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ABSTRACT

GAME THEORY FOR SECURITY

INVESTMENTS IN CYBER AND SUPPLY

CHAIN NETWORKS

SEPTEMBER 2017

SHIVANI SHUKLA

B.S., GUJARAT UNIVERSITY

M.S., GUJARAT UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Anna Nagurney

In a constantly and intricately connected world that is going digital, cyber-

security is imperative to not just the success but also the survival of a busi-

ness. The ubiquitous digital transformation is fueled by a convulsive growth

of devices and data that are leading important innovations in the domain of

cyber-physical systems. However, this growth has also enabled internal and

external threats to skyrocket, depicting the inherent dichotomy. With an

viii



evolving threat landscape, a perpetrator has to be successful once, while the

defenders have to continually succeed in fending-off attacks to protect critical

infrastructure and digital assets.

The retail and financial sectors are prime targets owing to the large amounts

of personal and financial information they process in disperse and distributed

environments. One of the biggest retail breaches was that of Target when 30

million credit card numbers and personal information of 70 million customers

were stolen and sold on the dark net (Riley and Pagliery (2015)). In the

financial sector, JP Morgan Chase lost data of 83 million customers. The

accussed laudered the $100 million obtained, used 75 shell companies that

employed hundreds of people, and 30 fake passports from 17 countries to keep

the money hidden (Pagliery (2015)).

Monetization of this sensitive data validates that the motivation of such

criminals is principally financial. According to NTT 2016 Global Threat In-

telligence Report, retailers are experiencing nearly three times as many cy-

berattacks as those by financial service providers that were top targets until

2014. Thus, in this dissertation, the focus is, mainly, on the retail and financial

sectors, the top two sufferers in the recent past.

Increased sophistication in cyber threats can be attributed to the fact that

criminals are now highly skilled, well-funded, coordinated, and organized. As

a result, worldwide security breaches are increasing at just about 40% per

annum and attackers stay undetected for an average of 200 days. One of the
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prominent examples of slow detection is the negligence suit filed by Yahoo

users over a 2014 breach that compromised personal data of 500 million users

but was discovered recently in 2016 (Vishwanath (2016)). While large orga-

nizations are cautious (JPMorgan doubled its cybersecurity spending to $500

million in 2015; Global information security spending will increase by 36% to

$101 billion by 2018 (Purnell (2015))), the small and medium level enterprises

are not known for ensuring basic precautionary measures (Forrester (2016)),

which stems from their belief that attacks on larger organizations are more

consequential. Unfortunately, cyber criminals do not discriminate.

Businesses are facing a barrage of attacks, majority of which have a finan-

cial or an espionage motive. In a highly interconnected and mutually depen-

dent world, organizations are constantly interacting and transacting with each

other. If one organization in this complex network is breached, there could

be ramifications for the others since they might also be vulnerable. Often, at-

tackers circumvent sophistical organizational firewalls and go after soft targets

(CNN (2016)). Against the hackers, businesses put forth an asymmetric and

myopic struggle.

Organizing funds for proactive and targeted responses requires careful secu-

rity investment decision-making. In view of the above, a network approach to

security investments while evaluating vulnerabilities of the individual organi-

zations and the entire network is essential. Cyber threat cannot be eliminated,

rather the culminating risks need to be managed. Investments in stronger de-

fense mechanisms, preventive protocols, cyber intelligence, and agile systems
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that provide required redundancies or backups could aid in effective risk man-

agement.

If threats are rampant in the cyber space, physical supply chain networks

are also not exempt from thefts, losses, and damages. In 2015, 1500 incidents

of cargo theft, heavy commercial vehicle theft, and identity theft of trucking

companies in the United States and Canada was reported. Out of these, in

about 470 thefts, cargo and assets worth $98 million were stolen. The aver-

age theft loss value per incident was $187,490 (CargoNet (2015)). Some of

the principal choke points that attackers manipulate are poor infrastructure

and transportation networks, lax port security, and inadequate telecommuni-

cations to support tracking devices. Threats can vary by product type, mode

of transportation, freight carriers, region, and even day of the week.

In view of the above, this work attempts to answer the following principal

questions: (i) For competing firms in a network, what should their security

levels be considering their investment costs or budget constraints to ensure a

reduction in the entire network’s vulnerability? (ii) If firms in a network coop-

erate, what are the implications on the network vulnerability? Does cooper-

ation yield more economic/financial benefits? (iii) In a supply chain network

for high value cargo with competing freight service providers, what should the

shipment sizes and security levels be to ensure reduction in vulnerability?

Through this dissertation, I contribute to the modeling and analysis of se-

curity investments in cyber and supply chain networks considering network
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vulnerability also nonlinear budget constraints. The latter contributes signifi-

cantly to the literature on variational inequality, game theory, and cybersecu-

rity by being methodologically relevant to the application and solution of such

problems. I also explore cooperation in terms of cybersecurity among firms

in a network, providing a quantitative basis to information sharing to explore

its financial and policy related benefits. This work extends the current litera-

ture in the cooperative game theory and cybersecurity domains. In addition, I

explore the high value cargo supply chains that are faced with security invest-

ment decisions at the freight service providers’ level. All the models presented

in this dissertation are neither limited to a fixed number of firms or customers,

nor to functions of any specific form. Moreover, very few cybersecurity or sup-

ply chain security investment models using game theory with competition,

network perspective, network vulnerability, nonlinear budget constraints, and

cooperation have been solved to-date.

The first part of this dissertation discusses the introduction of and moti-

vation behind this research endeavor, along with a detailed literature review.

Next, I discuss the contributions of the work I have undertaken. An overview

of relevant methodologies, including variational inequality theory, competitive

game theory, cooperative game theory and Nash bargaining theory, and two

algorithms used in the chapters to follow is also provided.

Subsequently, I present a supply chain network model in which firms com-

pete on security levels and product flows. The study takes a network approach

to cybersecurity investment decision-making to obtain Nash equilibrium and
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ascertain vulnerabilities of the individual firms and the network on the whole.

The model is probabilistic and includes demand side of the network along with

its dynamics.

In the next part, a crucial and unique extension to the cybersecurity in-

vestment and risk determination model as discussed in the previous part is

considered. Nonlinear budget constraints are added to the model that increase

its complexity and call for theoretical and methodological contributions.

Thereafter, the cybersecurity investment model is modified to include a

cooperative game approach to address the pressing need of collaboration and

information sharing among firms in a network through which they can present

a more coordinate front against the emerging cyber threat landscape. This

inclusion is pivotal to the cybersecurity investment decisions.

Finally, I include my work that advanced modeling of physical security in

supply chain networks. My current work in cybersecurity competition and

cooperation was leveraged to cater to security investments regarding cargo,

infrastructure, and other assets. The model contains features that are innate

to physical flows and networks, thereby, marking a distinction from my work

in cybersecurity. It deals, primarily, with security investment decisions in the

presence of competing freight service providers shipping high value cargo from

shipping origins to demand market destination points.
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CHAPTER 1

INTRODUCTION AND

RESEARCH MOTIVATION

The effects of cyberattacks are being felt across the globe in multiple sectors

and industries. The damages include direct financial losses and reputation

issues, the loss of business, the inability to provide the expected services,

opportunity costs, and the loss of trust.

Governments, military, private organizations, banks and financial institu-

tions, hospitals, and many others generate a multitude of data on a regular

basis. Often this information is confidential and is transmitted within and

across organizations. Cyberattacks are growing and becoming more sophisti-

cated with time. They are generally orchestrated from groups of hackers that

are spatially diverse, thereby, utilizing infrastructure from multiple locations

across the world. This makes it hard for officials to trace and assign ownership.

Juniper Research (2015) predicted that rapid digitization of consumer and

enterprise records will increase the cost of data breaches to $2.1 trillion globally

by 2019, increasing to almost four times the estimated cost of breaches in

2015. North America has been among the most targeted; however, the research

argues that with digitization in other parts of the world, this proportion might

decrease. According to the Center for Strategic and International Studies

(2014), the world economy sustained $445 billion in losses from cyberattacks
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in 2014. The United States suffered a loss of $100 billion, Germany lost $60

billion, China lost $45 billion, and the United Kingdom reported a loss of $11.4

billion due to cybersecurity lapses. The think tank also presented an analysis

that indicated that of the $2 trillion to $3 trillion generated by the Internet

annually, about 15%-20% is extracted by cybercrime.

Perpetrators include spies from nation-states that seek secrets and intellec-

tual property for strategic advantage; organized criminals that are financially

motivated, sometimes even personally; terrorists who would want to create

mass panic and an environment of fear and vulnerability by infiltrating power

grids, water supply sources, or other critical infrastructure; and hacktivist

groups who are trying to make a political or social statement (Deloitte (2014)).

The growing threat landscape of cybercrime extensively targets organiza-

tions in energy, retail, financial services, critical manufacturing, communica-

tions, and even healthcare. As per the US Department of Homeland Security

(2015), the energy sector constituted the highest number of incidents (32%)

reported in Fiscal Year 2014. The energy infrastructure faced a jolt when the

“UglyGorilla” attack in 2014 sought access to pipeline schematics and nat-

ural gas flow regulation systems in the United States and caused a remote

shutdown of critical systems (Bloomberg (2014b)). Monetary and regulatory

efforts are being made to protect electric grids, oil and gas infrastructure, and

intellectual property. The Energy Department announced $34 million in R&D

in October 2015 (US Department of Energy (2015)).
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In the retail sector, security breaches have been the most damaging and

publicized. Loss of reputation, data, and business are evident. In 2014 alone,

Target, Home Depot, Michaels Stores, Staples, and eBay were breached. Card

data and personal information of millions of customers were stolen and the

detection of cyber espionage became the prime focus for the retail sector with

regards to cybersecurity (Granville (2015)).

Financial gains from subversion of processes and controls are highly lu-

crative to attackers infiltrating financial services firms, financial institutions,

and banks. It is known that they are targeted incessantly to gain access to

data, systems, people, processes, and finances. The large-scale data breach of

JP Morgan Chase, Kaspersky Lab’s detection of a two-year infiltration of 100

banks across the world costing $1 billion (USA Today (2015)), and the Dridex

malware related losses of $100 million worldwide (Dodd (2015)) are some of

the widely accepted cautionary tales in this sector.

One of the other major sectors that face disruption due to cyber and phys-

ical attacks is Logistics. Cargo thefts are giving rise to thriving black markets

that are proving to be detrimental to agents involved and, in turn, the global

economy. If GPS tracking tools can help locate a stolen vehicle, and geofenc-

ing solutions can send distress alarms if the vehicle is in peril, they can also

be compromised to trace the vehicles and hack their systems to enable thefts

(FBI (2016), FleetOwner (2016)).

In addition, cyberattacks can also disrupt critical physical civilian services,
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posing new challenges. For example, according to FastCompany (2016), the

first documented cyberattack to result in widespread public blackouts occurred

in Ukraine on December 23, 2015, leaving approximately half of the Ivano-

Frankivsk region without electric power. This attack, and its associated service

disruptions, were due to the BlackEnergyTrojan. Prior to this cyberattack,

only physical infrastructure limited to governmental or industrial settings had

been compromised. Cyberattacks on the electric grid can result in significant

service disruptions and economic losses as well as fatalities.

The majority of cybercrimes constitute denial of service, malicious insiders,

and malware threatening permanent physical and virtual damage to assets.

The average annualized cost of cybercrime incurred by a benchmark sample of

organizations was $15 million. The range of these annualized costs was $1.9

million to $65 million, an 82% increase in the past six years (Ponemon Institute

(2015)). A survey conducted by AON Risk Services with Ponemon Institute

(2015) concluded that despite the comparability of the average potential loss

to information assets ($617 million) and property, plant and equipment ($648

million), the percentages of insurance coverage are 51% and 12%, respectively.

Investments are constantly being made to avert impending crises across

multiple sectors that have the potential to disrupt economic, social, and po-

litical fabrics of a functional economy. However, protection is much costlier

than mobilizing an attack. Because of the interlinkages among different firms,

organizations, institutions, and even nations, due to persistent data exchanges

over the Internet and through advanced technologies, a single firm, organi-
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zation, nation, or even individual may affect the vulnerability of others to

cyberattacks. This instigated the research as presented in Chapter 3.

The technological innovations that are being envisioned could intensify

these losses even more as they introduce new entry points for cyberattacks

(The Wall Street Journal (2014)). These inclement costs ultimately trickle

down to organizations and consumers.

As an example of advanced technologies, the Internet of Things has ex-

panded the possible entry points for cyberattacks (ComputerWeekly.com (2015)).

Organizations and governments are constantly attacked. Worries of a success-

ful penetration are beginning to have noticeably negative business implications.

Delays in adapting to cutting-edge technologies, implementing successful re-

search findings, or even initiating ground-breaking research are many of the

adverse effects of an uncertain business sentiment due to the ever increasing

cybercrimes. Survey of McKinsey executives revealed concerns regarding slow

down of value creation from cloud computing, mobile computing, and even

healthcare technologies. A whopping 70% noted delay of a year or more in

adopting models of Software-as-a-Service and Platform-as-a-Service. 40% said

that because of such concerns enterprise-mobility capabilities were delayed by

a year or more (McKinsey & Company Quarterly (2014)).

In today’s networked economy, many businesses are dependent on their

globalized supply chains with their IT infrastructure increasingly spread out

and, at the same time, vulnerable to cyberattacks. For example, the Target
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breach of 2013 occurred when the cyberattacker took advantage of the vul-

nerability in the remote diagnostics of the HVAC system supplier connected

to Target’s IT system and entered a vulnerable supply chain link (Nagurney,

Nagurney, and Shukla (2015)). Hence, there is a growing interest in developing

rigorous frameworks for cybersecurity investments. According to Pricewater-

houseCoopers (2014), mid-sized and large companies reported a 5% increase

in cybersecurity budgets, whereas small companies reduced security costs by

more than 20%. As reported in Glazer (2015), JPMorgan was expected to

double its cybersecurity spending in 2015 to $500 million from $250 million

in 2015. According to Purnell (2015), the research firm Gartner reported in

January 2015 that the global information security spending would increase by

7.6% this year to $790 billion and by 36% by 2018 to $101 billion. It is clear

that making the best cybersecurity investments, given budget constraints, is

a very timely problem and issue, which led to the research in Chapter 4.

In this dissertation, I contribute to the modeling and analysis of security

investments in cyber and supply chain networks considering network vulner-

ability also nonlinear budget constraints. The latter contributes significantly

to the literature on variational inequality, game theory, and cybersecurity by

being methodologically relevant to the application and solution of such prob-

lems. I also explore cooperation in terms of cybersecurity among firms in a

network, providing a quantitative basis to information sharing to explore its

financial and policy related benefits.

Specifically, on the cybersecurity front, the dissertation attempts to answer
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the following questions:

• In a competing scenario, what should security levels of firms in a network

be considering their investment costs?

• While maintaining emphasis on reducing the entire network’s vulnera-

bility, how can the individual firms’ vulnerability be reduced keeping the

costs in check?

• If there is a nonlinear budget constraint, how will the decisions per the

points above change?

• In a cooperation scenario, what should security levels of firms be while

balancing network vulnerability and investment costs?

• Does cooperation yield more economic/financial benefits than when firms

are competing? I attempt to give quantitative/tractable justifications.

Supplying, manufacturing, and transporting goods safely and securely is

gaining more importance with multiple measures being taken in this regard

(The Cargo Security Alliance (2012)). In addition to actual external threats,

the inherent structure and complexity make supply chains difficult to secure.

The stress on speed of delivery can cause reconciliation with security mea-

sures difficult. It is challenging to ensure that security procedures are followed

throughout. Whether it is a trucker who does not properly verify seal on a con-

tainer, or a vendor at origin who does not load cargo securely, a rush can lead
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to break down of processes (Damco (2012)). Besides, since supply chains are

mostly long and fragmented, to ensure that security measures and procedures

are given the same level of importance and treated with the same degree of

urgency by all the entities involved is problematic. This is complicated further

if the supply chains are global. For instance, the United States might have

limited control over security and mitigation procedures of its international

counterparts.

Effective freight services, as critical service components of supply chains, are

essential to the transportation and delivery of products from points of origin

to destinations. Shippers expect their goods to arrive in their entirety, in good

condition, and in a timely manner. Nevertheless, according to Heyn (2014),

the US Federal Bureau of Investigation reports that, each year, approximately

$30 billion worth of cargo is lost, with estimates of cargo theft reaching record

highs in 2012. Cargo theft is not limited to the continental United States,

however, and, in Europe, cargo theft increased 24 percent in 2012, and rose in

Asia as well (Terry (2014)). There was an average of 63 cargo thefts per month

in the US with the average loss value per incident in 2015 being $190,000 and

in 2016 being $206,837. While the absolute number of crimes have been steady,

the average loss-value ceiling has been rising (CargoNet (2017)).

As a relevant extension, the concepts and ideation of cybersecurity invest-

ments are applied to physical security investment decisions in supply chain

networks with freight service providers that transport high-value cargo from

various shipping origins to demand market destination nodes through multiple
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modes of transportation. In the supply chain security space where the attacks

are of a physical nature, this dissertation attempts to answer the following

question:

• In a competing scenario for freight service providers using multiple modes

of transportation, what should be the security levels considering their

investment costs and the sensitivity of demand markets toward their

security measures given the cargo is high-value?

I now provide the relevant literature review on: cybersecurity and physical

security investment decisions in the presence of competition, network per-

spective to investment decision-making, nonlinear budget constraints of these

investments, and the application of game theory in this domain.

My research in the cybersecurity investment and network vulnerability

space led to exploring cooperation among entities of a network. In the following

section I provide additional motivation and a literature review on cooperation

also to indicate the areas of contribution. I then provide an overview of the

dissertation with contribution of each of the chapters in this dissertation.

1.1. Literature Review

The application of game theory (including the perspective of competition), de-

velopment of formulations for incorporating nonlinear budget constraints and
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quantification of benefits resulting from cooperation are the primary contri-

butions highlighted in this dissertation. This section discusses the literature

review conducted for models with multiple firms competing for security con-

sidering cybersecurity investments and network vulnerability, nonlinear con-

straints, and cooperation. This chronological order marks the development of

the models and related methodologies.

1.1.1. Cybersecurity Investments Modeled through Game Theory

One of the largest concern facing organizations, businesses, and governments

is to devise a way to prevent and recover from cyberattacks whose promi-

nence is imposing the need to prioritize investments with respect to perceived

threats. Given the impact of cybercrime on the economy and society, there

is great interest in evaluating cybersecurity investments. Each year $15 bil-

lion was spent by organizations in the United States to provide security for

communications and information systems (see Gartner (2013), Market Re-

search (2013)). Nevertheless, breaches due to cyberattacks continue to make

huge negative economic impacts on businesses and society at-large. There is,

hence, growing interest in the development of rigorous scientific tools that can

help decision-makers assess the impacts of cybersecurity investments.

Anderson and Moore (2006) elaborated on the economics of information se-

curity, privacy, network topology and vulnerabilities. Rue, Pfleeger, and Ortiz

(2007) provided an overview of models for cybersecurity investments, rang-

10



ing from input/output models to return on investment frameworks as well as

heuristic approaches. The edited volume by Daras and Rassias (2015) con-

tains a collection of papers on cryptography and network security. Panaousis

et al. (2014) put forth a method for creation of cybersecurity strategy for

an organization. The authors performed a risk analysis of data assets of an

organization and analyze the effectiveness of different security controls against

various vulnerabilities. Next, they formulated control-games based on these

risk assessments in which the organization (defender) attempted to reduce risk

of cyberattacks by implementing a control in a way dictated by Nash Equi-

librium. As a result, the defender minimized the maximum potential damage

inflicted by the attacker. Solution of the control games here was handled by

multi-objective, multiple choice knapsack techniques to decide upon optimal

budget allocations. The research contributes to the fields of game theory,

cybersecurity investments, and vulnerabilities. However, the models are not

general, and cannot handle multiple firms. Also, they do not take a network

perspective.

In many industries, including retail, investments by one decision-maker may

affect the decisions of others and the overall supply chain network security (or

vulnerability). Hence, a holistic approach is needed and some are even calling

for a new discipline of cyber supply chain risk management (Boyson (2014)).

Maughan et al. (2013) provided an execution framework and discussed chal-

lenges of transitioning cybersecurity research into practice. Since countries all

across are investing significantly in cybersecurity research; for example, the
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European Union recently approved 450 million euros to research (The Verge

(2016)); this field of research is important and essential.

The domain of security in computer networks has limited but a useful liter-

ature employing game theory. Zero-sum, non-zero-sum, dynamic, stochastic,

repeated, Stackelberg, static, and coalition games have been applied to com-

puter and communication networks. Manshaei et al. (2013) provided a survey

of the literature combining game theory and security. The survey is divided

into six main categories: security of the physical and MAC layers, security of

self-organizing networks, intrusion detection systems, anonymity, and privacy,

the economics of network security, and cryptography. Das (2015) presented a

cybersecurity ecosystem consisting of network, cloud, and software providers

and economically analyzes the risk of correlation between agents in the ecosys-

tem in case of a breach. Shetty et al. (2009) and Shetty (2010) focused on

game theory for the determination of cybersecurity levels through investments.

In both those publications, the authors determined the Nash Equilibrium as

well as the social optimum associated with security levels. However, it was

assumed that the firms face identical cybersecurity investment cost functions,

had identical wealth, and also the damages afflicted due to a cyberattack were

the same.
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1.1.2. Nonlinear Constraints of Cybersecurity Investments Modeled

through Game Theory

There is considerable literature on nonlinear constraints in the field of non-

linear programming. My contributions to the literature lie in advancing the

state-of-the-art of game theory for cybersecurity investments as well as appli-

cations of variational inequalities, with the accompanying theory, for problems

with nonlinear constraints. To-date, with the exception of the work of Toy-

asaki, Daniele, and Wakolbinger (2014), in the realm of network equilibrium

models for end-of-life products, there has been limited work on such problems.

1.1.3. Models on Cooperation for Cybersecurity

An increasingly interconnected world may amplify the effects of a disruption.

Physical and cyber outages of any kind can lead to material losses as well as

loss of data, unplanned downtime, and adverse impacts on the reputations

of the affected organizations. Firms interacting with one another may be at

varied levels of security maturity. In addition, various departments within

an organization could lack pertinent security measures. These are generally

caused due to lack of coordination between departments for implementation of

robust security measures that are all inclusive. Each firm has an independent

assessment of its threat vectors, however, this information could be detrimental

when not combined with those with whom they do business. Breaking down

of silos, cooperating, and sharing information can have a direct impact on not
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just individual business’ continuity but also a network’s continuity. Hence,

security governance is an integral part of risk management. Taking a network

perspective in evaluating and comparing noncooperative and cooperative be-

havior in terms of security investments in cyber and supply chain networks can

provide invaluable insight into the direct and indirect benefits of information

sharing. It is critical to note that information sharing may have its disincen-

tives since cooperation on the cyber front is being struck between companies

or firms that are otherwise competitors holding variable market shares.

Methodologically, over the past years, network formulation problems have

been tackled mainly from a noncooperative point of view. Anshelevich et

al. (2004), Chen and Roughgarden (2006), Albers (2008), Nagurney (2015),

and many others have modeled independent, rational, and selfish decision-

makers that constitute and build a large network that may or may not be

self-sufficient. Nash equilibria that present the users’/firms’ behavior produce

a realistic viewpoint yet could, in terms of implementation, be more expensive

than optimal or centralized solutions. This is mainly due to the lack of cooper-

ation among firms. While there is considerable research conducted in the field

of non-isolated and independent users of a network, realistically, in the long

run, the decision-makers might discuss strategies. Though in highly competi-

tive markets this would take place between few firms that have instilled trust

among them, for an issue like cybersecurity in which all firms have a common

goal, to strike cooperation would be strategically imperative.

Even so, since critical, and often confidential, information is to be ex-
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changed, formulation of a successful coalition will be contingent on whether

there are strategic actions beneficial to each firm. Also, incentives could be

introduced by external governing authorities to formalize stable cooperation.

Some of the works like Elias et al. (2010) and Azad, Altman, and El-Azouzi

(2009) included a socially-aware component into firms’ utility functions to

overcome the disbenefits of noncooperation. However, they are not always

effective. It was demonstrated in Elias et al. (2010) that socially aware firms

can form stable networks that may be much more expensive than a naturally

formed one.

The increased rate of cyberattacks has spurred the behavioral analysis of

attackers and defenders. Aggarwal et. al. (2015) took a game theory approach

to study actions of attackers and defenders in a 2×4 cybersecurity game that is

evaluated computationally through 1000 simulations. A defense exercise model

using game theory was developed by Patrascu and Simion (2014) to train cyber

response specialists. Nagurney (2015) utilized a network economics approach

to model cybercrime emphasizing that both firms and hackers act as economic

agents. RAND National Security Division (2014) also argued that an economic

approach to tackling cybercrime is warranted.

In addition to investigating interactions among attackers and defenders,

there has also been a growing literature on cybersecurity investments. The

investment in cybersecurity through software and hardware, education, and

effective personnel can help resist the growing frequency and severity of at-

tacks, and assist in the planning of appropriate allocation of resources required
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to prevent/mitigate the likely damage. Garvey, Moynihan, and Servi (2013)

suggested an approach that helps to prioritize among competing investment

options for better cyber defense. They identify sets of Pareto efficient cost-

benefit investments, and their economic returns, that capture tangible and in-

tangible advantages of countermeasures that strengthen cybersecurity. From

a social welfare standpoint, Gordon et. al. (2015) examined changes in the

maximum a firm should invest into cybersecurity activities in the face of well-

recognized externalities.

Nagurney (2015) emphasized the importance of assessing the vulnerabili-

ties of cyberattacks in a rigorous quantifiable manner and identifying possible

synergies associated with information sharing for firms providing critical infras-

tructure networks on which our economy and society depend. The complexity

and interdependence of firms, governments, and individuals in intricately wo-

ven networks mean that an attack on one may pave the way for attacks on

others. Given that the number and intensity of cyber threats for every in-

dustrial and non-industrial sector have increased, firms and governments are

progressing toward sharing threat information to arrange coordinated defenses

against attacks.

I address the above by taking a cooperative game approach whereby firms

coordinate their strategies such that each is expected to receive a utility benefit

while reducing network vulnerability in the context of cybersecurity. The Nash

Bargaining solution is a highly effective tool to model interactions among firms

that give rise to tacit cooperative environments. Firms bargain to achieve a
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strategic point that is beneficial to all. The goal was to arrive at Nash bargain-

ing solution that is unique to the specified game satisfying Pareto optimality.

To model cooperative behavior in otherwise competing players, Nash bar-

gaining theory was proposed in Nash (1950b). Considerable contributions to

the area were made by Harsanyi (1977), who extended the original two-person

game into a multi-player game and derived important theoretical deductions,

and by Muthoo (1999), who applied the theory to various bargaining situa-

tions and demonstrated the usefulness. Various extensions of the theory and

application to supply chains were proposed by Nagarajan and Sosic (2008).

Boonen (2016) discussed strategic interaction between two firms that trade

risk over the counter in a one period model. The focus is on an incomplete set

of risk redistributions.

In the context of cybercrime, one of the extensions was employed by Wag-

ner et al. (2012), who used Nash bargaining for resource allocation in cloud

computing for collaborative defense. An optimization formulation of a col-

lusive cooperative game with product quantities as variables was developed

and solved as a nonlinear programming problem in Harrington et al. (2005).

Jiang et al. (2009), later, analyzed cooperative content distribution and traffic

engineering in ISP networks. Finally, Bakshi and Kleindorfer (2009) did not

discuss cybersecurity, yet demonstrated the use of Nash bargaining and coop-

erative game theory towards investment for resilience in global supply chains.

The paper utilized an axiomatic approach to bargaining.
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I also focus on cooperation among the firms in terms of their cybersecurity

levels, but from a system-optimization perspective in which the sum of the

expected utilities of all the firms is maximized. System-optimization models,

but different from the one proposed here, were also developed for cybersecurity

investments by Shetty et al. (2009) and Shetty (2010).

1.1.4. Models on Security Associated with Physical Aspects of Sup-

ply Chain Networks

Supply chains provide food, medicine, energy, money, and other products that

support global businesses and societies. Multiple stakeholders and entities are

responsible for and reliant on the smooth functioning of these supply chains,

such as public and private sectors/industries, law enforcement, policy-makers,

and other foreign or domestic partners. Evidently, there are interconnections

between supply chains forming a web of transportation, infrastructure, infor-

mation technology, and cyber networks. The interconnections promote eco-

nomic development, but they are also manipulated by internal and external

factors to propagate shocks across multiple sectors and even geographies.

Integrated supply chains are quick and cost-effective, yet susceptible to risks

that can escalate from minor events to large disruptions. The goal is to develop

a system that is resilient to evolving threats and can recover from damages

rapidly. The ability to withstand threats or attacks while maintaining lean

supply chains is what most entities in a supply chain seek to achieve. It is
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critical to address systemic vulnerability by identifying and protecting key as-

sets, infrastructure, and support systems, and promoting efficient operational

processes and redundancy in assets.

Autry and Bobbitt (2008) conducted an exploratory study investigating

firm-level constructs for approaches toward mitigation of supply chain secu-

rity breaches and risk management. Markmann, Darkow, and von der Gracht

(2013) proposed a delphi-based risk identification and assessment framework

for supply chain security in a multi-stakeholder environment. Their work con-

tributed to the analysis of multidimensional man-made risks that were par-

ticularly uncertain in terms of type, location, and affected supply chain part-

ners. Bichou and Talas (2014) provided an overview of supply chain security

initiatives in surface and maritime transportation. A game theory perspec-

tive to supply chain security was adopted by Bier et al. (2008) to propose a

framework for defending infrastructure against planned and intelligent attacks.

The research presented sequential games that put forth principles to optimize

subsequent actions and defenses to protect vulnerabilities. A few firms were

considered but the work lacks a network perspective.

With modernization and the increased role of technological developments

in supply chains, the cyber networks also affect supply chains. Bartol (2014)

commented on the element of cyber/information technology in the present and

its likely proliferation in the future with regards to supply chains. Voss and

Williams (2013) investigated public-private collaborations for supply chain se-

curity. The impact of supply chain security practices on security operational
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performance among logistics service providers in an emerging economy was

discussed by Zailani et al. (2015). The study conducted an empirical anal-

ysis to test propositions of connections between security culture and security

operational performance metrics.

As supply chains develop global operations, they have become more com-

plex. This hinders early detection of risks and causes greater disruptions,

thereby delaying prompt recovery and affecting resilience ((Sheffi (2007), Hand-

field and McCormack (2007), Thun and Hoening (2011), Sodhi, Son, and Tang

(2012)). As per Waters (2011) and Sodhi, Son, and Tang (2012), risks in a

supply chain can manifest in many different ways, virtually affecting any link

on a network/chain, right from suppliers to customers.

Although there is a rich body of literature on game theory models for

homeland security (cf. Kardes (2007) for a review), the modeling of security in

supply chain contexts is limited, and, even more so, for security associated with

freight service provision investments. Bakir (2011) considered a defender and

attacker engaged in a game regarding cargo container transportation. Gkonis

and Psaraftis (2010), earlier, developed a game theory model with discrete

choices (whether to invest or not) for container shipping transportation, which

was inspired by the work of Kunreuther and Heal (2003). For examples of

innovative game theory models for counter-terrorism, see the work of Bier

(2006) and Wein et al. (2006). In the context of supply chain security and

cargo theft, Ekwall (2012) provided a comprehensive view of the issues and

Burges (2013) gave a practitioner’s viewpoint. The edited volume of Wagner
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and Bode (2009) contains contributions to security and risk with a focus on

logistics service providers.

It is critical to note that there are hardly any models that aid in sup-

ply chain security investment decision-making from a carrier/freight service

provider perspective considering multiple modes. In the realm of supply

chain network competition with multiple manufacturers and freight service

providers, the paper, Nagurney et al. (2015), focused on developing static and

dynamic models of competition between members of a supply chain network.

1.2. Dissertation Overview

The dissertation consists of seven chapters wherein this chapter deals with the

research motivation and the literature review. Chapter 2 provides a review

of the methodologies that are utilized in this dissertation, mainly variational

inequality theory (Nagurney (1999)) and Nash bargaining theory (Harsanyi

(1977)). Below I detail the contributions in Chapters 3 through 6 and provide

additional background.

1.2.1. Contributions in Chapter 3

Inspired by Shetty et al. (2009) and Shetty (2010), yet significantly more

general, the focal point of chapter 3 is the modeling of firms in a supply chain
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network in which they compete on security levels and product flows. The

goal is to obtain the Nash Equilibrium and ascertain network vulnerability

and not just the vulnerability of individual firms. During the processes of

decision-making firms, I consider not just their own security levels and product

flows but also those of other firms. This also applies to the probability of a

successful attack on a firm. The model does not consider identical firms as in

Shetty (2010) and the demand side of the network and related dynamics are

explicitly considered.

The demand side of the network necessitates the inclusion of realistic con-

sumer preferences. Firms generally do not reveal their true security levels but

give an overall understanding or indications to maintain competitive advan-

tage over their rivals. Hence, in the model, the consumers reveal their choices

through demand price functions that depend on product demands and the

average level of security in the supply chain network.

Firms may be faced with distinct security investment cost functions as

their current information technology and cyber infrastructure, constitution

of assets, urgency, business scope and size are likely to be different. The

model is general enough to handle spatially separated firms, firms that have a

significant proportion of their business transactions taking place online, or are

brick and mortar. An important extension is that we also consider that firms

could possibly be faced with different financial damages in event of a successful

cyberattack. This chapter is based on the paper by Nagurney, Nagurney, and

Shukla (2015) and it will also be included in the dissertation.
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1.2.2. Contributions in Chapter 4

Economic constraints threaten efficient response mechanisms put in place by

firms to guard against cyberattacks. Cybersecurity investments were consid-

ered as pure/necessary costs that do not add discernible value to the product or

business as a whole (Ponemon Institute (2015)). However, with the changing

landscape, security is among the top priorities of most firms today to protect

their operations, personnel and infrastructure. This is the reason external and

internal policy-makers are factoring disruptions into their regulatory frame-

work.

The financial commitment to security needs a boost across industries and

firms are responding to that need. Sony Pictures plans to spend $15 million

to secure itself from future cyberattacks. The company had been attacked in

2014 that cost it $100 million (IT Security (2015)). Despite a budget of $250

million, JP Morgan Chase was attacked in 2014 since they neglected investing

into two-step authentication. They were slated to double that budget in the

following years. Target after its attack in 2014 that cost $148 million assigned

a budget of $100 million that was used specifically to adopt a technology to

embed chips into debit and credit cards for added security (CBS News (2014)).

In spite of assigning large amounts of funds and supporting regular mainte-

nance of the infrastructure, there are still tight budgetary constraints and they

are bound to remain. Even though companies are investing more than they

used to in cybersecurity, mounting risks caused 65% respondents in a survey
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to state that budget constraints are their number one obstacles to delivering

value (EY (2013)). An increase in budgets could lower risks, but might not be

sustainable or provide complete protection. As discussed in the sections above,

firms are part of a network that exchanges data, information, and transactions.

Vulnerability of a firm they are doing business with could still put them at

considerable risk. Strategically using budgets is a valuable response.

In this chapter, the work builds on Shetty (2010) and chapter 3 but with a

crucial difference - the firms are now subject to individual budget constraints

on their cybersecurity investments. These constraints can be highly nonlinear

which posed theoretical and computational challenges. In this work, there is an

upper bound on the security level of each firm that is less than one, since one

implies perfect security which may not be attainable in reality. Earlier work

had an upper bound of one. Moreover, upper bounds on product flows are

imposed. This restricts the amount moving from a firm to a demand market.

The principal contribution in this chapter lies in advancing the state-of-

the-art of game theory literature for cybersecurity investments as well as of

variational inequality theory for problems with nonlinear constraints.

This chapter, based on Nagurney, Daniele, and Shukla (2017), develops a

supply chain game theory model of competing retailers for the maximization

of revenue and minimization of investment costs to plan for defense from an

attack, and financial losses/damages caused by a successful cyberattack. The

framework also quantifies vulnerability of a firm and of the network as a whole.
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1.2.3. Contributions in Chapter 5

In this chapter, cooperation among firms in terms of security levels is mod-

eled by two approaches: (i) Bargaining - firms collaborate and organically

try to arrive at a solution that is economically beneficial to all, (ii) System

Optimization - the entire network is considered to be a system that has to

be optimized to reduce costs and vulnerability. I compare and contrast the

results obtained through both approaches with the competitive Nash Equilib-

rium solution to ascertain the economically beneficial approach that helps to

reduce vulnerability of the entire network.

Subsection 1.1.3 highlights the literature in the domain of cooperation and

cybersecurity. Most of the research does not utilize Nash bargaining for mod-

eling investments in this domain. If it is utilized, the models are solved ax-

iomatically only. In the realm of information sharing, there are the works

of Gal-Or and Ghose (2004), Gal-Or and Ghose (2005), and Gordon et al.

(2015) discussed the economics and related benefits, and at the same time,

pitfalls of sharing critical information that can be leveraged to gain business

advantages. Comparison of cooperative approaches for reducing network vul-

nerability while maintaining economic incentives, and providing quantitative

and tractable justifications to cooperation is the contribution of this chapter

to the current literature. Some of the methodological contributions are: (i)

Establishing uniqueness, under appropriate assumptions, of the competitive

and cooperative solutions, (ii) The objective function of the Nash bargaining
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model is highly nonlinear and, thus, solvability is among the major challenges.

1.2.4. Contributions in Chapter 6

The model developed and successfully solved in this chapter fills many gaps

in the literature. According to the literature review provided in Subsection

1.1.4, some of the key aspects of models developed in Chapters 3, 4, and 5

are extended to include supply chain security investment decisions to fight

against physical attacks and not just cyberattacks. Freight service providers

are competing to ship high-value cargo from origin to destination nodes. The

focus on high-value cargo was due to the fact that the average loss-value of

cargo during theft situations is increasing year-on-year. Since the need for

security against attacks on cargo and assets has increased, there is a need for

models that help ascertain investments and their expected monetary returns.

The literature review in 1.1.4 shows that currently there are hardly any

models in the realm of supply chain security. The approach adopted in this

work makes the following contributions: (i) Freight service providers are com-

peting as to the quantity of cargo that they can ship, and the security levels,

transporting goods through multiple modes, (ii) Shippers reflect their prefer-

ences for transportation of high-value cargo through the prices that they are

willing to pay to the freight service providers, (iii) The investment decisions

include the investment costs that these service providers will have to bear in

order to stay relevant and competitive in the market, and (iv) Probability of
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a successful attack is endogenously dependent on the security levels.

In Chapter 6 of this dissertation, I discuss the model, the governing equi-

librium conditions, formulation, and solution process to arrive at equilibria for

both security levels and shipment quantities.

1.2.5. Concluding Comments

The main contributions of the methodologies and results in this dissertation

to the existing literature are summarized below.

1. The models constructed in Chapters 3, 4, 5, and 6 are general and can

incorporate multiple firms. They take a probabilistic perspective with in-

vestment cost functions, inverse demand functions, and constraints that

have functional forms that are not limited to being linear or quadratic.

Furthermore, the investment cost functions or demand price functions

need not be separable and can depend on vectors of security levels and

quantities in Chapters 3, 4, and 6, and on the vector of security levels in

Chapter 5. Such features more realistically capture the nature of com-

petition and cooperation among firms in terms of security levels and/or

product flows.

2. A network approach to the economics of cyber and supply chain security

has been employed in all the models. The combination of variational

inequalities, game theory, network vulnerability, and economics of secu-
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rity makes the models unique and pragmatic. Chapter 3 provides an

important extension to Shetty et al. (2009) and Shetty (2010).

3. Chapter 4 is an extension of Chapter 3 in that nonlinear budget con-

straints on investment costs are captured. There has been no literature

in advancing cybersecurity investment decisions with applications of vari-

ational inequalities considering game theory and nonlinear constraints.

4. As justified in Subsection 1.1.3, cooperation is essential and novel to

cybersecurity investment decisions. I apply the Nash bargaining the-

ory to model cooperation among firms in a network that are otherwise

competitors in Chapter 5. This proposition contributes to a novel Nash

bargaining solution for an m-firm cooperative network problem which

has appealing characteristics in terms of efficient and less vulnerable

networks and security (cost) allocations in an acceptable computational

timeframe.

5. A comparison between Nash bargaining and System-optimization per-

spectives has been included. Quantifiable and tractable justifications of

economic benefits for each firm due to cooperation are made possible

and demonstrated. Overall, the contributions are in terms of models,

methodology, and solvability.

6. In this dissertation, qualitative results and proofs for nonlinear con-

straints and existence and uniqueness of noncooperative and coopera-

tive solutions are provided. Moreover, computational procedures are

discussed followed by a detailed discussion on the results.
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7. To advance physical security in supply chain networks, I leverage the

current work done on cybsercurity competition. In Chapter 6, I include

the following: (i) Security investment decision-making for competing

freight service providers in a supply chain network that utilizes multiple

modes for transportation that could have distinct probabilities of attacks,

(ii) The focus is on high-value cargo wherein the shippers show their

sensitivity to security through the prices they are willing to pay.

8. In the final chapter, I present conclusions and suggestions for future

research.
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CHAPTER 2

METHODOLOGIES

In this chapter, fundamental theories and methodologies utilized in this disser-

tation are presented and discussed. Variational inequality theory is an essen-

tial methodology used here to analyze the equilibria of supply chain networks

with security investments, network vulnerability, budget constraints, and co-

operation. Relationships between variational inequality and game theory are

also discussed. Since cooperation for cybersecurity investments is an essen-

tial dimension explored through Nash bargaining in Chapter 5, I also present

its methodological aspects for background and reference. Additional theorems

and proofs associated with finite-dimensional variational inequality theory can

be found in Nagurney (1999).

Qualitative properties specific to the investment models in Chapters 3, 4,

and 5 are discussed at length in the following chapters. The quantitative results

pertain to the existence and uniqueness of solutions obtained by variational

inequality theory and Nash bargaining theory.

Finally, algorithms used to solve competitive and cooperative models are

presented. I discuss the Euler method employed to solve the variational in-

equality formulations and briefly present the Interior Point method utilized in

solving the Nash bargaining and System-Optimization formulations in Chapter

5.
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2.1. Variational Inequality Theory

In this section, I briefly recall the theory of variational inequalities. All defini-

tions and theorems are taken from Nagurney (1999). All vectors are assumed

to be column vectors, except where noted.

Definition 2.1 (Finite-Dimensional Variational Inequality Problem)

The finite-dimensional variational inequality problem, VI(F,K), is to deter-

mine a vector X∗ ∈ K ⊂ Rn, such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (2.1a)

where F is a given continuous function from K to Rn, K is a given closed

convex set, and 〈·, ·〉 denotes the inner product in n-dimensional Euclidean

space.

In (2.1a), F (X) ≡ (F1(X), F2(X), ..., Fn(X))T , and X ≡ (X1, X2, ..., Xn)T .

F (X) and X are both column vectors. Recall that for two vectors u, v ∈ Rn,

the inner product 〈u, v〉 = ||u||||v||cosθ, where θ is the angle between the

vectors u and v, and (2.1a) is equivalent to

n∑
i=1

Fi(X)(Xi −X∗i ) ≥ 0, ∀X ∈ K. (2.1b)

The variational inequality problem is a general problem that encompasses a

wide spectrum of mathematical problems, including, optimization problems,
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complementarity problems, and fixed point problems (see Nagurney (1999)).

It has been shown that optimization problems, both constrained and uncon-

strained, can be formulated as variational inequality problems. The relation-

ship between variational inequalities and optimization problems, which is ex-

plored in this dissertation, is now briefly reviewed.

Proposition 2.1 (Formulation of a Constrained Optimization Prob-

lem as a Variational Inequality)

Let X∗ be a solution to the optimization problem:

Minimize f(X) (2.2)

subject to:

X ∈ K,

where f is continuously differentiable and K is closed and convex. Then X∗ is

a solution of the variational inequality problem:

〈∇f(X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (2.3)

where ∇f(X) is the gradient vector of f with respect to X, where ∇f(X) ≡

(∂f(X)
∂X1

, ..., ∂f(X)
∂Xn

)T .
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Proposition 2.2 (Formulation of an Unconstrained Optimization Prob-

lem as a Variational Inequality)

If F (X) is a convex function and X∗ is a solution to VI(∇f,K), then X∗

is a solution to the optimization problem (2.2). In the case that the feasible

set K = Rn, then the unconstrained optimization problem is also a variational

inequality problem.

The variational inequality problem can be reformulated as an optimiza-

tion problem under certain symmetry conditions. The definitions of positive-

semidefiniteness, positive-definiteness, and strong positive-definiteness are re-

called next, followed by a theorem presenting the above relationship.

Definition 2.2 (Positive Semi-Definiteness and Definiteness)

An n × n matrix M(X), whose elements mij(X); i, j = 1, ..., n, are functions

defined on the set S ⊂ Rn, is said to be positive semidefinite on S if

vTM(X)v ≥ 0, ∀v ∈ Rn, X ∈ S. (2.4)

It is said to be positive definite on S if

vTM(X)v ≥ 0, ∀v 6= 0, v ∈ Rn, X ∈ S. (2.5)
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It is said to be strongly positive definite on S if

vTM(X)v ≥ α||v||2, for someα > 0, ∀v ∈ Rn, X ∈ S. (2.6)

Theorem 2.1 (Formulation of an Optimization Problem from a Vari-

ational Inequality Problem Under Symmetry Assumption)

Assume that F (X) is continuously differentiable on K and that the Jacobian

matrix

∇F (X) =


∂F1

∂X1
· · · ∂F1

∂Xn

... · · · ...

∂Fn

∂X1
· · · ∂Fn

∂Xn
,

 (2.7)

is symmetric and positive semidefinite. Then there is a real-valued convex

function f : K 7→ R1 satisfying

∇f(X) = F (X), (2.8)

with X∗ the solution of VI(F,K) also being the solution of the mathematical

programming problem:

Minimize f(X)

subject to:

X ∈ K,

where f(X) =
∫
F (X)Tdx, and

∫
is a line integral.

Thus, the variational inequality is a more general problem formulation than
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the optimization problem formulation, since it can also handle a function F (X)

with an asymmetric Jacobian (see Nagurney (1999)). Next, the qualitative

properties of variational inequality problems, especially, the conditions for

existence and uniqueness of a solution, are recalled.

Theorem 2.2 (Existence of a Solution)

If K is a compact convex set and F (X) is continuous on K, then the variational

inequality problem admits at least one solution X∗.

Theorem 2.3 (Condition for Existence if Feasible Set is Unbounded)

If the feasible set K is unbounded, then VI(F,K) admits a solution if and only

if there exists an R > 0 and a solution of VI(F,S), X∗R, such that ||X∗R|| < R,

where S = {X : ||X|| ≤ R}.

Theorem 2.4 (Existence Following a Coercivity Condition)

Suppose that F (X) satisfies the coercivity condition

〈F (X)− F (X0), X −X0〉
||X −X0||

→ ∞, (2.9)

as ||X|| → ∞ for X ∈ K and for some X0 ∈ K. Then VI(F,K) always has a

solution.

According to Theorem 2.4, the existence condition of a solution to a varia-
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tional inequality problem can be guaranteed by the coercivity condition. Next,

certain monotonicity conditions are utilized to discuss the qualitative proper-

ties of existence and uniqueness. Some basic definitions of monotonicity are

reviewed first.
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Definition 2.3 (Monotonicity)

F (X) is monotone K if

〈F (X1)− F (X2), X1 −X2〉 ≥ 0, ∀X1, X2 ∈ K. (2.10)

Definition 2.4 (Strict Monotonicity)

F (X) is strictly monotone on K if

〈F (X1)− F (X2), X1 −X2〉 ≥ 0, ∀X1, X2 ∈ K, X1 6= X2. (2.11)

Definition 2.5 (Strong Monotonicity)

F (X) is strongly monotone on K if

〈F (X1)− F (X2), X1 −X2〉 ≥ α||X1 −X2||2, ∀X1, X2 ∈ K, (2.12)

where α > 0.

Definition 2.6 (Lipschitz Continuity)

F (X) is Lipschitz continuous on K if there exists an L > 0, such that

〈F (X1)− F (X2), X1 −X2〉 ≤ L||X1 −X2||2, ∀X1, X2 ∈ K. (2.13)

L is called the Lipschitz constant.

37



Theorem 2.5 (Uniqueness Under Strict Monotonicity)

Suppose that F (X) is strictly monotone on K. Then the solution to the

VI(F,K) problem is unique, if one exists.

Theorem 2.6 (Uniqueness Under Strong Monotonicity)

Suppose that F (X) is strongly monotone on K. Then there exists precisely one

solution X∗ to VI(F,K).

In summary of Theorems 2.2, 2.5, and 2.6, strongly monotonicity of the

function F guarantees both existence and uniqueness, in the case of an un-

bounded feasible set K. If the feasible set K is compact, that is, closed and

bounded, the continuity of F guarantees the existence of a solution. The strict

monotonicity of F is then sufficient to guarantee its uniqueness provided its

existence.

2.2. The Relationships between Variational Inequality

and Game Theory

In this section, some of the relationships between variational inequality theory

and game theory are discussed briefly.

Nash (1950a, 1951) developed noncooperative game theory, involving multi-

ple players, each of whom acts in his/her own interest. In particular, consider a
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game with m players, each player i having a strategy vector Xi = {Xi1, ..., Xin}

selected from a closed, convex set Ki ⊂ Rn. Each player i seeks to maximize

his/her own utility function, Ui : K 7→ R, where K = K1 × K2 × ... × Km ⊂

Rmn. The utility of player i, Ui, depends not only on his/her own strat-

egy vector, Xi, but also on the strategy vectors of all the other players,

(X1, ..., Xi−1, Xi+1, ..., Xm). An equilibrium is achieved if no one can increase

his/her utility by unilaterally altering the value of its strategy vector. The

formal definition of the Nash Equilibrium is recalled as following.

Definition 2.7 (Nash Equilibrium)

A Nash Equilibrium is a strategy vector

X∗ = (X∗1 , ..., X
∗
m) ∈ K, (2.14)

such that

Ui(X
∗
i , X̂

∗
i ) ≥ Ui(Xi, X̂

∗
i ), ∀Xi ∈ Ki,∀i, (2.15)

where X̂∗i = (X∗1 , ..., X
∗
i−1, X

∗
i+1, ..., X

∗
m).

It has been shown by Hartman and Stampacchia (1966) and Gabay and

Moulin (1980) that given continuously differentiable and concave utility func-

tions, Ui,∀i, the Nash Equilibrium problem can be formulated as a variational

inequality problem defined on K.
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Theorem 2.7 (Variational Inequality Formulation of Nash Equilib-

rium)

Under the assumption that each utility function Ui is continuously differen-

tiable and concave, X∗ is a Nash Equilibrium if and only if X∗ ∈ K is a

solution of the variational inequality

〈F (X∗), X −X∗〉 ≥ 0, X ∈ K, (2.16)

where F (X) ≡ (−∇X1U1(X), ...,−∇XmUm(X))T , and ∇Xi
Ui(X)

= (∂Ui(X)
∂Xi1

, ..., ∂Ui(X)
∂Xim

).

The conditions for existence and uniqueness of a Nash Equilibrium are

now introduced. As stated in the following theorem, Rosen (1965) presented

existence under the assumptions that K is compact and each Ui is continuously

differentiable.

Theorem 2.8 (Existence Under Compactness and Continuous Dif-

ferentiability)

Suppose that the feasible set K is compact and each Ui is continuously differ-

entiable. Then existence of a Nash Equilibrium is guaranteed.

Gabay and Moulin (1980), on the other hand, relaxed the assumption of the

compactness of K, and proved existence of Nash Equilibrium after imposing a

coercivity condition on F (X).

40



Theorem 2.9 (Existence Under Coercivity)

Suppose that F (X), as given in Theorem 2.7, satisfies the coercivity condition

(2.9). Then there always exists a Nash Equilibrium.

Furthermore, Karamardian (1969) demonstrated existence and uniqueness

of a Nash Equilibrium under the strong monotonicity assumption.

Theorem 2.10 (Existence and Uniqueness Under Strong Monotonic-

ity)

Assume that F (X), as given in Theorem 2.7, is strongly monotone on K. Then

there exists precisely one Nash Equilibrium X∗.

Additionally, based on Theorem 2.5, uniqueness of a Nash Equilibrium can

be guaranteed under the assumptions that F (X) is strictly monotone and an

equilibrium exists.

Theorem 2.11 (Uniqueness Under Strict Monotonicity)

Suppose that F (X), as given in Theorem 2.7, is strictly monotone on K. Then

the Nash Equilibrium, X∗, is unique, if it exists.
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2.3. Nash Bargaining Theory

Nash (1950b) and Nash (1953) dealt exclusively with a two-person bargaining

problem for modeling cooperation. The payoffs and disagreement points were

a reflection of the parties’ strategic choices arrived at through an axiomatic

approach. However, in Harsanyi (1963), a strategic generalized m-person bar-

gaining problem formulation was proposed. The explicit modeling revealed

that a bargaining problem was more complicated in an m-person case from

both conceptualization and solution standpoints.

Let πi(X) be the utility of party i and πNi be the static Nash Equilibrium

utility if the parties compete and do not attempt at cooperation. The classical

theory of Nash, in which a two-person problem was considered, that is, i = 1, 2,

provides the following axioms:

Individual Rationality: None of the parties accept utility lower than that

during competition.

πi(X
∗) ≥ πNi , i = 1, 2, (2.17)

where X∗ ∈ K, and K is closed and convex.

Pareto Optimality: The cooperation will represent a situation that cannot

be improved upon by either parties to their advantage.

Symmetry: The symmetry condition rules out any differences in the players’

bargaining abilities or powers.

42



Linear Invariance: This axiom imposes that a bargaining solution is invari-

ant to equivalent utility transformations.

Independence of Irrelevant Alternatives: This implies that only the so-

lution outcome and πNi , ∀i are relevant and the outcome does not depend on

other alternatives in the set. The appropriateness of this axiom depends on

the bargaining problem itself.

Nash (1950b) proposed a unique solution based on the above axioms. In

his bargaining model, it was assumed that the disagreement points/conflict

strategies were fixed which could be true in reality. However, more often than

not, the parties would have an influence over the disagreement points, making

bargaining more complex.

In this dissertation, I take a mathematical approach similar to Harrington

et al. (2005) (m-person bargaining) to obtain the Nash bargaining solution by

relying on convex optimization theory for ascertaining uniqueness of solution.

To reach the solution, disagreement points are Nash equilibria in a noncoop-

erative (or a competition) situation obtained through variational inequality

theory. The Nash bargaining solution is, then, obtained by:

Maximize
m∏
i=1

πi(X)− πNi , (2.18)

subject to:

πi(X) ≥ πNi , ∀i, (2.19)
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X ∈ K.

The constraints make sure that an agreement/cooperation is reached if

each of the parties is at a utility level greater than or equal to when they are

competing. A solution algorithm for the above is presented in Subsection 2.5.

If the parties are symmetric (equivalent in costs/capacities or, more gen-

erally, in bargaining power), the best symmetric element of the feasible set,

given the constraints, is selected. The payoff is then divided among the par-

ties. However, if the parties are asymmetric, such as in their utilities and costs,

there is no such focal point. The selection would be asymmetric.

In addition to the formal motivation above, a global optimization outlook

was taken for the optimization problem (2.18, 2.19). In Chapter 5, the contri-

bution is also to obtain conditions for a unique solution to the problem and to

provide relevant mathematical insights. While not considered in the work pre-

sented in this dissertation, the implementation of the Nash bargaining theory

can exhibit computational difficulties such as a nonconcave objective function

(2.18) and nonconvex constraint set (2.19).

It is to be noted that the optimization problem in 2.18 and 2.19 can also be

formulated as a variational inequality and solved to obtain a Nash bargaining

solution.
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2.4. The Euler Method

In this section, I recall the Euler-type method, which is based on the general

iterative scheme devised by Dupuis and Nagurney (1993), and its convergence

conditions. The Euler method can be utilized for the computation of the

variational inequality problem as given in 2.1a.

Specifically, recall that, at an iteration τ + 1 of the Euler method (see

also Nagurney and Zhang (1996)), where τ denotes a certain iteration/loop

counter, one computes:

Xτ+1 = PK(Xτ − ατF (Xτ )), (2.20)

where F is the function in (2.1a), and PK is the projection on the feasible set

K, defined by

PK(X) = arg minX′∈K||X
′ −X||. (2.21)

Now, I state the Euler method.

Step 0: Initialization

Set X0 ∈ K. Let τ = 1 and set the sequence {ατ} so that
∑∞

τ=1 ατ =∞, ατ > 0

for all τ , and ατ → 0 as τ →∞.

45



Step 1: Computation

Compute Xτ ∈ K by solving the variational inequality subproblem:

〈Xτ + ατF (Xτ−1)−Xτ−1, X −Xτ 〉 ≥ 0, ∀X ∈ K. (2.22)

Step 2: Convergence Verification

If |Xτ −Xτ−1| ≤ ε, with ε > 0, a pre-specified tolerance, then stop; otherwise,

set τ = τ + 1, and go to Step 1.

As assumption is recalled, followed by the convergence conditions of the

Euler method in Theorem 2.17 and Corollary 2.1.

Assumption 2.1

Suppose we fix an initial condition X0 ∈ K and define the sequence {Xτ , τ ∈

N} by (2.20). We assume the following conditions:

1.
∑∞

j=1 aj =∞, aj > 0 as j →∞.

2. d(Fτ (x), F̄ (x))→ 0 uniformly on compact subsets of K as τ →∞.

3. The sequence {Xτ , τ ∈ N} is bounded.
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Theorem 2.17 (Convergence of the General Iterative Scheme)

Let S denote the set of solutions to the variational inequality problem (2.1a).

Assume Assumption 2.1. Suppose {Xτ , τ ∈ N} is the scheme generated by

(2.20). Then d(Xτ , S) → 0 as τ → ∞, where d(Xτ , S) → 0 = infX∈S ||Xτ −

X||.

Corollary 2.1 (Existence of a Solution Under the General Iterative

Scheme)

Assume the conditions of Theorem 2.17, and also that S consists of a finite set

of points. Then limτ→∞Xτ exists and equals to a solution to the variational

inequality.

Theorem 2.17 indicates that Assumption 2.1 is the elementary condition

under which the Euler method (2.20) converges.

In the following chapters, for each model, I derive explicit formulae for the

entire strategy vectors in the variational inequalities formulated.

2.5. The Interior Point Method

In this section, I briefly concentrate on the primal-dual Interior Point Method

(cf. Boyd and Vandenberghe (2004), Wright (1997)) used to solve the non-

linear programming problem formulations of Nash bargaining and system-
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optimization in Chapter 5. The algorithm was induced by an Interior Point

nonlinear programming solver. For this work, I used SAS/OR 9.3 version of the

software released in 2011 and available through the SAS Studio. The software

offers the Interior Point and Active-Set algorithms (SAS (2011)). Through the

tool, one can allow multi-start (multiple initial points) and can alter termina-

tion criterion. However for my purpose, I gave a single initial start and let the

algorithm terminate on its own to obtain optimal solutions.

To simplify the notation, consider the following nonlinear programming

problem:

Minimize h(X), (2.23)

subject to:

gi(X) ≥ 0, ∀i (2.24)

X ∈ K.

Note that the above problem can also include equality constraints. Ini-

tially, slack variables are added to the inequality constraints, giving rise to the

problem

Minimize h(X),

subject to:

gi(X)− ei = 0, ∀i (2.25)

e ≥ 0, X ∈ K,
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where e = (e1, ..., em)T represents the vector of slack variables. The nonneg-

ativity constraints are eliminated by incorporating them into the objective

function via a logarithmic function. This gives rise to the following equality-

constrained nonlinear problem.

Minimize B(X, e) = h(X)− µ
m∑
i=1

ln(ei), (2.26)

subject to:

gi(X)− ei = 0, ∀i,

e ≥ 0, X ∈ K,

where µ is a positive parameter. This is called a barrier problem. The loga-

rithmic function prohibits e from taking zero or negative values. The size of

the parameter µ determines a minimum of the barrier problem that provides

an approximation to the original nonlinear problem. The smaller the size, the

better the approximations. For various values of µ, µ→ 0, the barrier problem

is repeatedly solved to obtain a minimum.

To solve the barrier problem, its Lagrangian function is defined here.

LB(X, e,Z) = B(X, e)−ZT (g(X)− e),

LB(X, e,Z) = h(X)− µ
m∑
i=1

ln(ei)−ZT (g(X)− e). (2.27)
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The first order optimality conditions are:

∇XLB = ∇Xh(X)− J(X)TZ = 0, (2.28)

∇eLB = µE−1J + Z = 0, (2.29)

g(X)− e = 0, (2.30)

where J(X) represents the Jacobian of the vector function g(X), E represents

the diagonal matrix whose elements are the elements of the vector e (E =

diag{e1, ..., em}) and J is the vector of all ones. The above can be reproduced

to the following equivalent nonlinear system:

∇Xh(X)− J(X)TZ = 0,

µJ + EZ = 0,

g(X)− e = 0. (2.31)

If µ = 0, the conditions above represent optimality conditions of the original

optimization problem, after adding slack variables. The goal of the algorithm

is to reduce the value of µ to zero so that it converges to the optimum of the

original nonlinear problem. The rate at which it approaches zero affects the

efficiency of the algorithm.

At an iteration τ , the algorithm approximately solves the preceding system
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by using Newton’s method.


HL(Xτ ,Zτ ) 0 −J(Xτ )T

0 Zτ Eτ

J(Xτ ) −I 0




∆Xτ

∆eτ

∆Zτ

 =


∇Xh(Xτ )− J(Xτ )TZ

µJ + EτZτ

g(Xτ )− eτ

 ,

where HL is the Hessian matrix of the Lagrangian function L = h(X) −

ZTg(X) of the original nonlinear problem, that is, HL(X,Z) = ∇2h(X) −∑m
i=1Zi∇2gi(X).

The solution (∆Xτ ,∆eτ ,∆Zτ ) of the Newton system provides a direction

to move from the current iteration (Xτ , eτ ,Zτ ) to the next, (Xτ+1, eτ+1,Zτ+1) =

(Xτ , eτ ,Zτ ) + a(∆Xτ ,∆eτ ,∆Zτ ),

where a is the step length along the Newton direction. The step length is

determined through a line-search procedure that ensures sufficient decrease

of a merit function based on the augmented Lagrangian function of the bar-

rier problem. The role of the merit function and the line-search procedure is

to ensure that the objective and the infeasibility reduce sufficiently at every

iteration and that the iterations approach an optimum of the original NLP

problem.
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CHAPTER 3

A SUPPLY CHAIN GAME THEORY

FRAMEWORK FOR CYBERSECURITY

INVESTMENTS UNDER

NETWORK VULNERABILITY

In this chapter, I develop a supply chain game theory model consisting of

two tiers: the retailers and the consumers. The retailers select the product

transactions and their security levels so as to maximize their expected profits.

The probability of a successful attack on a retailer depends not only on that

retailer’s investment in security but also on the security investments of the

other retailers. Hence, the retailers and consumers are connected. In some of

the previous work in the cybersecurity investment space (see Nagurney and

Nagurney (2015)), it was assumed that the probability of a successful attack

on a seller depended only on his own security investments. In retail, which I

consider in a broad sense here from consumer goods to even financial services,

including retail banks, decision-makers interact and may share common sup-

pliers, IT providers, etc. Hence, it is imperative to capture the network effects

associated with security investments and the associated impacts.

In this model, retailers seek to maximize their expected profits with the

prices that the consumers are willing to pay for the product being a function

not only of the demand but also of the average security in the supply chain
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which I refer to as the cybersecurity or network security. The retailers compete

noncooperatively until a Nash Equilibrium is achieved, whereby no retailer can

improve upon his expected profit by making a unilateral decision in changing

his product transactions and security level. The approach is inspired, in part,

by the work of Shetty et al. (2009), but it is significantly more general since

the retailers, that is, the firms, are not identical and I explicitly also capture

the demand side of the supply chain network. Moreover, the retailers may

be faced with distinct security investment cost functions, given their existing

IT infrastructure and business scope and size, and they can also be spatially

separated. This framework can handle both online retailers and brick and

mortar ones. In addition, the retailers are faced with, possibly, different fi-

nancial damages in the case of a cyberattack. For simplicity of exposition and

clarity, I focus on a single type of attack.

This chapter is based on Nagurney, Nagurney, and Shukla (2015). The

supply chain game theory model is developed in Section 3.1. The behavior

of the retailers is captured, the Nash Equilibrium defined, and the variational

inequality formulation derived. I also provide some qualitative properties of

the equilibrium product transaction and security level pattern. In Section 3.2,

I outline the algorithm that I then utilize in Section 3.3 to compute solutions

to the numerical examples. In two sets of numerical supply chain network

examples, I illustrate the impacts of a variety of changes on the equilibrium

solution, and on the retailer and supply chain network vulnerability. In Section

3.4, I summarize the results and present the conclusions along with suggestions
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for future research.

3.1. The Supply Chain Game Theory Model of Cyberse-

curity Investments Under Network Vulnerability

I consider m retailers that are spatially separated and that sell a product to

n consumers. The retailers may be online retailers, engaging with consumers

through electronic commerce, and/or brick and mortar retailers. Since my

focus here is on cybersecurity, that is, network security, I assume that the

transactions in terms of payments for the product occur electronically through

credit cards and/or debit cards. Consumers may also conduct searches to

obtain information through cyberspace. I emphasize that here we consider

retailers in a broad sense, and they may include consumer goods retailers,

pharmacies, high technology product outlets, and even financial service firms

as well as retail banks. The network topology of the supply chain model, which

consists of a tier of retailers and a tier of consumers, is depicted in Figure 3.1.

Since the Internet is needed for the transactions between retailers and con-

sumers to take place, network security is relevant. Each retailer in the model

may be susceptible to a cyberattack through the supply chain network since

retailers may interact with one another as well as with common suppliers and

also share consumers. The retailers may suffer from financial damage as a con-

sequence of a successful cyberattack, losses due to identity theft, opportunity

costs, as well as a loss in reputation, etc. Similarly, consumers are sensitive as
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to how secure their transactions are with the retailers.
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Figure 3.1: The network structure of the supply chain game theory model

I denote a typical retailer by i and a typical consumer by j. Let Qij

denote the nonnegative volume of the product transacted between retailer i

and consumer j. Here si denotes the network security level, or, simply, the

security of retailer i. The strategic variables of retailer i consist of his product

transactions {Qi1, . . . , Qin} and his security level si. I group the product

transactions of all retailers into the vector Q ∈ Rmn
+ and the security levels of

all retailers into the vector s ∈ Rm
+ . All vectors here are assumed to be column

vectors, except where noted.

Let si ∈ [0, 1], with a value of 0 meaning no network security and a value

of 1 representing perfect security. Therefore,

0 ≤ si ≤ 1, i = 1, . . . ,m. (3.1)

The network security level of the retail-consumer supply chain is denoted
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by s̄ and is defined as the average network security where

s̄ =
1

m

m∑
i=1

si. (3.2)

Let pi denote the probability of a successful cyberattack on retailer i in the

supply chain network. Associated with the successful attack is the incurred

financial damageDi. Distinct retailers may suffer different amounts of financial

damage as a consequence of a cyberattack due to their size and their existing

infrastructure including cyber infrastructure. As discussed in Shetty (2010)

and Shetty et al. (2009), but for an oligopoly model with identical firms and

no demand side represented in the network, pi depends on the chosen security

level si and on the network security level s̄ as in (3.2). Using similar arguments

as therein, I also define the probability pi of a successful cyberattack on retailer

i as

pi = (1− si)(1− s̄), i = 1, . . . ,m, (3.3)

where the term (1− s̄) represents the probability of a cyberattack in the supply

chain network and the term (1 − si) represents the probability of success of

such an attack on retailer i. The network vulnerability level v̄ = 1 − s̄ with

retailer i’s vulnerability level vi being 1− si; i = 1, . . . ,m.

In terms of cybersecurity investment, each retailer i, in order to acquire

security si, encumbers an investment cost hi(si) with the function assumed to

be continuously differentiable and convex. Note that distinct retailers, because

of their size and existing cyber infrastructure (both hardware and software),
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may be faced with different investment cost functions. I assume that, for a

given retailer i, hi(0) = 0 denotes an entirely insecure retailer and hi(1) =∞

is the investment cost associated with complete security for the retailer (see

Shetty (2010) and Shetty et al. (2009)). An example of a suitable hi(si)

function is

hi(si) = αi(
1√

(1− si)
− 1) with αi > 0. (3.4)

The term αi allows for different retailers to have distinct investment cost func-

tions based on their size and needs.

The demand for the product by consumer j is denoted by dj and it must

satisfy the following conservation of flow equation:

dj =
m∑
i=1

Qij, j = 1, . . . , n, (3.5)

where

Qij ≥ 0, i = 1, . . . ,m; j = 1, . . . , n, (3.6)

that is, the demand for each consumer is satisfied by the sum of the product

transactions between all the retailers with the consumer. I group the demands

for the product for all buyers into the vector d ∈ Rn
+.

The consumers reveal their preferences for the product through their de-

mand price functions, with the demand price function for consumer j, ρj,

being:

ρj = ρj(d, s̄), j = 1, . . . , n. (3.7)
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Observe that the demand price depends, in general, on the quantities trans-

acted between the retailers and the consumers and the network security level.

The consumers are only aware of the average network security level of the sup-

ply chain. This is reasonable since consumers may have information about a

retail industry in terms of its cyber investments and security but it is unlikely

that individual consumers would have information on individual retailers’ se-

curity levels. Hence, as in the model of Nagurney and Nagurney (2015), there

is information asymmetry (cf. Akerlof (1970)).

In view of (3.2) and (3.5), I define ρ̂j(Q, s) ≡ ρj(d, s̄), ∀j. These demand

price functions are assumed to be continuously differentiable, decreasing with

respect to the respective consumer’s own demand and increasing with respect

to the network security level.

The revenue of retailer i; i = 1, . . . ,m, (in the absence of a cyberattack) is:

n∑
j=1

ρ̂j(Q, s)Qij. (3.8)

Each retailer i; i = 1, . . . ,m, is faced with a cost ci associated with the

processing and the handling of the product and transaction costs cij(Qij);

j = 1 . . . ,m, in dealing with the consumers. His total cost, hence, is given by:

ci

n∑
j=1

Qij +
n∑
j=1

cij(Qij). (3.9)

The transaction costs, in the case of electronic commerce, can include the costs
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of transporting/shipping the product to the consumers. The transaction costs

can also include the cost of using the network services, taxes, etc. I assume

that the transaction cost functions are convex and continuously differentiable.

The profit fi of retailer i; i = 1, . . . ,m, (in the absence of a cyberattack

and security investment) is the difference between the revenue and his costs,

that is,

fi(Q, s) =
n∑
j=1

ρ̂j(Q, s)Qij − ci
n∑
j=1

Qij −
n∑
j=1

cij(Qij). (3.10)

If there is a successful cyberattack, a retailer i; i = 1, . . . ,m, incurs an

expected financial damage given by

Dipi, (3.11)

where Di takes on a positive value.

Using expressions (3.3), (3.10), and (3.11), the expected utility, E(Ui), of

retailer i; i = 1, . . . ,m, which corresponds to his expected profit, is:

E(Ui) = (1− pi)fi(Q, s) + pi(fi(Q, s)−Di)− hi(si). (3.12)

I group the expected utilities of all the retailers into the m-dimensional vector

E(U) with components: {E(U1), . . . , E(Um)}.

Let Ki denote the feasible set corresponding to retailer i, where Ki ≡
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{(Qi, si)|Qi ≥ 0, and 0 ≤ si ≤ 1} and define K ≡
∏m

i=1K
i.

The m retailers compete noncooperatively in supplying the product and

invest in cybersecurity, each one trying to maximize his own expected profit. I

seek to determine a nonnegative product transaction and security level pattern

(Q∗, s∗) for which the m retailers will be in a state of equilibrium as defined

below. Nash (1950a) and Nash (1951) generalized Cournot’s concept (see

Cournot (1838)) of an equilibrium for a model of several players, that is,

decision-makers, each of which acts in his/her own self-interest, in what has

been come to be called a noncooperative game.

Definition 3.1: A Supply Chain Nash Equilibrium in Product Trans-

actions and Security Levels

A product transaction and security level pattern (Q∗, s∗) ∈ K is said to con-

stitute a supply chain Nash Equilibrium if for each retailer i; i = 1, . . . ,m,

E(Ui(Q
∗
i , s
∗
i , Q̂

∗
i , ŝ
∗
i )) ≥ E(Ui(Qi, si, Q̂∗i , ŝ

∗
i )), ∀(Qi, si) ∈ Ki, (3.13)

where

Q̂∗i ≡ (Q∗1, . . . , Q
∗
i−1, Q

∗
i+1, . . . , Q

∗
m); and ŝ∗i ≡ (s∗1, . . . , s

∗
i−1, s

∗
i+1, . . . , s

∗
m).

(3.14)
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According to (3.13), an equilibrium is established if no retailer can unilat-

erally improve upon his expected profits by selecting an alternative vector of

product transactions and security levels.

3.1.1. Variational Inequality Formulations

I now present alternative variational inequality formulations of the above sup-

ply chain Nash equilibrium in product transactions and security levels.

Theorem 3.1: Variational Inequality Formulation

Assume that, for each retailer i; i = 1, . . . ,m, the expected profit function

E(Ui(Q, s)) is concave with respect to the variables {Qi1, . . . , Qin}, and si, and

is continuous and continuously differentiable. Then (Q∗, s∗) ∈ K is a supply

chain Nash Equilibrium according to Definition 3.1 if and only if it satisfies

the variational inequality

−
m∑
i=1

n∑
j=1

∂E(Ui(Q
∗, s∗))

∂Qij

× (Qij −Q∗ij)−
m∑
i=1

∂E(Ui(Q
∗, s∗))

∂si
× (si − s∗i ) ≥ 0,

∀(Q, s) ∈ K, (3.15)

or, equivalently, (Q∗, s∗) ∈ K is a supply chain Nash equilibrium product trans-

action and security level pattern if and only if it satisfies the variational in-
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equality

m∑
i=1

n∑
j=1

[
ci +

∂cij(Q
∗
ij)

∂Qij

− ρ̂j(Q∗, s∗)−
n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂Qij

×Q∗ik

]
× (Qij −Q∗ij)

+
m∑
i=1

[
∂hi(s

∗
i )

∂si
− (1−

m∑
j=1

s∗j
m

+
1− s∗i
m

)Di −
n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂si
×Q∗ik

]
×(si−s∗i ) ≥ 0,

∀(Q, s) ∈ K. (3.16)

Proof: (3.15) follows directly from Gabay and Moulin (1980) and Dafermos

and Nagurney (1987).

In order to obtain variational inequality (3.16) from variational inequality

(3.15), I note that, at the equilibrium:

−∂E(Ui)

∂Qij

= ci+
∂cij(Q

∗
ij)

∂Qij

−ρ̂j(Q∗, s∗)−
n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂Qij

×Q∗ik; ∀i, ∀j, (3.17)

and

−∂E(Ui)

∂si
=
∂hi(s

∗
i )

∂si
− (1−

m∑
j=1

s∗j
m

+
1− s∗i
m

)Di −
n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂si
×Q∗ik; ∀i.

(3.18)

Making the respective substitutions using (3.17) and (3.18) in variational

inequality (3.15) yields variational inequality (3.16) 2
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I now put the above Nash Equilibrium problem into standard variational

inequality form (cf. (2.1a)), that is: determine X∗ ∈ K ⊂ RN , such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (3.19)

where F is a given continuous function from K to RN and K is a closed and

convex set.

I define the (mn + m)-dimensional vector X ≡ (Q, s) and the (mn + m)-

dimensional vector F (X) = (F 1(X), F 2(X)) with the (i, j)-th component, F 1
ij,

of F 1(X) given by

F 1
ij(X) ≡ −∂E(Ui(Q, s))

∂Qij

, (3.20)

the i-th component, F 2
i , of F 2(X) given by

F 2
i (X) ≡ −∂E(Ui(Q, s))

∂si
, (3.21)

and with the feasible set K ≡ K. Then, clearly, variational inequality (3.15)

can be put into standard form (3.19).

In a similar way, one can prove that variational inequality (3.16) can also

be put into standard variational inequality form (3.19). 2
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3.1.2. Qualitative Properties

It is reasonable to expect that the expected utility of any seller i, E(Ui(Q, s)),

would decrease whenever his product volume has become sufficiently large,

that is, when E(Ui) is differentiable, ∂E(Ui(Q,s))
∂Qij

is negative for sufficiently large

Qij Hence, the following assumption is not unreasonable:

Assumption 3.1

Suppose that in this supply chain game theory model there exists a sufficiently

large M , such that for any (i, j),

∂E(Ui(Q, s))

∂Qij

< 0, (3.22)

for all product transaction patterns Q with Qij ≥M .

I now give an existence result.

Proposition 3.1: Existence

Any supply chain Nash Equilibrium problem in product transactions and secu-

rity levels, as modeled above, that satisfies Assumption 3.1 possesses at least

one equilibrium product transaction and security level pattern.

Proof: The proof follows from Proposition 1 in Zhang and Nagurney (1995).
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2

I now present the uniqueness result, the proof of which follows from the

basic theory of variational inequalities (cf. Nagurney (1999)).

Proposition 3.2: Uniqueness

Suppose that F is strictly monotone at any equilibrium point of the variational

inequality problem defined in (3.19). Then it has at most one equilibrium

point.

3.2. The Algorithm

I, now, describe the realization of the Euler method, which is fully discussed

in Section 2.4, for the computation of the solution to variational inequality

(3.16).

As proven in Dupuis and Nagurney (1993), for convergence of the general

iterative scheme, which induces the Euler method, the sequence {aτ} must

satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ → ∞. Specific conditions for

convergence of this scheme as well as various applications to the solutions of

other network-based game theory models can be found in Nagurney (2006),

Nagurney (2015), and the references therein.
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Explicit Formulae for the Euler Method Applied to the Supply Chain

Game Theory Model

The elegance of this procedure for the computation of solutions to this model

is apparent from the following explicit formulae. In particular, I have the

following closed form expression for the product transactions i = 1, . . . ,m; j =

1, . . . , n:

Qτ+1
ij = max{0, Qτ

ij + aτ (ρ̂j(Q
τ , sτ ) +

n∑
k=1

∂ρ̂k(Q
τ , sτ )

∂Qij

Qτ
ik − ci −

∂cij(Q
τ
ij)

∂Qij

)},

(3.23)

and the following closed form expression for the security levels i = 1, . . . ,m:

sτ+1
i =

max{0,min{1, sτi +aτ (
n∑
k=1

∂ρ̂k(Q
τ , sτ )

∂si
Qτ
ik−

∂hi(s
τ
i )

∂si
+(1−

m∑
j=1

sj
m

+
1− si
m

)Di)}}.

(3.24)

I now provide the convergence result. The proof is direct from Theorem

5.8 in Nagurney and Zhang (1996).

Theorem 3.2: Convergence

In the supply chain game theory model developed above let F (X)=−∇E(U(Q, s))

be strictly monotone at any equilibrium pattern and assume that Assumption

3.1 is satisfied. Also, assume that F is uniformly Lipschitz continuous. Then

66



there exists a unique equilibrium product transaction and security level pat-

tern (Q∗, s∗) ∈ K and any sequence generated by the Euler method as given

by (3.23) and (3.24), with {aτ} satisfies
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as

τ →∞ converges to (Q∗, s∗).

In the next Section, I apply the Euler method to compute solutions to

numerical game theory problems.

3.3. Numerical Examples

In Nagurney, Nagurney, and Shukla (2015) the Euler method was imple-

mented, as discussed in Section 3.2, using FORTRAN on a Linux system

at the University of Massachusetts Amherst. The convergence criterion was

ε = 10−4. Hence, the Euler method was considered to have converged if, at a

given iteration, the absolute value of the difference of each product transac-

tion and each security level differed from its respective value at the preceding

iteration by no more than ε.

The sequence {aτ} was: .1(1, 1
2
, 1
2
, 1
3
, 1
3
, 1
3
. . .). I initialized the Euler method

by setting each product transaction Qij = 1.00, ∀i, j, and the security level of

each retailer si = 0.00, ∀i.

I present two sets of numerical examples. Each set of examples consists of

an example with four variants.
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Example Set 3.1

The first set of examples consists of two retailers and two consumers as depicted

in Figure 3.2. This set of examples begins with the baseline Example 3.1,

followed by four variants. The equilibrium solutions are reported in Table 3.1.

Consumers����1 ����2
? ?

Retailers����1 ����2
HH

HHH
HHHHj

��
���

�����

Figure 3.2: Network Topology for Example Set 3.1

The cost function data for Example 3.1 are:

c1 = 5, c2 = 10,

c11(Q11) = .5Q2
11 +Q11, c12(Q12) = .25Q2

12 +Q12,

c21(Q21) = .5Q2
21 + 2, c22(Q22) = .25Q2

22 +Q22.

The demand price functions are:

ρ1(d, s̄) = −d1 + .1(
s1 + s2

2
) + 100, ρ2(d2, s̄) = −.5d2 + .2(

s1 + s2
2

) + 200.

The damage parameters are: D1 = 50 and D2 = 70 with the investment
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functions taking the form:

h1(s1) =
1√

(1− s1)
− 1, h2(s2) =

1√
(1− s2)

− 1.

As can be seen from the results in Table 3.1 for Example 3.1, the equilibrium

demand for Consumer 2 is over four times greater than that for Consumer 1.

The price that Consumer 1 pays is about one half of that of Consumer 2.

Both retailers invest in security and achieve equilibrium security levels of .91.

Hence, in Example 3.1 the vulnerability of Retailer 1 is .09 and that of Retailer

2 is also .09, with the network vulnerability being .09.

In the first variant of Example 3.1, Variant 3.1.1, I change the demand

price function of Consumer 1 to reflect an enhanced willingness to pay more

for the product. The new demand price function for Consumer 1 is:

ρ1(d, s̄) = −d1 + .1(
s1 + s2

2
) + 200.

The product transactions to Consumer 1 more than double from their cor-

responding values in Example 3.1, whereas those to Consumer 2 remain un-

changed. The security level of Retailer 2 increases slightly whereas that of

Retailer 1 remains unchanged. Both retailers benefit from increased expected

profits. The vulnerability of Retailer 2 is decreased slightly to .08.

Variant 3.1.2 is constructed from Variant 3.1.1. Consumer 2 no longer
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values the product much so his demand price function is

ρ2(d2, s̄) = −.5d2 + .2(
s1 + s2

2
) + 20,

with the remainder of the data as in Variant 3.1.1. The product transactions

decrease by almost an order of magnitude to the second consumer and the

retailers experience reduced expected profits by about 2/3 as compared to

those in Variant 3.1.1. The vulnerability of Retailer 1 is now .12 and that of

Retailer 2: .11 with the network vulnerability being: .115.

Variant 3.1.3 is constructed from Example 3.1 by increasing both security

investment cost functions so that:

h1(s1) = 100(
1√

(1− s1)
− 1), h2(s2) = 100(

1√
(1− s2)

− 1)

and having new damages: D1 = 500 and D2 = 700. With the increased

costs associated with cybersecurity investments both retailers decrease their

security levels to the lowest level of all the examples solved, thus far. The

vulnerability of Retailer 1 is now .34 and that of Retailer 2: .28 with the

network vulnerability =.31.

Variant 3.1.4 has the same data as Variant 3.1.3, but we now further in-

crease Retailer 2’s investment cost function as follows:

h2(s2) = 1000(
1√

(1− s2)
− 1).
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Retailer 2 now has an equilibrium security level that is one quarter of that

in Variant 3.1.3. Not only do his expected profits decline but also those of

Retailer 1 do.

The vulnerability of Retailer 1 is now: .27 and that of Retailer 2: .82. The

network vulnerability for this example is: .54, the highest value in this set of

examples. The cybersecurity investment cost associated with Retailer 2 is so

high that he greatly reduces his security level. Moreover, the network security

is approximately half of that obtained in Example 3.1.

Table 3.1: Equilibrium Solutions for Examples in Set 3.1

Solution Ex. 3.1 Var. 3.1.1 Var. 3.1.2 Var. 3.1.3 Var. 3.1.4
Q∗11 24.27 49.27 49.27 24.27 24.26
Q∗12 98.30 98.30 8.30 98.32 98.30
Q∗21 21.27 46.27 46.27 21.27 21.26
Q∗22 93.36 93.36 3.38 93.32 93.30
d∗1 45.55 95.55 95.55 45.53 45.52
d∗2 191.66 191.66 11.68 191.64 191.59
s∗1 .91 .91 .88 .66 .73
s∗2 .91 .92 .89 .72 .18
s̄∗ .91 .915 .885 .69 .46

ρ1(d
∗
1, s̄
∗) 54.55 104.55 104.54 54.54 54.52

ρ2(d
∗
2, s̄
∗) 104.35 104.35 14.34 104.32 104.30

E(U1) 8136.45 10894.49 3693.56 8121.93 8103.09
E(U2) 7215.10 9748.17 3219.94 7194.13 6991.11

Example Set 3.2

The second set of numerical examples consists of three retailers and two con-

sumers as shown in Figure 3.3.
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Figure 3.3: Network Topology for Example Set 3.2

In order to enable cross comparisons between the two example sets, Exam-

ple 3.2 is constructed, which is the baseline example in this set, from Example

3.1 in Set 3.1. Therefore, the data for Example 3.2 is identical to that in

Example 3.1 except for the new Retailer 3 data as given below:

c3 = 3, c31(Q31) = Q2
31 + 3Q31, c32(Q32) = Q2

32 + 4Q32,

h3(s3) = 3(
1√

(1− s3)
− 1), D3 = 80.

The equilibrium solutions for examples in Set 3.2 are reported in Table

3.2. With the addition of Retailer 3, there is now increased competition. As

a consequence, the demand prices for the product drop for both consumers

and there is an increase in demand. Also, with the increased competition, the

expected profits drop for the two original retailers. The demand increases for

Consumer 1 and also for Consumer 2, both at upwards of 10%.

The vulnerability of Retailer 1 is .10, that of Retailer 2: .09, and that of
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Retailer 3: .19 with a network vulnerability of: .13. The network vulnerability,

with the addition of Retailer 3 is now higher, since Retailer 3 does not invest

much in security due to the higher investment cost.

Variant 3.2.1 is constructed from Example 3.2 with the data as therein

except for the new demand price function for Consumer 1, who now is more

sensitive to the network security, where

ρ1(d1, s̄) = −d1 + (
s1 + s2

2
) + 100.

The expected profit increases for all retailers since Consumer 1 is willing

to pay a higher price for the product.

The vulnerability of Retailer 1 is now .08, that of Retailer 2: .08, and that

of Retailer 3: .17 with a network vulnerability of: .11. Hence, all the vulner-

abilities have decreased, since the retailers have higher equilibrium security

levels.

Variant 3.2.2 is constructed from Variant 3.2.1. The only change is that

now Consumer 2 is also more sensitive to average security with a new demand

price function given by:

ρ2(d2, s̄) = −.5d2 + (
s1 + s2

2
) + 200.

As shown in Table 3.2, the expected profits are now even higher than for
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Variant 2.1. The vulnerability of Retailer 1 is now .05, which is the same

for Retailer 2, and with Retailer 3 having the highest vulnerability at: .14.

The network vulnerability is, hence, .08. Consumers’ willingness to pay for

increased network security reduces the retailers’ vulnerability and that of the

supply chain network.

Variants 3.2.1 and 3.2.2 demonstrate that consumers who care about se-

curity can also enhance the expected profits of retailers of a product through

their willingness to pay for higher network security.

Variant 3.2.3 has the identical data to that in Variant 3.2.2 except that the

demand price functions are now:

ρ1(d1, s̄) = −2d2 + (
s1 + s2

2
) + 100, ρ2(d2, s̄) = −d2 + (

s1 + s2
2

) + 100.

As can be seen from Table 3.2, the product transactions have all decreased

substantially, as compared to the respective values for Variant 3.2.2. Also, the

demand prices associated with the two consumers have decreased substantially

as have the expected profits for all the retailers.

The vulnerabilities of the retailers are, respectively: .07, 07, and .16 with

the network vulnerability equal to .10.

Variant 3.2.4 is identical to Variant 3.2.3 except that now the demand price
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function sensitivity for the consumers has increased even more so that:

ρ1(d1, s̄) = −2d2 + 10(
s1 + s2

2
) + 100, ρ2(d2, s̄) = −d2 + 10(

s1 + s2
2

) + 100.

All the equilibrium product transactions now increase. The demand prices

have both increased as have the expected profits of all the retailers.

In this example, the vulnerabilities of the retailers are, respectively: .02,

.02, and .05, yielding a network vulnerability of .03. This is the least vulnerable

supply chain network in this numerical study.

Table 3.2: Equilibrium Solutions for Examples in Set 3.2

Solution Ex. 3.2 Var. 3.2.1 Var. 3.2.2 Var. 3.2.3 Var. 3.2.4
Q∗11 20.80 20.98 20.98 11.64 12.67
Q∗12 89.45 89.45 89.82 49.62 51.84
Q∗21 17.81 17.98 17.98 9.64 10.67
Q∗22 84.49 84.49 84.83 46.31 48.51
Q∗31 13.87 13.98 13.98 8.73 9.50
Q∗32 35.41 35.41 35.53 24.50 25.59
d∗1 52.48 52.94 52.95 30.00 32.85
d∗2 209.35 209.35 210.18 120.43 125.94
s∗1 .90 .92 .95 .93 .98
s∗2 .91 .92 .95 .93 .98
s∗3 .81 .83 .86 .84 .95
s̄∗ .87 .89 .917 .90 .97

ρ1(d
∗
1, s̄
∗) 47.61 47.95 47.96 40.91 44.01

ρ2(d
∗
2, s̄
∗) 95.50 95.50 95.83 80.47 83.77

E(U1) 6654.73 6665.88 6712.29 3418.66 3761.75
E(U2) 5830.06 5839.65 5882.27 2913.31 3226.90
E(U3) 2264.39 2271.25 2285.93 1428.65 1582.62
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3.4. Summary and Conclusions

Cybercrime is affecting companies as well as other organizations and establish-

ments, including governments, and consumers. Recent notable data breaches

have included major retailers in the United States, resulting in both financial

damage and a loss in reputation. With companies, many of which are increas-

ingly global and dependent on their supply chains, seeking to determine how

much they should invest in cybersecurity, a general framework that can quan-

tify the investments in cybersecurity in supply chain networks is needed. The

framework should also be able to illuminate the impacts on profits as well as

a firm’s vulnerability and that of the supply chain network.

In this chapter, I develop a supply chain network game theory model con-

sisting of a tier of retailers and a tier of consumers. The retailers may be

subject to a cyberattack and seek to maximize their expected profits by se-

lecting their optimal product transactions and cybersecurity levels. The firms

compete noncooperatively until a Nash Equilibrium is achieved, whereby no

retailer can improve upon his expected profits. The probability of a successful

attack on a retailer, in my framework, depends not only on his security level,

but also on that of the other retailers. Consumers reveal their preferences for

the product through the demand price functions, which depend on the demand

and on the network security level, which is the average security of the supply

chain network.

I derive the variational inequality formulation of the governing equilibrium

76



conditions, discuss qualitative properties, and demonstrate that the algorithm

that I propose has nice features for computations. Specifically, it yields, at

each iteration, closed form expressions for the product transactions between

retailers and consumers and closed form expressions for the retailer security

levels. The algorithm is then applied to compute solutions to two sets of

numerical examples, with a total of ten examples. The examples illustrate the

impacts of an increase in competition, changes in the demand price functions,

changes in the damages incurred, and changes in the cybersecurity investment

cost functions on the equilibrium solutions and on the incurred prices and the

expected profits of the retailers. I also provide the vulnerability of each retailer

in each example and the network vulnerability.

The approach of applying game theory and variational inequality theory

with expected utilities of decision-makers to network security / cybersecurity

that this chapter adopts is original in itself. The results in this work pave

the way for a range of investigative questions and research avenues in this

area. For instance, at present, the model considers retailers and consumers in

the supply chain network. However, it can be extended to include additional

tiers, namely, suppliers, as well as transport service providers, and so on.

The complexity of the supply chain network would then make it even more

susceptible to cyberattacks, in which a security lapse in one node can affect

many others in succession. Moreover, to account for the fact that the exchange

of data takes place through multiple forms, the model could be extended to

include multiple modes of transactions.
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While the solution equilibrium in the context of competition does moderate

investments, the model can also be extended to explicitly include constraints

on cybersecurity investments subject to expenditure budgets allocated to cy-

bersecurity. The numerical examples section dealt with multiple retailer and

consumer scenarios and their variants to validate the ease of adoption and

practicality of the model. A case study and empirical analysis can further

corroborate the cogency of the model and assist in the process of arriving at

investment decisions related to cybersecurity. This could also provide insights

as to how to strike a balance between effectiveness of service and security.
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CHAPTER 4

A SUPPLY CHAIN NETWORK GAME

THEORY MODEL OF CYBERSECURITY

INVESTMENTS WITH NONLINEAR

BUDGET CONSTRAINTS

In this chapter, a supply chain network game theory model of cybersecurity

investments consisting of a tier of retailers and a tier of demand markets is

developed. The retailers can be consumer goods retailers, high tech retailers,

or even financial service ones. What is needed is that they are in the same

industry and that their individual decisions may impact the decisions of the

others in terms of the volume of product handled and the level of cybersecurity

investment. This work builds on that of Shetty (2010), Shetty et al. (2009),

and Chapter 3 but with a crucial difference – the retailers are now subject

to individual budget constraints for their cybersecurity investments. These

constraints are nonlinear, posing challenges for both theory (Section 2.2) and

computations (Section 2.4). In addition, unlike in Chapter 3, each retailer has

a distinct upper bound on security levels of retailers and product transactions

between retailers and consumers at the demand markets.

This chapter is organized as follows. In Section 4.1, I present the sup-

ply chain network game theory model with competing retailers, who seek to

individually maximize their expected utilities, which capture the expected rev-
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enue and financial losses, in the case of a cyberattack, along with the costs

associated with cybersecurity investments. I also discuss how to measure the

vulnerability of a firm to cyberattacks and that of the supply chain network,

as a whole. The Nash Equilibrium conditions, theoretical foundations, and

variational inequality formulations are provided. In the first variational in-

equality formulation, the nonlinear budget constraints appear in the feasible

set and, in the alternative one, through the use of Lagrange multipliers, the

nonlinear constraints are captured in the function that enters the variational

inequality with the feasible set consisting of the nonnegative orthant and the

bounds on the security levels. In Section 4.2, I present the algorithm, with

nice features for computations, that yields, at each iteration, closed form ex-

pressions for the product transactions, the security levels, and the Lagrange

multipliers associated with the budget constraints of the retailers. In Section

4.3, I present the numerical examples and, in Section 4.1, I summarize and

conclude. This chapter is based on Nagurney, Daniele, and Shukla (2017).

4.1. The Supply Chain Network Game Theory Model of

Cybersecurity Investments with Nonlinear Budget Con-

straints

The supply chain network game theory model of cybersecurity investments

with nonlinear budget constraints consists of m retailers, with a typical re-

tailer denoted by i, and n demand markets, with a typical demand market
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denoted by j. Retailers may be brick and mortar stores or online retailers.

In this framework, I consider retailer in a broad sense in that a retailer may

correspond to a financial service firm such as a retail bank, a consumer goods

store, etc. I do assume that the retailers transact the same product. Since

the concern is with cybersecurity investments, the transactions between the

two tiers take place electronically in terms of payments and, hence, there may

be a possibility of cyberattacks with the concomitant financial damage, loss

of reputation, opportunity costs, and associated disruptions. Specifically, con-

sumers at the demand markets make their purchases by credit or debit cards

or via an online payment system. They reflect their preferences as to the cy-

bersecurity of the supply chain network through the demand price functions.

The information that they have available is the average supply chain network

cybersecurity, which is referred to as the supply chain network security or, sim-

ply, the network security. One can expect consumers at the demand markets

to have information as to the security in an industry rather than the individ-

ual retailer cybersecurity levels. Since here I am concerned with supply chain

aspects, the retailers share some connectivity and may be exposed to cyberat-

tacks through their suppliers, and/or possibly, common payment systems, or

even computer infrastructure.

The bipartite network structure of the problem is depicted in Figure 4.1 and

the notation for the model is presented in Table 4.1. The network topology

is similar to that in Chapter 3. However, there are important notational

additions in Table 4.1.
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I first present the constraints and then construct the objective function of

each retailer. I also discuss how we quantify the cybersecurity of the supply

chain network along with its vulnerability, and that of the individual retailers.

One of the challenging aspects of the model is that the budget constraints are

nonlinear and, hence, convexity of the feasible sets of the retailers must be

established.
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Figure 4.1: The Bipartite Structure of the Supply Chain Network Game The-
ory Model
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Notation Definition
Qij the amount of the product transacted between retailer i and demand market

j; i = 1, ...,m; j = 1, ..., n. The transactions {Qij} for retailer i are grouped
into the vector Qi ∈ Rn

+ and all the transactions of all retailers into the vector
Q ∈ Rmn

+ .
dj the demand for the product at demand market j; j = 1, ..., n. The demands

are grouped into the vector d ∈ Rn
+.

si the cybersecurity level of retailer i; i = 1, ...,m. The security levels of all
retailers are grouped into the vector s ∈ Rm

+ .
s̄ the cybersecurity level in the supply chain network, where s̄ = 1

m

∑m
k=1 sk.

pi the probability of a successful cyberattack on retailer i.
ci the cost associated with handling and processing the product at retailer i; i =

1, ...,m.
cij(Qij) the transaction cost associated with transacting between i and j; i =

1, ...,m; j = 1, ..., n.
ρj(d, s̄) the demand price of the product at demand market j; j = 1, ..., n.
Bi the budget of retailer i for cyberinvestments, which cannot be exceeded;i =

1, ...,m.
Di the financial damage accrued by retailer i after a successful cyberattack on

i; i = 1, ...,m.
Qij the upper bound on the product transaction between i and j; i = 1, ...,m; j =

1, ..., n.
usi the upper bound on the security level of retailer i; i = 1, ...,m.

Table 4.1: Notation for the Model

The demand for the product at demand market j must satisfy the following

conservation of flow equation:

dj =
m∑
i=1

Qij, j = 1, ..., n, (4.1)

where

0 ≤ Qij ≤ Q̄ij, i = 1, ...,m; j = 1, ..., n, (4.2)

that is, the demand at each demand market is satisfied by the sum of the

product transactions between the retailers with the demand market, and these

transactions must be nonnegative and not exceed the imposed upper bounds.
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The cybersecurity level or, simply, security, of each retailer i must satisfy

the following constraint:

0 ≤ si ≤ usi , i = 1, ...,m, (4.3)

where usi < 1 for all i; i = 1, ...,m. The larger the value of si, the higher the

security level, with perfect security reflected in a value of 1, but, since perfect

security might not be attainable, usi < 1; i = 1, ...,m. If si = 0 this means

that retailer i has no security.

Associated with acquiring a security level si is an investment cost function

hi; i = 1, ...,m, with the function assumed to be continuously differentiable

and convex. It is assumed that, for a given retailer i, hi(0) = 0 denotes

an entirely insecure retailer and hi(1) = ∞ is the investment cost associated

with complete security for the retailer. An example of an hi(si) function that

satisfies these properties and that is utilized in this model as

hi(si) = αi(
1√

1− si
− 1), αi > 0. (4.4)

The term αi enables distinct retailers to have different investment cost func-

tions based on their size and needs. Such functions were introduced by Shetty

(2010) and Shetty et al. (2009) and also used in Chapter 3. However, in

those models, there are no cybersecurity budget constraints and the cyberse-

curity investment cost functions only appear in the objective functions of the

decision-makers.
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In this model, each retailer is faced with a limited budget for cybersecu-

rity investment. Hence, the following nonlinear budget constraints must be

satisfied:

αi(
1√

1− si
− 1) ≤ Bi; i = 1, ...,m, (4.5)

that is, each retailer can’t exceed his allocated cybersecurity budget. Clearly,

the constraints in (4.5) are nonlinear and pose challenges for the analysis and

solution of our model, which, as demonstrated, can be overcome.

As in Shetty et al. (2009) and Shetty (2010), probability pi of a successful

cyberattack on retailer i is defined as

pi = (1− si)(1− s̄), i = 1, ...,m, (4.6)

where the term (1−s̄) represents the probability of a cyberattack on the supply

chain network and the term (1− si) represents the probability of success of an

attack on retailer i. The supply chain network vulnerability level v̄ = 1 − s̄

with retailer i’s vulnerability level vi being 1− si; i = 1, ...,m. Such measures

are also used in Nagurney, Nagurney, and Shukla (2015).

In view of (4.1), demand price functions are defined as ρ̂j(Q, s) ≡ ρj(d, s̄),∀j.

The consumers reflect their preferences for the product through the demand

price functions, which depend not only on the vector of demands but also on

the supply chain network security. The consumers are expected to be willing

to pay more for enhanced network security but the degree may differ from con-

sumer to consumer. Also, there is information asymmetry (cf. Akerlof (1970))
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in the model, since retailers are aware of their investments in cybersecurity,

but consumers known only the average security as defined by s̄.

The profit fi of retailer i; i = 1, ...,m (in the absence of a cyberattack and

security investment) is the difference between the revenue and costs, that is,

fi(Q, s) =
n∑
j=1

ρ̂j(Q, s)Qij − ci
n∑
j=1

Qij −
n∑
j=1

cij(Qij). (4.7)

If there is a successful cyberattack on a retailer i; i = 1, ...,m, he incurs an

expected financial damage given by

Dipi, (4.8)

where Di takes on a positive value.

Using expressions (4.6), (4.7), and (4.8), the expected utility, E(Ui), of

retailer i; i = 1, ...,m, which corresponds to the retailer’s expected profit, is:

E(Ui) = (1− pi)fi(Q, s) + pi(fi(Q, s)−Di)− hi(si)

= fi(Q, s)− piDi − hi(si). (4.9)

According to (4.9), each retailer encumbers the cost associated with its cy-

bersecurity investment. On grouping the expected utilities of all the retailers

into the m-dimensional vector E(U), the following components are obtained:

{E(U1), ..., E(Um)}.
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Let Ki denote the feasible set corresponding to retailer i, where Ki ≡

{(Qi, si)|0 ≤ Qij ≤ Q̄ij,∀j, and 0 ≤ si ≤ usi and (4.5) holds for i} and define

K ≡
∏m

i=1K
i.

The m retailers compete noncooperatively in supplying the product and

invest in cybersecurity, each one trying to maximize his own expected profit. I

seek to determine a nonnegative product transaction and security level pattern

(Q∗, s∗) ∈ K for which the m retailers will be in a state of equilibrium as

defined below. Nash (1950a, 1951) generalized Cournot’s concept (see Cournot

(1838)) of an equilibrium for a model of several players, that is, decision-

makers, each of which acts in his/her own self-interest, in what has been come

to be called a noncooperative game.
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Definition 4.1: A Supply Chain Nash Equilibrium in Product Trans-

actions and Security Levels

A product transaction and security level pattern (Q∗, s∗) ∈ K is said to con-

stitute a supply chain Nash Equilibrium if for each retailer i; i = 1, . . . ,m,

E(Ui(Q
∗
i , s
∗
i , Q̂

∗
i , ŝ
∗
i )) ≥ E(Ui(Qi, si, Q̂

∗
i , ŝ
∗
i )), ∀(Qi, si) ∈ Ki, (4.10)

where

Q̂∗i ≡ (Q∗1, . . . , Q
∗
i−1, Q

∗
i+1, . . . , Q

∗
m); ŝ∗i ≡ (s∗1, . . . , s

∗
i−1, s

∗
i+1, . . . , s

∗
m). (4.11)

According to (4.10), a supply chain network equilibrium is established if

no retailer can unilaterally improve upon his expected profits by selecting an

alternative vector of product transactions and security levels. I now present

alternative variational inequality formulations of the above supply chain Nash

Equilibrium in product transactions and security levels. It is first established

that the feasible set K is convex in the following lemma. In this model, unlike

in many network equilibrium problems from congested urban transportation

networks to supply chains and financial networks (cf. Nagurney (1999, 2006),

Daniele (2006)), the feasible set contains nonlinear constraints.

Lemma 4.1
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Let hi be a convex function for all retailers i; i = 1, ...,m. The feasible set K

is then convex.

Proof: Convexity of the constraint set is studied below.

K̄ = {si ∈ R : hi(si) ≤ Bi}. (4.12)

Let s1i , s
2
i ∈ K̄ and λ ∈ [0, 1], namely:

hi(s
1
i ) ≤ Bi and hi(s

2
i ) ≤ Bi. (4.13)

Since hi(si) is a convex function,

hi(λs
1
i + (1− λ)s2i ) ≤ λhi(s

1
i )︸ ︷︷ ︸

≤Bi

+(1− λ)hi(s
2
i )︸ ︷︷ ︸

≤Bi

≤ Bi, (4.14)

namely,

hi(λs
1
i + (1− λ)s2i ) ≤ Bi, (4.15)

that is,

λs1i + (1− λ)s2i ∈ K̄. (4.16)

Hence, the set defined by (4.12) is convex.

Also, we know that each Ki consists of the above budget constraint, the

box-type constraint (4.3) on si, and the nonnegativity constraints on retailer

i’s transactions as in (4.12). The intersection of these sets is also convex.

Finally, since K is the Cartesian product of convex sets, Ki; i = 1, ...,m, it is
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also convex, so the conclusion follows. 2

Note that each investment cost function hi(si); i = 1, ...,m, as in (4.4), and

defined on [0, usi ] is convex since its second derivative is positive. Indeed,

h
′

i(si) =
αi
2

(1− si)−
3
2 and h

′′

i (si) =
3αi
4

(1− si)−
5
2 > 0. (4.17)

Theorem 4.1: Variational Inequality Formulation

Assume that, for each retailer i; i = 1, ...,m, the expected profit function

E(Ui(Q, s)) is concave with respect to the variables {Qi1, ..., Qin}, and si, and

is continuously differentiable. Then (Q∗, s∗) ∈ K is a supply chain Nash Equi-

librium according to Definition 4.1 if and only if, ∀(Q, s) ∈ K, it satisfies the

variational inequality

−
m∑
i=1

n∑
j=1

∂E(Ui(Q
∗, s∗))

∂Qij

× (Qij −Q∗ij)−
m∑
i=1

∂E(Ui(Q
∗, s∗))

∂si
× (si − s∗i ) ≥ 0,

(4.18)

or, equivalently, (Q∗, s∗) ∈ K is a supply chain Nash Equilibrium product

transaction and security level pattern if and only if it satisfies the variational

inequality

m∑
i=1

n∑
j=1

[
ci +

∂cij(Q
∗
ij)

∂Qij

− ρ̂j(Q∗, s∗)−
n∑
k=1

ρ̂k(Q
∗, s∗)

∂Qij

Q∗ik

]
× (Qij −Q∗ij)

+
m∑
i=1

[∂hi(s∗i )
∂si

−
n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂si
Q∗ik
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−(1−
m∑
k=1

s∗k
m

+
1− s∗i
m

)Di

]
× (si − s∗i ) ≥ 0, ∀(Q, s) ∈ K. (4.19)

Proof: As per Lemma 4.1, the feasible set for each retailer i, Ki; i = 1, ...,m,

is convex as is the Cartesian product of these sets, K. Under the imposed

assumptions on the expected utility functions of the retailers, according to

Proposition 2.2 in Gabay and Moulin (1980), which established the equivalence

between the solution to a Nash Equilibrium problem and the solution to the

corresponding variational inequality problem, we know that each retailer i; i =

1, ...,m, maximizes his expected utility according to Definition 4.1 if and only

if, ∀si ∈ [0, usi ],

−
m∑
i=1

n∑
j=1

∂E(Ui(Q
∗, s∗))

∂Qij

× (Qij −Q∗ij)−
m∑
i=1

∂E(Ui(Q
∗, s∗))

∂si
× (si − s∗i ) ≥ 0,

(4.20)

which is precisely variational inequality (4.18).

In order to obtain variational inequality (4.19) from the variational inequal-

ity (4.18), note that, at the equilibrium:

−∂E(Ui)

∂Qij

= ci +
∂cij(Q

∗
ij)

∂Qij

− ρ̂j(Q∗, s∗)−
n∑
k=1

ρ̂k(Q
∗, s∗)

∂Qij

Q∗ik; ∀i, j; (4.21)

and

−∂E(Ui)

∂si
=
∂hi(s

∗
i )

∂si
−

n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂si
Q∗ik−(1−

m∑
k=1

s∗k
m

+
1− s∗i
m

)Di),∀i. (4.22)
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Substituting the above expressions into variational inequality (4.20), varia-

tional inequality (4.18) is obtained. 2

The variational inequality (4.18) can be put into the standard variational

inequality form as depicted in (2.1a). I define the (mn + m)-dimensional

column vector X ≡ (Q, s) and the (mn + m)-dimensional column vector

F (X) ≡ (F 1(X), F 2(X)) with the (i, j)-th component, F 1
ij, of F 1(X) given

by

F 1
ij ≡ −

∂E(Ui(Q, s))

∂Qij

, (4.23)

the i-th component, F 2
i , of F 2(X) given by

F 2
ij ≡ −

∂E(Ui(Q, s))

∂si
, (4.24)

and with the feasible set K ≡ K. Then, clearly, variational inequality (4.18)

can be put into standard form (2.1a). In a similar way, one can prove that

(4.19) can also be put into the standard form (2.1a).

Additional background on the variational inequality problem can be found

in Nagurney (1999).

Remark

If the retailers are not subject to budget constraints, usi = 1, for i =

1, ...,m, and there are no upper bounds on the product transactions, then

the above model collapses to the model in Chapter 3 with the associated

92



variational inequalities having the same structure as those in (4.18) and (4.19)

but with a substantially simpler feasible set which consists of the nonnegative

orthant for the product transactions and the security levels, with the latter

also bounded from above by one. Such a model, nevertheless, can be used

to identify the (Q∗, s∗) under “ideal” unlimited conditions as to budgets and

product transactions. Now, some qualitative properties are provided, in terms

of existence and uniqueness of a solution to variational inequality (4.18).

Theorem 4.2: Existence

A solution (Q∗, s∗) to variational inequality (4.18) (equivalently, (4.19)) is

guaranteed to exist.

Proof: The result follows from the classical theory of variational inequalities

(see Kinderlehrer and Stampacchia (1980), and Section 2.1) since the feasible

setK is compact, and the function that enters the variational inequality ((2.1a)

with (4.23) and (4.24)) is continuous. 2

Moreover, I have the following result.

Theorem 4.3: Uniqueness

The solition (Q∗, s∗) to variational inequality (4.18) is unique if the function

F (X) as in (2.1a) with components defined by (4.23) and (4.24), and X ≡
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(Q, s) is strictly monotone, that is:

〈(F (X1)− F (X2)), X1 −X2〉 > 0, ∀X1, X2 ∈ K, X1 6= X2. (4.25)

Proof: See Kinderlehrer and Stampacchia (1980) and Section 2.1.

The function F (X) is strictly monotone over K if its Jacobian ∇F (X) is

positive definite over K.

Since the feasible set K has nonlinear constraints and this may pose chal-

lenges for numerical computations, now an alternative variational inequal-

ity to (4.19) which incorporates Lagrange multipliers is derived. Specifi-

cally, the Lagrange multiplier λi ≥ 0; i = 1, ...,m are associated with the

budget constraint (4.5), respectively, for each retailer i = 1, ...,m. The La-

grange multipliers are grouped into the vector λ ∈ Rmn
+ . The new varia-

tional inequality is defined over the feasible set K2 ≡
∏m

i=1K1
i × Rmn

+ , where

K1
i ≡ {(Qi, si)|Qi ≥ 0; 0 ≤ si ≤ usi}.

The following section shows that this novel variational inequality will be

amenable to solution via an iterative scheme that is straightforward to imple-

ment.

Theorem 4.4: Alternative Variational Inequality Formulation
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A vector (Q∗, s∗, λ∗) ∈ K2 is a solution to variational inequality (4.19) if and

only if it is a solution to the variational inequality:

m∑
i=1

n∑
j=1

[
ci +

∂cij(Q
∗
ij)

∂Qij

− ρ̂j(Q∗, s∗)−
n∑
k=1

ρ̂k(Q
∗, s∗)

∂Qij

Q∗ik

]
× (Qij −Q∗ij)

+
m∑
i=1

[∂hi(s∗i )
∂si

−
n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂si
Q∗ik − (1−

m∑
k=1

s∗k
m

+
1− s∗i
m

)Di

+
λ∗i
2
αi(1− s∗i )−

3
2

]
× (si − s∗i ) +

m∑
i=1

[
Bi − αi(

1√
1− s∗i

− 1)
]
× (λi − λ∗i ) ≥ 0,

∀(Q, s, λ) ∈ K2. (4.26)

Proof: Each retailer i; i = 1, ...,m, according to Definition 4.1, seeks to de-

termine his strategy vector (Qi, si) so as to

Maximize(Qi,si)E(Ui) = (1− pi)fi(Q, s) + pi(fi(Q, s)−Di)− hi(si) (4.27)

subject to:

αi(
1√

(1− si)
− 1)−Bi ≤ 0,

0 ≤ Qij ≤ Q̄ij, j = 1, ..., n,

0 ≤ si ≤ usi ,

where fi(Q, s) is given by (4.7), hi(si) is given by (4.4), and pi = (1−si)(1− s̄).

Simplifying the terms in the objective function (4.27) and converting the
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maximization problem into a minimization problem, the above optimization

problem with the newly defined feasible set K1
i becomes:

Minimization − fi(Q, s) +Di(1− si)(1− s̄) + hi(si) (4.28)

subject to:

αi(
1√

(1− si)
− 1)−Bi ≤ 0,

(Qi, si) ∈ K1
i .

Now, let Xi ≡ (Qi, si), X̂i ≡ (X1, ..., Xi−1, Xi+1, ..., Xm), and f̂i(Xi, X̂i) ≡

−fi(Q, s) +Di(1− si)(1− s̄) +hi(si). One can rewrite retailer i’s optimization

problem, where X̂∗i denotes the other retailers’ optimal solutions, as:

Minimize f̂i(Xi, X̂
∗
i ) (4.29)

subject to:

gi(Xi) ≤ 0, (4.30)

Xi ∈ K1
i . (4.31)

Note that gi(Xi) = αi(
1√

(1−si)
)−Bi.

Now the Lagrangian is formed L(Xi, X̂
∗
i , λi) = f̂i(Xi, X̂

∗
i ) + λigi(Xi).

Also, the following assumption is made:
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Assumption: (Slater Condition). There exists a Slater vector X̃i ∈ K1
i for

each i = 1, ...,m, such that gi(X̃i) < 0.

This is easy to verify.

Then, according to Koshal, Nedic, and Shanbhag (2011), pages 1049-1051,

since f̂i is convex in Xi and is continuously differentiable and gi is also con-

vex and continuously differentiable, and K1
i is nonempty, closed and convex,

(X∗i , λ
∗
i ) ∈ K1

i × R+ is a solution to the above optimization problem (4.29),

subject to (4.30) and (4.31), if and only if it is a solution to the variational

inequality:

∇Xi
L(X∗i , X̂

∗
i , λ

∗
i )×(Xi−X∗i )+(−gi(X∗i ))×(λi−λ∗i ) ≥ 0, ∀(Xi, λi) ∈ K1

i×R+,

(4.32)

with ∇Xi
L representing the gradient with respect to Xi of the Lagrangian L.

Expanding (4.32) by using the definitions of these functions and vectors

and making the appropriate substitutions, it is obtained that X∗i ∈ K1
i is a

solution to (4.32) if and only if (Q∗i , s
∗
i , λ
∗
i ) ∈ K1

i is a solution to the variational

inequality:

m∑
i=1

n∑
j=1

[
ci +

∂cij(Q
∗
ij)

∂Qij

− ρ̂j(Q∗, s∗)−
n∑
k=1

ρ̂k(Q
∗, s∗)

∂Qij

Q∗ik

]
× (Qij −Q∗ij)

+
m∑
i=1

[∂hi(s∗i )
∂si

−
n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂si
Q∗ik−(1−

m∑
k=1

s∗k
m

+
1− s∗i
m

)Di+
λ∗i
2
αi(1−s∗i )−

3
2

]
×(si−s∗i )
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+
m∑
i=1

[
Bi − αi(

1√
1− s∗i

− 1)
]
× (λi − λ∗i ) ≥ 0, ∀(Qi, si, λi) ∈ K1

i . (4.33)

But inequality (4.33) holds for each i; i = 1, ...,m, since I am dealing with a

Nash Equilibrium problem, so summation of (4.33) over all i; i = 1, ...,m, the

variational inequality (4.26) is obtained.2

Now, variational inequality (4.26) into standard form (2.1a). Let X ≡

(Q, s, λ) and let F (X) ≡ (F̂ 1(X), F̂ 2(X), F̂ 3(X)) be the (mn+2m)-dimensional

vector consisting of components: F̂ 1
ij; i = 1, ...,m; j = 1, ..., n, F̂ 2

i ; i = 1, ...,m,

and F̂ 3
i (X); i = 1, ...,m, where:

F̂ 1
ij(X) ≡

[
ci +

∂cij(Qij)

∂Qij

− ρ̂j(Q, s)−
n∑
k=1

ρ̂k(Q, s)

∂Qij

Qik

]
,∀i,∀j,

F̂ 2
i (X) ≡

[∂hi(si)
∂si

−
n∑
k=1

∂ρ̂k(Q, s)

∂si
Qik−(1−

m∑
k=1

sk
m

+
1− si
m

)Di+
λi
2
αi(1−si)−

3
2

]
,∀i,

F̂ 3
i (X) ≡

[
Bi − αi(

1√
1− si

− 1)
]
,∀i.

Also, let K ≡ K2. Then, clearly, variational inequality (4.26) can be put

into standard form (2.1a).

4.2. The Computational Procedure

I, now, describe the realization of the Euler method (cf. Chapter 2), which is

fully discussed in Section 2.4, for the computation of the solution to variational
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inequality (4.26).

As proven in Dupuis and Nagurney (1993), for convergence of the general

iterative scheme, which induces the Euler method, the sequence {aτ} must

satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ → ∞. Specific conditions for

convergence of this scheme as well as various applications to the solutions of

other network-based game theory models can be found in Nagurney and Zhang

(1996) and Nagurney (2006).

Explicit Formulae for the Euler Method Applied to the Game The-

ory Model

The elegance of this algorithm for the variational inequality (4.26) for the

computation of solutions to this model is apparent from the following explicit

formulae. In particular, I have the following closed form expression for the

product transactions i = 1, ...,m; j = 1, ..., n :

Qτ+1
ij = max{0,

min{Q̄ij, Q̄ij + aτ (ρ̂j(Q
τ , sτ ) +

n∑
k=1

ρ̂k(Q
τ , sτ )

∂Qij

Qτ
ik − ci −

∂cij(Q
τ
ij)

∂Qij

)}}, (4.34)

the following closed form expressions for the security levels, and for the La-

grange multipliers, respectively, for i = 1, ...,m :

sτ+1
i = max{0,min{usi , sτi + aτ
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(
n∑
k=1

∂ρ̂k(Q
τ , sτ )

∂si
Qτ
ik−

∂hi(s
τ
i )

∂si
+ (1−

m∑
k=1

sτk
m

+
1− sτi
m

)Di−
λτi
2
αi(1− sτi )−

3
2 )}},

(4.35)

λτ+1
i = max{0, λτi + aτ (−Bi + αi(

1√
(1− sτi )

))}. (4.36)

4.3. Numerical Examples

In Nagurney, Daniele, and Shukla (2017) the Euler method was implemented,

as discussed in Section 4.2, using FORTRAN on a Linux system at the Uni-

versity of Massachusetts Amherst. The convergence criterion was ε = 10−4.

Hence, the Euler method was considered to have converged if, at a given it-

eration, the absolute value of the difference of each product transaction and

each security level differed from its respective value at the preceding iteration

by no more than ε.

The sequence {aτ} was: .1(1, 1
2
, 1
2
, 1
3
, 1
3
, 1
3
. . .). The Euler method was ini-

tialized by setting each product transaction Qij = 1.00, ∀i, j, the security level

of each retailer si = 0.00, ∀i, and the Lagrange multiplier for each retailer’s

budget constraint λi = 0.00;∀i. The capacities Q̄ij were set to 100 for all i, j.

The examples were constructed to reflect recent data in specific industrial

reports as discussed below.

100



The examples had transaction cost functions of the following form:

cij(Qij) = aijQ
2
ij + bijQij, i = 1, ...,m; j = 1, ..., n,

and demand price functions of the following form:

ρ̂j(Q, s) = −mj(
m∑
i=1

Qij) + rj(
m∑
i=1

si
m

) + qj, j = 1, ..., n,

with aij, bij,mj, rj, and qj all greater than zero, for all i and j.

Note that the transaction cost functions are strictly convex and the demand

price functions are decreasing in the quantity demanded at a demand market

but increasing in the average security level at the demand market. I expect

that the consumers are willing to pay a higher price for a higher level of average

security. The transaction cost functions include the transportation costs and

having such functions being increasing functions of the product volume has

been used in many network equilibrium problems (see Nagurney (1999, 2006)

and the references therein).

It is straightforward to verify that, with the above functions, the assump-

tions of Theorem 4.1. Indeed, for all i and j:

∂2E(Ui)

∂Q2
ij

= −2mij − 2aij < 0

and

∂2E(Ui)

∂s2i
= −3αi

4
(1− si)−

5
3 − 2

Di

m
< 0, ∀si ∈ [0, usi ].
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Hence, the expected utility of each retailer i, E(Ui); i = 1, ...,m, is concave

with respect to its strategic variables: Qi1, Qi2, ..., Qin and si. In fact, these

functions are strictly concave. Clearly, the expected utilities are also twice

continuously differentiable.

4.3.1. Examples 4.1 and 4.2 with Sensitivity Analysis

Examples 4.1 and 4.2, with the accompanying sensitivity analysis, consist of

two retailers and two demand markets as depicted in Figure 4.2.

Consumers����1 ����2
? ?

Retailers����1 ����2
HHH

HHH
HHHj

���
���

����

Figure 4.2: Network Topology for Examples 4.1 and 4.2 and Sensitivity Anal-
ysis

Example 4.1 and Sensitivity Analysis

The cost function data for Example 4.1 are:

c1 = 5, c2 = 10,

c11(Q11) = .5Q2
11 +Q11, c12(Q12) = .25Q2

12 +Q12,

c21(Q21) = .5Q2
21 + 2, c22(Q22) = .25Q2

22 +Q22.
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The demand price functions are:

ρ1(d, s̄) = −d1 + .1(
s1 + s2

2
) + 100, ρ2(d2, s̄) = −.5d2 + .2(

s1 + s2
2

) + 200.

The damage parameters are: D1 = 50 and D2 = 70 with the investment

functions taking the form:

h1(s1) =
1√

(1− s1)
− 1, h2(s2) =

1√
(1− s2)

− 1.

The damage parameters are in millions of $US, the expected profits (and

revenues) and the costs are also in millions of $US. The prices are in thousands

of dollars and the product transactions are in thousands. The budgets for the

two retailers are identical with B1 = B2 = 2.5 (in millions of $US). These data

are representative for financial damages, due to a cyberattack, as reported by

Yakowicz (2014), and for cybersecurity budgets of medium-sized to large firms,

as reported by PricewaterhouseCoopers (2014) in their survey.

The computed equilibrium solution for this example is given in Table 4.2.

Retailer 1 has .21 (in millions) in unspent cybersecurity funds whereas Re-

tailer 2 has .10 (in millions) in unspent funds. Hence, the associated Lagrange

multipliers λ∗1 = λ∗2 = 0.00. Both retailers have a firm vulnerability of .09

and the network vulnerability is, hence, also .09. In the sensitivity analysis,

the budget of Retailer 2 is fixed at 2.5 (in millions of $US dollars), and the
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Table 4.2: Equilibrium Solution for Example 4.1

Solution Example 4.1
Q∗11 24.27
Q∗12 98.34
Q∗21 21.27
Q∗22 93.34
d∗1 45.55
d∗2 191.68
s∗1 .91
s∗2 .91
s̄∗ .91
λ∗1 0.00
λ∗2 0.00

ρ1(d
∗
1, s̄
∗) 54.55

ρ2(d
∗
2, s̄
∗) 104.35

E(U1) 8137.38
E(U2) 7213.49

budget of Retailer 1 is varied from B1 = 1 to B1 = 2.5 in increments of .5.

The values for the equilibrium security levels of the retailers, along with the

network vulnerability, are reported in Figure 4.3. Figure 4.3 shows that, as

the budget of Retailer 1 increases, its equilibrium security level increases, and

the network vulnerability decreases. Hence, even Retailer 2 benefits from an

increase in budget of Retailer 1.
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Figure 4.3: Sensitivity Analysis for Example 4.1 for Budget Size Variations of
Retailer 1 with Retailer 2’s Budget Fixed
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Example 4.2 and Sensitivity Analysis

Example 4.2 was constructed from Example 4.1 and had the same data except

that the investment cost function for Retailer 1 is now changed to:

h1(s1) = 10
1√

(1− s1)
− 1

Such a change in an investment cost function could occur, for example, in

the case of acquisition of additional computers that need to be protected with

additional associated costs. The equilibrium solution is reported in Table 4.3.

Table 4.3: Equilibrium Solution for Example 4.2

Solution Example 4.2
Q∗11 24.27
Q∗12 98.31
Q∗21 21.27
Q∗22 93.31
d∗1 45.53
d∗2 191.62
s∗1 .36
s∗2 .91
s̄∗ .63
λ∗1 3.68
λ∗2 1.06

ρ1(d
∗
1, s̄
∗) 54.55

ρ2(d
∗
2, s̄
∗) 104.32

E(U1) 8122.77
E(U2) 7207.47

With higher security investment cost for Retailer 1, in Example 4.2, he

invests less in security then he had in Example 4.1. The average security drops
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from s̄∗ = .91 in Example 4.1 to s̄∗ = .63 in Example 4.2 so that the network

vulnerability 1 − s̄∗ = .09 in Example 1 whereas v̄ = .37 in Example 4.2, an

increase of over a factor of 4. Also, the equilibrium Lagrange multipliers are

now no longer equal at 0.00 since the budgets of both retailers are now fully

spent. The equilibrium product flows remain the same or decrease slightly.

Both firms suffer a drop in expected profits.

A sensitivity analysis was conducted for this example. The results are

reported in Figure 4.4. The network vulnerability is consistently higher for

each datapoint in Figure 4.4 as compared to the respective datapoint in Figure

4.3. These results demonstrate how increased cybersecurity investment costs

can dramatically affect the vulnerability of the supply chain network as to

cyberattacks. Also, they reveal that the budget size of one retailer can have

system-wide effects not only in terms of network vulnerability but also in terms

of expected profits.
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Figure 4.4: Sensitivity Analysis for Example 4.2 for Budget Size Variations of
Retailer 1 with Retailer 2’s Budget Fixed

4.3.2. Examples 4.3 and 4.4 with Sensitivity Analysis

Examples 4.3 and 4.4 consist of 3 retailers and 2 demand markets as depicted

in Figure 4.5.

Example 4.3 and Sensitivity Analysis

Example 4.3 is constructed from Example 4.1 except for the new Retailer 3

data as given below:
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c3 = 3, c31(Q31) = Q2
31 + 3Q31, c32(Q32) = Q2

32 + 4Q32,

h3(s3) = 3(
1√

(1− s3)
− 1), D3 = 80.
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Figure 4.5: Network Topology for Examples 4.3 and 4.4 with Sensitivity Anal-
ysis

The budget for Retailer 3 is 3.0 (in millions of $US).

The equilibrium solutions for Example 4.3 are reported in Table 4.4.

With the addition of Retailer 3, there is now increased competition. As a

consequence, the demand prices for the product drop at both demand markets

and there is an increase in demand. Also, with the increased competition, the

expected profits drop for the two original retailers. The demand increases for

Demand Market 1 and also for Demand Market 2, both at upwards of 10%.

The vulnerability of Retailer 1 is .10, that of Retailer 2: .09, and that of

Retailer 3: .26 with a network vulnerability of: .15. The network vulnerability,

with the addition of Retailer 3 is now higher, since Retailer 3 does not invest
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Table 4.4: Equilibrium Solutions for Example 4.3

Solution Example 4.3
Q∗11 20.80
Q∗12 89.48
Q∗21 17.80
Q∗22 84.48
Q∗31 13.87
Q∗32 35.40
d∗1 52.48
d∗2 209.36
s∗1 .90
s∗2 .91
s∗3 .74
s̄∗ .85
λ∗1 0.00
λ∗2 0.00
λ∗3 0.00

ρ1(d
∗
1, s̄
∗) 47.61

ρ2(d
∗
2, s̄
∗) 95.49

E(U1) 6655.13
E(U2) 5828.82
E(U3) 2262.26

much in security due to the higher investment cost.

Interestingly, all retailers do not exhaust their cybersecurity budgets. This

may be due, in part, to information asymmetry in that the consumers at the

demand markets only know the average security in the network and, hence,

a retailer may invest less in cybersecurity. Hence, Retailer 3 is, in a sense, a

“free rider”.
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Figure 4.6: Sensitivity Analysis for Example 4.3 for Changes in ρ1 Average
Security Level Coefficient

The above show results of sensitivity analysis. The coefficient in the de-

mand price function at Demand Market 1 is .1. I proceed to increase this

coefficient to 1.0, 2.0, and 3.0, and report the percent increase in expected

profits of the retailers in Figure 6. All retailers benefit financially from con-

sumers’ higher valuation placed on average network security. These examples

demonstrate that consumer awareness to supply chain network security, even

in an average sense, can benefit retailers in terms of expected profits.

Example 4.4 and Sensitivity Analysis

Example 4.4 is constructed from Example 4.3 as follows. The data are iden-

tical except that all the damages: D1 = D2 = D3 = 0.00. The computed

equilibrium solution is given in Table 4.5.
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Table 4.5: Equilibrium Solutions for Example 4.4

Solution Example 4.4
Q∗11 20.80
Q∗12 89.43
Q∗21 17.80
Q∗22 84.47
Q∗31 13.87
Q∗32 35.40
d∗1 52.47
d∗2 209.30
s∗1 .82
s∗2 .81
s∗3 .34
s̄∗ .66
λ∗1 0.00
λ∗2 0.00
λ∗3 0.00

ρ1(d
∗
1, s̄
∗) 47.60

ρ2(d
∗
2, s̄
∗) 95.48

E(U1) 6652.45
E(U2) 5828.10
E(U3) 2264.24

Increased competition from Retailer 3 continues to increase the demand

and decrease the prices when compared to Examples 4.1 and 4.2. However,

with a sharp decrease in the damage parameters, that is, from D1 = 50, D2 =

70, D3 = 80 to D1 = D2 = D3 = 0.00, we observe a fall in the security levels

for all the retailers. The average network security is down to 0.66 from 0.85 in

the previous example. The vulnerability of Retailer 1 is 0.18, that of Retailer

2 is 0.19, and that of Retailer 3 is 0.66. Retailer 3, having a high investment

cost, seems is the most vulnerable due to low investments in cybersecurity.
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Interestingly, all retailers do not exhaust their cybersecurity budgets. This

may be due, in part, to information asymmetry in that the consumers at the

demand markets only know the average security in the network and, hence, a

retailer may invest less in cybersecurity.

Figure 4.7: Sensitivity Analysis for Example 4.4 for Changes in Financial
Damages with D1 = D2 = D3

In Figure 4.7, I display the results of the sensitivity analysis. The damages

are increased for the retailers from D1 = D2 = D3 = 0.00 to D1 = D2 =

D3 = 5.00 and then to D1 = D2 = D3 = 10.00, followed by increments of

10.00 through 30.00. As the damages increase, the average security levels go

up and the network vulnerability goes down. Retailers become more sensitive

to building security as the damages accrued due to a successful cyberattack

increase.
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4.4. Summary and Conclusions

Increasing cybercrime incidents, and associated impacts, emphasize the impor-

tance of investment into counteracting these events for companies and other

organizations, including financial institutions, retailers, and governments. Sev-

eral of the recent notable data breaches and thefts have been reported by

retailers in the United States, wherein financial damage, theft of critical in-

formation, and reputation loss took place. Complexities in the supply chains

with numerous spatially dispersed entry points have led to loopholes that at-

tackers have exploited. Retailers, being in the forefront, have become highly

susceptible to breaches and ensuing losses. As a result, they seek to determine

the optimal level of investments to be made given strict budget constraints

for cybersecurity. This chapter builds a general framework for quantifying

these investments in the backdrop of competing retailers trying to maximize

their expected profits subject to budget constraints. The game theory frame-

work also identifies the vulnerability of the individual retailers and that of the

supply chain network on the whole.

A bipartite supply chain network game theory model consisting of retailers

and demand markets is developed. The retailers may be subject to a cyber-

attack and seek to maximize their expected profits by selecting their optimal

product transactions and cybersecurity levels. The retailers compete noncoop-

eratively until a Nash Equilibrium is achieved, whereby no retailer can improve

upon his expected profit. The probability of a successful attack on a retailer,
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in our framework, depends not only on his security level, but also on that

of the other retailers. Consumers at the demand markets reveal their prefer-

ences for the product through the demand price functions, which depend on

the demand and on the network security level, which is the average security

of the supply chain network. Nonlinear investment cost functions levied on

each retailer who is bounded by a budget level are included. These nonlinear

budget constraints are incorporated into a variational inequality formulation

through two alternative variational inequality formulations.

The governing equilibrium conditions and convexity of the feasible set have

been derived for the variational inequalities, and the solvability is demon-

strated with an appropriate algorithm with features supporting computations.

Specifically, the algorithm yielded closed form expressions for the product

transactions between retailers and demand markets, the security levels of re-

tailers, as well as the Lagrange multipliers associated with the budget con-

straints at each iteration. Various data instances are evaluated through the

algorithm, with relevant managerial insights and sensitivity analysis. The lat-

ter is conducted on the budgets, the coefficients of the demand price functions,

and the damage parameters for pertinent analysis. The examples illustrate the

impacts of an increase in competition, changes in the demand price functions,

changes in the damages incurred, and changes in the cybersecurity investment

cost functions, and budgets on the equilibrium solutions and on the incurred

prices and the expected profits of the retailers. Vulnerability of each retailer

in each example and the network vulnerability are also provided.
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CHAPTER 5

MULTIFIRM MODELS OF

CYBERSECURITY INVESTMENTS:

COMPETITION VS. COOPERATION

In this chapter, I present three new models of cybersecurity investments. The

proposed models are not restricted to the number of firms, their locations, or

the sectors that they belong to. I begin with a Nash Equilibrium model of

noncooperation and competition, which is formulated, analyzed, and solved

using variational inequality theory. The solution to this Nash Equilibrium

model then serves as the disagreement point over which the bargaining takes

place in the second model, which is one of cooperation. For this model, I

utilize Nash bargaining theory, a type of cooperative game theory, to argue

for the sharing of information on firms’ security levels, where here security

refers to cybersecurity. I assume that firms bargain with each other to decide

upon the security levels that they would be willing to implement vis-a-vis their

investment cost functions, wealth, and damages in the case of a cyberattack.

The constraints guarantee that the expected utility of each firm is no lower

than that obtained under the Nash Equilibrium solution.

The third model in this chapter also focuses on cooperation among the

firms in terms of their cybersecurity levels, but from a system-optimization

perspective in which the sum of the expected utilities of all the firms is maxi-
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mized. System-optimization models, but different from the one proposed here,

were also developed for cybersecurity investments by Shetty et al. (2009) and

Shetty (2010).

In addition to the model developments and the associated theory, here I

also apply and compare the obtained solutions in terms of firm and network

vulnerability. Moreover, I demonstrate the benefits of bargaining through case

studies in the retail and financial services sectors.

This chapter is organized as follows. In Section 5.1, I present the three

distinct models, along with their qualitative properties. I also outline the al-

gorithm for the determination of solutions to the noncooperative cybersecurity

investment model governed by the Nash Equilibrium, along with convergence

results. In Section 5.2, I highlight the software utilized to compute solutions

to the two cooperative cybersecurity investment models since these are highly

nonlinear programming problems. I then provide solutions to the three dis-

tinct cybersecurity investment models for a spectrum of case studies in the

retail and financial services sectors. I also provide sensitivity analysis results.

Summary and conclusions are presented in Section 5.3. This section is based

on the paper Nagurney and Shukla (2017).
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5.1. The Multifirm Cybersecurity Investment Models

In this Section, I present three distinct multifirm cybersecurity investment

models reflecting three distinct behavioral concepts. In the first model, the

firms compete noncooperatively on their cybersecurity levels, each one trying

to maximize its expected utility, with the governing concept being the Nash

Equilibrium (NE). In the second model, the firms cooperate under the Nash

bargaining (NB) concept (detailed discussion in Subsection 2.3). The objective

function therein, which is maximized, is the product over all the firms of

each firm’s expected utility minus its expected utility evaluated at the Nash

Equilibrium solution. The Nash Equilibrium solution is here the disagreement

point. The constraints guarantee that the firms’ respective expected utilities

are never less than those under the Nash Equilibrium solution. In the third

model, the solution concept is that of system-optimization (S-O), where the

sum of the expected utilities of all the firms with respect to their cybersecurity

investments is maximized. In each of the three models, the firms are also faced

with bounds on the cybersecurity levels.

I first outline the common features of the models and in subsequent sub-

sections I detail their specifics. The models are one period models, as in Kun-

reuther and Heal (2003), and, hence, the probability of an attack is defined

over the period under study.

I assume that there are m firms in the “network.” These firms can be fi-

nancial service firms, energy firms, manufacturing firms, or even retailers. The
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network aspect lies in their connectivity in cyberspace through the Internet

and in their frequent such interactions because of a common industry. I assume

that each firm i; i = 1, . . . ,m, in the network is interested in determining how

much it should invest in cybsecurity with the cybersecurity level or, simply,

security level of firm i denoted by si; i = 1 . . . ,m.

The cybersecurity level si of each firm i must satisfy the following con-

straint:

0 ≤ si ≤ usi , i = 1, . . . ,m, (5.1)

where usi<1, and is also greater than zero, is the upper bound on the security

level for firm i. Note that a value of a cybersecurity level of 1 would imply

perfect security, which is not achievable. When si = 0 the firm has no security.

I group the security levels of all firms into the m-dimensional vector s.

In order to attain security level si, firm i encumbers an investment cost

hi(si) with the function assumed to be continuously differentiable and convex.

As noted in Shetty et al. (2009), the intuition is that user security costs

increase with security, and that improving security level imposes an increasing

marginal cost on the user. Distinct firms, because of their size and existing

cyber infrastructure (both hardware and software), will be faced with different

investment cost functions. I assume that, for a given firm i, hi(0) = 0 denotes

an entirely insecure firm and hi(1) =∞ is the investment cost associated with

complete security for the firm, as in Shetty et al. (2009) and Shetty (2010).
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An example of a suitable hi(si) function that I use in this chapter is

hi(si) = αi(
1√

(1− si)
− 1) (5.2)

with αi > 0. Such a function was utilized in Nagurney and Nagurney (2015), in

Nagurney, Nagurney, and Shukla (2015), and in Nagurney, Daniele, and Shukla

(2017). In the latter reference strict convexity of the cyberinvestment cost

function (5.2) was established. According to the cybersecurity investment cost

function in (5.2), and, as noted in Shetty et al. (2009), it becomes increasingly

costly to improve the security level at a higher level of security.

The network security level, s̄, is the average security, given by:

s̄ =
1

m

m∑
j=1

sj. (5.3)

The vulnerability of firm i, vi = (1−si) and the network vulnerability, v̄ = (1−

s̄). Similar measures, but in a supply chain cybersecurity investment context,

were used by Nagurney, Nagurney, and Shukla (2015). Therein, however, only

competition and not cooperation was considered and the strategic variables

included product quantities in addition to security levels.

In this chapter, I study how the network security and the network vulner-

ability vary under the three different behavioral concepts.

Following Shetty (2010), the probability pi of a successful attack on firm i;
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i = 1, . . . ,m is

pi = (1− si)(1− s̄), i = 1, . . . ,m, (5.4)

where (1− s̄) is the probability of an attack on the network and (1− si) is the

probability of success of such an attack on firm i.

Each firm i; i = 1, . . . ,m has a utility associated with its wealthWi, denoted

by fi(Wi), which is increasing, and is continuous and concave. The form of

the fi(Wi) that I use in this chapter is
√
W i (see Shetty et al. (2009)). Such a

function is increasing, continuous, and concave, reflecting that a firm’s wealth

has a positive but decreasing marginal benefit. Also, a firm i is faced with

damage Di if there is a successful cyberattack on it.

Hence, the expected utility E(Ui) of firm i; i = 1, . . . ,m, is given by the

expression:

E(Ui) = (1− pi)fi(Wi) + pi(fi(Wi −Di))− hi(si). (5.5)

Note that, according to (5.3), each firm i encumbers an investment cost asso-

ciated with cybersecurity, which, of course, is equal to zero if the security level

si is zero. I group the expected utilities of all firms into the m-dimensional

vector E(U). In view of (5.2), I may write E(Ui) = E(Ui(s)),∀i.

In this framework, the firms differ in these aspects, which provides realism.

For example, the firms can have different wealth, value their wealth distinctly,

have different damage due to a cyberattack, given their existing cyber in-
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frastructure, and also have distinct associated cyberinvestment cost functions.

Moreover, different firms may have distinct upper bounds on their achievable

security levels. Furthermore, I do not assume that an individual firm has a

negligible effect on the network security level (5.3) and takes that value as

given.

5.1.1. The Nash Equilibrium Model of Cybersecurity

Investments

In the first model, I assume that the m firms compete noncooperatively, each

one trying to maximize its expected utility. I seek to determine a security level

pattern s∗ ∈ K1, where K1 =
∏m

i=1K
1
i and K1

i ≡ {si|0 ≤ si ≤ usi}, such that

the firms will be in a state of equilibrium with respect to their cybersecurity

levels as defined below. Note that K1 is convex since it is a Cartesian product

of the firms’ feasible sets with each such set being convex since it corresponds

to box-type constraints.

I now present the Nash (1950a, 1951) equilibrium definition that captures

the decision-makers’ competitive behavior in this model.

Definition 5.1: Nash Equilibrium in Cybersecurity Levels

A security level pattern s∗ ∈ K1 is said to constitute a cybersecurity level Nash
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Equilibrium if for each firm i; i = 1, . . . ,m:

E(Ui(s
∗
i , ŝ
∗
i )) ≥ E(Ui(si, ŝ

∗
i )), ∀si ∈ K1

i , (5.6)

where

ŝ∗i ≡ (s∗1, . . . , s
∗
i−1, s

∗
i+1, . . . , s

∗
m). (5.7)

According to (5.6), a cybersecurity Nash Equilibrium is established if no

firm can unilaterally improve upon its expected profits by selecting an alter-

native security level.

I now present the variational inequality formulation of the Nash equilibrium

in security levels.

Theorem 5.1: Variational Inequality Formulation of Nash Equilib-

rium in Cybersecurity Levels

If for each firm i; i = 1, . . . ,m, the expected profit function E(Ui(s)) is continu-

ously differentiable, and concave, and the feasible set K1 is convex, I know that

s∗ ∈ K1 is a Nash Equilibrium in cybersecurity levels according to Definition

5.1 if and only if it satisfies the variational inequality

−
m∑
i=1

∂E(Ui(s
∗))

∂si
× (si − s∗i ) ≥ 0, ∀s ∈ K1, (5.8)

123



or, equivalently, s∗ ∈ K1 is a Nash equilibrium security level pattern if and

only if it satisfies the variational inequality

m∑
i=1

[
∂hi(s

∗
i )

∂si
+ [fi(Wi)− fi(Wi −Di)]

[
1

m

m∑
j=1

s∗j − 1− 1

m
+
s∗i
m

]]

×(si − s∗i ) ≥ 0, ∀s ∈ K1. (5.9)

Proof: Since the feasible set is convex for each firm, and minus the expected

utility, -E(Ui(s)), is convex, from the classical theory of variational inequalities

(see also Gabay and Moulin (1980)), it is known that each firm i; i = 1, . . . ,m,

maximizes its expected utility if and only if

−∂E(Ui(s
∗))

∂si
× (si − s∗i ) ≥ 0, ∀si ∈ K1

i . (5.10)

Summing the inequality (5.10) over all firms yields the variational inequality

(5.8)

Variational inequality (5.9), in turn, is equivalent to variational inequality

(5.8) with notice of (5.5) so that the expansion of

−∂E(Ui(s
∗))

∂si
=

[∂hi(s∗i )
∂si

+ fi(Wi)
[ 1

m

m∑
j=1

s∗j − 1− 1

m
+
s∗i
m

]

+fi(Wi −Di)
[
1− 1

m

m∑
j=1

s∗j +
1

m
− s∗i
m

]]
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=

[
∂hi(s

∗
i )

∂si
+ [fi(Wi)− fi(Wi −Di)]

[
1

m

m∑
j=1

s∗j − 1− 1

m
+
s∗i
m

]]
, (5.11)

for each firm i. The conclusion follows. 2

Variational inequality (5.9) can be put into standard variational inequality

form (2.1a). I define the m-dimensional vectors X ≡ s and F (X) with the

i-th component, Fi, of F (X) given by

Fi(X) ≡ −∂E(Ui(s))

∂si

=
∂hi(si)

∂si
+ [fi(Wi)− fi(Wi −Di)]

[
1

m

m∑
j=1

sj − 1− 1

m
+
si
m

]
, (5.12)

and with the feasible set K ≡ K1 and N = m. Clearly, (5.8) and (5.9) can be

put into standard form (2.1a).

A solution to variational inequality (5.9), converted to (2.1a) using (5.12),

for the Nash Equilibrium cybersecurity investment model is guaranteed to

exist since the function F (X) is continuous and the feasible set K = K1 is

compact (see Kinderlehrer and Stampacchia (1980) and Nagurney (1999)).

The existence and uniqueness results also follows from Subsection 2.2.

Theorem 5.2: Uniqueness of the Nash Equilibrium
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If F (X) is strictly monotone, that is:

〈(F (X1)− F (X2)), X1 −X2〉 > 0, ∀X1, X2 ∈ K, X1 6= X2, (5.13)

then X∗, the solution to variational inequality (2.1a), is unique.

I now provide an interpretation of the strict monotonicity property directly

for the Nash Equilibrium model. Specifically, I know that if the Jacobian

of F (X), which is denoted by J , is positive definite, then F (X) is strictly

monotone.

Construct:

∂Fi
∂si

=
3αi

4(1− si)2.5
+

2

m
[fi(Wi)− fi(Wi −Di)], (5.14a)

and

∂Fi
∂sj

=
1

m
[fi(Wi)− fi(Wi −Di)], for j 6= i. (5.14b)

It then follows that

J =


3α1

4(1−s1)2.5 + 2
m [f1(W1)− f1(W1 −D1)] · · · 1

m [f1(W1)− f1(W1 −D1)]

...
...

1
m [fm(Wm)− fm(Wm −Dm)] · · · 3αm

4(1−sm)2.5
+ 2

m [fm(Wm)− fm(Wm −Dm)]

 ,

It is known that (see, e.g., Nagurney (1999)), if (J + JT )/2, where J need
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not be symmetric, is strictly diagonally dominant, then it is positive definite

and F (X) is then strictly monotone. From the structure of (J + JT )/2 it can

be inferred that it is strictly diagonally dominant if, ∀i:

3αi
4(1− si)2.5

>
m− 5

2m
[fi(Wi)−fi(Wi−Di)]+

1

2m

m∑
j=1;j 6=i

[fj(Wj)−fj(Wj−Dj)].

(5.15)

One can deduce that (5.15) will be satisfied, for example, for m = 3, if

2[fi(Wi) − fi(Wi − Di)] ≥
∑m

j=1[fj(Wj) − fj(Wj − Dj)], j 6= i. Analogous

conditions can be determined for m = 2, and so on. Specifically, for m =

2 if the following conditions are satisfied then strict diagonal dominance of

(J + JT )/2 also holds:

3(f1(W1)− f1(W1 −D1)) ≥ f2(W2)− f2(W2 −D2) ≥
f1(W1)− f1(W1 −D1)

3
,

(5.16)

This result is useful since one then has a unique disagreement point.

Of course, positive-definiteness of J can still hold even when the strict

diagonal dominance condition does not.

There are numerous algorithms that can be applied to compute the solution

to (5.9). In this chapter, I utilize the Euler method, detailed in Subsection 2.4

for the numerical study in Section 5.2.

If, however, F (X) is not strictly monotone, but only monotone, and Lips-
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chitz continuous, the modified projection method of Korpelevich (1977) can be

used. It is essential to note that, in the absence of strict monotonicity, there

may be multiple Nash equilibria. If so, firms will prefer the equilibria that are

Pareto optimal. For multiple such equilibria, there are Nash Equilibrium solu-

tions. Boonen (2016) studies regulators that aim to optimize welfare of firms

while enforcing an attractive Pareto optimal solution by restricting the joint

feasible space. Conditions for convergence of the Euler method for a variety

of network-based problems can be found in Nagurney and Zhang (1996) and

Nagurney (2006).

In view of the simple structure of the underlying feasible set, the Euler

method yields at each iteration closed form expressions for the security levels:

i; i = 1, . . . ,m, given by:

sτ+1
i = max{0,min{usi ,

sτi +aτ (−
∂hi(s

τ
i )

∂sτi
−(fi(Wi)−fi(Wi−Di))

[
1

m

m∑
j=1

sτj − 1− 1

m
+
sτi
m

]
}}. (5.17)

5.1.2. The Nash Bargaining Model of Cybersecurity In-

vestments

The bargaining model proposed by Nash (1950b, 1953) is based on axioms

and focused on two players, that is, decision-makers. The framework easily
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generalizes to m decision-makers, as noted in Leshem and Zehavi (2008). Here

the decision-makers are firms. An excellent overview can be found in Binmore,

Rubinstein, and Wolinsky (1989) and in the book by Muthoo (1999). In the

Nash bargaining model, I use expected utilities, rather than utilities, since I am

dealing with uncertainties as represented by the probabilities of cyberattacks.

Let E(UNE
j ) denote the expected utility of firm j evaluated at the Nash

Equilibrium security level solution, as discussed in Section 5.1.1. E(UNE
j ) is

the disagreement point of firm j, according to the bargaining framework.

The objective function underlying the Nash bargaining model of cyberse-

curity investments is:

Z1 =
m∏
j=1

(E(Uj(s))− E(UNE
j )). (5.18)

The optimization problem to be solved is then:

Maximize
m∏
j=1

(E(Uj(s))− E(UNE
j )) (5.19)

subject to:

E(Uj(s)) ≥ E(UNE
j ), j = 1, . . . ,m, (5.20)

s ∈ K1. (5.21)

I define the feasible setK2 consisting of constraints (5.20) and (5.21). Under

the previous assumptions, the set is convex.
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A solution to the Nash bargaining model is guaranteed to exist since the

feasible set K2 is compact and the objective function is continuous. I now

provide conditions under which the solution is unique.

Theorem 5.3: Uniqueness of the Nash Bargaining Solution

The solution to the above cooperative Nash bargaining model is unique if the

objective function, Z1, is strictly quasi-concave.

Proof: This result follows from classical nonlinear programming theory. 2

I now discuss conditions for which Z1 will be strictly quasi-concave.

I can transform Z1 as in (5.18) through the following logarithmic transfor-

mation:

ln(Z1) = ln(
m∏
j=1

(E(Uj(s))−E(UNE
j ))) =

m∑
j=1

ln(E(Uj(s))−E(UNE
j )). (5.22)

The objective function Z1 is strictly quasi-concave if ln(Z1) is strictly con-

cave.
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5.1.3. The System-Optimization Model of Cybersecurity

Investments

Under system-optimization, the objective function becomes:

Z2 =
m∑
j=1

E(Uj(s)) (5.23)

and the feasible set remains as for the Nash Equilibrium problem, that is,

s ∈ K1.

Hence, the system-optimization cybersecurity investment problem is to:

Maximize
m∑
j=1

E(Uj(s)) (5.24)

subject to:

s ∈ K1. (5.25)

I know that the feasible set K1 is convex and compact and that the objec-

tive function (5.23) is continuous. Hence, the solution to the above system-

optimization problem is guaranteed to exist. In addition, I have the following

uniqueness result under an assumption.

Theorem 5.4: Uniqueness of the System-Optimized Solution

The solution to the system-optimization problem above is unique if the objective
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function, Z2, is strictly concave.

Proof: The result follows from classical nonlinear programming theory. 2

I now provide conditions under which the strict concavity of Z2 will hold.

Construct:

∂Z2

∂sj
= − αj

2(1− sj)1.5
− [fj(Wj)− fj(Wj −Dj)][

1

m

m∑
l=1

sl +
sj − 1

m
− 1]

−
m∑

k=1;j 6=k

sk − 1

m
[fk(Wk)− fk(Wk −Dk)]. (5.26)

Also,

∂2Z2

∂s2j
= − 3αj

4(1− sj)2.5
− 2

m
[fj(Wj)− fj(Wj −Dj)], (5.27)

and

∂2Z2

∂sk∂sj
=

∂2Z2

∂sj∂sk

= − 1

m
[fj(Wj)−fj(Wj−Dj)]−

1

m
[fk(Wk)−fk(Wk−Dk)], for k 6= j. (5.28)

Z2 is strictly concave if its Hessian matrix, H, is negative definite or −H
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is positive definite (for all feasible s), where

H =


∂2Z2

∂s21
· · · ∂2Z2

∂s1∂sm

...
...

∂2Z2

∂sm∂s1
· · · ∂2Z2

∂s2m

 ,

with the individual components for H as in (5.27) and (5.28) above. This

matrix is symmetric. Moreover, I know that −H is positive definite if it is

strictly diagonally dominant, with the satisfaction of the condition below:

3αj
4(1− sj)2.5

>
m− 3

m
[fj(Wj)− fj(Wj −Dj)]

+
1

m

m∑
k=1;k 6=j

[fk(Wk)− fk(Wk −Dk)], j = 1, . . . ,m. (5.29)

One can deduce, for example, that (5.29) will always be satisfied for m = 2

when [fi(Wi) − fi(Wi −Di)] = [fj(Wj) − fj(Wj −Dj)],∀j 6= i. This is useful

since, if this relationship is true, strict diagonal dominance will always exist

for two firms. However, if this relationship is not true and (5.29) holds, the

matrix will still be positive definite. For m = 3, condition (5.29) is also useful.

5.2. Numerical Examples

In this Section, I present numerical examples/cases illustrating the cyberse-

curity investment models developed in Section 5.1. Solutions of the Nash
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Equilibrium model are computed by applying the Euler method as outlined in

Subsection 5.1.1, with the Euler method implemented in Matlab on a Lenovo

G410 laptop with an Intel Core i5 processor and 8GB RAM. The conver-

gence tolerance is set to 10−5, so that the algorithm was deemed to have

converged when the absolute value of the difference between each successively

computed security level was less than or equal to 10−5. The sequence {aτ}

is set to: .1{1, 1
2
, 1
2
, 1
3
, 1
3
, 1
3
, ...}. I initialized the Euler method by setting the

security levels at their lower bounds. The upper bounds on the security levels

usi = 0.99,∀i.

The solutions to the Nash Bargaining and System-Optimization models

were computed by applying the Interior Point Method in the SAS NLP Solver.

The algorithm was called upon while using SAS Studio, a web browser-based

programming environment. The maximum optimality error, in each case ex-

ample below, was 5×10−7 for the S-O solutions. The optimality error is defined

as the maximum violation of the constraints in the models. The optimality

errors in the solution of the NB model in the cases below are reported with

the solutions. For both NB and S-O, the solver was initialized at the lower

bounds of the security levels.

Below I present cases illustrating two different industries: retail and finan-

cial services. The industry aspect affects the firm size, wealth, and the damage

parameters. Wealth, damages, and investment costs are given in US dollars

in millions. The αi values in the cybersecurity investment functions across all

examples are the number of employees in millions based on the most recently
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available public data.

Case I: Retailers

In Case I, I consider two retailers. Firm 1 represents the second largest dis-

count retailer in the United States, Target Corporation. The firm, in January

2014, announced that the security of 70 million of its users was breached and

their information compromised. Credit card information of 40 million users

was used by hackers to generate an estimated $53.7 million in the black mar-

ket as per Tobias (2014). Firm 2 represents Home Depot, a popular retailer

in the home improvement and construction domain. Products available under

these categories are also sold through Target which makes them compete for a

common consumer base. The company was struggling with high turnover and

old software which led to a compromise of 56 million users (Tobias (2014)).

Firm 1 suffered $148 million in damages, according to the Consumer Bankers

Association and the Credit Union National Association (Tobias (2014)). Home

Depot incurred $62 million in legal fees and staff overtime to deal with their

cyber attack in 2014. Additionally, it paid $90 million to banks for re-issuing

debit and credit cards to users who were compromised (Tobias (2014)).

I use the annual revenue data for the firms to estimate their wealth. Hence,

in US$ in millions, W1 = 72600; W2 = 78800. The potential damages these

firms stand to sustain in the case of similar cyberattacks as above in the future

amount to (in US$ in millions): D1 = 148.0; D2 = 152.
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As in Shetty et al. (2009), I assume that the wealth functions are of the

following form:

f1(W1) =
√
W1; f2(W2) =

√
W2.

The cybersecurity investment cost functions are:

h1(s1) = 0.25(
1√

1− s1
− 1); h2(s2) = 0.30(

1√
1− s2

− 1).

The parameters α1 = .25 and α2 = .30 are the number of employees of the

respective firms in millions, thereby, representing their size.

Results for the Nash Equilibrium model, the Nash Bargaining model, and

the System-Optimization model for cybersecurity investments are summarized

in Table 5.1. Recall that the values of the expected utilities are in million of

dollars.

Solution NE NB S-O
s∗1 0.384 0.443 0.460
s∗2 0.317 0.409 0.388
v1 0.616 0.557 0.540
v2 0.683 0.591 0.612
s̄∗ 0.350 0.426 0.424
v̄ 0.650 0.574 0.576

E(U1) 269.265 269.271 269.268
E(U2) 280.530 280.531 280.534

Table 5.1: Results for NE, NB, and S-O for Target and Home Depot

I now discuss uniqueness of the NE solution in Table 5.1. Referring to
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the strict diagonal dominance condition (5.15), I observe that the diagonal

elements of the Jacobian J above (5.15) will assume their lowest values at

si = 0; i = 1, 2, in this example. Hence, if the strict diagonal dominance

condition holds at these values of the security levels, it will hold over all values

in the feasible set. I now let bi = 3αi

4(1−si)2.5 , and ci = m−5
2m

[fi(Wi) − fi(Wi −

Di)] + 1
2m

∑m
j=1;j 6=i[fj(Wj)− fj(Wj −Dj)] for i = 1, 2. Hence, b1 at s1 = 0, is

equal to .188, and c1 = −.138. Similarly, b2 at s2 = 0, is equal to .225 and

c2 = −.134. Clearly, b1 > c1 and b2 > c2 and, therefore, the above NE security

level pattern is unique.

I also evaluated the Hessian of ln(Z1) (cf. (5.22)), which is a symmetric

matrix, for the NB problem and computed the eigenvalues and the lowest

eigenvalue of minus the Hessian evaluated at the computed NB solution was:

321.315 and, therefore, the NB solution is locally unique.

I now turn to examining whether the solution to the S-O problem in Ta-

ble 5.1 is unique. In particular, I refer to (5.29). I retain the definition of bi

as above for i = 1, 2, and define now di: gi = m−3
m

[fi(Wi) − fi(Wi − Di)] +

1
m

∑m
j=1;j 6=i[fj(Wj)− fj(Wj −Dj)], i = 1, 2. I know, from the above computa-

tion, that b1 = .188, and g1 = −.002. Also, I know that b2 = .225, from the

above, with g2 = .002. Clearly, b1 > g1 and b2 > g2 and, therefore, condition

(5.29) is satisfied so the S-O solution for the security levels is unique for this

example.

As reported in Table 5.1, the Nash Equilibrium security level for Firm 1 is

137



0.384 and that for Firm 2 is .317, indicating that neither firm may be well-

prepared to ward off against cyber threats. The network security is .35 and

the network vulnerability is .65. Firm 2 achieves a higher expected utility than

Firm 1 under the Nash Equilibrium solution.

The solution to the Nash Bargaining model, in which the firms collaborate

on security levels, shows an increase in the security levels for each firm. The

security level of Firm 1 increases from 0.384 to 0.443 and that of Firm 2

increases from 0.317 to 0.409. These increases also result in slightly higher

expected utilities for both firms as compared to the values at their NE solution;

thus, creating a win-win situation for the retailers and their consumers (who

benefit from higher security levels). The network vulnerability decreases from

.650 to .574, a marked decline. The optimality error for the NB solution was

3.17× 10−7.

I observe an increase of 6000 in expected utility of Target and 1000 for

Home Depot if the firms employ NB as compared to NE. Comparison of S-O

and NB shows an increase of 3000 for Home Depot but a decrease of 3000 for

Target. Results for the S-O model reveal that, while the security level of Firm

1 increases, that of Firm 2 decreases, as compared to the NB solution. The

network vulnerability increases. Also, the expected utility for Firm 1 is lower

under the S-O solution concept than under the NB one, whereas that for Firm

2 is slightly higher under the S-O solution concept.

Target Corporation is part of the Retail Cyber Intelligence Sharing Center
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through which the firm shares cyber threat information with other retailers

that are part of the Retail Industry Leaders Association and also with public

stakeholders such as the U.S. Department of Homeland Security, and the F.B.I

(RILA (2014)). Even Home Depot has expressed openness towards the sharing

threat information.

Note that the results for the Nash Bargaining model are close to those for

the System-Optimization model. The S-O model, however, operates on the

premise that the firms are controlled by a single entity, thereby, making it an

unlikely scenario in practice.

In order to further examine the magnitude of the possible changes in net-

work vulnerability and expected utilities, I now report the results for sensitivity

analysis for varying damage parameters but with the wealth parameters the

same as in Table 5.1, and α1 = 100.00, α2 = 120.00. This would represent a

big increase in the number of employees of the two firms and more damaging

attacks. The expected utilities for both firms are reported in Table 5.2 under

the three solution concepts. In Table 5.3, I report the computed security levels

and the network vulnerability values.

Condition (5.15) holds for all the NE solutions in the sensitivity analysis as

does condition (5.29) for the S-O solutions, where, as for the baseline example,

the evaluation is done at the security levels equal to zero, since this would be

the most restrictive.

139



Parameters NE NB S-O
D1 D2 E(U1) E(U2) E(U1) E(U2) E(U1) E(U2)

24800 25200 222.472 235.991 223.541 237.087 223.410 237.220
34800 35200 210.460 223.098 211.619 224.278 211.517 224.381
44800 45200 200.039 212.090 201.276 213.340 201.212 213.405

Table 5.2: Expected Utilities for NE, NB, and S-O for Target and Home Depot
for Varying Di Parameters with α1 = 100 and α2 = 200

Parameters NE NB S-O
D1 D2 s∗1 s∗2 v̄ s∗1 s∗2 v̄ s∗1 s∗2 v̄

24800 25200 .169 .066 .88285 .262 .164 .78711 .265 .161 .78719
34800 35200 .289 .197 .75705 .369 .281 .67496 .371 .279 .67502
44800 45200 .374 .288 .66915 .444 .363 .59661 .445 .362 .59665

Table 5.3: Network Vulnerability v̄ for NE, NB, and S-O for Target and Home
Depot for Varying Di Parameters with α1 = 100 and α2 = 200

Figure 5.1: Representation of Table 5.3 Showing Comparison of Network Vul-
nerability v̄ for NE, NB, and S-O with Varying Di Parameters with α1 = 100
and α2 = 200

Minus the Hessian of ln(Z1), a symmetric matrix, evaluated at the NB
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solutions of all the sensitivity analysis examples discussed above had positive

eigenvalues, implying that they were positive definite. Hence, the NB solutions

in Tables 5.2 and 5.3 are locally unique.

For both Target and Home Depot, an increase of over a million is observed

on employing NB as compared to NE when D1 = 44800, D2 = 45200. Also, as

illustrated in Table 5.3 and Figure 5.1, the network vulnerability is at 0.60 for

NB and 0.67 for NE when D1 = 44800, D2 = 45200, which indicates that it

there is a significant decline in the vulnerability of the overall network if firms

cooperate. The optimality error for the NB solutions was 5× 10−7.

As the number of employees have increased, the investment cost functions

for both firms increased and, hence, the security levels dropped as compared

to Table 5.1. However, the varying increase in damages, as shown in Tables 5.2

and 5.3, is leading to an increase in the security levels. The network vulner-

ability is consistently the lowest for the NB solution concept, demonstrating

the benefit of bargaining for cooperation in cybersecurity.

For Home Depot, an increase of 1.25 million in expected utility is observed

on employing NB as compared to NE and for Target, an increase of 1.24

million is observed when D1 = 44800, D2 = 45200, which is the highest of

the three scenarios evaluated through the sensitivity analysis. Clearly, the

reported increase is much higher than in Table 5.1 and Table 5.2. Comparison

of S-O and NB shows an increase of 64,432 for Target but a decrease of 64,081

for Home Depot when D1 = 44800, D2 = 45200.
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Case II: Financial Service Firms

In Case II I consider three banking and financial service firms. Firm 1

represents the largest bank in the United States, JPMorgan Chase (JPMC).

Cyber intrusion faced by the bank was one of the largest ever and one of

the most talked about in 2014. More than 76 million households and seven

million small businesses were compromised. The bank’s forensics investigations

revealed that hackers had obtained a list of applications and programs run

by JPMC and found alternate entry points to penetrate the systems (Silver-

Greenberg, Goldstein, and Perlroth (2014)).

Firm 2 represents the third largest bank in the United States, Citibank,

part of Citigroup. The bank has reported violation through cyber means in

multiple instances in the past few years. However, to focus on one such event, I

discuss the reported breach in 2011 in which 34,000 of the company’s customers

were affected. Financial losses were compensated by the company and 217,657

credit cards were replaced to ensure safety (Neowin (2011)).

Firm 3 is represented by HSBC Holdings Plc’s Turkish Unit. Inclusion

of the company gives an international angle to the analysis, especially since

vulnerability of Turkey’s HSBC can be manipulated to penetrate HSBC in

the UK, United States, Canada, and so on. The unit was attacked right after

JPMC in 2014 and 2.7 million customers’ bank data was lost (Bloomberg

(2014a)).
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In US$ in millions, W1 = 51500; W2 = 33300; W3 = 31100. Since HSBC

Holdings Plc in its entirety would battle against an attack on any of its units,

the wealth of HSBC Holdings is considered instead of just the Turkish unit.

The potential damages these firms could stand to sustain in the future, in

the case of similar cyberattacks to those described above, amount to (in US$

in millions): D1 = 250.00; D2 = 172.80; D3 = 580.50. Damage for Firm 1

is estimated based on its spending after cybersecurity in 2014 since the firm

claims to not have registered complaints of actual damage from customers. For

Firm 2, it was assessed that loss per customer was $794 US (Neowin (2011)).

A survey from the Ponemon Institute (2013) states that per record cost for

a cyberattack on financial firms was $215 US in 2012. Damage for Firm 3

is estimated based on this data and the fact that 2.7 million customers were

compromised.

The wealth functions are:

f1(W1) =
√
W1; f2(W2) =

√
W2; f2(W3) =

√
W3.

The cybersecurity investment cost functions take the form:

h1(s1) = 0.27(
1√

1− s1
− 1); h2(s2) = 0.24(

1√
1− s2

− 1);

h1(s3) = 0.27(
1√

1− s3
− 1).
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The αi; i = 1, 2, 3 (see (2)) values in the investment cost functions represent

the total number of employees of the organizations in millions. As of 2014,

the number of employees in JPMC was approximately 265000, the number in

Citigroup was 243000, and that in HSBC Holdings Plc: 263273. Since these

illustrate the size of the organizations and the number of employees that will

need to be protected (and trained) in order to ward off cyber ttacks on the

organizations and, thus, consumers, they are included in the investment costs

functions.

The results for the Nash Equilibrium model, the Nash Bargaining model,

and the System-Optimization model for cybersecurity investments are sum-

marized in Table 5.4.

Solution NE NB S-O
s∗1 0.467 0.542 0.581
s∗2 0.454 0.535 0.598
s∗3 0.719 0.762 0.718
v1 0.533 0.458 0.419
v2 0.547 0.465 0.402
v3 0.281 0.238 0.282
s̄∗ 0.546 0.613 0.632
v̄ 0.454 0.387 0.368

E(U1) 226.703 226.709 226.704
E(U2) 182.281 182.286 182.274
E(U3) 175.902 175.916 175.942

Table 5.4: Results of NE, NB, and S-O for JPMC, Citibank, and HSBC Turk-
ish Unit

I first verify whether or not the Nash Equilibrium solution s∗ in Table 5.4 is

unique. I use the definitions of the bi and ci as given in Case I (and evaluated
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at security levels equal to zero) and compute them for this example with three

firms for i = 1, 2, 3. Specifically, I have that: b1 = .202, c1 = .171, b2 = .180,

c2 = .209, and b3 = .520, with c3 = −.380. Clearly, for this example: b1 > c1

and b3 > c3. However, b2 < c2 so I cannot guarantee that condition (5.15)

is satisfied, unlike for the baseline example for Case I. Recall that the strict

diagonal dominance condition guarantees that a matrix is positive definite but

a matrix may be positive definite even if the strict monotonicity condition does

not hold. Indeed, if all the eigenvalues of a symmetric matrix are positive, then

positive definiteness of the matrix is guaranteed. I evaluate the eigenvalues for

1
2
(J + JT ) and find that the smallest eigenvalue is positive and equal to .699.

Hence, uniqueness of the NE cybersecurity level investment solution in Table

5.4 is guaranteed.

I also know that the NB solution in Table 5.4 is locally unique since I

evaluated the Hessian of (5.22) and the smallest eigenvalue of minus that

Hessian is: 501.665.

When I evaluate condition (5.29), which corresponds to the strict diagonal

dominance condition holding for the corresponding Hessian matrix −H I find

that for this example, the condition does not hold. Nevertheless, the smallest

eigenvalue of this matrix is positive and equal to .044. Consequently, I know

that the S-O solution reported in Table 5.4 is unique.

In terms of the NE solution, Firm 3 has the highest security level and Firm

2 the lowest. Firm 1 enjoys the highest expected utility and Firm 3 the lowest.
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Similar to the results for Case I, I observe lower security levels for the firms

with more wealth. For JPMC, I observe an increase of 6000 in expected utility,

1000 for Citibank and 14,000 for HSBC when NB is employed as opposed to

NE. Comparison of S-O and NB shows an increase of 26,000 for HSBC but a

decrease of 5000 for JPMC and 12,000 for Citibank. The expected utility of

Citibank through the S-O solution concept is 7000 below that under the NE

concept.

In the results for the NB model, I observe that the security levels of all three

firms are higher than their respective security levels for the Nash Equilibrium

model. Consequently, the network vulnerability is decreased to 0.387 from

0.454. The optimality error for the NB solution is 9.86× 10−6.

Quantum Dawn 2 and 3 are cybersecurity incident response drills conducted

for enhancing resolution and coordination processes in the financial services

sector. These exercises are meant to avoid ripple effects of a cyberattack

on one firm to others. To counteract such coordinated attacks, the financial

service firms and banks realize the importance of sharing information and

protect through a coordinated response (SIFMA (2015)). The results on the

Nash bargaining corroborate this understanding, support negotiations, and

numerically reveal the increase in security levels and the concomitant decrease

in network vulnerability.

As noted earlier, since the goal of the System-Optimization model is to

maximize the sum of the expected utilities and not necessarily to enhance the
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security level of the network, the individual security levels adjust so that the

total expected utility is higher than those obtained through the other models.

However, individually, Firm 1 and Firm 2 have lower expected utilities than

they had through Nash Bargaining solution concept. Also, Firm 2 has an

expected utility lower than that under the Nash Equilibrium.

In order to further examine the magnitude of changes in network vulnera-

bility and expected utilities, I now report results of sensitivity analysis if the

wealth parameters are the same as in Table 5.4, but with damage parameters

increased to D1 = 25000.00, D2 = 17200.80, D3 = 28000.50, and the alpha

parameters varying in an elevated range. Such increases represent more dam-

aging attacks on the firms. The expected utilities are reported in Table 5.5 and

the computed security levels and network vulnerability values are reported in

Table 5.6.

Parameters NE NB
α1 α2 α3 E(U1) E(U2) E(U3) E(U1) E(U2) E(U3)
75 65 75 183.136 144.520 105.422 184.644 145.827 107.881
100 90 100 177.133 139.292 92.330 179.045 140.963 95.448
150 125 150 170.457 133.215 72.735 173.065 135.456 76.988

Parameters S-O
α1 α2 α3 E(U1) E(U2) E(U3)
75 65 75 184.040 144.016 111.114
100 90 100 178.276 138.697 99.500
150 125 150 172.027 132.289 82.638

Table 5.5: Expected Utilities for NE, NB, and S-O for JPMC, Citibank, and
HSBC Turkish Unit for Varying αi Parameters with D1 = 25000.00, D2 =
17200.80 and D3 = 28000.50
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Parameters NE NB
α1 α2 α3 s∗1 s∗2 s∗3 v̄ s∗1 s∗2 s∗3 v̄
75 65 75 .258 .258 .484 .66673 .366 .366 .564 .56793
100 90 100 .169 .151 .423 .75226 .291 .275 .512 .64082
150 125 150 .018 .040 .318 .87477 .161 .180 .423 .74504

Parameters S-O
α1 α2 α3 s∗1 s∗2 s∗3 v̄
75 65 75 .392 .423 .513 .55717
100 90 100 .319 .339 .456 .62874
150 125 150 .195 .257 .356 .73086

Table 5.6: Network Vulnerability v̄ for NE, NB, and S-O for JPMC, Citibank,
and HSBC Turkish Unit for Varying αi Parameters with D1 = 25000.00, D2 =
17200.80 and D3 = 28000.50

Figure 5.2: Representation of Table 5.6 Showing Comparison of Network
Vulnerability v̄ for NE, NB, and S-O with Varying αi Parameters with
D1 = 25000.00, D2 = 17200.80 and D3 = 28000.50

As illustrated in Figure 5.2, the network vulnerability is the lowest in the

case of the S-O solutions. However, for Citibank, I observe that the expected
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utilities for every set of alpha parameters are lower than their corresponding

NE values. These results are similar to those in Table 5.4. For the third

scenario, the expected utility of Citibank is 133.215 million for NE, 135.456

million for NB, and 132.289 million for S-O. A firm such as Citibank would

not prefer an S-O approach if it possibly could attain a utility 927,000 below

the value when it competes. But as per constraint (5.20), NB leads to better

expected utilities for all three firms and a network vulnerability significantly

lower than NE. The optimality error for the NB solutions was 9.40× 10−7.

Conditions (5.15) and (5.29) were evaluated for all the sensitivity analysis

examples above at the solutions and for security levels equal to zero, which

is the most restrictive. The conditions are met, and, thus, the solutions are

unique.

Minus the Hessian of ln(Z1), a symmetric matrix, evaluated at the NB

solutions of all the sensitivity analysis examples discussed above had positive

eigenvalues, implying that they were positive definite. Hence, the NB solutions

in Tables 5.5 and 5.6 are locally unique.

For JPMC, an increase of 2.61 million in expected utility is observed on

employing NB as compared to NE; for Citibank, an increase of 2.24 million

and for HSBC, an increase of 4.25 million is observed when α1 = 150, α2 =

125, α3 = 150, which constitute the highest of the three scenarios evaluated

above. Comparison of S-O and NB shows an increase of 5.65 million for HSBC

but a decrease of 1.04 million for JPMC and 3.17 million for Citibank when
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α1 = 150, α2 = 125, α3 = 150.

Since the wealth and damage parameters influence the network vulnerabil-

ity and expected utilities, I take into consideration another situation wherein

the parameters are the same for all three firms. They are fixed as follows:

W1 = 51500,W2 = 51500,W3 = 51500;D1 = 25000, D2 = 25000, D3 = 25000.

The expected utilities are reported in Table 5.7 and the computed security

levels and network vulnerability values are reported in Table 5.8.

Parameters NE NB
α1 α2 α3 E(U1) E(U2) E(U3) E(U1) E(U2) E(U3)
50 50 50 189.012 189.012 189.012 190.253 190.253 190.253
50 75 50 187.406 184.183 187.406 188.741 185.647 188.741
50 100 25 188.116 184.881 196.217 189.316 186.288 197.243

Parameters S-O
α1 α2 α3 E(U1) E(U2) E(U3)
50 50 50 190.253 190.253 190.253
50 75 50 188.529 186.091 188.529
50 100 25 189.032 187.397 196.560

Table 5.7: Expected Utilities for NE, NB, and S-O for JPMC, Citibank, and
HSBC Turkish Unit for Varying αi Parameters with D1 = 25000, D2 = 25000
and D3 = 25000

Parameters NE NB
α1 α2 α3 s∗1 s∗2 s∗3 v̄ s∗1 s∗2 s∗3 v̄
50 50 50 .389 .389 .389 .61140 .480 .480 .480 .51987
50 75 50 .404 .249 .404 .64780 .494 .358 .494 .55129
50 100 25 .397 .110 .598 .63157 .488 .230 .661 .54062
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Parameters S-O
α1 α2 α3 s∗1 s∗2 s∗3 v̄
50 50 50 .480 .480 .480 .51987
50 75 50 .500 .345 .500 .55150
50 100 25 .494 .198 .682 .54215

Table 5.8: Network Vulnerability v̄ for NE, NB, and S-O for JPMC, Citibank,
and HSBC Turkish Unit for Varying αi Parameters with D1 = 25000, D2 =
25000 and D3 = 25000

Figure 5.3: Representation of Table 5.8 Showing Comparison of Network Vul-
nerability v̄ for NE, NB, and S-O and Varying αi Parameters with D1 =
25000, D2 = 25000 and D3 = 25000

In the first scenario, in which α1 = α2 = α3, the expected utilities and

network vulnerability for the NB and the S-O solutions are the same. Hence, if

all the firms have equal wealth, damages, and size, either NB or S-O approach

can be adopted. Yet, the potential to obtain a lower network vulnerability

through NB gets highlighted as the size of the firms (or the αi; i = 1, 2, 3)

changes. The optimality error for the NB solutions was 3.53× 10−7. Through
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bargaining, the firm of larger size attains a higher security level as compared

to during system-optimization.

Based on Cases I and II, which describe results for different industrial

sectors along with their sensitivity analysis, it can be stated that the Nash

Bargaining model is the most practical and beneficial for firms, the network,

and consumers alike in terms of security levels. Moreover, the expected utilities

of the firms under NB are always greater than or equal to the respective

ones under the NE solution, demonstrating that the firms’ individual expected

profits do not suffer under cooperation as per Nash Bargaining.

5.3. Summary and Conclusions

In this chapter, I explored cybersecurity investments in the case of multiple

firms in the same industrial sector and presented three new models. In the

first model, the governing concept was that of Nash Equilibrium with the

firms competing in terms of their cybersecurity levels. In the second model,

the governing concept was that of Nash Bargaining, in which the disagreement

point was the Nash Equilibrium. In this model, the constraints included not

only the bounds on the security levels but also that the expected utility for

each firm could not be lower than that achieved under the Nash Equilibrium

solution. The objective function for the model was the product over all the

firms of each firm’s expected utility minus its expected utility evaluated at

the Nash Equilibrium. The third model was also one of cooperation, and the
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concept was that of System-Optimization in which the sum of the expected

utilities of all firms was maximized.

The Nash Equilibrium was formulated as a variational inequality problem

and an algorithm proposed for its solution since an associated optimization re-

formulation does not exist. Qualitative properties of existence and uniqueness

were examined and obtained for all models.

I then investigated the models through three case studies focusing on dif-

ferent industrial sectors in which cyberattacks have been prominent recently;

in particular, the retail sector, the financial services sector, and the energy

sector. I computed solutions to all three cybersecurity investment models for

each case and determined the security levels of the firms, their individual vul-

nerability as well as the vulnerability of their networks, and their expected

utilities. Since the wealth, damage, and alpha parameters significantly affect

the security levels, network vulnerability, and expected utilities, I conducted

sensitivity analysis for all three cases.

In Case I, I first computed the results based on estimated data for two major

retailers, Target and Home Depot. The network vulnerability for NB was found

to be the lowest out of the three solution concepts. To explore competition

vs. cooperation, I conducted sensitivity analysis over the damage parameters

with increasing alpha values associated with the cybersecurity investment cost

functions. An increase as high as 1.24 million in expected utility was observed

for Target and 1.25 million for Home Depot if NB was employed instead of
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NE.

For Case II, I computed the results based on estimated data for three

financial service firms: JPMC, Citibank, and HSBC. The network vulnerability

was the lowest in the case of S-O. However, expected utility of one of the

firms fell below its corresponding NE value which made system-optimization a

less appropriate solution concept even with lower network vulnerability. The

magnitude of changes in expected utilities was reported through sensitivity

analysis on the alpha parameters. Increases as high as 2.61 million for JPMC,

2.24 million for Citibank, and 4.25 million for HSBC in expected utility were

observed if NB was adopted in place of NE. I also reported analysis over alpha

parameters for the three firms for equal wealth and damage parameters. The

results showed that if the wealth, damage, and alpha parameters of all firms

were the same, either NB or the S-O approach could be taken. The benefits

of bargaining, resulting in lower network vulnerability, also was highlighted as

the sizes of the firms change.

The results show that the Nash Bargaining concept yields enhanced net-

work security in all industrial sector cases as compared to the Nash Equilibrium

solution. Since firms bargain, the constraints guarantee that a not lower ex-

pected utility for each firm is ensured. This concept, with increasing emphasis

on the sharing of cyber information, is the most pragmatic one since firms can

be expected to negotiate among one another rather than be controlled by a

central controller via system-optimization, where a firm may win and another

lose as compared to the Nash Bargaining solution. Moreover, there is increas-
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ing pressure from the government and policy-makers to have firms exchange

information in the cyber space as a possible defensive mechanism. The re-

sults support cooperation among firms, which may otherwise be competitors,

in terms of cybersecurity investments.
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CHAPTER 6

A GAME THEORY MODEL FOR FREIGHT

SERVICE PROVISION SECURITY

INVESTMENTS FOR HIGH-VALUE

CARGO

Supply chain security is a major concern for logistics managers with control

over inbound and outbound cargo shipments to and from both domestic and

international markets. Meixell and Norbis (2011) propose a model that lets

logistics decisions concerning security made in concert with decisions related

to supply chain processes like supplier and carrier selection. They develop a

mechanism for quantifying and measuring supply chain security within a multi-

objective structure of carrier and supplier selection. Rinehart, Myers, and

Eckert (2004) propose that shippers can minimize security-related impact by

selecting security-conscious carriers, shipping via secure transportation modes.

Voss et al. (2006) argue that security practices are an important criterion

in carrier selection. Building on this work and that discussed in Subsection

1.1.4, I propose the following network-oriented, probabilistic approach that

contributes to the current literature.

The model that is developed in this chapter fills a gap in the literature in

several ways. A game theory model is developed consisting of Freight Ser-

vice Providers (FSPs) who compete with one another as to the quantity of
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the high-value product that they will transport from origin locations to des-

tinations. The shippers, in turn, reflect their preferences for transport of the

high-value cargo through the prices that they are willing to pay, which depend

on the quantities carried as well as the investment in security by the FSPs.

Security investment cost functions, which the FSPs encumber, if they invest

in security, and include the probability of an attack on the logistics/transport

links, and the associated damages are proposed. Each FSP seeks to maximize

his expected utility associated with the quantities that he transports as well

as his investment in security, which may differ for different links. The gov-

erning Nash Equilibrium (1950, 1951) conditions are then shown to satisfy a

variational inequality problem for which existence is guaranteed. Conditions

for uniqueness are provided and an algorithmic scheme proposed, which yields

closed form expressions at each iteration in the quantity shipments as well as

the security levels to be invested in.

To advance physical security of cargo, infrastructure, and other assets, I

have leveraged the work undertaken on cybersecurity competition, and dynam-

ics of interaction of multiple entities and modes in physical supply chains as in

Nagurney et al. (2015). The focus is on security investment decision-making

for freight service providers, sensitivity and preferences of demand markets to

these security characteristics and their selection. The goal is for each of these

entities to maximize their expected utilities in presence of security threats.

This chapter is organized as follows. In Section 6.1, the game theory model

for freight security investments for high-value cargo is constructed and qualita-

157



tive results provided. In Section 6.2, an algorithm is proposed and then applied

to compute solutions to numerical examples that illustrate the practicality of

the framework. In Section 6.3, the results are summarized and suggestions

are presented for future research. This chapter is based on Nagurney, Shukla,

Nagurney, and Saberi (2017).

6.1. The Game Theory Model for Freight Service Provi-

sion Security Investments

In this section, a game theory model is developed, governing Nash Equilibrium

conditions are defined, and the variational inequality formulation is presented,

for which existence results are then provided, along with conditions for unique-

ness of the equilibrium quantity flow and security investment pattern.

Consider m FSPs, with a typical provider denoted by i; n shipper “origin”

nodes from which the high-value products are to be picked up from for delivery

(and corresponding to distinct shippers), with a typical such node denoted by

j, and o destination nodes for delivery of the high-value products, with a

typical such node denoted by k. The network structure of the problem is

depicted in Figure 6.1.

Let qijk denote the quantity of the high-value product that FSP i; i =

1, . . . ,m, transports from j to k, where j = 1, . . . , n, and k = 1, . . . , o. The

vector qi is then the no-dimensional vector consisting of all the high-value
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Figure 6.1: The Network Structure of the Freight Security Investment Game
Theory Model

cargo shipments of FSP i. Associated with each FSP i and cargo shipment

from shipper node j to destination node k are the following bounds:

0 ≤ qijk ≤ q̄ijk, ∀j,∀k, (6.1)

where q̄ijk denotes the upper bound of the high-value cargo shipment between

j and k that freight service provider i can carry. We group the cargo shipments

of all the freight service providers into the vector q ∈ Rmno
+ .

Also, let sijk denote the security level that FSP i; i = 1, . . . ,m, invests in

from j to k, with si denoting the no-dimensional vector consisting of all the

security levels of FSP i. The security level for each FSP i must lie in the range:

0 ≤ sijk ≤ s̄ijk, ∀j,∀k, (6.2)
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where s̄ijk denotes the upper bound on the security level between j and k

of FSP i and this upper bound is less than 1, since here 1 represents perfect

security, which, in practice, is not realizable. I further group the security levels

of all the freight service providers into the vector s ∈ Rmno
+ .

Associated with acquiring a security level sijk is an investment cost function

hijk; i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , o, with the function assumed to

be continuously differentiable and convex. It is assumed that, for a given FSP

i, hijk(0) = 0 denotes an entirely insecure route/mode choice between j and

k and hijk(1) = ∞ is the investment cost associated with complete security.

An example of an hijk(sijk) function that satisfies these properties and that is

utilized in this model as

hijk(sijk) = αijk(
1√

(1− sijk)
− 1) with αijk > 0, ∀i, ∀j,∀k. (6.3)

The term αijk allows distinct freight service providers to have different in-

vestment cost functions based on their needs and expert knowledge associated

with transport between different origin and destination nodes. Related secu-

rity investment cost functions have been used in the context of cybersecurity,

but those in (6.3) are more general since that apply at the link level through

αijk and sijk (Refer to Chapters 3 and 4).

The probability of successful theft of the high-value cargo from i going from
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j to k, pijk, is given by

pijk = (1− sijk), ∀i,∀j,∀k. (6.4)

According to (6.4), if there is no investment in security by i along transport

link (j, k) and, hence, sijk = 0, then the probability of an attack against i,

transporting the high-value cargo from j to k, pijk, is precisely equal to 1.

Each FSP i; i = 1, . . . ,m, charges a price ρijk to shipper j for transporting

a unit of the high-value product from j to k, where it is assumed that, in

general,

ρijk = ρijk(q, s), ∀j,∀k. (6.5)

The price ρijk reflects how much shipper j is willing to pay i for having the high-

value product be transported from j to k. Note that the price depends not only

on the quantities transported but also on the security levels associated with

the links joining the mid-tier nodes to the bottom-tier nodes in the network in

Figure 6.1. It is assumed that the prices are continuously differentiable and are

decreasing in the corresponding quantity but increasing in the corresponding

security level.

In addition, each FSP i; i = 1, . . . ,m, is faced with a total cost associated

with transporting the high-value cargo items from j to k given by ĉijk, where

ĉijk = ĉijk(q), ∀j,∀k. (6.6)
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According to (6.6), the total cost associated with transporting the high-value

cargo may depend, in general, on the vector of quantities transported. These

total cost functions are continuously differentiable and convex. Hence, the

freight service providers are affected by the quantities transported by the other

freight service providers through the total costs incurred as well as through

the prices associated with transporting the high-value cargo.

The damage in case of an attack on i traveling between j and k is denoted

by Dijk and the value is positive for all i, j, k. In the case of a successful attack

on FSP i traveling from j to k, the expected damage is given by: pijkDijk so

that his total expected damages correspond to:

n∑
j=1

o∑
k=1

pijkDijk. (6.7)

Each FSP i; i = 1, . . . ,m, seeks to maximize his expected profit, E(Ui),

given by:

E(Ui) =
n∑
j=1

o∑
k=1

(1− pijk)(ρijk(q, s)qijk − ĉijk(q))

+
n∑
j=1

o∑
k=1

pijk(ρijk(q, s)qijk − ĉijk(q)−Dijk)−
n∑
j=1

o∑
k=1

hijk(sijk). (6.8)

The first term in (6.8) after the equal sign represents the expected profit of

FSP i in the absence of an attack on links joining a shipper origin node and

destination node. The second term in (6.8) following the equal sign represents

the expected profit in the case of a successful attack on each link and the last
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term represents the expenditures associated with security investments of FSP

i on each of the transport links (j, k) in the network in Figure 6.1. Different

route/mode combinations may be more or less susceptible to attacks, and,

hence, having security investments associated with links is very reasonable

since destination nodes can correspond to more or less safe transit.

Hence, each FSP i; i = 1, . . . ,m, seeks to maximize his expected profit

E(Ui) given by (6.8), subject to the constraints: (6.1) and (6.2). Observe

that the decisions of each freight service provider in terms of the quantities he

agrees to transport and the level of security he invests in for the various links

affects not only his expected utility but also those of the other freight service

providers that he is in competition with.

LetKi denote the feasible set corresponding to FSP i, whereKi ≡ {(qi, si)|0 ≤

qijk ≤ q̄ijk,∀j, k and 0 ≤ sijk ≤ s̄ijk,∀j, k}. The feasible set corresponding to

all the freight service providers: K ≡
∏m

i=1K
i.

The m FSPs compete noncooperatively in delivering the high-value cargo

and invest in security, with each one trying to maximize his own expected

profit. I seek to determine a nonnegative high-value cargo shipment and secu-

rity level pattern (q∗, s∗) for which the m freight service providers will be in a

state of equilibrium as defined below.
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Definition 6.1: A Nash Equilibrium in High-Value Product Ship-

ments and Security Levels

A high-value product shipment and security level pattern (q∗, s∗) ∈ K is said

to constitute a Nash Equilibrium if for each freight service provider i; i =

1, . . . ,m,

E(Ui(q
∗
i , s
∗
i , q̂
∗
i , ŝ
∗
i )) ≥ E(Ui(qi, si, q̂∗i , ŝ

∗
i )), ∀(qi, si) ∈ Ki, (6.9)

where

q̂∗i ≡ (q∗1, . . . , q
∗
i−1, q

∗
i+1, . . . , q

∗
m); and ŝ∗i ≡ (s∗1, . . . , s

∗
i−1, s

∗
i+1, . . . , s

∗
m).

(6.10)

According to (6.9), an equilibrium is established if no freight service provider

can unilaterally improve upon his expected profits by selecting an alternative

vector of high-value product shipments and security levels.

I now present alternative variational inequality formulations of the above

Nash Equilibrium in high value product shipments and security levels.

Theorem 6.1: Variational Inequality Formulations

Assume that, for each freight service provider i; i = 1, . . . ,m, the expected

profit function E(Ui(q, s)) is concave with respect to the variables {qi11, . . . , qino}
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and {si11, . . . , sino}, and is continuously differentiable. Then (q∗, s∗) ∈ K is

a Nash Equilibrium according to Definition 6.1 if and only if it satisfies the

variational inequality

−
m∑
i=1

n∑
j=1

o∑
k=1

∂E(Ui(q
∗, s∗))

∂qijk
× (qijk − q∗ijk)−

m∑
i=1

n∑
j=1

o∑
k=1

∂E(Ui(q
∗, s∗))

∂sijk
× (sijk − s∗ijk) ≥ 0,

∀(q, s) ∈ K, (6.11)

or, equivalently, (q∗, s∗) ∈ K is a Nash Equilibrium high-value product ship-

ment and security level pattern if and only if it satisfies the variational in-

equality

m∑
i=1

n∑
j=1

o∑
k=1

[
n∑
h=1

o∑
l=1

∂ĉihl(q
∗)

∂qijk
− ρijk(q∗, s∗)−

n∑
h=1

o∑
l=1

∂ρihl(q
∗, s∗)

∂qijk
q∗ihl

]
×(qijk−q∗ijk)

+
m∑
i=1

n∑
j=1

o∑
k=1

[
−Dijk +

∂hijk(s
∗
ijk)

∂sijk
−

n∑
h=1

o∑
l=1

∂ρihl(q
∗, s∗)

∂sijk
q∗ihl

]

×(sijk − s∗ijk) ≥ 0, ∀(q, s) ∈ K. (6.12)

Proof: (6.11) follows directly from Gabay and Moulin (1980) and Dafermos

and Nagurney (1987).

In order to obtain variational inequality (6.12) from variational inequality
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(6.11), recall (6.4) and note that, at the equilibrium, for i = 1, . . . ,m; j =

1, . . . , n; k = 1, . . . , o:

−∂E(Ui)

∂qijk
=

[
n∑
h=1

o∑
l=1

∂ĉihl(q
∗)

∂qijk
− ρijk(q∗, s∗)−

n∑
h=1

o∑
l=1

∂ρihl(q
∗, s∗)

∂qijk
q∗ihl

]
;

(6.13)

and

−∂E(Ui)

∂sijk
=

[
−Dijk +

∂hijk(s
∗
ijk)

∂sijk
−

n∑
h=1

o∑
l=1

∂ρihl(q
∗, s∗)

∂sijk
q∗ihl

]
. (6.14)

Substitution of (6.13) and (6.14) into (6.11) yields (6.12)2

The above variational inequality formulation (6.12) of the Nash Equilibrium

problem can be put into standard variational inequality form as depicted in

(2.1a). I define the (2mno)-dimensional vector X ≡ (q, s) and the (2mno)-

dimensional vector F (X) = (F 1(X), F 2(X)) with the (i, j, k)-th component,

F 1
ijk, of F 1(X) given by

F 1
ijk(X) ≡ −∂E(Ui(q, s))

∂qijk
, (6.15)

the (i, j, k)-th component, F 2
ijk, of F 2(X) given by

F 2
ijk(X) ≡ −∂E(Ui(q, s))

∂sijk
, (6.16)

and with the feasible set K ≡ K and N = 2mno. Then, clearly, variational

inequality (6.12) can be put into standard form (2.1a).
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Existence of a solution to variational inequality (6.11) and to its equiv-

alence (6.12) is guaranteed to exist from the standard theory of variational

inequalities as per Theorem 2.2 (cf. Kinderlehrer and Stampacchia (1980))

since the feasible set underlying them is compact.

Moreover, if the function that enters the variational inequality, as in its

standard form (2.1a) is strictly monotone, as per Definition (2.4) and equation

(2.11), then the solution X∗ to (2.1a) is unique and, hence, the solution (q∗, s∗)

to both (6.11) and (6.12) is also unique.

6.2. The Algorithm and Numerical Examples

For the solution of numerical examples of the model, I utilize the Euler method,

which is induced by the general iterative scheme of Dupuis and Nagurney

(1993). The method is described in Section 2.4 of Chapter 2.

As established in Dupuis and Nagurney (1993), for convergence of the gen-

eral iterative scheme, which induces the Euler method, the sequence {aτ} must

satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ → ∞. Specific conditions for

convergence of this scheme as well as various applications to the solutions of

other network-based game theory models can be found in Nagurney (2006)

and the references therein.
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Explicit Formulae for the Euler Method Applied to the Freight Ser-

vice Provision Game Theory Model with Security Investments

The elegance of this procedure for the computation of solutions to this model is

illustrated by the following explicit formulae. Specifically, there is the following

closed form expression for the high-value cargo shipments i = 1, . . . ,m; j =

1, . . . , n; k = 1, . . . , o:

qτ+1
ijk = max{0,min{q̄ijk, Qτ

ij + aτ (ρijk(q
τ , sτ ) +

n∑
h=1

o∑
l=1

∂ρihl(q
τ , sτ )

∂qijk
qτihl

−
n∑
h=1

o∑
l=1

∂ĉihl(q
τ )

∂qijk
)}}, (6.17)

and the following closed form expression for the security levels i = 1, . . . ,m; j =

1, . . . , n; k = 1, . . . , o:

sτ+1
ijk = max{0,min{s̄ijk, sτijk+aτ (

n∑
h=1

o∑
l=1

∂ρihl(q
τ , sτ )

∂sijk
qτihl−

∂hijk(s
τ
ijk)

∂sijk
+Dijk)}}.

(6.18)

The convergence result is now provided. The proof is direct from Theorem

5.8 in Nagurney and Zhang (1996).

Theorem 6.2: Convergence

In the freight service provision game theory model developed above let

F (X)=−∇E(U(Q, s)) be strictly monotone at any equilibrium pattern. Also,

assume that F is uniformly Lipschitz continuous. Then there exists a unique
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equilibrium high-value cargo shipment and security level pattern (q∗, s∗) ∈ K

and any sequence generated by the Euler method as given by (2.20), with {aτ}

satisfies
∑∞

τ=0 aτ =∞, aτ > 0, aτ → 0, as τ →∞ converges to (q∗, s∗).

The Euler method is now applied to compute the high-value product ship-

ments and security level investments in a series of numerical examples. The

algorithm was implemented in FORTRAN and used a LINUX system at the

University of Massachusetts Amherst for the computations. The convergence

criterion was that the absolute value of the difference of the cargo shipment

and security level iterates at two successive iterations was less than or equal

to 10−5. All the variables (shipments and security levels) were initialized to

0.00. The sequence {aτ} = {1, 1
2
, 1
2
, 1
3
, 1
3
, 1
3
, . . .}.

Example 6.1: One Freight Service Provider, One Shipper, and One

Destination Node

The first example consists of a single FSP (FSP 1), a single shipper, and

a single destination, as in the network in Figure 6.2. The high-value cargo

consists of precious metals, in units of pounds.

The data are as follows. The total cost function is:

ĉ111 = q2111 + 5q111,
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Figure 6.2: One Freight Service Provider, One Shipper, and One Destination

the demand price function is:

ρ111 = −2q111 + 10s111 + 100,

the upper bound on the security level is:

s̄111 = .99,

the upper bound on the cargo shipment is:

q̄111 = 100.

The damages, in order to reflect the high value of the cargo are:

$50, 000,
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so that, at a unit price of 500 and a maximum capacity of 100 for the shipment,

we obtain $50,000.

The security investment cost function is as in (6.3), with α111 = 10. This

reflects that the freight service provider does not have much security to begin

with and, hence, the α111 is rather large.

The Euler method yields the equilibrium solution: q∗111 = 17.48 and s∗111 =

.99. The demand price for shipping one unit, ρ111, evaluated at the equilibrium

pattern, is 74.93. The expected utility of freight service provider 1, E(U1), is

327. FSP 1 invests in the maximum security level possible and still garners a

positive expected utility.

Example 6.2: Two Freight Service Providers, One Shipper, and One

Destination Node

Example 6.2 introduces a competitor to the market in the form of a second

FSP, as depicted in Figure 6.3.

The data for FSP 1 remain as in Example 6.1 except that there is now a

new demand price function due to competition.

The demand price functions for the FSPs are:

ρ111 = −2q111 − q211 + 10s111 + 100, ρ211 = −3q211 − 2q111 + 10s211 + 110.
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Figure 6.3: Two Freight Service Providers, One Shipper, and One Destination

Also, the total cost function for the second, new, FSP is:

ĉ211 = .5q2211 + 5q211.

The security investment cost function for FSP 2 is of the form (6.3) with

α211 = 10 and the upper bound on the cargo shipment q̄211 = 120. The

damage D211 = 40, 000.

The Euler method converges to the following equilibrium shipment and

security level pattern:

q∗111 = 15.49, q∗211 = 11.99, s∗111 = .99, s∗211 = .99.
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The demand prices at the equilibrium solution are:

ρ111 = 66.94, ρ211 = 52.96.

FSP 1 now has an expected utility, E(U1) = 129.36, whereas FSP 2 has an

expected utility E(U2) = 58.16. With increased competition, FSP 1 now has

a lower expected utility than in Example 6.1. Moreover, FSP 1 now charges

a lower price for high-value cargo shipment than he did in Example 6.1, when

there was no competition. The total volume of shipments from the shipper

origin node to the destination node increases. This may be viewed as the

shipper diversifying his risk.

Example 6.3: Two Freight Service Providers, One Shipper, and Two

Destination Nodes

Example 6.3 now introduces another destination node. Hence, in Example 6.3

there are two FSPs, one shipper, and two destination nodes, as depicted in

Figure 6.4.

The data remain as in Example 6.2 but with new data added as per below.

The total cost functions that are added are:

ĉ112 = 1.5q2112 + 5q112, ĉ212 = q2212 + 5q212.
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Figure 6.4: Two Freight Service Providers, One Shipper, and Two Destination
Nodes

The added demand price functions are:

ρ112 = −3q112 − q212 + 5s112 + 270, ρ212 = −2q212 − q112 + 5s212 + 200.

At the new destination node 2, shippers are willing to pay more per unit

of freight service provision, given the distance to destination node 2 and the

more challenging transport environment.

The damages associate with transport to destination node 2 are:

D112 = 5600, D212 = 10000.

FSP 1 has purchased some insurance, as has FSP 2, so possible damages are
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lower for destination node 2 than for destination node 1.

The form of the investment cost functions is, again, as in (6.3) with

α112 = 12, α212 = 10.

The upper bounds on the high-value cargo shipments on the new links are:

q̄112 = 80, q̄212 = 100.

The Euler method converges to the equilibrium solution:

q∗111 = 15.49, q∗112 = 26.64, q∗211 = 11.99, q∗212 = 28.89,

s∗111 = .99, s∗112 = .46, s∗211 = s∗212 = .99.

The demand prices at the computed equilibrium pattern are:

ρ111 = 66.94, ρ112 = 163.48, ρ211 = 52.96, ρ212 = 120.54.

The expected utilities of the freight service providers are now:

E(U1) = 237.83, E(U2) = 2371.25.
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With a new destination node to ship the high-value cargo to, both FSPs

garner enhanced expected utilities in comparison to their values in Example

6.2. FSP 2 especially benefits from the new destination node requiring freight

service provision. The prices that are paid for the freight service provision at

destination node 2 are more than double those paid for at destination node

1 to a given FSP. This is due to the fact that the fixed components (inter-

cepts) of the demand price functions to the new destination are higher than

to destination node 1, demonstrating that shippers are willing to pay a higher

price for delivery to destination node 2. The quantities of the high-value cargo

reaching destination node 2 are, thus, higher as well, and this is due to both

the demand price functions and the total cost functions, which are lower to

destination node 2 than to destination node 1.

FSP 2 provides maximum security levels for transportation for both desti-

nations and earns a higher expected utility than does FSP 1 who has a security

level about one half that at destination node 2 than at destination node 1. This

is due, in part, to FSP 1’s lower damages as compared to those that would be

accrued for FSP 2, given an attack, at destination node 2.

Example 6.4: Two Freight Service Providers, Two Shippers, and

Two Destination Nodes

Example 6.4 is constructed from Example 6.3 and has the same data except

that now there is an additional shipper who wishes to explore freight service

provision from the two freight service providers. The underlying network is as
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in Figure 6.5.
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Figure 6.5: Two Freight Service Providers, Two Shippers, and Two Destina-
tion Nodes

The added data for Example 6.4 are below.

The total cost functions associated with the second shipper are:

ĉ121 = q2121+q121, ĉ122 = .5q2122+q122, ĉ221 = q2221+2q221, ĉ222 = 1.5q2222+3q222.

The demand price functions associated with transacting with the second

shipper are:

ρ121 = −2q121 − q221 + s121 + 150, ρ122 = −3q122 − q222 + 2s122 + 130,

ρ221 = −4q221 − q121 + 5s221 + 120, ρ222 = −5q222 − 2q112 + 3s222 + 140.
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As in all the previous examples, the security investment functions are as in

(6.3) with the following coefficients for the new possible investments:

α121 = 5, α122 = 4, α221 = 3, α222 = 12.

The additional damage terms are:

D121 = 20000, D122 = 15000, D221 = 25000, D222 = 2000.

The upper bounds on the cargo shipments from the second shipper to the

two destinations are:

q̄121 = 100, q122 = 80, q221 = 70, q222 = 60.

The Euler method converges to the following equilibrium shipment and

security level pattern:

q∗111 = 15.71, q∗112 = 26.64, q∗121 = 23.34, q∗122 = 17.78,

q∗211 = 10.65, q∗212 = 28.89, q∗221 = 9.96, q∗222 = 6.56.

s∗11 = .99, s∗112 = .46, s∗121 = .99, s∗122 = .99,

s∗211 = .99, s∗212 = .99, s∗221 = .99, s∗222 = .00.
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The demand prices incurred at the equilibrium pattern are:

ρ∗111 = 67.83, ρ∗112 = 163.48, ρ∗121 = 94.35, ρ∗122 = 72.10,

ρ∗211 = 47.61, ρ∗212 = 120.54, ρ∗221 = 61.77, ρ∗222 = 53.94.

The expected utilities of the freight service providers are: E(U1) = 2567.49

and E(U2) = 708.97.

With a second shipper node added, there is the potential for increased

business for the two FSPs. Although FSP 1 now enjoys an expected utility

that is more than tenfold higher than that in Example 6.3, FSP 2 experiences

a high security investment cost function associated with destination node 2

and his security level associated with shipping from shipper 2 to destination

node 2 is .00 at the equilibrium. FSP 1 handles three times the volume of

cargo from the two shippers to destination node 2. The lowest cargo shipment

is q∗222 with security level s∗222 = .00.

6.3. Summary and Conclusions

In this chapter, a game theory model was developed in which freight service

providers compete for business and also invest in security. The focus is on high-

value cargo, which has been the target of attacks globally, from luxury items of

clothing and jewelry to food and high tech products. Although there is a rich
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literature on supply chain risk and vulnerability, the focus is on freight security

investment and competition and this section fills the gap in the literature in

several ways, which are itemized below.

1. Security investment cost functions were quantified which may differ for

distinct freight service provider/shipper/destination node combinations.

2. Shippers reveal their preferences and sensitivity to investments in security

through the prices that they are will to pay for freight service provision and

these also can be distinct for different freight service provider/shipper/destination

node combinations.

3. The freight service providers seek to maximize their expected utilities,

which capture the probability of an attack associated with different links and

are a function of the security level associated with that link. Hence, risk is

also captured in the competitors’ objective functions.

4. The model is not limited to the number of freight service providers, shippers,

and/or destination nodes.

5. The equilibrium conditions, which correspond to a Nash Equilibrium, are

formulated as a variational inequality problem for which a solution is guaran-

teed to exist.

6. The model is computable and numerical examples reveal the equilib-

rium high-value cargo shipments plus security levels that the freight service

180



providers deliver and invest in, respectively.

There is potential to extend the research in several directions. One may

include multiple links or pathways from shipper nodes to destination nodes.

One could also introduce other tiers in a supply chain network context such

as manufacturers and also consider whether their investments in security may

be worthwhile. Finally, the issue of security and freight service provision in

disaster relief is also a timely topic.
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CHAPTER 7

DIRECTIONS FOR FUTURE WORK

While this dissertation has demonstrated the potential of using the techniques

of competitive and cooperative game theory in the field of network security

from both cyber and physical standpoints, many opportunities to extend the

scope of this work remain. This chapter presents some of those directions.

7.1. Multiple Tiers in the Supply Chain Network

Nonselective and undirected internetworking is one of the most important

issues facing manufacturing. The intermediary devices which are core to pro-

viding internetworking and data communication may lead to cybersecurity

issues with far-reaching implications. Secure network planning and design

for such network synthesis is crucial. In addition to IT integration, consider-

able amount of Operational Technology (OT) integration is taking place (Atos

(2012)). The continuous attempt to connect networks that operate on different

paradigms and levels of security-related trust is complicating network security

(PricewaterhouseCoopers (2015)). Firewalls and encryption could be the way

to go for IT networks but maybe not for the OT networks. A successful at-

tack on an OT network can have major consequences that go beyond financial

losses. Prolonged outages of critical services, loss of critical infrastructure, loss
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of intellectual property, environmental damage, and even the loss of human

life. If an attacker alters a setpoint at a pasteurization unit, there are health

consequences for thousands. If there is an attack on a mobile robot, there

could be incorrect assemblies or may result in faulty parts causing massive

recalls.

Within the cybersecurity research, as shown in Chapters 3, 4, and 5, the

focus was on the interactions of retailers and consumers. In Chapter 6, freight

service providers were included. I plan to add manufacturers into the supply

chain network to analyze the effect of cybersecurity/security investments in

technology such as unidirectional security gateways or other preventive mea-

sures. The probability of attacks will be extended to being exogenous. More

specifically, the security investments do affect the probability of an attack;

however, other factors such as valuation of the goods, accessibility, proximity,

impact, etc. will also be considered.

Manufacturers must identify and understand the suppliers’ capabilities to

protect sensitive information and products, and manage cybersecurity risk.

Suppliers vary in their abilities to manage cyber threats and intellectual prop-

erty. Inclusion of suppliers into the network, thereby accounting for the com-

plexity in the system pertaining to security, is also a possible area of extension.

Li and Nagurney (2017) include suppliers into a competitive supply chain net-

work and give supplier and component importance identification.
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7.2. Cooperation in Freight Security Investment

Corporations across the world would agree that partnerships (or coopera-

tion) are imperative to growth in today’s scale-driven and technology intensive

economies. Manufacturers are buying more components from their suppliers

than they used to. Moreover, they rely on their suppliers to reduce costs, im-

prove quality, and develop products/processes. In many industries, the power

has shifted from buyers to suppliers (Paranikas et al. (2015)). As manu-

facturers, suppliers, and contractors are increasingly targeted by attackers,

cooperation to share threat, risk, and sensitivity information could be preven-

tive.

I demonstrated the security and financial implications of cooperation among

retailers in Chapter 5. An area of exploration is cooperation between the

suppliers and the manufacturers, and the effect on network vulnerability.

The technology-driven manufacturers are coming together to develop a

security framework through the Industrial Internet Consortium (IIC). The

framework considers that growing internetworking, automation revolution and

industrial internet of things, are transforming attacks too. The objectives of

IIC’s security working group are to drive industry consensus, promote best

practices and accelerate adoption (IIC (2017)).

The consortium is on the path of sharing information and resources to pro-

tect against attacks of all nature. From a cybersecurity standpoint, I intend to
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add manufacturers into the retailer-consumer dynamic as discussed in Chapter

5, and evaluate the impact of cooperation among manufacturers on the supply

chain network.

7.3. Extensions of Cooperative Game Theory

An extension on Nash Bargaining theory, as provided by Nagarajan and Sosic

(2008), was the inclusion of bargaining powers of each of the firms in a coop-

erative scenario. I would like to add that to my current work in Chapter 5

and consider its relevance in my future work on cooperative game theory. The

principal idea in such models is that before embarking on the process of nego-

tiation, the firms can take actions that partially commit them to bargaining

positions that correspond with their bargaining powers. This also means that

the firms would be unwilling to accept anything lower than the commitment.

This would provide a new perspective to the work in Chapter 5 in which the

current influence is only the point of disagreement or the Nash Equilibrium

solution.

As my methodological explorations and addition of complexity to the mod-

els progress, I intend to use some of this work for various other application

areas, primarily, in supply chains and logistical networks.
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