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ABSTRACT 

THE ASSEMBLY AND ELASTICITY OF CYLINDRICAL CRYSTALS, AND THE 

EFFECTS OF NANOPTTICLE ADHESION ON A BILAYER MEMBRANE 

 

SEPTEMBER 2017 

 

DEREK A. WOOD, B.A., STATE UNIVERSITY OF NEW YORK AT GENESEO 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Anthony D. Dinsmore 

 

 

 

 In this thesis we explore two specific topics within the broad field of particle 

adhesion. First, we examine the effect of substrate shape and geometry on the self 

assembly of adsorbed particles, by performing molecular dynamics simulations of 

interacting particles constrained to the surface of cylinders of varying diameters. We find 

the diameter of the cylinder imposes a constraint on the shape and crystallographic 

orientation of the self-assembled lattice, essentially determining the optimal arrangement 

of particles a priori. We propose a simple one-dimensional model to explain the optimal 

arrangement of particles as a function of the particle interaction potential and the physical 

size of the constraining cylinder. We next investigate the stiffness of these cylindrical 

lattices, and find that thin cylindrical crystals are anomalously softer than large ones. We 

then propose this effect is a consequence of the geometric arrangement of particles in a 

tight cylindrical shape, and quantify how the stiffness depends on the circumference of 

the cylinder and on the strength of interaction between the particles.  

 Second, we explore how adhesion of particles can reshape the substrate, for the 

purpose of designing novel functional materials. We perform experiments exposing 

cationic nanoparticles to lipid bilayer vesicles, where we vary the adhesion energy 
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between the two by adjusting the fraction of anionic lipid (DOPS) in the otherwise 

zwitterionic lipid (DOPC) bilayer membrane. We find two distinct types of behavior: 

when the DOPS content of the membrane is 5% or higher, the high adhesion energy 

causes the nanoparticles to disrupt the vesicles upon adsorption. When the DOPS content 

is 4% or less, the adhesion of nanoparticles caused the vesicles to adhere to one another 

and form a rigid liposome gel. We propose that these two behaviors are explained by a 

transition from a partial wrapping of the nanoparticles to their complete envelopment by 

the membrane when the DOPS content exceeds 4.5%. We also detail methods for 

producing large quantities of the vesicle gel using cationic polymers in place of the 

nanoparticles. These findings could be used to to engineer new solid, semi-permeable 

materials that can encapsulate cargo, or to create cargo-carrying liposomes with the 

ability to rupture on trigger. 

  



vii 
 

TABLE OF CONTENTS 

 

 Page 

 
ACKNOWLEDGMENTS .............................................................................................................. iiv 
 
ABSTRACT ..................................................................................................................................... v 
 
LIST OF TABLES ........................................................................................................................... x 
 
LIST OF FIGURES .........................................................................................................................xi 
 
CHAPTER 

 
1.         SPHERICAL PARTICLES BOUND TO SURFACES ....................................................... 1 
 

 Cylindrical crystals: packing and mechanics ......................................................... 2 
 Understanding self-assembly .................................................................... 2 
 Mechanical properties of a cylindrical crystal .......................................... 4 
 Our Approach ........................................................................................... 7 

 Lipid bilayer membranes: a novel platform for functional materials .................... 8 
 On-demand reshaping of a membrane surface ........................................ 10 
 Interactions between a nanoparticle and a bilayer membrane ................ 14 
 Our approach .......................................................................................... 19 

 
2.          MOLECULAR DYNAMICS SIMULATION TECHNIQUES ........................................ 23 
 

 2D simulations of particles on a straight cylinder................................................ 25 
 Calculating interactions between particles.............................................. 26 
 Simulated annealing parameters ............................................................. 27 

 3D simulations of particles on a bent rod ............................................................ 29 
 3D Force Field ........................................................................................ 29 
 Simulation procedure .............................................................................. 32 

 
3.          SELF-ASSEMBLY ON A CYLINDER ........................................................................... 35 
 

 Sphere packing in a cylindrical geometry ............................................................ 36 
 Simulations and analysis ...................................................................................... 39 

 Annealing Parameters ............................................................................. 39 
 Detecting the configuration angle θ of the particles ............................... 41 

 Results . ……………………………………………………………………………………………………………43 
 Lennard-Jones particle interactions ........................................................ 43 
 Morse Potentials ..................................................................................... 47 

 1-Dimensional model ........................................................................................... 50 
 Conclusions .......................................................................................................... 54 

 
4.          STIFFNESS OF CYLINDRICAL CRYSTALS ............................................................... 58 



viii 
 

 
 Theory and simulations ........................................................................................ 59 

 Calculating the stiffness of a cylinder ..................................................... 59 
 MD Simulations ...................................................................................... 61 
 Triangulating Neighbors ......................................................................... 62 

 Results: Hexagonal Lattices ................................................................................. 63 
 Dependence of stiffness on C and V(r) ................................................... 64 
 Harmonic model for Y

(2D) ....................................................................... 68 
 The limit of linear response .................................................................... 71 

 Results: Oblique lattices and line-slip.................................................................. 75 
 Linear elastic regime ............................................................................... 76 
 Line-slip migration ................................................................................. 80 

 Conclusions .......................................................................................................... 82 
 
5.   VESICLE PREPARATION AND ANALYSIS TECHNIQUES ............................................ 86 
 

 Vesicle Preparation .............................................................................................. 86 
 Electroformation ..................................................................................... 87 
 Extrusion ................................................................................................. 90 
 Gentle Hydration .................................................................................... 91 

 Vesicle Analysis Techniques ............................................................................... 92 
 LUV Sedimentation ................................................................................ 93 
 UV-Vis Spectrometry ............................................................................. 94 

 
6.           NANOPARTICLE BINDING ON GUVS: FROM VESICLE GELS TO TOTAL 

VESICLE DISRUPTION ................................................................................................. 99 
 

  Methods and materials ...................................................................................... 100 
 Sample Preparation ............................................................................... 100 
 Microscopy of GUVs ............................................................................ 102 

 Overview of results ............................................................................................ 103 
               DOPS > 4%: Vesicle disruption ........................................................................ 107 

 Vesicle shrinking .................................................................................. 111 
 Surface spotting .................................................................................... 114 
 Macroscopic pore formation ................................................................. 117 
 Vesicle inversion .................................................................................. 122 
 Conclusions ........................................................................................... 125 

 DOPS ≤ 4%: Vesicle gel formation ................................................................... 126 
 Analysis of gel network formation ....................................................... 127 
 Bulk production of gel networks using lecithin vesicles and 

cationic polymer ................................................................................... 129 
 Conclusions ........................................................................................... 135 

 Interactions with 12nm nanoparticles ................................................................ 136 
 Results... ……………………………………………………………………………………………136 
 Conclusions ........................................................................................... 140 

 
7.           SUMMARY AND FUTURE WORK ............................................................................ 142 



ix 
 

 
 Assembly and elasticity of cylindrical crystals .................................................. 143 

 Cylindrical crystal self-assembly .......................................................... 143 
 Cylindrical crystal stiffness .................................................................. 146 

 Effects of nanoparticle adhesion on a bilayer membrane .................................. 148 
 Strong nanoparticle adhesion ................................................................ 149 
 Weak nanoparticle adhesion ................................................................. 151 
 Further experimentation ........................................................................ 155 

 

APPENDIX:     NANOPARTICLE BINDING ON LUVS ......................................................... 157 
 
REFERENCES ............................................................................................................................ 174 

 

  



x 
 

LIST OF TABLES 

Table Page 

 

1. Concentration of Nanoparticles exposed to each set of LUVs. ............................................... 164 

2. Table of the applied osmolarity of each LUV sample. ............................................................ 167 

 

 

  



xi 
 

LIST OF FIGURES 

Figure Page 

 

1. Densest packings of spheres inside a cylinder ............................................................................. 3 

2. Illustrations of various cylindrical crystals. ................................................................................. 5 

3. Stiffness of carbon nanotubes as a function of diameter and lattice structure ............................. 6 

4. Schematic of  vesicle.................................................................................................................. 10 

5.Reshaping of a spherical vesicle caused by adhesion of different proteins, each of 

which belong to the BAR family of proteins. ............................................................. 11 

6. Tubulation caused by adhesion of charged spheres on the interior of a vesicle ........................ 13 

7. Deformation of a vesicle by surface adhesion of a spherical particle ........................................ 15 

8. Particle wrapping phase diagram as a function of stretching modulus, σ, and binding 

energy density, ω. ....................................................................................................... 18 

9. The pairwise potential as a function of particle separation for both Lennard-Jones and 

Morse potentials. ........................................................................................................ 25 

10. Cross-sectional diagram of the simulation space. .................................................................... 26 

11. Typical annealing schedule ...................................................................................................... 28 

12. The ‘bent cylinder’ coordinate system we used to define the force field keeping the 

particles confined onto the cylinder. .......................................................................... 30 

13. Illustration of the force field confining the particles onto the surface of the bent 

cylinder ....................................................................................................................... 32 

14. Illustrations of the particle-and-cylinder system. ..................................................................... 37 

15.  The values of C0(n1,n2) are plotted alongside their corresponding set of integers 

(n1,n2) .......................................................................................................................... 39 

16.  A prototypical arrangement of particles for some C0/d. ......................................................... 42 

17. Steady state configurations observed in computer simulations with Lennard-Jones 

interactions, plotted as   vs C/d. ................................................................................ 43 

18. Steady-state configurations obtained from the simulations are shown for a range of 

values of C/d to better illustrate the structures found in Figure 17 ............................ 45 



xii 
 

19. Steady state configurations observed in computer simulations using the Morse 

potential with γd=10 ................................................................................................... 48 

20. Steady state configurations observed in computer simulations using the Morse 

potential with γd=30 ................................................................................................... 49 

21. Explanation of the 1D model. .................................................................................................. 51 

22. Cooling of Lennard-Jones particles at C/d=6.76 (the location of which is indicated by 

a star in Figure 17) into a stable crystal. ..................................................................... 54 

23. Bending energy (Eq. 27) versus curvature for a cylinder with n=5, and a Morse 

potential with γd = 20 ................................................................................................. 64 

24. The 2D Young’s modulus Y
(2D)

 vs. V’’(d) in the [n,0] configuration and for various 

circumferences C, obtained from bending simulations .............................................. 66 

25. Y
(2D)

/V’’(d) vs. C/d for two different crystal orientations ........................................................ 67 

26. Image sequence showing the particle configuration, network of inter-particle bonds, 

and an approximate 1D ball-and-spring model of the profile of the crystal ............... 70 

27. On the left, energy density is plotted as a function of the curvature squared for three 

different systems ........................................................................................................ 72 

28. The curvature associated with the onset of nonlinear response, Rc, varies with the 

stiffness of the interaction potential, the strength of the interaction and the 

temperature of the simulation, the crystallographic orientation of the lattice, 

the diameter of the particles, and the size of the cylinder. ......................................... 74 

29. Bending energy versus curvature for 4 different types of lattice structures, using a 

Morse potential with ϒd = 20 ..................................................................................... 77 

30. The stiffness of oblique lattices around [5,0], over the range of circumferences found 

from Equation 19 ........................................................................................................ 79 

31. Migration of the line-slip structure towards the inner bend of the cylinder. ............................ 81 

32. Line-slip migration on an extremely long cylinder .................................................................. 82 

33. ITO glass slides with Teflon spacer, in completed configuration forming the 

electroformation cell................................................................................................... 88 

34. Illustration of the cationic Au-TTMA nanoparticles which will be used throughout the 

experiments in this chapter and the next .................................................................... 93 

35. Spectra for pure nanoparticles in water.................................................................................... 95 

36. Spectra taken for a control sample with a total of 2 mM of nanoparticles and an 

unknown concentration of lipids ................................................................................ 96 



xiii 
 

37. A plot of the measured concentration of a sample of 7nm Au-TTMA nanoparticles 

versus the actual concentration ................................................................................... 97 

38. Top-down schematic of GUV sample chamber setup............................................................ 101 

39. Vesicles imaged using dark field microscopy ........................................................................ 103 

40. Each image shows the steady-state conformation taken by the vesicles after the 

nanoparticles have adsorbed to their surface ............................................................ 104 

41. Cross-sectional illustration of the difference between the deformation of the 

membrane in the weak adhesion regime (top panel, DOPS ≤ 4%) and the 

strong adhesion regime (bottom panel, DOPS > 4%) .............................................. 106 

42. A series of still frames showing the time evolution of a vesicle leading up to complete 

nanoparticle-induced disruption ............................................................................... 107 

43. Florescent dye escaping from a vesicle due to adhesion of cationic nanoparticles ............... 110 

44. Rate of collapse of vesicles. ................................................................................................... 113 

45. Several different GUVs showing surface spotting ................................................................. 115 

46. Nanoparticle behavior on the surface of an E. coli cell membrane........................................ 116 

47. Simulations of adhesive nanoparticle caps onto a tension-free membrane. ........................... 117 

48. Images showing unilamellar vesicles that have developed a stable, macroscopic pore 

in their surface .......................................................................................................... 118 

49. Interior contents of a multi-lamellar vesicle spilling out through a pore on the 

vesicle’s outer surface. ............................................................................................. 120 

50. A plot of the rate of decrease of surface area for 13 unilamellar vesicles as they are 

disrupted by adhered nanoparticles. ......................................................................... 121 

51. A vesicle whose surface is not visibly loaded with nanoparticles develops a pore, and 

immediately bursts. .................................................................................................. 122 

52. Inversion of various GUVs .................................................................................................... 123 

53. An inverted vesicle making contact with another vesicle, and immediately causing 

that vesicle’s disruption. ........................................................................................... 125 

54. Dark-field image of a vesicle gel network. ............................................................................ 127 

55. Time lapse illustrating the adhesion process on DOPC vesicles. .......................................... 128 

56. Adhesion kinetics for two vesicles......................................................................................... 129 



xiv 
 

57. Lipid vesicles electroformed using purified PC lecithin powder from the American 

Lecithin Company .................................................................................................... 131 

58. Vesicles exposed to varying concentrations of TTMA (top row) and poly-l-lysine 

(bottom row). ............................................................................................................ 133 

59. Several milliliters of vesicle gel in a glass vial, formed with PC lecithin vesicles with 

a poly-L-lysine solution............................................................................................ 135 

60. Adhesion of 12nm AU-TTMA nanoparticles as a function of the DOPS content of the 

vesicles, each viewed under a 40x objective lens. .................................................... 138 

61. Disruption of 6% DOPS GUVs, caused by adsorption of 12nm Au-TTMA 

nanoparticles. ............................................................................................................ 139 

62. Image of fibers formed by depositing nanoparticles inside of a PDMS tube, then 

crosslinking into a solid object ................................................................................. 145 

63.  A [5,0] lattice of Lennard-Jones particles, bent to a curvature of (C/4πR)
2
V”(d) ≈ 2.5 ....... 148 

64. Large vesicle gels. .................................................................................................................. 153 

65. PC lecithin vesicles, adhered into a gel by adding the cationic polymer 

PolyDADMAC into solution, then removed from solution and placed onto a 

glass slide. ................................................................................................................ 154 

66. Analysis of one sample spectra from sample #4 in Table 1. Our analysis indicated that 

it did not contain a detectable concentration of nanoparticles. ................................. 165 

67. Centrifuged pellets containing DOPC LUVs of different osmolarity with adhered Au-

TTMA nanoparticles. ............................................................................................... 168 

68.  Centrifuged pellets containing LUVs of different anionic surface charge, with 

adhered cationic Au-TTMA nanoparticles ............................................................... 169 

69.  Dark-field image of LUVs with adhered nanoparticles. ....................................................... 170 

 



 

1 

CHAPTER 1 

SPHERICAL PARTICLES BOUND TO SURFACES 

 

When spherical particles bind onto surfaces, it results in a wide range of structures 

and properties depending on the geometry of the surface and on the interactions between 

the particles and the surface. In this thesis, we explore two particular facets of this 

extremely broad topic; the effect of surface shape on the structure and mechanics of 

particles bound to a rigid surface, and the effect of the strength of particle-surface 

interactions between rigid particles and a deformable surface.   

In part I of this thesis, we explore the case of a rigid surface with a cylindrical 

shape, which is coated by a monolayer of spheres. In this case, the requirement that a 

crystal lattice be invariant under a full axial rotation (i.e., that it be commensurate with 

the substrate circumference) leads to a variety of structures distinct from those found on 

planar surfaces. The shapes of these crystalline structures were found to depend robustly 

on the ratio of physical sizes of the cylinder and the bound particles and on the range of 

the interaction potential. We next explore how these different structures affect the overall 

bending elasticity of the nanoparticle lattice. These studies utilize simulations to collect 

results across a wide region of parameter space; intuitive models are proposed that 

explain our results.  

Outcomes of this study include an explanation of the known result that the 

bending stiffness of a single-wall carbon nanotube is dependent on its diameter,
1-7

  and a 

proposed explanation of the pronounced nonlinear bending response of microtubules.
8-13
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In part II of this thesis, we explore the case of a flexible surface that is initially 

spherical, in which the particle binding deforms the flexible surface and influences the 

interactions between nearby bound particles, leading to some surprising and dramatic 

shape evolution. These studies utilize experiments with lipid bilayers and cationic gold 

nanoparticles, where the strength of the electrostatic interaction between the two is 

controlled by adjusting the composition of the lipid bilayer. We find that the shape 

evolution of the bilayer can be reliably controlled by adjusting this single parameter. 

One outcome of these studies is that we learn the ‘design rules’ for making 

responsive materials out of vesicles: the spheres are effective at disrupting the surface if 

the binding energy is strong enough, whereas polymers or weakly-bound spheres do not 

appreciably deform the surface and instead lead to adhesion between nearby bilayers.   

 

Cylindrical crystals: packing and mechanics 

 

Understanding self-assembly  

Self-assembly of a crystal lattice confined to a curved surface exhibits a variety of 

interesting behaviors that are quite different from the behaviors that arise when it is 

confined to a planar surface. These differences are a product of the curvature and 

topology of the surface itself, and appear even at zero temperature.
14

 In the case of a 

cylindrical surface, the requirement that the size of the crystal lattice be commensurate 

with the substrate circumference leads to a variety of crystalline and non-crystalline 

structures that are distinct from those found on planar surfaces.  

The potential for surface shape and size to affect the lattice structure may be 

relevant in biological or technological examples of self-assembly such as coating the 
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surface of fibers, the arrangement of kernels on a corncob,
15

 assembly of proteins on 

membrane tubules,
16

 growth of bacterial cell walls,
17

 proteins or DNA on microtubules,
18

 

surfactants on a nanometer-scale cylinder,
19

 or proteins around RNA as in helical viral 

capsids 
20

.  

Previous works have used computer simulations to find the densest packing of 

hard spheres inside a cylinder; these studies found that uniform hexagonal crystals are 

found only for a discrete set of cylinder radii, between which the spheres form structures 

with a chiral seam (referred to as a ‘line-slip’ by Mughal et al., Figure 1).
21-24

 

Experimentally, interior packing has been investigated through soft colloidal spheres 

confined to cylindrical channels
25

 or rigid colloid spheres in rectilinear channels
26

, and 

fullerene nanospheres confined within carbon nanotubes.
27

 

 

 

Figure 1. Densest packings of spheres inside a cylinder. The optimal packing structure 

changes with increasing tube circumference. An image of the overall lattice structure 

(mapped onto a 2D Surface) is provided below each rendering of the packed tube; a ‘line 

slip’ seam is visible in each. Image reproduced from (Mughal et al., 2011).
22

 

 



 

4 

Confinement to the surface of a cylinder, on the other hand, has received 

comparatively little attention. Mughal et. al make a link between surface packing and 

interior packing, and predict the maximal packing structures formed by hard spheres on a 

cylinder.
22,23

 However, a maximally packed structure is akin to a system of hard-sphere 

particles at infinite pressure, which is of limited use in predicting self-assembly. Other 

authors report on assembly of purely repulsive particles
28-30

 or more complex systems 

with competing species of oppositely charged particles.
18,31

 While these studies 

demonstrate a wide array of possible phases, they leave open the question of assembly of 

particles with a common class of interaction potential.  

 

Mechanical properties of a cylindrical crystal 

In addition to understanding the lattice structure of cylindrical crystals, we also 

seek to understand how their structure affects their mechanical stiffness. Particularly, 

many highly-studied and enormously useful objects—such as microtubules and carbon or 

boron-nitride nanotubes—share the same basic geometric shape of a hollow cylindrical 

tube. Understanding the physics of crystal cylinders (especially in a very general sense) 

would help us to build a foundation on which to understand the mechanics of these 

objects.  

To give more direct context to this study, we now explicitly describe the shape, 

geometry, and mechanics of a few such cylindrical objects (Figure 2). First, a 

microtubule is a hollow tubular polymer found throughout biological cells; they are 

involved in maintaining the structure of the cell, and are also implicated in a number of 

critical biological processes (Figure 2a).  Structurally, microtubules are composed of a 
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repeating chiral lattice of polymerized tubulin dimers, with a single unbroken seam that 

runs the length of the microtubule and resembles a scar.
32

 In eukaryotic cells they have a 

typical circumference of about 120 nm,
33

 containing 13 tubulin subunits repeating around 

its circumference (microtubules with as low as 11 and as high as 16 subunits have also 

been reported, though with much lower frequency).
33

 The individual tubulin dimers have 

a diameter of about 10 nm. Some bacterial cells also contain similar microtubules, with a 

much smaller circumference of about 50 nm and containing only 5 tubulin subunits.
34

  

 

 

Figure 2. Illustrations of various cylindrical crystals. (A) Structure of a microtubule. Image 

reproduced from The Cell, 4
th

 Edition.
35

 (B) Structure of carbon nanotubes, with the 

“armchair’ configuration (left) and the ‘zigzag’ configuration (right). Image reproduced 

from (Roham et al., 2014).
36

 (C) Structure of the tobacco mosaic virus. Image reproduced 

from (Carsten et al., 2007).
37

 (D) Basic structure of our minimalist model. 

 

To our knowledge, a detailed study of the rigidity of a microtubule as a function 

of its diameter has not been undertaken, nor has the stiffness of bacterial microtubules yet 

been measured. However, it has previously been noted that the stiffness of a microtubule 

is dramatically reduced under a large compressive load.
8-13

 A rigorous understanding of 
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this phenomenon has not been established. With our simulations, we would like to 

develop a better understanding of the way the structure of the microtubule could be 

connected to its mechanical properties and its function.  

A carbon nanotube has a structure that is very different from the structure of a 

microtubule; a honeycomb lattice of individual carbon atoms. Carbon and boron-nitride 

nanotubes are routinely fabricated with a variety of different configurations and 

diameters, and their stiffness has been very accurately mapped out as a function of both 

of these parameters (Figure 3). 

 

 

Figure 3. Stiffness of carbon nanotubes as a function of diameter and lattice structure. 

The open symbols represent ‘armchair’ lattices and the closed symbols represent ‘zigzag’ 

lattices. The data from three separate studies are included. Image reproduced from 

(Chang et al., 2003).
2
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Interestingly, this stiffness exhibits a clear dependence on the diameter of the 

nanotube; nanotubes with a smaller diameter are easier to stretch and bend, whereas 

nanotubes with a very large diameter behave identically to graphene.
1-7

  However, 

Young’s modulus is an intrinsic property of a particular material, and in principle ought 

not to depend on the physical size of the object. A purely continuum mechanical analysis 

would suggest that the stiffness of any nanotube ought to be identical to the stiffness of a 

graphene sheet.
38

  Furthermore, although the small-diameter softening phenomenon has 

been reported in many papers,
1-7

  the physical origin of the softening has not yet been 

investigated. We explicitly address this result with our simulation data, and provide a 

potential explanation for the behavior using a simple geometric argument. 

 

Our Approach 

In order to understand the physical rules that govern the shape and structure of a 

cylindrical crystal, we first set out to understand the related problem of self-assembly of 

spherical particles confined to a cylindrical geometry. By using simulations to find 

steady-state, minimal-energy configurations of particles pinned to a cylindrical surface, 

we were able to explore the phase-space of crystalline structures one might expect to 

form in a real-world environment. 

We next used simulations to study how the structure of a cylindrical lattice 

impacts its elasticity, especially within the context of the lattice structures identified by 

our self-assembly simulations above. Of particular interest was identifying how our 

results might inform an understanding of the stiffness (quantified by Young’s modulus) 

of physical tubular objects, such as the ones detailed in Figure 2a-c.  
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In order to build as complete an understanding of cylindrical crystals as possible, 

we used a highly reductionist approach in our investigations; in both cases our model for 

a crystal cylinder consisted only of a collection of independent spherical particles with 

isotropically attractive pair-wise interactions, that are constrained to a rigid cylindrical 

surface (illustrated in Figure 2d). Although in principle carbon nanotubes and 

microtubules are complex objects with anisotropic interactions, reducing them to such a 

simplified model may reveal common underlying principles at work.  

Our specific approach to this problem was twofold. Firstly, we created a 

framework using molecular dynamics (MD) simulations in order to determine the range 

and variety of stable lattices and structures that can self-assemble in a cylindrical 

geometry.  Second, building off of these findings, we created an additional set of 

simulations to compute the elasticity of each of the different identified structures. From 

these results, we were able to examine how the shape of the lattice and the interactions 

between its constituent subunits determine the overall stiffness of the cylinder. 

Accomplishing these tasks required the reduction of large volumes of data in order to 

identify important trends, which was then used to develop intuitive and simple models to 

successfully explain our results. 

 

Lipid bilayer membranes: a novel platform for functional materials 

A lipid bilayer membrane is a highly responsive, elastic surface. Our goal is to 

find new ways to use charged nanoparticles to reshape a membrane surface for the design 

of novel, functional materials.  
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The membrane is formed by two parallel sheets of lipid molecules (Figure 4b). 

Lipid molecules are ampiphilic, having a polar, hydrophilic headgroup and a fatty, 

nonpolar hydrophobic tail (Figure 4c-d). Within each sheet, the lipids are oriented such 

that the hydrophilic heads face towards the surrounding water, essentially forming two 

layers of a smectic liquid crystal. The membrane itself can be formed into a thin closed 

shell, known as a vesicle. The membrane is about 5 nm thick (depending on its 

composition), and the diameter of a vesicle can range from 20 nm to over 200 μm.
39

 

Vesicles between 50 and 500 nm and having a single lamella are referred to as large 

unilamellar vesicles (LUVs), and vesicles larger than 50 μm are referred to as giant 

unilamellar vesicles (GUVs). An example image of GUVs is shown in Figure 4a. 

Multilamellar vesicles are often formed at the same time. 
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Figure 4. Schematic of  vesicle. (A) Microscope image of giant unilamellar vesicles 

(GUVs) in suspension. These vesicles are composed of 96% DOPC and 4% DOPS by 

mole fraction. (B) Close-up of a lipid bilayer membrane, illustrating the composition and 

arrangement of the lipids. The dark gray lipids represent DOPS, and the light gray lipids 

represent DOPC. Image adapted from Bio1151.nicerweb.com.  (C) Structure of a single 

DOPC lipid molecule. Image reproduced from Avantilipids.com. (D) Structure of a single 

DOPS lipid molecule. Image reproduced from Avantilipids.com. 

 

The lipid content of a vesicle largely determines its properties; different lipid 

species can have a different surface charge, preferred curvature, hydrophobicity, affinity 

for other lipids, and so on. Once formed into a vesicle, these factors contribute to 

properties such as the vesicle’s overall shape, its stiffness, and its stability.
39-41

  

Biological membranes—such as the cell wall—are typically composed of tens of 

different lipid species that interact to perform a myriad of biological functions.
42

 

Crucially, many of these functions involve dramatically altering the shape or 

structure of the cell membrane surface on command. These processes include the ability 

to form long slender filipodi protrusions for cell mobility,
43

  the opening of pores for 

transmission of fluids and ions,
44

  or the engulfment and internalization of solid materials 

through the process of phagocytosis.
45

  With our experiments, we seek to mimic this type 

of functionality. 

 

On-demand reshaping of a membrane surface 

We now examine different methods for manipulating the shape of a bilayer 

membrane; of special interest to us is the ability to selectively and locally tune membrane 

curvature through surface adhesion of charged proteins or particles. Biologically, 

processes that reshape the membrane are mostly mediated by the selective binding of 

specific proteins, such as the proteins in the BAR family. These proteins are capable of 
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sensing curvature by binding preferentially to curved membranes,
46

 as well as altering 

existing membrane curvature upon adhesion by forcing the membrane to conform to its 

curved shape.
47

 However, the precise nature of many of these interactions are highly 

nuanced and not yet fully understood.  

 

 

Figure 5.Reshaping of a spherical vesicle caused by adhesion of different proteins, each 

of which belong to the BAR family of proteins. Images are not to the same scale. (A) 

Adhesion of I-BAR causes the membrane to assume a saddle-shaped curvature. Image 

reproduced from (Mattila et al., 2007).
48

 (B) Adhesion of F-BAR causes the membrane to 

form tubules. Image reproduced from (Henne et al., 2007).
49

 (C) Adhesion of Endophilin-

BAR causes the membrane to form tubules. Image reproduced from (Farsad et al., 

2001).
50

 Protein renderings reproduced from (endocytosis.org). 

 

The microscope images of the experiments pictured in Figure 5 illustrate the 

reshaping of a membrane by the adhesion of different species of BAR proteins. In all 

three cases, the type of deformation imposed on the surface of the membrane is directly 
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correlated with the shape and curvature of the adhered protein. The convexly shaped I-

BAR imposes a negative curvature on the membrane, creating tubules that are directed 

into the vesicle.
48

 The banana-shaped F-BAR imposes a positive curvature on the 

membrane, leading to formation of approximately 100 nm diameter tubules protruding 

outwards from the membrane surface.
49,51,52

  And, the tightly curved Endophilin-BAR 

creates smaller 20 nm diameter tubules on the membrane.
50

 

Although each of these protein-induced deformations is correlated to the physical 

shape of the protein, the electrostatics underlying their interactions with the membrane 

are quite complex. In fact, there are several completely different proposed mechanisms 

through which the proteins create curvature in the membrane through adhesion.
47

 

Designing a protein that could interact with a particular species of lipid membrane to 

produce a particular shape of deformation is still a prohibitively difficult task. 

Nanoparticles, on the other hand, can be readily fabricated in a laboratory to have a wide 

range of sizes, shapes, or surface chemistries desired. We therefore focus our efforts to 

reproducing the kind of membrane reshaping ability found in nature, using nanoparticles 

as a platform for achieving more customizable results.  

Early results in this field have been very encouraging, and both theoretical and 

experimental work has shown that adhesion of spherical nanoparticles on the interior wall 

of a GUV can cause tubulation of the vesicle (Figure 6).  
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Figure 6. Tubulation caused by adhesion of charged spheres on the interior of a vesicle. 

Top row: DOPC vesicles are formed with 200 nm nanoparticles with a cationic aliphatic 

amine surface chemistry in the interior volume, causing a surface instability and leading 

to formation of ~5 μm diameter tubules. Image reproduced from (Yu et al., 2009).
53

  

Bottom row: Simulations of particles adhered to an interior membrane surface indicating 

similar results. Image reproduced from (Yu-Cheng et al., 2015)
54

. 

 

Experimental work by Y. Yu et al. has demonstrated the tubulation of vesicles by 

nanoparticles (Figure 6, top).
53

  In these experiments, vesicles were formed via gentle 

hydration (the protocol for which is detailed in Chapter 6) in a solution containing 

cationic nanoparticles with a 200 nm diameter, so that nanoparticles were suspended in 

both the interior and exterior of the GUVs. After formation, the GUVs were centrifuged 

at high speeds, and the sedimented GUVs were extracted and then re-suspended in a 

nanoparticle-free, osmotically-matched solution. This effectively removed the 

nanoparticles from the exterior volume. Interestingly, as soon as the GUVs were re-

suspended, they began to develop large tubular protusions—despite the fact that the 
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vesicles had been in suspension with nanoparticles for a full 24 hours during their 

formation. The physical mechanism they propose for this behavior is that adhered 

nanoparticles locally increase the spontaneous curvature of the surrounding lipid 

molecules, leading to a surface instability. This prediction was tested directly via 

simulations (Figure 6, bottom), finding similar results.
54

  At the very least, the capacity 

for spherical particles to cause a shape transition in a vesicle through adhesion is 

effectively demonstrated. 

Furthermore, a great deal has been demonstrated about the myriad variety of 

deformations that can be caused by nanoparticles interacting with membranes. Depending 

on the type of nanoparticles and the lipid composition of the vesicles, studies have 

observed a number of different phenomena caused by interactions between particles 

adsorbed onto a membrane surface, including aggregation into hexagonal clusters,
55,56

 

linear chain-like formations,
55,57

 clustered dimple-like structures,
58,59

 and budding of the 

membrane
60

. A large number of studies have also shown that adsorbed particles can be 

completely engulfed by a lipid bilayer, in a process that strongly resembles the biological 

process of endocytosis.
45,61-64

  Other work has shown that nanoparticle adhesion can build 

additional functionality into GUVs as well, including the ability to selectively lyse and 

release cargo through UV light-induced heating of adsorbed particles.
65 

 

Interactions between a nanoparticle and a bilayer membrane 

To better understand how surface adhesion of many particles can collectively 

affect the shape of a membrane, we now seek to quantify how a single particle interacts 

with such a surface. When a charged particle adsorbs onto an oppositely charged 
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membrane, the two surfaces can reduce electrostatic energy by maximizing the area of 

contact with one another. To accomplish this, the flexible membrane must deform itself 

to match the shape of the rigid, curved surface of the colloid particle. This high-curvature 

deformation by the membrane is energetically costly, and it leads to an energetic 

competition that ultimately dictates the equilibrium shape of the particle bound to the 

membrane surface.  

 

 

Figure 7. Deformation of a vesicle by surface adhesion of a spherical particle. R is the 

radius of the vesicle, a is the radius of the particle, z is the amount of penetration of the 

particle beneath the vesicle surface, and ΔP is the osmotic pressure across the membrane. 

 

The exact shape that the membrane assumes is particularly difficult to predict 

theoretically; it depends nontrivially on many different parameters, including the 

membrane stretching energy,
66,67

  the membrane bending stiffness,
66,67

  the ambient 

temperature kBT,
55

  the surface tension of the membrane,
41

  the contact energy between 

the colloid particle and the membrane surface,
66,67

  the rigidity of the colloid particle,
64

  

the local curvature of the membrane surface,
67,68

  the surface shape of the colloid 

particle,
69,70

 the overall volume of the colloid particle,
63

 the spontaneous curvature of the 
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membrane,
66

 and how much the spontaneous curvature of the membrane is locally 

disturbed by the adhesion of the colloid particle.
71,72

 (Even still, this may be an 

incomplete list.)  

Despite the inherent complexity, the deformation caused by a single adhered 

particle can be approximately modeled as the result of a small number of energetic 

contributions that make the major contributions to the energy (the following analysis is 

based loosely on calculations made by Deserno et al
66

). To do so, we introduce a as the 

diameter of the particle and z as the fractional amount of penetration of the particle into 

the membrane (Figure 7). First, the total contact energy between the membrane and a 

single particle is 

                  ,                  (Eq. 1) 

where ω is the contact energy density between the surfaces. The value of ω depends on 

the charge densities of the nanoparticle and the lipids or other kinds of interactions, such 

as van der Waals or specific lock-and-key interactions. Next, the energetic cost required 

to bend the membrane to meet the tightly curved surface of the particle is 

               ,                (Eq. 2) 

where κ is the bending stiffness of the bilayer, again determined by the lipids composing 

the bilayer. Finally, the energy required to stretch the membrane and create enough 

surface area to partially wrap the particle is 

                    ,             (Eq. 3) 

where σ is the lateral tension in the membrane. The approximate total energy of the 

resulting structure is the sum of these three contributions, and hence the equilibrium 
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penetration of the particle is the value of z that minimizes this sum. Combining equations 

1, 2 and 3 and minimizing, we find that this equilibrium position is 

    
        

   
 .         (Eq. 4) 

This analysis excludes the deformed area of membrane not in contact with the 

nanoparticle, however the shape of the membrane surrounding the particle can be 

assumed to be a smooth wrapping similar to the shape in Figure 7.  

We can make a few observations about the nature of nanoparticle adhesion using 

Equation 4 as a starting point. Assuming σ, κ and ω are constant values, it is energetically 

favorable for the particle to be fully enveloped by the bilayer (which by our definition, is 

when zeq = 2) if  

   
  

    
 ;          (Eq. 5) 

this is the minimum particle diameter necessary for envelopment to occur.
62

 Formally, 

other factors such as the shape
69

 and stiffness
64

 of the particle also play a role in 

determining whether or not envelopment is possible, but in general the above requirement 

serves as a useful framework that could be adapted to account for the other cases.  

Additionally, this line of reasoning also suggests that any adhesion at all (i.e., zeq 

≥ 0) is possible only if 

 
  

 
  .          (Eq. 6) 

Together, Equations 5 and 6 show that larger particles should bind to and deform 

membrane surfaces more easily than very small ones. This is largely due to the large 

energetic cost involved with bending the lipid bilayer to conform to a high-curvature 

surface.  
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Figure 8. (A) Particle wrapping phase diagram as a function of stretching modulus, σ, 

and binding energy density, ω. (B) Particle wrapping phase diagram as a function of the 

effective binding energy, ω/σ, and the particle radius, a. Both of these plots are 

reproduced from (Deserno et al., 2004).
66,73

  The membrane/nanoparticle sketches have 

been inserted for visual context; these calculations did not explicitly include the energetic 

contributions from the area of the membrane not in contact with the nanoparticle. 

 

The phenomena demonstrated by Equations 5 and 6 were fleshed out with greater 

accuracy by Deserno et al.,
66,73

 and a complete phase diagram of particle-wrapping as a 

function of the important parameters of the problem is illustrated in Figure 8. As these 

plots demonstrate, the degree of wrapping by a particular lipid bilayer can be increased 

by using larger or more strongly charged nanoparticles.  

When more than one particle adsorbs onto the same membrane, the surface 

deformations cased by nearby particles overlap one another, leading to interactions 

between the particles. Although in principle many-body forces contribute heavily to these 

interactions,
67

 we can approximately calculate steady state structures of groups of these 

particles using the above method. Therefore, for any particular combination of 

nanoparticles and membranes, the possible ‘zoo’ of surface structures and deformations 



 

19 

ought to be calculable. This makes it a very exciting platform for study; by tailoring any 

number of the myriad properties which dictate how the particles interact with the 

membrane, we can potentially guide assembly into a wide range of possible 

morphologies. However, there is a great deal that is still not well understood in this field, 

as well as a lot of gaps in our current knowledge. Experimental data is desperately needed 

in order to validate (or even merely to examine) the myriad phenomena predicted by the 

current theory. In particular, we need an experimental system that is reproducible, that 

has well-defined surface chemistry and tunable interactions. 

 

Our approach 

With these experiments, our goal was to form a better understanding of how the 

diameter and the adhesion strength of adsorbed particles affect the morphology and shape 

of a bilayer membrane. To accomplish this, we performed experiments exposing a bilayer 

membrane to particles of different sizes. Additionally, we incrementally adjusted the 

composition of our membrane to tune the strength of interaction with the particles. 

Through these experiments, we carefully documented how these two parameters can 

affect the membrane system. 

We also performed experiments intended to quantitatively determine the adhesion 

energy between a single adsorbed particle and the lipid bilayer membranes used in our 

experiments. However, these experiments were largely unsuccessful due to the complex 

nature of the interactions between the nanoparticles and the membrane. This work is 

described in the Appendix chapter at the end of this manuscript. 
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CHAPTER 2 

MOLECULAR DYNAMICS SIMULATION TECHNIQUES  

 

In this chapter, we describe the simulation techniques used to find the steady-state 

structures of cylindrical crystals, as well as the techniques used to determine the bending 

stiffness of cylindrical crystals. All of our simulations utilized a molecular dynamics 

(MD) simulation scheme, and were performed using the LAMMPS software package 

developed at Sandia National Laboratory (lammps.sandia.gov).
1
 

Conceptually speaking, a molecular dynamics simulation is one that uses 

Newton’s equations of motion to determine the trajectories of a system of many 

interacting particles. By using purely numerical methods to integrate Newton’s equations 

over a fixed interval of time, these simulations provide us to a comprehensive picture of 

the dynamical evolution of a large system of particles that would be prohibitively 

complex to investigate analytically. Such numerical calculations entail calculating the 

forces between pairs of particles using their inter-atomic interaction potentials, as well as 

calculating mechanical forces on particles caused by external force fields. 

The use of Langevin dynamics is an MD approach that explicitly includes friction 

and viscosity into simulations through the use of an implicit solvent; it also allows for 

control over the temperature of the particles in the simulation, thereby approximating the 

canonical ensemble. Our simulations utilized Langevin dynamics to evolve the system 

via simulated annealing, which allowed us to indirectly control the system’s temperature 

over the course of each simulation. Further details on this procedure can be found in 

(Goga et al., 2012).
2
 One distinct advantage of using simulated annealing as opposed to 
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strictly minimizing energies or solving the equations analytically is that it allows us to 

capture intermediate metastable configurations. 

To examine a wide range of different particle interactions, two different inter-

atomic potentials were used throughout our simulations: the Lennard-Jones potential, 

which we define as  

          
 

 
 
  

   
 

 
 
 

  ,       (Eq. 7) 

and the Morse potential, which is defined as  

                  
 

 
          

 

 
     ,                  (Eq. 8) 

where ϵ controls the interaction strength and the dimensionless parameter γd controls the 

range of attraction (a large γd corresponds to a short-range potential). In both cases, d 

represents the location of the potential minima. For reference, the Lennard-Jones 

potential has been plotted in Figure 9 alongside the Morse potential for γd = 10 and γd = 

30, two of the values used in our simulations.  
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Figure 5. The pairwise potential as a function of particle separation for both Lennard-

Jones and Morse potentials. The γd=10 and γd=30 Morse potentials have a shorter ranged 

attraction and a steeper core repulsion than the Lennard-Jones potential. 

 

2D simulations of particles on a straight cylinder 

We employed computer simulations to find the steady state structures that appear 

using different pair-wise interaction potentials (Figure 9) and a range of different cylinder 

circumferences, C. The purpose of these particular simulations was to learn what steady 

state structures are favorable as a function of these two parameters. 

 To accomplish this, we first determined how to calculate forces between nearby 

particles on the cylinder, and then hard-coded these interactions into our simulations. 

Starting with particles at high temperatures, we slowly lowered the temperature until they 

formed into a stable crystal; this data could then be analyzed. 
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Calculating interactions between particles 

Although this problem is three-dimensional because the interactions are defined 

by separation in 3D space, the requirement that the particles lie on the surface of a 

cylinder allows us to translate it into a two-dimensional equivalent. More precisely, we 

represented the cylinder’s surface in planar Cartesian space by letting           

     , where C is the circumference of the cylinder and   is the azimuthal angle in 

cylindrical coordinates. In this representation, the x-axis necessarily has periodic 

boundary conditions and the y-axis does not. This method was a computationally 

convenient way to confine the spheres to the surface of the cylinder (Figure 10). 

 

 

Figure 6. Cross-sectional diagram of the simulation space. This schematic demonstrates 

the difference between the inner cylinder circumference (which belongs to the physical 

rod), and the outer cylinder circumference C (which intersects the centers of mass of the 

particles) where the actual simulation takes place. It also illustrates the necessary 

adjustment to the way that distances between particles are calculated in this two-

dimensional mapping, in order to correctly compute the forces between particles. 
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The chosen interaction potential also needed be adjusted as part of this two-

dimensional mapping; interactions between particles must depend on their separation in 

Euclidean space, whereas the simulation coordinates are measured along the surface of 

the cylinder (Figure 10). This difference leads to a distortion along the    (or   ) direction, 

which we accounted for in the simulations. For any two particles separated by Δx and Δy 

on the planar surface, the true Euclidean separation, r, was computed via 

                             .             (Eq. 9) 

For these two particles, the magnitude of the interaction force,     , was obtained from the 

force-distance curves appropriate for the Lennard-Jones or Morse cases. The component 

of the force along the circumferential axis (  ) was computed as 

                             ,        (Eq. 10a) 

and the force along the cylinder axis (  ) was computed as 

               .                         (Eq. 10b) 

Therefore, the 2D projection of the pairwise potentials onto the (x,y) plane is slightly 

anisotropic. All of our simulations were coded to include Equations 9 and 10 explicitly.  

 

Simulated annealing parameters 

Since the purpose of these simulations was to find all possible steady-state 

configurations of the particles, we needed to implement an annealing schedule that 

gradually increased and decreased repeatedly over time in order to carefully search out 

the phase space of configurations of particles for metastable states. In all of the 

simulations described in this section, the particles were cooled from Ti=8ϵ/kB to 
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Tf=0.01ϵ/kB via a simulated annealing schedule over a period of 5x10
5
 iterations. A 

typical annealing schedule from these simulations is shown below in Figure 11. 

 

 

Figure 7. Typical annealing schedule. The particles start at 8, and the temperature is 

alternately raised and lowered until the overall temperature reaches 0.01. 

 

Prior to the start of each simulation, the total number of particles was chosen such 

that the area fraction of the system was equal to 0.7; both the volume and number of 

particles in the system were then kept fixed throughout the annealing process. Each 

iteration of the algorithm represented a time step of 0.02 s and computed only the 

interactions between pairs of particles within 2d of each other. The mean squared 

displacement of an individual particle during each time step was (2
-1/3

x10
-2 

kBT/ϵ)d
2
. At 
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the beginning of this process, particles were randomized at high temperatures, then 

allowed to diffuse freely in a medium with an effective viscosity of η=0.95 mPa/s 

(similar to water at room temperature). Once the particles were cooled into a stable 

crystal and the annealing was complete, the coordinates of each sphere were recorded. 

This process was then repeated with a new value of C and with a new arrangement of 

particles.  

 

3D simulations of particles on a bent rod 

We next asked whether bending the rod (and thereby imposing a nonzero 

Gaussian curvature) leads to interesting new surface structures, and whether these 

structures alter the bending stiffness. Because the introduction of Gaussian curvature 

leads to a curved surface with a nontrivial shape, simulating the particles in two 

dimensions was not practical in this case. Instead, we simulated the particles in three 

dimensions, and artificially added a force field which bound the particles to the surface of 

a bent cylinder.  

 

3D Force Field 

All our simulations used a force field to pin the particles into the surface of the 

cylinder. By design, this field acts perpendicular to the surface of the bent cylinder; it has 

a nontrivial shape and hence is outlined here. We first defined a set of ‘bent’ cylindrical 

coordinates, with     parallel to the axis of the bent cylinder, and     as perpendicular to 

the plane defined by     (Figure 12).  
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Figure 8. The ‘bent cylinder’ coordinate system we used to define the force field keeping 

the particles confined onto the cylinder. 

 

Using this new coordinate system, we next wrote the force field confining the 

particles onto the cylinder as a harmonic spring force; 

                  
 

  
                       (Eq. 11) 

where k is the spring constant pinning particles to the curved cylinder surface. Writing 

the force field next required computing       , which was done by first defining the 

quantities 

    ,                 (Eq. 12a) 

                         ,            (Eq. 12b) 

                     .              (Eq. 12c) 

We could then write the quantity        as 

             
    

    
 ,                (Eq. 13) 
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and the force field thus becomes 

              
 

  
   

  

  
   

  

  
   

  

  
   .              (Eq. 14) 

This derived forced field was used in each of our simulations to keep the particles 

confined to our bent cylindrical surface. At every iteration and for each particle in our 

simulation, we computed the vector components of the force field and applied it to each 

separate particle accordingly. 

The validity of this force-field can easily be checked by simply plotting a vector 

field for a few values of R (Figure 13). This reveals the force field derived above is 

numerically stable in the limit R → ∞, and also for small R. Additionally, the vector field 

points perfectly normal to the surface of the cylinder at all positions in space. This is a 

critical feature of the field; were it not true, the in-plane components of the field would 

push the particles around on the surface of the cylinder during the simulations. 
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Figure 9. Illustration of the force field confining the particles onto the surface of the bent 

cylinder. It acts normal to the surface regardless of the position of the particle. 

 

Using this method, we could effectively pin the particles to the surface by 

applying a field with a spring constant (k/d) >> kbT and also (k/d) >> ϵ. Since these 

simulations were computed in three dimensions, no corrections to the interactions forces 

between the particles were necessary.   

 

Simulation procedure 

Each of our simulations utilized a similar annealing scheme to the 2D simulations 

described previously (Figure 11). The 3D simulations began at a temperature of T=2kB/  

with particles at randomized positions within the 3D simulation volume, and then a large 

spring force was incrementally applied to the particles to confine them to the surface of 

an unbent cylinder. The particles were then annealed into a steady-state crystalline 

structure; starting at an initial temperature of Ti=2kB/ , the particles were cooled to Tf= 

0.1kB/  over a period of 10
6
 iterations, and the positions of the particles were then 

recorded. We defined the length L as the total length along the curved axis of the 

cylinder.  For the simulations reported here, L ranged from 20d to 100d, and the number 

of spheres in each simulation was chosen such that the total length of the annealed crystal 

was at least L=20d. 

At the start of each simulation, the curvature (1/R) was set to a value of α/10000, 

with α=1. (The initial configuration was thus a very slightly curved cylinder, though it is 

approximately straight.) Each iteration, α was incremented by a value of 0.2, and the 

particles were allowed to reach a new steady configuration on this new surface during a 
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period of 10
4
 iterations. We found that this provided sufficient time for the particles to 

reach steady state; decreasing the size of each increment of α and allowing more 

iterations to reach a new steady state configuration did not measurably change the 

outcome of the simulation. This process was repeated until the curvature reached L/2π, 

which is the maximum curvature that can be applied to a cylinder of length L. The 

steady-state positions of the particles were recorded at each iteration of curvature, which 

were then analyzed to determine the stiffness of the cylinder. 

It is also worth noting that, using this method, the crystal lattice must not have 

any vacancies or defects prior to bending in order for the data to be trustworthy. The 

existence of a vacancy may affect the energy landscape, and is a very undesirable feature.  

Determining the structure of the crystal is also a relatively tricky task considering its 

constituent particles lie on a curved surface; this analysis will be examined in greater 

detail in Chapter 4. 
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CHAPTER 3 

SELF-ASSEMBLY ON A CYLINDER 

 

In this chapter, we discuss MD simulations of systems of Lennard-Jones and 

Morse particles that were used to identify steady-state configurations of these particles 

confined to a cylindrical lattice. We then propose a simple 1-dimensional model based on 

geometry to explain the range of stability of each of these configurations, and compare 

with the results from our MD simulations. We then discuss implications of these results 

for further studies. 

A crystal lattice, when confined to the surface of a cylinder, must have a periodic 

structure that is commensurate with the cylinder circumference.
1,2

 This constraint can 

frustrate the system, leading to oblique crystal lattices or to structures with a chiral seam 

known as a ‘line slip’ phase, neither of which are stable for isotropic particles in 

equilibrium on flat surfaces. In this study, we use molecular dynamics simulations to find 

the steady-state structure of spherical particles with short-range repulsion and long-range 

attraction far below the melting temperature. We vary the range of attraction using the 

Lennard-Jones and Morse potentials and find that a shorter-range attraction favors the 

line-slip. We develop a simple model based only on geometry and bond energy to predict 

when the crystal or line-slip phases should appear, and find reasonable agreement with 

the simulations. The simplicity of this model allows us to understand the influence of the 

commensurability constraint, an understanding that might be extended into the more 

general problem of self-assembling particles in strongly confined spaces. 
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Sphere packing in a cylindrical geometry 

We begin by considering the example of a perfect hexagonal lattice that is 

wrapped onto the surface of a cylinder (Fig. 14). This example provides a useful 

reference for our later discussion of the structures found in simulations. In this problem, 

the fact that the Gaussian curvature is zero everywhere avoids curvature-induced defects.  

Instead, the structure is subject to the constraint that it be invariant under a 2π rotation 

about the cylinder axis. This discrete rotational symmetry leads directly to the conclusion 

that only a discrete set of cylinder circumferences can accommodate a perfect hexagonal 

lattice. Below, we refer to this discrete set of configurations with the subscript 0. 
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Figure 10. Illustrations of the particle-and-cylinder system. (a) Spheres are attached to 

the cylinder surface in a perfect hexagonal lattice. (b) A top view of this lattice, projected 

onto a plane perpendicular to the cylinder axis. Here, C0 is the circumference of the circle 

that intersects the centers of the particles, and P0 is the perimeter of the corresponding 

inscribed polyhedron. (c) The same lattice, projected into a plane created by slicing the 

crystal vertically and laying it on a flat surface. Note that this is not the plane defined by 

the surface of C0 (which would distort the metric). The angle θ and the lattice constants n1 

and n2 have been labeled. 

 

To define the geometry, we consider a cylinder of circumference C, whose 

surface contains the center of mass of each particle (rather than the cylinder whose 

surface lies tangent to each sphere).  The unit vector    lies along the cylinder axis and    

lies in the circumferential direction. To express the 2π rotation symmetry, we first define 

two lattice translation vectors a1 and a2. For convenience, we further define a1 as the 

lattice vector that lies closest to the    direction. Because we are interested in the packing 

of three-dimensional spheres, we define a1,2 as the nearest-neighbor spacing in three-

dimensional Euclidean space. Perhaps the most straightforward way to write the 

rotational symmetry condition is to require that the pathway defined by n1 steps along a1 

and n2 steps along a2 form a simple polygon enclosing the cylinder. The projection of the 

perimeter of this polygon along    (Fig. 14b) is a useful parameter for defining the 

commensurability constraint. We label this projected polygon P. 

For the case of a perfect hexagonal crystal, |a1,2| = d (the particle diameter) and a
-

1,2 are separated by an angle of π/6.  The 2π-rotational symmetry then reduces to the 

requirement that the perimeter of the polygon be given by P0, which is defined by 
3-6

 

P0(n1,n2) = d (n1
2
 + n2

2
 + n1n2)

1/2
.                 (Eq. 15) 

Likewise, maintaining perfect hexagonal symmetry also requires the circumference C 

(Figure 14b) to be expressible in terms of n1 and n2.  This relationship may be found from 
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basic geometry, and the result is a transcendental equation that defines the allowed 

circumferences C0(n1,n2) for a hexagonal lattice: 

          
  

   
  

      

   
         

 
                  

  

   
  

      

   
         

 
        .      

          (Eq. 16) 

For each (n1,n2), there is also a fixed orientation of the lattice, θ0, which we define as the 

angle between a1 and    (Figure 14c): 

                
     

       
  .                (Eq. 17) 

For each value of C0, there are in general two distinct values of θ0, which correspond to 

permuted values of n1 and n2. These two structures have opposite chirality and are 

physically indistinguishable.  
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Figure 11.  The values of C0(n1,n2) are plotted alongside their corresponding set of 

integers (n1,n2). These points mark locations where a defect-free hexagonal crystal fits on 

the cylinder surface.  Exchanging n1 and n2 results in a reflection across θ=30°.The two 

values correspond to equivalent configurations (a chiral pair). 

 

In Figure 15, the open circles show (C0(n1,n2), θ0(n1,n2)): these are the 

configurations that are allowed for perfect hexagonal lattices as defined by equations 16 

and 17. Each point is labeled by the corresponding set of integers (n1,n2). Note that 

configurations with θ0   60
o
 are identical to configurations with 0   θ0   60

o
 because of 

the 6-fold rotational symmetry of the lattice. 

The question that we now address with our simulations is how the set of 

configurations is altered when there is a finite interaction potential and the spheres can 

move freely along the cylinder’s surface. Or, more to the point, what structures appear 

when C  C0? 

 

Simulations and analysis 

We used MD simulations (as described in Chapter 2) to determine the steady state 

structures that appear under conditions of different interaction potentials (Figure 9) and 

across a range of cylinder circumferences. We also developed an algorithm to detect the 

crystallographic orientation of the particles with respect to the cylinder axis, θ, to use as 

our principal measure of the structure of each annealed crystal. 

 

Annealing Parameters 

Prior to the start of each simulation, the total number of particles is the system 

was chosen such that the area fraction of the system was equal to 0.7; both the volume 
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and number of particles in the system were then kept fixed throughout the annealing 

process. Each iteration of the algorithm represented a time step of 0.02s and computed 

only the interactions between pairs of particles within 2d of each other. The mean 

squared displacement of an individual particle during each time step was (2
-1/3

x10
-2 

kBT/ϵ)d
2
. At the beginning of this process, particles were randomized at high 

temperatures, then allowed to diffuse freely in a medium with an effective viscosity of 

η=0.95 mPa/s (similar to water at room temperature). Once the particles were cooled into 

a stable crystal and the annealing was complete, the coordinates of each sphere were 

recorded. This process was then repeated with a new value of C and with a new 

arrangement of particles.  

To verify that the obtained structures reflected the low-temperature limit, a few 

simulations were instead cooled to a lower temperature of Tf=10
-4
ϵ/kB over a period of 

5x10
7 
iterations; the values of θ measured in these cases was identical to the values 

measured in our previous simulations. This indicated that the reduced temperature did not 

make an appreciable impact on our data.  We also performed several spatially large 

simulations, where the y-axis boundaries were separated by a distance of several hundred 

particle diameters. In these cases, the system was large enough to form crystalline 

domain boundaries, but we found the structure of each individual domain to be no 

different from those observed in smaller crystals at the same circumference. In other 

words, we found that the distance between the x-axis boundaries (the cylinder 

circumference) is the only important dimension of the system.  
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The annealing process was completed using the Lennard-Jones and Morse 

interaction potentials (Eq. 7 and Eq. 8), and across several thousand cylinder 

circumferences between C/d=3.6 and C/d=7.6. 

 

Detecting the configuration angle θ of the particles 

For each of these simulations, we used the sphere positions to measure the 

average crystallographic angle, θ, between the crystal lattice and the cylinder (Figure 14a 

and 14c). This was accomplished through the following algorithm: first, the neighbors of 

each particle were calculated, which was done by finding the Delaunay triangulation of 

the positions of all the particles (pairs of particles connected by an edge in the Delaunay 

map were considered neighbors). We discounted any neighbor pairs separated by a 

distance greater than 1.5d away from one another, and then every particle with six 

neighbors was indexed. Next, we recorded the angles defined by the    axis and the bonds 

between each of the indexed spheres and each of its neighbors.  

Using this data, we created a histogram of all angles, which necessarily has six 

distinct peaks. If two or more sets of six peaks were found, a polycrystalline structure 

was likely present (an inference confirmed by visual inspection of several such cases), 

and the data was rejected. The angles comprising the peak closest to 0° were then 

averaged. This average value, denoted as θ, could then be plotted as a function of C/d.  

Note, however, that this definition of θ measures the structure of the crystal in a 

way that is slightly different (though physically more meaningful) from the one used in 

Eq. 17, and this difference leads to a very small discrepancy between our theory and our 

data that vanishes for large values of C/d. Briefly put, the discrepancy in the measured 
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values of θ is caused by a subtle difference in the way that distances between particles are 

measured in Eq. 17 and in our analysis. In both of these cases, the separation vector r is 

two-dimensional because the spheres’ positions are parameterized along some surface.  

However, Eq. 17 constrains the particles to exist on a slightly different surface than our 

simulations do (Figure 16).  

Indeed, in Eq. 17 the component of r that is perpendicular to the    axis is only 

approximately parallel with the cylinder axis; this is due to the difficulty in defining θ0 

with respect to a fixed axis.  Because of this error, Eq. 17 slightly over-estimates θ0 for 

small values of C/d.  At the very least, the discrepancy between these two coordinate 

systems is somewhat mitigated by the use of Eq. 9 in the analysis of our simulations.   

 

 

Figure 12.  (A) A prototypical arrangement of particles for some C0/d.  Here, (B) depicts 

the surface connecting these particles as parameterized by Eq. 17, whereas (C) depicts the 

surface connecting the particles as parameterized in the analysis of the data from our 

simulations. This slight geometric difference causes the small discrepancy manifested in 

our data. 
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Results 

Lennard-Jones particle interactions 

We represent the steady-state configurations of the spheres by plots of (C/d, θ). 

This data, for systems of Lennard-Jones particles, is presented in Figure 17. The pale 

grey bars in the background of this plot correspond to the theory derived in the next 

section. As expected, we find the uniform crystal phases (shown in blue/black) at the 

discrete values of (C0/d, θ0) associated with a perfect hexagonal lattice. We note, 

however, that for small C/d the values of θ0 with n2 > n1 are slightly different from the 

values of θ extracted from our simulations. As stated in the previous section, this is due to 

a subtle difference in the way the two angles are defined, which becomes small as C/d 

increases. 

 

 

Figure 13. Steady state configurations observed in computer simulations with Lennard-

Jones interactions, plotted as   vs C/d. Red/gray data points indicate the existence of a 
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line-slip phase, and blue/black data points indicate a continuous uniform crystal. The 

large circles label the same analytically determined values for C0 as in Figure 15, and the 

gray blocks show defect-free regions as predicted by Eq. 19 and Eq. 21. The plot’s axes 

span from  =0 to  =60
o
 because of the six-fold symmetry of the lattice. The star at 

(C/d,θ)=(6.76,7.45
o
) indicates the location of the simulation examined in greater detail in 

Figure 22. 

 

In contrast to the hard-sphere case, uniform lattices persist across islands of 

parameter space surrounding each (C0/d, θ0).  Between these islands of uniform lattices, 

we find narrow regions of parameter space that have structures with a chiral defect 

(orange/gray points); these correspond to the line-slip phases reported for hard spheres.
7
 

One (perhaps unexpected) feature of this graph is its asymmetry: an expansion of C away 

from C0 systematically leads to a reduction of θ. This is due to the fact that, when a 

perfect hexagonal lattice cannot assemble on the cylinder at any angle, it becomes 

preferential to form an oblique lattice instead by stretching along the    axis– a feature 

examined in greater detail in the following paragraphs. Chiral pairs in this state are no 

longer similar under rotation, but are instead similar only by reflection across   = 0°. The 

redundant data was omitted from the plot.  

 



 

45 

 

Figure 14. Steady-state configurations obtained from the simulations are shown for a 

range of values of C/d to better illustrate the structures found in Figure 17. In each case, 

the average magnitude of the lattice vectors, a1 and a2, are provided alongside their 

standard deviation. The line segments show the Delaunay triangulation of the lattice, on 

top of which a1 and a2 have also been drawn. (A) A hexagonal lattice appears at the value 

of C0 for (n1,n2) = (4,1). (B) The lattice stretches along a1 as C/d increases. (C) A ‘line 

slip’ structure with a helical defect emerges in response to the strain placed on the crystal 

lattice. This is manifested in alternating pairs of 5-7 disclinations which span the length 

of the lattice. (D) The crystal, arranged at a new angle, is slightly compressed along a1. 

(E) The lattice is again hexagonal at C0 corresponding to (n1,n2) = (4,2). 

 

In Figure 18, we show the real structure at selected points in the (C, θ) plane. 

Figure 18a shows the structure of a hexagonal lattice observed at the (C0, θ0) 

corresponding to (n1,n2) = (4,1).  As one increases the circumference of the cylinder away 

from some particular value of C0, the preferred state becomes an oblique lattice, where 

the lattice unit vector nearest to the circumferential axis of the cylinder (a1) is slightly 

increased and the other lattice vector (a2) remains unchanged within uncertainty (Figure 
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18b). Hence, we find that the cylinder stabilizes a new oblique crystal symmetry, which 

is not found on planar surfaces. 

When the circumference is increased further, the strain proves to be too large and 

an oblique lattice at this orientation is no longer viable. The lattice then develops a chiral 

defect, which is the line-slip structure reported earlier.
8
 This structure is shown in Figure 

18c.  The line-slip defect itself consists of a line of 5-fold and 7-fold disclinations, as 

shown by the Delaunay triangulation of Figure 18c. Although the structure seems to 

resemble a single dislocation line (of the sort that might be found in a polycrystalline 

structure on a planar surface), it actually consists of two adjacent dislocation lines. Here, 

the lines have zero net Burgers vector, separating two crystal phases that have the same 

symmetry and orientation. 

With still greater expansion of C, the observed structure shifts to a new crystal; 

this lattice is also slightly oblique, but is compressed along a1 rather than stretched 

(Figure 18). This lattice corresponds to a distortion of the hexagonal lattice with (n1,n2) = 

(4,2). As the circumference is increased, the lattice compression steadily decreases until 

the crystal is once again hexagonal (Figure 18e). The rest of the plot in Figure 17 behaves 

in much the same manner as described above. 

We emphasize that the transitions that occur between Figure 18b and Figure 18d 

are sharp. In fact, at no point do the lattices in Fig. 18b and Figure 18d both appear 

simultaneously. Hence the line slip phase does not correspond to a coexistence of two 

crystals of differing orientation, but instead appears to be a distinct, stable structure. 

Indeed, we found helical defects identical to the one in Figure 18c in simulations with y-

axis boundaries separated by several hundred particle diameters, as well as in simulations 



 

47 

with annealing schedules several orders of magnitude longer than those shown here. This 

observation suggests that the line slip phase is a minimum-free-energy state that is 

stabilized by the frustration.  We re-examine this idea in the next section, where we 

develop a model to compare the energies of the line-slip and crystal phases.   

 

Morse Potentials 

We now turn to the results obtained with interaction potentials with shorter-range 

attraction. These results allow us to separate the roles of the commensurability constraint 

from those of the interaction potential assigned to the particles. Figure 19 shows the 

structures observed with the Morse potential with γd = 10.  The results are represented in 

the same (C/d, θ) plane as Figure 17.  As in the Lennard-Jones case, we find regions of 

uniform crystal that correspond, in general, to oblique distortions of the hexagonal lattice 

indexed by (n1, n2). Transitions between crystalline and line-slip structures are as sharp 

here as in the Lennard-Jones case.  
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Figure 15. Steady state configurations observed in computer simulations using the Morse 

potential with γd=10. Red/gray data points represent a line-slip phase; blue/black data 

points represent continuous uniform crystals. The large circles label the analytically 

determined vales for C0 as in Figure 15, and the gray blocks show defect-free regions as 

predicted by Eq. 19 and Eq. 21. 

 

Unlike the Lennard-Jones case, however, we find that the line-slip structure 

supplants the crystal phase over a much broader region in parameter space. The reduced 

range of existence of a uniform crystal when C < C0 might arise from the steeper 

repulsion of the Morse potential, as shown in Figure 9. Similarly, the reduced range of 

uniform crystals when C > C0 may be caused by the shorter range of attraction. We return 

to this point below in the context of our model. Also note that, for the case of C > C0, the 

defect regions branch off the islands of uniform crystals in opposite directions along the θ 
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axis. This effect is caused by the additional chirality of the line-slip seam (see Figure 

18c), which is independent of the chirality of the lattice as a whole.  

 

 

Figure 16. Steady state configurations observed in computer simulations using the Morse 

potential with γd=30. Red/gray data points represent a line-slip phase, and blue/black data 

points represent continuous uniform crystals. Here, the line-slip phase predominates. 

 

For the still shorter-range attraction, we find a continued trend toward increased 

prevalence of the line-slip structure. Figure 20 shows the observed structures for the 

Morse potential with γd = 30.  Here, the line-slip states dominate the graph almost 

entirely and the uniform crystal phase is found only within narrow regions near (C0/d, θ0). 

More precisely, the range of circumferences for which we find either a compressed or 

dilated oblique lattice has been dramatically reduced from the γd = 10 case. In order to 
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better explain this phenomenon, we now seek to develop a model that can predict where 

these transitions occur. 

 

1-Dimensional model 

We propose a simplified model that succeeds in describing the major findings of 

the simulations.  Let us first consider some C0/d for which the preferred lattice angle,  0, 

is 0° (i.e. n2 = 0 and the particles are stacked in rings around the cylinder, as in Figure 

21c). To further simplify the model, we will consider only a single one-dimensional ring 

of particles along a1 and work in the low-temperature limit where entropy is not 

dominant. If the ring’s circumference is increased beyond C0 and the particles are then 

allowed to rearrange themselves, one can imagine two possible configurations emerging: 

(a) all the particles are spread uniformly along the ring and share the extra distance, or (b) 

the particles cluster and move all of the added strain to a single pair (Fig. 21).  
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Figure 17. Explanation of the 1D model. Two plausible stable configurations occur when 

the densely packed particle ring (top) is expanded and extra space is introduced: either (a) 

the extra space is shared among all the particles equally, or (b) the extra space is focused 

into a single pair of particles and the rest remain touching. (c) A single ‘ring’ of particles 

is highlighted in red/black. (d) A single helical coil of particles is highlighted in red. 

 

Ignoring all but nearest-neighbor interactions, we can write the total energy of 

these two configurations generically for some arbitrary short-range attractive potential 

V(r); 

                                                    (Eq. 18a) 

                                       (Eq. 18b) 

where N is the number of particles in the ring, P is the perimeter of the polyhedron 

connecting the centers of the particles (defined above and in Figure 14c), and d is (as 

before) the location of the potential minima. When Euniform exceeds Edefect, each ring of 

particles on the cylinder will prefer to have a seam, and a uniform crystal lattice will no 

longer be stable. The critical P for which this transition occurs can be found by simply 

equating these two energies. 

We can extend this approach to any value of   by generalizing the ring to a 

segment of a helix that extends 2π along    (Fig. 21d). This can be done approximately by 

replacing P with P       and letting N = P0         , with P0 and    being the un-

stretched values. Using these substitutions, we equate Eqs. 18a and 18b, and rearrange 

slightly to find 

 
    

      
         

    

      
   

 

  
       

 

      
 

  

      
   ,        

                      (Eq. 19) 

where 
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    .             (Eq. 20) 

As the left side of Eq. 19 is a constant, the critical distance P can be solved 

computationally for any generic attractive potential V(r), and the circumference C can be 

subsequently approximated from P via the relation 

                .                 (Eq. 21) 

This approximation is derived using the assumption that P is a regular polygon, 

and hence it is accurate when   = 0° or 60° and when P >> d. It is also worth noting that, 

in the case of the Morse potential (Eq. 8), the critical value of C is determined by the 

parameter γd (which sets the range of the potential) in addition to (n1,n2). 

The results of these calculations are represented by the grey bars in the 

backgrounds of Figs. 18, 19, and 20. Calculated for all relevant combinations of n1 and 

n2, these bars each begin at C0 (found via Eq. 16), and terminate at the C that marks the 

expected onset of line-slip defects. A comparison with the simulation data shows good 

agreement. When C/d is expanded beyond the ideal hexagonal value (C0/d), in almost all 

cases the line-slip phases appear where Eq. 19 predicts. Additionally, much of the error in 

these predictions for low values of C/d is a product of the approximation used in Eq. 21; 

future work could improve the accuracy by instead numerically finding C from P using 

an exact trigonometric relation. When C/d is compressed below the perfect hexagonal 

value, however, the model predicts a line-slip phase for the Lennard-Jones potential, 

whereas simulations indicate that a crystal phase is stable under these conditions. This 

discrepancy is small when   is close to 0° or 60°, but becomes significant when   ≈ 30°. 

The source of the disagreement stems from a difficulty in applying our model to the type 

of transition in these regions; such a calculation requires an energetic comparison 
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between particles in the line-slip phase and particles in the compressed oblique phase, 

which are two configurations with different values of N and  . For this reason, correctly 

predicting the critical values of C that correspond to the onset of a compressed oblique 

lattice may be more straightforward using a two-dimensional model instead. 

Our model makes clear that as the range of attraction is decreased, the energy 

required to stretch the crystal lattice grows very quickly, and thus the line-slip phase is 

present within a greater percentage of the parameter space. As was stated previously, the 

extremely short-ranged γd = 30 Morse potential exists almost solely in the line-slip 

regime. We further infer that the steepness of the core repulsion in the chosen interaction 

potential governs where in parameter space the line-slip phases terminate; that is, the 

point where a compressed oblique lattice becomes favorable energetically to the line-slip 

phase. Once again, however, this transition is poorly described by our model.  
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Figure 18. Cooling of Lennard-Jones particles at C/d=6.76 (the location of which is 

indicated by a star in Figure 17) into a stable crystal. The temperature and the energy, 

computed only from pairwise interactions, are indicated in each frame.  Neighboring 

particles that are touching have been indicated with a bond. For clarity, bonds that cross 

the branch cut at ϕ=2π have not been added. As T is lowered, we find a (6,0) phase, a 

line-slip phase, and finally the steady-state (6,1) phase. 

 

Lastly, we note that the presence of crystalline and line-slip phases in parameter 

space can affect the dynamics of crystallization as the system is cooled.  As an example, 

Figure 22 shows images of one Lennard-Jones system undergoing freezing as the 

temperature is lowered. Here, the system first freezes into the (n1,n2) = (6,0) crystal with 

  = 0˚, but it is very highly stretched.  As temperature is decreased, this crystal structure 

becomes unstable and is spontaneously replaced by the line-slip phase. At still lower 

temperatures, the line-slip transitions into a lower-energy crystalline configuration with 

(n1,n2) = (6,1), as indicated in Fig. 18 with a star. This sequence of phases may be in 

accord with Ostwald’s rule of stages, which postulates that crystallization proceeds with 

multiple metastable crystalline states in order of decreasing free energy barrier.
9-11

 

 

Conclusions 

We have shown that, due to the constraints of the cylindrical geometry, at 

temperatures well below the planar-surface melting points (i.e. kBT << ϵ) an oblique 

crystal symmetry arises that is unstable on planar surfaces. We also find that a stable line-

slip phase can form spontaneously within finite ranges of the cylinder circumference C, 

and that the regions in parameter space where line-slip phases are preferred broaden as 

the range of attraction is decreased. As direct evidence of this trend, our results indicate 

that the Lennard-Jones system favors the formation of oblique crystals, whereas the 
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comparatively short ranged Morse potential with γd = 30 almost exclusively forms line-

slip structures.  

The primary features of this behavior are predicted by our straightforward one-

dimensional model with reasonable accuracy. In particular, our results suggest that a line-

slip phase can be energetically favorable for a variety of interaction potentials. It seems 

likely that more accurate analytical models of this problem could be developed, but the 

simplicity and transparency of our method allow it to be applied to other surface 

geometries and potentials.  

In its current form, this model cannot be used to predict the behavior of purely 

repulsive or electrostatic interactions in this geometry without modification. One might 

assume, given the construction of Eq. 19, that a line-slip phase might never be 

energetically favorable for a repulsive potential. However, such a potential also has no 

inherent or preferred inter-particle spacing, and thus the optimal distance between the 

spheres should depend on the area fraction of spheres covering the cylinder surface. This 

complicates the problem since both |a1| and |a2| now vary, unlike the cases reported here 

where |a2|/d ≈ 1 throughout. In the purely repulsive case, the area fraction provides a 

constraint that again reduces the problem to a single dimension if the lattice structure is 

known.  

Our results may have broad implications for understanding the way tubular 

crystals assemble in nature. In particular, it has been pointed out that many biological 

materials exhibit the type of structure described here, and therefore the same 

commensurability constraint.
3,5,12

 Because capsid proteins in helical viruses (tobacco 

mosaic virus, for example) are constrained to bind to the surface of a RNA strand, the 
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situation described here might be informative in understanding their structure. 

Microtubules also are capable of self-assembling with a seam–although in their case this 

seam is both purely longitudinal and achiral.
13

 Nevertheless, such similarities are 

tantalizing enough to warrant further study. The straightforwardness of our predictions 

also suggest a practical application of these results as a novel method for producing 

crystalline media of desired symmetry and orientation on cylindrical surfaces. 

Specifically, one should be able to tune both the structure and orientation of a developing 

crystal lattice by adjusting the ratio C/d. Such crystals might spontaneously assemble 

more readily due to the existence of the line-slip phase, through which crystals that 

nucleate in a metastable structure can reorganize into a more stable configuration.  

Finally, we note that the bending rigidity of the crystal along the cylinder axis 

may depend on the structure. Understanding how each of the different types of structures 

affect the stiffness of the overall material could be quite valuable, and will be the focus of 

study in the next chapter. 
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CHAPTER 4 

STIFFNESS OF CYLINDRICAL CRYSTALS 

 

Having demonstrated that the crystalline structure of a crystal on a cylinder is 

largely determined by the circumference C of the underlying crystal, we now seek to 

understand the mechanical properties of these different structures. We used MD 

simulations to map the way that the bending elasticity of a cylindrical crystal depends on 

the circumference, the interactions between the particles, the crystallographic angle θ, 

and the overall type of crystal lattice (i.e. hexagonal, stretched oblique, line-slip). 

Notably, we found that thin cylindrical crystals have a lower Young’s Modulus 

than large ones; this is unusual because material properties typically do not depend on the 

physical size of the object. We showed that the increase in elastic modulus is an intuitive 

consequence of the geometric arrangement of the particles in the crystal. We also provide 

evidence suggesting this phenomenon occurs in physically realized cylindrical crystals, 

such as carbon nanotubes.  

In this chapter, we first give an overview of our MD simulations, then detail the 

results for perfect hexagonal lattices (C = C0).  We then derive a simple model for the 

stiffness of a cylinder that provides excellent agreement with our simulations, and 

comment on the range for which our theory is applicable. Next, we give an overview of 

the stiffness of cylindrical crystals with oblique and line-slip lattice structures; we found 

that the stiffness of these crystals is largely determined by the same geometric factors that 

contribute to the stiffness of lattices in a hexagonal configuration. We then give a brief 

explanation of the nonlinear phenomena observed when bending a line-slip lattice. 
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Theory and simulations 

 

Calculating the stiffness of a cylinder 

We first seek to define an expression relating the stiffness (or Youngs Modulus, 

Y
(2D)

) with measurable quantities such as the shape or energy of the configuration of 

particles that can be extracted from simulations. The first step in this process is to derive 

the displacement field ui, which is a vector field used to describe the effects of 

deformation on a solid body. In our case, the displacement field vector specifies the 

coordinates of each point on the bent cylinder, [xbent, ybent, zbent], in reference to its 

original position on the unbent cylinder, [x, y, z]. Or in other words, [xbent, ybent, zbent] = 

[ux+x, uy+y, uz+z]. 

For a simple rod that has been deformed via pure bending, the components of the 

displacement field (ui) of a cylinder of radius r bent axially to a curvature of 1/R are 

     
  

 
,                (Eq. 22a) 

               
 

 
   

     

  
,                                      (Eq. 22b) 

            
 

 
 .                                           (Eq. 22c) 

where σ is Poisson’s ratio of the cylinder material. (A more approximate derivation of 

this function is contained in Landau et al.,
1
 pg 65.) Indeed, the cross sectional area of the 

cylinder –one of the only parameters which dictate the structure of the lattice– varies with 

σ.  
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We are interested only in pure bending, and not on the properties of the 

underlying rod. Also, we would prefer not to conflate the effects of bending with radial 

stretching in these experiments, purely for reasons of clarity in identifying the role of 

particle structure on the bending stiffness. We can achieve both of these goals by setting 

the Poisson ratio of the rod equal to zero, meaning the axial stress due to bending causes 

no radial strain. In addition to isolating the physical mechanism we are interested in 

studying, this assumption vastly simplifies both the problem and our analysis; it 

maintains the cylinder radius during bending, and also avoids any buckling in regions of 

the cylinder with high Gaussian curvature: the cross section of the surface remains 

perfectly circular.  

Applying continuum mechanical analysis, we next solve for the energy of an ideal 

cylindrical shell as a function of the curvature 1/R using the displacement field defined 

above (Eq. 22) and assuming σ = 0. We find that the energy per unit area at a given point 

on the bent cylinder surface, e, is 

  
 

 
      

  

    
 

 
 
 

.                        (Eq. 23) 

Integrating this result around the circumference of the cylinder, we find that the average 

total energy per unit area on the lattice is 

         
  

      
 

 

 

  

      
                 (Eq. 24) 

This expression, along with our simulation data, can be used to solve for the bending 

energy of the lattice. Finding the steady-state energy of the crystal lattice on the surface 

of a cylinder requires knowing the energy as a function of the curvature of the cylinder.  
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Thus, in our simulations, we applied a curvature 1/R to a cylindrical lattice of 

particles, and then calculated the total energy of the resulting configuration. With this 

data, we applied Eq. 24 to solve for the Young’s modulus of the material. To compute the 

total energy of the material, we sum the interaction energies of each pair of particles; 

  
 

 
                .  

Additionally, since (C/R)
4
 will be extremely small compared to (C/R)

2
 in virtually 

all of our simulations, we can essentially plot the energy vs. 1/R
2
, and the derivative of 

this plot will be proportional to the bending modulus Y
(2D)

, the quantity we care about. 

 

MD Simulations 

Using molecular dynamics (MD) simulations in LAMMPS,
2
  we consider the 

problem of spherical particles of diameter d, which are constrained to lie on the surface of 

a bent cylinder of fixed circumference C.  Here we provide a brief summary of the 

simulation protocols; details may be found in Chapter 2. The particles interact with one 

another via isotropic interactions, either the Lennard-Jones (LJ) or Morse potentials 

(Figure 9). Again, for both potentials, the energy reaches a minimum of -ϵ when r = d, so 

that d is the effective particle diameter (Eq. 7-8).  

Simulations begin at temperature T=2kB/  with particles at randomized positions 

within the 3D simulation volume, and then a large spring force was applied to the 

particles to confine them to the surface of a cylinder while allowing them to move freely 

on the surface (explained in detail in Chapter 2). The system is then cooled to T = 0.1kB/  

over a period of 10
6
 iterations, and the positions of the particles are then recorded. We 
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define the length L as the total length along the curved axis of the cylinder. For the 

simulations reported here, L ranged from 20d to 200d. 

We then deform the cylindrical rod into an arc of radius R (curvature 1/R) while 

maintaining a perfectly circular cross section without buckling. The curvature of the rod 

is set to 10
-6

 at the start of each simulation, then incremented slightly, and the particles 

are allowed to reach a new steady configuration. The steady-state particle positions are 

then recorded and the total energy (E) of the bonds is calculated.  

Using the calculated energy E and curvature 1/R, we can use Equation 24 to solve 

for the stiffness Y
(2D) 

of the cylindrical crystal in our simulation. By finding the stiffness 

for a wide variety of crystals with different interactions, circumferences, and lattice 

structures we can use this method to map out how the elasticity is determined by these 

properties. 

 

Triangulating Neighbors 

In order to analyze the 3-dimensional data generated by the simulations, it was 

useful to reduce the dimensionality of the problem by projecting our data onto a 2-

dimensional manifold. Triangulating neighbors is difficult to do on a curved 2D surface 

embedded in 3D space, but this information is quite useful for locating defects in the 

crystal and calculating configurational energies. To perform this projection, the 3D 

coordinates of the particles were projected into the coordinates represented by the surface 

of the cylinder, [x, y, z] → [rb, ϑb, zb]. These coordinates are identical to the ones used to 

calculate the force-field constraining the particles onto the cylinder outlined in Chapter 2 

(Figure 12). Because the value of rb is the same for every particle (and is equal to the 
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radius of the cylinder), it does not contain useful information and can be ignored, 

effectively reducing the dimensionality of the coordinates from 3D to 2D. The projection 

was done using the following mathematical transformation: 

b = (z
2
+(R-y)

2
)
1/2

               (Eq. 25a) 

zb = (y-R*z/b)
2
                                      (Eq. 25b) 

yb = (y-R*(1-(R-y/b))*sign(R-y),              (Eq. 25c) 

and then 

rb = (x
2
+yb

2
+zb

2
)
1/2

                          (Eq. 26a) 

zb = R*arctan(z/(R-y))                        (Eq. 26b) 

ϑb = (C/2π)*arccos(x/rb)*sign(yb) + C/2            (Eq. 26c) 

where R is the radius of curvature of the cylinder, and C is the circumference of the 

cylinder. Additionally, sign(x) is a function that returns 1 when x is positive and -1 when 

x is negative. Once projected onto the 2D manifold, neighbors were found by using a 

Delaunay triangulation. 

 

Results: Hexagonal Lattices 

We show first the energy vs. curvature of hexagonal lattices where one crystal 

lattice vector lies along the azimuthal direction of the cylinder, denoted as [n,0] 

configuration using the phylotactic indexing described in Chapter 3 (this arrangement is 

also referred to as an “armchair” configuration in nanotube-related literature). These 

lattices appear when an integer number (n) of spheres exactly fits around the 

circumference, which occurs when C = C0, or in other words when C/d = π/sin(π/n).
3
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Dependence of stiffness on C and V(r) 

Figure 23 shows the results for the case of n=5 and a Morse potential with γd = 

20. The energy E is divided by the surface area of the crystal (L×C). For small curvature, 

the bending energy increases linearly with (1/R)
2
. Moreover, we find that the bending 

energy is indistinguishable for increasing or decreasing curvature: the process is 

reversible. Hence this regime corresponds to a linear response, as expected from the fact 

that the displacements of the particles are << d, so that the interactions between the 

particles are approximately Hookean.  

 

 

Figure 19. Bending energy (Eq. 27) versus curvature for a cylinder with n=5, and a 

Morse potential with γd = 20. The slope of this plot is the stiffness of the cylinder, Y
(2D)

. 

For low curvatures, bending energy increases linearly with curvature and the stiffness is 

constant (teal region); for high curvatures the stiffness slowly decreases with increasing 

curvature (yellow region). The highlighted point is rendered on the right, and the radius 

of curvature is labeled. 

 

In the small-deformation limit of continuum elasticity theory, the elastic energy of 

a uniformly bent cylindrical shell (Equation 24) reduces to 
1
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E/CL = Y
(2D)

 [C
2
/(4πR)

2
 + O(R

-4
)],               (Eq. 27) 

where E/CL is the elastic energy per surface area of the crystal and Y
(2D)

 is the Young’s 

modulus of the 2D material. (The three-dimensional quantity is ill-defined for a 

monolayer
4
.) 

Guided by the continuum theory, we obtained Y
(2D)

 for each cylindrical crystal by 

a linear fit to obtain the slope of E/CL vs. C
2
/(4πR)

2
. In order to find the most accurate fit 

to this data, we used the following procedure. To find the best-fit slope to the linear 

region of the E/(CL) plots, we started by finding the best linear fit to the first 100 data 

points, and recorded the mean squared error in this fit. We then incrementally added more 

data points to the fit, continuing to record the new slope of the fit and the mean-squared 

error. As more data points were added, eventually data points from the nonlinear regime 

were included in the fit, and the error in each fit increased dramatically. Once the 

cumulative error in any fit exceeded 5%, the process was terminated; then, the linear fit 

that included the most number of data points without exceeding a cumulative error of 

0.01% was chosen as the best.  
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Figure 20. The 2D Young’s modulus Y
(2D)

 vs. V’’(d) in the [n,0] configuration and for 

various circumferences C, obtained from bending simulations. We also plot Y
(2D)

 versus 

C/d for the case of Morse particles with γd = 20 (inset). 

  

To improve and examine the accuracy of our data, we also used a purely 

numerical approach to determine Y
(2D)

 in this linear elastic regime: the initial particle 

positions (at zero curvature) were numerically projected onto a rod with an 

infinitesimally higher curvature, the energy E was calculated, and the process was 

repeated for larger curvature. The dashed line in Figure 23 was computed using this 

method and it agrees with the best-fit slope to the linear region of our simulation within 

5% error. Figure 24 shows the resulting Y
(2D)

 against V”(d) for several different 

interaction potentials and circumferences C (inset). For any given C, the modulus scales 

with V’’(d) as expected for small deformations. 
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Following the same procedure but starting instead with a perfect hexagonal lattice 

(removing thermal fluctuations entirely) reveals the underlying trend in the data. The 

numeric data in Figure 25 was computed using this method.     

We next seek to quantify the diameter dependence of the stiffness on the crystal. 

Figure 25 shows how the measured Y
(2D)

 varies with C/d.  For large C, Y
(2D)

 approaches 

the continuum limit of a 2D sheet, which is approximately given by        
   

 
       .

4
 

 

 

Figure 21. Y
(2D)

/V’’(d) vs. C/d for two different crystal orientations. These data were 

extracted from numerical calculations of bending. The highlighted data points correspond 

to the configurations illustrated in Figure 26, and the location of the gold star 

approximately corresponds to the lattice structure of a microtubule. 

 

Surprisingly, the data show that Y
(2D)

 decreases sharply as C/d approaches 1. We 

emphasize that this is not simply the expected reduction of bending stiffness of a cylinder 
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as its circumference is reduced; that effect is accounted for by the C
2
 scaling in Equation 

27. On the contrary, continuum elasticity generally assumes that the modulus is 

independent of sample size and shape. Evidently, the small cylinder circumference 

reduces the bending stiffness much more than predicted by continuum mechanics. The 

modulus is reduced by as much as 30% when n = 4 and remains noticeably less than the 

continuum value even when n = 20. This reduction of Y
(2D)

 is robust: we find the same 

results for particles interacting under Morse potentials with γd=[1-100] as well as the 

Lennard-Jones potential.  

Interestingly, a similar result has been found for carbon nanotubes. As indicated 

in Figure 3, single-walled carbon nanotubes have repeatedly been demonstrated to 

possess the same decrease in Young’s modulus as the diameter of the nanotubes is 

reduced. The high degree of similarity between our results in Figure 25 and the results 

found from detailed simulations of carbon nanotubes in Figure 3 suggests that the 

physical mechanism behind the softening phenomenon may be the same for both of these 

cases. Thus, forming a better understanding of our simulation data may illuminate the 

cause of the same softening behavior in nanotubes.  

 

Harmonic model for Y
(2D)

 

Since the continuum model cannot explain how Y
(2D)

 values with C, we turn to a 

model with discrete particles connected by harmonic springs of stiffness V’’(d). One can 

show that for a cylindrical crystal 

       
 

 
        

   

  
           

      ,                   (Eq. 27) 
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where N is the total number of particles in the crystal and CL is the total surface area of 

the crystal. The index i extends over all nearest neighbors of any particle in the lattice, 

with     being the unit vector between the particle and its i
th

 neighbor and    being the unit 

vector along the axis of the cylinder.  
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Figure 22. Image sequence showing the particle configuration, network of inter-particle 

bonds, and an approximate 1D ball-and-spring model of the profile of the crystal. Shown 

for two [n,0] crystals with different radii (n=3 and n=9), it illustrates that the strain on the 

inter-particle bonds is not equal to the strain along the cylinder axis. In a [n,n] 

configuration, however, the vertical component of the bonds between neighboring 

particles have no diameter dependence, and thus the axial strain is the same regardless of 

the size of the crystal. 

 

Equation 22 predicts two mechanisms for the softening of Y
(2D)

. The first 

contribution is the factor Nd
2
/CL, which accounts for the ratio of surface area of the 

discrete triangular facets defined by the inter-particle bonds and the area of the smooth 

cylindrical surface (Figure 26a,e). This ratio is 2/√3 in the large-C limit, regardless of the 

crystallographic orientation. The second mechanism for the reduction of Y
(2D)

 is a 

consequence of the geometric arrangement of the inter-particle springs in the small-C 

limit. For example, in the [n,0] lattices, the axial springs lie at an angle from the 

cylinder’s surface (Figure 26a,b, center and right-hand columns). When considering a 

fixed displacement dz along the cylinder axis with a fixed azimuthal separation between 

particles (enforced by C), the change in spring length is less than dz and the effective 

spring constant is reduced. Accounting exactly for the known particle positions in the 

[n,0] configuration, eq. 22 becomes 

       
  

 
            

 

 
    

          

         
 
   

 ,            (Eq. 28a) 

where Cn,0 = πd/sin(π/n) and n is any integer ≥ 3. This equation is shown by the blue 

curve in Figure 25. 

On the other hand, the [n,n] configurations have one lattice vector along the 

cylinder axis and the small circumference has less of an effect on Y
(2D)

. For this case, the 

exact form of Eq. 27 is 
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               (Eq. 28b) 

and Cn,n = (√3/2) πd/sin(π/2n), where n is any integer ≥ 2. This equation is shown by the 

red curve in Figure 25. For both [n,0] and [n,n] crystallographic orientations, the 

analytical result is indistinguishable from the numerical results. The stiffness of a 

cylinder with any other crystallographic orientation [n1,n2] can thus be deduced in the 

same manner. 

 

The limit of linear response 

In every cylindrical crystal that we have investigated, the energy density increases 

linearly with 1/R
2
 for a finite range, beyond which the energy increases more slowly. For 

each system, we define a crossover value of curvature radius RC, where E/L is no longer 

linear with R
-2

. The measured value of RC varies with C and with the form of the potential 

and the magnitude  . 
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Figure 23. On the left, energy density is plotted as a function of the curvature squared for 

three different systems. In each of these plots, the linear regime (R<Rc) is indicated in 

green and the nonlinear bending regime (R>Rc) is indicated in yellow; the crossover 

between these two regimes is represented by a teal line. Though the circumference and 

interaction potential of these three systems are highly dissimilar, the response to bending 

in each scales identically. On the right, configurations of three different states of the 

center left plot are highlighted; in each, a 3D representation of the bent cylinder is shown 

alongside a Delaunay map of the particles. (The gray circles indicate particles on either 

side of the seam, which are copies of a colored particle.) The energy of each neighbor 

bond is indicated by its color according to the scale bar at the bottom of the figure; bonds 

exceeding an energy of 0.1ε are shown in bold. The appearance of regions of particles 

with these highly strained bonds coincide with the crossover curvature Rc. Dislocations 

(shown as red/yellow particles) do not appear until the system has reached a much higher 

curvature. 
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Remarkably, we find that the crossover to nonlinear response occurs at a 

consistent value of [C
2
d

2
/Rc

2 
V’’(d)/ ] for every system we have simulated. Figure 27 

shows the bending-energy curves for three examples that show a cross-over when 

[C
2
d

2
/Rc

2 
V’’(d)/ ]  = 8.5. In these plots, a dashed line at this value separates the linear 

regions (green) from the nonlinear regions (yellow).   

In all of these three cases, the crossover to nonlinear response coincides with the 

appearance of local regions of highly strained bonds on the outer surface of the curved 

cylinder (where the Gaussian curvature is most positive). We define highly-strained 

bonds as those whose energy exceeds -0.1 , they are indicated in dark brown in Figure 

27. If the curvature is then reduced, these defects disappear at the same crossover Rc. 

Topological defects (dislocations) generally appear at higher curvature, especially 

for the shorter-range potentials, and therefore are not the cause of the nonlinear response. 

As long as no dislocations have appeared the structure returns to the original one when 

Rc
-1

 is returned to zero and the E/L curve is indistinguishable for increasing and 

decreasing curvatures. Hence, the cross-over to nonlinear behavior is apparently still 

within the regime of elastic response.  
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Figure 24. The curvature associated with the onset of nonlinear response, Rc, varies with 

the stiffness of the interaction potential, the strength of the interaction and the 

temperature of the simulation, the crystallographic orientation of the lattice, the diameter 

of the particles, and the size of the cylinder. 

 

For a more comprehensive study of the crossover to nonlinear behavior, we 

defined the curvature at which we see a cross-over into nonlinear response, Rc, as the 

smallest curvature for which the simulation data deviates from the linear fit by more than 

0.5%. Figure 28 shows the scaling of Rc when we vary either C, the range (V’’(d)) or 

magnitude ( ) of the potential, or the lattice orientation. Although the numerical value of 

[C
2
d

2
/Rc

2 
V’’(d)/ ] = 8.5 is not understood, the scaling exponents are apparent from the 

geometry.   

We next conjecture on the underlying cause of the nonlinear softening behavior. 

To do so, we first performed MD bending simulations on a [n,0] cylinder where the 

interactions between particles were perfectly harmonic; particles interacted only with 

their nearest-neighbors, and behaved as though they were bound by Hookean springs; 
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.                          (Eq. 30) 

This system is essentially identical to the ball-and-spring model used to calculate the 

analytical form of Y
(2D)

. Interestingly, we found that although the stiffness of this 

cylinder matched the prediction from Equation 29a in the low-curvature limit, it did not 

exhibit any nonlinear softening behavior at higher curvatures. In other words, there was 

no crossover curvature Rc, and Y
(2D)

 was constant throughout the simulation. This result 

is not entirely surprising, given that an identical model was used to derive our expression 

for Y
(2D)

 in Equation 28; however, its complete lack of nonlinear behavior does imply 

that the shape of the interaction potential plays a key role in determining the crossover 

curvature Rc.  

In particular, a key difference between harmonic interactions and the interaction 

potentials used in our simulations (Figure 9) is an infinite range, since Equation 30 has a 

positive curvature V”(r) > 0 for all r. Conversely, Equations 7 and 8 both possess an 

inflection point at V”(rc) = 0; when r < rc, V(r) curves upwards and is similar in shape to 

the harmonic potential, but when r > rc, V(r) has negative curvature and approaches an 

asymptote of 0 rather than increasing infinitely. We propose that the appearance of 

localized strain (and, by extension, the decrease in Y
(2D)

 at Rc) occurs when the average 

separation distance between particles in the lattice is greater than rc.  

 

Results: Oblique lattices and line-slip 

We now examine the stiffness of cylindrical crystals with different types of lattice 

structures. Because of the commensurability constraint imposed by the cylindrical 
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geometry, the ultimate structure of the lattice is highly dependent on both C and the form 

of V(r) (Figure 18). As explained in Chapter 3, a perfect hexagonal lattice is only 

achievable for discrete C; between these values exists a continuum of reduced-symmetry 

lattices, where the azimuthal crystal axis is uniformly lengthened or shortened in order to 

allow particles to fit evenly along the non-optimal circumference. Such a structure is not 

an unlikely configuration to find in nature— for example, due to the chemistry of C-C 

bonds in a carbon nanotube, the azimuthal strain in an unbent nanotube depends on its 

diameter.
5
  Therefore, to build a more complete understanding of the stiffness of 

cylinders, we now seek to understand how the shape and structure of these lattices impact 

the stiffness of the overall colloidal crystal.  

 

Linear elastic regime 

Figure 29a shows the free energy of each of these types of lattices as a function of 

bending curvature squared. This data is representative of the stiffness of oblique and line-

slip lattices regardless of the other parameters of the system. For different V(r) or C, the 

found that the stiffness curve of a particular lattice structure varies in an identical manner 

to the trends reported in Figure 24 and Figure 25; the important parameter is the lattice 

spacing of the crystal along the azimuthal (stretched) axis. 
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Figure 25. (A) Bending energy versus curvature for 4 different types of lattice structures, 

using a Morse potential with ϒd = 20. (B) Bending stiffness Y
(2D)

 as a function of the 

cylinder circumference. The different types of structures are colored identically to the 

curves in part A. (C) Crossover curvature Rc as a function of the cylinder circumference. 

 

Figure 29b shows the modulus Y
(2D)

 of the material as a function of C, with points 

being colored in the same manner as in Figure 29a.  Starting with C < C0, the particles 

form an oblique lattice that is compressed in the azimuthal direction.  With increasing C, 

the lattice approaches the perfect hexagonal case and Y
(2D)

 decreases. When the lattice 

becomes dilated in the azimuthal direction and C > C0, the lattice continues to soften in a 

smooth trend. We then find a discontinuous increase in Y
(2D) 

when the particles form a 
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line-slip structure. Here Y
(2D)

 is approximately independent of C, which we attribute to 

the fact that expanding the rod changes only the packing within the helical defect, not the 

structure as a whole.   

The softening of Y
(2D)

 with fine changes in C is markedly different from the trend 

reported in Figure 25; the difference is because Figure 25 refers only to hexagonal lattices 

while Figure 29 shows the effect of distortions of the hexagonal lattice. The cause of 

these differences in Y
(2D)

 originates from the structure of the material itself; the 

expression for the stiffness does not contain the C
2
 dependence of the bending energy (as 

expected from continuum elasticity), and therefore exposes the effect due to the altered 

structure of the lattice.  

To better understand this behavior, we returned to our harmonic ball-and-spring 

model for Y
(2D)

 from the previous section (Equation 28). Once again, because Y
(2D)

 is a 

constant as long as R < Rc, we can find Y
(2D)

 by examining the region where the 

dimensionless curvature (C/R) is infinitesimally small; in this regime, pure bending is 

approximately equivalent to axisymmetric stretching, making our analysis much simpler.  

According to Equation 28, the most significant contribution to Y
(2D)

 is the axial 

component of the bonds between neighboring particles. As C/d is incrementally 

increased, the orientation of these bonds change slightly as the spacing of the lattice 

structure shifts to accommodate the increased surface area. We modified Equation X24 to 

account for these shifts in a [n,0] lattice, and found 

       
  

 
            

 

 
     

          

  
  

  

        
   

 

 
   

 ,           (Eq. 31) 

where Δ is the change in the circumference, such that C = C0+Δ. A plot of this equation is 

below in Figure 30a. Hence, the softening effect from the oblique lattice can be explained 



 

79 

as a product of the same basic feature as the small-C0 softening in Figure 25. Note, 

however, that the analytic result in Figure 30a is difficult to directly compare to the MD 

data in Figure 29b; Equation 31 essentially represents a zero-temperature limit, since it 

assumes the particles occupy a perfect lattice with perfect azimuthal symmetry.  

 

 

Figure 26. (A) The stiffness of oblique lattices around [5,0], over the range of 

circumferences found from Equation 19. The location of C0 is indicated with a star. (B) 

Plot of Y
(2D)

 for [n,0] lattice like Figure 25 (blue curve), but with the stiffness of oblique 

lattices at each circumference added (purple lines). 

 

Considering that the range of each type of lattice was mapped out in the previous 

chapter (Figures 17-20), this provides a nearly complete picture of the linear elastic 

regime for all types of cylinders—which we calculated numerically for a [n,0] lattice and 

plotted in Figure 30b. These same calculations can be made for an arbitrary [n1,n2] lattice, 

and in principle the stiffness of virtually any allowable crystal lattice can be calculated. 

Applying the same line of reasoning to the line-slip lattice, our bond-angle 

approach suggests that the stiffness should be essentially independent of the 

circumference, supporting our findings from Figure 29b. This is because the line-slip 
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phase resembles a perfect hexagonal lattice everywhere but the line-slip structure 

(regardless of C), and thus slightly increasing or decreasing the circumference does not 

appreciably change the average angles between neighboring bonds in the lattice. Note, 

however, that an exact analytical calculation of line-slip phases is likely to be 

prohibitively complex, since these lattices do not have azimuthal symmetry.  

Additionally, the line-slip phase exhibits an interesting phenomenon when it is bent 

which cannot be explained using our bond-angle analysis, which will be explained in the 

following section. 

 

Line-slip migration 

In the line-slip phase, the action at the crossover regime is particularly interesting, 

as the line-slip defect apparently interacts with the curvature of the bent rod; Figure 31 

shows how the line slip structure is affected by bending in greater detail. In this figure, 

since the bonds between neighbors within the line-slip structure are necessarily stressed, 

the location of the structure is quite obvious. 
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Figure 27. Migration of the line-slip structure towards the inner bend of the cylinder. 

 

Figure 31b shows the configuration near the end of the linear elastic region, and 

Figure 31c shows the configuration near the beginning of the nonlinear elastic region. 

Once the applied curvature reaches a threshold value, the line-slip structure unwinds, 

forming a seam along the inner bend of the cylinder where the Gaussian curvature is the 

lowest. This transition decreases the bending elasticity of the cylinder, and occurs 

precisely at the crossover curvature that marks the end of the linear elastic region.  As the 

curvature of the rod is increased, the seam tightens along the inner bend of the cylinder, 

and the ‘wavelength’ of the triangular pattern produced by the line-slip phase decreases. 

These structures are quite robust, repeating without error along even extremely long 

cylinders. This trend strongly indicates that the line-slip structure interacts with the 

Gaussian curvature of the curved rod. 
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Figure 28. Line-slip migration on an extremely long cylinder. For clarity, the Delaunay 

map of the particles has not been added, and instead particles with azimuthally stressed 

bonds (i.e. particles included in the line-slip) have been colored red. 

 

Conclusions 

We have examined the relationship between the structure of a cylindrical crystal 

and its stiffness, Y
(2D)

, and shown that this value is directly related to the geometric 

arrangement of  particles in the constituent lattice.  

We find that the relationship between Y
(2D)

 and the circumference of the cylinder 

(Figure 25) directly parallels previous findings for the diameter-dependent stiffness of 

carbon nanotubes (Figure 3). Though formally the lattice of a carbon nanotube is a 

honeycomb configuration rather than hexagonal, the geometric arrangement of the bonds 

between neighboring particles in the lattice is identical, and the observed trend is the 

same. Though the source of this behavior has not been directly referenced in current 
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literature,
5-11

  it seems likely that the physical origin of this phenomenon has a similar (if 

not identical) geometric explanation. 

We next compare our results with the structure of a eukaryotic microtubule 

(Figure 2a). Formally, in terms of its lattice vectors, a microtubule has [n1, n2] = [13, 3] 

structure,
12

  which is very close to an [n,0] arrangement (similar to Figure 26b). However, 

the structure of a microtubule lattice is not perfectly hexagonal, and also contains an 

achiral seam spanning the length of the tubule. Since each dimer is oriented parallel with 

the axis of the tubule, the lattice structure is ultimately much closer to a [n,n] lattice 

(similar to Figure 26c); for context, this approximate structure is marked on Figure 25 

with a gold star. This observation is actually quite interesting, since its configuration 

appears to be minimally affected by the softening effects outlined in this paper despite 

having a relatively small value for C/d. (Though it does not actually optimally minimize 

the ratio between Y
(2D)

 and C/d.)  

Additionally, although the stiffness of the smaller bacterial microtubules (C/d ≈ 5) 

has not yet been measured, the data in this work suggests that these tubules should have a 

Young’s modulus that is roughly 7% lower than the modulus of eukaryotic microtubules. 

Whether or not this difference in stiffness is biologically relevant is unclear at this point. 

We next use our findings above to predict the threshold bending radius, Rc, for a 

microtubule. Since our above analysis suggests that Rc = [C
2
d

2
/8.5

 
V’’(d)/ ]

1/2
, and C ≈ 

25 nm for a microtubule, we can compute Rc using the interaction potential V(r) between 

individual tubulin dimers in the lattice. Several sources model this interaction as a 

Hookean spring potential (equivalent to the one used in Equation 24),
13,14

  in which case 

V’’(d)/ϵ = 1, and Rc = 42 nm—a curvature so small that the tubule would surely buckle 
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before it could be bent so tightly. Other sources model these interactions as non-analytic 

protein-protein interactions,
15-17

  in which case V’’(d)/ϵ is very difficult to calculate. For 

the sake of comparison, if we imagine that V’’(d)/ϵ ≈ 300 (a value that roughly 

corresponds to the stiffest potential we investigated in Chapter 3, a Morse potential with 

ϒd = 36, as in Figure 20), then even still Rc = 0.75 µm. 

Still, it may be possible to estimate reasonable upper bounds for Rc using the 

microtubule persistence length, which is well-known experimentally and directly related 

to Young’s modulus, Y. The persistence length of a polymer is defined as the critical 

length at which the energy of thermal fluctuations match the bending energy of the 

material; for a microtubule this length is roughly 6 mm.
18,19

  Thus we can set E = kBT in 

Eq. 27 when the microtubule length L = 6 mm, the radius of curvature is approximately R 

≈ 5 mm, and its circumference is C = 25 nm, in order to find a rough approximation of 

Y
(2D)

. Additionally, our results in Figure 25 suggest that the 2D Young’s modulus for a 

microtubule is very close to the limiting value of                     , and thus we 

find that V”(d) is roughly equal to 300 J/m
2
. From the scaling phenomenon illustrated in 

Figure 28, we estimate that the critical curvature where we expect nonlinear E/L scaling 

for a microtubule is about 20 μm. Notably, this value is an order of magnitude larger than 

the average radius of curvature of microtubule-loops observed by L. Liu et al.
20
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CHAPTER 5 

VESICLE PREPARATION AND ANALYSIS TECHNIQUES 

 

We now change the focus of this document to our work examining the effects of 

the adhesion of nanoparticles onto lipid bilayer vesicles. In this chapter, several methods 

for producing vesicles of are discussed in detail. This includes the electroformation 

method, which produces vesicles roughly 100 μm in diameter; the extrusion method, 

which produces vesicles roughly 100 nm in diameter; and the gentle hydration method, 

which produces a very high yield of vesicles. Additionally, methods for analyzing 

samples used throughout these experiments are detailed. 

 

Vesicle Preparation 

We chose lipids with unsaturated tails so that they remained in the liquid-

disordered phase, and with different charges on the polar groups so that the average 

charge density could be tuned by composition.  The majority lipid used in these 

experiments were 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), which has a 

nominally zwitterionic head group. However, measurements by Needham and co-workers 

showed that DOPC vesicles are slightly negative in charge (zeta potential –9 mV in 0.1 

mM NaCl
1
), which is consistent with the nanoparticle-binding results reported in this 

thesis. To add a controlled amount of negative charge, we used 1,2-dioleoyl-sn-glycero-

3-phospho-L-serine (DOPS), which has an anionic head group. Both types of lipid were 

purchased from Avanti Polar Lipids pre-dissolved in chloroform in ampoules, which 

were then diluted and stored under nitrogen in a -20º freezer for later use. Some 
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experiments used lipids derived from soy lecithin powder (Phospholipon 85G), which 

was ordered from the American Lecithin Company. These lipids have a 

phosphatidylcholine (PC) head group, but the fatty acid chains vary from one lipid to 

another. 

 

Electroformation 

This method produces giant unilamellar vesicles (GUVs) around 50-200 μm in 

diameter. This technique was first described by Angelova et al.,
2
  and later adapted and 

studied in great detail by Herold et al.
3
  First, glass microscope slides coated in indium tin 

oxide (ITO, from Delta Technologies, Part # CB-50IN-S111) are washed completely with 

acetone using a Kimwipe. Then, conductive copper tape (from 3M, sold by SPI, Part # 

5012-AB) is placed along one edge of the conductive glass.  

Next, the lipids being used to form the liposomes are mixed together in a small 

glass test tube. Each type of lipid being used is carefully added together in the vial; this 

mixture is then diluted with chloroform such that the total volume of liquid is around 50 

μl. The vial is then mixed very thoroughly to ensure homogeneity of the resulting 

vesicles. Using a glass syringe, 25 μl of lipid solution is quickly and evenly spread out 

onto the conductive side of each glass slide. These slides are then placed under vacuum 

for at least two hours to remove all chloroform solvent from the ITO glass, leaving only 

lipids.  

Next, a non-ionic solution must be prepared as a medium for electroformation of 

the liposomes. The experiments detailed in this document use a 175 mOsm sucrose 

solution and a 180 mM glucose solution. These concentrations were found to reliably 
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produce high-quality vesicles, but the relative concentration of these two solutions can be 

adjusted to tailor the osmotic pressure of the vesicles formed by this method. 

Once the ITO glass slides have finished drying in the vacuum chamber, they can 

be removed. A layer of vacuum grease is applied to both sides of a Teflon spacer 

designed to fit between two ITO glass slides (custom made). This Teflon spacer has two 

holes opposite one another, designed to fit a 22 gauge needle tip. The ITO slides are 

pressed on opposite sides of the grease-lined Teflon spacer, with the lipid-covered sides 

of the ITO slides facing inwards. Binder clips are then placed around the slides to secure 

the cell. Using a 22 gauge syringe, 2 ml of 175 mOsm sucrose solution should be used to 

completely fill the interior of the cell with liquid, leaving no bubbles. Finally, a small bit 

of vacuum grease is then used to seal the 22 gauge holes in the Teflon spacer (Figure 33). 

 

 

Figure 29. ITO glass slides with Teflon spacer, in completed configuration forming the 

electroformation cell. 
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Throughout this procedure, care should be taken to minimize exposure of the 

dried lipids on the ITO glass slide with air, in order to avoid oxidation of the lipids and 

ensure the highest quality of vesicles. 

Once the cell has been sealed, it is placed in a 30-40ºC oven. Inside the oven, the 

copper adhesive should be used to connect the cell to a function generator using alligator 

clips; the function generator should be set at 2.4V peak-to-peak voltage, with a sine-wave 

oscillation at 10Hz. Vesicles are grown in solution in the cell over the course of two 

hours, at which point the cell must be removed from the oven. (Further time in the oven 

reduces the quality of vesicles.)  The solution is then removed from the cell using a glass 

syringe, and the total volume of extracted liquid in the syringe is marked with sharpie 

once everything has been removed. The vesicle solution is then transferred to a glass vial. 

To improve the visibility of the GUVs, make them heavy enough to sink to the 

bottom of the vial, and also to adjust the osmotic pressure (which is a desirable feature in 

our experiments, since the osmotic pressure affects nanoparticle binding), a 180 mOsm 

glucose solution is added to the sucrose vesicle solution extracted from the cell with a 1:1 

ratio. This is done by filling the syringe to the point marked by sharpie in the previous 

step. The vesicles will remain stable for about a week, after which point more should be 

produced. 

Finally, the ITO glass slides are cleaned by sonicating them in acetone for ten 

minutes, and then rinsing them with de-ionized H2O.  
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Extrusion 

This method produces large unilamellar vesicles (LUVs), of size 10-50 nm in 

diameter.
4
  

First, a 25mL round-bottom flask should be rinsed with acetone and then quickly 

dried. Next, the lipids being used to form the liposomes are mixed together in chloroform 

solution inside the flask. Each type of lipid is carefully added to the flask, and then is 

diluted with chloroform such that the total volume of liquid is around 100 L. The liquid 

in the flask is then mixed very thoroughly to ensure homogeneity of the resulting 

vesicles. Using a nitrogen tank, nitrogen gas is blown into the flask to evenly dry off the 

chloroform, while the flask is being gently turned by hand. The lipids should form an 

even film on the bottom of the flask. The flask is then placed under vacuum for at least 

two hours to ensure the complete removal of all the chloroform solvent. 

After removal from vacuum, 1mL of 200 mOsm glucose solution is added to the 

flask, and the flask is then vortexed until the liquid appears milky white. This process 

forms a large quantity of multi-lamellar vesicles (MLVs), which can be forced through an 

extremely fine mesh filter to create unilamellar vesicles; the spacing of the mesh in the 

filter being used will determine the average diameter of the vesicles.  

An extruder assembly (Avanti Polar Lipids) is prepared, with a polycarbonate 

membrane with 10 nm pores. The membrane is then placed between four filter supports 

(with two filters on each side), and two 1 mL syringes (one containing the MLVs) are 

attached opposite ends of the extruder assembly. The MLV suspension is passed back and 

forth through the membrane at least 15 times, at which point the liquid contains only 
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LUVs in suspension, and ought to look significantly less opaque than the initial MLV 

suspension. 

The LUVs should then be placed in a glass vial, and kept in a 40º oven for 24 

hours. Once removed, the LUVs will remain stable for up to two weeks. The size should 

be checked by dynamic light scattering.  The procedure above generally results in LUVs 

with a diameter of 105 nm.
5
 

 

Gentle Hydration 

This method can be used to make very large quantities of GUVs using the 

lecithin-derived PC lipids, and was adapted from the methods described by Rodriguez et 

al.
6
 First, 100 μL of PC lipid solution should be added into to a test tube. Then nitrogen 

gas is blown into the tube to evenly dry off the chloroform, while the tube is being gently 

turned by hand. The lipids should form an even film on the bottom of the tube. This 

entire process can then be repeated for multiple test tubes in order to increase the 

production of GUVs as needed. 

The test tubes are then placed under vacuum for at least two hours to ensure the 

complete removal of all the chloroform solvent. Afterwards, 5 mL of 175 mOsm sucrose 

solution is then added to each individual test tube. These test tubes are then placed into a 

35º oven for at least 24 hours. Make sure that the oven is sealed to avoid excessive 

evaporation. 

Afterwards, when the tubes are removed, each one should contain a cloudy white 

formation suspended in the liquid (this is the vesicle suspension). The cloudy formation 

should be very gently removed from each test tube and deposited into a glass vial. Next, a 
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180 mOsm glucose solution is added to the extracted sucrose vesicle solution with a 1:1 

ratio. The lecithin-derived GUVs should remain stable for about 4 days. 

 

Vesicle Analysis Techniques 

Throughout all of our experiments, the vesicles described above were exposed to 

cationic nanoparticles made by YiWei Lee and Li-Sheng Wang in Vincent Rotello’s 

group. These nanoparticles have a 2 nm-diameter gold core, and are coated with cationic 

ligands. The ligands consist of a tetraethylene glycol linker with a cationic tetramethyl 

amine group; we refer to these ligands as TTMA for shorthand (Figure 34). The overall 

diameter of each nanoparticle is 7nm, and the stock nanoparticle solution was 10 mM of 

nanoparticles suspended in water. Several different specialized techniques were used to 

analyze the vesicle-nanoparticle complexes, and are detailed in this section. 
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Figure 30. Illustration of the cationic Au-TTMA nanoparticles which will be used 

throughout the experiments in this chapter and the next. (A) An electron micrograph 

illustrating the size and uniformity of the nanoparticles. Only the gold cores of the 

nanoparticles are visible. Image taken by YiWei Lee. (B) A schematic of an individual 

nanoparticle, including an explicit illustration of the TTMA ligand. 

 

 

LUV Sedimentation 

LUVs with bound nanoparticles are both large and heavy, and easily sediment 

under centrifugation. First, a few microliters of 10 mM Au-TTMA nanoparticle stock are 

suspended in 200 mOsm glucose solution, then vortexed for 1 minute and sonicated for 

3-5 minutes.  Then, 15 µl of this stock is carefully added to 35 µl of LUVs suspended in 

200 mOsm glucose solution, and then very gently agitated for at least two hours to ensure 

the nanoparticles have sufficiently bound to the LUVs and the system has equilibrated. 

Each sample is then centrifuged using a Labofuge 400 lab centrifuge (Heraeus 

Instruments) at 8000 RPM for 60 minutes. 

After centrifugation, each sample contains a dense pellet of nanoparticle-laden 

LUVs. From this, 48 µL is carefully extracted (i.e. the supernatant) from each sample 

with a pipette and set aside separately. 6µL of de-ionized H2O is added to the remaining 2 

µL of solution with each pellet, and then each sample is sonicated for 5 minutes. The 

extracted supernatants are then dried in an oven until no liquid remains. Then, 8 µL of 

de-ionized H2O is added to each one, and sonicated for 5 minutes. The concentration of 

nanoparticles in both the supernatant and the pellet can then be measured separately using 

a spectrometer. 
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UV-Vis Spectrometry 

To measure nanoparticle concentration, a spectrometer was used (NanoVue UV-

Vis Spectrometer, GM Healthcare). To read the absorbance spectrum of a sample, 2 μL 

of the sample is inserted into the device, and the resulting spectrum is saved to a 

computer via USB connection. This data can then be analyzed using MATLAB. In our 

case, we were interested specifically in algorithmically extracting the nanoparticle 

concentration from our absorbance data. 

To extract nanoparticle concentration quantitatively, we first needed to measure 

individual absorbance spectra for the two primary species that comprised the samples in 

our measurements: pure nanoparticles, and hydrated lipids in a 180 mOsm glucose 

solution. To do so, we measured separate spectra for pure nanoparticle stock (10 mM Au-

TTMA nanoparticles in deionized H2O), and for rehydrated DOPC lipids in deionized 

H2O (the same MLV suspension that is created before extruding LUVs). 
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Figure 31. (A) Spectra for pure nanoparticles in water. Specifically, this data was taken 

from 2 μL of 10 mM Au-TTMA nanoparticles. (B) Spectra for hydrated and vortexed re-

suspended lipid in deionized H2O. The concentration of lipid in this sample is not critical; 

it is only important that these two signals can easily be distinguished. 

 

The signal from the gold nanoparticles produces a characteristic ‘hump’ shape 

near 550 nm corresponding to the surface Plasmon resonance,
7
 as evident in Figure 35a. 

This signal is distinguishable from the power-law decay comprising the signal from the 

lipids, corresponding to Rayleigh scattering and evident in Figure 35b. In principle, any 

sample we measure ought to contain a linear combination of the signals from these two 

characteristic sources. Thus, we can fit to the spectra of our samples by finding the 

optimal linear combination of these two source signals that best matches our measured 

sample spectra. What’s more, since the intensity of signal from the nanoparticles directly 

corresponds to the concentration, the amplitude of the nanoparticle component of this 

best fit can be used to calculate the concentration of nanoparticles in the sample. 

To verify the accuracy of this analysis method, we prepared a control sample 

containing both nanoparticles and lipids, in order to test whether or not our algorithm 

could correctly recover the concentration of nanoparticles in the sample. To make this 

sample, 1 μL of 10 mM nanoparticle stock was added to 4 μL of re-hydrated DOPC lipid, 

giving us a total nanoparticle concentration of 2 mM. This sample was vortexed for 1 

minute, sonicated for 2 minutes, and then 2 μL was recorded using the spectrometer. The 

absorbance spectrum of the sample was then analyzed using the algorithm described 

above, and the results are shown below in Figure 36. 
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Figure 32. Spectra taken for a control sample with a total of 2 mM of nanoparticles and 

an unknown concentration of lipids. On the left is the initial signal along with the best fit 

line, on the right are the individual decomposed components of the sample spectra. Our 

fitting algorithm determined the nanoparticle concentration of the sample to be 1.91 ± 

0.06 mM. 

  

The fit matched our spectral data very well. We found that the amplitude of the 

nanoparticle component of the spectral fit was 0.19127 times weaker than the source 

nanoparticle spectrum measured in Figure 35a; since the concentration of that sample was 

10 mM, and since we expect the spectral intensity of the nanoparticles to scale linearly 

with the concentration, we find that the nanoparticle concentration of this sample must 

also be 0.19127 times 10 mM, or 1.9127 mM. This measured value is outstandingly close 

to the actual nanoparticle concentration of 2 mM. 

Finally, it is useful also to establish the minimum concentration of nanoparticles 

in solution that can be accurately detected using our algorithm. To directly test this, we 

produced several samples containing nanoparticles diluted in deionized water to various 
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concentrations, ranging from 10 mM to 50 μM. We then ran each of these samples 

through the spectrometer, extracted the nanoparticle concentrations using our detection 

algorithm, and then compared these values with the actual concentrations of our samples. 

These results are shown below in Figure 37, and they indicate that our algorithm cannot 

accurately determine (or that the spectrometer is not sufficiently sensitive to) the 

concentration of any sample containing less than about 200 μM. 

 

 

Figure 33. A plot of the measured concentration of a sample of 7nm Au-TTMA 

nanoparticles versus the actual concentration. Below a concentration of about 200 μM, 

the nanoparticles produce too weak of a spectral signature to be detected using this 

method. 
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CHAPTER 6 

NANOPARTICLE BINDING ON GUVS: FROM VESICLE GELS TO TOTAL 

VESICLE DISRUPTION 

 

This chapter reports on the development of a well-defined lipid membrane and 

nanoparticle system that allows for tuning the interaction strength between the two. We 

use this to study how the interaction strength between a bilayer membrane and a solid 

object (in this case a functionalized gold nanosphere) can affect the shape of the 

membrane. In doing so, we hope to learn how to guide the assembly of novel functional 

materials. 

We exposed giant lipid bilayer vesicles (GUVs, 50-100μm) to 7nm cationic Au-

TTMA nanoparticles and observed the results. The adhesion strength of the nanoparticles 

to the vesicles was controlled by varying the ratio of the two lipid species composing 

them: zwitterionic DOPC and anionic DOPS. When the mole fraction of DOPS exceeded 

4%, the membrane was highly disrupted by the nanoparticles and the vesicles were 

destroyed. When the mole fraction of DOPS was 4% or less, the nanoparticles caused the 

vesicles to adhere to one another and form a rigid liposome gel. These two behaviors can 

be explained by a transition from a partial wrapping of the nanoparticles to their complete 

envelopment by the membrane when the DOPS content exceeds roughly 4.5%. By 

contrast, when polymers bound to the vesicle, we found adhesion and gel formation, and 

not vesicle disruption, for 0-10% DOPS, showing that the rigid shape of the particles is 

necessary for the membrane disruption. These findings could be used to create cargo-

carrying liposomes with the ability to rupture on trigger, or to engineer new solid, semi-

permeable materials that can encapsulate cargo.  
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Methods and materials 

In these experiments, DOPC GUVs were prepared using the electroformation 

technique described in Chapter 6. In order to adjust the adhesion energy between the 

cationic nanoparticles and the zwitterionic membrane surface, several sets of vesicles 

were prepared; these samples ranged from 100% mole fraction DOPC with 0% DOPS 

(0.5mg DOPC), to 85% mole fraction DOPC with 15% mole fraction DOPS (0.425mg 

DOPC with 0.075mg DOPS. All GUVs were formed in a 175 mOsm sucrose solution and 

then diluted with 180 mOsm glucose solution to a 1:1 volume ratio. During these 

experiments, the vesicles were exposed to 7 nm Au-TTMA cationic nanoparticles; these 

same nanoparticles are described in greater detail in Chapter 7 (Figure 34).  

 

Sample Preparation 

First, nanoparticles must be diluted in the same solution as the GUVs. To 

accomplish this, 2 μL of 7-nm Au-TTMA nanoparticles (10 mM nanoparticles in H2O) 

were diluted with 10 μL of 175 mOsm sucrose and 10 μL of 180 mOsm glucose. This 

serves two purposes; first, it dilutes the stock concentration of nanoparticles to the desired 

concentration, and second, it adjusts the osmolarity of the nanoparticle solution to 

approximately match the osmolarity of the GUV solution, and avoids rupturing the GUVs 

on contact due to osmotic shock. This stock sugar/nanoparticle solution was vortexed at 

high speed for 2 minutes to ensure an even mixing of all species, then sonicated for 90 

seconds to break apart nanoparticle aggregates. 
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Because we would like to examine the effects of nanoparticle adsorption onto the 

membrane while the adhesion is actually taking place, it is necessary to mix nanoparticles 

with the GUVs and then examine the mixture under a microscope as they mix. To this 

end, we first add GUVs into a long, narrow perfusion chamber (Grace Bio Labs), place 

the chamber on the microscope, and wait a few minutes to allow the GUVs to settle onto 

the coverslip. Then, we add 5 μL of the stock nanoparticle solution described above into 

one end of the perfusion chamber (Figure 38). 

 

 

Figure 34. Top-down schematic of GUV sample chamber setup. Nanoparticles are added 

from the right, and slowly diffuse towards the left into the sample. This slows the 

addition of nanoparticles to aid in imaging adhesion events. 

 

This method limits the rate of diffusion of the nanoparticles into the sample of 

GUVs, making it easier to gather information on the effects of the adhesion process. As 

the nanoparticles diffuse from one end of the sample chamber to the other, it creates a 

visible ‘front’ of adhesion events that can be tracked across the sample with relative ease. 

Focusing the microscope a few millimeters to the left of where the nanoparticles were 
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added into solution, it typically took about 10 minutes before the effects of the 

nanoparticles would become apparent.  

 

Microscopy of GUVs 

All samples were imaged on a Zeiss Axiovert 200 microscope using a Zeiss 63× 

Plan Neofluar oil-immersion objective. Images were recorded digitally using a CoolSnap 

HQ2 CCD camera (Photometrics Scientific), which has a linear response to intensity. In 

nearly all cases, GUVs were imaged using bright field techniques. However, dark field 

microscopy was employed to verify that the cationic Au-TTMA nanoparticles could 

properly adhere to the surface of the vesicles (Figure 39). This technique was also used to 

examine specific nanoparticle adhesion sites during some experiments (described in a 

later section of this chapter). With dark field microscopy, only the light reflected from the 

sample is imaged on the camera. Using this technique, the highly reflective gold-core 

nanoparticles appear brightly against an otherwise dark background, so that they appear 

with greater contrast. 
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Figure 35. Vesicles imaged using dark field microscopy. On the left is an image of 

vesicles with no nanoparticles in solution; they appear only very faintly. On the right are 

vesicles that have nanoparticles added in solution. The brightness of the surface of the 

GUVs implies that the gold nanoparticles have adhered to the vesicles. 

 

Overview of results 

The head group of the DOPS lipid is cationic, and it therefore binds more strongly 

to the cationic nanoparticles than does the zwitterionic DOPC (even though DOPC is 

slightly negative in charge
1
). By adjusting the DOPS content of the vesicles, we can 

change the average surface charge of the GUVs, and adjust the adhesion energy between 

the particles and the lipid bilayer. Consequently, we also adjust the shape of the 

deformation made by the nanoparticles on the membrane, changing how the adsorbed 

particles interact with each other and, by extension, how they reshape the membrane 

surface.
2-4

 

To examine this effect systematically, several batches of GUVs were prepared 

with an incrementally increasing mole fraction of DOPS (between 0% and 15%). 

Identical concentrations of nanoparticles were added to samples from each of these 

batches of GUVs, and the effects were documented. Strikingly, only two different types 

of behaviors were observed, separated by a sharp crossover near an average DOPS 

content of 4.5%. (Figure 40) 
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Figure 36. Each image shows the steady-state conformation taken by the vesicles after 

the nanoparticles have adsorbed to their surface. When the DOPS content of the vesicles 

≤ 4%, the vesicles stick together, forming a gel structure resembling soap foam. When 

the DOPS content > 4%, all of the vesicles are simply destroyed. 

 

Apparently, when the DOPS content is less than or equal to 4%, the vesicles 

adhere to one another. This adhesion leads to the formation of a cohesive gel network of 

vesicles; the overall appearance of the vesicle-gel is visually similar to a dry soap foam 

(where the air in the foam is replaced by water in the vesicle gel). The unique, cell-like 

structure allows it to fully encapsulate a large volume of liquid within a series of robust 

interior partitions, making it a potentially useful delivery vehicle for topical drugs, dyes, 

or other substances. Conversely, when the DOPS content is greater than 4%, the 

adsorption of the nanoparticles causes the vesicles to be completely disrupted. Such 

behavior potentially has use in controlled-release applications, and could also serve as a 



 

105 

useful experimental model for cell lysis. The specific behaviors observed in these two 

different regimes are robust and highly repeatable, and are far outside the realm of 

normal behavior for ordinary GUVs.  

Before we examine the phenomenology of these two regimes in greater detail, we 

conjecture on the physical mechanism underlying this behavior. Motivated by the 

findings of Deserno et al.,
5,6

 we speculate that the increase in adhesion energy leads to a 

critical change in the conformation assumed by the adsorbed nanoparticles on the 

membrane surface (Figure 41). In the case where the DOPS content is ≤ 4%, the 

nanoparticles may be only partially wrapped by the membrane; however, in the case 

where the DOPS content > 4%, we speculate that the particles are instead completely 

enveloped by the membrane. The existence of a transition between these two 

configurations was suggested by calculations made by Deserno et al,
5,6

 who also predict 

that increasing the binding energy between the particles and the bilayer ought to lead to a 

crossover from one regime to the other (Figure 8). 
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Figure 37. Cross-sectional illustration of the difference between the deformation of the 

membrane in the weak adhesion regime (top panel, DOPS ≤ 4%) and the strong adhesion 

regime (bottom panel, DOPS > 4%). The blue line represents the shape of the membrane, 

the orange circles represent nanoparticles. 

 

Let us conceptually examine the two different cases presented in Figure 41 in 

order to understand how these behaviors could lead to the phenomenology described in 

Figure 40. First, in the case of weak adhesion, nanoparticles adsorb only to the surface of 

each vesicle. If a nanoparticle-laden vesicle happens to make contact with the surface of a 

bare vesicle, the exposed nanoparticles on the first vesicle can potentially bind onto the 

bare surface of the second vesicle, thereby creating an adhesive bridge and effectively 

binding the two vesicles together. We propose that this mechanism leads to gel formation 

in the weak-adhesion case, where the DOPS content of the vesicles ≤ 4%. In other words, 

the adsorption of the nanoparticles creates a patchy surface charge on the otherwise 

weakly dipolar surface of the vesicles, making them ‘sticky’ to one another and driving 

aggregation. (Figure 40, top row.) 

On the other hand, in the strong adhesion regime, nanoparticles are fully engulfed 

by the membrane, such that no part of the nanoparticle is exposed at the outer surface of 

the bilayer. In this regime, vesicles ought not to adhere to one another. However, even 

when the membrane is fully loaded with enveloped nanoparticles, these nanoparticles are 

fully covered by the bilayer, and thus even more nanoparticles can still bind onto the bare 

surface of the vesicle. This process of continuously recruiting nanoparticles into the 

surface can lead to enormous in-plane strains, causing the membrane to rupture in a 

surprisingly complex but reproducible way. (Figure 40, bottom row.) 
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DOPS > 4%: Vesicle disruption 

In the regime where the DOPS content of vesicles exceeds a molar fraction of 4% 

with DOPC, the vesicles are completely disrupted by the Au-TTMA nanoparticles. In this 

section, we will examine the phenomenology of the disruption mechanism in greater 

detail. Before each vesicle actually ruptures, it passes through a series of stages that seem 

to be quite robust, appearing for nearly every vesicle examined in these experiments. 

These stages are exemplified below in Figure 42. 

 

 

Figure 38. A series of still frames showing the time evolution of a vesicle leading up to 

complete nanoparticle-induced disruption. The vesicle in these images contained 6% 

DOPS. Images were taken using DIC optics. 
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The process of disruption on a unilamellar vesicle proceeds in the following 

manner: first, the diameter of the vesicle steadily and noticeably decreases as the 

membrane becomes loaded with enveloped nanoparticles. During this stage, the vesicle 

becomes covered in dark ‘spots’ that diffuse across its surface, and in some cases also 

develops a stable, large pore in the membrane (Figure 48). Remarkably, this pore has a 

size of more than a micron, much larger than the size of an individual particle. Finally, 

the vesicle does a complete inversion, where the interior of the vesicle is forced outwards 

through the pore that developed in the previous stage (or, if a pore did not form, its 

surface suddenly and violently ruptures), revealing a tube-like structure—presumably 

composed of folded lipid bilayers and saturated with nanoparticles (Figure 52). If the 

vesicle is multilamellar, the outer layers of the vesicle are peeled off one by one as they 

rupture from the nanoparticles, until only one inner layer remains. In the following 

subsections, we will examine each of these phenomena more closely. 

The overall occurrence of this disruption process depends on the molar fraction of 

DOPS, but not the concentration of nanoparticles in suspension. In one experiment, 

nanoparticle suspension was prepared using 150 μL of 175 mOsm sucrose solution, 150 

μL of 180 mOsm glucose solution, and 2 μL of 10 mM Au-TTMA nanoparticles—or 

0.07x the concentration of nanoparticles used in all other experiments. We added 5 μL of 

this dilute stock to vesicles with 6% DOPS content, and we still observed the same 

behavior. The disruption process simply happened much more slowly, with one vesicle 

being tracked for nearly an hour without fully rupturing, after which point the vesicle was 

carried by convection outside the viewable area of the perfusion chamber. Although a 

complete disruption of this vesicle was not observed, its diameter visibly decreased by 
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more than a factor of 2. Additionally, other fully disrupted vesicles were visible 

elsewhere in the same sample. This result implies that it is unlikely for there to be a 

minimum concentration necessary for the disruption phenomenon to occur. 

Furthermore, the critical molar ratio of 4.5% DOPS marking the crossover 

between these two regimes was not observed to depend on the osmotic pressure 

imbalance between the vesicle interiors and the solution. One might expect that, since the 

osmotic pressure in the vesicle affects the mechanical tension, and the tension is directly 

involved in determining the equilibrium wrapping of the particle (Equation 4), we ought 

to be able to change the behavior of the nanoparticle interaction with the membrane by 

adjusting the osmotic pressure . To test this hypothesis, four samples of vesicles were 

prepared; vesicles with 4% DOPS electroformed in 175 mOsm sucrose and diluted in 185 

mOsm glucose with a 1:1 volume ratio (negative osmotic pressure, -10 mOsm), the same 

vesicles instead diluted with 165 mOsm glucose with a 1:1 volume ratio (positive 

osmotic pressure, 10 mOsm), and finally two more samples identical to the previous two 

but prepared with 5% DOPS instead. Because these samples are just above and just 

below the crossover concentration of DOPS, we would expect that a large change in 

osmotic pressure in the vesicles should measurably change the critical concentration of 

DOPS required for nanoparticles to be engulfed by the membrane. However, each of 

these 4 samples was exposed to an identical concentration of nanoparticles and let sit for 

1 hour, and in all cases the results matched those reported in Figure 40 regardless of the 

vesicles’ osmotic pressure. (Even though the vesicles under positive osmotic pressure 

were clearly stiffer and rounder than the ones under negative pressure, indicating that 

there was indeed an osmotic pressure difference between the samples.) This finding 
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echoes the apparent non-effect of osmolarity on the binding of the nanoparticles observed 

in our LUV experiments, detailed in Appendix A (Figure 68). 

One possible explanation for this result is that the adhesion of the nanoparticles 

may form extremely small nanopores in the membrane, which allow solute exchange 

across the membrane. This phenomenon has previously been reported for cationic 

nanoparticles bound on DOPC membranes (Figure 43).
7
 In these experiments, 20 nm 

diameter cationic amidine-modified polystyrene particles were exposed to lipid vesicles 

composed of an equi-molar mixture of DOPC, DPPC, and cholesterol. The authors 

reported that the adhesion of the nanoparticles caused leakage of a high molecular 

weight, rhodamine-labeled dextran from the vesicle interior, and estimated these pores to 

be a maximum of 18-27 nm in diameter. They suggested that the poration was caused by 

increased surface tension imposed by a steric pressure from packing the surface with 

bound nanoparticles; it has previously been shown that an imposed surface tension can 

form transient pores in a bilayer membrane.
8
 

 

 

Figure 39. Florescent dye escaping from a vesicle due to adhesion of cationic 

nanoparticles. The total elapsed time is 140 minutes. Image reproduced from (Li et al., 

2013).
7
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If this is indeed the case, pores in the membrane created by the nanoparticles 

could effectively equalize the osmotic pressure of the membrane as soon as the 

nanoparticles adhere, negating any possible contribution to the overall phenomenology.  

 

Vesicle shrinking 

At the start of the disruption process, the diameter of the vesicle steadily 

decreases. This aspect of the disruption process is likely the most immediately related to 

the adhesion and envelopment of the cationic nanoparticles. Assuming the interior 

volume is not fixed (owing to the previously mentioned nanoparticle-induced nanopore 

formation phenomenon
7
), when a single nanoparticle is engulfed by the membrane, the 

effective outer surface area of the vesicle ought to be reduced by an amount roughly 

equal to the total surface area of the nanoparticle. Thus, as more of the surface is involved 

in the wrapping adhered particles, the total diameter of the vesicle decreases.  

We can indirectly test this hypothesis by noting that the rate at which the diameter 

of the vesicle decreases should be directly related to the rate of adhesion of nanoparticles, 

which itself is related to the local concentration of nanoparticles. Thus, the average rate 

of shrinking of the vesicles ought to be directly proportional to the concentration of 

nanoparticles in solution. Due to the method used to observe the disruption process 

however (Figure 38), a direct test of the relationship between the local nanoparticle 

concentration and the rate of change of the diameter of the GUVs is extremely difficult 

because the local nanoparticle concentration is not known. Nevertheless, it is 

circumstantially supported by the previous observation that GUVs in an environment 



 

112 

with an extremely low concentration of nanoparticles showed a significantly slower rate 

of shrinking. 

Additionally, we note that vesicles in immediate proximity to one another tend to 

shrink at nearly identical rates. As demonstrated in Figure 44, in both examples of GUVs 

shrinking in close proximity to one another, the radius of the vesicles decreased at nearly 

the same rate as the nearby vesicle. And, even though all four vesicles had the same 5% 

DOPS content, the GUVs in the top row shrank at a far slower pace than did the GUVs in 

the bottom row (from a different sample). Moreover, for the vesicles shown in the bottom 

row, nanoparticles had been added about 5 minutes prior to the start of the video, and in 

the top row the nanoparticles had been added about 50 minutes prior. Due to the way the 

nanoparticles are added into solution (Figure 38), this observation implies the local 

concentration of nanoparticles was likely to be much higher for the vesicles in the bottom 

row than in the top row, further supporting the conclusion that nanoparticle concentration 

is a critical factor in determining the rate of shrinking of the vesicles. 
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Figure 40. Rate of collapse of vesicles. The initial concentration of added nanoparticles 

was the same in both experiments; in the bottom plot, nanoparticles were added roughly 

50 minutes prior to the start of the clip, and in the top plot nanoparticles were added 

roughly 5 minutes prior. In both cases, the two nearby vesicles shrink at nearly identical 

rates. In both plots, vesicles have 5% DOPS and 95% DOPC. In the bottom plot, the 

vesicles do not develop a surface pore, and simply rupture at the end of the video; in the 

top plot, both vesicles develop a surface pore, and slowly invert through the pore as they 

shrink. 

 

This data also reveals some information about the way the vesicles collapse. They 

often initially collapse extremely quickly, taper to a linear decrease in the surface area of 

the vesicle with time, then slowly taper to a sublinear descent before finally rupturing. 

The sharp initial decrease in radius observed for the vesicles in the top row of Figure 44 

is observed frequently, but not always; the initial rate of collapse of these vesicles is 50 

times faster than their overall average, and nearly 5 times faster than the average rate of 

collapse of the vesicles in the bottom row of the figure. We have not yet determined a 

cause of this effect. Surprisingly, we also have not been able to identify any evidence that 
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the appearance of a large pore on the surface of the vesicle has any impact the rate of 

decrease of the radius of the vesicle (as discussed below). 

 

Surface spotting 

As the diameter of the vesicle shrinks, dark spots noticeably develop on the 

surface of the vesicle (Figure 45). This effect is as universal as the shrinking 

phenomenon. Because they are dark, we conclude that they are enriched in Au-TTMA 

particles, in which these clusters imply that there is an attractive interaction between 

particles mediated by the deformed membrane.  
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Figure 41. Several different GUVs showing surface spotting. Each image was taken from 

a sample of vesicles with 6% molar fraction DOPS and 94% DOPC. The bottom right 

image was taken using dark-field illumination. Each image has been resized separately. 

 

We note a few key observations. First, although these small dark spots are close to 

(if not just beyond) the resolution limit of our microscope, their visibility and size 

indicate they are likely clusters of many particles and not individual adhesion sites. 

Second, as more nanoparticles bind and the vesicle shrinks, these dark spots visibly 

increase in number, but they do not increase in size. In fact, the size of these dark spots is 

remarkably consistent from one vesicle to the next. Finally, the spots appear to diffuse 

freely on the vesicle surface, but their mobility noticeably decreases as the vesicle 

becomes small and the surface becomes packed with such spots. 

Because of the technical difficulty involved with imaging these small dark spots 

on the spherical surface of the GUVs, experiments designed to measure the size, number, 

and diffusion of these spots were unsuccessful. However, the observations listed above 

imply that particles bound to the membrane surface form some type of cluster with a 

characteristic size. Additionally, from dark field imaging it is clear that not all of the 

adsorbed particles are involved in forming these spots (Figure 45, bottom right). 

Although isolated bright spots are visible, we can see that the overall surface is still 

reflective, indicating the presence of the reflective gold nanoparticles. 

The existence of a similar nanoparticle-clustering phenomenon was reported in an 

experiment with Au-TTMA nanoparticles adhering to the surface of E. coli cells.
9
 In 

these experiments, the authors showed that adhered 6nm nanoparticles formed small 

clusters on the bacteria, while 2 nm particles cooperatively deformed the membrane 
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surface to produce cone-shaped protrusions (Figure 46). Without performing TEM or 

Cryo-EM on our samples however, it is impossible to tell whether the spot-like features 

that form in our experiments match either of the structures found on their E. coli cells.   

 

 

Figure 42. Nanoparticle behavior on the surface of an E. coli cell membrane. In the left 

panels, adhered 6nm Au-TTMA nanoparticles cluster together, causing particles to form 

patches on the surface; scale bars are 200 nm. In the right panels, adhered 2 nm Au-

TTMA nanoparticles cooperatively deform the membrane, leading to cone-shaped 

protrusions; scale bars are 50 nm. Image reproduced from (Hayden et al., 2012).
9
 

 

Additionally, similar formations have been predicted to form based on 

simulations of particle adhesion onto membranes. Simulations of a tension-free patch of a 

bilayer membrane with bound hemispherical caps by Reynwar et al. show that the 

adsorbed particles can cooperatively deform the membrane and create a large 

invagination on the surface (Figure 47).
10

  Several other recent studies have reported 

similar results.
11-14
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Figure 43. Simulations of adhesive nanoparticle caps onto a tension-free membrane. The 

formations are similar to those found by Hayden et al.,
9
 but are directed inward rather 

than outward. Image reproduced from (Reynwar et al., 2007).
10

 

 

However, none of the simulations listed above fully explain the apparent 

characteristic size of the features we observe on the GUVs. However, simulating 

interactions between particles adsorbed to a bilayer membrane is a very difficult. This is 

largely due to the number of parameters involved with predicting the exact shape and 

behavior of the deformations created by the nanoparticles (as outlined in Chapter 5). A 

sufficiently complete simulation using all of these parameters and including several 

hundred adsorbed particles may be a prohibitively complex undertaking. Still, it is not 

unlikely the interactions between the adsorbed particles include a combination of long-

ranged repulsion and short-ranged attraction (as predicted by Reynwar et al.
3
), and 

clustered particle phases have indeed been reported in such cases.
15,16

 

 

Macroscopic pore formation 

The formation of a stable, macroscopic pore in the vesicle bilayer is a feature that, 

to our knowledge, is heretofore unreported in the literature. As stated in the previous 
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sections, in most instances the vesicle ruptures only as an immediate precursor to the 

inversion phenomena. However, in some cases, a pore visibly develops concurrent with 

the shrinking phenomenon (Figure 48). In these cases, instead of violently rupturing, the 

interior of the vesicle is slowly pushed outwards through the large open pore. 

 

 

Figure 44. Images showing unilamellar vesicles that have developed a stable, 

macroscopic pore in their surface. In these cases, the pore develops well before the 

vesicle inverts itself. In images A and D, fluid can be seen escaping the pore (indicated 

with red arrows). In image B, a large pore has opened in the outermost bilayer of a multi-

lamellar vesicle. 

 

Evidence that these features are truly an open pore can be seen in Figure 48, 

panels A and D. Since the encapsulated fluid (175 mOsm sucrose) has a different index 
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of refraction than the exterior fluid (87.5 mOsm sucrose + 90 mOsm glucose, the 

encapsulated fluid produces a noticeable fingering effect as it escapes through the pore. 

Several attempts were made to visualize this effect directly by producing vesicles that 

encapsulate florescent dye (fluorescein), but these experiments were not successful due to 

the difficulty in finding and capturing such an event given the rapidity with which 

fluorescein photobleaches.  

Additional evidence that these features are indeed large stable pores comes from 

the fact that we can observe interior features of multi-lamellar vesicles escaping through 

these pores, as seen in Figure 49. We also note that there appears to be a characteristic 

‘pearl necklace’ shape to the outer rim of each pore (Figures 48 and 49), likely formed by 

excess membrane material as the pore opens. 
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Figure 45. Interior contents of a multi-lamellar vesicle spilling out through a pore on the 

vesicle’s outer surface. The vesicle did not outright rupture after this point, and continued 

to be disrupted by the nanoparticles. The vesicle has 5% DOPS and 95% DOPC by mole 

fraction. 

 

We next conjecture on the nature of these pores and their underlying formation 

mechanism. First, we can assume that their formation has an energy barrier, because a 

maximum of one pore has ever been observed on each vesicle. If the pore formation were 

a product only of single-nanoparticle adhesion (as is the case with the nanopores 

described in a previous section
7
), we would expect to see at least one vesicle with 

multiple pores, but this is not the case. It therefore seems likely that the pores form in 

response to tension in the membrane caused by the rapid adhesion and engulfment of the 

nanoparticles (Figure 50).  
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Figure 46. A plot of the rate of decrease of surface area for 13 unilamellar vesicles as 

they are disrupted by adhered nanoparticles. The vesicles that appeared to form a pore are 

plotted on the top line, vesicles that did not appear to form a pore (and instead burst just 

before inversion) are plotted on the bottom line. This data makes it clear that the shrink 

rate of the vesicles is closely related to pore formation, whereas the DOPS content is not. 

Unfortunately the local nanoparticle concentration is difficult to discern in most of these 

cases, as the total time elapsed was not recorded for several of these trials. 

 

As Figure 50 makes clear, only vesicles whose surface area decreases faster than a 

rate of approximately 1.5 μm
2
/ms form a visible pore, regardless of the DOPS content of 

the vesicle. But why should this be? As was explained previously, the adhesion of the 

nanoparticles reduces the exposed surface area of the vesicle, but it does not reduce the 

encapsulated volume of liquid, creating stress in the plane of the membrane. Although it 

is likely that adhesion opens nanopores to equalize the interior solute concentration and 

reduce osmotic pressure,
7,8

 if the surface area is reduced rapidly it may build stress in the 

membrane faster than diffusion of liquid through the nanopores can reduce it. This, in 

turn, could cause the membrane surface to rupture (or ‘lyse’). Normally lysis destroys the 

vesicle entirely, but if the bilayer is already loaded with enveloped nanoparticles, the 
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matrix of strongly adhered particles may prevent the vesicle from outright collapse. We 

note that stable pores have only been observed on nanoparticle-loaded vesicles; 

nanoparticle-sparse vesicles that form a pore all immediately lyse (Figure 51). Once a 

large, stable pore has formed, it essentially eliminates the volume constraint on the shape 

of the vesicle, thereby preventing the need to develop additional pores.  

 

 

Figure 47. A vesicle whose surface is not visibly loaded with nanoparticles develops a 

pore, and immediately bursts. The pore expands outwards as the vesicle collapses. 

 

Vesicle inversion 

The final stage of the disruption process is the complete inversion of the GUV 

(Figure 52). The inversion of the vesicle reveals a tube-like structure; it is not clear 

whether this structure is already existent on the inside of the disrupted vesicle and is 

formed by the adhesion of the nanoparticles, or whether the feature is created during the 

inversion process itself. Any evidence of tubulation of the interior is not immediately 

visible from the outside of the disrupted vesicle, but this does not rule out the possibility. 
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Figure 48. Inversion of various GUVs. (A) 6% DOPS; interior is quickly pushed out 

through a very large pore. (B) 15% DOPS; a fast, violent rupture of a vesicle without a 

surface pore. (C) 6% DOPS; inversion through a small pore on the surface, revealing long 

protruding tentacle-like formations. (D) 6% DOPS; very slow inversion of a vesicle 

encapsulating many smaller vesicles. In this particular case, the pore formation was likely 

related to its highly multilamellar interior rather than to the rate of adhesion of 

nanoparticles.  

 

Although perhaps the most visually striking step in the disruption process, it is the 

one we can discern the least about from analyzing video alone. In other aspects of the 

disruption process, we can make educated guesses about what precisely is the cause or 

mechanism, but in this case we can only speculate. The tube-like features that emerge 
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from the disrupted vesicle somewhat resemble the ones reported by Yu et al. (Figure 6),
17

  

but to our knowledge this overall phenomenon has not yet been reported in literature. 

Using image analysis, we found that the tubules have a typical diameter between 

1 and 2 μm, although occasionally we observed vesicles with much smaller tubules (the 

ones in Figure 52d, for instance, have an average diameter of 0.3 μm). We do not yet 

know which properties of the disrupted vesicle (if any) determine the diameter of the 

tubules. In our experiments, we did not find the tubule diameter to have any particular 

dependence on the DOPS content of the vesicles, the initial size of the vesicles, or the 

rate of shrinking of the vesicles. Interestingly however, the tubules created by GUVs 

exposed to larger 12 nm gold nanoparticles were smaller in diameter (Figure 51), a fact 

discussed in a later section. 

It is difficult to draw any conclusions about the structure or composition of these 

tubules using our existing data. The tubules are presumably composed of folded lipid 

bilayers and saturated with nanoparticles, but without performing Cryo-EM, there are few 

conclusions we can draw.  It is possible that the exterior of the tubules are coated with 

nanoparticles, based on video showing a tubule adhering to—and subsequently 

destroying—an otherwise apparently bare vesicle (Figure 53). It is also plausible that 

more nanoparticles immediately adhered to the outside of the nanoparticle-saturated 

tubules ad soon as the vesicle was inverted; since this is the only instance of this 

particular phenomenon we have observed, it is difficult to say for sure.  
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Figure 49. An inverted vesicle making contact with another vesicle, and immediately 

causing that vesicle’s disruption. 

 

Conclusions 

Although there are many details about the disruption process we do not 

understand, there are several conclusions we can draw. The disruption process is a direct 

result of the envelopment of adsorbed nanoparticles by the membrane surface; the 

envelopment causes a reduction of surface area of the vesicle, causing the vesicle to 

decrease in radius at a rate that is likely proportional to the rate of adhesion of 

nanoparticles. If this rate of surface reduction is greater than about 1.5 μm
2
/ms, the 

vesicle develops a large stabilized pore in its surface to relieve osmotic pressure. Finally, 

the vesicle is turned inside-out through this pore, revealing tendril-like tubular 

formations. 

While highly destructive to the vesicles, there may be a number of uses for this 

phenomenon in controlled-release applications. Specifically, since the rate of disruption 

of the membrane is demonstrably related to the concentration of nanoparticles in solution, 
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it may be possible to tune the rate of release of the vesicles’ cargo by adjusting the 

number of added nanoparticles. 

 

DOPS ≤ 4%: Vesicle gel formation 

In the regime where the DOPS content of vesicles is less than 4%, the vesicles 

adhere together, forming a macroscopic, semi-rigid soft gel network. Compared with the 

complex disruption process described in the previous section, this phenomenon is 

relatively straightforward. In this regime, nanoparticles bind only to the surface of the 

GUVs, creating an adhesive bridge when two vesicles come into contact. This ultimately 

leads to the formation of a macroscopic, gel-like aggregate of vesicles (Figure 54). In this 

section, we use image analysis to measure several physical properties of the gel, and also 

examine ways to produce this material in bulk quantities. 
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Figure 50. Dark-field image of a vesicle gel network. The highly reflective gold 

nanoparticles can clearly be seen at the interfaces between neighboring vesicles in the 

gel. Formed on a microscope coverslip, this gel is only about 50μm thick (the diameter of 

one GUV), but is nearly 1cm x 1cm in width. 

 

Analysis of gel network formation 

Figure 55 illustrates a typical time-lapse of nanoparticles being added into 

solution with GUVs. In these images, the vesicles were composed of pure DOPC, and 

nanoparticles diffused inwards from the right side of each frame. As more nanoparticles 

adhered to the vesicles, more vesicles began to adhere to one another, until nearly all the 

GUVs in frame had been incorporated into a single large gel network. 
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Figure 51. Time lapse illustrating the adhesion process on DOPC vesicles. Nanoparticles 

diffuse into frame from the right as time elapses (as indicated in Figure 38). 

 

To better understand the growth kinetics of the gel, we analyzed video featuring 

two large vesicles slowly joining together (Figure 56). In this video, the total contact area 

between the two adhered vesicles slowly increased over the course of about two minutes, 

after which point one of the vesicles burst. We measured the contact area between the 

two vesicles by first measuring the length L between the two points of contact of the 

GUVs (these points are indicated in Figure 56 by small red dots in each frame). The 

approximate contact area between the vesicles was then calculated as Aappx = π (L/2)
2
, and 

is plotted as a function of the elapsed time in Figure 56.  

Apparently, the contact area between the adhered GUVs grows linearly with 

Log(t), meaning the rate of increase in contact area between the vesicles is inversely 

proportional to the elapsed time.  
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Figure 52. Adhesion kinetics for two vesicles. The total contact area between the two 

vesicles (measured via the distance between the two yellow dots in each image) appears 

to increase linearly with Log(t). After 126 seconds, one of the adhered vesicles suddenly 

burst, leaving the other vesicle stuck in an oblong shape. 

 

Interestingly, once one of the vesicles burst, the neighboring vesicle retained an 

oblong, non-spherical shape for about 7 seconds (at which point it burst as well). This 

phenomenon may have been caused by adhesion of the vesicle to the glass cover slip; the 

cationic nanoparticles adhere to the slightly anionic charge of the glass, and hence the 

nanoparticles adhered to the surface of the GUV could have adhered the vesicle to the 

glass and forced it to retain an oblong shape. 

 

Bulk production of gel networks using lecithin vesicles and cationic polymer 

The reason for investigating methods of producing large quantities of vesicle gel 

networks is twofold. First, making any useful rheological measurement of the gel 
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stiffness typically requires tens of milliliters of material, whereas electroformation 

produces at most a few hundred microliters per batch (and is quite labor intensive). 

Secondly, being able to test and use this material in any practical or commercial sense 

demands the ability to scale up production immensely. This entire section will be devoted 

to the method we devised for producing this gel inexpensively in large quantities.  

In order to produce our vesicle gel inexpensively, we search for alternative, 

cheaper component materials. Particularly, the expensive ultra-high-purity DOPC and 

DOPS lipids sold by Avanti Polar Lipids are ideal for creating highly uniform vesicles, 

but in this case our needs are for high volume and low cost; uniformity is not necessary. 

A convenient, lower-purity source of lipid is soy lecithin powder, a nutritional 

supplement derived from soybeans and commonly found at many health stores. 

Unpurified soy lecithin powder contains about 30% phosphatidylcholine (PC) lipids;
18

 

the polar head of these lipids matches DOPC, but the length of the fatty hydrophobic 

chain varies from lipid to lipid. It also contains up to 30% soybean oil, which can become 

emulsified in water by the lipids and can thus potentially disrupt the vesicle gel. Luckily, 

purified soy lecithin is a widely available substance used in food manufacturing. We 

received a sample of Phospholipon 85G from the American Lecithin Company, which 

contains 91.5% PC lipid, 2.8% Lyso-PC lipid, 1% unspecified nonpolar lipids, 0.3% PE 

lipid, and trace amounts of other non-lipid species. This waxy yellow substance can be 

dissolved in chloroform and electroformed in a manner identical to the DOPC lipids 

(explained in detail in Chapter 6). An image of these lecithin vesicles is provided below, 

in Figure 57. 
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Figure 53. Lipid vesicles electroformed using purified PC lecithin powder from the 

American Lecithin Company. Imaged using a 40x microscope objective. 

 

The vesicles produced this way are highly polydisperse in size, shape, and 

composition. They are also stable in solution for only 4-5 days, after which nearly all of 

the vesicles produced will have lysed—this shorter lifespan is likely a consequence of the 

polydispersity of the lipids. Importantly though, the Phospholipon lipids are 

approximately 1/2000
th

 the cost of the purified DOPC lipids from Avanti (by weight). 

Furthermore, the gold nanoparticles used in our experiments are a highly 

specialized material fabricated in a scientific laboratory. However, in principle most any 

cationic polymer can be used to drive the vesicle aggregation instead. As we previously 

identified, aggregation is caused when the vesicle surface is sparsely populated with 

adhered charged objects, and thus the charged object used to accomplish this task need 

not be such a costly material. We examined several different cationic polymers as a 

potential substitute to the nanoparticles, including TTMA polymer (identical to the 
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polymer ligand on the gold nanoparticles, fabricated by YiWei Lee and Li-Sheng Wang, 

poly-L-lysine (molecular weight = 70,000, from Sigma Aldrich, #P4707), spermine 

(Sigma Aldrich, #S4264-1G), and spermidine (Sigma Aldrich, #S0266-1G). 

In these experiments, we first exposed lecithin PC GUVs (produced via 

electroformation) to low concentrations of each type of polymer in order to gauge which 

(if any) species could generate a vesicle gel network. We found that only poly-L-lysine 

and TTMA accomplished this; the other polymers did not. Next, to determine the optimal 

concentration of polymer to form a gel, we exposed samples of lecithin vesicles to a wide 

range of concentrations of TTMA and poly-L-lysine. The results of these tests are 

pictured in Figure 58. 
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Figure 54. Vesicles exposed to varying concentrations of TTMA (top row) and poly-l-

lysine (bottom row). The overall concentration of polymer in each sample is indicated 

above. Once added, the samples were allowed to sit for 1 hour to reach a steady state 

configuration. For reference, an image of the entire sample chamber is also provided in 

each case (inset). In many samples, the gel spans the entire system and is visible with the 

naked eye. 

 

Using this data, we find that an optimal concentration of poly-L-lysine in solution 

is around 5 mM, and an optimal concentration of TTMA polymer in solution is around 2 

mM. Surprisingly, we also find that in both cases there is a minimum concentration of 

polymer below which a gel does not form.  Ultimately, we found that poly-L-lysine 

produced the largest gel over the widest range of concentrations, and decided to use this 

polymer as the primary binding agent in our gels. 

These replacements greatly reduce the overall cost of the material, but the process 

of electroformation has a prohibitively low yield (only a few hundred microliters). 

Instead, we use a gentle hydration method that has been tailored for high-yield production 

(detailed in Chapter 6). In this procedure, lipid dissolved in chloroform was dried onto a 

10ml glass test tube, and the tube was then filled with the sugar solution and placed in a 

35-40º oven for 24-48 hours. Using this method, several identical test tubes could be 

coated with lipid and dried in tandem with little additional effort; depending on the 

number of test tubes used, the total volume of GUVs produced can easily exceed 10ml 

for a single batch. Ultimately, the amount of vesicles produced is directly proportional to 

the total surface area of glass that is coated with dried lipid. These vesicles were then 

diluted with a 180 mOsm glucose solution, and allowed to sit for up to 1 day; this 

allowed the vesicles to settle at the bottom of the glass, and the excess solution could be 

removed if desired. 
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Using this new preparation method in combination with our replacement 

materials, we can produce milliliter quantities of our vesicle gel material. The optimal 

procedure for mixing the high-volume vesicle suspension with the poly-L-lysine solution 

was determined through extensive trial and error by undergraduate student Ian Torres. In 

order to make the gel, we mixed a solution containing 1ml of 0.1% wt/vol poly-L-lysine, 

5 mL of 175 mOsm sucrose, and 5 mL of 215 mOsm glucose. (The higher molarity 

glucose was to ensure the solution was osmotically matched with the GUVs.)  This 

solution was added drop-wise into the bulk of a 15 mL sample of lecithin GUVs, gently 

stirring up the entire solution for a few seconds after each drop was added. Mixing the 

poly-L-lysine into the vesicle suspension took some degree of care; we needed to agitate 

the liquid enough for the poly-L-lysine to adhere to vesicles within the bulk of the fluid, 

but we also must avoid mixing with enough force to rupture any already-formed gel. 

Once the two solutions are combined, the gel is then allowed to settle for 24 hours. The 

results of this procedure can be seen in Figure 59; the resulting material is noticeably 

more opaque than the pure lecithin vesicles alone.  
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Figure 55. Several milliliters of vesicle gel in a glass vial, formed with PC lecithin 

vesicles with a poly-L-lysine solution. Image taken by student Ian Torres. 

 

Once our procedure for forming large quantities of the gel had been developed, 

we could take real measurements of the mechanical properties of the vesicle gel. Our 

early experiments indicate that the stiffness of the material is in the range of ~1 Pa. For 

comparison, the stiffness of Jell-o is about 400 Pa. Additional work is still needed to 

determine which factors determine this stiffness value; indeed, the rheological properties 

of the gel are potentially dependent on the way the gel was formed. Factors such as the 

charge density and length of the binding polymer, the osmotic pressure of the vesicles, 

the concentration of polymer added, or the average size of vesicles in the gel.  

We can also get a general idea about the stability of the gel; experiments show 

that the gel structure remains stable for roughly 5 to 6 days, suggesting it may actually 

prolong the stability of the lecithin-derived vesicles. 

 

Conclusions 

We have successfully developed a novel soft material with potentially highly 

customizable rheological properties: a macroscopically large aggregate of vesicles, 

forming a cohesive and semi-permeable gel network. In order to form the gel, we added a 

small volume of charged polymers into a suspension of vesicles formed using purified 

soy lecithin.  

Its resulting cell-like structure is unique and distinct from other gel materials, and 

allows it to fully encapsulate a large volume of liquid within a series of robust interior 
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partitions. This feature makes it a potentially useful delivery vehicle for topical drugs, 

dyes, or other substances.  

 

Interactions with 12nm nanoparticles 

The interaction between nanoparticles and a lipid bilayer is fundamentally 

dependant on the diameter of the nanoparticles. As explained in Chapter 5, it costs less 

elastic energy per unit area for the membrane to wrap a large (low curvature) nanoparticle 

than it does to wrap a small (high curvature) one. From Equation 5, it is evident that the 

total contact energy required for a particle to be envelopment by a bilayer ought to 

decrease if the diameter of the adhered particle is increased (see also Figure 8).  

To test this prediction, we performed a set of experiments with 12 nm Au-TTMA 

nanoparticles fabricated by students YiWei Lee and Li-Sheng Wang. These new particles 

are identical to the nanoparticles used in the previous experiments, except that they are 

slightly larger in diameter. Our 7 nm Au-TTMA nanoparticles required at least a 4.5% 

DOPS content in the membrane to be enveloped by it, and so it is likely that a lower 

DOPS content is required to wrap the 12nm particles. By explicitly mapping the 

transition point for these larger particles, we can learn a great deal about the relationship 

between the theoretical phase diagram in Figure 8 and real-world experiments. 

 

Results 

In practice, however, this turned out to be a particularly difficult experiment. The 

results from our early work are summarized in Figure 60. These results were not as clear-
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cut as the results for the 7 nm Au-TTMA nanoparticles, as there were no obvious signs of 

a transition between the two different types of behaviors. Instead, both vesicle gels and 

vesicle disruption seemed to appear in every trial. We define the critical DOPS content 

marking the transition between vesicle gelation and vesicle disruption as the smallest 

mole fraction of DOPS for which the vesicle disruption behavior is observed to occur 

(specifically, the behavior documented in Figure 42). Using this definition, all the 

samples observed were above this threshold; both vesicle gels and burst vesicles were 

found in each sample tested (a few examples can be seen in Figure 60). However, for 

reasons outlined below, additional work is needed to positively identify this transition. 
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Figure 56. Adhesion of 12nm AU-TTMA nanoparticles as a function of the DOPS 

content of the vesicles, each viewed under a 40x objective lens.  

 

A major issue in these experiments was caused by the avid binding of our 12nm 

nanoparticles with the surface of the glass coverslip at the bottom of the sample chamber 

during imaging. This adhesion was so strong, any nanoparticle-covered vesicle making 

contact with the coverslip was invariably destroyed; the nanoparticles seek to maximize 

their contact with the glass, forcing the vesicle to spread out thinner and thinner along the 

glass surface until the membrane ruptures. This fact makes it especially difficult to 

reliably identify which samples the disruption phenomena appear in; in the future, the 

glass used in these experiments will need to be treated to have a weakly cationic surface 

charge.  

Despite these difficulties, in a few cases we were successfully able to observe the 

vesicle disruption phenomena. This behavior was nearly identical to the phenomena 

observed for the 7 nm nanoparticles, and is shown in Figure 61. 
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Figure 57. Disruption of 6% DOPS GUVs, caused by adsorption of 12nm Au-TTMA 

nanoparticles. 

 

There are a few small differences between this data and the data in Figure 42. The 

disrupted vesicles exposed to the 12 nm particles still undergo the ‘shrinking’ 

phenomenon, where the radius of the vesicle steadily decreases until it fully ruptures. Of 

the 5 or 6 vesicles that unambiguously displayed this behavior, none appeared to have 

formed a pore on their surface. Dark clusters do seem to form on the surface of the 

vesicles. These vesicles also appear to form tubular structures after inversion, though the 

tubules are visibly shorter and narrower than the tubules formed by the 7 nm particles 

(Fig 61); the tubules formed by the 12 nm particles have an average diameter of 0.4 μm, 

compared to an average diameter of 1.5 μm for the 7 nm nanoparticles. Nevertheless, 
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significantly more data is needed before any quantitative comparison between the 

phenomenology of the two systems can be made.  

 

Conclusions 

Although the 12 nm particles are far more visible under dark field, their behavior 

is far less consistent than the 7 nm particles, making it more difficult to form a complete 

picture of their interactions with the membrane. They are, however, observably more 

destructive to the bilayer. 
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CHAPTER 9 

SUMMARY AND FUTURE WORK 

 

 The work described in this thesis provides new insights into the ways that surface 

shape, elasticity, and morphology affect the assembly and interaction of adsorbed 

spherical particles. Our simulations of the self-assembly and the mechanical stiffness of 

colloidal cylinders uncovered geometric scaling laws relating the structure and stiffness 

of the lattice with the physical dimensions of the cylinder and the interactions between 

colloid particles. The relative simplicity of these simulations enabled us to explore the 

effects of a wide range of different particle and lattice types, and a more sophisticated 

approach could potentially continue to probe new questions beyond the scope of this 

thesis. Additionally, our experiments with adhesion of gold nanoparticles to unilamellar 

vesicles uncovered new and potentially useful behaviors, yet we have explored only two 

parameters of this highly multidimensional arena. Significantly more work is needed in 

order to build a complete description of the surface-reshaping effects caused by adhered 

particles. 

This chapter provides an overview of the results of this thesis, as well as new and 

unanswered questions that arose during our experiments. We also suggest new 

experiments to further explore our findings. 
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Assembly and elasticity of cylindrical crystals 

Cylindrical crystal self-assembly 

We examined spherical particles constrained to the surface of a cylinder as a 

model system for understanding how frustration created by the incommensurability of the 

preferred packing with the available area can influence the stable solid structures found 

there. We found that a finite interaction length substantially broadens the range of 

cylinder radii over which stable and uniform crystals are found compared to hard spheres. 

In such cases, we found that that the cylinder stabilizes an oblique lattice structure, which 

is not found in equilibrium on a planar surface. We also found finite ranges of cylinder 

size that induce “line-slip phases,” which are characterized by a helical defect that 

separates two regions with the same crystal lattice and orientation.  The line-slip phase 

resembles structures previously found with hard spheres.
1,2

  When the range of attraction 

was decreased relative to the sphere size, the area in parameter space over which stable 

and uniform crystals are found decreased and the line-slip structures became more 

prevalent. We found that these behaviors could be predicted with surprising accuracy 

using a simple one-dimensional model. The simplicity of this model allowed us to 

understand the basic mechanism at work in this geometry—an understanding which 

might be extended into the more general problem of self-assembling particles in strongly 

confined spaces.  

Our work addresses the question of self-assembly of attractive particles with a 

hard-core repulsion and no net interaction when separated by a distance r >> d, but it did 

not address the more general problem of assembly of spheres with arbitrary types of 

interactions. This includes particles with purely repulsive interactions, purely harmonic 
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interactions, or more complex combinations thereof. Purely repulsive particles (eg. 

electrostatic interactions) in particular are potentially a quite useful avenue for study, but 

self-assembly of repulsive particles is dependent on the available surface area of the 

substrate they are confined to.
3-5

  In other words, both the length and the circumference 

of the cylinder are important parameters when interactions are purely repulsive, implying 

our one-dimensional model is not applicable in this case. However, the general approach 

we have taken for examining the assembly of attractive particles—namely, that we 

simulated a wide variety of cylinder sizes and interaction potentials, categorized each of 

the resulting lattice types, then employed an energy minimization argument to describe 

their occurrence—may be similarly effective in this case. Conversely, describing the 

assembly of particles with mixed attractive/repulsive interactions may prove to be too 

complex for this strategy to be effective, since previous studies have shown these systems 

to be rather complicated.
6,7

 

Additionally, the straightforwardness of our results suggests a potential practical 

application as a novel method for producing crystalline media of desired symmetry and 

orientation on cylindrical surfaces (Figure 62). Specifically, one should be able to tune 

both the structure and orientation of a developing crystal lattice by adjusting the ratio 

C/d. In doing so, one may be capable of producing crystalline fibers with a variety of 

desired properties, such as stiffness (as explored in Chapter 4) or even conductivity (a 

stretched oblique lattice has fewer contacts between neighboring spheres compared to the 

hexagonal case, hence the electrical resistance of these configurations ought to be 

higher). In practice, such crystals might spontaneously assemble more readily due to the 
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existence of the line-slip phase, through which crystals that nucleate in a metastable 

structure can reorganize into a more stable configuration.  

 

 

Figure 58. Image of fibers formed by depositing nanoparticles inside of a PDMS tube, 

then crosslinking into a solid object. These fibers display similar types of lattice 

structures to the ones found in our simulations. Furthermore, the symmetry of the lattice 

composing the fiber was found to depend directly on the diameter of the channel 

nanoparticles have been deposited into. Image taken by Gaoxiang Wang at the University 

of Pennsylvania, and part of an upcoming work under the direction of Prof. Shu Yang. 

 

Experimental verification of the primary findings of our work—such as 

experiments with colloidal spheres adhered to a micropipette tip via depletion 

interactions, or experiments pulling a cylinder through a sphere-laden air/water 

interface—would be an important contribution in this avenue, particularly within the 

context of our investigations on the mechanical properties of these cylindrical lattices. 

Some early work has been undertaken by student Nabila Tanjeem, under Prof. Vinothan 

Manoharan at Harvard. In these experiments, 700 nm polystyrene spheres are made to 
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adhere to a tapered optical fiber via depletion. Early experiments show evidence of 

potential observation of a line-slip defect. 

 

Cylindrical crystal stiffness 

We next used MD simulations to explore the relationship between the bending 

elasticity of a cylindrical crystal and several of its other physical characteristics, 

including its diameter, the interactions between the particles in the lattice, the 

crystallographic angle θ, and the overall type of crystal lattice. The overall relationship 

between these quantities and the stiffness of the cylinder was summarized by an analytic 

equation of Young’s modulus that captured nearly all of the relevant trends observed in 

our simulations.  

We found that the Young’s modulus, Y
(2D)

, scales linearly with the second 

derivative of the interaction potential between the particles, evaluated at the potential 

minima d. Additionally, we found that thin cylindrical crystals have a lower Young’s 

Modulus than large ones; this finding is unusual, because material properties such as 

stiffness are typically intrinsic to the material, and do not depend on physical size. We 

showed that the increase in elastic modulus is an intuitive consequence of the geometric 

arrangement of the particles in the crystal. A similar trend has been reported (both 

theoretically and experimentally) in single-walled carbon and boron-nitride nanotubes,
8-14

  

though the physical origin of this phenomenon had until now remained unexplored. 

We also found that when a hexagonal cylinder is bent to a radius of curvature 

smaller than the critical value                 , the stiffness of the cylinder is greatly 
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reduced. Though consistent for hexagonal lattices, this value was found to be different for 

hexagonal and line-slip lattices; the same behavior was observed in oblique and line-slip 

lattices, however not at the same critical value. Additionally, lattices with a line-slip 

structure undergo a dramatic and unusual structural change when the cylinder is bent 

beyond Rc, where the entire line-slip seam migrated to the inner bend of the lattice, 

toward the region with the most negative Gaussian curvature. 

There is still much to explore in this work; more simulations still need to be 

performed in order to fully understand the nature of the crossover curvature Rc, especially 

to understand whether it’s value can be predicted analytically. We would also like to 

further explore the idea that the appearance of locally-strained bonds between 

neighboring particles can act as an indicator of nonlinear elastic response. Specifically, it 

would be useful to carefully examine deformed lattices in other geometries (such as a 

stretched sheet or cone) for the appearance of similar features. Traditionally, one uses the 

appearance of topological defects as a reporter for plastic deformation, but if locally 

strained bonds consistently precede the formation of disclinations in the lattice—

especially for stiff inter-particle interactions, where such behavior was most prominent—

it could turn out to be a useful metric that has heretofore gone overlooked. 

We would also like to perform simulations that include a nonzero Poisson’s ratio. 

Throughout our work we assume the cross-section of the cylinder is unaffected by 

deformations, but this is quite untrue of most real materials. Since the cross-section of the 

cylinder is one of the most important parameters that determine the steady-state structure 

of the lattice, allowing this value to change dynamically during our simulations may 

reveal surprising results.  
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Similarly, it would be useful also to perform simulations that allow the rod to 

buckle as it is bent—a feature that would allow us to establish a realistic range of 

applicability to many of our findings for highly bent rods. For instance, we find that a 

system of Lennard-Jones spheres, when bent to a very high curvature, forms disclination 

pairs that separate into isolated 5-fold and 7-fold defects and migrate to regions of highest 

and lowest Gaussian curvature, respectively (Figure 63). This observation is quite 

interesting on its own, but if we were to find that a rod of Lennard-Jones particles will 

tend to buckle out of plane at curvatures far below the curvature where this behavior is 

observed, then it may not be physically significant. 

 

 

Figure 59.  A [5,0] lattice of Lennard-Jones particles, bent to a curvature of 

(C/4πR)
2
V”(d) ≈ 2.5. The particles with a 5-fold defect are labeled red, and 7-fold defects 

are labeled yellow. At this curvature, the defects migrate away from each other and line 

up on the inner and outer bend of the cylinder. 

 

Effects of nanoparticle adhesion on a bilayer membrane 

In these experiments, we exposed lipid bilayer membranes to cationic 

nanoparticles in an effort to understand how nanoparticle adhesion can reshape the 
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bilayer surface, a mechanism that could potentially be used to design novel responsive 

materials. To explore the phase space of this problem, we formed giant unilamellar 

vesicles, and adjusted their surface charge (and by extension, the adhesion energy of the 

nanoparticles) by tuning the molar ratio of zwitterionic DOPC lipids to the anionic DOPS 

lipids composing them. We also exposed them to nanoparticles of two different 

diameters.   

Our primary finding in these experiments is that, at a critical threshold of roughly 

4.5% mole fraction DOPS, the conformation of the nanoparticles adsorbed to the bilayer 

between undergo a phase transition. At DOPS concentrations below this critical value, 

nanoparticles weakly deform the vesicle surface, creating a patchy surface charge and 

leading to aggregation of the vesicles into a gel. At DOPS concentrations above this 

critical value, nanoparticles are fully enveloped by the membrane, causing the vesicle 

membrane to become loaded with adhered nanoparticles, ultimately leading to the 

destruction of the vesicle.  We next discus each of these two cases separately, then reflect 

on further experimentation that could be performed to learn more. 

 

Strong nanoparticle adhesion 

In this regime, the strong adhesion energy between the particles and the 

membrane ostensibly defeats the energetic cost associated with deforming the bilayer 

around the particle, so adsorbed particles get enveloped by the membrane. This 

envelopment in turn causes the diameter of the vesicle to decrease, at a rate that is 

directly related to the rate of adhesion of free particles onto the bilayer. If the rate of 

adhesion is very high, the vesicle develops a large pore to equalize the rapidly changing 
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osmotic pressure, which then remains a stable feature on the nanoparticle-loaded vesicle 

surface. The diameter of the vesicle continues to decrease, until it reaches a point where it 

completely inverts itself, and the vesicle interior is forced out through the pore on its 

surface, or, if no pore has developed, the surface violently ruptures beforehand. As the 

vesicle is inverted, it reveals long tendril-like tubules, presumably completely loaded 

with nanoparticles. 

This process of disruption is highly repeatable, but much of the information we 

have gathered on its features has been through qualitative extrapolation from video 

sources. A great number of experiments would be helpful in collecting qualitative data 

about this process. In particular, cryo-EM experiments on samples of vesicles exposed to 

nanoparticles (at any stage of the disruption process) would be enormously informative. 

First, it would help to shed light on the arrangement of the nanoparticles on the vesicle 

surface, which form dark clusters that are just beyond the range of resolution of our 

microscope optics. It may also help explain how and why the vesicle tubulation occurs—

it is unclear at this point if the tubules exist inside the vesicle prior to inversion, or 

whether they form as a product of the nanoparticle-laden bilayer being forced through a 

small opening on the vesicle surface. We also do not yet fully understand the structure of 

these tubules, and cryo-EM may help shed light on their appearance on the nanometer 

scale.  

 Additionally, through our analysis in Chapter 6 we have been able to make many 

inferences about the impact of the nanoparticle adsorption rate on the vesicle disruption 

process, but without knowing the ambient nanoparticle concentration it is hard to draw 

any quantitative conclusions. Therefore, experiments where the ambient nanoparticle 
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concentration is well-controlled would be very informative for verifying that the rate of 

vesicle collapse is indeed related to the nanoparticle adhesion rate, as well as further 

exploring our finding that the pore formation is directly related to the rate of decrease of 

the vesicle radius. Experimentally, this can be accomplished in a few ways. First, our 

experiments could essentially be repeated using fluorescently labeled particles in place of 

our Au-TTMA particles. In such an experiment, the ambient nanoparticle concentration 

could be approximately calculated by measuring the background fluorescence in each 

image. Secondly, nanoparticle concentration could be controlled through micropipette 

aspiration, by aspirating a vesicle in a nanoparticle-free environment, and depositing it 

into a new sample chamber with a known concentration of nanoparticles.  

 

Weak nanoparticle adhesion 

In this regime, the nanoparticles only weakly deform the membrane, remain on 

the surface of the vesicles once they adsorb, and act as an adhesive bridge once two 

nanoparticle-laiden vesicles come into contact with one another. The rate of adhesion of 

two vesicles (once they have come into contact) can be quantified by total contact surface 

area between the two, and increases at a rate that is inversely proportional to the time 

elapsed since the vesicles first made contact. Over time, many adhered vesicles join 

together to make a gel network of adhered vesicles. 

We can leverage this behavior to our advantage to design a new material, 

consisting of a very large, macroscopically sized, continuous vesicle gel network. By 

using a charged polymer such as poly-L-lysine in place of the nanoparticles, and PS-

enriched soy lecithin powder to fabricate large volumes of vesicles, we were able to make 
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several tens of milliliters of this gel material at once. More work can be done towards 

optimizing the production of this material, however; for one, the rate of production of the 

lecithin-derived vesicles depends on the total surface area of glass that the dissolved 

lecithin powder is deposited on (Figure 64, more detail on this process is found in Chap. 

5 and 6). Potentially, one could maximize this surface area by instead depositing the 

lecithin in bulk on a large number of glass spheres, and suspending all the spheres at once 

in sucrose buffer. Additionally, in its current state, actually depositing the lecithin onto 

the glass surface is by far the most labor-intensive step in the process, and it may be 

possible to rapidly speed up this step by designing a more efficient process. 
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Figure 60. Large vesicle gels. Left panel: PC lecithin vesicles formed by gentle 

hydration, in a container that holds several glass slides in an effort to scale up production. 

Right panel: the same vesicles, extracted and placed in a 25 mL glass jar. Images taken 

by student Ian Torres. 

 

This new material is potentially very useful, but there are still experiments that 

should be done to learn which factors determine its physical properties—its stiffness, for 

example, likely depends on the concentration and charge density of polymer added into 

suspension, and on the average size and composition of the vesicles. If we can understand 

how these factors contribute to its stiffness, then we can potentially tune the stiffness of 

the gel as desired. Doing so requires performing many rheological measurements on 

different sets of gels, varying each of the above parameters.  Some early work performed 

by student Ian Torres suggests that the stiffness of the material can be greatly enhanced 

by using highly charged cationic polymer Polydiallyldimethylammonium chloride 

(PolyDADMAC), enough that it is strong enough to be removed from solution and 

support its own weight when placed on a glass slide (Figure 65). Gel could also be 

fabricated using polymersomes rather than lipid vesicles for additional robustness and 

customization. 
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Figure 61. PC lecithin vesicles, adhered into a gel by adding the cationic polymer 

PolyDADMAC into solution, then removed from solution and placed onto a glass slide. 

The right panel shows the same gel droplet stuck to a Kimwipe, illustrating its apparent 

rigidity. All images taken by student Ian Torres. 

 

Furthermore, there is still experimental work to be done to explore the potential 

novel functionality of our liposomal gel material. Since the individual vesicles remain 

intact within the gel, in principle they are capable of fully encapsulating multiple 

different species in solution inside the gel. One could imagine forming two different sets 

of vesicles, each one encapsulating a different reactant polymer. The vesicles could then 

be dialyzed, mixed, and then made to form a vesicle gel. The two different species of 

polymer would not react with one another until the gel was ruptured in some way, 

causing their release and mixture. 
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Further experimentation 

 Finally, additional work may be useful in better understanding how nanoparticle 

adhesion can reshape a bilayer membrane in general. More data and careful 

experimentation is necessary to understand how the 12 nm Au-TTMA nanoparticles 

affect the membrane, and whether or not the difference in nanoparticle size lowers the 

critical concentration of DOPS lipids required for the bilayer to envelop the adsorbed 

particles. It may also be useful to test the effects of other factors as well, such as using 

anionic nanoparticles on a cationically charged membrane, or repeating our experiments 

with different types of lipids entirely. Lastly, although our attempt to quantify the 

adhesion energy between the nanoparticles and the bilayer proved unsuccessful, they may 

be repeated with larger or more weakly charged nanoparticles—both factors that make 

the nanoparticles less likely to disrupt the vesicles, making the success of these tests more 

feasible.  
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APPENDIX A 

NANOPARTICLE BINDING ON LUVS 

 

In order to learn more about the parameters that govern how nanoparticles adhere 

onto and reshape bilayer membranes, we would like to directly measure the contact 

energy between an individual nanoparticle and the membrane itself. Particularly, we 

would like to understand how the contact energy is affected by the lipid content and 

osmotic pressure in the vesicle. To accomplish this, we perform experiments exposing 

large unilamellar vesicles (LUVs, 10-50 nm in diameter) to cationic gold nanoparticles (7 

nm in diameter, including TTMA ligand as described in Ch. 5). By carefully measuring 

the fraction of nanoparticles that bind to the vesicles, we hoped to use the Langmuir 

adsorption equation to estimate the nanoparticle adsorption energy. By adjusting the lipid 

content and osmolarity of the vesicles, we aimed to quantitatively measure how these 

parameters affect nanoparticle adhesion. This information might subsequently be used to 

estimate how the nanoparticles deform and reshape the bilayer membrane. As part of the 

thesis, a method of analyzing the bound fraction of nanoparticles was successfully 

developed (Ch. 5). Ultimately, however, these experiments were not successful because 

we found that particle binding led to major changes in vesicle shape, and so the results 

were difficult to interpret. These studies spurred another series of studies that will be 

examined in greater detail in Chapter 6. 

 

Methods and Materials 
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In these experiments, we prepare LUVs by extrusion, and then expose these 

vesicles to nanoparticles. Vesicles with bound nanoparticles are significantly heavier than 

anything else in solution, and they can be separated out by centrifugation. Once the LUVs 

with bound nanoparticles are removed, we can re-suspend these in a small amount of 

liquid, and then measure the total concentration of bound nanoparticles using absorption 

spectroscopy as described in Chapter 6. We then repeat this experiment for LUVs with 

different lipid composition and osmotic pressures to build a picture of how the bound 

fraction of nanoparticles varies with these parameters. 

All of our experiments were performed using the same batch of nanoparticles; 7 

nm diameter nanoparticles with a 2 nm gold core, coated with cationic TTMA ligands, as 

illustrated in Figure 34. This stock nanoparticle solution was produced by YiWei Lee and 

Li-Sheng Wang in Prof. Vincent Rotello’s laboratory, and had a concentration of 10 mM 

of nanoparticles, suspended in water. 

 

LUV Formation 

We prepare LUVs by extrusion using the procedure detailed in Chapter 5. The 

lipids used in these experiments are DOPC and DOPS (Figure 4). The hydrophilic head 

group of DOPS is anionic, meaning we can adjust the surface charge of the LUVs by 

adding a small percentage of DOPS to the zwitterionic DOPC lipids before formation. In 

these experiments, the lipid composition of the extruded vesicles ranged between 0% 

mole fraction DOPS with 100% DOPC, to 20% DOPS and 80% DOPC. The DOPS lipids 

have a negative intrinsic curvature and cannot form a stable bilayer by themselves, and 

adding more than even 15-20% DOPS with DOPC severely limits the stability of the 
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extruded vesicles.
1
 This ratio served as the upper limit to the amount of anionic charge 

that could be added to the LUVs during our experiments. 

All of our LUVs were extruded in 1 mL of a solution of 200 mOsm glucose, and 

then let sit for 24 hours before use to allow the glucose concentration in each LUV fully 

equilibrate and reach a uniform osmotic pressure.
2,3

  To adjust the osmolarity of the 

LUVs in the solution, the extruded LUVs can then be diluted with a 1:1 ratio of 

glucose/sucrose solution with a different concentration of glucose; a concentration lower 

than 200 mOsm makes the vesicles stiff and taught, and a concentration greater than 200 

mOsm makes them loose and floppy. More specifically, the osmotic pressure in the 

LUVs can be calculated as the difference between the difference in osmolarity between 

the fluid encapsulated by the vesicles and the bulk fluid they are suspended in, 

 Δc = cinternal− cexternal,                   (Eq. 32) 

where cinternal = 200 mOsm.  Once diluted, the vesicles must be used within 4-6 hours, 

otherwise the diffusion of glucose across the bilayer membrane will slowly return the 

osmotic pressure of the vesicles to zero. In principle the osmolarity of the LUVs can be 

adjusted to a value of ±60 mOsm L
-1
, beyond which they will simply rupture (or ‘lyse’). 

By combining the preceding two techniques, we can adjust both the osmotic pressure and 

the surface chemistry of our LUVs before exposing them to nanoparticles. 

 

Binding energy measurement 

In general, many properties of the system are already known: the bending energy 

of a DOPC vesicle (κ) is well known, and the average osmotic pressure (σ) of the vesicle 

can be calculated from Equation 32, and is known accurately for a finite period of time 
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after preparation. The contact energy of the particles with the surface, on the other hand, 

is a quantity we would like to measure experimentally. Although tricky to determine, 

knowing this parameter is necessary in order to quantitatively compare any results with 

theory (as outlined in Chapter 1 and illustrated in Figure 8). It can be done, however, 

using the Langmuir adsorption equation. 

We derive this equation quickly by using a drastically simplified model of our 

system; namely, we assume the membrane has NS independent binding sites, and that 

there is some bulk concentration c of nanoparticles diffusing around as a gas in 

suspension. If a nanoparticle and binding site have a total energy E= ϵ when a particle is 

adsorbed and an energy of E=0 when separated, we can write down the probability that a 

single adhesion site on the membrane surface will be occupied as 

          
                  

           ,                 (Eq. 33) 

where μ is the chemical potential of the adsorbed state. In equilibrium, μ must be equal to 

the chemical potential of the nanoparticle gas. We next approximate μ as being equivalent 

to the chemical potential of an ideal gas; 

               .                 (Eq. 34) 

Here, μ0 is used to describe the specific features of the particular nanoparticles in 

solution, and is assumed to be a complicated function depending on many of the system 

parameters. Because we have expressed the probability of a single site being occupied, 

we can write the expected density of bound particles, n, as 

  
      

        
 ,  where         .               (Eq. 35) 

Thus, by measuring the fraction of particles bound to the membrane as a function of the 

concentration of particles, we ought to be able to estimate the binding energy ϵ. 
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 Such a measurement will tell us the total contact energy of the nanoparticles with 

the membrane, but it will not tell us the contact energy density, ω. Recall that, as defined 

in Eq. 1, the total contact energy between the particle and the membrane, ϵ, is written as  

          , where a is the diameter of the particle and z is the penetration depth of 

the particle in the membrane (Figure 7). In theory we can use this equation for ϵ to 

calculate ω, but we unfortunately do not have a good way of experimentally measuring 

the penetration depth of the particle, z. If, however, we assume that z is equal to its 

approximate equilibrium value zeq (Equation 4), we can insert this value into our 

expression for ϵ in Equation 1, and find that 

  
   

 
        .                 (Eq. 36) 

In principle, the stiffness κ and tension σ in the membrane are known quantities, and 

hence we can calculate ϵ by repeating the experiment described above with groups of 

LUVs having varying values of ω and σ. Once all parameters of the system are known, 

we can begin to compare our experimental results with existing theoretical predictions.  

 

Sample preparation and centrifugation 

For each different sample being examined, three identical samples were 

simultaneously prepared for centrifugation and analysis. This practice allowed us to 

calculate the average concentration of bound nanoparticles across all three samples to 

increase the accuracy of our results. However, the language used in the following 

sections will describe the preparation and analysis of one single sample, even though in 

each case three identical samples are being used.  
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To prepare one single sample, 35 μL of LUVs (this volume includes the 1:1 

dilution with solution from the previous step) was first pipetted into an Eppendorf tube. 

Next, stock nanoparticle solution is mixed. The osmolarity of this solution must match 

the overall concentration of the LUV solution, and so it is useful to prepare 1 mL or so of 

the correct sugar solution—we mix 500 μL of 200 mOsm glucose with 500 μL of 

whichever concentration of glucose was used to dilute the LUVs with, then vortex for 1 

minute. We next add 1 μL of nanoparticles with enough glucose/sucrose solution to reach 

the desired concentration of nanoparticles, typically between 30 and 100 μL. We chose 1 

μL as the standard volume of nanoparticles to add into the solution because it is the 

smallest volume that could be reliably measured with our micropipettes. We next vortex 

the nanoparticle suspension for 1 minute, then sonicate for an additional minute. 

We then added and mixed 15 μL of nanoparticle solution to our single LUV 

sample. This was done very slowly and gently, adding first from the bottom of the 

Eppendorf and moving the micropipette upwards through the LUV sample as the 

nanoparticles were added, then repeatedly gently sucking up more liquid from the sample 

and adding it back in to mix the two together. This was found to be the least destructive 

way to mix the nanoparticles with the LUVs. Finally, once all samples were prepared, we 

placed all the samples onto a shaker at minimum speed for about 2 hours, to gently 

agitate the sample and allow it to quickly reach a steady state.  

Next, the sample was centrifuged at 8000 RPM for 60 minutes using a Labofuge 

400 centrifuge (Heraeus Instruments). Afterward centrifugation, the nanoparticle-covered 

LUVs have pelleted to the bottom of the Eppendorf, and the supernatant containing the 

unbound nanoparticles can be removed. To do so, 48μl was carefully removed from the 
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sample using a micropipette, making sure not to disturb the pellet. The supernatant was 

then pipetted into a new Eppendorf, and placed into an oven at 40 ºC for several hours to 

evaporate the water. This was done to increase the nanoparticle concentration in the re-

suspended supernatant, which is otherwise much too low to detect. Once all the 

supernatant liquid had evaporated away, we added 8μl of deionized H2O, then vortexed at 

high speed for 1 minute and sonicated for 3-5 minutes. 

We then added 6μl of deionized H2O to the pellet (this bursts any remaining 

LUVs), and sonicated for 3-5 minutes to break up the pellet. This gave us two 8 μL 

samples; one of the pellet, and the other of the supernatant. We next determine the 

nanoparticle concentration in each using the spectrographic analysis technique explained 

in detail in Chapter 6. 

 

Results and analysis 

Measuring the contact energy 

We specifically wanted to measure the way that the osmotic pressure and surface 

charge of a vesicle will dictate the contact energy between a nanoparticle and the bilayer. 

To first measure the contact energy of one particular type of vesicle with the 

nanoparticles, we made use of the Langmuir adsorption equation; this required us to 

measure the fraction of nanoparticles that bind onto a fixed volume of LUVs as a 

function of the concentration of nanoparticles in solution.  As an initial benchmark, we 

measured this value for pure DOPC LUVs with no applied osmotic pressure (i.e., with 

200 mOsm glucose in both the interior and exterior of the LUVs). 
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To do so, we first prepared a batch of LUVs by extrusion in a 200 mOsm glucose 

solution, and then diluted them in the same solution by a factor of 4. (This roughly 

corresponds to a total of 1.7×10
9
 LUVs/μL.) We then prepared a set of 6 samples of these 

LUVs of 35 μL each, then added a different concentration of nanoparticles to each 

sample (detailed in Table 1). We then centrifuged these samples as explained in the 

previous section and in Chapter 5. 

 

Sample # μL NPs 
μL glucose 

solution 
NP stock 

conc. (mM) 
μL NP stock 

added NP:LUV ratio 

1 1 140 0.07 15 1 

2 1 56 0.18 15 25 

3 1 28 0.34 15 50 

4 1 14 0.67 15 100 

5 2 13 1.33 15 200 

6 5 10 3.33 15 500 

 

Table 1. Concentration of Nanoparticles exposed to each set of LUVs. The volume of 

nanoparticles and volume of 200 mOsm glucose solution used to make each stock 

nanoparticle suspension is given in the 2
nd

 and 3
rd

 columns. Once mixed, a total of 15 μL 

of this stock solution was added to 35 μL of LUVs in each case. The approximate ratio of 

nanoparticles to LUVs is given in the final column. Assuming the LUV’s have an 

average diameter of 50 nm, a total of about 200 nanoparticles adhered to a single LUV 

roughly corresponds to the surface being fully packed with particles. 

  

After centrifugation, a small dark brown spot was clearly visible at the bottom of 

most of these samples, indicating that the nanoparticles had bound to the LUVs and 

formed a pellet during centrifugation. Each pellet was re-suspended in water and 

analyzed using a spectrometer. The results from this analysis indicated that, perplexingly, 

none of the re-suspended supernatant pellets had any nanoparticles in them (Figure 66). 
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Figure 62. Analysis of one sample spectra from sample #4 in Table 1. Our analysis 

indicated that it did not contain a detectable concentration of nanoparticles. 

 

This result was pervasive throughout all of our samples. Despite the fact that the 

re-suspended pellet visibly contained nanoparticles, no spectral trace could be measured. 

In each case the absorbance spectra from the sample was found to perfectly match the 

characteristic signature of the rehydrated lipids. We are unsure why this should be the 

case, since the minimum detectable concentration of nanoparticles was previously found 

to be close to 200 μM (as detailed in Chapter 5). This value roughly corresponds to a 

nanoparticle-to-LUV ratio of 25; for comparison, an LUV with 200 adsorbed 

nanoparticles corresponds to a fully packed surface. Thus, the concentration of 

nanoparticles in the pellet ought to have been detectable by our methods. In addition, 

after repeating this experiment several times it became clear that there was an issue with 

repeatability, insofar as identical samples frequently did not consistently form a pellet. 
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Although these particular experiments did not work, in principle the method used 

to determine the contact energy is sound. It may be useful for future students to reattempt 

such measurements with larger (say, 20-40nm) gold nanoparticles, which are much easier 

to detect at far lower concentrations.
4
 As was explained in Chapter 6, adhesion also 

triggers lateral interactions among particles as well as deformation of the vesicle shape, 

which complicate the use of the Langmuir adsorption equation—which is of limited 

applicability when particles are bound to more than one vesicle, or when the adhesion of 

particles decreases the number of available binding sites in a nonlinear fashion. 

 

Mapping adhesion strength with osmotic pressure and DOPS content 

Although our quantitative measurements were not successful for the reasons 

explained in the previous section, since the actual nanoparticle pellet is visible by eye 

once the samples have been centrifuged, we can still make some qualitative observations 

about how osmotic pressure and surface charge affect the binding rates.   

 

Sample # µl LUVs 
µl 200 mOsm 

solution 
µl 600 mOsm 

solution 
µl H2O Δp (mOsm) 

1 20 5 0 5 30 

2 20 8 0 2 10 

3 20 10 0 0 0 

4 20 5 2 3 -10 

5 20 8 2 0 -30 

      
Sample # µl NPs 

µl 200 mOsm 
solution 

µl 600 mOsm 
solution 

µl H2O Δp (mOsm) 

1 1 2 2 5 30 

2 1 3 2 4 10 

3 1 8.5 0.5 0 0 

4 1 1 3 5 -10 

5 1 2 3 4 -30 
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Table 2. Table of the applied osmolarity of each LUV sample. 10ul of solution was 

mixed and vortexed before being gently added to 20 μL samples of LUVs (top). To 

match the osmolarity of each sample, 10μl of nanoparticles and solution were mixed, 

vortexed, and sonicated (bottom). When deciding how to mix the sugar solution, the 

quantities of each species were chosen to avoid needing to measure out volumes less than 

1 μL. 

 

We first examine the effects of osmotic pressure. We prepared a sample of LUV’s 

composed of 95% DOPC lipids and 5% DOPS lipids (measured by mole fraction) in 

200mOsm glucose solution, and diluted them in an identical 200 mOsm glucose solution 

with a 2:3 ratio. We then prepared several 20 μL samples of these LUVs, and each 

sample was diluted in 10 µL of a different concentration glucose solution (Table 2, top).  

We then added 1 µL of nanoparticles to 9 μL solutions of solution, matching the osmotic 

pressure of each sample (Table 2, bottom). These were then vortexed for 1 minute and 

sonicated for 3 minutes, and then 10 μL of each nanoparticle solution was added to its 

corresponding LUV sample. This works out to a ratio of about 120 nanoparticles per 

LUV. After centrifugation, an image was taken of each sample pellet using a cell phone 

camera (Figure 67). Each of these samples was also analyzed spectroscopically, but just 

as before, no nanoparticles could be detected. 
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Figure 63. Centrifuged pellets containing DOPC LUVs of different osmolarity with 

adhered Au-TTMA nanoparticles. Two separate samples are pictured for each osmolarity. 

There does not appear to be any discernible trend linking the osmolarity of the LUVs 

with the adhesion of the nanoparticles. 

 

As can be seen from Figure 67, there does not appear to be any clear relationship 

between the osmolarity of the LUVs with the size or the opacity of the pellet. This 

experiment was repeated several additional times with no observable difference in result. 

As you will see, the finding that osmolarity does not impact nanoparticle adhesion was 

corroborated by additional experiments discussed in the next chapter. 

We next examine the effects of surface charge on the LUVs. To do so, we add a 

small amount of anionic DOPS lipid to the vesicles; higher DOPS content leads to 

stronger adhesion from the cationic Au-TTMA nanoparticles. We extruded 4 different 

sets of LUVs, each containing a different mole fraction of DOPS. 

Following the same basic procedure as in the previous experiment, we prepared 

35 μL samples of these LUVs in 200 mOsm glucose solution.  We then added 1 μL of 
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nanoparticles to 15 µL solutions of 200 mOsm glucose solution, then vortexed for 1 

minute and sonicated for 3 minutes. 15 µL of each nanoparticle solution was added to 

each LUV sample. Once more, an image was taken of each sample pellet using a cell 

phone camera after centrifugation (Figure 68).  

 

 

Figure 64.  Centrifuged pellets containing LUVs of different anionic surface charge, with 

adhered cationic Au-TTMA nanoparticles. The two samples with a higher DOPS content 

have a significantly larger and more obvious pellet. 

 

Unlike the osmolarity of the LUV, the amount of DOPS lipid in the vesicles has 

an unambiguous and measurable impact on the binding of the nanoparticles. Interestingly 

however, there appears to be a threshold value of DOPS composition needed for a pellet 

to form, since the samples with 0% and 3% DOPS did not for a pellet whereas the 

samples with 6% and 9% did. This particular observation is a primary focus of discussion 

in Chapter 6.  
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To get a better idea of what the impact of the increased DOPS content might be, 

we imaged a similar set of samples using dark-field microscopy. Using dark-field 

illumination, only the light that scatters off of the sample is imaged with the camera, 

appearing brightly against a dark background. With this method, highly reflective objects 

appear quite brightly in image. Although individual 7 nm gold nanoparticles are too small 

(and individual LUVs are too transparent) to see using dark field, a single LUV that is 

coated in adhered gold nanoparticles ought to be both large and reflective enough to be 

visible (Figure 69). 

 

 

Figure 65.  Dark-field image of LUVs with adhered nanoparticles. In the left panel, with 

no DOPS in the vesicles, large clumps of aggregated LUVs are visible. In the right panel, 

with a high amount of DOPS in the vesicles, LUVs with nanoparticles are just barely 

visible. 

 

Paradoxically, even though no pellet formed for the 0% DOPS LUVs, large 

nanoparticle-laden aggregates of vesicles were visible. It is unknown why these 
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aggregates did not sediment; even when centrifuged for over 2 hours no visible pellet 

ever formed. Conversely, the  5% DOPS LUVs formed an obvious pellet, despite there 

being no indication of adhesion when viewed under dark field illumination. At the very 

least, these observations (particularly the existence of aggregates) strongly imply that the 

conditions needed to apply the Langmuir adsorption equation to analyze our results—

namely, that the binding is not co-operative and that each nanoparticle binds onto one 

well-defined binding site—is likely not to be the case.  

In order to better understand this strange behavior, we next attempted to duplicate 

these experiments using much larger vesicles (50-100 μm), so that the effects of the 

adhesion of the nanoparticles could be both clearer and observable under bright-field 

microscopy. The outcome of these experiments is detailed in Chapter 6. 

 

Conclusions 

For reasons we did not anticipate, the interactions between the lipid bilayer and 

the LUVs were strong enough to deform the membranes and frustrate quantitative 

analysis of bound fraction. However, in principle the spectroscopic techniques outlined in 

this chapter and in Chapter 6 ought to still be a viable method for quantitatively 

measuring the interactions between nanoparticles and a membrane, provided that the 

particles do not substantially change the membrane morphology. Experiments were not 

successful for our 7 nm Au-TTMA nanoparticles, but perhaps larger cationic 

nanoparticles with a weaker charge density would be more successful. 

More importantly however, the unusual behavior observed for LUVs exposed to 

these nanoparticles prompted us to repeat our experiments using giant unilamellar 
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vesicles (GUVs). Because these investigations showed vesicle morphology, they were 

successful and they led us to a more complete understanding of why the results of our 

experiments with LUVs turned out the way that they did. In the next chapter, we detail all 

of our findings for these experiments. 
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