, the interaction of the number of stages (2 or 3 stages) and the number

of items per subtest (3 rationales), and the two levels of subtests (3 or 5 subtests per

stage) yielded 12 (2x3x2) MST designs (see Table 3.5).
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Table 3.5

Summary ofMST Designs

MST
Desien

Number
of Staees

Number of Subtests Number of Items

Staeel Staee2 Staiie3 Statie 1 Staue 2 Staue3
I 2 1 3 — 18 18

II 2 1 3 — 12 24 ^ _

III 2 1 3 — 24 12

IV 3 1 3 3 12 12 12

V 3 1 3 3 6 12 18

VI 3 1 3 3 18 12 6

VII 2 1 5 — 18 18

VIII 2 1 5 — 12 24

IX 2 1 5 — 24 12 —
X 3 1 5 5 12 12 12

XI 3 1 5 5 6 12 18

XII 3 1 5 5 18 12 6

3.2 Computer Programs

In this section, the computer programs that were used to construct the tests and

simulate examinees through the different test designs are described. CASTISEL (Luecht,

1996) was used to construct the P&P and MST designs and LCMS90 (Robin & Patsula,

1998) was used to simulate examinees.

A modified 3PL version of CASTISEL (Luecht, 1996) was used to construct the

MST tests. CASTISEL works with a calibrated item pool and allows the user to specify

the total test length, the number of stages, the number of subtests per stage, and the

number of items per subtest to construct a test. The program uses a local optimization

heuristic, the “normalized weighted absolute deviation” (Luecht & Hirsch, 1992; Luecht,

to appear) to fit the items to the information functions specified by the user, subject to

precisely meeting the content constraints. Additionally, CASTISEL uses a matrix
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partitioning algorithm (Luecht & Nungester, 1996) to optimally assign content constraints

to the stages, so that content is balanced at each stage, as well as at the total test level. In

this study, CASTISEL was used to construct five forms of a 36-item P&P test and two

panels each of the 12 multi-stage test designs.

The P&P, CAT, and MST simulations were performed using LCMS90 (Robin &

Patsula, 1998). LCMS90 allows the user to specify a fixed length or variable length CAT

with an appropriate stopping rule, a linear-on-the-fly test, or a multi-stage test. It also

allows the user to read or generate item and ability parameters with varying distributions

and to input content specifications and exposure controls. Finally, it allows the user

choose between methods of scoring the total test. In this study, LCMS90 was used to

simulate 500 examinees at each of 10 ability levels through 36-item P&P, computer

adaptive, and multi-stage tests. Item parameters were read from a precalibrated item pool

and each test was designed to meet certain content and exposure constraints. Finally, a

maximum likelihood estimation procedure was used to estimate examinee ability.

3.3 Procedure

In this section, the steps that were used to simulate the data and measure and

compare the accuracy of ability estimation from the MST designs to those obtained from

the P&P and CAT designs are described in detail.

3.3.1 Step 1 - Partition Item Pool

The 1256-item pool was partitioned into three parallel subpools of 41 8 items each

by first sorting the items by content and then by difficulty and secondly, assigning the
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sorted items to subpools one to three. This resulted in three content- and difTiculty-

equivalent subpools. As seen in Table 3.6, the mean and standard deviation of the item

parameters were very similar across subpools. Furthermore, subpool information was

comparable across all four subpools (see Figure 3.1). One subpool was randomly chosen

and used for this study (Subpool 3).

Table 3.6

Descriptive Statistics of Item Parameters in the Total Pool and Each Subpool

Subpool N a b) c

M SD M SD M SD

1 419 .74 .24 -.09 1.14 .16 .10

2 419 .75 .25 -.05 1.14 .17 .10

3 418 .77 .25 -.07 1.13 .18 .11

Total 1256 .75 .25 -.07 1.13 .17 .11

3.3.2 Step 2 - Construct Tests

Whereas the computer adaptive tests were built in real time, on-the-fly by the

computer, the P&P and MST tests needed to be built by hand. This required specifying

target information functions for each subtest for each test. To avoid building the single

best panel with maximum test information relative to the entire pool, the goal was to

develop test information targets that reflected average or slightly less than average item

pool information which could be maintained across multiple panels for a 36-item multi-

stage test. This consideration becomes important when reviewing subsequent results.

That is to say, if desired, it would have been relatively easy to design information targets

for each subtest to essentially match the precision of a maximum-information CAT.
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However, in order to be able to create multiple forms from the same pool, target test

information functions were less than the maximum.

In this study, two panels were created for each MST design. So as not to over or

under specify target information functions for each subtest relative to the item pool, test

information functions from a typical CAT with conditional exposure controls built in (.25)

were used to build the subtest target information functions. Because test information

functions are additive, the total test information function from a typical CAT could be

divided into separate subtest information functions. To describe how the target

information function was specified for each subtest, a two-stage test with three subtests in

the second stage and 18 items in each subtest is used as an example (see Figure 3.2).

i) For a two-stage test with three levels at the second stage, there are three

pathways: an easy pathway (A+B), an average difficulty pathway (A+C),

and a hard pathway (A+D).
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ii) Given these three pathways, the ability range was divided into three regions

with each region consisting of an equal number of people. The midpoint of

each region was then calculated. Using the LSAC ability distribution

corresponding to the item pool, this corresponded to the following mid-

points: -.72, .15, and .98.

Figure 3.2. 36-Item Two-Stage Test with Three Subtests at the Second Stage

iii) For Content Area One, 100 examinees at each of the region midpoints

were administered a computerized adaptive test containing only items from

Content Area One and the average test information function (TIF) was

calculated for Content Area One for each region/pathway (TIFi, TIF2 ,
and

TIF3).

iv) To obtain the TIF for stage one (TIFa), TBFi, TIF2, and TIF3 were

averaged together and multiplied by the proportion of items in stage one.

v) To obtains TIF’s for Subtests B, C, and D in stage two, TIFa was

subtracted from each average TIF pathway;
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TIFb = T 1F, -TIFa

TIFc = TIF2 - TIFa

TIFd = TIF3 - TIFa

vi) Steps 3-5 were repeated for Content Areas 2 to 9.

vii) Finally, the TIF’s for each subtest were added across content areas (see

Figure 3.3).

— — Subtest A

Subtest B

Subtest C

- - - A- - • Subtest D

-2-1012
Ability

Figure 3.3. Example of a 36-Item Multi-Stage Test with 18 Items at Each Stage

For a multi-stage test with five subtests per stage, the ability range was divided

into five regions. For three-stage tests, the TIF’s for the subtests in stages two and three

were weighted according to the proportion of items in each stage. After TIF’s were

specified for each subtest, CASTISEL was used to assemble the multi-stage tests.

Table 3.7 presents the average means and standard deviations of the 3PL item

parameters for each subtest in the five forms of the P&P test and the two panels of each

MST test design. The size of the standard deviations of the b's relate to the relative shape

of the observed TIF. That is to say, a larger standard deviation corresponds to a flatter

curve whereas a smaller standard deviation corresponds to a more peaked cuiwe which
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reflects a more restrictive targeting of items to a particular region of the score scale

Interestingly, the standard deviations of the h's are smallest for the middle difficulty

subtests in Stage 2 and 3. This is most likely due to the fact that most items in the subpool

are of middle difficulty (see Figure 3.4). To meet the “easy” (Subtest B) and “hard”

(Subtest D) target TIF’s, the assembly procedures selected easy and hard items,

respectively, but also had to choose items of varying difficulty due to the restriction of

choice of items. The mean of b's indicate where each subtest provides maximum

information.

Table 3.7 also summarizes the difference between the observed subtest information

function of the selected items and the target for each subtest in the P&P and MST designs.

The mean TIF difference is a simple average of the deviations for the number of items in a

subtest computed across a grid of 3
1
points for Pranging between -2.0 and 2.0. The

MSE (mean square error) of the TIF difference is the average squared deviation. With the

exception of Subtest F in MST designs IV, V, and VI, the results indicate that the process

of selecting items for each subtest to fit the target TIF’s was fairly accurate. This was not

unexpected as the item bank was specifically designed to provide maximum information

for high ability examinees (see Figure 3.4).

3.3.3 Step 3 - Simulate Examinees

To generate item responses for each test design, a group of 5,000 examinees were

simulated with 500 ffs at each of 10 ability levels (-2.25 to 2.25 in increments of .50).

These ffs were treated as the true ffs in the remainder of the study.
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3.3.4. Step 4 - Simulate Item Response.^

Finally, by utilizing LCMS90, each of the 14 test designs were administered to the

5,000 simulated examinees. The result was 5,000 6> estimates for each design, 500

independent ability estimates at 10 ability levels.

3.4 Data Analysis

According to the purpose of the study, the data were analyzed in two parts

corresponding to the precision of ability estimation and item exposure. First, the analyses

used to examine the precision of ability estimation are described. This is followed by a

description of analyses used to investigate item exposure rates.

Figure 3.4. Frequency Distribution of b Parameters in the Pool
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3.4.1 Ability Estimation

There were three data analysis steps with respect to the precision of ability

estimation of each test design. First, the accuracy of the ability estimates obtained from

the 14 different test designs were assessed. Accuracy indicates the amount of error in the

ability estimates. Since the true values of ability were known, the errors in ability

estimation of each test design could be evaluated by comparing the estimates of ability to

the true values. A measure of accuracy is the root mean squared error (RMSE) between

the estimated and true ability values. For each test design, the RMSEa of ability estimates

were calculated by computing the square root of the mean squared difference between the

true and estimated ability for each examinee at each of the a (10) ability levels. RMSEa is

given by:

where 6^ is the ability estimate of examinee y, 9, is the is the true ability for examineey,

and Ua is the number of replications of estimates at ability level a.

In addition to calculating the RMSE to determine the amount of error in the ability

estimates, the to was calculated to determine whether the errors reflected a systematic

tendency to overestimate or underestimate the ability. Bias is defined as the difference

between the mean of the estimates and the true ability. For each test design, the BIASa of

ability estimates was calculated by computing the difference between the mean of the

ability estimates and the true ability at each of 25 ability levels.

RMSE^ = (3.4)

BIAS, = {9,-9,), (3.5)
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where Oa is the true ability at the crth ability level and 0^ is the average ability estimate at

the trth ability level. Positive bias values indicate that ability was underestimated, negative

values indicate that ability was overestimated.

Finally, the average standard error at each ability level for the 14 different test

designs were calculated and compared graphically. To interpret the difference between

average standard errors, the relative efficiencies ofMST versus CAT and MST versus

P&P were determined. The CAT and P&P designs were used as a baseline for comparing

the efficiency of the MST designs. To determine the loss and gain of efficiency in MST

designs as compared to CAT and P&P designs, respectively, the relative efficiency was

computed by first calculating test information function at various ability levels for each

MST design and comparing it to the test information function at the same ability level for

the CAT and P&P designs. Test information is the sum of item information fanctions at 9

and is given by:

where 1/9) is item /’s information function at ^as described in equation 3.3 and n is the

number of items in the test, in this case 36. (Hambleton, Swaminathan, & Rogers, 1991).

Relative efficiency (RE) is given by;

where Ia(0) and Ib(0) are the test infromation functions for Tests A and B, respectively,

defined over a common ability scale. (Hambleton et al, 1991). In this case. Test B

corresponds to the CAT or P&P design and Test A corresponds to a MST design.

(3.6)

1=1

(3.7)
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3.4.2 Item Exposure

For each of the 14 test designs, variable numbers of test items were used, and of

the items used, they were administered to variable numbers of examinees. In this study,

item exposure was analyzed by comparing the total number of items exposed and the

number of people seeing each item in all 14 test designs. In additional, conditional

exposure rates were compared for each test design.
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CHAPTER 4

RESULTS

In this chapter, the results of the study are presented. According to the purpose of

the study, the results are presented in two parts: precision of ability estimation and item

exposure rates.

4.1 Ability Estimation

The precision of ability estimates obtained from all 14 test designs was analyzed in

terms of accuracy, bias, and relative efficiency. First, the accuracy of ability estimates are

presented and discussed.

4.1.1 Accuracy

The accuracy of the ability estimates obtained from the 14 different test designs

was assessed using the root mean squared error (RMSE) between the estimated and true

ability values. Figure 4.
1
provides a line plot of the RMSEs at each ability level for the 14

test designs. Consistent with item pool difficulty and item information being centered

around the middle of the ability distribution, the RMSEs were lowest in the middle region

of the scale. The trend toward higher RMSEs at upper and lower ability levels is

correspondingly due to there being fewer available items in the pool at the upper and

lower regions of the scale (see Figure 4.2).
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As shown in Figure 4.1, the CAT design led to less error in ability estimation

(smaller RMSEs) at all ability levels than did any of the other test designs. This is not

surprising since the CAT design adapted the difficulty of the test to the test taker’s

estimated ability after every item, rather than after administration of 6, 12, 18, or 24 items

as in the MST designs or not at all as in the P&P design. As expected, the P&P design

yielded the least accurate (highest RMSEs) ability estimates across all ability levels and the

MST designs fell somewhere in between the P&P and CAT designs, in terms of accuracy

of ability estimation.
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Std. Dev = 1.13

Mean = -.10

N = 418

Figure 4.2. Frequency Distribution of b Parameters in the Pool

Figures 4.3 to 4. 10 more clearly display the comparison between the 12 MST

designs and the CAT and P&P designs. First, the accuracy of the two- and three-stage

tests with three subtests in the second and third stages is described separately, followed by

a comparison of the two- and three stage tests with three subtests . Secondly, the accuracy

of the two-stage tests with five subtests in the second is described and a comparison of the

accuracy of two-stage tests with three or five subtests in the second stage is made.

Finally, the accuracy of three-stage tests with five subtests in the second and third stages is

examined and the accuracy of the two- and three-stage tests with five subtests in the

second and third stages are compared and the three-stage tests with three or five subtests

in the second and third stages are compared.

Figure 4.3 displays the RMSE of the two-stage tests with three subtests at the

second stage (MST I-III). In the middle and upper regions of the ability distribution (-.75

to 2.25), the three designs produced similar RMSE results, suggesting that varying the
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number of items at each stage had little effect in the resulting accuracy of ability estimates

in this region. However, in the tower end of the ability scale, varying the number of items

per stage produced different results. Those designs employing unequal numbers of items

per stage (MST II and III) led to more errors than did the MST design with equal numbers

of items per stage (MST I).

Figure 4.3. RMSEs of Two-Stage Tests with Three Subtests in the Second Stage (MST

i-m)

The RMSEs from the three-stage tests with three subtests in the second stage are

displayed in Figure 4.4 (MST IV-VI). As one might expect, increasing the number of

stages from two to three increased the accuracy of ability estimation. At the higher ability

levels (1.25 to 2.25), the RMSEs obtained from MST IV-VI were slightly smaller than

those obtained from MST I-ffl (see Figure 4.5). Another finding showed that the three-

stage test with three subtests in the second and third stages and equal numbers of items at

each stage (MST IV) produced more accurate results than the other two MST designs. At

the lower end of the ability scale, the MST design with the fewest number of items in the

first stage (MST VI) led to more accurate ability estimates than did MST IV and V.
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Figure 4.4. RMSEs of Three-Stage Tests with Three Subtests in the Second and Third
Stages (MST IV-VI)

18,18

- 12,24

--•A-. • 24,12

—-12,12,12

—-6,12,18

A—-18,12,6

-CAT

-P&P

Figure 4.5. Comparison of Two- and Three-Stage Tests with Three Subtests in Second

and Third Stages

Figure 4.6 displays the RMSEs for two-stage tests with five subtests in the second

stage (MST VII-IX). In comparing the two-stage tests with three (MST I-III) and five

(MST VII-IX) subtests in the second stage, it is apparent that there were fewer errors in

ability estimates, especially at the higher ability levels, where there were five rather than
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three subtests in the second stage (see Figure 4,7). In addition, as with MST 1-111, there

was little difference between varying the number of items in each subtest at each stage in

the upper half of the ability scale for MST VII-IX. In the lower half of the ability scale,

the designs with 18 and 24 items per subtest in the second stage (MST Vlll and IX),

yielded less accurate ability estimates than the design with only 12 items in each subtest in

the second stage (MST VII).

Figure 4.6. RMSEs ofTwo-Stage Tests with Five Subtests in the Second Stage (MST

VII-IX)
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Finally, Figure 4.8 displays the RMSEs obtained from the three-stage tests with

five subtests in the second and third stages (MST X-XII). With the exception of slightly

smaller errors in the lower end of the ability scale in MST X-XIl, there was little

difference between MST VII-IX and MST X-XII, the two and three stage tests with five

subtests in the second and third stages (see Figure 4.9). In comparing MST X-XII to

MST rV-VI, the three-stage tests with five subtests versus three-stage tests with only

three subtests, it is clear that the three-stage tests with five subtests in the second and

third stages led to less error (see Figure 4.10). Finally, the number of items in each stage

did not appear to affect the accuracy of ability estimates of MST X-Xn.

Overall, MST VI, the three-stage test with three subtests in the second and third

stages and 6, 12, and 18 items in the first, second, and third stages, respectively, produced

the most accurate ability estimates at low ability levels (-2.25 to -1.25). At higher ability
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levels (-.75 to 2.25), the multi-stage tests with five subtests in the second and third stages

(MST Vll-Xll) led to the least amount of error in ability estimation

Ability

18.18

...Q... 12,24

-.-A - 24,12
:

« - 12,12,12
j

-6,12,18

A—- 18,12,6

-CAT

-P&P

Figure 4.9. Comparison of Two- and Three-Stage Tests with Five Subtests in the Second

and Third Stages

--•o--- 12,12,12

---Q--- 6,12,18

.-•A-.. 18,12,6

—•

—

12
,
12,12

— — 6,12,18

—*— 18.12,6

• - CAT

— P&P

-2.25 -1.75 -1.25 -0.75 -0.25 0.25 0.75 1.25 1.75 2.25

Ability

^

^

^

^

Figure 4.10. Comparison of Three-Stage Tests with Three or Five Subtests in the Second

and Third Stages.

In summary, the three stage tests yielded lower errors in ability estimation than the

two-stage tests. In addition, at most ability levels (-.75 to 2.25), increasing the number of
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subtests from three to five increased the accuracy of ability estimation. Finally, at most

ability levels (-.75 to 2. ,25), varying the number of items per stage had little effect on the

resulting accuracy of ability estimates, with the exception of the three-stage tests with

three subtests in the second and third stages where the design with equal numbers of items

per stage was superior.

4.1.2 Bias

As seen in Figure 4. 1 1, there is a clear trend in the pattern of bias results across the

ability scale for all 14 test designs. At the low end of the ability scale, the bias is positive,

implying underestimation of the true ability values. The bias became negative as ability

increased, implying an overestimation of examinees’ true ability. Increased bias at the

extremes of the ability scale was not an unexpected result. Rather, this reflects a well-

known finding with maximum likelihood estimation (MLE) bias in the tails of the ability

distribution (Lord, 1980).

Toward the upper tail of the ability distribution, the CAT design led to the least

amount of bias in ability estimates. However, toward the lower tail of the distribution,

many of the MST designs led to less bias in the ability estimates than either the CAT or

P&P designs. The multi-stage tests that led to the least amount of bias in the ability

estimates are the two- and three-stage tests with five subtests per stage (MST VII-XII).

The seriousness of the consequences of overestimating or underestimating an

examinee’s ability will vary by testing program. For instance, in medical licensing testing,

one would assume that underestimating an examinee’s ability level would be less severe
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and risky in terms of consequences as compared to licensing an examinee as a medical

doctor based upon an inflated ability estimate.

Figure 4. 1 1 . Bias of All 14 Test Designs

Overall, bias was small, -.12 to .13 and the number of subtests in the second and

third stages and the number of items per stage had little effect on bias in the ability

estimates.
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4.1.3 Relative Efficiency

Tables 4. 1 and 4.2 show the relative efficiency of each of the 12 MST designs to

the CAT and P&P designs, respectively. As in describing the accuracy of ability estimates,

the 12 MST designs are described in sets of three (1-111, IV-Vl, Vll-lX, and X-XIl).

Figure 4.12 and Tables 4.1 and 4.2 report comparisons of the relative efficiency of

the three two-stage tests with three subtests in the second stage (MST 1-111) to both CAT

and P&P. Overall, MST I-III tests were more efficient than the P&P test, but were not as

efficient as the CAT. The efficiency in MST I-III was most apparent at the two extremes

of the ability continuum with the two-stage test with 1 8 items at each stage (MST 1) and

was least apparent with MST III. At 0=2.25, MST I-III tests were functioning as if they

were 10-40% longer than the P&P test (see Table 4.1), That is, to yield the same

precision of measurement as the multi-stage tests, the P&P test would need to be

lengthened by adding 10-40% more comparable items to those items already in the test.

Given the 36-item P&P test, this 10-40% translates into 4 to 15 items. This is not a trivial

number of items when one considers the $1500 cost of producing a single item. Relative

to the CAT, at 0=2.25, the multi-stage tests were 70% as efficient as the CAT, suggesting

that the multi-stage tests would need to be lengthened by 140% (15 items) to produce

estimates with the same precision as those produced by the CAT at the upper level.
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Roughly the same pattern of relative efficiency that was observed for the two-stage

tests with three subtests at the second stage (I-III) held for the three-stage tests with three

subtests at the second and third stages (IV-VI; see Tables 4. 1 and 4.2 and Figure 4.13).

However, with MST IV-VI, the number of items per stage had less of an effect on the

relative efficiency than it did with MST I-III. The greatest increase in efficiency for MST

IV-VI was realized only in the lower end of the ability continuum.

Throughout most of the ability scale, the t^-stage tests with five subtests in the

second and third stages (MST VIl-IX) showed greater efficiency over the P&P and CAT

designs than did any of the two-stage tests (MST 1-Vl, see Tables 4. 1 and 4.2 and Figure

4.13). As with MST IV-VI, varying the number of items in each stage had very little

effect on efficiency throughout most of the ability range with MST VII-IX. However, in

contrast to MST I-VI, a significant increase in efficiency was only attained at higher ability

levels (1 .25 to 2.25).
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Finally, the three-stage tests with five subtests in the second and third stages (X-

XII) behaved similarly, in terms of relative efficiency, as did the two-stage tests with five

subtests (MST VII-IX) in the second stage. Again, as with MST VII-IX, the number of

items per stage had little effect on the relative efficiency ofMST X-XII to P&P and CAT

Surprisingly, however, MST X-XII was slightly less efficient than MST VII-IX.

-2.25 -1.75 -1.25 -0.75 -0.25 0.25 0.75 1.25 1.75 2.25

Ability

. . -o- -
- vnp&p

. ..g. - - IXP&P

---A- - - VIP&P

-— vnvAT

B VIIbCAT

A- 1X:CAT

Figure 4.14. Efficiency ofMST VII-IX Relative to CAT and P&P.
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Overall, MST 1 and VI were most efficient relative to both P&P (1 .4-1 .5 times)

and CAT (.6-. 7 times) at the lower ability levels (-2.25 to -1.25). At the higher ability

levels, MST VII and VIII were most efficient relative to both P&P (1. 5-2.0 times) and

CAT (.6-. 8 times).

In summary, increasing the number of stages from two to three had less of an

effect on the relative efficiency ofMST designs as compared to P&P and CAT than did

increasing the number of subtests in the second and third stages from three to five.

Furthermore, varying the number of items per stage evidenced little effect in relative

efficiency of the MST designs as compared to the relative efficiency of the P&P and CAT

designs.
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4.1.4 Summary

All test designs showed very little bias and thus bias was not a dominant factor in

comparing the MST test designs to the P&P and CAT designs. However, the test designs

did differ in terms of their accuracy and relative efficiency. Essentially, the more

branching that was done in the MST designs - the more stages and the more subtests per

stage - the more closely did the results approximate the CAT design. In general,

increasing the number of stages from two to three decreased the amount of errors in

ability estimation. However, in some cases, it decreased the efficiency of the MST designs

relative to P&P.

Increasing the number of subtests from three to five increased the accuracy of

ability estimates as well as the efficiency of the MST designs relative to the P&P and CAT

designs at most ability levels (-.75 to 2.25). Finally, at most ability levels (-.75 to 2.25),

varying the number of items per stage had little effect on either the resulting accuracy of

ability estimates or the relative efficiency of the MST designs to the P&P and CAT

designs.

As noted in the Methods section, in reviewing the results, it is important to realize

that the results are a function of the target information functions used to generate the P&P

and MST designs. The explicit use of a target information function for assembling multi-

stage tests places control over the amount and location of test precision in the hands of the

test developer. The results are largely due to the target test information functions used.

While efforts were taken to ensure that the comparisons between the P&P and MST and

CAT and MST were fair, given these results, one could easily go back and increase the

target information functions to reduce the RMSEs.
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4.2 Item Exposure

Item exposure was examined in two steps. First, the number of items from the

418-item pool that were exposed in each test design was considered. Secondly,

conditional item exposure rates were analyzed.

4.2.1 Number of Items Exposed

For each of the 14 test designs, variable numbers of test items were used, and of

the items used, the items were administered to variable numbers of examinees. Table 4.3

contains all of this information. For example, with the second design in Table 4.3, the

CAT design, 6% of the items were not administered to any of the 5000 examinees, 52% of

the items were administered to between 1 and 500 examinees, 38% were administered to

between 501 and 1000 examinees, and the remainder of the items (3%) were administered

to between 1001 and 2000 examinees. The total percent of items NOT exposed and the

total percent of items exposed are in boldface. Recall that five 36-item P&P forms and

two panels of each MST design, constructed from a 418-item item pool, were used in this

study.

Comparing the number of people seeing each item of the different test designs begs

the question as to the importance of reducing the total number of items exposed OR

reducing the number of examinees seeing each item. The two naturally compete against

each other. While the philosophy ofCAT tends to put more emphasis on the former,

MST tends to favour the latter. Whereas the CAT design exposed 95% of the items with
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a maximum 2000 people seeing any one item, the MST designs exposed only 29-60% of

the items. The caveat is that with MST, some items were seen by up to 3000 examinees.

On the one hand, one may argue that once an item is seen by even one examinee,

the item’s security is compromised. Conversely, the argument can be made that if it is

likely that many people are going to the see the same item, the probability of someone

seeing the same item is increased. Hence, the foreknowledge of items may play a bigger

role in determining an examinee’s ability estimate and thus the validity of test scores is

called into question. In practice, it seems preferable to have many items exposed with

each item being exposed to few people. Otherwise, there is no point to having the items in

the bank.

As expected, CAT exposed the largest percentage of items (94%), with the

majority (52%) of the items being exposed to between 1 and 500 people and no items

being seen by more than 2000 examinees. For the MST designs, not surprisingly, the

greater the number of stages, number of subtests per stage, and number of items in the

higher stages, the greater was the number of items exposed. Of the MST designs, the

three-stage test with five subtests in the second and third stages and 6, 12, and 18 items

inthe first, second, and third stages, respectively, (MST XI) exposed the largest number of

items (59%). Finally, the P&P test exposed 43% of the 418 items with every item being

seen by 500 to 2000 examinees.

Further investigation into the number of items exposed in the MST designs

revealed that for some MST designs the number of items exposed was less than the

number of items in the panel. Table 4.4 shows the number of items used to construct the

five P&P forms and the two panels for each MST design. With the exception of four
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MST designs, the percentage of items exposed equaled the number of items used to

construct the five P&P forms and the two panels of each MST design. Interestingly, it

was four of the six MST designs with five subtests in the second and third stages (MST

VIII, X-XII) that exposed fewer items than were available. More specifically. Subtests 5

and 9 from MST VIII were never selected to be administered to any examinee; Subtests

3, 16, and 20 from MST X; Subtests 10, 14, 16, and 19 from MXT XI, and finally.

Subtest 20 from MST XII was never administered (see Table 3.7). That some subtests

were not administered from four of the six MST designs with five subtests in the second

and third stages suggests that five subtests may have been too fine a distinction to route

examinees.

Table 4.4

Number of Items Available and Number of Items Exposed

Test

Design

Available Exposed Not Exposed

P&P 180 180 0

I 144 144 0

11 168 168 0

111 120 120 0

IV 168 168 0

V 192 192 0

VI 144 144 0

VII 216 216 0

Vlll 264 216 48

IX 168 168 0

X 264 228 36

XI 312 252 60

XII 216 210 6
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In summary, CAT exposed a large number of items (95%) with the majority of

items (90%) being seen by less than 1000 examinees. On the other hand, MST exposed

fewer items (29-60%) with many more people seeing each item. The MST design that

exposed the most items was the three-stage test with five subtests in the second and third

stages and 6, 12, and 18 items in the first, second, and third stages, respectively (MST

XI).

4.2.2 Conditional Exposure Rates

Table 4.5 displays the conditional exposure rates and the average conditional

exposure rate for each test design. Overall, the CAT and P&P designs yielded the

comparable conditional exposure rates (. 16 to .18). The MST designs yielded conditional

exposure rates between .17 and .45. In general, increasing the number of stages from two

to three and increasing the number of items in the first stage decreased the conditional

exposure rates. Increasing the number of subtests from three to five had no systematic

effect on the conditional exposure rates. Of the 12 MST designs, the three-stage test with

five subtests in the second and third stages and 6, 12, and 18 items in the first, second, and

third stages, respectively, (MST XI) yielded the smallest average conditional exposure rate

(.27).

Recall that in constructing the multi-stage panels, a conditional exposure rate of .25

was used to specify the target information function for each subtest for two panels.

However, aside from the decision to construct two multi-stage panels for each design,

item exposure was not taken into account when simulating test-takers through a multi-

stage test. In operational CAT programs that offer continuous testing with an item pool
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being active for one week, conditional exposure rates greater than .35 are not acceptable

If one desired to do MST on a daily or continuous testing basis in the same fashion, one

would want to make available more MST panels,

4.2.3 Summary

In summary, increasing the number of stages from two to three increased the number of

items exposed and decreased conditional exposure rates. Increasing the number of

subtests in the second and third stages increased the number of items exposed, but had

little effect on the conditional exposure. Finally, increasing the number of items in the

lower stages decreased the number of items exposed. However, conditional exposure

rates even increased.

4.3 Summary

All test designs showed very little bias and thus bias was not a big factor in

comparing the test designs. However, the test designs did differ in terms of their accuracy

(RMSE) and relative efficiency. Essentially, the more branching that was done, the more

likely were the results to approximate a computer-adaptive test. In general, increasing the

number of stages from two to three decreased the amount of errors in ability estimation.

However, in some cases, it decreased the efficiency of the MST designs relative to P&P.

Increasing the number of subtests from three to five increased the accuracy of

ability estimates as well as the efficiency of the MST designs relative to the P&P and CAT

designs, at most ability levels (-.75 to 2.25). Finally, at most ability levels (-.75 to 2.,25),

varying the number of items per stage had little effect on either the resulting accuracy of
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ability estimates or the relative efficiency of the MST designs to the P&P and CAT

designs.

CAT (which adapts at the item level rather than by stages) is impractical for many

large-scale testing programs because of non-psychometric issues. For example, CAT is

not practical for testing programs that have a large number of content specifications or for

testing programs that must administer items that refer to a common stimulus (e g., a

reading passage). Additionally, item review in CAT is not common in practice because of

the implication of mis-adapting a test to an examinee because he or she has changed their

previous responses. From a test taker’s perspective, item review would be welcomed

enthusiastically. Furthermore, because CAT is built in real-time, there is no human

intervention of quality assurance with the exception ofwhat can be coded numerically.

Multi-stage testing provides a solution to these criticisms of CAT. Although the

MST designs did not produce as accurate ability estimates as did CAT, nor were they as

efficient as CAT, they do present themselves as a viable alternative to CAT as they

provide item review within a stage, allow one to review the panels, and allow one to meet

a large number of content constraints. In addition, the results from this study have shown

that all MST designs have a positive impact on the quality of measurement over the result

obtained with P&P tests of the same length
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CHAPTER 5

CONCLUSION

5.1 Conclusion

There is considerable evidence demonstrating that computerized adaptive testing

(CAT) and multi-stage testing (MST) are viable frameworks for testing. With many

testing organizations looking to move toward CAT or MST, it was important to ascertain

which framework functions best in different situations in terms of measurement accuracy

and item exposure rates. What was needed was a systematic comparison of the different

testing procedures under various realistic testing conditions. This dissertation addressed

the paramount problems of the increase or decrease in accuracy of ability estimation and

item exposure rates in using MST rather than CAT.

While there are many variables to consider when designing a multi-stage test, in

this study, some variables were fixed to examine the effects of varying other variables on

the accuracy of ability estimates and item exposure rates produced by MST. In this

study, total test length was fixed, and the number of stages, the number of subtests per

stage, and the number of items in each subtest were manipulated. The ability estimates

and item exposure rates obtained from various designs ofMST were compared with those

obtained from CAT and a P&P test.

A simulation study was conducted using item parameters from a real item pool

and ability parameters based on three-parameter logistic calibrations of real data. The

primary question of interest was, given a fixed test length, how many stages and how

many subtests per stage should there be in order to maximize measurement precision?

100



Furthermore, given a fixed test length, how many items should there be in each subtest"^

Should there be more in the routing test? Or should there be more in the higher stage

tests? A secondary question of interest concerned conditional item exposure rates and the

number of items exposed by CAT and the different MST designs.

Not surprisingly, the results of this study revealed that CAT produced more

accurate ability estimates and lower conditional item exposure rates and was more

efficient than any of the MST designs. However, given that it is not feasible for some

testing organizations that have a grave need for quality control, the desire to offer item

review to examinees, and many content constraints to implement CAT, results of this

study also indicate that MST is an attractive alternative to CAT.

Within MST, there are many theoretical design issues to consider. This study

considered three such issues - number of stages, number of subtests per stage, and

number of items per stage. The interaction of the number of stages (2 or 3), the two

levels of subtests (3 or 5), and the number of items per subtest (3 rationales) yielded 12

MST designs. Given these three issues, the number ofMST designs examined in this

study is by no means exhaustive. However, given the designs studied, what follows are

recommendations for practice.

Based solely on accuracy and relative efficiency, results indicate that if there was

interest primarily in the accuracy of estimating ability of able examinees, a two- stage test

with five subtests in the second stage (MST VII, VIII, or IX) is preferred. The number of

items per stage had little effect on the resulting accuracy of ability estimates or relative

efficiency of the tests to P&P and CAT. Where there is interest in the lower half of the

ability distribution, a three-stage test with three subtests in the second and third stages
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and 18, 12, and 6 items in the first, second, and third stages, respectively, is preferred

(MST VI).

Based solely on the results of item exposure, the two- and three-stage tests with

five subtests in the second and third stages (MST Vll, VIll, and X-Xll) are the preferred

MST designs, as they made the greatest use of the item pool. In terms of conditional

exposure rates, the three-stage test with five subtests in the second and third stages and 6,

12, and 18 items in the first, second, and third stages, respectively, (MST XI) was best in

terms of yielding the lowest conditional item exposure rates.

Combining the importance of accuracy of ability estimation, relative efficiency,

and item exposure, the three-stage test with five subtests in the second and third stages

and 6, 12, and 18 items in the first, second, and third stages, respectively, (MST XI) is

preferred over the other MST designs.

CAT (which adapts at the item level rather than by stages) is impractical for many

large-scale testing programs because of non-psychometric issues. For example, CAT is

not practical for testing programs that have a large number of content specifications or for

testing programs that must administer items that refer to a common stimulus (e g., a

reading passage). Additionally, item review in CAT is not common in practice because

of the implication of mis-adapting a test to an examinee because he or she has changed

his or her previous responses. From a test taker’s perspective, item review would be

welcomed enthusiastically. Furthermore, because CAT is built in real-time, there is no

human intervention of quality assurance with the exception of what can be coded

numerically.
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Multi-Stage testing provides a solution to these criticisms of CAT. Despite the

fact that the MST designs did not produce equally accurate ability estimates as did the

CAT design or that they were not as efficient as CAT, the MST designs present

themselves as a viable alternative to CAT. MST provides item review within a stage,

allows one to review the panels, and allows one to meet a large number of content

constraints. In addition, the results from this study have shown that all MST designs

have a positive impact on the quality of measurement over the result obtained with P&P

tests of the same length.

5.2 Future Research

This study was limited to investigating the effects of two or three stages and three

or five subtests per stage on the precision of measurement and item exposure rates.

Given that there was some increase in precision of measurement and a decrease in

conditional item exposure rates with three stages rather than two stages and five subtests

rather than three, another study might investigate the number of stages and subtests it

takes to approximate the precision of ability estimation in CAT and to lower item

exposure rates to rates found in CAT.

Another logical extension of this study would be to examine the characteristics of

the items that were highly exposed. It would be very beneficial to a testing program to be

able to inform item writers of the popular item types (in terms of content and difficulty).

Informing item writers would increase the richness of the item pool, while eliminating the

cost associated with writing items that are rarely exposed and, thus, not needed.
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Finally, the item selection algorithm, the way that content constraints and item

exposure were managed, and how ability was estimated could be further investigated and

manipulated. Throughout this study, several decisions were made in terms of how to

weight information relative to content constraints and exposure rates, choosing a

maximum exposure rate, choosing ability estimate bounds, and a standard error threshold.

All of these decisions warrant further investigation.
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