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ABSTRACT 

COMPUTATIONAL STUDIES OF STRUCTURE–FUNCTION 
RELATIONSHIPS OF SUPPORTED AND UNSUPPORTED METAL 

NANOCLUSTERS 

 
September 2017 

 
Hongbo Shi, B.S., BEIJING INSTITUTE OF TECHNOLOGY 

 
M.S., TSINGHUA UNIVERSITY 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Ashwin Ramasubramaniam and Professor Scott M. Auerbach 

 
 

Fuel cells have been demonstrated to be promising power generation devices to 

address the current global energy and environmental challenges. One of the many barriers 

to commercialization is the cost of precious catalysts needed to achieve sufficient power 

output. Platinum-based materials play an important role as electrocatalysts in energy 

conversion technologies. In order to improve catalytic efficiency and facilitate rational 

design and development of new catalysts, structure–function relationships that underpin 

catalytic activity must be understood at a fundamental level.  

First, we present a systematic analysis of CO adsorption on Pt nanoclusters in the 

0.2-1.5 nm size range with the aim of unraveling size-dependent trends and developing 

predictive models for site-specific adsorption behavior. Using an empirical-potential-based 

Genetic Algorithm (GA) and DFT modeling, we show that there exists a size window (40–

70 atoms) over which Pt nanoclusters bind CO weakly, the binding energies being 

comparable to those on (111) or (100) facets. The size-dependent adsorption energy trends 

are, however, distinctly non-monotonic and are not readily captured using traditional 

descriptors such as d-band energies or (generalized) coordination numbers of the Pt binding 
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sites. Instead, by applying machine-learning algorithms, we show that multiple descriptors, 

broadly categorized as structural and electronic descriptors, are essential for qualitatively 

capturing the CO adsorption trends. Nevertheless, attaining quantitative accuracy requires 

further refinement and we propose the use of an additional descriptor – the fully-frozen 

adsorption energy – that is a computationally inexpensive probe of CO–Pt bond formation. 

With these three categories of descriptors, we achieve an absolute mean error in CO 

adsorption energy prediction of 0.12 eV, which is similar to the underlying error of DFT 

adsorption calculations. Our approach allows for building quantitatively predictive models 

of site-specific adsorbate binding on realistic, low-symmetry nanostructures, which is an 

important step in modeling reaction networks as well as for rational catalyst design in 

general. 

Thereafter, to understand support effects on the activity of Pt nanoclusters, we 

employ a combination of empirical potential simulations and DFT calculations to 

investigate structure–function relationships of small PtN (N = 2-80) clusters on model 

carbon (graphene) supports. A bond-order empirical potential is employed within a GA to 

go beyond local optimizations in obtaining minimum-energy structures of PtN clusters on 

pristine as well as defective graphene supports. Point defects in graphene strongly anchor 

Pt clusters and also appreciably affect the morphologies of small clusters, which are 

characterized via various structural metrics such as the radius of gyration, average bond 

length, and average coordination number. A key finding from the structural analysis is that 

the fraction of potentially active surface sites in supported clusters is maximized for stable 

Pt clusters in the size range of 20-30 atoms, which provides a useful design criterion for 

optimal utilization of the precious metal. Through selected ab initio studies, we find a 
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consistent trend for charge transfer from small Pt clusters to defective graphene supports 

resulting in the lowering of the cluster d-band center, which has implications for the overall 

activity and poisoning of the catalyst. The combination of a robust empirical potential-

based GA for structural optimization with ab initio calculations opens up avenues for 

systematic studies of supported catalyst clusters at much larger system sizes than are 

accessible to purely ab initio approaches. 

Finally, we present a self-consistent charge density-functional tight-binding (SCC-

DFTB) parameterization for PtRu alloys, which is developed by employing a training set 

of alloy cluster energies and forces obtained from Kohn-Sham DFT calculations. Extensive 

simulations of a testing set of PtRu alloy nanoclusters show that this SCC-DFTB scheme 

is capable of capturing cluster formation energies with high accuracy relative to DFT 

calculations. The new SCC-DFTB parameterization is employed within a GA to search for 

global minima of PtRu clusters in the range of 13-81 atoms and the emergence of Ru-

core/Pt-shell structures at intermediate alloy compositions is systematically demonstrated. 

Our new SCC-DFTB parameterization enables computationally inexpensive modeling and 

exploration of structure–function relationships for Pt-Ru clusters that are among the best-

performing catalysts in numerous energy applications. 
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CHAPTER 1  

INTRODUCTION 

1.1 What Are Fuel Cells? 

Fuel cells are devices that convert chemical energy, stored in a variety of chemicals 

(H2, methanol, methane, etc.) into electrical energy through electrochemical reactions. Fuel 

cells are classified by either the type of fuel employed or by the mobile charged species. 

The PEMFC (Proton Exchange Membrane Fuel Cell) and the closely related direct 

methanol fuel cell (DMFC) are more suited to terrestrial activities and are believed to be 

the future replacements of batteries and combustion engines. Typically, a fuel cell will 

oxidize the fuel at its anode and reduce oxygen at its cathode. Electrons from fuel molecules 

(e.g. H2) can be released by the oxidation reaction at the anode, pass through an external 

circuit to do electrical work, and finally reduced oxygen at the cathode. Charged species 

(e.g. H+) diffuse through the fuel cell and react with reduced oxygen.   

Since William Robert Grove built the first fuel cell in 1839, extensive research has 

been conducted on catalysts, stacks and systems to achieve high efficiency and reliability 

towards commercialization. Compared with traditional combustion technology, which 

depends primarily on fossil fuels, fuel cells are promising candidates for next-generation 

energy production due to their high efficiency and environment friendliness. Energy cost, 

which depends primarily on the conversion efficiency, is the most important aspect of any 

energy-conversion technology. Fuel cells are electrochemical engines, not heat engines, 

and thus not subjected to Carnot Cycle limitations.1 High conversion efficiency up to 80% 

can be achieved under certain conditions and, consequently, it is expected that in the 

present century fuel cells will replace heat engines (internal combustion engines, steam or 
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gas turbines) as fuel prices increase. Moreover, global carbon emissions from fossil fuels 

have raised public and political awareness. CO2 emissions have increased by about 90% 

since 1970, and about 78% of the total greenhouse gas emissions are from fossil fuel 

combustion and industrial processes.2 Considering that energy is a major contributor to the 

greenhouse gas emissions, fuel cells with high efficiency and high potential to use low or 

zero-carbon fuel resources (H2, for example) can help alleviate global warming, especially 

if the fuels are derived from renewable and clean processes. For example, hydrogen can be 

produced from a diverse portfolio of energy sources, including nuclear, coal, natural gas, 

geothermal, wind, hydroelectric, solar, and biomass. Thus, fuel cells offer an 

environmentally clean and energy-secure pathway. In addition, unlike combustion 

processes that use fossil fuels and produce harmful pollutants such as SO2 and NOx, fuel 

cells release almost zero harmful gases and have the potential to improve air quality in 

many big cities. Also, unlike other renewable energy resources such as wind, solar, 

hydropower, and geothermal energies that are diffuse and intermittent, fuel cells can 

generate energy stably and reliably as long as fuels are provided.   

1.2 Challenges  

For fuel cells to operate at high power density and high efficiency, catalysts are 

required at both electrodes to lower reaction barriers and accelerate reaction rates. Platinum 

(Pt) has  been  found  to  be  the  best  pure metal in terms of activity, selectivity, and 

stability  for  the  hydrogen  oxidation  reaction (HOR)  and  oxygen  reduction  reaction  

(ORR)  in  a  fuel  cell.3-5 A recent review provides an insight into why platinum performs 

so well in fuel cell electrochemistry and explains the different failure mechanisms which 
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thus far have prevented other materials from being used.6 In brief, for the preferred two-

step ORR pathway that requires the catalyst to first bind O and then OH, Pt displays nearly 

optimal binding energy for both steps and thus shows the highest activity. Nevertheless, 

there are still several challenges that must be overcome to improve Pt-based fuel cells: 

i. Cost. Despite of the outstanding catalytic performance in fuel cells, Pt is an 

extremely rare element (at the level of 0.003 ppb) and the high price of Pt ($987/oz at the 

time of writing) hurts the economics of fuel cell technology. The slow kinetics at the 

cathode is one of the largest sources of inefficiency in fuel cells, requiring high platinum 

catalyst loading. According to the most recent DOE analysis,2 Pt contributes to 43% of the 

total cost of the 80 kW PEM systems, when manufactured at a volume of 500,000 

units/year. Therefore, there is a significant need for reducing Pt usage in fuel cells while 

maintaining high efficiency of energy conversion.  

ii. Durability. Catalyst durability is another major technical barrier to fuel cell 

commercialization. In practice, Pt is used in its nanoparticle form to achieve high surface-

to-volume ratio and maximally utilize the precious metal for surface reactions. However, 

at the same time, smaller particles tend to show lower stability. Thermodynamically, 

nanoparticles are metastable and inherently show a strong tendency to agglomerate due to 

high specific surface energy. When nanoparticles agglomerate to form bigger particles, the 

electrochemical surface area (ECSA) of the catalyst decreases and degrades fuel-cell 

performance. For example, Pt-based ORR catalysts are known to degrade quickly under 

typical fuel-cell operating conditions, such as frequent load cycling. 

iii. CO Poisoning. CO is a notorious catalyst poison and deactivates catalysts,7-8 by 

binding strongly with surface atoms and blocking the active sites. CO is a common 
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impurity in the fuels for fuel cells. For example, 95% of the hydrogen produced in the 

United States today is made by natural gas reforming in large central plants9 and the 

reformed feed gas may contain up to 5 % CO by volume, which can be reduced to 100 ppm 

using a selective oxidizer.10-11 Nevertheless, even such small traces of CO can cause 

significant reduction in fuel cell performance. Alternatively, CO may be produced as a 

reaction intermediate in indirect reaction pathways (e.g., methanol oxidation in DMFCs) 

and hinder the electrocatalytic reaction by blocking the Pt surface.12   

1.3 Catalyst Development 

To address the above challenges, it is necessary to understand the key factors that 

determine the performance of Pt catalysts.  In recent years, increasing efforts have been 

made towards rational design and engineering of Pt catalysts to achieve higher efficiency, 

stability and resistance to CO poisoning. Below, we discuss a few key factors towards 

optimizing Pt catalysts including the effects of catalyst size and shape, support interactions 

and alloying. 

1.3.1 Size and Shape Effect  

It is generally desirable to prepare small Pt nanoparticles to attain high ECSA while 

optimally utilizing the precious metal. As cluster size decreases, the coordination of surface 

atoms decreases and the local environment becomes drastically different from bulk-

terminated surfaces, which in turn alters the binding strength of adsorbates and thus, the 

catalytic performance. As an example, ultra-small (~1 nm) nanoparticles begin to present 

significant deviations in properties relative to their larger, bulk-like counterparts and 

examples of such behavior have been shown in many cases experimentally and 
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computationally;13-15 a particularly well-known example is gold, which is normally inert 

but turns into an effective catalyst when synthesized in nanocluster form.16-18   

 Despite intensive work in the last two decades, there still remains a debate on the 

effect of Pt particle size on the catalytic activity and CO resistance.19-28 This is to a large 

extent due to the fact that nanoparticles synthesized in experiments have a wide size 

distribution (approximately ± 2 nm) and their morphology too can differ greatly under 

different experimental preparation conditions. Shao et al 23 investigated the activity of Pt 

particles with sizes between 1–5 nm, and found that the specific activity (the reaction rate 

normalized to the surface area of the catalyst) of Pt nanoparticles decreases sharply when 

particles are smaller. While they found that the electroactive surface area increases with 

smaller size, a maximum mass activity (the reaction rate normalized to the mass of the 

catalyst) being achieved at ~2 nm, they attributed the lower specific activity at smaller sizes 

to the predominance of edges and kinks that bind strongly to oxygen.  However, A 

Nesselberger et al22 reported a consistent increase in mass activity as they reduced the size 

of their Pt particles from 30 nm to 1 nm with rather small variations of specific activity. 

The activity of ultra-small Pt nanoparticle (<1 nm) is even more interesting as the shape of 

cluster starts to play a more important role than size. For example, by using a dendrimer 

ligand as the macromolecular template, Imaoka et al. 29successfully synthesized 

atomically-precise clusters and showed that the ORR activity of C2v Pt12 clusters is twofold 

lower than that of icosahedral Pt13. They concluded that no simple relationships between 

size and activity exist in the sub-nanometer regime.   

Similarly, there are only a few investigations on understanding shape and size 

effects on the CO tolerance of Pt. It has been observed that for CO oxidation reaction, 
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catalytic properties of Pt nanoparticles at the nanometer size range can also become 

exquisitely sensitive to the particle structure, adding more complexity and difficulty into 

understanding the size and shape effect.17, 30-32 Theoretical work in this thesis aims to 

unravel some of these issues. 

1.3.2 Support Effect 

Another popular method to improve the activity of Pt is to deposit particles on 

porous supports. The primary function of supports is to immobilize small particles through 

steric hindrance or strong binding, thereby enabling higher particle dispersion and 

preventing particle sintering and catalyst dissolution.33-34 Moreover, supports also provide 

an extra degree of freedom in tuning the electronic properties of clusters and altering their 

catalytic performance. Several studies have revealed that the physical properties of 

supports can greatly affect the structural and electrochemical properties of the fuel cell 

catalyst.35-39 

Carbon is one of the most common supports for polymer electrolyte membranes 

due to its abundance, good electrical conductivity (for certain carbon materials such as 

carbon black or graphene), and stability against corrosion in both acidic and basic 

environments. High-surface-area activated carbon and carbon blacks (i.e. commercial 

Vulcan XC-72 or Black pearl 2000) have been extensively used as supports in low 

temperature fuel cells due to their low cost and ready availability. However, the presence 

of a large number of micropores hinders reactant flow. Moreover, these materials present 

low stability at elevated temperatures (>100 ℃ ).40-41 Recent developments in 

nanotechnology have enabled better control of the morphology and structure of carbon 
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supports and have provided a variety of new types of carbon-based nanostructured 

materials such as graphene and carbon nanotubes (CNTs). A high degree of crystallinity 

enables these advanced materials to exhibit several promising features such as high 

conductivity, high surface area, and faster mass diffusion of reactants.   

Several experiments have demonstrated the superior performance of Pt/graphene 

nanocatalysts in direct-methanol fuel cells,42-44 proton-exchange membrane fuel cells (for 

ORR),45 and hydrogen fuel cells.46 The improved performance has been quantified via 

metrics such as electrocatalytic activity, tolerance to CO poisoning, and long-term stability 

towards catalyst sintering. Investigators typically attribute such improvements in catalytic 

performance to the synergistic interactions between the Pt catalyst and the graphene 

support, mediated by defects and functional groups in the graphene support that act as 

strong binding sites for catalyst nanoparticles.44-45, 47-51 Computational studies corroborate 

this interpretation and show strong binding of Pt clusters at support defects in graphene, 

accompanied by a significant modification of the morphology and electronic structure of 

the clusters.52-61 In particular, ab initio studies indicate a noteworthy correlation between 

the binding energy of a Pt cluster at a support defect and the d-band center of the cluster, 

which suggests an additional pathway for optimizing catalytic activity through defect 

engineering of supports.58-60  

1.3.3 Pt-based Alloys as Catalysts  

By alloying Pt with other transition metals (either as bimetallic or ternary systems) 

or non-noble metals, usage of Pt as well as the cost of catalyst can be significantly reduced. 

The catalytic properties of Pt are strongly affected by the alloying metals through strain 
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effects (change of Pt-Pt distance)62-65 and electronic effects (change of Pt d-orbital 

occupancy or d-band center energy).66-67 It is well known that by partially alloying Pt with 

another metal, both CO tolerance and electrocatalytic activity can be improved. For 

example, PtRu,3, 68-69 PtCo,70-71 , PtMo,72-73 PtNi, 74-77 PtFe, 78-83 PtAg,84-85 PtCu,86-91 PtAu92-

98 alloys have been synthesized and investigated as anode materials for fuel cells and, 

currently, PtRu alloy clusters are known to show the highest resistance to CO poisoning 

and best catalytic activity in PEMFCs.99 The superior performance of PtRu over Pt clusters 

has been explained by invoking the ligand effect,100-101 which reduces the binding strength 

of CO at active sites, as well as a bifunctional mechanism,102 which accesses alternate 

pathways with reduced energy barriers for the oxidation and elimination of CO. A 

continuing challenge for the application of Pt–transition metal alloys in phosphoric acid 

(PAFC) and polymer electrolyte membrane (PEMFC) fuel cells is the poor stability of these 

binary catalysts. Dissolution of the non-precious metal in the acid environment can reduce 

the activity of these catalysts and degrade cell performance. 

1.4 Thesis Objectives 

Today, fuel cells are attractive power-conversion devices with higher energy 

conversion efficiency and lower environmental impact than traditional combustion engines. 

One of the most challenging tasks in fuel-cell commercialization is to reduce precious 

metal usage through rational design and optimization of catalysts. Towards this end, this 

thesis focuses on establishing a fundamental theoretical understanding of the relationships 

between the catalytic performance of Pt nanoclusters and various essential design factors, 

including catalyst size and structure, support effects, and alloying. Our computational 
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studies combine first-principles density functional theory (DFT) modeling with robust 

empirical-potential-based structure-optimization techniques. Empirical potentials provide 

an inexpensive route to mapping the potential-energy surface of material systems, enabling 

extensive investigation of thermodynamic stability of competing metastable structures. 

DFT calculations, on the other hand, enable accurate exploration of the electronic 

properties that are relevant to Pt–adsorbate binding and ultimately determine the catalytic 

properties.  

In Chapter 1, the interplay between structure, size, and electronic properties of Pt 

nanoclusters, and their ultimate impact on adsorbate binding is presented. The 

thermodynamic stability of pure Pt nanoclusters is investigated using a Genetic Algorithm 

(GA) that allows for extensive exploration of the potential energy hypersurface. The 

evolution of electronic properties and CO-adsorption thermodynamics with Pt cluster size 

are reported. Structural effects are elucidated by comparing computational results for high-

symmetry clusters, which are commonly used in literature, with those for true low-energy 

isomers found by global optimization. Finally, machine-learning algorithms are applied to 

the DFT data to identify reliable structural and electronic descriptors for CO adsorption 

energies. The results in this chapter have appeared in the following publications: 

 Shi, H., Auerbach, S. M.; Ramasubramaniam, A., First-Principles Predictions of 

Structure Function Relationships of Graphene-Supported Platinum Nanoclusters. 

J. Phys. Chem. C. 2016, 120, 11899-11909.  

 Gasper, R.,* Shi, H.,* Ramasubramaniam, A. “Adsorption of CO on Low-Energy, 

Low-Symmetry Pt Nanoparticles: Energy Decomposition Analysis and Prediction 

via Machine-Learning Models”, J. Phys. Chem. C, 2017, 121, 5612-5619 (* Equal 
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contribution: Hongbo Shi performed GA optimization of Pt nanoclusters and 

applied machine-learning algorithms to CO adsorption data.) 

In Chapter 2, a detailed study of the support effect on the structure and electronic 

properties of Pt nanoclusters is presented. We examine the influence of point defects in 

graphene supports on the electronic structure of supported Pt nanoparticles by studying and 

contrasting graphene monolayer supports that are either defect free (pristine) or contain 

vacancy and divacancy defects. We first investigate the stability of Pt nanoclusters using a 

GA for global optimization. Thereafter, the role of graphene supports as well as their point 

defects in modifying cluster morphologies is analyzed with respect to various structural 

properties of the supported clusters. The binding strength between supports and Pt clusters 

is probed to provide essential information towards understanding experimental 

observations of improved stability of Pt catalysts on graphene supports. Finally, DFT 

calculations are employed to further probe the modification of electronic structures of Pt 

nanoclusters by the support and provide a qualitative understanding of experimental 

observations of improved CO tolerance. 

The results in this chapter have appeared in the following publication: 

 Shi, H., Auerbach, S. M., Ramasubramaniam, A., First-Principles Predictions of 

Structure Function Relationships of Graphene-Supported Platinum Nanoclusters. 

J. Phys. Chem. C. 2016, 120, 11899-11909.  

 In Chapter 3, we investigate the thermodynamic properties of PtRu alloy clusters 

as a function of cluster size and composition. To the best of our knowledge, no viable 

empirical potential has been developed for PtRu clusters. Thus, the first focus of this 
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chapter is then to develop an accurate and computationally inexpensive semi-empirical 

model for PtRu alloys. We present in detail the parameterization of a Self-Consistent 

Charge Density-Functional Tight-Binding (SCC-DFTB) model for Pt-Pt, Ru-Ru and Pt-Ru 

interactions.  The accuracy of this model as well as the developed parameter sets are 

demonstrated by comparison with DFT calculations. Finally, we apply our GA to search 

for low-energy structures of PtRu and demonstrate the emergence of core-shell structures 

at intermediate alloy compositions in accord with experiments. 

Chapter 5 summarizes the most important results and conclusions of this thesis, and 

also provides suggestions for further research in the field of catalyst design and 

optimization.    

In addition to the main topics in Chapter 1-5, we also present in Appendices A and 

B my journal publications on Pt nanocluster catalysts and on understanding the thermal 

and mechanical behavior of zeolites, which are important catalysts used for biomass 

conversion process. The findings of Appendix B have appeared in the following 

publication: 

 Shi, H., Migues, N. A., Auerbach, S. M. "Ab initio and classical simulations of the 

temperature dependence of zeolite pore sizes". Green Chemistry, 2014, 16, 875 
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CHAPTER 2  

STABILITY, ENERGTICS, AND CATALYTIC PROPERTIES OF 
UNSUPPORTED PT NANOCLUSTERS  

2.1 Introduction 

Ultra-small (<1 nm) nanoparticles begin to present significant deviations in 

properties relative to their larger, bulk-like counterparts. Examples of such behavior have 

been shown in many cases experimentally and computationally,13-15 with the particularly 

well-known example of gold, which is normally inert, turning into an effective nanoclusters 

catalyst.16-18 In addition, it has been observed that, at the sub-nanometer size range, 

catalytic properties of nanoparticles can become exquisitely sensitive to the particle 

structure, adding more complexity to the issue.17, 30-32  Hence, in this chapter we seek to 

understand the properties of sub-nanometer Pt clusters, as they correlate with changing 

particle size, and attempt to find suitable predictors for adsorbate binding energies that can 

help circumvent expensive DFT calculations. Multiple computational groups have also 

addressed this topic but with a key limitation, namely, focusing only on high-symmetry 

cluster morphologies.14, 103-105 Experimental evidence and computational modeling have 

shown that real nanoparticles do not adopt high-symmetry structures, and instead adopt 

somewhat disordered low-symmetry structures.106-108  The effects of such morphological 

variations on the electronic structure are particularly noticeable at small size clusters, as 

shown in our previous work on supported and unsupported Pt13 nanoclusters.59, 109 In the 

present work, we present a systematic analysis of the influence of cluster size and 

morphology on adsorbate binding using the well-known catalyst poison, carbon monoxide, 

as an example. 
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The first key feature of our current work – at variance with previous studies14, 103, 

105 – is that we conduct CO adsorption calculations on low-symmetry, low-energy 

nanoclusters. These cluster morphologies are obtained by the application of an empirical 

bond-order potential driven Genetic Algorithm (GA), described in our previous work.109  

As shown in that work, the empirical-potential-based GA reliably predicts low-energy, 

low-symmetry cluster morphologies as confirmed via DFT calculations across a range of 

cluster sizes. Hence, this approach both allows us to examine realistic minimum-energy 

structures for a range of nanoparticle sizes, and eliminates having to decide between the 

fitness of various arbitrary, high-symmetry geometries. Once low-energy cluster 

morphologies are obtained from the GA at relatively low computational cost, the remainder 

of the computational effort can be expended in higher-level DFT calculations of adsorbate 

binding on these clusters. One of the main challenges of investigating adsorbate binding 

on these low-symmetry structures is that they generally do not possess symmetry-

equivalent sites unlike bulk-terminated crystal facets and high-symmetry clusters. Because 

of this, some form of statistical sampling must be undertaken for calculating even simple 

adsorption properties, requiring a compromise between accuracy and computational effort 

spent on repeatedly sampling the same cluster. Thus, it becomes extremely useful to be 

able to predict both average as well as site-specific adsorption energies on these disordered 

structures using relatively simple structural metrics and/or limited electronic structure 

information without having to undertake full-blown DFT adsorption calculations on every 

available surface site. In order to approach this challenging problem, the second key feature 

of our work is the application of a machine-learning tool110-111 to the prediction of CO 

adsorption energies on sub-nanometer Pt clusters. The use of machine learning techniques 
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in materials science is in its infancy and growing,112-113  and a few groups have recently 

explored using machine learning for predictions of adsorbate binding on transition-metal 

surfaces, reporting modest errors (~0.1 eV) with respect to DFT.114-115 The so called 

gradient-boosting algorithm was used recently by Takigawa et al.116 to accurately predict 

the d-band center of bulk alloys and alloy surfaces based only on mechanical and structural 

properties, demonstrating the potential usefulness of machine learning approaches for 

computational catalysis research. To the best of our knowledge, machine-learning 

algorithms have yet to be applied to predict adsorbate binding on clusters and our work 

represents an early example of the promise of this approach to this class of problems.  

2.2 Methodology 

2.2.1 GA for Optimization of Unsupported and Supported Clusters  

Structural optimization of nanoparticles/clusters entails the nontrivial task of 

efficiently identifying the global minimum on a complex PES by performing unbiased 

sampling. Several global optimization techniques have been developed to address this 

challenge, including basin-hopping,107, 117-120 particle-swarm optimization,121-122 and 

GAs.123-124 In this work, we chose to implement a GA125 to determine low-energy structures 

of unsupported Pt clusters. Local energy optimization was implemented using the 

LAMMPS package.126 In general, the GA produces child clusters from parent clusters by 

splitting parents in half and cross-mating to form children. At each new generation, local 

optimization is performed to drain high energies that arise from mating. Promising child 

clusters then become the parents for the next iteration of the GA, continued until the 

energies of promising clusters converge within a given tolerance. The specific approach 
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followed here, in particular for optimization of supported clusters, follows the spirit of the 

pioneering work of Chuang and coworkers;127 the individual steps of the GA are illustrated 

in Figure 2.1 and discussed in detail below.     

Initial Population: For a given cluster PtN, initial configurations for the starting generations 

are randomly generated with a minimum Pt-Pt distance of 1.7 Å to avoid biased searching. 

The quality of the ith cluster with energy Ei is determined by its fitness  𝑓 , which is 

calculated by a linear function125 

 𝑓 = 1 − 0.7𝜌  , (2.1) 

where the scaled energy 𝜌  is normalized as 

 𝜌 = (𝐸 − 𝐸 ) (𝐸 − 𝐸 )⁄ , (2.2) 

where 𝐸 and 𝐸  are the lowest and highest energies of the initial configurations. The 

scaled energy 𝜌  for each configuration is thus always between 0 and 1; as such, the fitness 

values corresponding to the lowest and highest energies are 1.0 and 0.3, respectively. 

Selection: A selection operator is used to choose candidates from the current 

generation for mating. Here, we use the roulette wheel method of selection:125 a 

configuration is chosen at random and selected for mating if its fitness value ρ   is greater 

than a randomly-generated number between 0 and 1. Otherwise, another configuration is 

chosen at random and tested for mating. This process is continued until two configurations 

are chosen for mating. 

Crossover: Crossover refers to the process by which “genetic” information 

(coordinates) from two parent clusters is combined to generate offspring. For unsupported 

(vacuum) clusters, the centroids of the two parent clusters are shifted to the origin, after 
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which the parents are subjected to random rotations. The plane at z = 0 is used to cut each 

parent cluster into two parts; the top half of Parent 1 and bottom half of Parent 2 are then 

“glued” together to form a new child. (To conserve particle number between parents and 

offspring, the cutting plane might require a slight offset from the z = 0 position.) A 

minimum separation of 1 Å is maintained between the glued cluster halves to avoid 

artificially high energies and/or forces on atoms.  

Natural Selection: In natural evolution, individuals with higher fitness are more 

likely to survive and pass on their genes. In our GA, clusters with lower energies have 

higher fitness and are chosen with higher probability for reproduction. The energy 

evaluation is performed using the LAMMPS package. To facilitate rapid initial relaxation 

of randomly generated offspring, we employ low-temperature molecular dynamics at 100 

K for 0.1 ps using a 1 fs time step. Thereafter, conjugate-gradient minimization is 

performed for a minimum of 100 iterations or until the norm of the energy gradient on each 

atom is less than 10-3 eV/Å. The new offspring is accepted if its energy falls below an 

acceptance threshold 

 𝐸 = 𝐸 + 𝑁 × ∆𝐸,  (2.3) 

where 𝐸  is the lower energy of the two parents, NPt is the number of Pt atoms in the 

cluster, and ∆E is a numerical parameter. The smaller the value of ∆𝐸 the more stringent is 

the acceptance criterion; from numerical testing, ∆𝐸 = 0.1 eV  was found to be a 

reasonable choice. We note that this parameter ( ∆𝐸 ) is system-specific and can be 

ascertained through a small initial set of calibration runs.  
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Elite species: The population size is maintained at 30 individuals throughout the 

optimization process. To avoid loss of high quality species, within any generation we 

always maintain 20% of fittest individuals from the previous generation. 

Convergence: The GA was deemed to have converged if the lowest energy clusters in each 

generation remained unchanged for 20 generations or if the total number of generations 

exceeded 1000. 

 

Figure 2.1. Flow chart and schematic representation of optimization process for unsupported 
clusters with GA.  

2.2.2 Empirical Potential Models for Pt-Pt Interaction 

In this chapter, we employ a Pt interatomic potential developed by Albe et al.128 

based on the reactive bond-order Tersoff-Brenner form129  for Pt-Pt interactions. Here, we 

carry out a more extensive investigation of the fidelity of this potential for unsupported 

clusters, and show that this potential is generally in very good agreement with DFT 

structural models. We also perform careful tests of Albe et al.’s potential for supported 
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clusters (See Chapter 3) and demonstrate that the potential is indeed capable of delivering 

accurate low-energy structures for further electronic structure analyses. All empirical 

potential simulations are performed using the LAMMPS simulation package. 

2.2.3 DFT Calculations 

DFT calculations are performed to study the thermodynamic and electronic 

properties of selected low-energy structures using the Vienna Ab initio Simulation Package 

(VASP).130-131 Core and valence electrons are described using the Projected Augmented 

Wave method.132-133 The Perdew-Burke-Ernzerhof (PBE)134-136 form of the generalized-

gradient approximation is employed to describe electron exchange and correlation. A 

kinetic energy cutoff of 400 eV is used for the plane-wave basis set and the conjugate 

gradient algorithm is used to relax ions into their ground state until the force on any atom 

is smaller than 0.01 eV/Å. Brillouin zone sampling is performed using a single Gamma 

point for unsupported clusters. From convergence tests (Table 2.1), at least 10 Å of vacuum 

is used to eliminate spurious interactions between periodic images of Pt clusters. 

2.2.4 Simulation Procedure 

Realistic structures for PtN (N = 4-309) clusters were obtained by sampling the 

hyper-dimensional energy surface using a GA. To ensure better sampling, we run three GA 

simulations for each particle size, and the geometry with the lowest energy from all 

simulations is chosen as the candidate representing the global minimum. In almost all cases, 

the geometries obtained at the end of these three simulations are identical, indicating the 

robustness of GA. For larger sizes (147 and 309), the lowest-energy structures found by 

three independent optimization processes are different, due to the significant increase in 
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complexity of the potential energy surface and thus the computational demanding. By 

extensive exploration with the GA, we establish an ensemble of minimum and near-

minimum energy PtN isomers. From the converged GA results, various structural properties 

of clusters such as the radius of gyration, coordination numbers, and average bond lengths 

are calculated. 

Table 2.1. Total energy (eV) of Pt7 clusters 

Image distance(Å) Energy(eV) 
3.0 -28.22 
5.7 -26.57 
7.1 -26.57 
8.6 -26.64 

10.0 -26.64 
11.4 -26.64 

2.3 Result and Discussion 

2.3.1 Structure and Energetics of Unsupported Pt Clusters 

Several DFT-based studies have focused on the structure and energetics of 

unsupported Pt clusters,137-140 thereby providing a basis for evaluating both the quality of 

the empirical potential used in this work as well as the robustness of the GA. Thus, we 

focus first on unsupported clusters and present a critical evaluation of our simulation 

methods. A common shortcoming in studies of clusters is that the methods for generating 

low-energy structures do not use global search algorithms, relying instead on less robust 

techniques such as simulated annealing. Adopting high-symmetry shapes based on 

geometric shell models is usually incorrect for small transition-metal clusters as has been 

well documented in the literature.137-139 As we shoen in this work, combining global search 



 

20 

algorithms, such as GAs, with inexpensive yet reliable empirical potentials thus offers a 

significant advantage for reliable and efficient sampling of the PES.  

Table 2.2. Relative total energies (in eV) of Pt7 isomers from Kumar et al.’s137 and our DFT 
calculations (PBE functional; PW91 results in parentheses), as well as Albe et al.’s empirical 
potential (EP). Energies are relative to the lowest energy isomer for each level of theory. 

geometry  DFT (Ref. 137) DFT (this work) EP 

 
0.00 0.00 (0.00)  unstable 

 

0.08 0.07 (0.06) 0.59 

 
0.12 0.38 (0.07) 0.00 

 

Figure 2.2 displays the lowest energy structures of PtN (N = 2-80) found by our GA 

implementation using Albe et al.’s bond-order potential. Figure 2.2 shows that Pt clusters 

are planar up to N = 8 atoms, which is consistent with the DFT study reported by Kumar 

et al.137 Furthermore, none of the minimum-energy structures exhibits high-symmetry, 

calling into question common assumptions about enforcing symmetry made in cluster 

catalysis studies. To examine the accuracy of the empirical potential in greater detail, we 

focus on N = 7 clusters as a specific example. For Pt7 clusters, the GA predicts a centered 

six-member ring as the lowest energy structure (see Table 2.2). However, both Kumar et 

al.’s and our DFT results show that side-capped isomers turn out to be lower in energy than 

the centered ring. Of these side-capped structures, only one is even stable as per the 

empirical potential (see Table 2.2) and the energy is appreciably higher (~0.6 eV) than that 

of the centered-ring structure. Of course, the GA prediction can only be as good as the 

underlying model and, to this extent, the discrepancy between the empirical potential and 
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DFT points to shortcomings of the former. It should be noted, though, that the centered-

ring structure is fairly close in energy to the side-capped ground state at the DFT level 

(within 0.06 – 0.08 eV). 

 

The efficacy of the combined empirical-potential and DFT approach becomes much 

more apparent when searching for minimum-energy structures of large clusters. As 

examples, we consider so-called “magic-number” Pt13, Pt55, Pt147, and Pt309 clusters, which 

have been studied widely in their high-symmetry cuboctahedral (Oh) and icosahedral (Ih) 

structural motifs.14, 105, 141 As before, we use the GA to find minimum-energy structures for 

these various cluster sizes and then further relax the minimum-energy structures in DFT. 

The energies of the DFT-relaxed structures are then compared with corresponding DFT 

energies for the high-symmetry Oh and Ih structures; total energy differences relative to the 

 

 

Figure 2.2. Minimum-energy structures of unsupported Pt clusters as predicted by our GA 
implementation using Albe et al.’s  bond-order potential. 
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minimum-energy structure for each cluster size are reported in Table 2.3. These results 

show clearly that the high-symmetry structures are not the lowest-energy structures, as was 

also shown in previous DFT studies of Pt13 and Pt55 clusters.140-141 Indeed, the results 

obtained here for larger clusters are particularly striking and prompt interesting questions 

regarding typical sizes at which transitions from low-symmetry to high-symmetry clusters 

may be expected to occur in faceted crystals of Pt nanoclusters; such issues will be 

discussed later in this thesis.  

Table 2.3. Relative total energies (in eV) of high-symmetry (cuboctahedral – Oh; icosahedral – Ih) 
Pt clusters and GA-optimized, low-energy clusters calculated using DFT and Albe et al.’s empirical 
potential (EP). Energies are relative to the lowest energy isomer for each size and level of theory. 

 Pt13  Pt55  Pt147  Pt309 

 DFT EP  DFT EP  DFT EP  DFT EP 

Ih 1.3 1.7  3.3 3.4  6.5 5.1  7.7 5.6 

Oh 2.0 1.8  5.1 6.4  8.2 12.4  9.7 18.4 

GA 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 

 
It is also apparent from these results that the performance of Albe et al.’s empirical 

potential—in terms of relative energetic ordering of structures—is surprisingly good when 

compared with DFT calculations, especially considering that the potential was 

parameterized for bulk properties. The lowest-energy structures found by the GA 

essentially resemble defective icosahedra that are approximately 0.01-0.1 eV/atom lower 

in energy (across the entire range of sizes) than the perfect icosahedra. Cuboctahedral 

structures are in general higher in energy than both the GA-optimized structures and the 

perfect icosahedra.  

Overall, the benchmarking studies presented here lead us to two principal 

conclusions. First, Albe et al.’s bond-order potential is of sufficient accuracy to deliver 

near-minimum energy structures of unsupported clusters, which can then be subjected to 
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additional optimization in DFT calculations. Second, our GA implementation is able to 

deliver reliable minimum-energy results for unsupported clusters, which then lends us 

confidence in proceeding to the study of supported clusters, the subject of the next chapter.  

 

2.3.2 Electronic Structure of Unsupported Pt Clusters 

The d-band center energy of surface atoms is a widely employed and reliable 

descriptor for the adsorption energy of small molecules on transition-metal surfaces.113 In 

previous work we have also shown that the average d-band center energy of surface atoms 

on Pt13 nanoclusters can serve as a reasonable descriptor for the adsorption energies of 

methanol-decomposition intermediates and CO.59, 109, 142 Thus, we first examine the 

average d-band center energy of the surface atoms (𝜀 ) for PtN  (N = 4-147) clusters 

corresponding to particle diameters of 0.4-1.5 nm, to identify size-dependent trends as well 

as variations between low-symmetry and high-symmetry (Ih and Oh) morphologies.  

 

Figure 2.3. Geometries of low-energy “magic-number” Pt isomers in vacuum. The first two 
rows display high symmetry clusters cuboctahedral (Oh) and icosahedral (Ih) clusters. The third 
row displays minimum-energy structures found by the GA with an empirical potential. 
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From the angular-momentum-projected density of states, we compute the d-band 

center energy (𝜀 ) as 

 𝜀 =
∫

∫
, (2.4) 

 
where E is energy of each state and 𝜌 is the corresponding density of d-states. Figure 2.4 

displays the variation in 𝜀  with cluster size for both GA-optimized, low-energy clusters 

as well as high-symmetry ones. For high symmetry clusters, 𝜀  decreases rapidly with 

increasing cluster size, converging towards the bulk values for Pt (111) and (100) facets. 

This behavior can be rationalized by noting that the number of atoms on the (111) and (100) 

nanocrystal faces increases more rapidly than the number of atoms on (undercoordinated) 

edge or vertex sites with increasing crystal size, thus driving the average d-band position 

towards the bulk values.  While the Ih clusters have only (111) facets and the Oh clusters 

display both (111) and (100) facets on the surface, 𝜀  does not converge precisely to the 

bulk Pt(111) values for the former or to a weighted average for Pt(111) and (100) values 

for the latter, thus reflecting the as yet non-negligible contributions to the ensemble average 

from uncoordinated edge or vertex atoms that have relatively high d-band centers  (Figure 

2.5). The limiting bulk values should be recovered in the thermodynamic limit ( N ®¥). 

Irrespective of these details, the main point of note here is the monotonic decrease in 

𝜀  towards the limiting bulk values for high-symmetry (magic-number) clusters as a 

function of size. In contrast, the low-energy, low-symmetry, GA-optimized clusters 

consistently show lower 𝜀  values than the high symmetry structures over the size range 

(4-147 atoms) considered here. Moreover, we observe that for clusters of size of 30 atoms 

large, 𝜀 drops below the corresponding values for (111) and (100) facets reaching a 
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minimum value around N = 100. Beyond N = 100, there is a slight upshift in 𝜀  but this 

remains below the values for (111) and (100) facets. While systematic modeling of clusters 

larger than 150 atoms is prohibitively expensive at this time, we attempted an additional 

test calculation (Table 2.4) for a larger Pt309 cluster and even in that case 𝜀  remains about 

0.1 eV below the Pt (111) value. The existence of a local minimum for 𝜀 is particularly 

interesting as it suggests a preferred cluster size that might bind adsorbates more weakly 

and, for example, improve the resistance to CO poisoning. It should be noted though that 

the statistical errors in 𝜀  for these low-symmetry clusters are large enough to suggest 

that this result is more suggestive of a size range (approximately 50-150 atoms) over which 

Pt nanoclusters bind adsorbates more weakly than macroscopic crystal facets. 
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Figure 2.4. Average d-band center energy of the surface atoms, 𝜀 , as a function of cluster size, 
N. The solid curve passing through data for GA-optimized structures is merely a guide to the eye. 
Error bars are standard deviations; representative error bars are shown only for certain sizes to 
maintain legibility. The exact values of d-band center energy with confidence intervals for every 
data point can be found in Table 2.4. Horizontal dashed lines indicate the reference d-band center 
energies on bulk-terminated, FCC Pt (111) and (100) surfaces.  

While trends in d-band center energies are suggestive of lower adsorbate binding 

energies, they do not furnish definitive proof of such behavior. For sub-nanometer clusters, 

one can expect significant deformation of the cluster upon adsorbate binding and the 

magnitude of this effect could substantially alter conclusions based on relative d-band 

positions alone. Hence, we carry out DFT modeling of CO adsorption on Pt nanoclusters 

next to explicitly calculate CO adsorption energies as a function of cluster size and cluster 

morphology. 
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Table 2.4. Average d-band center energy of surface atoms, 𝜀 , and standard deviations, 𝜎, as a 
function of cluster size, N. 

 GA-optimized  Icosahedron  Cuboctahedron 
N 𝜀  𝜎  𝜀  𝜎  𝜀  𝜎 

8 -1.86 0.14       
10 -2.22 0.38       
11 -2.22 0.36       
13 -2.32 0.27  -2.02 0.09  -2.16 – 
15 -2.36 0.17       
17 -2.39 0.27       
19 -2.51 0.26       
21 -2.45 0.13       
26 -2.46 0.22       
29 -2.33 0.24       
32 -2.51 0.19       
34 -2.55 0.21       
43 -2.49 0.17       
46 -2.54 0.15       
49 -2.46 0.13       
55 -2.54 0.21  -2.39 0.11  -2.29 0.08 
61 -2.55 0.15       
64 -2.55 0.13       
71 -2.55 0.11       
81 -2.59 0.16       
95 -2.57 0.15       

110 -2.62 0.14       
130 -2.61 0.17       
147 -2.55 0.15  -2.39 0.09  -2.40 0.08 
309 -2.54 0.10  -2.38 0.10  -2.45 0.10 
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Figure 2.5. Distribution of coordination numbers (blue bars) as well as d-band center energies of 
atoms on the surface (black “+” symbols) and in the bulk (red “+” symbols) for the cuboctahedral 
Pt309 cluster. Surface d-band centers of FCC Pt (111) and Pt (100) surfaces are shown for reference.  

 

2.3.3 Cluster-Size-Dependent CO Adsorption Energies and Their Correlation with 
d-band Center Energies 

We sampled single-molecule CO adsorption energies across a wide range of GA-

optimized PtN (N = 4-147) clusters considering approximately 200 adsorption sites in total 

that span the full range of both coordination number and site-specific d-band centers that 

the surfaces offer. High-symmetry Ih and Oh structures were also studied for comparison 

against their low-symmetry counterparts as these structures are often used as models for 

catalyst clusters. CO adsorption on Pt nanoclusters was calculated via DFT modeling by 

Raymond Gasper. Detailed results and analysis can be found in Ref. 143; a summary of the 

main conclusions of these studies is as follows:   
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1. We find that with increasing cluster size, the CO adsorption energies monotonically 

approach the values for bulk surfaces, whereas the GA-optimized Pt clusters show the 

presence of a local maximum in the CO adsorption energy at a cluster size of N = 55, 

for which the CO adsorption energy is almost equal, within statistical error, to that of 

the Pt (111) surface. 

2. In the sub-nanometer range, the low-symmetry Pt nanoclusters bind CO more weakly 

than the high-symmetry ones. The differences in CO binding energies on low- and 

high-symmetry structures are non-negligible, ranging from 0.1-1.0 eV, thereby 

justifying the need for proper optimization of cluster morphology via global 

minimization techniques as opposed to ad hoc choices of structures. 

2.3.4 Prediction of CO Adsorption Energies via Machine Learning 

Gasper showed that the optimal cluster size for low CO binding, N ≈ 55, does not 

coincide with the minimum in the average surface d-band center at N ≈ 100 that we see in 

Figure 2.4. The coordination number of surface atoms, another potential descriptor, grows 

monotonically with size and approaches that for the low-energy facets,19 and hence cannot 

by itself capture the local maximum in the adsorption energy curve. These problems in 

arriving at a single-descriptor based model are magnified even further if one attempts to 

consider site-specific adsorption energies13 rather than surface averages. Hence, we turn 

next to more systematic approaches based on machine-learning algorithms that can help us 

arrive at robust multi-descriptor models. 

Having established that single-descriptor models are of limited use in accurately 

predicting CO adsorption energies, we resort to the application of machine-learning (ML) 
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tools in the search for suitable multi-descriptor models. Specifically, we employ the 

gradient-boosting regression (GBR) algorithm as implemented in the scikit-learn python 

package.110-111 The GBR model was used recently by Takigawa et al. and shown to be 

accurate in predicting the d-band center energies of crystal surfaces for various bimetallic 

alloys using readily available mechanical properties of the metals.116 The GBR is superior 

to a simple linear regression when working with nonlinear data relationships such as are 

seen between d-band center and CO adsorption energy on the nanoparticles under 

examination in this work. 

To train the ML (Machine Learning) algorithm and access the accuracy of ML 

predictions, CO adsorption energies on different surface sites of Pt clusters, including both 

GA clusters and high symmetry clusters, were used as target data. A few low-(but not 

minimum-) energy clusters that were produced by the GA in some of the early generations 

were also sampled to explore a wider descriptor and target space. In total, 195 sites were 

sampled for CO adsorption, 75% of which were used for training and the remaining 25% 

for testing. To reduce bias in data partitioning, we used stratified six-fold validation, 

wherein the CO adsorption data for each cluster were randomly split into six different 

train–test sets, which are constructed to ensure that every data point is in a test set at least 

once. 

Descriptors associated with each adsorption site that are used for the prediction of 

adsorption energy are broadly grouped into three types, in order of increasing 

computational effort: 

i. Type 1 descriptors involve only the electronic structure information calculated from 

DFT for each adsorption site. One of the most widely used descriptors of this type is the d-
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band center energy 𝜀  defined here for a specific adsorption site i. Here, we use a slightly 

modified version, namely, the generalized d-band center energy  ge d
i , following the 

concept of generalized coordination number, defined as 

 
  
ge

d
i = ( e

d
j ) / cn

i
jÎnn
å , (2.5) 

 
which is in essence a local average of the atomic d-band centers. cni is the coordination 

number of atom i, and the sum runs over all nearest neighbors j of site i. While either the 

usual site-specific d-band center energy or the generalized version can be used with little 

difference in the quality of the regression analysis for our present purposes (on-top 

binding), the latter is a more intuitive and convenient definition for further extensions to 

bridge or hollow binding sites that are not specifically associated with a single atom. Other 

Type 1 descriptors that were tested in the primary analysis also include s-band and p-band 

centers, electronic bandwidths, and Bader charges37 of adsorption sites. Several of these 

were either highly correlated with the d-band properties or led to no further improvement 

in the testing errors. Hence, we work with the generalized d-band center energy as the sole 

Type 1 descriptor for now. 

i. Type 2 descriptors involve only structural information of bare clusters, including 

average nearest-neighbor bond length  d Pt-Pt

i
, generalized coordination number  gcni , and 

cluster radius of gyration 𝑅 . The average bond length for a Pt atom i is calculated as  

   
d Pt-Pt

i
= d

ij
/ cn

i
jÎnn
å ,  (2.6) 
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where dij is the distance between an atom i and its nearest neighbors j, and cni is the 

coordination number of atom i. The general coordination number  gcni  defined as 

 

 
  
gcni = cn j

jÎnn
å / cn

bulk
, (2.7) 

is generally a better descriptor for adsorption energy than coordination number as has been 

shown for several small molecules on metal nanoparticle surfaces.105 cnbulk is the 

coordination number of a Pt atom in the bulk FCC phase. The radius of gyration 𝑅  is a 

cluster property, and is the same for all sites on a cluster. These three descriptors thus 

quantify local, non-local, and global structural properties associated with the CO 

adsorption process. All these descriptors are readily calculated from the optimized cluster 

structure.  

ii. Type 3 descriptors include for now a single descriptor that encapsulates both 

electronic and structural information of the adsorption site, namely, the fully-frozen CO 

adsorption energy  Eads
AF . As the Pt cluster (that has already been previously relaxed) and the 

CO molecule do not undergo any further ionic relaxation in this calculation,  Eads
AF  can be 

obtained roughly two orders of magnitude faster than  Eads
AR . It is also clear from Figure 2.3 

that  Eads
AF  closely tracks the size-dependent trends of the target values of  Eads

AR thus making 

it a sensible choice of descriptor.  
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Figure 2.6. DFT-calculated CO adsorption energies on the surface sites of Pt clusters versus the 
prediction from GBR model with different sets of descriptors: (a) Generalized d-band center, (b) 

Type 2 descriptors, (c)  Eads
AF  alone, (d) Generalized d-band center and Type 2 descriptors (e) all 

three descriptor types (5 descriptors total). Reported AME (absolute mean error) of the model 
predictions are the average over six-fold cross validation to avoiding splitting bias. The displayed 
data points are from one such randomly split dataset. Insets in (b), (d) and (e) show the relative 
importances of the descriptors in the models. 
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Figure 2.7:  DFT-calculated CO adsorption energies on the surface sites of Pt clusters versus the 
prediction from GBR model with all descriptors. Below is a list of the descriptors used for this 
figure: 
q valence electrons associated with each atom (from Bader analysis) 
w   general d-band width  
w  general p-band width  
w   general s-band width  
w  d-band width 
w  p-band width 
w  s-band width 
ε   general d-band center energy with respect to the Fermi level  
ε   general p-band center energy with respect to the Fermi level  
ε   general s-band center energy with respect to the Fermi level  
ε   d-band center energy with respect to the Fermi level 
ε  p-band center energy with respect to the Fermi level 
ε  s-band center energy with respect to the Fermi level 
 
The remaining descriptors are explained in Section 3.3 of the paper. 

 

The descriptors chosen here are by no means unique and other choices are equally 

reasonable. For now, we proceed with the above three classes and analyze their utility in 

predicting site-dependent CO adsorption energies.  
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Figure 2.6 displays the correlation between DFT-calculated and ML-predicted CO 

adsorption energies (site-specific and not cluster average) using different combinations of 

descriptors. When trained by Type 1 descriptors (the generalized d-band center energy) 

alone, the model shows an absolute mean error (AME) of -0.22 eV in the test sets [Figure 

2.6 (a)]. It is evident that there are a large number of outliers in the training set and this is 

exacerbated for the testing set. Similarly, using purely structural information [Type 2 

descriptors; Figure 2.6 (b) or only Eads
AF [Type 3 descriptors; Figure 2.6 (c)] both result in 

AMEs of 0.17. In short, using just one class of descriptors is rather unsatisfactory in 

predicting the CO adsorption energies. A combination of electronic structure and structural 

information results only in a slightly improved AME [Figure 2.6 (d)]. By combining all 

descriptor classes though, the AME can be substantially reduced to 0.12 eV [Figure 2.6 

(e)]. This error is of the same order as that reported recently by Xin and coworkers in ML 

predictions of adsorption of CO on a wide variety of pure transition metal and alloy 

surfaces.114-115 Importantly, visual inspection of Figure 2.6  (e) shows that the CO 

adsorption data is predicted quite accurately across a broad energy window of ~4 eV. The 

inset bar display the importances of the various descriptors in the final prediction. Focusing 

on the full descriptor set in Figure 2.6 (e), we see that the (generalized) d-band center, 

average Pt-Pt bond length, and (generalized) coordination number – conventional 

descriptors based on sound fundamental insights – are still indispensable, as reconfirmed 

by the ML algorithm. When focusing on sub-nanometer clusters, physical intuition 

suggests that size effects (quantified by Rg) ought to become relevant for cluster 

deformation; this is confirmed by the ML algorithm. Similarly, we expect that the inclusion 

of  Eads
AF  as a descriptor incorporates some of the fundamental electronic processes during 
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CO chemisorption that are difficult to capture by simple electronic structure information 

alone (d-band positions and/or widths) thereby significantly improving the predictive 

capability of the ML algorithm. For completeness, we also tested models with numerous 

other descriptors and found little to no improvement over the smaller, physically motivated 

subset of descriptors employed here. In summary then, by combining modern 

computational tools with traditional physical insights, we are now able to implement 

accurate, inexpensive, and robust predictive models that can help push the frontier of 

rational catalyst design beyond macroscopic crystal surfaces to low-symmetry nanoscale 

catalysts. 

2.4 Conclusions 

We studied Pt nanoclusters, ranging from 0.2–1.5 nm in diameter, to understand 

size-dependent trends in the energetics of CO binding, and to correlate these with 

morphological and electronic descriptors. An important aspect of our approach was to 

employ a GA to determine unambiguously the low-energy morphologies of the Pt 

nanoclusters, which uniformly adopt low-symmetry structures for the sizes considered 

here. GA-optimized clusters show a non-monotonic trend of surface d-band centers with 

respect to size, going from very high values at small sizes to a minimum around Pt100, 

before slowly asymptoting towards the Pt (111) surface value. This is in clear contrast to 

the essentially monotonic behavior of high-symmetry, cuboctahedral and icosahedral 

morphologies, which are not true low-energy structures for sub-nanometer Pt clusters. The 

CO adsorption behavior on GA-optimized clusters also presents similar non-monotonic 

behavior with a global maximum at around Pt55.  
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By employing machine learning algorithms, we showed that the non-monotonic 

trends in CO adsorption energies are not accurately captured by traditional single descriptor 

models based on d-band center energies or coordination number. Multi-descriptor models 

based on d-band centers and structural information (coordination number, bond lengths, 

cluster size) do not perform much better either. By adding a new descriptor to our models, 

namely, the “all-frozen” adsorption energy ( Eads
AF ), which partially incorporates some of the 

features of CO-Pt bond formation, we were able to achieve significant improvement in the 

machine-learning model. We suggest that this descriptor,  Eads
AF , which can be calculated at 

minimal computational overhead, might be broadly applied across other systems to predict 

site-specific adsorption energies with higher accuracy; studies along these lines will be 

pursued elsewhere.  

Overall, our work demonstrates the potential for developing accurate, predictive 

models of adsorbate binding on realistic nanocluster morphologies by integrating robust 

structural optimization methods with machine learning algorithms. Progress along these 

lines can significantly aid rational design of nanoscale catalysts, particularly in the sub-

nanometer range where both structural and electronic properties differ fundamentally from 

those at larger length scales. 
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CHAPTER 3  

STABILITY, ENERGETICS, AND CATALYTIC PROPERTIES OF GRAPHENE-
SUPPORTED PT CLUSTERS 

3.1 Introduction 

Typically, industrial Pt electrocatalysts are prepared by dispersing Pt powders as 

small as a few nanometers on conductive carbon black supports,144 which results in a high 

electrocatalytically active surface area. However, it is well known that traditional Pt/C 

catalysts are easily poisoned by intermediates, most notably CO, produced during the 

methanol oxidation reaction at the cathode.43-44, 145 In addition, these Pt/C systems suffer 

from poor long-term stability arising from the corrosion of the carbon support and 

dissolution or aggregation of Pt on the support surface.33, 60, 146-147 Graphene has been 

shown to be an excellent support for transition-metal-based electrocatalysts, impacting 

many of the issues above through its strong interactions with a broad range of materials,148 

high electronic conductivity,149 and potential for beneficial modification of the 

electrochemical properties of supported clusters.150 However, Pt/graphene nanostructures 

remain poorly understood, making it challenging to optimize these electrocatalytic 

systems. In this article, we apply advanced optimization methods with force fields 

benchmarked by first principles theory to gain insights into Pt/graphene geometrical and 

electronic structures. 

It is well accepted that the structure of catalyst particles plays a significant role in their 

catalytic performance151-152 and achieving a detailed understanding of structure–activity 

relationships is hence, an issue of much current interest. For example, in recent work 

Fampiou and Ramasubramaniam6 investigated the thermodynamic and electronic 

properties of Pt13 isomers on graphene supports by examining both high-symmetry cluster 
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morphologies as well as low-symmetry ones (derived from molecular dynamics annealing). 

They observed appreciable differences with respect to cluster binding energies on the 

support, cluster d-band centers, adsorbate binding energies, and overall charge 

redistribution with different cluster morphologies (isomers). While those studies were 

limited to a relatively small set of candidate structures, they nevertheless established the 

need for careful initial selection of cluster morphologies prior to subsequent studies of 

catalytic reactions on clusters. Indeed, for computational studies of cluster catalysis, it is 

reasonable to invest initial effort in ascertaining thermodynamically (or kinetically) 

favored structures, as these are the most probable structures under experimental 

conditions.153 While ground-state cluster morphologies might, in principle, be gleaned 

from experiments, e.g., via fluorescence spectroscopy techniques for vacuum Pt 

clusters,154-155 such studies are extremely challenging and hence, limited in number and 

scope. In contrast, computational studies of the energetics of Pt clusters in vacuum, using 

both quantum mechanics and empirical potential modeling, are more extensive.44, 137, 141, 

156-160 However, to the best of our knowledge, there are as yet no systematic investigations 

of the ground-state energetics and morphologies of Pt clusters on graphene supports. In 

other words, the influence of Pt–graphene binding interactions on cluster morphology and 

the resulting effects on cluster activity still remain to be systematically understood. 

The primary goal of this chapter is to present a robust methodology for identifying 

thermodynamically favorable structures of Pt clusters on graphene supports and to draw 

clear correlations between cluster energetics and catalytically relevant metrics such as the 

d-band center and Pt cluster charge transfer. The high-dimensional potential energy surface 

(PES) for the Pt/graphene system is extremely complex and a brute force search for energy 
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minima at the first principles level is computationally infeasible. Therefore, we carefully 

test and validate a Pt–C empirical potential, which we then employ within a GA161-163 to 

facilitate rapid and thorough identification of minimum energy PtN (N = 2-80) clusters on 

defect-free and defective graphene supports. Optimized structures are then studied more 

thoroughly with DFT calculations to test the structural accuracy and energetic ordering of 

the empirical potential predictions. Finally, ensembles of supported near-minimum energy 

Pt13 isomers are subjected to detailed electronic structure analyses via DFT calculations to 

identify clearly the role of support defects and cluster energetics on the potential catalytic 

activity of the Pt clusters. Overall, by combining an inexpensive empirical potential-based 

GA with ab initio calculations, we establish a tractable approach for systematic exploration 

of supported clusters at system sizes that are experimentally relevant and yet inordinately 

expensive for brute force ab initio calculation alone.  

3.2 Computational Methods 

3.2.1 GA for Supported Clusters 

Following the methodology in Chapter 2, we will first explore the stable structures 

of Pt clusters supported on graphene. The approach followed here for optimization of 

supported clusters follows the spirit of the pioneering work of Ho and coworkers127. Details 

of the GA implementation for unsupported nanoclusters have been described in Chapter 2 

and we will only discuss the additional modifications to the GA when the graphene support 

is present. During the mating process, only the metal parts of the two parent candidates 

were sliced and glued together to form a new metal cluster, which is then positioned 

appropriately relative to the graphene sheet to form the child candidate. From numerical 
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testing, a minimum cluster–support distance of 2 Å was found to be a good initial guess 

for rapid convergence.  

3.2.2 Empirical Potential Models for Graphene Supported Pt clusters 

In Chapter 2, we employed a Pt interatomic potential developed by Albe et al.128 based 

on the reactive bond-order Tersoff-Brenner form.129 In addition to Pt-Pt interactions, Albe 

et al.’s potential also incorporates C-C and Pt-C interactions, which makes it ideally suited 

for describing Pt clusters on carbon supports. Fampiou and Ramasubramaniam60 showed 

that the potential of Albe et al. is remarkably accurate relative to DFT in describing 

supported cluster morphologies, albeit with limited sampling. Here, we carry out a more 

extensive investigation of the fidelity of this potential for unsupported clusters, and show 

that this potential is generally in very good agreement with DFT structural models. We also 

perform careful tests of Albe et al.’s potential for supported clusters and demonstrate that 

the potential is indeed capable of delivering accurate low-energy structures for further 

electronic structure analyses. All empirical potential simulations are performed using the 

LAMMPS simulation package. 

3.2.3 Global Optimization for Supported Clusters 

We performed GA optimization of PtN (N = 2-80) clusters on defect-free (pristine) and 

defective (vacancy and divacancy defects) graphene supports using Albe et al.’s potential. 

In all supported cluster calculations, we used an 8×8 graphene super-cell (128 C atoms in 

pristine graphene), as shown in Figure 3.1, which is sufficiently large to eliminate long-

ranged interactions between Pt80 clusters (the largest clusters studied here). From the 

converged GA results, various structural properties of clusters such as the radius of 
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gyration, coordination numbers, and average bond lengths were calculated. 

 

Figure 3.1. Defect-free and defective graphene substrates employed in this study 

3.2.4 DFT Calculations 

DFT calculations were performed to study the thermodynamic and electronic properties 

of selected low-energy structures using VASP.  Core and valence electrons were described 

using the Projected Augmented Wave method. The PBE form of the generalized-gradient 

approximation was employed to describe electron exchange and correlation. A kinetic 

energy cutoff of 400 eV was used for the plane-wave basis set and the conjugate gradient 

algorithm was used to relax ions into their ground state until the force on any atom is 

smaller than 0.01 eV/Å. For supported clusters (128 C atoms in pristine support), a 2×2×1 

Γ-centered k-point mesh was sufficient to converge total energies to within 0.5 meV per 

graphene atom.  
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3.3 Result and Discussion 

3.3.1 Structure and Energetics of Supported Pt Clusters 

We now consider the energetics of PtN clusters on graphene supports. Point defects 

in graphene are known to act as strong anchoring sites for nanoclusters and have also been 

shown to modify the electronic structure and catalytic activity of small clusters.58-60 The 

metrics we adopt for thermodynamic comparisons are the cluster adsorption energy and 

the overall formation energy of the composite Pt/graphene system. The adsorption energy 

(Ead) is defined as 

 𝐸 = 𝐸 − 𝐸 − 𝐸  , (3.1) 

where 𝐸  is the total energy of the Pt/graphene system, 𝐸  is the total energy of the 

PtN cluster without the support, and  E  is the total energy of the (pristine/defective) 

graphene sheet. The overall formation energy of the composite Pt/graphene system (Ef) is 

defined as 

 

 𝐸 = 𝐸 − 𝑀 × 𝐸 − 𝑁 × 𝐸  , (3.2) 

where 𝐸  is the total energy of the Pt/graphene system, 𝐸  is the energy of an isolated 

Pt atom in vacuum, EC is the energy of a single C atom in graphene, and M and N are the 

number of C and Pt atoms, respectively. 
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Table 3.1. Formation energies (eV) of minimum-energy Pt clusters on pristine and defective 
(vacancy, divacancy) graphene supports identified using the GA and by molecular-dynamics-based 
annealing (Ref. 60) 

  Pristine  Vacancy  Divacancy 
  GA annealing  GA annealing  GA annealing 
Pt2  -5.75 -5.62  -5.33 -5.30  -5.59 -5.25 
Pt3  -10.11 -10.06  -9.55 -8.73  -9.88 -8.38 
Pt4  -14.24 -13.12  -13.80 -11.69  -14.13 -13.80 
Pt13  -55.50 -55.20  -55.16 -55.14  -55.65 -55.67 

 

Table 3.2. Formation energies (eV) of minimum-energy Pt clusters on pristine and defective 
(vacancy, divacancy) graphene supports identified using GA. 

  Pristine  Vacancy  Divacancy 
  Tersoff DFT  Tersoff DFT  Tersoff DFT 
Pt2  -5.75 -1.34  -5.33 -0.68  -5.59 1.37 
Pt3  -10.11 -5.20  -9.55 -3.50  -9.88 -3.38 
Pt4  -14.24 -9.11  -13.80 -5.33  -14.13 -7.10 
Pt13  -55.50 -45.94  -55.16 -41.56  -55.65 -41.73 

 
First, to test the performance of our GA, we study supported PtN (N = 2, 3, 4, 13) 

clusters and compare our results with those of Fampiou and Ramasubramaniam60 who also 

used Albe et al.’s bond-order potential but adopted a molecular dynamics (MD) annealing 

scheme for energy minimization. The formation energies for PtN (N = 2, 3, 4, 13) clusters 

with pristine and defective graphene supports are reported in Table 3.1, and the 

corresponding structures (from the GA) are displayed in Figure 3.2. For additional 

comparison, we also report formation energies calculated using the empirical potential and 

by DFT in the Table 3.2. In all cases, the GA delivers structures with lower formation 

energies than the MD annealing results previously reported. The differences are 

particularly noticeable for few-atom clusters. In the Pt2 case, the GA produces ground states 

consisting of dimer orientations parallel to the surface on pristine and defective graphene 

supports. MD-based annealing consistently generates local minima with vertically oriented 

Pt dimers on pristine graphene; on defective graphene, the dimers lie parallel to the support. 
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For Pt3 clusters on pristine graphene, both GA and MD annealing find the vertical triangle 

as the ground state; on defective graphene, the GA finds structures that are appreciably 

more stable by (1.0-1.5 eV) than those from MD annealing. For Pt4 clusters, the GA finds 

a planar cluster that is nearly vertically oriented to the pristine graphene sheet as the 

minimum energy structure; a tetrahedron is the most stable structure on defective graphene 

supports. The MD annealing algorithm is again stuck in various local minima at higher 

energies. Finally, for Pt13 clusters on graphene supports, Fampiou and Ramasubramaniam 

showed that the clusters prefer more open structures instead of high-symmetry ones (Ih or 

Oh); the GA results confirm those findings and the minimum energy structures are also 

energetically very close to those found by MD annealing. It thus appears that clusters with 

very small number of atoms present pathological challenges for the MD annealing 

procedure, in particular, capturing the precise orientation and location of cluster atoms on 

the support. With increasing cluster sizes, the energetics appear to be dominated by the 

inherent morphology of the cluster itself, with orientational effects relative to the support 

being of lesser importance. In any case, it is clear that a global minimization algorithm, 

such as a GA, performs more reliably at finding ground states than ad hoc procedures such 

as simulated annealing. 
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Figure 3.2. Minimum-energy structures of PtN (N = 2, 3, 4, 13) on pristine graphene (upper row), 
and graphene with single vacancy (middle row) and divacancy defects (bottom row). 

 
Next, we study the properties of supported PtN clusters over the size range N = 2-

80 analogous to the unsupported cluster studies. In addition to thermodynamic properties 

such as adsorption and formation energies, we also thoroughly characterize the structural 

properties of clusters through metrics such as the radius of gyration, average coordination 

number, average bond lengths, and fraction of (potentially) catalytically active surface 

atoms, which are variously displayed in Figure 3.3. Note that while the catalytic activity of 

a site on a crystalline facet (terrace, step, edge, kink) or on a large nanoparticle (face, edge, 

corner) can vary significantly due to local coordination, the nanoclusters considered here 

are too small to display such distinguishing morphological features. Thus, we focus on 

understanding average properties of surface sites throughout this work. The various 

configurations studied here are all minimum-energy structures obtained via the GA. 
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Figure 3.3 (a) displays the radius of gyration (Rg) of PtN clusters with and without 

the graphene support. As seen, Rg tends to be noticeably higher for unsupported clusters 

and clusters on pristine graphene supports relative to those on defective supports up to N 

= 12. This is due to 2D morphologies being preferable both in vacuum as well as on pristine 

graphene supports at these cluster sizes; the presence of point defects in the graphene 

support favors 3D structures beginning from the smallest possible size, Pt4, as seen in 

Figure 3.3. For N ≥ 13, the support effect on cluster morphology is negligible—Rg is 

approximately the same for supported as well as unsupported clusters. Physically, this 

result suggests that the Pt–C contribution to the total energy becomes less important 

compared with the Pt–Pt interaction for larger clusters.  

Another important structural metric used to characterize clusters is the atomic 

coordination number; Figure 3.3 (b) displays the average coordination number (Zavg) of Pt 

atoms as a function of cluster size. The precise number of neighbors of an atom is sensitive 

to the cutoff distance chosen for bond counting and, for consistency, we use the same cutoff 

distance as that for Pt-Pt interactions in the bond-order potential (3.3 Å). As seen from 

Figure 3.3 (b), the average coordination number increases monotonically with cluster size, 

as is to be expected due to the increase in the bulk-to-surface ratio. For the range of clusters 

studied here, Zavg = 8 is the largest value attained; for reference, we recall that the 

coordination number of atoms on the Pt (111) surface is nine while that in the bulk is 12. 

This significant overall degree of undercoordination is to be expected for such small 

clusters that are mostly “surface” rather than “bulk”. Our calculations show that the 

smallest cluster size for which at least one atom has a coordination number of 12 is N = 

19.  
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Figure 3.3. Evolution of structural and energetic properties of global minima of PtN/graphene 
calculated using the GA as a function of particle number N: (a) radius of gyration; (b) average 
coordination number of Pt atoms (excluding Pt-C bonds); (c) average Pt-Pt bond length (dashed 
line is for bulk FCC Pt); (d) fraction of active surface atoms, defined in equation 3.3; (e) adsorption 
energy (Ead) of Pt clusters on graphene; (f) average contribution of Pt atoms at the Pt-C interface to 
Ead. 

Figure 3.3 (c) offers insight complementary to this analysis of coordination 

numbers by displaying the average Pt–Pt bond length (aavg) in the unsupported and 
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supported Pt clusters; the horizontal dashed line in that figure indicates the bulk, FCC Pt–

Pt bond length (2.77 Å) for comparison. The average Pt–Pt bond decreases in length with 

decreasing cluster size, which once again reflects the increase in the ratio of surface to bulk 

atoms as under-coordinated surface atoms exhibit shorter bonds to compensate for having 

fewer neighbors. The trends for aavg are similar for unsupported clusters and for those on 

pristine graphene supports, especially at small cluster sizes, reflecting the relatively small 

role of the support in the absence of strong perturbations such as those arising from point 

defects. Again, for larger clusters, the differences in aavg are small, thus reflecting the 

relatively minor role of the support on cluster morphology. For the range of cluster sizes 

studied here, aavg is still about 0.1 Å smaller than the bulk FCC value. There are some 

systematic deviations in the monotonic growth of Zavg and aavg in the N = 20-40 as seen 

from Figure 3.3 (b, c). Closer visual inspection of these clusters leads us to attribute the 

fluctuations to a competition between hollow-core and filled-center cluster morphologies. 

A structural property of interest and immediate relevance to cluster catalysis is the 

number of potentially active Pt atoms on the cluster surface. Atoms within the interior of 

the cluster do not directly participate in surface reactions and we also assume that atoms 

directly bonded to the support are less likely to participate in surface reactions due to 

constraints arising from, e.g., steric hindrance and possibly from electronic effects 

(saturation of dangling bonds). There are of course exceptions to such criteria, notably for 

single-site catalysts bound at point defects in graphene,164-165 but these are essentially 

pathological cases and the proposed criterion is both intuitively appealing and physically 

reasonable for larger clusters. Thus, we define the fraction of active surface atoms (𝑓 ) 

as 
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 𝑓 = (𝑁 − 𝑁 ) 𝑁  , (3.3) 

 
where 𝑁  is the number of atoms on the surface of the Pt cluster, and N  is the number 

of Pt of atoms bonded to the support. Various criteria may be established for identifying a 

“surface” atom; we do so here by assigning an atom with six or fewer neighbors to be a 

surface atom. Visual inspection of several clusters confirms the validity of this coordination 

number cutoff. As seen from Figure 4 (d), 𝑓  displays rather interesting behavior. For 

unsupported clusters all atoms are on the surface for N < 19; for larger unsupported clusters, 

most of the Pt atoms are in the bulk and consequently are not active. For supported clusters, 

the fraction of active sites is initially small as many Pt atoms are bonded directly to the 

graphene support; at large cluster sizes, most of the Pt atoms are again in the bulk and are 

consequently not active. The optimal value for 𝑓  is achieved in the range N = 20-30 

irrespective of the presence or absence of the support defects. This is a key result as it 

identifies an optimal range of cluster sizes that maximally utilizes the precious metal 

catalyst; to the best of our knowledge, this result has not been reported before and, in 

particular, not for supported Pt clusters.  

Finally, Figure 3.3 (e) and Figure 3.3 (f) display the total adsorption energy and 

adsorption energy per interfacial Pt atom for supported PtN clusters. It is clear that point 

defects in the graphene support bind Pt clusters more strongly than does pristine graphene 

across the entire range of cluster sizes; divacancies are also seen to be stronger binding 

sites than vacancies due to a higher number of dangling bonds. In general, the variation in 

adsorption energies with cluster size is rather small; similar results were reported by 

Ramos-Sanchez et al.,166 who used DFT calculations to study clusters on graphite in the 
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range of N = 1-38. The slight decrease in binding strength (less negative adsorption 

energies) with increasing cluster sizes (beyond N = 10) is indicative of weaker trapping of 

larger clusters by the vacancy/divacancy, thus suggesting the need for larger support 

defects to improve the stability of larger Pt clusters against aggregation. 

3.3.2 Support Effect on Electronic Structure of Pt13 isomers 

It is well known that chemisorption of adsorbates on transition metal surfaces is 

strongly correlated with the so-called d-band center energy of the surface.113 Several 

studies have now extended this metric to the study of supported clusters and shown similar 

correlations.57, 59, 167 In particular, the influence of cluster morphology as well as the role 

of the support in modulating the d-band center energy are issues of current interest for 

rational catalyst design. Our ability to produce low-energy isomers at low computational 

expense using the GA now allows us to examine more broadly the issues of cluster 

morphology and support effects on the catalytic activity of clusters (beyond the limited 

cases studied in our previous work59-60). As an example, we focus here on Pt13 clusters; 

more comprehensive studies across a range of cluster sizes will be reported elsewhere.  

 Using GA, we identified several Pt13 isomers within a 30 meV/atom energy 

window close to the global minimum for Pt13 in vacuum or with various support types.  All 

candidates, supported or otherwise, were imported into VASP and subjected to conjugate-

gradient structural relaxation. For vacuum Pt13 isomers, an additional 15 candidates were 

obtained by simply eliminating the support from the low-energy Pt13/graphene systems and 

relaxing the residual Pt13 cluster; such clusters are merely local rather than global minima, 

but including these in our analyses gives us a larger statistical sample for studying 
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structure-property correlations.  

Figure 3.4 (a) displays d-band center energies as a function of cluster adsorption 

energy and formation energy for supported and unsupported clusters, respectively. For 

unsupported clusters, the d-band center energy varies almost linearly with the formation 

energy and spans about 0.1 eV within a formation energy window of width 0.2 eV/atom. 

In the presence of the graphene support, ε  can be significantly lowered, especially in the 

presence of vacancy and divacancy defects, and once again the lowering of the d-band 

center is correlated with the adsorption energy, which was also noted earlier by Fampiou 

and Ramasubramaniam.60 In general, for the various clusters on defective supports, we find 

that when a Pt atom occupies the center of the defect (vacancy/divacancy), the total energy 

as well as the adsorption energy decrease significantly, as indicated by the points within 

the dashed square in Figure 3.4 (a); this decrease in adsorption energy is accompanied by 

a drop in the d-band center energy. Furthermore, for all cases of clusters on defective 

supports, the d-band center lies slightly below that for Pt (111), suggesting comparable or 

possibly weaker adsorbate binding. In the absence of point defects, the cluster d-band 

center approximately coincides with the calculated value for Pt (111); for unsupported 

clusters, the d-band centers are appreciably higher than that for Pt (111). 
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Figure 3.4. Position of d-band center (ε , ) relative to the Fermi level (a) and net charge transferred 
(b) to Pt13 isomers in vacuum and on graphene support. Data for Pt13 clusters in vacuum and on 
support are plotted with respect to the formation energy (Ef) per atom and the adsorption energy 
(Ead), respectively. The horizontal dashed line represents ε ,  for Pt (111) surface. Other dash lines 
are guides to the eyes. Points inside dashed square correspond to structures with Pt atoms occupying 
the center of the defect. 

As noted in prior work,57, 60 the total charge transferred from the cluster to graphene 

is an important factor in shifting the cluster d-band center. Thus, we also perform a Bader 

charge analysis,168-169 to evaluate the total charge transferred from the cluster to the 

graphene support. Figure 3.4 (b) displays the transferred charge with respect to the 

adsorption energy and the trends are similar to that of the d-band analysis. Similar to 

previous reports,60 we observe that stronger binding of clusters to the support results in 

greater depletion of charge from the cluster, which then leads to a lowering of the d-band 

center of the cluster.  
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A complementary and chemically intuitive view of bonding at the Pt-C interface can 

also be obtained from a natural bond orbital (NBO) analysis170-171 of low-energy structures 

for Pt13 on vacancy and divacancy ( 

Figure 3.5). We used the method and associated package developed by Dunnington and 

Schmidt5 to yield localized representation of bond for a periodic system. A Gaussian-type 

atom centered SBKJC basis set was used for both C and Pt to project the plane-wave (PW) 

based electronic wave functions. For Pt13 on pristine graphene, NBO analysis shows 

negligible covalent bonding between Pt and C atoms and hence, we don’t pursue this case 

in detail here. For a Pt13 cluster bounded a vacancy in graphene, a predominant covalent 

picture can be observed for atoms at the interface, as shown in  

Figure 3.5 (a) and Table 3.3. For a Pt13 cluster bound at a divacancy in graphene, we 

also observe, for the most part, clear sp3 hybridization of C atoms involved in C-Pt bonds 

(C1-Pt138, C15-Pt138, C112-Pt138, C14-Pt138). The occupancies of the bonding states in all cases 

(~1.9) are consistent with localized two-center bonding. Nevertheless, in all cases there is 

non-negligible occupation of antibonding states (as high as 0.78 for C14-Pt138) indicative of 

a more complex nature of C-Pt bonds rather than a simple covalent picture. Irrespective of 

these fine details, the overall polarization towards carbon atoms in the C − Pt σ bonds 

agrees with the picture of charge transfer from Pt to graphene, as inferred from Bader 

analysis. In addition, the polarization towards carbon atoms in the covalent bond agrees 

well with the overall charge transfer from Pt to graphene, as shown in Figure 3.7.   

Broadly speaking, the NBO analysis does not show any significant bonding between 

Pt13 clusters and pristine graphene; for the defective graphene supports, a predominantly 

covalent nature is found for C-Pt bonds at the defect center with clear polarization towards 
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the C atoms, which bolsters the picture of charge transfer from Pt to graphene obtained 

from the Bader analysis. 

The electronic structure analysis presented here is essentially in agreement with 

previous work by Fampiou and Ramasubramaniam,60 among others,57 although with much 

better statistics and more careful attention to computational procedures for generating low-

energy structures. The role of the support is relatively clear in our studies: defective 

supports appreciably lower the d-band centers, at least of small Pt clusters, and 

consequently have implications for adsorbate binding and reaction barriers.58-59 In terms of 

proper selection of structures for electronic structure analyses and/or studies of reaction 

pathways, it would appear that small deviations from the minimum-energy cluster 

morphology are unlikely to lead to large deviations in the energies of the surface states at 

least for small clusters. Thus, we expect that any reasonably robust method for generating 

low-energy morphologies ought to result in plausible predictions of catalytic behavior from 

subsequent electronic structure studies. 

          
 
Figure 3.5. Pt13 clusters on vacancy (a) and divacancy (b) graphene support. Labels are the indices of 
atoms forming covalent bonds at the interface.  
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Table 3.3. Covalent NBOs for Pt13 on vacancy graphene 

NBO Occupancy 
Center (bond % 
polarization) 

Hybridization 
(function,%) 

C − Pt σ∗ 0.32 C(1)(56) s 24, p 76 
  Pt(138)(44) s 32, p 68,   

C − Pt σ 1.87 C(1)(44) s 24, p 76 
  Pt(138)(56) s 27, p 6, d 66 

C − Pt σ∗ 0.26 C(15)(55) s 25, p 75 
  Pt(138)(45) s 33, p 67,   

C − Pt σ 1.87 C(15)(45) s 25, p 75 
  Pt(138)(55) s 30, p 7, d 63 

C − Pt σ∗ 0.34 C(113)(56) s 24, p 76 
  Pt(138)(44) s 32, p 68,   

C − Pt σ 1.87 C(113)(44) s 24, p 76 
  Pt(138)(56) s 27, p 6, d 67 
 

Table 3.4.  Covalent NBOs for Pt13 on divacancy graphene 

NBO Occupancy 
Center (bond % 
polarization) 

Hybridization 
(function,%) 

C − Pt σ∗ 0.47 C(1)(60) s 24, p 76 
  Pt(133)(40) s 23, p 4, d 72 

C − Pt σ 1.88 C(1)(40) s 24, p 76 
  Pt(133)(60) s 23, p 4, d 72 

C − Pt σ∗ 0.48 C(14)(61) s 19, p 81 
  Pt(133)(39) s 22, p 4, d 74 

C − Pt σ 1.87 C(14)(39) s 19, p 81 
  Pt(133)(61) s 22, p 4, d 74 

C − Pt σ∗ 0.73 C(14)(76) s 13, p 87 
  Pt(138)(24) d 100 

C − Pt σ 1.82 C(14)(24) s 13, p 87 
  Pt(138)(76) d 100 

C − Pt σ∗ 0.57 C(15)(65) s 23, p 77 
  Pt(133)(35) s 20, p 3, d 77 

C − Pt σ 1.89 C(15)(35) s 23, p 77 
  Pt(133)(65) s 20, p 3, d 77 

C − Pt σ∗ 0.41 C(112)(57) s 27, p 73 
  Pt(133)(43) s 26, p 6, d 68 

C − Pt σ 1.90 C(112)(43) s 27, p 73 
  Pt(133)(57) s 26, p 6, d 68 
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3.3.3 Charge Transfer Between Pt clusters and Graphene Support 

Finally, data for adsorption energies of several clusters of varying sizes on defective 

and defect-free graphene supports calculated by DFT are displayed in the (Figure 3.6), as 

are the charge transfer data associated with these various cases (Figure 3.7).  

 

Figure 3.6. DFT adsorption energies for selected PtN clusters in the size range N=20-80 on defective 
and defect-free graphene supports. 

 

Figure 3.7. Charge (Δq in electrons) transferred from PtN clusters to defective and defect-free 
graphene supports for selected clusters in the size range N = 20-80. 

Figure 3.7 displays the calculated charge transfer between the low-energy clusters 

and the defective/defect-free graphene supports. With increasing cluster size, there is an 
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overall decrease—although not necessarily monotonic—in the extent of charge transferred 

from the cluster to the support. Furthermore, the extent of charge transfer for any particular 

cluster size is directly correlated with the strength of binding to the graphene support. 

Interestingly, for clusters on pristine graphene, when the cluster size exceeds N ≈ 30, the 

direction of charge transfer between the cluster and support is reversed: the support donates 

charge to the Pt cluster rather than the other way around. The onset of a similar reversal in 

the direction of charge transfer is seen for Pt clusters bound at vacancy defects at N≈40. 

For the range of cluster sizes studied here, there is no such reversal in the direction of 

charge transfer for clusters bound at divacancies, i.e., the cluster always loses electrons to 

the support. More systematic correlations between these charge transfer trends and the 

catalyst d-band shifts are currently being investigated. 

3.4 Conclusions 

We implemented an empirical-potential based GA for structural optimization of 

unsupported and supported Pt nanoclusters. Using a bond-order potential for the Pt-C 

system developed by Albe et al., we explored the morphological properties of PtN (N = 2-

80) clusters considering unsupported clusters as well as those supported on pristine or 

defective graphene supports. A key finding from the structural analysis is that the fraction 

of potentially active surface sites for Pt clusters is maximal for 20-30 atom clusters 

irrespective of the presence or absence of the support and support defects; this result 

provides a useful synthetic target for optimal utilization of the precious metal catalyst. 

Selected ground-state clusters from the GA process were subjected to structural relaxation 

with DFT calculations and compared with corresponding high-symmetry icosahedral and 
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cuboctahedral clusters. For all “magic number” clusters, the GA optimization process 

produced cluster morphologies that are lower in energy than their high-symmetry 

counterparts (both at the empirical potential and DFT levels). The inclusion of the graphene 

support is found to influence cluster morphologies at very small sizes; beyond ~10 atoms, 

the cluster morphology is essentially dominated by Pt-Pt interactions with minimal 

perturbations from the support, at least for the cases considered here with small point 

defects in the support. From a case study of Pt13 clusters, we found that graphene 

supports—in particular, defective ones—can lower the d-band center relative to the Fermi 

level, which is expected to correspondingly reduce the binding energies of catalyst poisons 

such as CO.  
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CHAPTER 4  

STABILITY AND ENERGETICS OF PtRu ALLOY CLUSTERS  

4.1 Introduction  

Platinum and platinum-group metals serve as important electrocatalysts in 

hydrogen-based or methanol-based proton-exchange-membrane fuel cells (PEMFC).99, 147, 

172 In spite of the widespread use of these metals, there are still important challenges that 

need to be met in ensuring catalyst selectivity and durability. For example, carbon 

monoxide, which is a common impurity in hydrogen feeds or produced as a reaction 

intermediate, easily poisons the active sites of Pt catalysts.  PtRu alloy clusters are known 

to show the highest resistance to CO poisoning and highest catalytic activity in PEMFCs.99 

Yet, there remain important gaps in our systematic understanding of the influence of size, 

structure, and composition of PtRu alloys on catalytic performance at the nanoscale (alloy 

nanoclusters).  

DFT is a particularly useful tool for calculating potential energy surfaces and has been 

widely used for global optimization of nanoscale alloy structures.173-174 On the one hand, 

DFT requires very few adjustable parameters making it a reliable modeling tool for most 

chemical elements. On the other hand, the unfavorable scaling of the method which implies 

that optimization studies at the DFT level are typically limited to small clusters. Empirical 

interatomic potentials, which are much less computationally demanding, can help push the 

size limit on cluster optimization studies. However, these suffer from their own drawbacks 

in terms of transferability and possible over-parameterization. In the present context, we 
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are unaware of widely-used, well-tested interatomic potentials for Pt-Ru alloy clusters, 

which stymies progress in modeling this important class of catalysts.   

Density-functional tight-binding (DFTB) represents another powerful modeling 

approach that has been widely employed for studying carbon-based systems175-176 and 

metals with delocalized valance electrons.177-179 Recently, the accuracy of DFTB has been 

further improved 180-181 by adding self-consistent charge (SCC) corrections to take into 

account charge transfer due to interatomic interactions. The computational speed of SCC-

DFTB is intermediate between DFT and empirical potential methods thus opening up 

possibilities for global optimization for larger clusters sizes with high accuracy. Thus, the 

primary goal of this paper is to obtain an accurate set of SCC-DFTB parameters for 

modeling PtRu alloy clusters. (We use the terms SCC-DFTB and DFTB interchangeably 

from here on for convenience.) In the process, of developing a suitable parameterization 

for Pt-Ru interatomic interactions, we also obtain an accurate set of parameters for the 

homo-elemental Pt-Pt and Ru-Ru interactions, which also do not exist in the literature to 

date. Thus, our work contributes an important set of tools for SCC-DFTB modeling of Pt, 

Ru, and PtRu clusters that can be employed in a wide range of applications, including 

molecular dynamics and structural optimization, while pushing the size limits currently 

imposed by more expensive DFT-based approaches.  

4.2 Computational Methods 

4.2.1 SCC-DFTB Method 

Formally, the total energy, E, of a tight-binding system can be expressed within the 

DFTB approximation as177 
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 𝐸 = 𝐸 + 𝐸 + 𝐸 , (4.1) 

where 𝐸  is the band structure energy, 𝐸  is the Coulomb interaction energy and 𝐸  is 

the repulsive energy. In the DFTB formalism, 𝐸  is obtained simply from the summation 

of orbital interaction energies, which are constants that only need to be calculated once for 

a given set of elements, while 𝐸  is determined by a single parameter, namely, the 

Hubbard U parameter. All cumbersome terms related to electron exchange and correlation 

as well as terms related to ion-ion repulsion are clumped together in the pairwise potential, 

𝑉 (𝑅 ), from which the repulsive energy is obtained as  

 𝐸 = ∑ 𝑉 (𝑅 )). (4.2) 

 

The potential function, 𝑉 𝑅 , is treated as an empirical function that is to be 

determined by fitting to experimental data and/or data from higher-level electronic 

structure calculations. In this work, we employ training sets obtained from DFT 

calculations. The details of the fitting procedure and results of subsequent tests are reported 

in Section 3. For now, we simply note that the potential fitting in this work was performed 

using the Hotbit package182 Slater-Koster parameter tables from Hotbit were converted to 

the standard DFTB format and the DFTB+ package182 was used for the testing phase as 

well as for subsequent global optimization studies. 

4.2.2 Calculation Procedures 

First, we performed DFT calculations on randomly generated PtRu clusters of varying 

size and composition (20 clusters in total) to create a large database (approximately 200 
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samples) of equilibrium (structurally optimized) and non-equilibrium (artificially 

deformed) structures, energies, and forces. Thereafter, 50% of this database was used as a 

training set to parameterize DFTB potentials for Pt-Pt, Pt-Ru and Ru-Ru interactions; the 

remaining 50% of the database was used as a testing set to verify the accuracy of the DFTB-

predicted energetics relative to DFT. Since the clusters used in the fitting procedure were 

randomly generated, the ability of the DFTB potentials to predict minimum energy 

configurations of clusters with accuracy remained to be verified. Therefore, as the second 

phase of the simulations, the potential energy surface generated by the Pt-Ru DFTB model 

was sampled using a GA and minimum energy configurations calculated for a selected set 

of clusters of varying sizes and compositions (see Table 4.1). The DFTB-optimized 

minimum energy clusters were imported into VASP and further minimized using a 

conjugate-gradient algorithm (local minimization) at the DFT level. The DFTB and DFT 

results were then compared in terms of cluster formation energies to validate trends across 

cluster sizes and compositions. 

4.3 Parameterization and Testing of SCC-DFTB Potentials 

In the first step of potential parameterization, the onsite energies of valence orbitals 

(𝜙 ) in free atoms are obtained for calculating the diagonal elements (𝐻 = 〈𝜙 |𝐻|𝜙 〉 =

𝜀 ) of the Hamiltonian matrix. Using the Hotbit package, 𝜀  was obtained from all-

electron, scalar-relativistic DFT calculations with the PW92 local density approximation183 

for electron exchange and correlation. The onsite energies of the valence orbitals for Pt and 

Ru are listed in Table 4.2. The charge transfer energetics can be described within DFTB 

by a single key parameter, the Hubbard U, having the  default value 184 
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 𝑈 ≈ 𝐼𝐸 − 𝐸𝐴 (4.3) 

where IE is the ionization energy and EA the electronic affinity. The ionization 

energy and electron affinity are calculated by removing and adding electrons from and to 

corresponding orbitals of the unconfined atom and then calculating the energy change. 

Although Hubbard U values can differ by orbital, for simplicity, we use the same U for all 

orbitals. As adding a full electron may cause convergence problem, only a fraction of an 

electron is added or removed in practice (0.15 and 0.2 electrons for Pt and Ru d-orbitals, 

respectively). U values calculated from DFT are listed in Table 4.2.  

As free-atom orbital wavefunctions are too diffuse to be considered as basis 

functions for wavefunction expansion in DFTB, a common strategy to generate more 

compact orbital basis sets is to model a pseudo-atom, in which an additional confinement 

is used to mimic the atomic enviroment. We use here a common choice for confinement, 

namely a quadratic form potential176   

 𝑉 (𝑟) = , (4.4) 

where, as a rule of thumb r0 is chosen to be twice the covalent radius. Thus, in the second 

step of DFTB parameterization, the localized basis functions of valence orbitals for the 

confined pseudo-atom were calculated with all-electron DFT (in Hotbit). At the end of the 

first two steps, the Hamiltonian and overlap matrices for elementary integrals as a function 

of distance are calculated once and for all for interaction of two atoms and stored in a 

parameter file (Slater–Koster table).  

Table 4.1. Lowest energy (in eV) found by GA and simulated-annealing (SA) method 
 

Atom Size N x% (Pt) NPt NRu GA  SA 
13 0 0 13 -759.44 -757.79 
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13 25 3 10 -805.28 -801.07 
13 50 6 7 -850.70 -849.03 
13 75 10 3 -911.21 -909.45 
13 100 13 0 -953.27 -951.95 
28 0 0 28 -1648.91 -1641.96 
28 25 7 21 -1753.17 -1746.93 
28 50 14 14 -1859.13 -1853.09 
28 75 21 7 -1962.74 -1956.27 
28 100 28 0 -2062.51 -2059.71 
32 0 0 32 -1885.62 -1878.28 
32 25 8 24 -2003.99 -1998.58 
32 50 16 16 -2124.23 -2112.82 
32 75 24 8 -2244.73 -2236.32 
32 100 32 0 -2358.89 -2356.79 
55 0 0 55 -3247.15 -3242.32 
55 25 14 41 -3456.19 -3441.76 
55 50 28 27 -3666.78 -3651.25 
55 75 41 14 -3860.30 -3852.03 
55 100 55 0 -4068.83 -4059.78 
81 0 0 81 -4790.87 -4786.96 
81 25 20 61 -5087.53 -5070.88 
81 50 40 41 -5385.75 -5363.58 
81 75 61 20 -5699.71 -5680.94 
81 100 81 0 -5998.52 -5988.39 

Table 4.2. Electronic configurations and confinement potential parameters for Pt and Ru 

Element 
Valence 

shell 
𝑟 (Bohr) N 𝜀 (Ha) 𝜀 (Ha) 𝜀 (Ha) 𝑈 (Ha) 

Pt 5d 6s 6p  4.80 2 -0.235 -0.035 -0.218 0.367 
Ru 4d 5s 5p  5.27 2 -0.199 -0.038 -0.166 0.356 

 

In the third and final step, we fit the repulsive pairwise function, 𝑉 (𝑅 ), that 

accounts for ion-ion interaction and exchange-correlation effects. The parameters of this 

potential can be optimized by fitting to a suitable training set. It is well known that DFTB 

approximations are sufficiently crude so that training data from a single system result in 

poor transferability. Thus in order to acheive higher trasferability, we model numerous 

clusters with different size and geometries in DFT and use these data for training and 

testing purpose. As force (energy gradient) minimization rather than energy minimization 

is the appropriate metric for structural optimization, we define our objective function as 
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| 𝑭 (𝑹) −  𝑭 (𝑹)|, which is norm of the force difference between DFT benchmarks 

and DFTB outputs.  

Figure 4.1 displays the results of the training procedure as applied to Pt-Pt, Ru-Ru, 

and Pt-Ru interactions. All training data are from DFT calulations with spin polarization; 

the DFTB parameterization developed in this work does not include either spin polarization 

of spin-orbit effects. To the extent that our goal is to simply employ DFTB for structural 

optimization rather than detailed electronic structure calulations, this approach is similar 

in spirit to empirical potential approaches. The training set employed here includes 

(strained) atomic dimers, which we find to be very important in determining the shape of 

the repulsive potential curves over a large range of interatomic distances. For larger 

clusters, we similarly employ both ground state configurations as well as structures that are 

homogeneously expanded or contracted to sample a range of atomic environments. As seen 

from Figure 4.1, the training procedure results in repulsive potentials that are in excellent 

agreement for both homo-elemental and alloy systems. In particular, we found that 

empirically tuning the d-orbital energies 𝜀  relative to their default DFT-calculated values 

(Table 4.2) has a significant effect on the quality of the data fits. Figure 4.1 displays the 

results for the optimal onset energies (-0.25 Ha for Pt and -0.24 Ha for Ru). 
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Figure 4.1. Fitting the derivatives of repulsive potential: (a): Pt-Pt interaction; (b): Ru-Ru 
interaction; (c): Pt-Ru interaction. Family of points are from various structures. Here 𝑟 = 3.3 Å. 

While we also attempted to include bulk data in the training set, this seemed to 

adversely affect accuracy for clusters. Since our focus here is on modeling alloy clusters 

rather than bulk systems, we chose not to include bulk data in the training sets. The 

transferability of the homo-elemental parameterizations (Pt-Pt and Ru-Ru) from cluster 

data is nevertheless satisfactory for bulk Pt and Ru systems as shown in Table 4.3; the 

transferability to bulk Pt-Ru alloys is, however, poor and we caution against using this 

DFTB parameter set beyond clusters.  

The quality of the DFTB parameterization is tested by comparing cluster formation 

energies calculated using both DFTB and DFT as shown in Figure 4.2. The formation 

energy for a PtmRun cluster (on a per atom basis) is defined as  
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 𝐸 = [𝐸(𝑃𝑡 𝑅𝑢 ) − 𝑚 𝐸 − 𝑛 𝐸 ]/(𝑚 + 𝑛), (4.5) 

where 𝐸(Pt Ru ) is the total energy of the cluster, and 𝐸  and 𝐸  are the energies per 

atom of of bulk FCC Pt and HCP Ru, respectively. Test geometries for each size and 

composition are based on cluster morphologies from our previous study on Pt 

nanoclusters;18 Ru and PtRu clusters are simply generated by replacing Pt atoms in these 

clusters and subjecting them to structural relaxation. In general, we see that for both homo-

elemental as well as alloy clusters, the DFTB formation energies faithfully represent the 

target DFT data. Indeed, in addition to R2 values being very close to one, indicating small 

statistical scatter, the slopes of the fits are also close to unity, indicating excellent one-to-

one correspondence in the DFTB and DFT formation energies. Based on this successful 

parameterization, we pursue next a few examples of GA-based morphological optimization 

of PtRu alloy clusters.   
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Table 4.3. Calculated structural and energetic properties of Pt and Ru in the bulk phase. Listed 
below are lattice constants a and c, cohesive energy per atom 𝐸 , formation energy 𝐸  , and 
surface energies. 
 

Pt (FCC) DFT DFTB     
𝐸 (𝐻𝑎)  -0.17 -0.20 -0.25 -0.26 -0.29 

𝑎 (Å) 3.95 4.14 4.13 4.14 4.14 4.15 
𝐸 (eV) -5.90 -5.63 -8.10 -5.63 -6.71 -5.12 

(111) 0.63 0.52 0.50 0.52 0.53 0.57 
(100) 0.91 0.74 0.77 0.74 0.75 0.74 

       
Ru(HCP) DFT DFTB     
𝐸  (𝐻𝑎)  -0.16 -0.19 -0.22 -0.24 -0.26 

𝑎 (Å) 2.72 2.76 2.75 2.71 2.70 2.73 
c/a 1.57 1.58 1.57 1.57 1.56 1.56 

𝐸  (eV) -8.74 -12.68 -11.07 -9.18 -8.63 -6.73 
(0001) 1.05 1.12 0.99 0.99 0.88 0.76 
(1010) 2.61 3.20 2.63 2.47 2.15 1.80 

       
Pt-Ru  DFT DFTB a    

 HCP 0.24 2.44    
 FCC 0.19 2.33    

𝐸  (eV)b BCC 0.81 5.25    
 SCC 1.74 2.89    
       
 HCP 2.78(1.58) 2.76(2.08)    

𝑎(c/a)(Å) FCC 3.90 4.55    
 BCC 3.10 3.51    
 SCC 2.60 2.57    

a  𝐸 = −0.25 Ha , 𝐸 = −0.24 Ha 
b 𝐸 = 𝐸 − 𝐸 − 𝐸  where 𝐸  is the total energy of a Pt-Ru pair in a fictitious Pt1Ru1 alloy. 𝐸  and 
𝐸  are the energy of a single Pt and Ru in FCC and HCP lattice, respectively. 
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Figure 4.2. Comparison of DFT and DFTB formation energies of Pt, Ru and PtRu clusters. Dashed 
lines indicate the least-squares fit to the data. The slopes of the lines (ideally unity) and the R2 
values indicate an accurate DFTB representation of the target DFT data. 

4.4 DFTB-Based GA Optimization of PtRu Clusters  

We now apply our new SCC-DFTB parameterization to the problem of ascertaining 

minimum-energy morphologies of PtRu clusters as a function of cluster size and 

composition. The goal here is not to undertake a detailed study of the structural and 

electronic properties of PtRu alloy clusters but simply to use the DFTB parameterization 

in conjunction with a GA to confirm experimentally observed features of sub-nanometer 

PtRu clusters and validate the model. As examples, we consider PtRu clusters with 13, 32, 

55, and 81 atoms with (approximate) Pt atomic fractions of   0%, 25%, 50%, 75% and 
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100% in each case. Figure 4.3 displays the various minimum-energy cluster morphologies 

for various cluster sizes and composition. As seen from Figure 4.3, the clusters exhibit low-

symmetry morphologies in all cases with little or no resemblance to high-symmetry 

icosahedral or cuboctahedral geometries as is often assumed ad hoc in computational 

studies. In particular, the finding that low-energy Pt clusters typically adopt low-symmetry 

structures at small sizes is consistent with several prior studies.60, 109, 137 In the case of PtRu 

alloy clusters, it is well known from several experimental studies185-186 that Pt atoms 

preferentially occupy surface sites whereas Ru atoms segregate towards the core sites. This 

is also borne out by our simulations, as seen from Figure 4.3, wherein we consistently find 

segregation of Pt atoms to the surface with (near) core–shell-like morphologies visible at 

intermediate Pt compositions. As noted by Wang et al.,186 this segregation is a mechanism 

for reducing the energetically unfavorable filling of antibonding states of Pt that occurs 

during alloying with Ru. One may also note that the cohesive energy of HCP Ru is much 

stronger than that of FCC Pt (by 2.8 eV; Table 4.3), whereas the surface energies of typical 

low-index Miller surfaces of Ru are higher than that of Pt (Table 4.3); both of these facts 

would also point towards the tendency for phase segregation with Pt preferentially 

occupying surface sites. 
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Figure 4.3. Morphologies of minimum-energy PtRu clusters of various sizes (N – number of atoms) 
and compositions (x – Pt fraction) as predicted by our DFTB-based GA implementation. Gold and 
pink spheres represent Pt and Ru atoms, respectively. 

As a quantitative comparison of the DFTB model against DFT, we display in Figure 

4.4 the formation energies of the GA-optimized clusters (Figure 4.3). The DFTB results 

are obtained by the application of the GA; these GA-optimized clusters are simply imported 

into VASP and subjected to a conjugate-gradient structural relaxation (local energy 

minimization) after which formation energies are calculated using Equation 4.5. In general, 

we see from Figure 4.4 that at any given composition, smaller clusters have larger 

formation energies (less thermodynamically stable), which is to be expected due to the 

larger number of undercoordinated atoms in smaller clusters. For the 13-atom cluster, both 

DFTB and DFT predict a minimum formation energy at x=0.75. For the 32-atom cluster, 

DFTB predicts a shallow minimum in formation energy at x=0.75, which is not captured 
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in DFT. For larger clusters, the DFTB and DFT results agree in predicting a monotonic 

decrease in formation energy from pure Ru to pure Pt clusters. In general, DFTB tends to 

underestimate formation energies relative to DFT (on average by about 0.41 eV/atom) 

although the overall trends are broadly captured. Nevertheless, to the extent that we 

propose to use DFTB as a “pre-processing” step to search the potential-energy 

hypersurface for low-energy candidates for subsequent higher-level DFT calculations, the 

agreement may be deemed satisfactory. 

 

Figure 4.4. Formation energies of GA-optimized PtRu clusters (displayed in Figure 4.3) as a 
function of Pt concentration, calculated with (a) DFT and (b) DFTB. Cluster sizes (number of 
atoms) are indicated in the legends.  

4.5 Conclusions 

We have developed an SCC-DFTB parameterization that allows us to model 

chemical bonding in Pt-Ru alloy clusters. The parameter set was developed by using a 

training set of first-principles DFT data for homo-elemental (Pt and Ru) and alloy clusters. 

Our new parameterization is able to describe the thermodynamics (formation energies) of 

Pt, Ru, PtRu nanoclusters in excellent agreement with benchmark DFT calculations. 
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As an example application, we employed the validated DFTB parameter set within 

a GA for structural optimization of PtRu clusters and showed that the procedure correctly 

captures surface segregation of Pt in PtRu nanoclusters.  The low-energy structures 

predicted by the DFTB-based GA can serve as good starting points for future investigations 

of electronic properties and catalytic activity with higher-level DFT calculations. More 

broadly, the new DFTB parameter set for Pt-Ru interactions presented in this work opens 

up avenues for detailed investigation of structure–function relationships in this important 

class of catalytic materials. 
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The aim of this thesis was to investigate the effects of particle size and structure, 

supports (graphene), and alloying (with Ru) on the catalytic properties of Pt nanoclusters 

with the aim of providing useful targets for catalyst design. Below, we summarize the key 

findings and conclusions of our work.   

First, we studied unsupported Pt nanoclusters using an empirical-potential-based 

GA and determined the thermodynamically relevant, low-energy structures. For 

nanoclusters up to 309 atoms (~ 1.5 nm), low-symmetry structures were found to be 

consistently preferred over high-symmetry ones, especially for small cluster sizes. GA-

optimized clusters show a non-monotonic decrease of surface d-band centers with respect 

to size, and a minimum around Pt100 was found. CO adsorption on GA-optimized clusters 

also presented similar non-monotonic behavior with a global maximum at around Pt55. By 

employing machine-learning algorithms that incorporate a combination of structural and 

electronic descriptors, we were able to achieve significant improvement in the prediction 

of CO binding energies compared with traditional d-band model.  

Next we explored the energetics and morphology of PtN (N = 2-309) clusters 

supported on graphene supports. We found that the fraction of potentially active surface 

sites for Pt clusters is maximal for 20-30 atom clusters on graphene support; noticeable 

modification of cluster morphologies from their unsupported cases were observed only 

when clusters were smaller than ten atoms and primarily on defective graphene supports. 

The effect of the support—more precisely support defects—on the electronic properties of 
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Pt clusters is more pronounced.  For the cases of supported Pt13 clusters studied here, the 

cluster d-band energy is downshifted relative to the Fermi level in direct proportion to the 

strength of binding of the cluster to the support. Cluster adsorption energies on the support 

and the attendant d-band shifts are sensitive to the precise details of bonding at the cluster–

support interface, especially for small clusters, requiring careful structural optimization. 

By integrating computationally inexpensive empirical-potential based GAs for global 

structural optimization with DFT modeling for local minimization and electronic structure 

analyses, we demonstrated a viable approach for systematic studies of supported catalyst 

nanoclusters.  

In the last part of this thesis, we developed an SCC-DFTB parameterization that 

allows us to model chemical bonding in Pt-Ru alloy clusters. The parameter set was 

developed by employing a training set of cluster energies and interatomic forces obtained 

from Kohn-Sham DFT calculations for homo-elemental and alloy clusters. Extensive 

simulations of a testing set of PtRu alloy nanoclusters show that this SCC-DFTB scheme 

is capable of capturing cluster formation energies with high accuracy relative to DFT 

calculations. The new SCC-DFTB parameterization was employed within a GA to search 

for global minima of PtRu clusters in the range of 13-81 atoms and the emergence of Ru-

core/Pt-shell structures at intermediate alloy compositions was systematically 

demonstrated. Our new SCC-DFTB parameterization now enables computationally 

inexpensive modeling of Pt-Ru clusters that are among the best-performing catalysts in 

numerous energy applications. Minimum-energy structures found in this work can be used 

as good starting points for DFT investigations of electronic properties in the future. 
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While this work was restricted to the Pt-C and Pt-Ru material systems, there is no 

fundamental impediment to applying similar approaches to multicomponent catalyst 

clusters on various supports as long as appropriate interatomic potentials, preferably of low 

computational complexity, are available for the systems of interest. In addition, by 

integrating computationally inexpensive empirical-potential or DFTB based GAs for 

global structural optimization with DFT modeling for local minimization and electronic 

structure analyses, we have demonstrated a viable approach for systematic studies of 

nanocluster catalysis. The findings presented in this thesis can significantly aid rational 

design of nanoscale catalysts, particularly in the sub-nanometer range where both structural 

and electronic properties differ fundamentally from those at larger length scales. 

5.2 Future Directions 

 Significant progress has been made in recent years in improving the catalytic 

performance of Pt nanoparticles in fuel cells thanks to the progress in experimental 

synthesis technology. Computational modeling, on the other hand, plays an indispensable 

role in elucidating the fundamental relationships and factors that determines the catalytic 

performance of Pt clusters, thus supporting experimental design and optimization. 

However, due to the considerable complexity of coupling between cluster morphology 

(size and shape), interactions with supports and adsorbates, and presence of alloying 

elements, there remain several open and interesting questions for future investigation.  

As part of this thesis, we have showed that the morphology of Pt clusters, especially 

in the sub-nanometer regime, has substantial impact on its stability, electronic structure, 

and adsorption energetics. One interesting possibility for future work is to study how 
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adsorbates affect the stability of Pt and PtRu clusters. For example, several experimental 

studies have shown pronounced CO-induced structural changes of Pt clusters, especially 

for smaller cluster sizes and high CO pressures.187-190 Currently, such (dynamic) adsorbate-

induced restructuring is completely ignored in computational catalysis studies. Therefore, 

to further bridge the gap between modeling and experiments, we would like to explore the 

low-energy structures of Pt and PtRu clusters in the presence of CO. Development of 

accurate and computationally inexpensive models that capture the interactions between CO 

molecules and Pt clusters is a key prerequisite due to the intricate dependence of CO 

binding strength on the local environment of surface atoms as well as CO coverage. 

Subsequently, with the aid of GAs and DFT modeling, the structural stability and catalytic 

properties of Pt and PtRu clusters at realistic CO coverages can be further explored.  

Machine learning is a powerful tool to capture hidden relationships between 

descriptors and targets. Recently, several research groups have successfully applied 

machine-learning algorithms to predict the complex, nonlinear interactions between 

adsorbates and catalysts, however, focusing only on simple crystal surfaces.114-115 In this 

thesis, we showed the promising ability of machine-learning models for rapid estimation 

of binding energies between CO molecule and Pt clusters. In future work, this method can 

be extended to predict adsorption energies of CO on PtRu alloy clusters and, more 

generally, for various adsorbates and metal systems. Such inexpensive yet accurate models 

can facilitate rapid analysis of reaction pathways and screening of metal catalysts.  

 Beyond these immediate extensions of the current work, there are still other open 

problems such as (1) understanding the effect of defect patterns or dopants in graphene 

supports on the catalytic properties of supported Pt particles, (2) understanding the kinetics 



 

79 

of the key reactions occurring on the surface of Pt nanoclusters with micro-kinetic 

modeling, and (3) seeking non-precious metal alternatives via computational screening.  
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APPENDICES 

APPENDIX A 

FIRST-PRINCIPLES PREDICATIONS OF STRUCTURE FUNCTION 
RELEATIONSHIPS OF GRAPHEHE-SUPPORTED PLANTINUM 

NANOCLUSTERS 
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APPENDIX B 

AB INITO AND CLASSICAL SIMULATIONS OF THE TEMPERATURE 
DEPENDENCE OF ZEOLITE PORE SIZES 
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