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ABSTRACT 

MICROBIAL COMPETITION IN BIOELECTROCHEMICAL SYSTEMS 

SEPTEMBER 2017 

VARUN N. SRINIVASAN, B.TECH., ANNA UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS-AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS-AMHERST 

Directed by: Dr. Caitlyn S. Butler 

Bioelectrochemical systems(BESs)/ microbial fuel fells (MFCs) are a well-studied 

potential technology for bioremediation and decentralized wastewater treatment. 

However, progress has been somewhat stalled at the bench-scale. In well controlled 

experiments electron recovery is high. In natural environments, wastewaters are complex 

and anode-respiring bacteria can be outcompeted in the presence of competing 

microorganisms, leading to a loss in electron-recovery and power production. 

Furthermore, the cathode of the MFC plays a vital role in providing flexibility for 

treatment options but is an understudied part of MFCs.  

Modelling Intracellular Competition in a Denitrifying Biocathode: 

One potential MFC configuration uses an organic-oxidizing anode biofilm and a 

denitrifying cathode biofilm. However nitrite, a denitrification intermediate with 

environmental and public health impacts, has been reported to accumulate. In this study, 
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before complete denitrification was achieved in a bench-scale, batch denitrifying cathode, 

nitrite concentrations reached 66.4 % ± 7.5 % of the initial nitrogen.  Common 

environmental inhibitors such as insufficient electron donor, dissolved oxygen, 

insufficient carbon source, and pH, were considered as a cause of the accumulation. 

Improvement in these conditions did not mitigate nitrite accumulation.  We present an 

activated sludge model with an integration of the Nernst-Monod model and indirect 

coupling of electrons (ASM-NICE) that effectively simulated the observed batch data, 

including nitrite-accumulation by coupling biocathodic electron transfer to intracellular 

electron mediators. The simulated half-saturation constants for mediated intracellular 

transfer of electrons during nitrate and nitrite reduction suggested a greater affinity for 

nitrate reduction when electrons are not limiting. The results imply that longer hydraulic 

retention times (HRTs) may be necessary for a denitrifying biocathode to ensure 

complete denitrification. These findings could play a role in designing full-scale MFC 

wastewater treatment systems to maximize total nitrogen removal.  

Experimental Evaluation of Responses of Anode-Respiring Communities to Nitrate: 

A poorly understood phenomenon with a potentially significant impact on electron 

recovery in MFCs is the role of competition between anode-respiring bacteria and 

microorganisms that use other electron acceptors. Nitrogen species are a major constituent 

of wastewater and nitrate can act as a competing electron acceptor in the anode. Studies 

investigating the impact of competition on population dynamics in mixed communities in 

the anode are lacking. Here, we investigated the impact of nitrate at different C/N ratios, 

1.8, 3.7 and 7.4 mg-C/mg-N, on the electrochemical performance and the biofilm 

community in mixed-culture chemostat MFCs. The electrochemical performance of the 
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MFC was not affected under electron donor non-limiting conditions, 7.4 mg-C/mg-N. At 

lower C/N ratios, electron donor limiting, electron recovery was significantly lower. The 

electrochemical performance recovered upon removal of nitrate at 3.7 mg-C/mg-N.  

Microbial community analysis showed a decrease of Deltaproteobacteria accompanied by 

an increase in Betaproteobacteria in response to nitrate at low C/N ratios, and no 

significant changes at 7.4 mg-C/mg-N. Transcriptional analysis showed increased 

transcription of nirK and nirS genes during nitrate flux suggesting that denitrification to N2 

(and not facultative nitrate reduction by Geobacter spp.) might be the primary response to 

perturbation with nitrate. 

Modelling Interspecies Competition in the Anode of a Microbial Fuel Cell: 

MFCs offer great promise for simultaneous treatment of wastewater and energy recovery. 

Even though there have been extensive experimental studies of multi-species anode-

respiring biofilms, models and process optimization studies have been scarce. The 

formulation and evaluation of models is a critical step in the application of MFCs to 

wastewater treatment and bioremediation. The purpose of this study was to formulate a 

model that could simulate the effect of influx of a competing electron acceptor such as 

nitrate on the anode biofilm community. A model was formulated considering two 

distinct communities of bacteria: an anode-respiring community (not capable of nitrate 

reduction) and a denitrifying community (not capable of anode-respiration). A 

competitive scenario involving the influx of acetate and nitrate at a C/N ratio of 1.8 mg-

C/mg-N was used to calibrate the model using experimental data. Calibration results 

indicate that facultative reduction of nitrate by facultative anode-respiring bacteria could 

be an important factor playing a role in the robustness and resilience of the anode-
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biofilms to fluxes of nitrate. Sensitivity analyses revealed that the biofilm retention 

coefficient (biofilm detachment rate) and species-specific growth kinetic parameters 

could play a significant role in the robustness of anode communities to influx of nitrate. 

Further investigation of change in detachment rate in response to the presence of nitrate 

in bulk solution is required.  
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CHAPTER 1 

INTRODUCTION 

1.1  Wastewater Treatment 

Wastewater treatment is a necessity for public health and the environment. It 

serves to remove biological oxygen demand (BOD), total suspended solids and fecal 

coliform (Metcalf & Eddy, 2003) . But more recently, nutrient removal has become a 

recommended treatment requirement (EPA, 2001). This is due to the fact that 25 % of 

all water body impairments in the US are linked to nutrient-related causes (EPA, 2007). 

Even though the nutrient-related impairments could be due to both point and non-point 

source discharges, point source discharges are easier to manage and control. Hence an 

ever increasing number of point-source discharges, including wastewater treatment 

plants, have discharge effluent limits for nitrogen and phosphorus (EPA, 2007).  

Wastewater treatment, as it is done today, is an energy intensive process and in 

most cases require external substrate addition for nutrient removal (Metcalf & Eddy, 

2003). In addition to this, nutrient and energy recovery are also not accomplished 

(Shizas et al., 2005). It is estimated that wastewater treatment accounts for 2% of the 

total energy consumption in the United States (EPRI, 1994). Aeration for the activated 

sludge treatment process accounts for an average of 55.6% of the total energy 

consumption for wastewater treatment(Tchobanoglous et al., 2003). With increasing 

demand for higher quality effluents, the energy demand for wastewater treatment is 

likely to increase.  

The energetic value of municipal wastewater has been estimated by different 

studies to be 6.3 kJ/L-7.8 kJ/L (Channiwala and Parikh, 2002; Heidrich et al., 2011; 
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Shizas et al., 2005). This translates to a theoretical energy of ~6000 kWh/MGal in 

wastewater. With increasing levels of energy-intensive treatment required, a cost 

effective and energy efficient process is required.  

Anaerobic digestion can help recover energy from wastewater treatment 

facilities. This process is used for concentrated waste streams of greater than1000 mg-

COD/L. The process is capable of handling high volumetric loading rates, minimizes 

the sludge produced and yields methane as an energy product. The temperature of the 

digester is often maintained above 30 °C. For these reasons, anaerobic digestion is used 

as a process for solids stabilization and reduction, rather than for municipal wastewater 

treatment. Anaerobic digestion has poor efficiency when treating dilute wastewater 

streams of 1000 mg COD/L or less. Also, the susceptibility of the process to changes in 

temperature and influx of toxic constituents make it an unstable process for municipal 

wastewater treatment. If used for wastewater secondary treatment, it needs to be 

followed up by an aerobic polishing step in order to ensure effluent quality. 

Thermodynamic limitations in a Carnot engine restrict the recovery of energy from 

methane, that is produced during anaerobic digestion, to only 35%. Considering that, 

only 70% of the gas produced in a digester is methane with the rest being carbon 

dioxide, hydrogen sulfide, nitrogen, hydrogen and water vapor, the extractable energy 

from the digester gas is limited. The gas also has to be scrubbed of these other 

constituents before energy can be extracted (Metcalf & Eddy., 2003). The digester gas 

can also be used for cogeneration which is a system for generating electricity and the 

jacket water from the internal combustion engine can be used for heating the digester.  
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Microbial fuel cells (MFC) convert energy, available in a biodegradable 

substrate, directly to electricity. This can be achieved using bacteria that can use an 

insoluble electron acceptor, such as the anode of a MFC, to transfer electrons. In a 

biocathode, bacteria are capable of accepting electrons from an external circuit (anode) 

and are capable of using an oxidized contaminant, such as nitrate, perchlorate, etc., as 

their electron acceptor. This decoupling of the electron donor and electron acceptor 

reactions is advantageous because it makes the MFC capable of treating a wide variety 

of reduced substrates in the anode and oxidized contaminants in the cathode. MFCs are 

capable of operating at temperatures below 20 °C and at low substrate concentrations 

(Aelterman et al., 2006; Pham et al., 2006).  

1.2  Microbial Fuel Cells 

The first observation of an electromotive force (EMF) generated through 

oxidation of a substrate through microbiological activity was made by Michael Potter in 

1911 (Potter, 1911). He found that microorganisms were capable of producing a 

sustainable direct current using glucose as a substrate. But MFCs as an energy-efficient 

treatment process for organic waste emerged as a concept due to the drive for 

sustainable energy production and its potential as an application in remote areas 

without access to a grid such as developing countries and in space missions.  

Habermann and Pommer first explored the idea of using a MFC for treating domestic 

wastewater (Habermann and Pommer, 1991).  

In a MFC, microorganisms oxidize reduced substrates at the anode and use the 

anode electrode as an electron acceptor. The electrons are then transported through an 

external load-bearing circuit to the cathode.  Protons produced in the anode are 
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transported through an exchange membrane to the cathode where the protons and 

electrons react with a soluble electron acceptor (Figure 1.1). The substrate at the anode, 

which serves as an electron donor, is any substrate that the community in the anode can 

metabolize. This may include simple substrates such as acetate, glucose, etc. to 

complex organic matter in industrial, municipal and agricultural wastewaters 

(Chaudhuri and Lovley, 2003; Habermann and Pommer, 1991; He et al., 2005; Li et al., 

2010; Liu et al., 2005a; Rabaey et al., 2003; Wen et al., 2010). Other substrates for 

microorganisms in the anode that have been shown to be suitable are sulfides, sea water 

organics and cellulose(Bass et al., 2007; Rezaei et al., 2008; Shantaram et al., 2005; 

Tender et al., 2002). Oxidized electron acceptors that have been used in the cathode are 

nitrate, nitrite, perchlorate, oxygen and manganese oxide and their reduction can be 

mediated wither biotically and abiotically (Butler et al., 2010; Butler and Nerenberg, 

2010; Lovley and Phillips, 1988; Rhoads et al., 2005; Virdis et al., 2008).  



5 

Figure 1.1: Schematic of a Microbial Fuel Cell 

MFCs have a number of advantages for wastewater treatment. MFCs are an energy-

producing treatment process with a low biomass yield (anaerobic growth). Voltage/ 

current produced also provides a good monitoring tool to track the performance of the 

MFC (Li et al., 2014; Logan and Regan, 2006a).  Other advantages are capability for 

off-grid applications and direct electricity generation. (Figure 1.2). 
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Figure 1.2: Advantages of a Microbial Fuel Cell for Wastewater Treatment (Li et 

al., 2014) 

MFC research has advanced exponentially in the last decade (Figure 1.3). Power 

production has increased orders of magnitude from 0.1 mW/m2 to 1500 mW/m2 (Logan 

and Regan, 2006b). This has been largely due to improvements in MFC architecture, new 

electrode materials and design and catalysts, elucidation of causes of power losses, proton 

exchange membranes and understanding of microbial ecology and process in the anode 

and the cathode. The following sections place emphasis on these improvements and 
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research. Scaling-up MFCs and roadblocks to practical application of this technology are 

also discussed in the following sections.  

Figure 1.3: Number of Publications per year for subject work 'Microbial Fuel 

Cell' (ISI Web of Science) 

1.2.1 MFC Design and Configuration 

Several configurations and designs of MFCs have been tested and studied (Figure 1.4). 

The most -commonly used system is the two-chamber H-cell consisting of two bottles 

connected by a tube. The two bottles are separated by a cation exchange membrane 

(CEM) or a proton exchange membrane (PEM). This type of design separates the 

electrolytes of the two chambers but allows for proton transport from the anode to the 

cathode. The anode and the cathode are usually constructed using a graphite or carbon 

material. These could be in the form of plates, granules or cloth. The anolyte (anode 

media) is a phosphate-buffered growth media innoculaed with a bacterial consortia, 
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which is typically either a pure culture of a bacterial species/strain or a mixed culture of 

bacteria. The catholyte (cathode media) is aerated phosphate buffer or ferricyanide 

solution. Specific details about the anolyte and the catholyte are discussed in the 

following sections. Although this design has been used by many researchers to examine 

the effect of different substrates, different anode inoculum, electrode surface area and 

presence of electron shuttles (Bond and Lovley, 2003; Chaudhuri and Lovley, 2003; Liu 

and Logan, 2004), the design is not feasible as a scalable design.  

Another design that is very commonly used is the single-chamber air cathode MFC (Liu 

et al., 2004; Liu and Logan, 2004). In this design, the cathode is placed in direct contact 

with air thus eliminating the need for constant input of a cathode electrolyte. The 

CEM/PEM is an expensive part of the MFC. Eliminating the membrane would help in 

making the implementation of a full-scale MFC more cost-efficient. Liu and Logan, 2004 

found that eliminating the PEM increased the maximum power density of the MFC but 

decreased the columbic efficiency (CE). CE is the ratio of electrons conducted through 

the external circuit to the theoretical amount of electrons available in the substrate. This 

suggested that oxygen crossover from the cathode to the anode was occurring. 

Microorganisms in the anode could use the oxygen as an alternate electron acceptor thus 

competing for the electron donor and thus decreasing CE. A polytetrafluoroethylene 

(PTFE) coating was added, in a subsequent study, to limit oxygen crossover into the 

anode. This addition improved both the CE and the power density of the MFC (Cheng et 

al., 2006). 
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Figure 1.4: Design of MFCs by various Classification Criteria(Zhou et al., 2013). 

The cell voltage in bioelectrochemical systems (BESs) is set by the open circuit voltage 

(OCV). The actual cell voltage is usually lower than the OCV due to losses that occur as 
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current is produced. These losses are due to electrode overpotentials and ohmic losses of 

the cell.  

𝐸 = 𝑂𝐶𝑉 − ∆𝐸𝜂 − ∆𝐸Ω = 𝑂𝐶𝑉 − (𝛴𝜂𝑎𝑛𝑜𝑑𝑒 − 𝛴𝜂𝑐𝑎𝑡ℎ𝑜𝑑𝑒) − 𝐼𝛴𝑅Ω Equation 1.1 

where E is the potential difference between the anode and the cathode, ∆𝐸𝜂 is 

overpotential losses, ∆𝐸Ω is ohmic losses, 𝛴𝜂𝑎𝑛𝑜𝑑𝑒 is the sum of overpotential losses at 

the anode, 𝛴𝜂𝑐𝑎𝑡ℎ𝑜𝑑𝑒 is the sum of overpotential losses at the cathode, I is the current 

produced and 𝛴𝑅Ω is the total ohmic resistance.  

Deviations from the ideal equilibrium potential are called overpotentials and these 

lead to a decrease in the useful cell voltage of the cell. Overpotential at the anode are 

caused by: activation, mass transport and bacterial metabolism losses (Logan, 2008). 

Activation losses are due to energy lost during oxidation and reduction reactions and due 

to electron transfer from the cell to the anode surface. Mass transport losses occur due to 

insufficient flux of reactants or products towards or away from the electrodes. At the 

anode, substrate flux to the anode has not been shown to cause losses.  

Ohmic losses arise due to charge transfer resistance. Charge transfer resistance is 

caused by resistance to electron transfer through the electrodes and through conductive 

components of the circuitry and ion transfer through the electrolytes. The ohmic 

resistance can be determined by the current-interrupt method(Aelterman et al., 2006; 

Clauwaert et al., 2007b) or by electrochemical impedance spectroscopy (He and 

Mansfeld, 2009; Malvankar et al., 2012; Marsili et al., 2008). The ohmic loss across the 

membrane can be determined by using reference electrodes in the anode and the cathode 
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and measuring the voltage difference between the two reference electrodes(ter Heijne et 

al., 2006).  

1.2.2 Anode 

The anode of the MFC is the electron-generating chamber. The anode electrode is 

usually constructed of graphite or carbon materials since they are inexpensive, relatively 

non-reactive, durable and easily obtained. Bacteria in the anode oxidize substrates, which 

act as electron donors, and use the anode electrode as the electron acceptor. 

1.2.2.1 Anode Potential 

Anode potential (Ean) is defined as the potential difference between the anode and the 

surrounding electrolyte. Ean also refers to the electrode’s affinity to electrons. It is 

determined by multiple factors such as electrode material, the electrolyte, the reactions at 

the electrode and the microorganisms reducing the anode. The anode potential can 

influence the community structure of the biofilm (Commault et al., 2013; Torres et al., 

2009, 2007; Wagner et al., 2010). Determining optimal anode potentials is integral to 

optimizing the startup and performance of BESs. The maximum energy that a cell can 

capture from the oxidation of an electron donor coupled with the reduction of an electron 

acceptor is calculated from the Gibbs free energy using the following equation: 

Δ𝐺0′ = −𝑛𝐹Δ𝐸0

′ Equation 1.2 

where ΔG0’ is the Gibbs free energy at standard biological conditions (T=25 0C, pH=7), n 

is the number of electrons transferred, F is the Faraday’s constant (96,485 C/mol e-) and 

ΔE0
’ is the difference in the potentials between the electron donor and the electron 
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acceptor for a particular chemical reaction. In the case of ARB, the electron acceptor is 

the anode and the redox potential for the anode is the anode potential.  

 Optimizing the anode potential is necessary to get optimal biofilm growth and power 

production in the MFC. For electron transfer from the microbial cell to the electrode to be 

thermodynamically favorable, the anode should have a higher potential than the protein 

or mediator performing the electron transfer (Figure 1.5).  Increasing the potential 

difference between the anode and the cathode optimizes the power output and increases 

electron transfer. This implies that the anode potential should be as negative as possible. 

On the contrary, more negative anode potentials (more reducing environment) may favor 

the growth of slow-growing microorganisms leading to a slow establishment of the anode 

communities. Bacterial metabolism losses occur because bacteria derive energy from 

substrate oxidation. This is an inherent limitation in the MFC technology. Bacterial 

growth is important for extracting usable energy from organic substrates using a MFC. 

However, bacteria need energy for their maintenance and growth needs. The greater the 

bacterial growth, greater is the amount of energy lost. In order to recover maximum 

energy through the external circuit, the anode potential needs to be as negative as 

possible.  

Several studies have observed the effect of growing anode-respiring bacteria (ARB) at 

different anode potentials. Busalmen et al.(2008) showed that Geobacter sulfurreducens 

showed different electrochemical responses when adapted to two different anode 

potentials (0.1 or 0.4V vs SHE) which suggests the use of different respiratory 

mechanisms at different potentials. Finkelstein et al.(2006)  acclimated a mixed culture 

benthic MFC at different anode potentials (-0.058 to 0.618 V vs Ag/AgCl). They 
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concluded that the current production was similar for the different anode potentials. 

However, they observed that the ARB communities regulated their respiratory pathways 

based on the anode potential to maximize energy efficiency. Another study (X. Wang et 

al., 2009) found that an anode poised at a more positive potential of 0.2 V vs Ag/AgCl 

resulted in a faster acclimation (with respect to current production) of the anodic 

community. 

Figure 1.5: Standard potentials of common electron donors and acceptors and the 

relationship between anode, cathode potentials and the voltage generated (Rabaey 

and Verstraete, 2005). 

Torres et al. (2009) found that when the anodic community was adapted using different 

anode potentials (-0.15, -0.09, 0.02 and 0.37 V vs SHE), the electrodes poised at -0.15 

and -0.09 V vs SHE showed faster biofilm growth and produced the highest current 

densities ( > 8 A/m2 for -0.15 V and > 6 A/m2 for 0.09 V) compared to the electrodes 



14 

poised at 0.02 V (< 2 A/m2) and 0.37 V (< 0.6 A/m2). Cyclic voltammograms showed 

that the electrodes poised at the lowest anode potentials (-0.15 and -0.09 V vs SHE) 

showed evidence of extracellular electron transport. These electrodes also showed 

stronger selection for known ARB compared to the ones at more positive potentials 

which had more diverse communities. Even though several studies have attempted to 

determine ideal anode potentials for the acclimation and operation of an anode biofilm, 

there has been no agreement on the optimal anode potential. This could be due to the fact 

that the anode potential and the acclimation of an anode biofilm is influenced by not only 

the poised potential but also several other factors such as electrode and reactor 

configuration, electrolyte composition and the starting inoculum. For example, Wagner et 

al. (2010) argued that even though Torres et al. observed that the electrodes poised at -

0.15 V and -0.09 V vs SHE showed larger current densities and faster startup times 

compared to electrodes poised at 0.02 and 0.37 V vs SHE, their reactor setup had four 

anode electrodes poised at different potentials in the same chamber. Biofilms growing on 

one electrode could produce mediators that affect the growth of the biofilm on another 

electrode and the electrodes also have different charges that could affect the growth of the 

biofilm on the different electrodes. This argument is supported by Parot et al. (2008) 

where they observed that the electrode poised at the lower potential (0.54 V vs SHE) 

showed the highest maximum current density in the multiple electrode/single chamber 

arrangement with contrasting results in the single electrode/multiple reactor arrangement. 

There, currently, is no agreement on the ideal anode potential for a MFC or other 

BESs(Wagner et al., 2010).  
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1.2.2.2 Proton Accumulation 

Proton flux, produced at the anode, can also limit power production. Proton accumulation 

can lead to pH decrease locally inside the biofilm leading to suboptimal growth of 

bacteria. Franks et al. (2009) found that pH can be almost 0.9 units less near the anode 

surface compared to the bulk fluid and they also demonstrated that this drop in pH to 6.1 

from 7 can limit the growth of G.sulfurreducens, a known ARB. Torres et al. (2008) 

observed that proton transport out of an anode biofilm could cause current density 

limitations in a MFC and proton accumulation increased with increasing current densities 

(Figure 1.6). 

Figure 1.6: Proton Transport when Acetate is used as an Electron Donor in 

the Anode (Torres et al., 2008a). 
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1.2.2.3 Mechanisms of Electron Transfer 

A critical limiting factor in the performance of BESs is electron transfer from the 

microorganisms to the electrodes. Electron transfer outside of the cell must lead to a 

redox active species that is capable of transferring an electron to the electrode. There are 

several mechanisms of electron transfer that have been documented in BESs. However, a 

classification can be made based on the type of species facilitating the electron transfer: 

direct electron transfer (DET) using a membrane bound species (Bond et al., 2002; Bond 

and Lovley, 2003; Nevin and Lovley, 2000) and mediated electron transfer (MET) using 

soluble mediators/shuttles (Hernandez and Newman, 2001; Newman and Kolter, 2000). 

 DET takes place through a direct physical contact of the bacterial cell. The first 

suggestion of an ability to transfer electrons directly to an electrode by Shewenella 

putrefaciens was shown by Kim et al., 1999.  It was later shown that S.putrefaciens could 

produce electron shuttles which could account for the electron transfer to the electrode. 

This was supported by the observation that the optical density in the solution surrounding 

the electrode increased with increasing current suggesting a growth in the planktonic cells 

concentration rather than on the electrode (Lovley, 2006). DET can occur via two 

mechanisms: short-range and long-range electron transfer. One of the most extensively 

studied microorganisms capable of electron transfer to a solid electron acceptor is 

Geobacter sulfurreducens. This microorganism and Geobacter spp. as a whole have 

become a model genera of studying electron transfer mechanisms (Patrick D Kiely et al., 

2011; Lovley, 2006; Sydow et al., 2014). Other microorganisms have also been shown to 

have anode respiring capabilities with different electron transfer mechanisms (Table 1.1). 
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1.3 Microbial Interactions: 

The sociobiology of microorganisms is critical in almost all microbial communities and 

can influence the assembly and ecology of a microbial community and responses and 

outcome of disturbances to the community. These interactions can take the form of 

communication, cooperation, competition and cheating. Competition is the focus of this 

section since it is the focus of the dissertation.  

1.3.1 Competition: 

The advent of high throughput sequencing has revealed tremendous microbial diversity. 

Underlying the quantitatively dominant microbial populations is a highly diverse but low 

abundance population which has been termed as the rare biosphere (Sogin et al., 2006). 

This phenomenon has also been documented in bioelectrochemical systems. 
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Table 1.1: Some electrode-respiring bacteria and electron 

transfer mechanisms(Zhou et al., 2013) 

Kiely et al (2010) observed that, in a mixed-culture MFC fed with formic acid, 

Paracoccus genera were revealed to be the most abundant (30%) in the community as 

revealed by 16S rRNA clone library construction and sequencing even though the power 

density produced by a P.denitrificans isolate from the anodic community was only half of 

what the mixed-culture MFC produced. A S.putrefaciens isolate produced even higher 

power than P.denitrificans even though the abundance of Shewenella was not detected by 

clone library sequencing. This suggested that there are diverse low-abundance 

communities existing in the anode biofilm of the MFC which could harbor anode 
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respiring species. It also suggests that these diverse communities could have 

microorganisms with various alternate metabolisms which could lead to competition for 

nutritional resources.  

Nutritional resources are a focal point of microbial competition. The relationship between 

a limiting nutritional resource and bacterial growth was first demonstrated by Jacques 

Monod (Monod, 1949). Monod also developed equations describing this behavior 

μ =  μ𝑚𝑎𝑥

𝑆

𝐾𝑠 + 𝑆
Equation 1.3 

where µ is the specific growth rate of the microorganism (time-1), µmax is the maximum 

specific growth rate (time-1) which is a characteristic of the particular species and the 

particular substrate, S is the substrate concentration (M) and Ks is the half-saturation 

constant (M) which is defined as the substrate concentration at which the specific growth 

rate is half of the maximum specific growth rate (µ=µmax/2).  Equation 1.3 considers only 

a single limiting substrate. For dual substrate limitation kinetics, the following modified 

version can be used to model the growth of a microorganism (Bae and Rittmann, 1996) 

μ

=  μ𝑚𝑎𝑥 (
𝑆𝑑

𝐾𝑠𝑑 + 𝑆𝑑
)(

𝑆𝑎

𝐾𝑠𝑎 + 𝑆𝑎
) 

Equation 1.4 

where Sa and Sd are the electron acceptor and electron donor concentrations respectively, 

Ksd and Ksa are the half-saturation constants for the electron donor and the electron 

acceptor respectively. 

The Monod microbial growth model does not explicitly provide a model for describing 

competition between cells, species or genera but provides a fundamental description of 
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the dependence of microbial growth on limiting resource concentrations. This was used 

by Tilman (Tilman, 1977) to examine the competition between two different algal 

populations as a function of shared limiting resources. This resource ratio competition 

model used the limiting resource growth kinetic model developed by Monod and 

developed a quantitative framework to determine the outcome of a competitive scenario 

between two species sharing a limiting resource. Consider species 1 and species 2 

competing for a single limiting resource. For both species to coexist the following 

quantitative relationship was developed  

𝐾𝑠
1

μ𝑚𝑎𝑥
1 − 𝐷

=
𝐾𝑠

2

μ𝑚𝑎𝑥
2 − 𝐷

Equation 1.5 

where 𝐾𝑠
1 and 𝐾𝑠

2 are the half-saturation constant for species 1 and species 2 for the

common resource, μ𝑚𝑎𝑥
1  and μ𝑚𝑎𝑥

2  are the maximum specific growth rates for species 1 

and species 2 and D is the dilution rate. Species 1 will outcompete species 2 when 

𝐾𝑠
1

μ𝑚𝑎𝑥
1 − 𝐷

𝐾𝑠
2

μ𝑚𝑎𝑥 − 𝐷
< 

2
 Equation 1.6 

For competition to occur, the common resource or resources that the species are 

competing for should be in limiting concentrations. This framework developed for 

competition can be applied to BESs as shown in the next section.  

1.3.2 Competition in BESs: 

Bioelectrochemical systems utilize microorganisms that are capable of using electrodes 

as their electron acceptor (anode) or as their electron donor (cathode). This section is 

focused on anode-respiring bacteria (ARB). However, the same concepts can be applied 

to the cathode as shown in Chapter 2. In mixed-culture anode-biofilms, ARB compete 
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with other functional groups of bacteria such as fermenters, acetogens and methanogens 

in the absence of other electron acceptors in the anode. In the presence of competing 

electron acceptors such as nitrate, oxygen, sulfate, etc., microorganisms that can utilize 

these electron acceptors can also act as competitors. An understanding of competition in 

anode biofilms will aid in improving the performance of BESs.  

The primary functional performers in BESs are ARB. Competition can occur for common 

resources such as for space (electrode surface area), electron donor, electron acceptor and 

other trace nutrients. When microorganisms, that are not capable of electrode respiration, 

compete with ERB, loss in power production and columbic efficiency can occur.  The 

focus of this section is on competition in the anode.  

The Monod model works well for dissolved substrates but in a BES, the ARB are limited 

by a dissolved substrate (electron donor) and/or a solid substrate (electron acceptor). In 

the anode of a MFC, the solid electrode is the electron acceptor. It serves as a solid 

conductor for electrons to pass through in response to the electrical-potential gradient. 

The ability of the electrode to act as an electron acceptor is determined by the anode 

potential. The above equation can be modified using the Nernst equation (Equation 1.7) 

as a starting point: 

𝐸 = 𝐸𝑜 +
𝑅𝑇

𝑛𝐹
𝑙𝑛𝑄 Equation 1.7 

μ =  μ𝑚𝑎𝑥 (
𝑆𝑑

𝐾𝑠𝑑 + 𝑆𝑑
)(

1

1 + exp [−
𝐹

𝑅𝑇 𝜂]
) Equation 1.8 
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where E is the half-cell potential, Eo is the standard redox potential, n is the number of 

electrons, Q is the reaction quotient,  F is the Faraday constant, R is the gas constant, T is 

the temperature (°C) and 𝜂 = (Eanode- EKa) , where Eanode is the anode potential and EKa is 

the anodic electron acceptor potential for the half-maximum rate (Marcus et al., 2007).  

The electron donor part of the equation remains the same while the electron acceptor part 

is modified using the Nernst equation. The Monod equation and hence the Nernst-Monod 

equation were developed for well-mixed suspended systems. BESs are biofilm systems 

and hence have diffusional limitations that a well-mixed suspended system might not 

have. Hence the equation has to be modified to include the diffusional limitations that 

biofilm have.  

μ =  μ𝑚𝑎𝑥 𝑋𝑓𝐿𝑓(
𝑆𝑑

𝐾𝑠𝑑 + 𝑆𝑑
)(

1

1 + exp [−
𝐹

𝑅𝑇 𝜂]
) Equation 1.9 

where Xf  is the biofilm cell density and Lf is the depth of the biofilm. For thin biofilms, 

an assumption can be made that there are no diffusional limitation and hence the system 

behaves like a suspended system. The thickness of the biofilms in BESs depend on a host 

of different factors such as the electrode material, flow rates, polarizing potential on the 

electrode, electron donor concentration, etc. 

One of the most common forms of competition in BESs is from microorganisms capable 

of respiring on alternate electron acceptors such as oxygen, nitrate, nitrite, sulfate, etc. In 

this case, the resource the microorganisms are competing for is the electron donor. In a 

MFC, oxygen is commonly used in the cathode as an electron acceptor (air cathode). 

Since the anode and cathode are separated by a membrane, the diffusion of oxygen from 
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the cathode into the anode is controlled by the permeability of the membrane to oxygen. 

Chae et al. (2008) estimated the oxygen mass transfer coefficient and the oxygen 

diffusion coefficient for Nafion, which is one of the more commonly used PEMs, to be 

2.80 X 10-4 cm/s and 5.35 X 10-6 cm2/s when a 50 mM phosphate buffer solution was 

used as the catholyte.  They also determined that the dissolved oxygen (DO) level in the 

anode of a two-chamber uninnoculated MFC increased from 0.3 to 1.5 mg/L in 700 

minutes when oxygen was used in the cathode. It has been shown that the oxygen 

crossover can be lowered by adding a diffusion layer on the cathode of an air-cathode 

MFC, thus improving the performance of the MFC (Cheng et al., 2006). Butler and 

Nerenberg (2010) showed that the rate of diffusion of oxygen from the cathode to the 

anode was three times higher in MFCs that lacked diffusion-layers and the power density 

was also lower compared to MFCs with diffusion-layer cathodes. They also observed that 

the MFCs with diffusion-layer cathodes had higher abundance of bacteria of genus 

Geobacter, which are a known group of ARB. This suggests that the presence of oxygen, 

an alternate electron acceptor, can cause changes in microbial ecology leading to 

decreased performance due to decreased coulombic efficiency and lower relative 

abundance of ARB in the anode.  

The effect of nitrate on bioelectrochemical biofilms is of particular interest because 

nitrogen is a key nutrient in the effluent of a wastewater treatment plant that is regulated 

by the EPA. Simultaneous nitrification and denitrification systems are key to removing 

nitrogen from wastewater and can lead to the presence of nitrate in the influent to the 

anode of a BES depending on the position of a BES in a wastewater treatment train (such 

as pre-denitrification). The effect of nitrate on microbial communities enriched for anode 



24 

respiration is of particular interest since BESs have been used for nitrogen removal for 

wastewater and groundwater.  Denitrifying BESs have been implemented as single-

chamber air cathode MFCs (Yan et al., 2012), denitrifying biocathode MFCs (Gregoire et 

al., 2014; He and Angenent, 2006; Nguyen et al., 2014) and in-situ groundwater 

denitrifying BESs (Tong and He, 2014; Zhang and Angelidaki, 2013). Nitrate is a 

competing electron acceptor in the anode and can lead to loss in coulombic efficiency and 

consequently power production. Factors such as crossover of nitrate from a biocathode 

into the anode, presence of nitrate in a single-chamber air cathode MFC, etc. can lead to 

nitrate being present in the anode and cause lower electrochemical performance in the 

anode of the MFC. 

Several studies have observed production of methane in the anode of an MFC (Freguia et 

al., 2007; Jung and Regan, 2011; Lee et al., 2008; Torres et al., 2007). Even though 

methane production with acetate as the electron donor is low (Lee et al., 2008), the 

production of methane has been shown to be significant when fermentable substrates 

such as glucose (Freguia et al., 2008a; Lee et al., 2008) and ethanol (Parameswaran et al., 

2009; Torres et al., 2007) are fed to the anode as the electron donor. Studies with more 

complex anode influents such as with digested anaerobic sludge and sludge from a 

primary clarifier have shown significant methane production with only little electricity 

generation suggesting that as the complexity of the anode influent increases, methane 

production increases (Ge et al., 2013). Similar results have been observed with microbial 

electrolysis cells (MECs) operated with swine wastewater and acetate (Wagner et al., 

2009; A. Wang et al., 2009). 
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The presence of such competing microorganisms could lead to ARB being outcompeted 

from the microbial community and getting washed out. This could lead to a loss in 

electrochemical performance of BESs. A systematic assessment of the robustness and 

resilience of BES biofilms to perturbations and alternate electron acceptors (AEAs), that 

can act as a resource for competing metabolisms, is required. 

1.4 Genetic/Evolutionary Algorithms 

Single objective evolutionary algorithms (EA) are inspired by Darwin’s theory of 

evolution. They are an attractive method for solving parametric estimation problems due 

to their non-specific nature. Furthermore, numerical methods (which are more commonly 

used) can get stuck in a local optimum and thus provide a sub-optimal solution. Thus, 

EAs are particularly useful for solving non-linear models. 

In general, EAs start with a set of candidate solutions (population) that are randomly 

generated using a lower and upper limit for each of the parameters to be estimated. The 

members of the population are evaluated based on an objective function. This could be 

any objective that could be used to evaluate the performance of a mode such as root mean 

square error (RMSE) or sum of squares of residuals. In most cases, the objective will be 

to minimize this function. In each iteration (generation), the better solutions (parents) are 

selected based on the objective function and are used to generate a new set of solutions 

(offsprings). This means that if the fitness of a member of the population is great (for 

example, low RMSE) then that member has a higher probability of being selected as a 

parent for the next generation. The selection is made randomly, however the probability 

that a member will get selected as a parent is higher if its fitness is higher. This is the 

selection process for a single objective optimization. In the case where there is more than 
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one objective (eg: chemical dosing cost vs performance), a different method has to be 

employed to select the parents. The most commonly used method is non-dominated 

sorting. For multi-objective optimization, the basic assumption is that there is not a single 

best solution with respect to all objectives. Hence, in multi-objective optimization, there 

is a set of solutions that are superior to the rest of the solutions. These solutions are 

termed Pareto-optimal or non-dominated solutions. Once, the parents are selected, the 

members of the next generation (offsprings) are created using two genetic processes: 

crossover and mutation.  Usually a certain proportion of the parents are selected for 

crossover while the rest of the parents are mutated. Crossover mixes two parents to create 

a new offspring.  Mutation randomly changes the parameters to a new value and creates a 

new member of the next generation. An additional genetic process that can be 

incorporated is called elitism. Elitism involves copying a small proportion of the fittest 

members of the population, unchanged, into the next generation. This ensures that the 

fittest candidates at each generation are propagated to the next generation. These 

members are eligible for crossover and mutation if more fitter members of the population 

emerge at future generations. The new generation is thus created and all the steps are 

iteratively performed. The EA stops when a converging criterion is reached. This 

converging criterion can be a predetermined condition such as number of generations, 

when the value of the most fit objective function has not changed in a certain number of 

generations, etc. The general format outlined here is used for parametric estimation for 

the models that have been developed in this dissertation.  
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CHAPTER 2 

MODELLING INTRACELLULAR COMPETITION IN A 

DENITRIFYING BIOCATHODE 

Modified from originally published version (Srinivasan, V.; Weinrich, J.; Butler, C. 

Nitrite Accumulation in a Denitrifying Biocathode Microbial Fuel Cell. Environ. Sci. 

Water Res. Technol. 2016.) 

2.1 Introduction 

Microbial fuel cells (MFC) have emerged as a potentially energy-efficient treatment 

strategy with promising applications in wastewater (Clauwaert et al., 2008; Franks and 

Nevin, 2010; Logan, 2010; Logan et al., 2006), in-situ environmental remediation 

(Gregory et al., 2004; Gregory and Lovley, 2005; Strycharz et al., 2008) and 

decentralized treatment systems (Castro et al., 2014). A particular advantage of MFC 

application as a treatment strategy is the ability to decouple the electron donor from the 

electron acceptor in biological reactions, allowing the oxidation of natural or wastewater 

organics to facilitate the reduction of an oxidized contaminant at the cathode. A variety of 

oxidized contaminants have been reduced in this way including nitrate, perchlorate, 

uranium, trichloroethane and dichromate (Butler and Nerenberg, 2010; Clauwaert et al., 

2007a; Gregory and Lovley, 2005; Guerrero-Rangel et al., 2010; Pandit et al., 2011; 

Strycharz et al., 2008; Virdis et al., 2010). Additionally, the electrons passed across an 

external load between the anode and cathode can offset energy requirements for 

treatment.  
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Nitrate is a contaminant of interest for drinking water systems with a maximum 

contaminant level (MCL) of 10 mg NO3-N /L in the United States (Fan and Steinberg, 

1996). Nitrate has also been regulated in wastewater effluents through total nitrogen 

discharge limits in an effort to curb eutrophication of surface waters and other 

environmental impacts. Biological nitrification-denitrification is one of the most common 

processes used for total nitrogen removal from wastewater (Ciudad et al., 2005). 

Nitrifying bacteria oxidize ammonia to nitrite and, then, nitrite to nitrate. Biological 

denitrification reduces nitrate to nitrogen gas. Denitrification is a dissimilatory 

microbiological process, which many heterotrophic and autotrophic organisms are 

capable of performing. It is a sequential reaction involving the reduction of nitrate to 

nitrite by a nitrate reductase enzyme. Nitrite is reduced to nitric oxide by a nitrite 

reductase enzyme. Nitric oxide is reduced to nitrous oxide by a nitric oxide reductase 

enzyme after which nitrous oxide is reduced to nitrogen gas by a nitrous oxide reductase 

(Rittmann and McCarty, 2001). 

Though several studies have reported significant denitrification in microbial fuel cells 

(Clauwaert et al., 2009, 2007a; Virdis et al., 2010), some studies have reported 

accumulation of nitrite of up to 50-55% of the initial total nitrogen during autotrophic 

denitrification in cathodes (Desloover et al., 2011; Puig et al., 2011)  and accumulation of 

nitrous oxide of up to 70% of the initial total nitrogen added as nitrate (Van Doan et al., 

2013). Minimizing the accumulation of intermediates is critical to achieving maximum 

nitrogen removal. Denitrification intermediates have negative health and environmental 

effects. Nitrite can cause methemoglobinemia in aquatic life, small children and the 
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elderly (Bruning-Fann and Kaneene, 1993; Lewis and Morris, 1986) and nitrous oxide is 

a potent greenhouse gas (IPCC et al., 2001). 

The accumulation of denitrification intermediates can occur due to differing metabolic 

rates of the denitrification steps. Additionally, several environmental factors could 

contribute to this accumulation. Denitrification enzyme production is repressed at DO 

concentrations above 2.5 mg-O2/L (Körner and Zumft, 1989; Rittmann and McCarty, 

2001). Incomplete denitrification can be due to limiting electron donor concentrations 

(Rittmann and McCarty, 2001) Inhibition of denitrification can occur outside the pH 

range of 7 to 8 leading to an accumulation of intermediates. pH below 7 can cause direct 

inhibition through the formation of free nitrous acid which is a protonated form of nitrite 

(Zhou et al., 2011). A pH above 8 can cause inhibition of general microbiological 

processes.  

Mathematical modeling has played a very critical role in predicting nitrogen removal in 

wastewater treatment. The modeling of accumulation of intermediates has been achieved 

by modeling denitrification as a four-step denitrification process, using reaction-specific 

kinetic rate equations for each step. Broadly, two major models have been proposed in 

recent years: the “direct-coupling” approach used in Activated Sludge Model for 

Nitrogen (ASMN) (Hiatt and Grady, 2008) and the “indirect-coupling” approach used in 

the Activated Sludge Model for Indirect Coupling of Electrons (ASM-ICE) (Pan et al., 

2013). The ASMN model directly couples carbon oxidation with each of the nitrogen 

oxide reduction steps. The ASM-ICE model indirectly couples carbon oxidation and 

nitrogen oxide reduction using intermediate electron carriers. A comparison of these 

models in predicting accumulation of nitrogen intermediates was made by Pan et al. (Pan 
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et al., 2015), concluding that the ASM-ICE model predicts the accumulation of nitrogen 

oxides better than the ASMN model.  

The ASM-ICE model was formulated, assuming a dissolved carbon/electron source and 

using the dual-substrate limitation kinetics derived from the Monod model. The Monod 

model works well for dissolved substrates but in a denitrifying biocathode, the biofilm is 

limited by a solid electron donor. In this case, the ability of the cathode electrode to act as 

an electron donor is determined by the cathode potential according to the following 

equation, which has been adapted from a model prepared for a MFC anode by Marcus et 

al.(Marcus et al., 2007). 

μ = − μ𝑚𝑎𝑥 𝑋𝑓𝐿𝑓(
𝑆𝑎

𝐾𝑠𝑎 + 𝑆𝑎
)(

1

1 + exp [−
𝐹

𝑅𝑇 𝜂]
) Equation 2.1 

where F is the Faraday constant, R is the gas constant, T is the temperature (K), Xf  is the 

biofilm cell density, Lf is the depth of the biofilm, 𝜂 = (Ecathode- EKc) , where Ecathode is the 

cathode potential and EKc is the cathodic mid-point electron donor potential for the half-

maximum rate (Marcus et al., 2007). The Nernst-Monod model for a biocathode can 

simulate electron transfer from a cathode to associated microorganisms assumed to be in 

a biofilm on the cathode surface (Gregoire et al., 2014; Ter Heijne et al., 2011). The 

ASM-ICE model can be used to simulate nitrite accumulation in denitrifying bioreactors 

(Pan et al., 2013). The incorporation of bioelectrochemical elements into an ASM model 

has not been previously described. An integration of the two models could help elucidate 

performance parameters in BESs designed for wastewater treatment.  
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Though complete denitrification has been demonstrated in MFCs using a cathode as an 

electron donor for autotrophic denitrification, more research is needed to understand the 

conditions that facilitate incomplete denitrification and the accumulation of 

intermediates. Additionally, the Monod kinetic parameters, that are crucial to the design 

of treatment processes, have not been determined for autotrophic denitrification in a MFC 

cathode. In this study, we investigated the mechanisms behind the accumulation of nitrite 

by performing experiments under different environmental conditions. We present an 

ASM with an integration of the Nernst-Monod model and Indirect Coupling of Electrons 

(ASM-NICE), for the simulation of nitrogen removal in a denitrifying biocathode. We 

used this model to estimate kinetic parameters for a denitrifying biocathode.  

2.2 Materials and Methods 

2.2.1 MFC Configuration and Operation 

Duplicate flat-plate MFCs were constructed from rectangular Plexiglas frames (10 x 10 x 

1.2 cm) and filled with graphite granules (porosity=0.55). The total volume and liquid 

volume of the electrode compartments were 120 mL and 54 mL respectively. Graphite 

rods were inserted into the anode and cathode chambers to act as electron collectors. The 

compartments were separated by a cation exchange membrane (CMI-7000, Membrane 

International, Glen Rock, NJ) which was activated using a 5% NaCl solution at 40 ◦C for 

24 hours. Ag/AgCl reference electrodes (RE-6, BASi Inc. USA) were used to monitor the 

cathode potentials. 

The MFC anodes were inoculated with a combination of anode effluent from a parent 

MFC (that was constructed and operated similarly to the experimental MFCs) and 

primary effluent from the Amherst Wastewater Treatment Plant (WWTP), Amherst, MA. 
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The cathodes were inoculated with a combination of cathode effluent from the 

denitrifying biocathode of the parent MFC, primary effluent from the Amherst WWTP 

and a pond sediment inoculum from the Campus Pond, University of Massachusetts-

Amherst, MA. The reactors were initially operated in batch mode where the effluent of 

each electrode compartment was returned to the influent to allow the accumulation of 

biofilms on the anode and cathode. The end of a batch cycle was indicated by the voltage 

decreasing to less than 0.05 V measured across the anode and cathode. After 50 batch 

cycles, the anode chamber was switched to a continuous flow mode. The anode was 

operated in continuous flow to prevent electron donor limiting conditions occurring in the 

anode. The feed for the anode was supplied at a flow rate of 0.25 mL/min (hydraulic 

retention time=20.5 hours) resulting in a COD loading rate of 154 mg COD/L-day. The 

anode media during the course of experiments, unless otherwise stated, consisted of (per 

liter) 1.386 g Na2HPO4, 0.849 g KH2PO4, 0.05 g NH4Cl, 0.05 g MgCl2, and 0.710 g 

CH3COOK (0.355 g COD). The cathode remained in batch operation during all 

experiments. In this configuration, a single batch cycle typically lasted three days and 

was marked by the voltage decreasing to less than 0.05 V measured across the anode and 

cathode. To promote complete mixing, the cathode feed was recycled at 30 mL/min 

between the cathode and a 1 L external sealed recycle bottle used for collection of gas 

and liquid samples. The cathode media during the course of experiments, unless 

otherwise stated, consisted of (per liter) 0.7098 g Na2HPO4, 1.4968 g KH2PO4, 0.05 g 

MgSO4, and 0.1228 g NaNO3. Additionally, trace minerals were added to each solution, 

including (per liter):1 mg CaCl2•2H2O, 1 mg FeSO4•7H2O, 100 µg ZnSO4•7H2O, 30 µg 

MnCl2•4H2O, 300 µg H3BO3, 200 µg CoCl2•6H2O, 10 µg CuCl2•2H2O, 10 µg 
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NiCl2•6H2O, 30 µg Na2MoO4•2H2O, and 30 µg Na2SeO3. All the feed solutions were 

sparged with N2 before the start of each batch cycle. The MFCs and feed bottles were 

covered with aluminium foil to ensure light did not inhibit denitrification or cause 

phototrophic growth. After the acclimation period and establishing steady state 

conditions, experiments were performed to obtain data for model fitting for the purpose 

of estimating denitrification kinetic parameters (Table 2.1, E2 &E3). Experiments were 

also performed to determine if environmental parameters such as dissolved oxygen 

concentration, pH and carbon limitation were responsible for the nitrite accumulation 

(Table 2.1, E4-E9).  

2.2.2 Analyses and Calculations 

Nitrate, nitrite, acetate, and sulfate were monitored in the influent and effluent of the 

anode and cathode compartments using a Metrohm 850 Professional Ion Chromatograph 

(IC) (Metrohm Inc., Switzerland) with a Metrosep A Supp 5-250 3.2 mM Na2CO3, 1.0 

mM NaHCO3 eluent was pumped at 2.6 mL/min, with a 100 mM HNO3 suppressor 

solution and using a 20 µL sample loop. Ammonium was monitored using a Metrohm 

850 Professional IC (Metrohm Inc., Switzerland) with a Metrosep C 2-250 cation column 

(Metrohm Inc., Switzerland). For cation analysis, an eluent consisting of 0.75 mM 

dipicolinic acid and 4 mM tartaric acid was pumped at 1 mL/min, using a 10 µL sample 

loop. Each sample was filtered through 0.1 µm syringe filters, stored at 4 ◦C and analyzed 

within 5 days of sampling.  

Nitric oxide and nitrous oxide were measured using an Agilent 7890A Gas 

Chromatograph with a Thermal Conductivity Detector (Agilent, USA) with HP-PLOT 

Molesieve column (Agilent, USA). The inlet was heated to a temperature of 200°C, with 
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a total flow of 35.5 mL/min and the septum flow at 3 mL/min. A split inlet was used at a 

4:1 ratio, or at 26 mL/min. The initial oven temperature at the beginning of each run was 

35°C and held for 5 minutes, then ramped at 25°C/min to 200°C, where it was held for 4 

minutes. The TCD filament was set at 250°C, with a 20 mL/min reference flow, and a 4.5 

mL/min makeup flow. The makeup gas used was helium. Inorganic carbon was measured 

using a Shimadzu TOC-VCPH Total Organic Carbon Analyzer (Shimadzu, Japan). pH was 

measured using a Fisher Science Education pH Meter (Fisher Scientific, USA). 

2.2.3 Electrochemical Analyses 

The MFCs were operated with a 100-Ω external resistance. The potential difference 

across the external resistances was monitored every 10 minutes using a Keithley Model 

2700 Multimeter with a 7700 Switching Module (Keithley Instruments Inc., Cleveland, 

OH, USA). Low scan rate cyclic voltammetry (LSCV) was performed using a Gamry 

Series G750 Potentiostat/Galvanostat/ZRA (Gamry, USA). The cathode potential was 

swept from -0.4 V vs SHE to 0.4 V vs SHE at 1 mV/s and the current density was 

recorded. jmax and EKc were estimated by fitting the Nernst-Monod equation to the LSCV 

curve (Torres et al., 2008b). 

2.2.4 Theory and Modeling 

The model presented in this study was obtained through an integration of the Nernst-

Monod model (Marcus et al., 2007) with the ASM-ICE model (Pan et al., 2013). The rate 

equations and the process matrix are presented in 
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Table 2.2. Briefly, the cathode oxidation and simultaneous reduction of the oxidized 

intracellular electron carrier (SMox) is represented by R1 which simulates electron transfer 

from the cathode to the biofilm. Nitrate and nitrite reduction are represented by R2 and 

R3 respectively. The transfer of electrons from cathode oxidation to the reduction of 

nitrate and nitrite is accomplished in the model through the reduction of the SMox to SMred, 

which is mathematically represented through a constant total concentration (Ctot) as R4. 

The parameters represented in the model are as follows: RNA is the nitrate reduction rate 

(mmol/(g-VSS.L.h)), RNI is the nitrite reduction rate (mmol/(g-VSS.L.h)), SNA and SNI are 

the nitrate and nitrite concentrations respectively (mmol/L), j is the current density 

(A/m2), η=Ecat-EKC where Ecat is the cathode potential and EKC is the cathodic electron 

donor potential for the half-maximum rate (V), jmax is the maximum current density 

(A/m2), SMox and SMred are the concentrations (mmol/gVSS) of  oxidized and the reduced 

form of the intermediate electron carrier, Ctot is the total concentration of the electron 

carrier (mmol/gVSS), KMox is the half saturation constant for SMox (mmol/gVSS), KMredNA 

is the SMred affinity constant for nitrate reductase (mmol/gVSS) and KMredNI is the SMred 

affinity constant for nitrite reductase (mmol/gVSS), rNA_max and rNI_max are maximum 

nitrate and nitrite reduction rates (mmol/(gVSS.h)) respectively.  
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Table 2.1: Experimental Design 

Experiment Media Change Purpose 

E1 No Change 
Acclimation of biofilm to 

reach steady state conditions 

E2 No Change 
Data collection for model 

calibration 

E3 
20 mg NO3

--N/L replaced with 30 mg 

NO2
--N/L 

Data collection for nitrite 

kinetic parameters 

E4 
Acetate concentration in the anode 

increased from 154 mg-COD/L to 770 

mg-COD/L

Determine if electron donor 

was limiting 

E5 
Catholyte constantly sparged with N2 in 

Recycle Bottle during Cycle 

Eliminate potential DO 

diffusion in cathode 

E6 
Catholyte amended with 5 mg HCO3

--

C/L 

Determine if inorganic 

carbon is limiting 

E7 30 mg NO2
--N/L, starting pH 6.6 

Determine if pH lowers 

nitrite reduction rate 

E8 30 mg NO2
--N/L, starting pH 7.0 

Determine if pH lowers 

nitrite reduction rate 

E9 30 mg NO2
--N/L, starting pH 7.4 

Determine if pH lowers 

nitrite reduction rate 
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Table 2.2: Process Matrix for ASM-NICE 

Process SNA SNI SMox SMred Rate Expression 

R1 -0.5 0.5 𝑗 = −𝑗𝑚𝑎𝑥(
1

1 + 𝑒𝑥𝑝 (
−𝐹𝜂
𝑅𝑇 )

)(
𝑆𝑀𝑜𝑥

𝑆𝑀𝑜𝑥 + 𝐾𝑀𝑜𝑥
) 

R2 -1 1 1 -1

𝑅𝑁𝐴

= 𝑟𝑁𝐴_𝑚𝑎𝑥𝑋𝑓(
𝑆𝑀𝑟𝑒𝑑

𝑆𝑀𝑟𝑒𝑑 + 𝐾𝑀𝑟𝑒𝑑𝑁𝐴
)(

𝑆𝑁𝐴

𝑆𝑁𝐴 + 𝐾𝑁𝐴
) 

R3 -1 +0.5 -0.5
𝑅𝑁𝐼

=  𝑟𝑁𝐼_𝑚𝑎𝑥𝑋𝑓(
𝑆𝑀𝑟𝑒𝑑

𝑆𝑀𝑟𝑒𝑑 + 𝐾𝑀𝑟𝑒𝑑𝑁𝐼
)(

𝑆𝑁𝐼

𝑆𝑁𝐼 + 𝐾𝑁𝐼
) 

R4 𝐶𝑡𝑜𝑡 = 𝑆𝑀𝑜𝑥 + 𝑆𝑀𝑟𝑒𝑑 

All kinetic parameters were estimated by solving the differential rate equations and fitting 

the modeled data to observed data. The following assumptions were made for the purpose 

of modeling: the biofilm on the cathode was at steady state, i.e., growth of the biofilms 

equals decay and detachment and for thin biofilms such as those observed in denitrifying 

cathodes, diffusional limitations are minimal. This assumption was confirmed with 

biofilm imaging (data not shown). The total electron carrier concentration, Ctot was 

assumed to be 0.01 (mmol/(gVSS)) as in Pan et al. (2013) (Pan et al., 2013). KMox was 

assumed to be 1% of the Ctot to ensure that the reduction of SMox was not rate limiting. 

KNA was assumed to be 3.21 X 10-3 mmol/L (Claus and Kutzner, 1985). The biomass 

parameter (XfLf) was determined by dividing the amount of volatile suspended solids 

(VSS) by the projected surface area of the cathode. The amount of VSS was determined 

by using Standard Methods 2540 D and 2540 E at the end of operation of the MFCs. The 
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projected surface area of the cathode electrode was determined by performing a particle 

size distribution analysis and determining an average particle size for the graphite 

granules. The assumption was made that the particles were spherical. The d50 or 50 % 

particle size was used as the average particle size. The specific surface area (SSA) was 

calculated using the following equation 

𝑆𝑆𝐴 =
6 ∗ (1 − 𝜃)

𝑑50
Equation 2.2 

where SSA is the specific surface area (m2/m3), θ is the packed bed porosity and d50 is the 

50% passing particle size. All the modeling was done using R statistical software (R Core 

Team, 2015; Soetaert et al., 2010; Wickham, 2009). Parametric estimations was done by 

minimizing the sum of squares of the residuals and using a genetic algorithm, similar to 

the implementation by Pelletier et al. (Pelletier et al., 2006) . 

2.2.5 Model Calibration and Validation 

The nitrite parameters (KNI, rNI_max) were estimated by calibrating the model to the data 

for a representative batch from experiment E3 where nitrite was added to the media 

instead of nitrate. The rest of the parameters were estimated by calibrating the model to a 

typical batch data (Figure 2.1, replicate batches presented in Figure 2.2) using a genetic 

algorithm with multi-objective optimization which was implemented using a non-

dominated sort method (Deb et al., 2002). The half-saturation constant for nitrate 

reduction (KNA) was assumed from literature (Claus and Kutzner, 1985), since nitrate 

reduction has been extensively studied. The multi-objective optimization was performed 

using nitrate and nitrite model fits as the two objectives for data from E2. Model 
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validation was performed with two separate batches from experiment E1 from two 

different reactors to test and demonstrate applicability of the model to other reactors 

acclimated under the same conditions. 

2.3 Results and Discussion 

2.3.1 Denitrifying Biocathode Acclimation 

During the initial acclimation period (~50 batch cycles), the denitrification rates 

gradually increased and became consistent, indicating the establishment of a steady-state 

biofilm. During a typical batch of the biocathode, the removal of nitrate with 

simultaneous accumulation of nitrite was observed (Figure 2.1A). Subsequent to the 

removal of nitrate, removal of accumulated nitrite was observed. Peak nitrite 

accumulation observed was 66.4 ± 7.5 % of the initial nitrogen concentration added as 

nitrate. This is consistent with previously reported nitrite peak accumulation values of 50-

55 % of initial nitrogen added as nitrate (Desloover et al., 2011; Puig et al., 2011). The 

accumulation of nitrite was reproducible in different batches in the duplicate reactors 

(Figure 2.2). Nitrous oxide also accumulated in the recycle bottle headspace, with a peak 

accumulation of 1% of the initial nitrogen added as nitrate (Figure 2.1A).  Previous 

studies have reported nitrous oxide accumulation of ~0.025 % to 70 % of the initial 

nitrogen added. (Desloover et al., 2011; Van Doan et al., 2013; Virdis et al., 2008) It 

should be noted that at the end of each batch cycle denitrification was complete and the 

average denitrification rate was 5.8 ± 0.4 g-N/(m3-d).  The cathode potential during the 

various stages of denitrification was also monitored. It decreased from -0.014 ±0.007 V 

vs SHE during nitrate reduction to -0.038 ± 0.004 V vs SHE during nitrite reduction. 
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Once nitrite was depleted, the cathode potential dropped to – 0.254 ± 0.007 V vs SHE 

(Figure 2.1B).  

Volumetric power density (W/m3) also followed a similar trend decreasing during the 

different stages of the denitrification. Polarization curves were performed at different 

stages of a single batch cycle. A curve was obtained when nitrate was the primary 

dissolved form of nitrogen and primary available acceptor (at 5 hours), when nitrite was 

the primary electron acceptor available (at 45 hours) and when nitrous oxide was the 

remaining available electron acceptor (at 70 hours) (Figure 2.3). The maximum power 

production during nitrite reduction (0.97 ± 0,21 W/m3-total cathode volume (TCV)) only 

achieved 64% of the maximum power produced during nitrate reduction (1.51±0.29 

W/m3-TCV). Very little power production was observed during nitrous oxide reduction 

(0.03 ± 0.005 W/m3-TCV). This suggests that the predominant reduction pathway in the 

cathode can dictate the power production in an MFC and influence the system’s ability to 

achieve treatment goals. The electron equivalents recovered from the cathode during 

denitrification averaged 94.9 ± 3.9%.  
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Figure 2.1: A typical batch cycle observation during denitrification. The lines are 

there only for highlighting trends and are not representative of model simulations. 
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Figure 2.2: Batch Denitrification data during Steady State Operation for Reactor 

1 and Reactor 2. 
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Figure 2.3: Polarization curves performed during different stages of denitrification 

2.3.2 Inhibition of Nitrite Reduction by Environmental Factors 

Inhibition of nitrite reduction can be caused by several factors such as insufficient 

electron donor, insufficient carbon source, presence of dissolved oxygen and high or low 

pH (Knowles, 1982; Körner and Zumft, 1989; Zhou et al., 2011). To determine if 

insufficient electron donor was a limiting factor causing accumulation of nitrite, the 

acetate feed in the anode was increased from 154 mg-COD/L.day to 770 mg-COD/L.day 

(Table 2.1, E4). Despite the increase in the electron donor loading rate, peak nitrite 

accumulation of 66.2 % of the total nitrogen added was observed. 

Oxygen inhibition was also considered. Unanticipated oxygen diffusion occurring 

through the fittings or tubing could have compromised anoxic conditions. In addition to 

the initial N2 purge, the feed was continuously sparged with nitrogen gas over the course 

of a batch cycle to maintain anoxic conditions (Table 2.1, E5). A peak nitrite 
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accumulation of 62.7 % of the total nitrogen added was observed, similar to cycles 

without a nitrogen-purge. Insufficient carbon source was considered as a possible cause 

of nitrite accumulation, so the cathode media was supplemented with bicarbonate (Table 

2.1, E6). A peak nitrite accumulation of 77.5 % of the total nitrogen was measured. 

Cathode media with pHs of 6.6, 7.0, and 7.4 were fed to the cathode and the nitrite 

reduction rate was monitored (Table 2.1, E7-E9). No significant changes were observed. 

Changing the environmental conditions to overcome potential denitrification inhibition 

did not change nitrite accumulation in batch cycles of the cathode. 

2.3.3 Modeling Denitrification 

Modeling denitrification can improve our understanding of the microbial processes and 

yield kinetic parameters, which can be useful in designing denitrifying biocathode MFCs. 

When it was observed that various environmental factors did not significantly affect the 

accumulation of nitrite in the cathode, it was hypothesized that the accumulation of nitrite 

was caused due to intracellular electron competition between the enzymes involved in the 

different steps of denitrification. The ASM-ICE model has been used previously to 

simulate accumulation of nitrite in suspended cultures and bioreactors. For a denitrifying 

biocathode, we integrated the Nernst-Monod model, to simulate electron transfer from 

the electrode to the denitrifying biofilm, into the ASM-ICE (ASM-NICE).  ASM-NICE ( 
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Table 2.2) was used to simulate the accumulation of nitrite in the biocathode using a 

genetic algorithm for estimation of parameters. A Nernst-Monod current-potential 

dependency was observed with a mid-point potential (EkC) of -0.13 V. A mid-point 

potential of -0.18 V has been previously reported for a denitrifying biocathode (Gregoire 

et al., 2014). It has been previously shown, for bioanodes, that a number of factors, 

including the source of the inoculum, can influence the value of the mid-point potential 

(Miceli et al., 2012). 

The kinetic parameters were estimated by calibrating the model to two datasets: the 

typical batch data (Table 2.1, E2) and nitrite-only data (Table 2.1, E3). All the estimated 

parameter values (Table 2.3) are in the range of reported values in literature (Pan et al., 

2015, 2013). It should be noted that since this is the first study to report kinetic rate 

constants using ASM-NICE, a direct comparison could not be made. KMredNA and KMredNI 

are affinity constants of the nitrate and nitrite reductase enzymes for the reduced 

mediator, Mred. The lower the value of these constants, the higher the affinity of the 

enzyme is to the reduced carrier. The value for KMredNI for nitrite reduction is lower than 

that for KMredNA for nitrate reduction, indicating that nitrite reduction has a higher 

capability to compete for electrons when the electron donor is limiting. Since current 

from the anode remained relatively constant and the concentration of nitrate was high 

during the initial stages of the batch, nitrate reduction consistently preceded nitrite 

reduction. Model fits from calibration (Figure 2.4 and Figure 2.6) for two different 

experimental scenarios (E2 and E3) show good agreement with observed data. Model 

validation was performed with duplicate batch data (E1) from duplicate reactors. The 
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results of the model validation (Figure 2.5) suggest that the ASM-NICE model for the 

biocathode is able to simulate the autotrophic denitrification process using the cathode 

as the electron donor reasonably well (Figure 2.7). By validating the model with data 

from two separate MFCs, the validity of the model and the estimated kinetic parameters 

are 

demonstrated for different reactors acclimated under similar conditions. Denitrification 

using a biocathode has been widely used since nitrate has a relative metabolic potential 

close to that of oxygen (E°NO3-=0.74 V vs SHE, E°O2=0.9 V vs SHE). Using nitrate 

instead of oxygen eliminates oxygen diffusion across to the anode and thus a source of 

loss in coulombic efficiencies in MFCs (Butler and Nerenberg, 2010). 

Table 2.3: Kinetic Parameters for Denitrification in a MFC Biocathode (a-this 

study, b- Experimentally measured, c- Assumed based on Pan et al. 2013, d- 

Assumed value from Claus and Kutzner (1985)) 
Parameter Source Value Parameter Source Value 

𝐫𝐍𝐀_𝐦𝐚𝐱 

(mg-N/gVSS•h) 

a 1.68 

jmax 

(A/m2) 

b -0.31

𝐊𝐍𝐈 

(mg-N/L) 

a 0.56 

EKc 

(V) 

b -0.13

𝐫𝐍𝐈_𝐦𝐚𝐱 

(mg-N/gVSS•h) 

a 0.45 

Ctot 

(mmol/gVSS) 

c 0.01 

𝐊𝐦𝐫𝐞𝐝𝐍𝐀

(mmol/gVSS) 

a 0.012 

KMox

(mmol/gVSS) 

c 0.0001 

𝐊𝐦𝐫𝐞𝐝𝐍𝐈 

(mmol/gVSS) 

a 0.002 

KNA 

(mg-N/L) 

d 0.0448 
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Xf 

(g-VSS) 

b 0.641 

Figure 2.4: Measured (points) and Predicted (lines) Concentrations of Nitrate 

and Nitrite using ASM-NICE for the calibration Dataset- A) E2 B) E3. 
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Figure 2.5: Measured (points) and Predicted (lines) Concentrations of Nitrate 

and Nitrite using ASM-NICE for the validation dataset (A) Reactor 1 (B) Reactor 

2. 

Figure 2.6: Modelled vs Observed Plots with R2 values for Calibration Datasets 

(A) Typical Batch- 20 mg NO3--N/L (E2) (B) Nitrite-Only 30 mg NO2--N/L (E3). 

The shaded areas represent confidence intervals for the trendline. 
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Figure 2.7: Modelled vs Observed Plots with R2 values for Validation Datasets (A) 

MFC Reactor-1 (b) MFC Reactor-2. The shaded areas represent confidence 

intervals for the trendline. 

In this study, we calibrated and modeled denitrification in a biocathode using ASM-

NICE. Such an integrated model has not been presented before to the best of our 

knowledge. The modeling suggested that when nitrate is at higher concentrations than 

nitrite, the reduction of nitrite is retarded by the competition for intracellular electron 

mediators. This would suggest that, when designing continuous-flow biocathodes for 

nitrate-nitrogen removal, longer hydraulic retention times (HRTs) could resolve the 

nitrite accumulation. A preliminary sensitivity analysis of the model to the kinetic 

parameters (KNI, KMox, KNA, EkC, jmax) revealed that these parameters did not have a 

significant effect on the accumulation of nitrite (data not shown). However, the model 

showed significant sensitivity to KMredNI and KMredNA (Figure 2.8 and Figure 2.9). 

Briefly, an increase in KMredNI caused the accumulation of nitrite to increase and vice 

versa. However, reduction of nitrate was not affected. A change in KMredNA affected both 

nitrate 
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and nitrite reduction since nitrite is formed from the reduction of nitrate. KMredNA and 

KMredNI are properties of nitrate and nitrite reductase enzymes respectively. The 

developed model is also able to simulate nitrate and nitrite concentration profiles in a 

denitrifying biocathode, yielding kinetic parameters (KNI, rNA_max, rNI_max, KMredNA, 

KMredNI) that can be used for process design. 

2.4 Conclusions 

This study focused on the dynamics of denitrification in a MFC biocathode, with respect 

to the accumulation of nitrite before complete denitrification was observed. It was also 

observed that the power production during nitrate-nitrite reduction was higher compared 

to that during nitrite reduction. Improvement or control of environmental parameters that 

affect denitrification pathways did not affect the amount of nitrite accumulation. 

Denitrification in the biocathode was modeled using ASM-NICE to simulate the use of 

the cathode electrode as the electron donor. Calibration of the model yielded kinetic 

parameters (KNI, rNA_max, rNI_max, KMredNA, KMredNI), which could be used for prediction of 

the    performance of a biocathode. The model will serve as a platform for future research 

into biocathodes and optimization of their performance. The use of this new model to 

simulate denitrifying biocathodes under various experimental conditions could yield 

important information for translating lab-scale studies to pilot scale and full-scale 

treatment systems. Furthermore, experimental work is needed to determine the specific 

microorganisms performing autotrophic denitrification in a biocathode and the influence 

of EKc on their performance.  
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Figure 2.8: Sensitivity of the model to KmredNI. 
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Figure 2.9: Sensitivity of the model to KmredNA. 
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CHAPTER 3 

ECOLOGICAL AND TRANSCRIPTIONAL RESPONSES 

OF ANODE-RESPIRING COMMUNITIES TO NITRATE 

IN A MICROBIAL FUEL CELL 

Modified from originally submitted version (Srinivasan, V and Butler, C. Ecological and 

Transcriptional Responses of Anode-Respiring Communities to Nitrate in a Microbial 

Fuel Cell. Environmental Science & Technology. In Review) 

3.1 Introduction 

Bioelectrochemical systems (BESs) are a promising technology due to their ability to treat 

organic waste, decouple the electron donor and electron acceptor reactions and potential to 

produce an energetic product. BESs have great potential in applications as a mixed-culture 

bioprocess. However, before wide scale application, the robustness and resilience of anodic 

communities to environmental conditions have to be evaluated. In order to implement 

BESs in natural and engineering settings, there is a need for understanding the response of 

the anode-respiring communities to perturbations. Perturbations can have long term or 

short term effects which can adversely influence the performance of the biofilm and the 

technology. 

For example, oxygen crossover from the cathode of a microbial fuel cell (MFC) to the 

anode can cause a decrease in coulombic efficiencies (CEs) and lead to the growth of 

aerobic microorganisms in the anode which can outcompete anode-respiring bacteria 

(ARB) (Butler and Nerenberg, 2010; Rinaldi et al., 2008). Similarly, the presence of 

methanogenic communities can lead to decrease in CEs in MFCs or hydrogen yield in 
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microbial electrolysis cells (MECs) (Jung and Regan, 2011; Lee et al., 2008; Parameswaran 

et al., 2009; Torres et al., 2007). ARB can also have alternate metabolisms such as nitrate, 

sulfate or ferric respiration capabilities that can serve as competing metabolisms (Aklujkar 

et al., 2009; Caccavo et al., 1994; Kashima and Regan, 2015). In a mixed community, 

where both non-ARB and ARB exist, the primary response to induction of competition is 

unknown. An understanding of the response of the biofilm community to these 

perturbations can lead to a better design and optimization of this technology for scale-up 

and implementation.  

Nitrate is a regulated drinking water and wastewater contaminant. The common presence 

of nitrate in environments, in which MFCs can be potentially be used, makes it a co-

contaminant of interest.  The effect of nitrate on anode-respiring biofilms is of great interest 

since many bacteria harbor nitrate reduction capabilities including ARB such as Geobacter 

spp.(Kashima and Regan, 2015; Martínez Murillo et al., 1999; van den Berg et al., 2015) 

and Shewenella spp. (Cruz-García et al., 2007; Yoon et al., 2015). The effect of nitrate on 

mixed community anode respiring biofilms has been previously studied by Sukkasem et 

al. (Sukkasem et al., 2008). CE was affected by the presence of nitrate in the anode while 

the maximum voltage output was not affected. Sukkasem et al. performed some 

preliminary investigation into the effect of nitrate on the microbial community using 

polymerase chain reaction (PCR)- denaturing gradient gel electrophoresis (DGGE). They 

postulated the existence of two distinct groups of bacteria, obligate ARB and facultative 

ARB capable of nitrate reduction. However, more quantitative investigations are required 

to understand the effect of nitrate on the biofilm community. The existence of facultative 

ARB capable of nitrate reduction has been documented by other studies (Kiely et al., 2010). 
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The effect of nitrate on electrode-respiring Geobacter metallireducens was studied by 

Kashima and Regan (Kashima and Regan, 2015). They observed that G.metallireducens 

biofilms reduced nitrate at a range of anode potentials. The critical nitrate concentration, 

at which a significant decrease in BES performance was observed, depended on the biofilm 

thickness. The use of nitrate as a competing electron acceptor by facultative ARBs was 

controlled by diffusional limitations in thicker biofilms.  

The above studies have investigated the effect of nitrate on anode-respiring biofilms 

using batch reactors. BESs when implemented in natural or engineered settings will benefit 

from a chemostat based study for more relevance to treatment purposes. In a chemostat, 

there is continuous addition of the perturbing component (nitrate) to the MFC which could 

cause significant changes in the community structure. On the other hand, when the 

chemostat is completely mixed (CSTR), the concentration of nitrate in the MFC will be 

lower than in the influent and hence the impact of the perturbation could be mitigated. An 

understanding of the effects of nitrate on the microbial community and the resiliency of the 

communities to recover from such perturbations could play an important role when MFCs 

are used for bioremediation/wastewater treatment.   

This study is focused on understanding the effect of nitrate, at three stoichiometrically 

relevant C/N ratios (1.8, 3.7 and 7.4 mg-C/mg-N), on anode in mixed culture MFCs with 

an abiotic cathode. We hypothesize that at high C/N ratios (electron donor non-limiting), 

the presence of nitrate will not affect the electrochemical performance of the MFC and will 

enhance the removal of organic matter while electron-donor limiting conditions will 

negatively affect the electrochemical performance of the MFC. We also hypothesize that 

the presence of nitrate in the bulk solution at low C/N ratios will cause significant changes 
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in the biofilm community leading to decrease in the relative abundance of anode-respiring 

bacteria with time. We use a combination of 16S rRNA gene sequencing and 

transcriptional profiling using reverse transcription-quantitative PCR to study the 

community response over time to a continuous flux of nitrate. 

3.2 Materials and Methods 

3.2.1 MFC Design and Operation. 

Dual chamber H-type MFCs with a cation exchange membrane (CMI-7000, Membrane 

International Inc., Glen Rock) were used for all the experiments. Graphite cloth coupons 

(2.2 x 11 x 0.32 cm) was used as electrodes with 5 electrode coupons in each chamber. 

Marine grade wire (Vertex Marine) was used to make all the electrical connections. An 

Ag/AgCl reference electrode (RE-6, BASi Inc. USA) was placed in each of the anode 

chambers to measure the anode potential.  

The anode chambers were inoculated with primary effluent from the Amherst 

Wastewater Treatment Plant, Amherst MA and acclimated in recycle batch with an external 

resistance of 1500 Ω. The MFCs were inoculated with a 10:90 (by volume) mixture of 

inoculum and a phosphate-buffered minimal growth medium with acetate. The medium to 

the anode consisted of 1.66 g/L potassium acetate in 16 mM phosphate buffer (1.386 g/L 

Na2HPO4 and 0.849 g/L KH2PO4) with  0.05 g/L NH4Cl, 0.08 g/L MgCl2, 1 mL/L each of 

a trace mineral solution (per litre-100 µg ZnSO4•7H2O, 30 µg MnCl2•4H2O, 300 µg 

H3BO3, 200 µg CoCl2•6H2O, 10 µg CuCl2•2H2O, 10 µg NiCl2•6H2O, 30 µg 

Na2MoO4•2H2O, and 30 µg Na2SeO3 and Ca-Fe solution (per litre-1 mg CaCl2•2H2O, 1 

mg FeSO4•7H2O) and a calcium-iron solution (per litre-1 mg CaCl2•2H2O, 1 mg 

FeSO4•7H2O). The feed was sparged with filter-sterilized N2 gas for at least 45 minutes 
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prior to addition to the reactor. The feed solution was replaced when the voltage dropped 

below 0.05 V during the acclimation phase. The MFCs were operated in batch mode until 

reproducible maximum voltages were obtained for two successive batches. The MFCs 

were then switched to chemostat-mode at a flow rate of 0.21 mL/min (HRT=20 

hours). The anode chamber was sparged continuously with filter-sterilized N2 gas to 

prevent oxygen diffusion into the anode and 2-bromoethanosulfonic acid (BES) was 

added at 3 mM to inhibit acetoclastic methanogenesis (Parameswaran et al., 2009; Zinder 

et al., 1984). All media was autoclaved. The anode chamber was continuously stirred 

throughout the experiment. The cathode contained 70 mM potassium ferricyanide in 80 

mM phosphate buffer solution. All experiments were performed in duplicate.  

3.2.2 Experimental Design. 

The acetate concentration in the influent of the anode was decreased consecutively to 

determine Scritical of acetate required for maximum coulombic efficiency (analogous to 

minimum substrate concentration required for growth) in each reactor. The Scricitcal for the 

anode of an MFC is defined (in this study) as the minimum acetate concentration that 

would produce the maximum voltage obtained during the end of the acclimation phase.  

The Scritical has been shown to be important in other competition studies (Füchslin et al., 

2012). The MFCs were run at each successively decreasing acetate concentration for >3 

HRTs. Once Scritical was determined (Table 3.1) and steady state conditions were achieved 

(Phase I), nitrate (as sodium nitrate) was introduced into the anode of the MFC at 

different C/N ratios with one of the reactors serving as a control (no nitrate). The C/N 

ratios used in this experiment were 1.8, 3.7 and 
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7.4 mg-C/mg-N (1.4, 2.8 and 5.7 meq e--donor/meq e- -NO3
-). The different C/N ratios 

were tested in different MFC chemostats to avoid gradual adaptation of the community to 

nitrate (Figure 3.1). Nitrate was fed to the anode continuously for 43 days to study the 

long-term effect of nitrate on the anode-respiring biofilm (Phase II). Sodium chloride was 

added to normalize the conductivity of the media across different conditions. After 43 

days, nitrate was removed from the influent to the anode and the MFC was operated 

without nitrate (Phase III) to test the resilience of the anode biofilms (Figure 3.2).  

Figure 3.1: Reactor Schematics 
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Table 3.1:Acetate and Nitrate Concentrations in each Reactor 

Reactor 

Influent Concentration C/N Ratio 

(mg-

C/mg-N) 

e- eq-

donor/e- eq-

NO3
- 

Acetate Nitrate 

mM mM e- mM mM e-

Control 0.59 

0.59

4.75 0 0 No nitrate No nitrate 

R1.84 0.59 4.75 0.66 3.32 1.8 1.42 

R3.7 0.59 4.75 0.33 1.66 3.7 2.85 

R7.4 0.59 4.75 0.17 0.83 7.4 5.69 

Figure 3.2 : Experimental Design 

3.2.3 Measurements and Analyses. 

Acetate was monitored in the influent and effluent of the anode using a Metrohm 850 

Professional Ion Chromatograph (Metrohm Inc., Switzerland) with a Metrosep A Supp 5-

250 Anion Column (Metrohm Inc., Switzerland) using an eluent consisting of 3.2 mM 

Na2CO3, 1.0 mM NaHCO3. Samples were filtered using a 0.45 µm syringe filters and 
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stored at 4 °C before analysis. Nitrate, nitrite and ammonium were measured using 

HACH kits.  

The voltage across an external resistance of 1500 Ω was monitored every 15 minutes 

using a Keithley Model 2700 Multimeter with a 7700 Switching Module (Keithley 

Instruments Inc., Cleveland, OH, USA). Current and power was calculated using Ohm’s 

law (P=IV) and normalized by the anode surface area or the anode liquid volume (280 

mL). Polarization curves were performed using a Gamry Series G750 

Potentionstat/Galvanostat/ZRA (Gamry, USA). The voltage sweep was applied at a rate 

of 1 mV/s. Coulombic efficiency (CE) was calculated using the following equation: 

CE =
Mac ∗ I

bacFq∆c
Equation 3.1 

where I is the current (ampere or C/s), F is the Faraday’s constant (96500 C/mol), q is the 

flow rate at which the influent is delivered, ∆c is the difference in concentration in the 

influent and the effluent, bac is the moles of electrons/ mole of acetate (8 mol of 

electrons/mol of acetate) and Mac is the molecular weight of acetate (59 g/mole).  

3.2.4 Biofilm Sampling and DNA Extraction. 

Anode electrode samples were collected at various stages of the experiment. A total of six 

electrode samples were collected with one before the nitrate flux (Day 0), two during the 

nitrate flux (Day 20 and 43) and one at the end of the study after the nitrate flux was 

removed (Day 56). For the sampling, one piece of each electrode (0.44 x 2.2 x 0.32 cm, 

total 5 pieces) was cut under sterile conditions using a sterile razor and preserved using 

LifeGuard™ Soil Preservation Solution (Mo Bio Laboratories Inc.) and stored at -20 °C 



61 

until extraction. Each piece was cut from each electrode (Total 5 electrode-5 pieces) to 

account for spatial variation in microbial community structure. 

RNA and DNA were extracted from the electrode samples using the RNA Power Soil 

Cut (Mo Bio Laboratories Inc.) with a DNA Elution Accessory Kit (Mo Bio Laboratories 

Inc.). The extracted RNA was then treated with DNase Max Kit (Mo Bio Laboratories Inc.) 

to remove DNA contamination. The extracted DNA and RNA were then quantified with a 

spectrophotometer (NanoDrop, ND-100, NanoDrop Technologies, Wilmington, DE). 

mRNA was then converted into cDNA using the High Capacity cDNA Reverse 

Transcription Kit (Life Technologies) and stored at -20 °C. 

3.2.5 Quantitative PCR. 

The activity of denitrifying genes was assessed using nitrite-reductase specific primers for 

nirK and nirS. The nirK activity was assessed using nirK876 and nirK1040 (Henry et al., 

2004). nirS activitiy was assessed using nirSCd3af and nirSR3cd (Kandeler et al., 2006; 

Throbäck et al., 2004). Bioelectrochemical activity was assessed using Geobacter spp. as 

model ARBs. The activity of Geobacter spp.  was measured using Geobacter specific 

primers Geo564F and Geo840R (Himmelheber et al., 2009). For performing relative 

quantification, 16SrRNA gene was used as the reference transcript. The primer pair used 

for 16SrRNA gene quantification was 1114f and 1275r (Table 3.2) (Christophersen et 

al., 2011). Amplification of cDNA templates was carried out using a StepOne™ Real-

Time PCR System (Applied Biosystems) using SYBR Green as a detection system. 

Reaction mixture consisted of 25 µL containing: 0.2 µM of each primer, 12.5 µL of 

SYBR Green PCR master mix including Hot-Start iTaq DNA Polymerase, dNTPs, 

MgCl2, SYBR® Green I dye and ROX (Life Technologies), 5 µL of the template cDNA 

corresponding to 
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10 ng of total DNA and RNase-free water to make up to 25 µL volume. The real-time PCR 

conditions for the amplification of nirK and nirS genes were 600 s at 95 °C, 6 touchdown 

cycles: 15 s at 95 °C for denaturation, 30 s at 63 °C for annealing, 30 s at 72 °C for extension 

and 15 s at 80 °C for a final data acquisition step. The annealing temperature was 

progressively decreased by 1 °C down to 58 °C. Finally, a last cycle with an annealing 

temperature of 58 °C was repeated 40 times. One last step from 60 to 95 °C with an increase 

of 0.3 °C/s was added to obtain a melt curve. The real-time PCR conditions for the 

amplification of 16SrDNA gene was 600 s at 95 °C followed by 40 cycles: 15 s at 95 °C 

for denaturation, 60 s at 60 °C for annealing. One last step from 60 to 95 °C with an increase 

of 0.3 °C/s was added to obtain a melt curve. The reactions for each target were performed 

separately. Triplicate wells were run for each sample for each gene target. Standard curves, 

melting curves and negative controls were run for each qPCR run.  

Table 3.2: Primer Sequences 

Primer Sequence 

nirK 876 5’-ATYGGCGGVAYGGCGA-3’ 

nirK 1040 5’-GCCTCGATCAGRTTRTGGTT-3’ 

nirSR3cd 5’-GASTTCGGRTGSGTCTTSAYGAA-3’ 

nirSCd3af 5’-AACGYSAAGGARACSGG-3’ 

Geo564F 5’-CAAGTCGTACGAGAAACATATC-3’ 

Geo840R 5’-GAAGAGGATCGTCTTTCCACGA-3’ 

1114f 5’-CGGCAACGAGCGCAACCC-3’ 

1275r 5’-CCATTGTAGCACGTGTGTAGCC-3’ 
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3.2.6 Illumina MiSeq Sequencing and Analysis. 

The extracted DNA was sent to Research and Testing Facility (Lubbock, TX) for PCR 

amplification and sequencing targeting the V3-V4 region using the primers 338aF (5’-

ACTCCTACGGGAGGCAGCAG-3’) and 785R (5’-GACTACHVGGGTATCTAATCC-

3’) and the amplicons were sequenced on the Illumina MiSeq platform using V3 chemistry. 

The raw Fastq files were cleaned using Sickle 1.33 (Joshi and Fass, 2011) with a minimum 

window quality score of 20. The quality-controlled sequences were analyzed using 

mothur(Schloss et al., 2009) using the protocol described in Kozich et al (Kozich et al., 

2013). The sequences were trimmed to remove primers and barcodes, quality filtered using 

sickle v1.33 (Joshi and Fass, 2011) with a minimum quality score of 20, assembled in 

mothur and aligned to SILVA 123 database. The alignment was screened to remove poorly 

aligned sequences using vertical = T and trump = . options in mothur. Chimeras were 

remove using the UCHIME algorithm available through mothur and clustered into OTUs 

at sequence similarity cutoff of 97% using the average neighbor clustering algorithm. The 

sequences were classified using the Naïve Bayesian Classifier (80% confidence threshold) 

using the RDP training set and consensus taxonomy of OTUs was determined using the 

80% cutoff.  

3.2.7 Statistical Analyses. 

The anode potential, coulombic efficiency and acetate removal data were split into three 

phases: before nitrate flux, during nitrate flux (Day 0 to Day 43) and nitrate removed (days 

44 to 60). Statistical analysis comparing the three phases within each treatment was 

performed using 1-way analysis of variance (ANOVA) followed by a Tukey’s Honestly 
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Significant Difference (HSD). The HSD results are reported only if the 1-way ANOVA 

showed a significant effect.  

The normalized (using 16S rRNA transcripts as reference) relative quantities of gene 

transcripts (Rqtarget) were calculated for each target transcript and logarithmic (base 2) fold 

change values between sampling day (t) and the start of nitrate flux (Day 0) as follows:  

log2(Fold Change) =
Rqtarget

t

Rqtarget
0 Equation 3.2 

Statistical analysis of the fold change values within each C/N ratio treatment condition 

was performed using 1-way ANOVA using sampling day as the main effect. Significant 

interaction effects were further determined with Tukey’s HSD test.  All sequencing data 

was rarefied (8038 sequences which is equal to the minimum number of sequences across 

all samples) to ensure equal number of sequences in each sample prior to all analyses. 

Mothur was used to construct phylogenetic trees and calculate UniFrac (Lozupone and 

Knight, 2005) weighted metrics for the different samples. Non-metric multidimensional 

scaling (NMDS) analysis using the UniFrac weighted metric was performed in R (R Core 

Team, 2015) using the phyloseq (McMurdie and Holmes, 2013) package. Other R packages 

used in the analysis and plotting were ggplot2 (Wickham, 2009), vegan (Oksanen et al., 

2016), dplyr (Wickham and Francois, 2016) and ampvis (Albertsen et al., 2015). 
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3.3 Results and Discussion 

3.3.1 The electrochemical performance of the MFCs is adversely affected by 

nitrate at low C/N ratios 

The MFCs were acclimated under optimal operating conditions with respect to power 

production and Scritical for each reactor (0.59 mM) were determined (Phase I). Acetate 

removal was not complete during this period. When nitrate was introduced into the anode, 

complete removal of nitrate was observed in the effluent of the anode (based on no 

detection of nitrate in the effluent samples) across all the C/N ratios (data not shown). 

Neither nitrite nor ammonium were detected in the effluent during the period of nitrate 

flux. Acetate removal (Figure 3.3) increased significantly from 41.7 ± 9.4 % to 85.9 ± 

10.6 % (p<0.001, 7.4 mg-C/mg-N), 64.9 ± 20.2 % to 98.9 ± 4.4 % (p<0.001, 3.7 mg-C/

mg-N) and 56.2 ± 9.4 % to 100 ± 0 % (p<0.001, 1.8 mg-C/mg-N). The increase in acetate 

removal efficiency suggests that the presence of nitrate is helpful in improving treatment 

efficiency which is a common issue with anaerobic wastewater treatment. Several 

anaerobic wastewater treatment technologies, including MFCs, require a post-

treatment polishing step (usually aerobic) to improve effluent quality (Van Haandel et 

al., 2006; Zhang et al., 2013). In this case, the presence of nitrate in the anode of the MFC 

served as an inherent polishing step. Though not the emphasis of this study, if a 

sustainable balance between anode respiration and denitrification could be achieved, 

both carbon and nitrogen removal could be achieved along with ensuring complete 

chemical oxygen demand (COD) removal. The disadvantage of this type of a polishing 

step is that it could lead to loss in coulombic efficiency and hence loss in power 

production in an MFC due to loss of the electrons to nitrate reduction.  
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Figure 3.3: Mean Acetate removal during the different phases. Error bars represent 

standard deviations. 

The electrochemical performance of the MFCs was assessed by calculating the 

coulombic efficiency (CE) which is the percentage of electrons recovered as current. The 

CE before the introduction of nitrate was 39.9 ± 2.4 % (Figure 3.4 & Figure 3.5). The CE 

did not change significantly when the electron donor was not limiting in the presence of 

nitrate at 7.4 mg-C/mg-N (p= 0.09). This would suggest that even though nitrate was 

present in the anode, there was no significant decrease in coulombic efficiency while a 

significant increase in treatment efficiency was observed as discussed above. The CE 
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decreased significantly when nitrate was introduced at 3.7 mg-C/mg-N (p<0.001) and 1.8 

mg-C/mg-N (p < 0.001). The CE decreased to 10.9 % (3.7 mg-C/mg-N) and 0.5 % (1.8 

mg-C/mg-N) after 43 days of nitrate flux. Nitrate in the influent accounted for 3.32 mM e- 

(1.8 mg-C/mg-N) and 1.66 mM e- (3.7 mg-C/mg-N). This is 69% and 35% of the electrons 

respectively that were in the influent in the form of acetate. Hence, when the electron donor 

was limiting, the competition for acetate resulted in a decrease in coulombic efficiency due 

to loss of electrons to denitrification. Stable anode performance was observed in the control 

(amended with sodium chloride) indicating that the decrease in CE was not due to factors 

such as change in solution conductivity or introduction of oxygen during biofilm sampling. 

When nitrate was removed from the influent after 43 days of nitrate flux, the CE of the 

reactors increased compared to that during nitrate flux across all experimental conditions.  

The CE was not significantly different between phase I and phase III for the reactor where 

nitrate was introduced at 7.4 mg-C/mg-N (p=0.093) and at 3.7 mg-C/mg-N (p=0.35). 

However, the CE for the reactor where nitrate was introduced at 1.8 mg-C/mg-N was 

significantly lower at 12.1 ± 11.1 % (p<0.001) in phase III compared to phase I. This 

suggests that the performance of the MFCs were resilient to nitrate fluxes when the anode 

was perturbed with nitrate at C/N ratios equal to or greater than 3.7 mg-C/mg-N while at 

lower C/N ratios, the performance might take longer to recover or not recover. When 

electron donor was extremely limiting in the presence of nitrate, the community structure 

of the anode-respiring biofilm could have been irreversibly affected and hence the 

coulombic efficiency did not recover in the short-term.  
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Figure 3.4: Electron Sinks in the Anode presented as average percentage of electron 

input (acetate removed) for each Phase. Error bars represent standard deviations. 

The %e- for nitrate reduction was calculated assuming complete denitrification and 

5 e-/mole of nitrate reduced. The top panel indicate significance level of comparisons 

based on based on 1-Way ANOVA with a Two-Tailed post-hoc Tukey's HSD test. 

Asterisks indicate statistical significance (p<0.001-***, p<0.01-**, p<0.05-*)  



69 

Figure 3.5: Electron Sinks in the Anode over time in each reactor. Periods of nitrate 

flux are represented by shaded areas. 

3.3.2 Performance of the anode is resilient to nitrate fluxes at high C/N ratios. 

To further elucidate the effect of nitrate on the anode of the MFC, the anode potential of 

the MFCs at different C/N ratios was examined. The average anode potential (±SD) 

before nitrate flux was introduced was -0.31 ± 0.01 V (vs SHE).  When nitrate was added 

at a high C/N ratio of 7.4 mg-C/mg-N in the influent, there was no observable effect on 

the anode potential. However, when nitrate was added at 3.7 and 1.8 mg-C/mg-N, the 

anode potential increased to different steady state values (Figure 3.6). At 3.7 mg-C/mg-N, 

the anode potential increased to a final value of -0.06 ± 0.004 V (vs SHE) while it 
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increased to 0.28 ± 0.005 V (vs SHE) when nitrate was introduced at 1.8 mg-C/mg-N.  

Steady state values were defined as a constant anode potential for greater than 3 HRTs. 

When nitrate was removed from the influent of the treatment group, the anode potential 

returned to the original values before the nitrate flux. The anode potential influences both 

the metabolic pathway used for electron transfer and from a thermodynamic point of 

view, the theoretical energy gain from the electron transfer reaction (Torres et al., 2010). 

An increase in the anode potential can be indicative of electrons being deposited on 

alternative electron acceptors (AEAs), such as nitrate, and the increase is dependent on 

the concentration of the AEA as determined by the Nernst equation (Marcus et al., 2007; 

Torres et al., 2010). This is because the anode potential is essentially the redox potential 

in the anode environment and is dependent on the identity and concentration of the 

electron acceptor being used. Maximum power density (W/m2), as measured using 

polarization curves, showed similar trends (Figure 3.7). The maximum power density 

decreased over time when nitrate was introduced at 3.7 and 1.8 mg-C/mg-N while it did 

not change when nitrate was introduced at 7.4 mg-C/mg-N.  
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Figure 3.6: Anode Potential (Volts) through the course of the experiment. 

The arrows indicate when biofilm samples were taken. 
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Figure 3.7: Mean Maximum Power Density (W/m2) as measured using 

Polarization Curves. Error bars represent the standard deviation of three curves 

performed consecutively. 
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3.3.3 Emerging Denitrifiers are Primarily responsible for Nitrate Reduction in 

Nitrate-perturbed Anodes. 

The microbial community, in the anode, was capable of reducing nitrate as soon as nitrate 

was introduced despite the biofilm in the MFCs having been acclimated over a long period 

of time with the anode serving as the sole electron acceptor. This suggests either facultative 

nitrate reduction by microorganisms capable of both anode respiration and nitrate reduction 

and use the anode as the electron acceptor in the absence of nitrate or the existence of a 

diverse microbial community harboring microorganisms capable of nitrate reduction and 

not anode respiration.  

Sequencing of the 16S rRNA gene V3-V4 region was used to understand the effect of 

nitrate on the biofilm community. Samples of the biofilm were taken before nitrate was 

introduced (Day 0), during nitrate flux (Days 20 and 43) and after nitrate was removed 

from the influent (Day 56). A total of 734,652 high quality reads were obtained from 

sequencing after filtering and trimming.  In the initial anode biofilm community, 

Deltaproteobacteria were predominantly present (70.6 ± 16.2 %). In these samples, most 

of the Deltaproteobacteria were putatively classified as Geobacter spp. (69.2 ± 16.5 

%, Figure 3.9). Previous studies have shown the dominance of Geobacter spp. in 

anodic communities fed with acetate (Commault et al., 2013; Miceli et al., 2012; 

Torres et al., 2009; White et al., 2009). Betaproteobacteria were the next most 

abundant group composing 19.7 ± 12.6 % of the community. Most of the 

Betaproteobacteria were putatively classified as Zoogloea spp. (13.5 ± 10.7 %, Figure 

3.9). Zoogloea spp. have been previously found in anode-respiring biofilms (Gao et al., 

2014; Phung et al., 2004) and are usually implicated in the formation of a gelatinous 

matrix (Dugan et al., 1992) that could 



74 

aid in biofilm formation. To our knowledge, there have been no studies implicating 

Zoogloea spp. in anode respiration. However, Zoogloea spp. harbor the nitrite reductase 

gene and are capable of nitrate reduction (Strand et al., 1988). This suggests that there 

is inherent capacity in these anode-respiring biofilms for complete nitrate removal even 

when the anode community was acclimated with the anode serving as the sole electron 

acceptor. When nitrate was introduced into the anode, there was a decrease in the 

relative abundance of Deltaproteobacteria (Figure 3.8). Under electron donor 

non-limiting conditions (7.4 mg-C/mg-N), the relative abundance of 

Deltaproteobacteria decreased from 88.8 % (day 0) to 72.7 % (day 20) and 70.1 % (day 

43). This was accompanied by an increase in Betaproteobacteria (mostly classified as 

Zoogloea spp.) from 7 % on day 0 to 21.3 % on day 20 and 20.6 % on day 43. When 

electron donor was most limiting (1.8 mg-C/mg-N), the relative abundance of 

Deltaproteobacteria decreased from 53.8 % (day 0) to 30.0 % (day 20) and 8.8 % 

(day 43). Concurrently, the relative abundance of Betaproteobacteria increased 

from 36.4 % (day 0) to 55.1 % (day 20) and 58.1 % (day 43). Zooglea spp. which were 

dominant members of Betaproteobacteria (Figure S3) are known denitrifiers (Bellini et 

al., 2013; Strand et al., 1988) and hence the increase in relative abundance of this 

genus could indicate denitrifying activity. This suggests that even though Geobacter spp. 

are capable of facultatively reducing nitrate to ammonium, this might not be the 

predominant mechanisms of nitrate reduction in nitrate-perturbed anode biofilm 

communities. When nitrate was introduced at 3.7 mg-C/mg-N, the change in the 

biofilm community was less straightforward. The relative abundance of 

Deltaproteobacteria initially decreased from 61.4 % (day 0) to 22.2 % (day 20) and 

then increased to 57.0 % (day 43). Concurrently, the relative abundance of 

Betaproteobacteria increased from 16.7 
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% (day 0) to 45.6 % (day 20) and then decreased to 23.0 % (day 43). This oscillation of 

community composition could be due to kinetics of acetate and nitrate utilization by 

members of the Geobacter spp. and Zoogloea spp. (Strand et al., 1988; van den Berg et al., 

2016, 2015) but is beyond the scope of this study. 

 NMDS analysis of the UniFrac weighted metrics (Figure 3.10) showed that the 

difference in communities between sampling days within each C/N ratio increased at lower 

C/N ratios. Changes in the community due to nitrate are primarily along the NMDS axis 1. 

This further confirms that the communities are changing with time in the presence of 

nitrate. Additionally, it should be noted that the community after 43 days of nitrate flux is 

different from the community at day 0 when the C/N ratio is low. 

3.3.4 The anodic community was resilient to nitrate perturbation. 

When nitrate was removed from the influent after 43 days of nitrate flux, the relative 

abundance of the Deltaproteobacteria increased from 70.1 % (day 43) to 75.8 % (day 56) 

while Betaproteobacteria decreased from 20.6 % (day 43) to 13.5 % (day 56) in the reactor 

which was perturbed with nitrate at 7.4 mg-C/mg-N. Similarly, in the reactor perturbed at 

1.8 mg-C/mg-N, Deltaproteobacteria increased from 8.8 % (day 43) to 31.2 % (day 56) 

while Betaproteobacteria decreased from 58.1 % (day 43) to 28.7 % (day 56). 

Interestingly, in this reactor, the relative abundance of Gammaproteobacteria increased 

from 3.7 % (day 43) to 24.2 % (day 56). A majority of the Gammaproteobacteria 

were putatively classified as Pseudomonas spp. (16.7 %, Figure 3.9) which have been 

identified in other MFC studies (Park et al., 2014; Rabaey et al., 2004; Read et al., 2010; 

Sun et al., 2010). Even though Pseudomonas spp. have only been implicated in 

electron transfer through soluble mediators, it is possible that there are syntrophic 

interactions between 
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Pseudomonas spp. and other bacteria through metabolites produced by Pseudomonas spp. 

and their presence in the biofilm could be due to the competitive advantage the biofilm 

offers in a chemostat where soluble mediators produced could be washed out (Pham et al., 

2008; Venkataraman et al., 2011). Pseudomonas spp. are also known denitrifiers and hence 

the perturbation with nitrate could have lent them a competitive advantage (Barak et al., 

1998; Körner and Zumft, 1989; van Rijn et al., 1996). At 3.7 mg-C/mg-N, even though 

recovery of the community towards the community at day 0 is observed, NMDS analysis 

(Figure 3.10) of the communities showed that the community at day 56 is different from 

day 0. It is possible that with longer recovery times, the community could have recovered 

or it attained a new steady state composition. At 1.8 mg-C/ mg-N, NMDS analysis of the 

UniFrac weighted metric (Figure 3.10) confirms that the community at day 56 (after 

nitrate flux has been removed) is different from the community at day 0. Most of this 

change is along the NMDS axis 2 which is different from the change due to nitrate flux.  
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Figure 3.8: Relative abundance of bacterial classes at different C/N ratios during 

different stages of the experiment. The most abundant phylum Proteobacteria has 

been shown as its classes with the other phyla grouped as Other bacteria. Shaded 

areas represent period of nitrate flux. 
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Figure 3.9: Relative abundances of the top 10 OTUs represented as a heatmap for 

each sample. The y-axis contains the class and genus information for each OTU 

while the x-axis contains the sample name represented as C/N Ratio:Sampling Day. 
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Figure 3.10: NMDS results of 16S rRNA gene sequencing data using distance matrix 

generated using UniFrac weighted metric for all C/N Ratios are shown in the top 

plot. Communities at day 0 are connected by lines. The results separated by C/N 

ratios are shown in the bottom plot. 

3.3.5 Denitrification is upregulated in nitrate perturbed MFCs. 

The effect of nitrate introduction on denitrifying genes was studied by quantifying the 

amount of nitrite reductase gene (nirK and nirS) transcripts using RT-qPCR. Geobacter 

specific primers were used to quantify the change in activity of Geobacter spp. The total 
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quantity of Geobacter spp. specific transcripts were on the order of 108 copy numbers 

which was on par with the 16S rRNA reference gene transcripts (Figure 3.11). This 

would be expected since Deltaproteobacteria (putatively classified as Geobacter 

spp.) were predominant in the community (Figure 3.8). nirS transcripts were an order of 

magnitude greater than nirK transcripts. Growth of Zooglea spp., which was found to 

be a major response to the introduction of nitrate are known nitrite-utilizing organisms 

and possess the nitrite reductase gene-nirS. The higher quantity of nirS compared to 

nirK could be attributed to their predominance in nitrate perturbed reactors. No 

significant changes in Geobacter spp. activity was observed (Figure 3.12) in the reactor 

with nitrate at 7.4 mg-C/mg-N during nitrate flux. However, a significant increase in nirS 

transcipts from day 0 was observed at day 20 corresponding to denitrification 

activity in response to the introduction of nitrate. However, no significant changes 

were observed in nirS tanscripts at day 43 (compared to day 0). At 1.8 mg-C/mg-N, the 

activity of Geobacter spp. decreased significantly over time during nitrate flux and 

remained lower than at day 0 even after nitrate was removed from the influent. There 

was no significant change from day 43 to day 56 in Geobacter activity (p = 0.54). There 

was a corresponding upregulation of nirS during nitrate flux which was statistically 

significant (Day 0-Day 20 & Day 0-Day43, p<0.001) followed by a downregulation 

after nitrate was removed (Day 43-Day 56, p<0.001). It is interesting to note that even 

though there was a significant downregulation of nirS from day 43 to day 56, it was not 

accompanied by a significant upregulation of Geobacter spp. activity from day 43 

to day 56. This could be due to the emergence of Gammaproteobacteria as 

an abundant group in the biofilm community at day 56 in the reactor perturbed at 1.8 

mg-C/mg-N. When nitrate was introduced at 3.7 mg-C/mg-N, there 
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were no significant changes in Geobacter spp. activity or any significant up or 

downregulation of nirS activity. nirK showed significant changes in transcription (All 

comparisons, p<0.01). However, when nitrate was removed from the influent, Geobacter 

spp. showed increased activity. It is possible that, at this intermediate C/N ratio, the nitrate 

concentration was high enough with the acetate concentration not being extremely limiting, 

the kinetics of DNRA and nitrate reduction by bacteria containing the nirK genes was 

favorable. Further investigation into the competition between DNRA and denitrification 

with co-culture studies of Geobacter spp. and Zoogloea spp. is warranted before this can 

be confirmed. 

Even though previous studies, investigating the effect of nitrate on the performance of 

the anode of an MFC, have implicated both denitrification and Geobacter-mediated DNRA 

as potential responses to the introduction of nitrate into the anode, either quantitative 

evidence was lacking or the study was performed in a pure culture system. Here we show 

that, even though Geobacter spp. are capable of nitrate reduction through the DNRA 

pathway, in mixed-culture systems, the primary response to the introduction of nitrate is 

mainly the emergence of heterorophic denitrifiers and that there is inherent capacity in 

these communities for denitrification. Furthermore, at intermediate and high C/N ratios, 

the relative abundance and activity of ARB either recovers or does not change significantly 

(respectively) suggesting that the communities are robust and resilient to fluxes of nitrate.  
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Figure 3.11: Absolute copy numbers (as determined from standard curves) in 16S, 

Geo, nirK and nirS transcripts due to the nitrate induction at different C/N ratios. 

Error bars represent standard deviation from three replicates. Asterisks indicate 

statistical significance (p<0.001-***, p<0.01-**, p<0.05-*) based on 1-Way ANOVA 

with a Two-Tailed post-hoc Tukey's HSD test.  
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Figure 3.12: Fold Changes in Geo, nirK and nirS expression due to the nitrate 

induction (shaded area) at different C/N ratios represented as the log2 transformed 

value. Relative transcript ratios comparing target transcripts with 16SrRNA for 

each sample within each C/N Ratio was calculated and used to determine fold 

changes as compared to Day 0 sample. Error bars represent standard deviation. 

Asterisks indicate statistical significance (p<0.001-***, p<0.01-**, p<0.05-*) based 

on 1-Way ANOVA with a Two-Tailed post-hoc Tukey's HSD test with each 

Sampling Day compared to the respective Day 0 data.  
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CHAPTER 4 

MODELLING INTERSPECIES COMPETITION AND 

COMMUNITY DYNAMICS IN THE ANODE OF A 

MICROBIAL FUEL CELL 

4.1 Introduction 

A major challenge in the research on microbial fuel cells (MFCs) and its application 

in wastewater treatment, groundwater treatment and bioremediation is the complex web 

of biological, biochemical and electrochemical interactions that affect its electrochemical 

and treatment performance. Some of the different phenomena are bacterial kinetics 

(Marcus et al., 2007; Torres et al., 2008b), identity of the bacteria/archaea in the anode 

(Kim et al., 1999; Rotaru et al., 2014; Snider et al., 2012), electron transfer rate (Bonanni 

et al., 2013; Matsuda et al., 2012; Okamoto et al., 2014; Schröder, 2007), composition of 

the biofilm EPS (Malvankar et al., 2012, 2011; Marcus et al., 2007) (which contributes to 

its conductivity), thickness of the biofilm (Bond et al., 2012), substrate diffusion into the 

anode biofilm (Lee et al., 2009), electrochemical losses (Clauwaert et al., 2008), external 

resistance (Aelterman et al., 2008; Jung and Regan, 2011; Pinto et al., 2011; Rismani-

Yazdi et al., 2011), cathodic reactions (Cheng and Logan, 2011; Dewan et al., 2008), 

electrode material (Logan, 2010; Logan et al., 2006; Pocaznoi et al., 2012) and 

configuration of the MFC (Du et al., 2007; Freguia et al., 2008b; Liu et al., 2005b). A 

primary requirement for widescale application of the technology is the ability to model 

the performance of the technology and being able to predict changes in performance due 
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to environmental factors. This model has to incorporate all the afore-mentioned factors to 

be able to predict the performance of a MFC accurately under changing conditions.  

Despite the importance of models in process optimization, very few studies 

incorporating models to understand the effect of operating conditions have been 

published. Marcus et al. (Marcus et al., 2007) developed a one-dimensional model with 

electron donor oxidation by dual substrate-limited kinetics represented by the Nernst-

Monod equation (Equation 4.9). Picioreanu et al. (Picioreanu et al., 2008) integrated 

IWA’s anaerobic digestion model (ADM1) within a computational model of a microbial 

fuel cell. This model incorporated competing methanogenic archaea and anode-respiring 

bacteria in both the suspension and in the biofilm. They determined that a smaller 

electrical resistance enabled selection of anode-respiring bacteria and higher electrical 

resistance enabled the growth of methanogenic archaea. Similar results were obtained by 

a model developed by Pinto et al. (Pinto et al., 2010). A study by Merkey and Chopp 

(Merkey and Chopp, 2014) modelled interspecies competition between two different 

communities of bacteria using the anode as the electron acceptor implying two different 

mechanisms of electron transfer- direct electron transfer through a conductive biofilm 

and electron transfer through soluble electron mediators. They found that bacteria that 

use direct electron transfer are competitively favored due to the faster rates of electron 

transfer. Except for Picioreanu et al. (Picioreanu et al., 2008), all published models have 

focused on the anode-respiring bacteria (ARB) and their behavior under various 

operating conditions. More attention is needed incorporating non-ARB into these models 

and understanding community dynamics in the presence of competing electron acceptors 

in the anode.  
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The community in the anode of a MFC has been observed to be diverse (Ki et al., 2008; 

Patrick D. Kiely et al., 2011; Kim et al., 2006; Miran et al., 2015). It is highly likely that 

these diverse communities are composed of obligate ARB, facultative ARB (capable of 

both anode-respiration and an alternate metabolism) and/or non-ARB. The presence of 

active or dormant communities of facultative ARB and/or non-ARB creates a 

vulnerability in the performance of the system when an alternate electron acceptor is 

introduced. The most fundamental interaction, in the presence of a competing electron 

acceptor, is the competition for the electron donor. This competition can be modeled by 

using resource competition models such that used by Tilman (Tilman, 1977). Even 

though more complex agent-based modeling approaches can yield information about 

spatial organization of the community and specific cellular growth patterns (Picioreanu et 

al., 2008, 2004), lumped-system models such as the one developed here, can yield 

information about important phenomena and parameters that can further be focused on in 

future experimental and modeling studies.  

We focus on using nitrate as a model competing electron acceptor. Choosing nitrate as 

the competitor has some important advantages from the perspective of modelling: the 

availability of nitrate as a competing electron acceptor is mainly influenced by the flow 

rate into the anode and thickness of the biofilm. It does not involve complex gas transfer 

kinetics that would be the case with electron acceptors such as oxygen. Another 

important advantage is its relevance to wastewater treatment and bioremediation due to 

its ubiquitous presence in the environment and requirement for nitrogen removal from 

waste streams. 
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4.2 Model Formulation 

The specific experimental simulated is as follows: nitrate is introduced into the anode of 

an acclimated MFC. The anode is assumed to be performing at steady state and the 

microbial community is composed by anode-respiring bacteria (such as Geobacter spp.) 

with a small fraction of non-ARB. This was evaluated experimentally (Figure 4.9). The 

anode is also assumed to be fed with acetate (electron donor) at the minimum 

concentration required to sustain stable power production. The application of this multi-

species lumped-system model is evaluated by its ability to simulate community dynamics 

in a nitrate-perturbed anodic community. The model is also used to understand important 

parameters that the influence community dynamics in the anode to gain a better 

understanding of the operating and system properties that influence the robustness of the 

community.  

The following assumptions were made to formulate the model: 

1. There are no diffusional limitations in the biofilm, i.e., the anode biofilm is a thin

biofilm. This implies a biofilm that is less than 50 µm in thickness (Ter Heijne et

al., 2011). This was confirmed by microscopic observation using DAPI staining

(Figure A. 3).

2. The anode chamber is completely mixed and hence behaves like a continuous

stirred-tank reactor (CSTR).

3. There are two main metabolisms in the anode in the presence of nitrate: anode

respiration and denitrification. The two metabolisms are performed by different

communities of bacteria: Geobacter spp. are used as the model organism

performing anode respiration and Zoogloea spp. as the model organism



88 

performing denitrification. This assumption has been validated through 

community analysis of anode biofilms perturbed with nitrate (Figure 0.9). 

4. The microbial growth and substrate utilization kinetics can be modelled based on

dual-substrate limited Monod kinetics or modification of the equation. Both

electron donor and electron acceptor are limiting for both organisms.

5. In order to simplify the model, anode respiration is only performed through direct

electron transfer by Geobacter spp. in the biofilm. This is a reasonable

assumption due to different studies showing that microorganisms performing

mediated electron transfer will likely be out-competed/washed out in a chemostat

MFC (Merkey and Chopp, 2014). Also, since we assumed a thin biofilm, most

cells in the biofilm have direct contact with the electrode. Anode

respiration/electron transfer stops when a cell detaches from the biofilm. The

same assumption is also made for denitrifying microorganisms (Zoogloea spp.).

Even though denitrification can still be performed in the bulk solution, it is likely

that in a chemostat the cells that are in suspension are likely to be washed out at

nitrate-limiting concentrations. The competition in the biofilm community is of

most interest since if ARB in the biofilm is completely out-competed, it lowers

the ability of the MFC to recover the electrochemical performance when the

competing electron acceptor is removed. We can incorporate more elements into

the model once a better understanding of the competition in the biofilm is gained.

Dissimilatory reduction to ammonium (DNRA) by Geobacter spp.  has not been

incorporated since no evidence of this metabolism was observed experimentally.
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6. A maximum biofilm carrying capacity for the electrode (Xcap – g-VS/m2) is

assumed. This means that the total mass of cells on the electrode cannot exceed

this quantity. This imposes a constraint on cell growth and imposes competition

for space on the electrode. Xcap of 1 g/m2 was assumed.

7. Temperature was assumed to be 25 ◦C (298.15 K).

8. Lastly, it is assumed that there is no time delay in the growth of denitrifiers and

nitrate utilization after nitrate is introduced into the anode. This is a reasonable

assumption since Zoogloea spp. were found in the anode biofilm community even

after acclimation of the anode (no nitrate) for an extended period of time.

The biomass mass balances are as follows 

dXgeo

dt
= {μgeo −  αD}Xgeo Equation 4.1 

dXdenit

dt
= {μdenit −  αD}Xdenit Equation 4.2 

where  Xgeo and Xdenit are biomass density of anode-respiring and denitrifying bacteria (g-

VS/m2), µgeo and µdenit are the specific growth rates of anode-respiring and denitrifying 

bacteria (min-1), D is the dilution rate (min-1) and α is the biomass retention coefficient 

(Pinto et al., 2010). The dilution rate in this case is 0.00084 min-1 which is equal to an 

HRT of 19.8 hours. α is a dimensionless coefficient which is a property of 

microorganism. It can be viewed as a retardation of dilution and a measure of the 

detachment rate of the microorganism. Lower values of α imply higher biofilm retention 

and vice versa. Here we have made the simplifying assumption that it is the same for both 

groups of organism.  
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The substrate mass balances are as follows: 

dSac

dt
= {Sac

in − Sac} ∗ D − qac
geo

∗  Xgeo −  qac
denit ∗  Xdenit Equation 4.3 

dSnit

dt
= {Snit

in − Snit} ∗ D − qnit
denit ∗  Xdenit Equation 4.4 

where Sac
in and Sac are acetate concentrations (g/L) in the influent and in the reactor (equal

to effluent concentration), Snit
in and Snit are nitrate concentrations (g/L) in the influent and 

in the reactor (equal to effluent concentration), qac
geo

 and qac
denit are acetate utilization rates

for anode respiring and denitrifying bacteria respectively (g-Ac/(g-VS.min)), qnit
denitnitrate 

utilization rate for denitrifying bacteria (g-nitrate/(g-VS.min)). 

The growth kinetics for the anode-respiring and denitrifying bacteria are given by: 

μgeo = μgeo
max(

Sac

Sac +  Ks−geo
ac )(

1

1 + exp [−
F

RT (Ea − EKa]
) Equation 4.5 

μdenit =  μdenit
max (

Sac

Sac +  Ks−denit
ac )(

Snit

Snit +  Ks−denit
nit

) Equation 4.6 

where Ks−geo
ac  and Ks−denit

ac  are half-saturation constants (g/L) for acetate utilization by 

anode-respiring and denitrifying bacteria respectively, μgeo
max and μdenit

max  are maximum

specific growth rates (min-1) of anode-respiring and denitrifying bacteria respectively, Ea

is the anode potential (volts), EKa is the anodic acceptor potential for the half-maximum-
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rate (volts), F is the Faraday’s constant (96500 C/mol), R is the ideal gas law constant 

(8.314 J mol-1 K-1) and T is the temperature (298 K). 

The current density is given by 

j =  jmax(
Sac

Sac + Ks−geo
ac )(

1

1 + exp [−
F

RT (Ea − EKa]
) Equation 4.7 

where jmax is the maximum current density. 

The mass balance on the biomass is governed by the maximum biomass carrying capacity 

(Xcap – g/m2). 

Xgeo +  Xdenit = Xcap Equation 4.8 

4.3 Methods 

4.3.1 Parameter Estimation 

The system of ordinary differential equations was solved by using the ode solver from the 

deSolve (Soetaert et al., 2010) package in R. The differential equations were solved using 

LSODA method which has the ability to select between stiff and non-stiff solutions by 

dynamically monitoring the data as it is solved. Several parameters were obtained from 

literature and some others were assumed (Table 4.1). Eka, jmax and α were estimated in 

this study using a genetic algorithm with a single-objective optimization method (Deb et 

al., 2002; Pelletier et al., 2006) as outlined in Section 1.4. Model parameters were 

estimated by minimizing the following objective function 
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F(obj) =  ∑ ⌈∑(yi,t
exp

−  yi,t
pred

)
2

t

t=0

⌉

n

i=1

 Equation 4.9 

where yi,t
exp

and yi,t
pred

 are the experimentally determined and predicted values 

respectively at each time point t for the ith state variable. The model outputs that were 

used for the optimization (estimation of Eka, jmax and α) were Xgeo, Xdenit and current.  

4.4 Results and Discussion 

The main purpose of this modeling effort was to model the change in relative biomass 

abundance of anode-respiring and denitrifying bacteria when nitrate is introduced into the 

reactor as a competing electron acceptor. Even though the model was calibrated using a 

genetic algorithm, a sufficient calibration was not achieved (Figure 4.1). The model 

predicts a community structure that quickly shifts to predominantly denitrifying bacteria 

even though experimental data shows that this shift is a much slower process and ARB 

do not get completely out-competed in the community. This could be due to ARB that are 

facultatively able to reduce nitrate to ammonium (DNRA) (Kashima and Regan, 2015; 

van den Berg et al., 2016, 2015) which are not represented in the model or incomplete 

reduction of nitrate to nitrite by ARB (Aklujkar et al., 2009). Nitrite was not detected in 

the effluent of the MFC nor was ammonium. However, it is possible that ammonium 

produced through DNRA might have been used for assimilation and hence not detected 

in the effluent. The same scenario is possible for nitrite. Future studies should focus on 

understanding the kinetics of nitrate reduction by ARB such as Geobacter spp. as 

quantitative information on kinetic parameters is currently unavailable. This information 

could then be incorporated into the model. Generally, the model predicts that ARB are 
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out-competed by denitrifying bacteria in the presence of nitrate when ARB do not 

possess the capability to use nitrate as an electron acceptor. 

Table 4.1: Model Parameters 

Parameter Value Units Source 

qac
geo 0.005408 g-Ac/(g-VS.min) (Marcus et al., 2007) 

Ks−denit
ac 0.00062 g/L 

(van den Berg et al., 

2016) 

qac
denit 0.007489 g-Ac/(g-VS.min)

(van Niekerk et al., 

1987) 

D 0.00084 min-1 Measured 

Sac
in 0.035 g/L Measured 

Snit
in 0.041 g/L Measured 

SA 0.00242 m2 Measured 

F 96500 C/mol Constant 

R 8.3145 J/(mol.K) Constant 

T 298.15 K Assumed 

Ks−denit
nit 0.00062 g/L 

(van den Berg et al., 

2016) 

μgeo
max 0.0021 min-1 

(Esteve-Núñez et al., 

2005) 

μdenit
max 0.00254 min-1 16 

Xa 1 g/m2 Assumed 

Ks−geo
ac  0.00177 g/L (Marcus et al., 2007) 
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jmax 1.7 A/m2 Estimated in this study 

Eka 0.1 volts Estimated in this study 

α 0.02 dimensionless Estimated in this study 

Influent nitrate 0.041 g/L Measured 

Influent acetate 0.035 g/L Measured 

C/N Ratio 1.8 g-C/g-N Calculated 

Figure 4.1: Predicted and observed biomass densities of anode-respiring and 

denitrifying bacteria. Points represent observed data and lines represent predicted 

data. 
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A useful exercise is to perform sensitivity analysis on the different parameters that 

influence the change in community structure. Eka and jmax showed no effect on the trends 

predicted. However, the biofilm retention coefficient (α) showed significant effects on 

the change in community structure (Figure 4.2). Lower biofilm retention factors showed 

higher retention of anode-respiring bacteria in the community. This suggests that the 

detachment rate of microorganisms plays a key role. This retention factor might be 

influenced by the surface properties of the electrode, type of electrode material and 

species of microorganism. In this case, the model assumed that the biofilm retention 

coefficient was the same for both groups of bacteria. However, this is unlikely and in the 

presence of nitrate, it is likely that denitrifying bacteria will have a higher α due to 

detachment into the suspension due to the presence of nitrate in the bulk solution 

(Kashima and Regan, 2015) and hence subject to more washout. The dependence of α on 

nitrate will have to be experimentally determined before being incorporated into the 

model. Furthermore, there is likely to be an equilibrium established where there are 

denitrifying bacteria in the suspension and in the biofilm performing denitrification 

independently and competing. This is not currently captured by our model and warrants 

investigation since the biomass density of denitrifying bacteria in the biofilm reaches a 

plateau value of 0.66 g/m2 (experimental) while the model predicts the biomass density 

reaching Xcap.   

The maximum specific growth rate of denitrifying bacteria did not show an effect. 

However, the model was sensitive to the maximum specific growth rate of anode-

respiring bacteria. Higher μgeo
max values improved retention of anode-respiring bacteria in

the community. Since μgeo
max is a characteristic of the species of anode-respiring bacteria
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active in the community, acclimation regimes targeting specific species of bacteria with 

high  μgeo
max might be useful in improving the robustness and resilience of anode-respiring

communities to influx of competing electron acceptors. Detailed kinetic information for 

different anode-respiring bacteria for growth on the anode electrode is currently lacking. 

Most studies have been done using soluble electron acceptors such as fumarate and might 

not mimic growth using a solid electron acceptor well.  

Figure 4.2: Effect of biofilm retention coefficient on the community structure in 

the presence of nitrate. Points represent observed data. 
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Figure 4.3: Sensitivity of the biomass density to the maximum specific growth rate 

of anode-respiring bacteria (𝛍𝐠
𝐦

𝐞𝐨
𝐚𝐱). Points represent observed data.

A multispecies MFC model was developed to simulate the effect of influx of competing 

electron acceptors into the anode. The model was able to simulate the trend in biomass 

changes in the anode biofilm. Several key parameters such as the biofilm retention 

coefficient and the maximum specific growth rate of anode-respiring bacteria were 

identified as having the most influence on the robustness of these biofilms. In general, the 

model predicts that ARB that are incapable of using nitrate will be outcompeted by 

denitrifying bacteria. Since ARB biomass retention was improved when μg
m

eo
ax was
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increased, the most important factor in preserving the community structure of these 

biofilms is the growth kinetics of the bacteria. The model simulates the general trend in 

the observed data. The lack of fit to observed data suggests that there are some key 

phenomena that is not being simulated by the model. This could include activity of nitrate 

reduction by detached denitrifying bacteria and facultative ARB in suspension, nitrate 

reduction by facultative ARB in solution (DNRA and denitrification), accurate biofilm 

detachment models and parameters, mediated electron transfer, etc. This study highlights 

the importance of detailed kinetic and co-culture studies for estimation of kinetic 

parameters and understanding the dynamics of competition between different bacteria 

under varying operational regimes.  
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CHAPTER 5 

CONCLUSIONS 

This dissertation made some important contributions that will impact the use of microbial 

fuel cells for bioremediation and wastewater treatment.  

5.1 Nitrite accumulation in biocathodes is due to intracellular competition 

for electron mediators 

Nitrite was observed to be accumulating in a denitrifying biocathode in batch conditions 

up to 66.4 ± 7.5 % of the initial nitrogen. A model, activated sludge model with an 

integration of the Nernst-Monod model and indirect coupling of electrons (ASM-NICE), 

was formulated, calibrated and validated using experimental data. The cause of nitrite 

accumulation was identified as intracellular competition between nitrate and nitrite 

reductases for the intracellular reduced electron mediator. The competition was 

controlled by the affinity of the enzymes (KMRedNA and KMredNI) for the reduced mediator. 

The calibrated half-saturation constants (KMRedNA and KMredNI) suggested a greater affinity 

of the nitrate reductase enzyme to the reduced mediator in comparison to the nitrite 

reductase enzyme. Operationally, longer hydraulic retention times (HRT) might be 

necessary for achieving complete nitrogen removal. 

5.2 An experimental framework for investigating competition in MFCs 

was created 

An important phenomenon to consider when implementing MFCs for wastewater 

treatment or bioremediation is the potential for presence of alternate electron acceptors 
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and the competition resulting from their presence. The effect of the presence of such 

alternate electron acceptors was evaluated using a model contaminant: nitrate. An 

experimental framework was created that enabled the study of the effect of nitrate on the 

performance of a MFC as well as the effect on the microbial ecology and activity of the 

anode-respiring community under a variety of electron donor limiting/non-limiting 

conditions. An important aspect of the framework is the identification of the critical 

electron donor concentration (Scritical) which enabled the change of electron donor 

availability from limiting to non-limiting. This experimental framework can be directly 

applied to study the effect of different alternate electron acceptors. The availability of the 

electron donor was evaluated using the C/N ratio.  

5.3 The impact of nitrate on the anode performance and microbial 

community depended on the C/N ratio 

The impact of nitrate depended on the C/N ratio of the influent. The electrochemical 

performance was significantly affected at low C/N ratios (1.8 and 3.7 mg-C/mg-N) and 

not affected at high C/N ratios (7.4 mg-C/mg-N). This suggests that the effect of alternate 

electron acceptors can be mitigated if the ratio of the electron donor/electron acceptor can 

be optimized to be high. This could be achieved by addition of an external electron donor 

or by fermentation of primary or secondary sludge. Furthermore, the microbial ecology 

and performance was either not significantly affected (7.4 mg-C/mg-N-electron donor 

non-limiting) or recovered upon removal of the alternate electron acceptor after 43 days 

of perturbation (3.7 mg-C/mg-N) suggesting that as long as the electron donor is not 

severely limiting (1.8 mg-C/mg-N), the performance and community structure in the 

anode can be preserved or recovered.  
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The major response to presence of nitrate in the anode is heterotrophic denitrification 

Even though, Geobacter spp. have the capability to reduce nitrate to ammonium, the 

major response of the community was the heterotrophic denitrification of nitrate to N2

gas. This implies that even though anode-respiring bacteria may have the facultative 

ability to use an alternate electron acceptor as the electron acceptor, the dynamic changes 

in the community structure are influenced heavily by the kinetics of reduction of nitrate 

by the members of the community and more research is required to characterize the 

kinetics of the various facultative metabolisms in anode-respiring bacteria. This will 

enable the assessment of risk to the anode performance and community structure posed 

by alternate electron acceptors that may be introduced into the anode intermittently.  

5.4 Microbial growth kinetics and specific detachment rates play a key role 

in the outcome of competition in MFCs 

Modeling of this competition suggested that, apart from the kinetics of alternate electron 

acceptor utilization, cell detachment from the biofilm plays an important role in the result 

of the competition. Characterizing this detachment rate for various bacteria and the 

dependence of this detachment on the concentration of electron acceptor in the bulk 

solution is critical to completely model the competition.  

This research developed a model (ASM-NICE) that effectively simulates nitrite 

accumulation and helped understand the cause of the accumulation and will help develop 

strategies to mitigate such accumulations in MFC biocathodes. Furthermore, this research 
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also contributes an experimental framework to investigate competition in the anode of 

MFCs. This experimental framework was used to investigate the effect of nitrate and 

understand the effect of nitrate on the performance and ecology of the anode in MFCs. 

Furthermore, modeling of this perturbation experiment identified microbial growth 

kinetics and detachment rates as key phenomena that warrant further investigation. 
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APPENDICES 

APPENDIX A 

EFFECT OF DIFFERENT SEQUENCING DATA ANALYSIS 

STRATEGIES 

Sequencing errors can arise when longer regions of the 16S rRNA gene have been 

sequenced. Using Illumina MiSeq, the maximum number of bps that can be sequences in 

1 read is 250 bps (V2 chemistry) and 300 bps (V3 chemistry). In paired-end sequencing, 

the region of interest is sequences once in the forward direction (5’ -> 3’) and then again 

in the reverse direction (3’ -> 5’). Hence theoretically, using paired-end sequencing, one 

could sequence a long region of the 16S rRNA gene using overlapping regions and 

assembling them in-silico thus lending more specificity to taxonomic classification. 

However, it has been observed that sequence error rates are high when the forward and 

reverse reads are not completely overlapping. Furthermore, the V3 chemistry for Illumina 

sequencing has been observed to have high error rates too.  

Sequence errors lead to inflated number of unique sequences and hence cause an issue 

with distance matrices when sequences are clustered into OTUs. It also leads to an 

inflated number of OTUs leading to overestimation of diversity and richness. There are 

two different ways researchers deal with this issue: remove rare sequences (singleton 

removal) after OTU picking or cluster sequences into OTUs based on their phylotype. 

The effect of these different strategies on the interpretation of the changes in the 

community can be significant and needs to be evaluated. 
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A1 Methods 

Three different sequencing analysis strategies were tested: typical mothur pipeline, 

mothur pipeline with singleton removal and phylotype. The common steps across all 

three methods are as follows. The raw Fastq files were cleaned using Sickle 1.33 (Joshi 

and Fass, 2011) with a minimum window quality score of 20. The quality-controlled 

sequences were analyzed using mothur (Schloss et al., 2009) using the protocol described 

in Kozich et al (Kozich et al., 2013). The sequences were trimmed to remove primers and 

barcodes, quality filtered using sickle v1.33 (Joshi and Fass, 2011) with a minimum 

quality score of 20 and assembled in mothur. The assembled sequences were screened to 

remove sequences that were less than 425 bps and greater than 470 bps in length. The 

sequences were aligned to SILVA v123 database. The alignment was screened to remove 

poorly aligned sequences using vertical = T and trump = . options in mothur. Chimeras 

were remove using the UCHIME algorithm available through mothur. The sequences 

were classified using the Naïve Bayesian Classifier (80% confidence threshold) using the 

RDP training set and consensus taxonomy of OTUs was determined using the 80% 

cutoff. The main difference between the three different strategies lies in the OTU picking 

and downstream processing.  

A1.1 Mothur Pipeline 

In the typical mothur pipeline, the sequences are clustered into OTUs at sequence 

similarity cutoff of 97% using the average neighbor clustering algorithm. There is no 

singleton removal performed in this pipeline. Singleton removal or more generally 

removal of rare sequences involves removing OTUs that have sequences present in very 

low frequency in the samples. This is not recommended by the typical mothur pipeline 
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due to the underlying assumption in singleton removal. Singleton removal assumes that 

these rare sequences are due to sequencing errors and not from microorganisms that are 

present at very low quantities. Since removing these sequences would mean a loss in 

information and underestimation of diversity and richness of the community, this method 

is not recommended by the creators of mothur.  

A1.2 Mothur with Singleton Removal 

In this analysis strategy, the typical mothur pipeline was followed. After the sequences 

were clustered into OTUs based on 97% sequence similarity, the OTUs that occurred 

only once across all samples (singletons) were removed. This is based on the assumption 

that these OTUs were most likely due to sequencing errors.  

A1.3 Phylotyping 

In this analysis, the only change is in the OTU clustering procedure. Instead of basing the 

clustering strategy on sequence similarity cutoff, the sequences are first classified based 

on their taxonomy at the genus level and then grouped together based on their taxonomy. 

This method is known to underestimate diversity due to the small number of OTUs that is 

generated.  

A2 Results and Discussion 

An important consideration when studying community changes is the effect of microbial 

ecology analysis pipelines on the interpretation of the data. The interpretation of the 

change in relative abundances of bacterial classes (Figure A. 1) does not change 

significantly except for at time point 43 days for C/N ratio of 7.4 mg-C/mg-N, the mothur 

and phylotype pipeline show a lower relative abundance of Deltaproteobacteria 

compared to Singleton Removal pipeline. This is probably due to the removal of 
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singletons thus artificially leading to an increase in the relative abundance of 

Deltaproteobacteria.  

When diversity indices are calculated for the different pipelines, both the phylotype and 

singleton removal pipelines show a significantly lower diversity compared to the mothur 

pipeline. This is to be expected since the number of OTUs in the mothur pipeline is 

greater than in the phylotype and singleton removal pipelines. Based on this comparison, 

if the diversity of the community is not under direct investigation, it might be better to 

use the mothur or phylotype pipeline since these constitute the analyses with least loss of 

information. Mothur pipeline is preferable and widely accepted. But an important factor 

to consider is that distance matrices, constructed from this pipeline when regions longer 

than 250 bp have been sequenced, tend to be very large and not manageable even with 

high performance computing. Hence it is advisable to stick to V4 sequencing unless there 

are very clear reasons to sequence a longer region such as discovery of novel sequences 

or evolutionary analysis.  
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Figure A. 1: Comparison of Different Analysis Pipelines of Relative abundances of 

bacterial classes at different C/N ratios during different stages of the experiment. 

The most abundant phylum Proteobacteria has been shown as its classes with the 

other phyla grouped as Other bacteria.  
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Figure A. 2: Comparison of diversity indices across different pipelines. 
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APPENDIX B 

SUPPLEMENTARY INFORMATION 

Table A. 1: RT-qPCR Calibration Results 

Target.Name Run Intercept Slope Efficiency R2 

16S 1 7.908186 -3.79401 83.47364 0.99919

16S 2 8.61584 -3.70202 86.26131 0.981978

Geo 1 7.554624 -3.99082 78.06347 0.998722

Geo 2 8.501949 -4.04128 76.78526 0.994563

nirK 1 12.45772 -3.02394 114.1381 0.92446

nirK 2 12.92621 -2.93841 118.9372 0.869303

nirS 1 18.27523 -4.99848 58.51148 0.990316

nirS 2 19.3528 -5.09987 57.06644 0.987452
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Figure A. 3: Microscopic images of the electrode stained with DAPI. DAPI stains 

nucleic acids and they appear blue on the black background of the electrode. The 

scale bar indicates a scale of 2000 µm. 
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