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ABSTRACT

SPECIALIZATION AND TRADE-OFFS IN PLANT-FEEDING INSECTS

SEPTEMBER 2017

DANIEL A. PETERSON, B.A., AMHERST COLLEGE

M.S., UNIVERSITY OF WASHINGTON

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Benjamin B. Normark

The immense diversity of life on Earth has been attributed to the partitioning of 

available resources into ecological niches, but it is not obvious what determines the niche

size of each species. For example, most plant-feeding insects consume only one or a few 

closely-related host-plant species despite the advantages of having a broader diet. Many 

researchers have therefore suggested that the evolution of broad diets in plant-feeding 

insects must be constrained by genetic trade-offs between adaptations to alternative host-

plants. Despite its intuitive feel, however, little empirical evidence in support of the trade-

off hypothesis has emerged from decades of experimental studies comparing individual 

performance on alternative hosts within insect populations.

Here I use a broader approach to evaluate the role of trade-offs in driving 

ecological specialization in plant-feeding insects. By collecting host-use data for 

thousands of insect species and fitting those data into long-term evolutionary models, I 

investigate whether trade-off constraints have left observable signatures in the present 

ecological niches of existing species. Chapter 1 focuses on a single family of insects, the 
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armored scales (Hempitera: Diaspididae), revealing that positive correlations between 

evolutionary changes in host performance best fit the observed patterns of diaspidid 

presence and absence on nearly all focal host taxa, suggesting that adaptations to 

particular hosts enhance rather than reduce performance on other hosts. In chapter 2, I 

uncovered a complex network of evolutionary interactions between caterpillar 

adaptations to eleven host-plant orders, indicating that different host-use trade-offs act 

over long- and short-term evolutionary timescales. In contrast, host-use patterns of true 

bugs revealed a total lack of trade-offs for the same host-plant orders over both 

timescales. Chapter 3 turns to armored scale insects again, this time those that we 

collected in systematic surveys across a large diversity of trees in two tropical rainforest 

habitats. Using each insect species’ abundance on each tree as a proxy for host-plant 

performance, we found no evidence for performance trade-offs on alternative hosts 

despite apparent host-use specialization. Overall, these results suggest that the extreme 

specialization of plant-feeding insects arises from long-term, potentially nonadaptive 

evolutionary processes rather than simple genetic trade-offs.
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CHAPTER 1

PHYLOGENETIC ANALYSIS REVEALS POSITIVE CORRELATIONS

BETWEEN ADAPTATIONS TO DIVERSE HOSTS IN A GROUP OF

PATHOGEN-LIKE HERBIVORES

1.1 Abstract

A jack of all trades can be master of none – this intuitive idea underlies most 

theoretical models of host-use evolution in plant-feeding insects, yet empirical support 

for trade-offs in performance on distinct host plants is weak. Trade-offs may influence the

long-term evolution of host use while being difficult to detect in extant populations, but 

host-use evolution may also be driven by adaptations for generalism. Here we used host-

use data from insect collection records to parameterize a phylogenetic model of host-use 

evolution in armored scale insects, a large family of plant-feeding insects with a simple, 

pathogen-like life history. We found that a model incorporating positive correlations 

between evolutionary changes in host performance best fit the observed patterns of 

diaspidid presence and absence on nearly all focal host taxa, suggesting that adaptations 

to particular hosts also enhance performance on other hosts. In contrast to the widely 

invoked trade-off model, we advocate a “toolbox” model of host-use evolution in which 

armored scale insects accumulate a set of independent genetic tools, each of which is 

under selection for a single function but may be useful on multiple hosts. 
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1.2 Introduction

The prevalence of host specialization in plant-feeding insects is often interpreted 

as justification for the idea that a jack of all trades can be master of none – that trade-offs 

in performance on distinct host taxa limit the fitness of a generalist (Futuyma & Moreno 

1988; Scheirs et al. 2005; Singer & Stireman 2005; Forister et al. 2012; Barrett & Heil 

2012). Trade-offs are assumed to drive specialization in most analytical models of host-

use evolution (Ravigné et al. 2009; Nurmi & Parvinen 2011; Remold 2012), yet empirical

support for trade-offs is limited. Studies of wild and experimentally selected populations 

of plant-feeding insects have demonstrated positive genetic correlations in performance 

across hosts more often than negative correlations (reviewed by Futuyma 2008; Forister 

et al. 2012), suggesting that performance trade-offs are not the most important factor 

limiting host use within species. However, trade-offs may restrict host use without 

leaving a signature in the extant genetic variation of a species, especially if the trade-offs 

are strong enough to select against generalists and drive one specialist strategy to fixation

(Joshi & Thompson 1995). Moreover, studies of one aspect of herbivore fitness, such as 

larval feeding performance, may not detect fitness trade-offs that occur through other 

mechanisms like adult feeding performance (Scheirs et al. 2005) or predation risk (Singer

& Stireman 2005).

In contrast to the trade-off model, alternative theories suggest that adaptations to 

one host may be neutral or even positive with respect to performance on other hosts 

(Forister et al. 2012; Gompert et al. 2015). In fact, generalist adaptations that increase 

fitness across multiple hosts are likely to spread quickly within species (Whitlock 1996; 
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Normark & Johnson 2011). An example of such an adaptation is an “effector” protein that

suppresses inducible defenses early in the host plant's biochemical response pathway. The

biochemistry of immune signaling is much more conserved across plants than are the 

particular defensive compounds produced downstream, so adaptations that repress 

immune responses early in the pathway are likely to be effective against a wide array of 

host taxa (Ali & Agrawal 2012; Barrett & Heil 2012). Most likely, the signs and 

magnitudes of pleiotropic interactions related to host-use adaptations are variable, with 

some adaptations producing trade-offs in fitness, others increasing fitness across multiple 

hosts, and a third category acting independently between hosts. Nevertheless, we can ask 

whether such interactions have been positive, negative or neutral, on average, over the 

evolutionary history of plant-feeding insects.

Long-term evolutionary processes affecting host use can be investigated 

empirically through phylogenetic analysis, and researchers have used phylogenetic 

comparative methods to examine evolutionary patterns in host use in many plant-feeding 

insects, such as butterflies (Janz et al. 2001; Hardy & Otto 2014), bark beetles (Kelley & 

Farrell 1998), leaf beetles (Futuyma et al. 1995), and aphids (Jousselin et al. 2010; Hardy

et al. 2015). However, interpreting specialization in these and many other plant-feeding 

insects is complicated by the fact that both host preference and performance influence 

realized host use (Forister et al. 2012). Although the ability to use a broad range of hosts 

could benefit any plant-feeding insect (Futuyma & Moreno 1988), those that oviposit 

exclusively on preferred host plants may not experience selection to use novel hosts 

(Ravigné et al. 2009). In practice, observed limitations on host use can be attributed to 
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performance constraints, difficulties associated with sensory identification of and 

attraction to host plants, or a lack of selection for increased host breadth (Mayhew 1997; 

Bernays 2001). Disentangling the evolutionary effects of these three potential constraints 

on host-use would be challenging in most groups of herbivorous insects, and we are not 

aware of any phylogenetic study that has attempted to do so.

In contrast to most plant-feeding insects, armored scale insects (Hemiptera: 

Diaspididae) exhibit a dramatically simplified life history, thereby providing an ideal 

clade within which to examine the evolution of host performance. An adult diaspidid 

female is completely sessile: she has permanently embedded herself in her host plant and 

has lost all locomotory appendages (Gullan & Kosztarab 1997). Dispersal and host 

“selection” is therefore accomplished by the lone motile life stage that precedes feeding –

first instar “crawlers” (adult males fly but do not feed; Gullan and Kosztarab 1997). 

When these crawlers disperse away from the maternal host-plant they do so haphazardly, 

typically via wind or rarely via phoresy on other insects (Magsig-Castillo et al. 2010), 

and must feed exclusively on the plant upon which they happen to land (Hill & Holmes 

2009). As a result, host repertoire is overwhelmingly influenced by host performance 

rather than host preference, and diaspidids experience strong selection favoring the ability

to use all potential host plants in the local environment. It is therefore possible to attribute

limitations in the host repertoires of armored scale insects to constraints on the ability to 

feed, develop and reproduce on each host. Moreover, observations of diaspidid host-use 

are extremely reliable because adult females are found only on host plants where they 
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have successfully developed, and only adult females can be identified to species using 

published keys (Ferris 1942; Miller & Davidson 2005).

Armored scale insects have colonized a diverse set of plant species, but most 

diaspidid species appear to specialize on smaller subsets of host taxa (Andersen 2009; 

García Morales et al. 2015). Here we took advantage of that host-use variation and the 

simplicity of diaspidid natural history to assess whether the pattern of diaspidid species 

presences and absences on focal host taxa suggests generally positive, negative, or neutral

evolutionary interactions between host-use adaptations. Specifically, we gathered host-

use data from collection records of North American diaspidids to parameterize a 

phylogenetic model of host-use evolution in that group. We assumed that a continuous 

performance character determining presence or absence on each host taxon evolved 

randomly along each branch of the diaspidid phylogeny, but we allowed for an interaction

parameter between evolutionary changes in diaspidid performance on distinct hosts. 

Under the trade-off model we expected to find negative interactions between evolutionary

changes in diaspidid performance on distinct hosts, because adaptations to one host 

should reduce performance on other hosts. On the other hand, if generalist adaptations 

have been more important than trade-off constraints, we expected to find positive 

interactions between evolutionary changes in diaspidid performance on distinct hosts, 

because adaptations to one host should also increase performance on other hosts. 

Alternatively, adaptations to distinct hosts could be mostly independent of each other, 

leading to a lack of interactions between evolutionary changes in diaspidid performances 

on distinct hosts.
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By integrating across presence and absence host-use data from all observed 

diaspidid species, we estimated a single interaction parameter characterizing each pair of 

host taxa. This parameter described the average relationship between adaptations to those 

two hosts across the entire evolutionary history of armored scale insects. We did not 

investigate trade-offs between extant genotypes within individual diaspidid species, 

although the possible historical existence of such within-species trade-offs is implicit in 

our model. Trade-offs may vary between species due to epistatic effects (Remold 2012), 

but evolutionarily labile trade-offs may not constrain host-use over the long-term. Our 

approach looked for broad-scale and persistent interactions between diaspidid host-use 

adaptations that could play a role in structuring insect communities across ecosystems.  

1.3 Methods

North American diaspidid collection data were downloaded from the Tri-Trophic 

Thematic Collection Network database (http://tcn.amnh.org/). We obtained 23,810 

individual specimen records and parsed them for host-plant information, creating a binary

presence/absence matrix of insect species by host plants. Armored scale insects were 

considered present on all hosts for which they had at least one host record in the database.

All plant taxonomic names were standardized with the Taxonomic Name Resolution 

Service (Boyle et al. 2013) and insect taxonomic names with ScaleNet (García Morales 

et al. 2015), an online database of scale insect literature. We created separate data 

matrices for host species and host genera in order to analyze host-use interactions at two 

potential levels of specialization. To account for shared ancestry between the observed 
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scale insect species, we constructed a phylogeny of as many species as possible by 

combining previously published sequences with those from additional specimens (see 

Appendix A.1).

Analyzing comparative data in a phylogenetic context requires assuming an 

explicit model of evolutionary change. Here we assumed a model in which the ability of 

an armored scale insect to develop on a given host taxon is governed by a hidden 

continuous performance trait that evolves by Brownian motion, with presence on the host

occurring only when the performance trait exceeds a threshold value (Felsenstein 2012). 

The advantage of this model over a standard discrete-trait model is that the probability of 

a transition between presence and absence on a given host is not constant, but is 

dependent on whether the insect's performance value for that host is close to, far below, 

or far above the threshold for that host. We believe that a continuous performance 

character captures the polygenic nature of host use (Forister et al. 2012; Barrett & Heil 

2012) more realistically than a fixed-rate discrete trait model originally developed to 

represent single genetic loci. 

We used the model described above to obtain maximum-likelihood estimates, for 

each pairwise combination of focal host taxa, of an interaction parameter between the 

inferred performance traits underlying presence on the two hosts. This parameter 

described the correlation between random evolutionary changes in diaspidid performance

on the two hosts that would be most likely to produce the observed patterns of diaspidid 

host-use. Positive correlations indicated that evolutionary increases in performance on 

one host co-occurred with increases in performance on the other host (making co-
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occurrence on the two hosts more likely). Negative correlations indicated that increases 

in performance on one host co-occurred with decreases in performance on the other host 

(making co-occurrence on the two hosts less likely). All analysis was conducted with the 

program ThreshML (Felsenstein 2012) using the wrapper Rthreshml from the Rphylip 

package (Revell & Chamberlain 2014) in the R statistical environment (R Core Team 

2015). As a check on the plausibility of the model-based calculations, we also calculated, 

for each pairwise combination of focal hosts, the Pearson product-moment correlation 

between binary vectors of diaspidid presence and absence on each host. This calculation 

measured diaspidid co-occurrence on each pair of hosts relative to a null expectation of 

independent presences and absences on the two hosts, without accounting statistically for 

the effect of shared evolutionary history between diaspidid species. 

For visual interpretation of our results, we produced network graphs in which 

each host taxon was represented by a node and the thickness of the line between each pair

of nodes was proportional to the absolute value of the best-fit correlation value between 

evolutionary changes in diaspidid performance on those hosts. Positive correlations were 

represented as solid black lines, negative correlations as dashed red lines. Network 

structure was revealed by plotting distances between nodes according to the force-

directed Fruchterman-Reingold algorithm as implemented in the R package igraph 

(Csárdi & Nepusz 2006), with the attraction between nodes proportional to the 

corresponding evolutionary correlation between host performance traits (negative 

correlations were assigned an attraction value of zero).
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We tested the statistical significance of the resulting correlation values by 

producing a series of 1000 null datasets that simulated independent Brownian motion of a

continuous character for performance on each host taxon along the diaspidid phylogeny. 

We converted the continuous host performance values to a binary host presence/absence 

character by assuming that only the diaspidid species with the highest performance values

were present on that host, with the threshold set by matching the number of species using 

that host in the empirical data. We calculated phylogenetic and non-phylogenetic 

correlations of diaspidid host use on all pairwise combinations of hosts in the simulated 

data, producing an expected distribution of correlations under the null model of no 

evolutionary interaction between host taxa.

Our statistical power to detect positive or negative host-use interactions relied on 

observing substantial variation in host use across diaspidids for each host taxon. We 

therefore had little power to analyze host taxa used by only a few armored scale insect 

species. To focus our computational resources on analyzing hosts with the most statistical

power to detect interactions, we defined focal host plant taxa as those parasitized by at 

least ten diaspidid species. Nevertheless, due to concern that our focal host selection 

criterion would bias our results, we also analyzed 1000 interactions between host pairs 

randomly selected (without replacement) from the entire host pool.

1.4 Results

From the 23,810 specimen records we identified 347 armored scale insect species 

involved in 3,379 interactions with 1,435 plant species and 3,612 interactions with 912 
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plant genera. We obtained genetic sequences for 166 of those scale insect species to infer 

a phylogeny (Fig. S1). Our focal hosts were 27 host species and 64 host genera that 

harbored at least 10 of the 166 armored scale species for which we had phylogenetic data.

This highly pruned subset of the data nevertheless encompassed 12% of the observed 

interactions by host species and 29% by host genus, allowing 351 pairwise host-species 

comparisons and 2,016 pairwise host-genus comparisons.

Our analysis of host use across the diaspidid phylogeny revealed mostly positive 

associations between evolutionary changes in performance on the focal host taxa, even 

between angiosperm hosts and those belonging to the distantly related cycad and conifer 

clades. At the host species level, the mean evolutionary correlation between inferred host 

performance traits was 0.47, and 97% of correlations were greater than zero (Fig. 1.1a). 

At the host genus level, the mean evolutionary correlation between inferred host 

performance traits was 0.41, and 95% of correlations were greater than zero (Fig. 1.1b). 

Simulation tests indicated that these results were highly statistically significant, with the 

mean evolutionary correlation between inferred host performance traits and the 

proportion of correlations greater than zero more extreme than any produced in 1000 null 

model randomizations of the data (P < 0.001). The overwhelmingly positive associations 

between diaspidid presences on distinct hosts were corroborated by the Pearson product-

moment correlations, although those correlations were generally lower in magnitude (Fig.

S2). Visualization of network graphs revealed no obvious network structure, with the 

exception of one host genus, Bambusa, isolated from the other hosts (Fig. 1.1c, 1.1d). 

Diaspidid performance on Bambusa exhibited negative evolutionary correlations with 
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performance on 89% of the other genera and accounted for 62% of all negative 

correlations observed in the host genus comparisons. No taxon displayed such 

consistently large deviations from the mean correlation value in any of the simulated null 

datasets (mean deviation -0.535; P<0.001). 

Mean correlations between host pairs randomly selected from the entire host pool 

were much closer to zero, but they were positive on average (mean correlation between 

host species: 0.06; between host genera: 0.09; Fig. S3).
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Figure 1.1. Distribution of inferred correlations between evolutionary changes in 
diaspidid presence on pairs of focal host plant species (a) and genera (b) under the 
evolutionary performance threshold model and the corresponding network graphs by host
plant species (c) and genera (d). Positive interactions are represented by solid, black lines 
and negative correlations by dashed, red lines, with line thicknesses proportional to the 
magnitudes of the correlations. Network structure was plotted using the Fruchterman-
Reingold algorithm, a force-directed layout method in which attraction between vertices 
was proportional to their correlation values (zero for negative correlations), and edge 
lengths were determined by minimizing total network energy. Each vertex represents a 
host taxon, with the following labels for host species – A: Cycas revoluta, B: Cocos 
nucifera, C: Mangifera indica, D: Persea americana, E: Camellia japonica, F: Ligustrum
japonicum, G: Citrus sinensis, H: Citrus limon, I: Citrus reticulata, J: Phoenix roebelenii,
K: Dypsis lutescens, L: Laurus nobilis, M: Howea forsteriana, N: Nerium oleander, O: 
Beaucarnea recurvata, P: Ficus benjamina, Q: Persea borbonia, R: Carya illinoinensis, 
S: Morella cerifera, T: Hedera helix, U: Prunus persica, V: Ilex cornuta, W: Zamia 
pumila, X: Strelitzia reginae, Y: Citrus aurantiifolia, Z: Liriope muscari, &: Syagrus 
romanzoffiana – and host genera – 1: Quercus, 2: Citrus, 3: Ilex, 4: Persea, 5: Prunus, 6: 
Ficus, 7: Ligustrum, 8: Cycas, 9: Salix, 10: Camellia, 11: Cocos, 12: Mangifera, 13: 
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Phoenix, 14: Pinus, 15: Viburnum, 16: Ulmus, 17: Chamaedorea, 18: Euonymus, 19: 
Yucca, 20: Acer, 21: Zamia, 22: Carya, 23: Juglans, 24: Juniperus, 25: Magnolia, 26: 
Vaccinium, 27: Howea, 28: Nerium, 29: Fraxinus, 30: Hedera, 31: Strelitzia, 32: Laurus, 
33: Vitis, 34: Dypsis, 35: Diospyros, 36: Bambusa, 37: Beaucarnea, 38: Populus, 39: 
Dracaena, 40: Celtis, 41: Rosa, 42: Euphorbia, 43: Areca, 44: Tillandsia, 45: Eugenia, 
46: Morella, 47: Jasminum, 48: Olea, 49: Annona, 50: Liriope, 51: Calophyllum, 52: 
Callistemon, 53: Elaeagnus, 54: Ixora, 55: Syagrus, 56: Morus, 57: Hibiscus, 58: Buxus, 
59: Osmanthus, 60: Pandanus, 61: Cymbidium, 62: Cinnamomum, 63: Murraya, 64: 
Asparagus. Nodes representing taxa from non-angiosperm clades are highlighted (cycads 
in yellow, conifers in cyan).

1.5 Discussion

In our examination of the evolution of host use in armored scale insects, we found

that a model of positive correlations between evolutionary changes in host performance 

best fit the observed patterns of diaspidid presence and absence on nearly all focal host 

taxa. Surprisingly, we found that even presence on host taxa that are extremely 

phylogenetically distant from the angiosperm majority, including conifers and cycads, 

showed mostly positive evolutionary correlations with presence on other hosts. We 

therefore conclude that trade-offs between adaptations to distinct host taxa do not explain 

the observed variation in diaspidid presence and absence on the diverse set of hosts we 

analyzed. Instead, generalist adaptations appear to play a significant role in shaping host 

use within Diaspididae.

However, despite the overwhelming trend of positive host-use correlations, 

presence on Bambusa (a genus of large, clumping bamboos), exhibited mostly negative 

evolutionary correlations with presence on other hosts. It is unclear why bamboos were 

negatively correlated with so many other genera (including several other monocots), 

although it is easy to imagine adaptive trade-offs involving the unique structure 
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(Parameswaran & Liese 1976; Vieira et al. 2002) or phenology (Franklin 2005; Nath et 

al. 2008) of bamboos. Nevertheless, another explanation for the observed pattern of 

negative correlations between Bambusa and the other genera could be that bamboos tend 

to grow in relatively dense, pure stands (Taylor & Zisheng 1987; Taylor et al. 1991), so 

the scale insects present in those habitats experience very weak selection for use of other 

hosts. The observed negative correlations may reflect patterns of short-term local 

adaptation or genetic drift rather than insuperable trade-offs.

By summarizing insect collection data as presence or absence on each host taxon, 

our analysis was unable to account for quantitative differences in survival or reproduction

on distinct hosts that could allow a direct test of fitness trade-offs between host taxa. 

Unfortunately, the host-specific abundance data needed to accurately investigate 

quantitative trade-offs in host-related fitness are not presently available for Diaspididae 

due to the haphazard and non-quantitative nature of most scale insect collection events. 

We are currently conducting systematic surveys for armored scale insects at multiple 

high-diversity sites around the globe, the results of which may provide insight into the 

relationships between diaspidid abundance on each host tree species, genetic effective 

population size and evolutionary history.

We did not account for insect or host plant geographic distributions, a factor 

which might be expected to produce patterns of negative correlations between hosts 

whose ranges do not overlap. Nevertheless, we found few negative correlations between 

hosts, suggesting that geographic distributions do not limit host use for diaspidids in a 

substantial way. However, we only analyzed host records from within the United States – 
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a similar analysis of global host records would probably reveal negative interactions 

between geographically distant plant taxa.

Another caveat to our study is that we were forced (in order to maximize 

statistical power) to focus on plant taxa with at least ten armored scale insect species. It is

possible that plant species that are involved in strong trade-offs with other host species 

tend to have few armored scale insect species that eat them, and that our data pruning 

thus biased our data against hosts that require trade-offs. We addressed this problem by 

analyzing data for host genera as well as host species, because more genera met the ten-

diaspidid threshold. Moreover, our analysis of a random sample of all interactions, 

including those between hosts with fewer than ten scales, also revealed positive 

evolutionary interactions between host performances on average. Ultimately, of course, 

we cannot rule out the possibility that use of some hosts requires trade-offs with fitness 

on other hosts. Nevertheless, our results suggest that positive interactions between host-

use adaptations are much more common than expected under a model of widespread 

trade-offs.

Given the largely positive evolutionary correlations between armored scale insect 

presence on diverse host taxa, we advocate a “toolbox” analogy to describe the evolution 

of host use in Diaspididae. While the trade-off model assumes fixed host-related 

constraints, for example, the amino acid sequence of a single enzyme that must be 

optimized for use with all hosts, we suggest that armored scale insects have accumulated 

a set of genetic tools that are optimized for particular host-related functions rather than 

for particular hosts. Each tool (e.g. protein or regulatory sequence) may be useful on 
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more than one host, thereby generating positive correlations in host use. Conflicts 

between optimization of individual proteins for use on different hosts may be resolved 

over evolutionary time by gene duplication and divergence. Evidence for the plausibility 

of this model comes from plant-feeding Lepidoptera, in which cytochrome P450 

monooxygenase enzymes have proliferated and diversified to catalyze a wide range of 

plant allelochemical detoxification reactions (Berenbaum & Feeny 2008), with the 

transcription of an enzyme induced by the presence of its toxic substrate in some cases 

(Prapaipong et al. 1994; Wen et al. 2009). Under the toolbox model, host use is 

determined by whether the armored scale insect has acquired and maintained the genes 

necessary to accomplish the mechanical and biochemical tasks involved in feeding, 

developing, and surviving on each host. Adapting to multiple hosts requires building up 

the insect's genetic tool set, which would therefore increase the probability that it will 

adapt to additional hosts.

The toolbox model implies that host specialization in armored scale insects is 

driven by a combination of adaptive and non-adaptive forces. The ability to use a 

particular host may often depend on the balance between selection for using that host and

the pressure of deleterious mutations in the genes required to use it (Whitlock 1996; 

Remold 2012). The addition of new plant taxa to an insect's host repertoire could also be 

limited by a lack of genetic variation for using novel hosts (Futuyma et al. 1995), 

potentially due to the rarity of relevant gene duplications or other mutations that generate 

host-related plasticity. Specialized diaspidids may therefore be more common in habitats 
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with low host diversity (e.g. bamboo forests), and in small or fragmented insect 

populations. 

Diaspidids are clearly not stereotypical plant-feeding insects (Normark & Johnson

2011), and negative interactions between host-use adaptations may be much more 

important in other herbivorous groups than they are for armored scale insects. 

Nevertheless, our results suggest that extremely broad host ranges are not prevented by 

universal, unavoidable trade-offs. This conclusion supports the idea that the specialized 

host repertoires of most plant-feeding insects (Forister et al. 2015) may be driven by 

constraints on aspects of their ecology beyond feeding performance (Singer & Stireman 

2005; Forister et al. 2012). Elucidating those constraints remains a challenge in most 

systems, but testing hypotheses about the long-term evolutionary relationships between 

host-related ecological traits is feasible with phylogenetic comparative methods (Hardy 

et al. 2015). We advocate this empirical, macroevolutionary viewpoint as a 

complementary approach to theoretical models and experimental tests of the factors 

influencing host use and the evolution of ecological specialization.
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CHAPTER 2 

MICRO- AND MACROEVOLUTIONARY TRADE-OFFS IN PLANT-FEEDING

INSECTS

2.1 Abstract

A long-standing hypothesis asserts that plant-feeding insects specialize on 

particular host plants because of negative interactions (trade-offs) between adaptations to 

alternative hosts, yet empirical evidence for such trade-offs is scarce. Most studies have 

looked for microevolutionary performance trade-offs within insect species, but host-use 

could also be constrained by macroevolutionary trade-offs caused by epistasis and 

historical contingency. Here we used a phylogenetic approach to estimate the micro- and 

macroevolutionary correlations between use of alternative host-plant taxa within two 

major orders of plant-feeding insects: Lepidoptera (caterpillars) and Hemiptera (true 

bugs). Across 1604 caterpillar species, we found both positive and negative pairwise 

correlations between use of eleven host-plant orders, with overall network patterns 

suggesting that different host-use constraints act over micro- and macroevolutionary 

timescales. In contrast, host-use patterns of 955 true bug species revealed uniformly 

positive correlations between use of the same host-plant orders over both timescales. The 

lack of consistent patterns across timescales and insect orders indicates that host-use 

trade-offs are historically contingent rather than universal constraints. Moreover, we 

observed few negative correlations overall despite the wide taxonomic and ecological 

diversity of the focal host-plant orders, suggesting that positive interactions between host-
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use adaptations, not trade-offs, dominate the long-term evolution of host use in plant-

feeding insects.

2.2 Introduction

Most plant-feeding insects are ecological specialists restricted to a small number 

of host-plant species (Forister et al. 2015). The prevalence of specialization is surprising 

given the advantages of being a generalist (including greater resource and refuge 

availability), and many researchers have therefore suggested that the evolution of 

generalism must be constrained (Futuyma & Moreno 1988; Futuyma et al. 1995; Scriber 

2010). This constraint is usually imagined as a trade-off between adaptations to 

alternative hosts, whereby an increase in performance on one host comes at the cost of 

decreased performance on another host (Agrawal et al. 2010; Forister et al. 2012). Such 

trade-offs are crucial elements of most theoretical models of the evolution of 

specialization (Ravigné et al. 2009; Nurmi & Parvinen 2011; Remold 2012), and are 

often assumed to arise as consequences of the genetic architecture of host-use. One 

frequently invoked genetic model involves antagonistic pleiotropy, in which distinct 

alleles at a single locus have opposite fitness effects on alternative hosts (Futuyma & 

Moreno 1988; Scheirs et al. 2005; Scriber 2010; Gompert et al. 2015). For example, 

small changes to an enzyme could make it more efficient at detoxifying the secondary 

compounds of one plant species and less efficient at detoxifying the secondary 

compounds of another plant species (e.g. Li et al. 2003). Despite the intuitive appeal of 

antagonistic pleiotropy, however, empirical studies have generally failed to find evidence 
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for negative genetic correlations between performance on alternative hosts within insect 

species (Futuyma 2008; Forister et al. 2012; Gompert et al. 2015). Nevertheless, 

antagonistic pleiotropy may be difficult to detect within species because its effects can be

obscured by segregating fitness variation at non-host-specific loci (Joshi & Thompson 

1995). Moreover, genetic variation for use of novel hosts is often absent within a single 

population (Futuyma et al. 1995) and host-use is phylogenetically conserved in many 

insect groups (Futuyma & Agrawal 2009). We therefore cannot rule out the possibility 

that historical antagonistic pleiotropy drove the evolution of specialization in ancestral 

lineages of plant-feeding insects.

Although the prevalence of host-use specialization is often attributed to adaptive 

trade-offs, some theoretical models suggest that specialization can evolve even when 

adaptations to one host do not decrease performance on other hosts. Most insect species 

can choose which host plant they will feed on, so evolutionary feedback between the 

evolution of host choice and host performance could drive behavioral specialization 

(Ravigné et al. 2009; Nurmi & Parvinen 2011). For example, if a particular adaptation 

increases fitness on one host more than on another, individuals may evolve to feed 

preferentially on the host that gives them higher fitness (Fry 1996). If a non-preferred 

host is rarely used, selection for performance on that host will be weak, and mutation and 

genetic drift may eliminate the genetic tools required to use it (Whitlock 1996). In 

general, over long timescales, the selective environment will shape a lineage's genome, 

and epistatic interactions between new mutations and their genetic background will 

determine whether adaptations to novel hosts are possible (Weinreich et al. 2005; Remold
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2012). We therefore expect that the evolution of host use is constrained by historical 

contingency and the complexity of genetic interactions. In fact, the importance of 

historical contingency and epistasis for the evolution of specialization has been 

demonstrated empirically by experimental evolution in microbial systems: trade-offs 

between environments can appear after significant periods of cost-free adaptation 

(Satterwhite & Cooper 2015) and realized trade-offs can differ between replicate lineages

(Rodriguez-Verdugo et al. 2014). On a rugged adaptive landscape, evolutionary 

trajectories to alternative resource-use strategies may be mutually exclusive, and the 

direction taken by each lineage can depend on stochastic factors like mutation order 

(Elena & Lenski 2003). 

If historical contingency and epistasis constrain the evolution of host-use in plant-

feeding insects, adaptations to one set of hosts may reduce the probability of adapting to 

another set of hosts, driving specialization over long evolutionary timescales. Analogous 

macroevolutionary trade-offs have been described in plants; alternative defensive 

strategies tend to be negatively correlated over plant evolutionary history (Campbell & 

Kessler 2013; Johnson et al. 2014). It remains unknown, however, whether the 

diversification of host plant defenses has created trade-offs for plant-feeding insects.

Although trade-offs could arise from either genetic architecture or historical 

contingency, each of these mechanisms could instead produce positive interactions 

between use of distinct hosts. A single mutation might improve performance on multiple 

hosts, for instance by improving an effector protein that inhibits a defensive pathway 

conserved across multiple plant species (Barrett & Heil 2012). Similarly, the appearance 
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of a new enzyme class could create short-term trade-offs as the enzyme is calibrated to 

different hosts, but long-term performance benefits across multiple hosts after gene 

duplication (e.g. cytochrome P450 monooxygenases; Li et al. 2003). It is also possible 

that the genetic factors affecting performance on alternative hosts are independent, 

experiencing purely neutral interactions on both micro- and macroevolutionary 

timescales.

One way to investigate the importance of evolutionary interactions between traits 

is to map the traits onto empirical phylogenies of extant species and ask whether the traits

are correlated over the evolutionary history of the focal group (Maddison & FitzJohn 

2015). Negative correlations across species suggest trade-offs (Shoval et al. 2012), 

although correlations alone cannot distinguish between mechanistic constraints and 

associations shaped by selection pressure (Agrawal et al. 2010). However, recently 

developed statistical methods allow the partitioning of correlations between species traits 

into phylogenetic and residual components (Hadfield & Nakagawa 2010). 

Macroevolutionary interactions driven by historical contingency in ancestral lineages 

should be apparent in correlations between traits over phylogenetic timescales, while 

microevolutionary interactions should be captured by residual variation – the evolution 

that has happened independent of the species' shared ancestry. Phylogenetic analyses 

therefore allow characterization of positive, negative, and neutral interactions between 

traits over both short and long evolutionary timescales (Fig. 2.1).
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Figure 2.1. Phylogenetic and residual evolutionary correlations between traits. 
Hypothetical scenarios of evolutionary correlation between herbivore presence on two 
hosts: (A) negative phylogenetic correlation, (B) positive phylogenetic correlation, (C) 
negative residual correlation, (D) positive residual correlation, (E) negative phylogenetic 
and positive residual correlations, (F) positive phylogenetic and negative residual 
correlations. In each example, black squares on the left indicate which species in the 
herbivore phylogeny are present on host 1, and gray squares on the right indicate which 
species are present on host 2. 

Here we used phylogenetic methods to investigate interactions between 

adaptations to diverse host taxa over micro- and macroevolutionary timescales in two 

orders of plant-feeding insects: Lepidoptera (caterpillars) and Hemiptera (true bugs). 

Using digitized insect host-use records from North America, we estimated pairwise 

evolutionary correlations between use of common host-plant orders across hundreds of 

species in each insect order. We then combined the pairwise correlations into network 

graphs, revealing overall patterns of host-use evolution. We expected that use of the focal 
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hosts would be mostly negatively correlated or clustered into discrete functional groups if

specialization in plant-feeding insects is driven by widespread trade-offs between 

adaptations to different hosts. A distinction between micro- and macroevolutionary trade-

offs could be made by asking whether the negative correlations appeared in the insects' 

residual or phylogenetic host-use variation. On the other hand, if specialization is not 

caused by trade-offs between adaptations to alternative hosts, we expected that 

correlations between host-use traits would be neutral or positive, with little overall 

network structure.

2.3 Methods

Lepidopteran host-use data were downloaded from the HOSTS database 

(nhm.ac.uk/hosts; Robinson et al. 2015), a worldwide collection of published records of 

caterpillars successfully reared on host-plants. Hemipteran host-use data were 

downloaded from the Tri-Trophic Thematic Collection Network database (tcn.amnh.org), 

a catalog of field-collected insect specimens and their associated host-plants at academic 

museums in the United States. These datasets differ in the nature of the host-use records 

(published rearing records vs. field observations), but each represents the best available 

host-use data for that insect order. For both datasets, we restricted our analysis to records 

from North America (all localities labeled USA, Canada, Mexico or Nearctic). All plant 

taxonomic names were standardized with the Taxonomic Name Resolution Service 

(Boyle et al. 2013) and insect taxonomic names with the python package 

TaxonNamesResolver and the following reference databases: Aphid Species File (Favret 
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2015), Integrated Taxonomic Information System (itis.gov), and Catalogue of Life 

(catalogueoflife.org). We created binary presence/absence matrices of lepidopteran and 

hemipteran species by host plant order, with insects considered present on all hosts for 

which they had at least one host-use record. To verify that potentially erroneous single 

observations of insect-by-host-order interactions were not driving our results, we also 

analyzed a second set of presence/absence matrices in which insects were considered 

present on a host-plant order only if they were observed feeding on at least two genera in 

that order. 

To focus computational resources on host taxa with enough statistical power to 

detect evolutionary host-use interactions, we restricted our main analyses to focal host 

orders used by at least 100 insect species in one insect order (~10% of the total focal 

insect species per order). However, we also categorized host-use among host plant 

families that met the same cutoff to verify that any correlations we observed between use 

of the focal host orders were not artifacts created by lumping diverse plant families 

within order-level host-use traits.

We estimated time-scaled phylogenies for the North American lepidopteran and 

hemipteran species in our host-use dataset using a phyloinformatic approach (see 

Appendix A.2 for details). Phylogenetic data were not available for all species in the host-

use dataset, but there was an overlap of host-use and phylogenetic data for 1604 

lepidopteran species and 955 hemipteran species. Phylogenies and host-use datasets for 

these species are available in the Dryad Digital Repository: 

http://dx.doi.org/10.5061/dryad.m0n46.
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We used the insect-species-by-plant-order presence/absence data to investigate 

whether our focal host-use traits (presence/absence on each plant order) were positively 

or negatively correlated across the insect species. These correlations quantified whether 

insect species present on plant order A were more or less likely to be present on plant 

order B than expected by chance. For each insect order (Hemiptera and Lepidoptera) and 

each pairwise comparison between host-use traits, we set up a phylogenetic mixed model 

(Hadfield & Nakagawa 2010) with a logit link function (to accommodate binary data) 

using the package MCMCglmm (Hadfield 2010) in the R statistical environment (R Core 

Team 2015). We estimated both phylogenetic and residual correlations between the two 

host-use traits using the  “random=~us(trait):insect” and 

“rcov=~us(trait):units” syntax (Hadfield 2010). Prior parameter distributions 

were specified as “prior<-list(R=list(V=diag(2),nu=2), 

G=list(G1=list(V=diag(2),nu=2)))”, and the mean of the posterior 

distribution was taken as the final estimate for each parameter. All MCMC chains ran for 

10 million iterations with a burn-in of 1 million iterations, and we evaluated the 

convergence of ten chains for each model. Gelman-Rubin convergence analysis of each 

model's ten chains produced potential scale reduction factors under 1.10 in every case 

(96% were under 1.01), suggesting that all chains successfully converged (Gelman & 

Rubin 1992).

After separately estimating all pairwise evolutionary correlations between the 

focal host-use traits, we evaluated two emergent properties of the host-use network as a 

whole. First, we calculated the mean of all correlations involving each host-use trait to 
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summarize whether presence on that host tended to be positively or negatively correlated 

with presence on all other hosts. Second, we asked whether the host-use traits could be 

grouped into clusters that had positive correlations within them and negative correlations 

between them. To identify the most strongly supported clusters, we used a distance matrix

calculated from the pairwise correlations between host-use traits to produce a 

dendrogram of associations between the traits. Agglomerative hierarchical clustering was 

performed with the “centroid” method of the hclust function in the R package fastcluster 

(Müllner 2013). After obtaining the dendrogram, we evaluated all possible cluster 

divisions produced by pruning the dendrogram at a single “level” (from broadest, with all

host-use traits in a single cluster, to narrowest, with each host-use trait in its own cluster).

The support for a given set of clusters was defined as the sum of all correlations between 

host-use traits in the same cluster minus the sum of all correlations between host-use 

traits in different clusters. Thus, positive correlations within clusters and negative 

correlations between clusters increased the support score, while negative correlations 

within clusters and positive correlations between clusters reduced the support score. The 

set of cluster divisions with the highest support score was chosen as the best 

characterization of network structure.

We tested the statistical significance of the empirical mean host-use trait 

correlations and overall network structure scores by comparing them to those calculated 

for 100 null datasets. Each null dataset was generated by simulating independent 

Brownian motion of a continuous character for performance on each focal host order 

along the insect phylogenies, plus an equal amount of normally distributed residual 
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variation in the performance values. We converted the resulting continuous host 

performance values to a binary host presence/absence character by assuming that only the

insect species with the highest performance values for each host taxon were present on 

that host, with the threshold set by matching the number of species using that host in the 

empirical data (Felsenstein 2012). We then calculated all pairwise correlations between 

the host-use traits, mean correlations per host-use trait, and whole-network structure as 

we did for the empirical data. Empirical host-use trait mean correlations and network 

structure scores were considered statistically significant when a Z-test indicated less than 

a 5% chance of a value as extreme as the empirical value being randomly sampled from 

the distribution of that parameter's null dataset values (which were approximately 

normally distributed).

2.4 Results

We obtained North American host-use records and phylogenetic data for 1604 

caterpillar species and 955 bug species (Fig. 2.2). Eleven host-plant orders met our 

prevalence cut-off of 100 species from one insect order, and each of them met the cut-off 

for both Hemiptera and Lepidoptera: Asterales, Caryophyllales, Ericales, Fabales, 

Fagales, Lamiales, Malpighiales, Pinales, Poales, Rosales, and Sapindales. Interactions 

with these focal host-plant orders accounted for 77% of all insect-species-by-plant-order 

interactions in the Lepidoptera dataset and 57% in the Hemiptera dataset. Fewer host-

plant families met the 100-insect prevalence cutoff – for Lepidoptera: Asteraceae, 
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Betulaceae, Ericaceae, Fabaceae, Fagaceae, Pinaceae, Poaceae, Rosaceae, Salicaceae, and

Sapindaceae; for Hemiptera: Asteraceae, Fabaceae, Fagaceae, and Rosaceae. 

Figure 2.2. Maps of host-use traits on insect phylogenies. For each host-plant order, 
colored blocks indicate which insect species have been observed on that host. Insect 
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species with no hosts shown were observed only on non-focal hosts or had no host-use 
information associated with their locality records (Hemiptera only). Insect families (and 
one superfamily) are indicated around the phylogenies as follows: (A) Lepidoptera – 1: 
Noctuoidea, 2: Nymphalidae, 3: Lycaenidae, 4: Hesperiidae, 5: Pyralidae, 6: Sphingidae, 
7: Saturniidae, 8: Geometridae, 9: Tortricidae, 10: Gracillariidae. (B) Hemiptera – 11: 
Cicadellidae, 12: Membracidae, 13: Cicadidae, 14: Miridae, 15: Tingidae, 16: 
Pentatomidae, 17: Scutelleridae, 18: Coreidae, 19: Rhopalidae, 20: Lygaeidae, 21: 
Delphacidae, 22: Fulgoridae, 23: Flatidae, 24: Aphididae, 25: Diaspididae, 26: Coccidae, 
27: Pseudococcidae, 28: Psylloidea, 29: Aleyrodidae.

We recovered both positive and negative correlations between use of the focal 

host orders in the Lepidoptera, but mostly positive correlations in the Hemiptera (Fig. 

2.3). The network of phylogenetic correlations between lepidopteran use of the focal host 

orders was significantly structured (Z = 7.08, P < 0.0001), revealing two large clusters of 

host taxa (Fig. 2.4a). Cluster membership was phylogenetically diverse: the gymnosperm 

order Pinales (conifers) and monocot order Poales (grasses) were each affiliated with a 

different set of eudicot orders. Residual correlations between lepidopteran use of the focal

host taxa also showed significant network structure (Z = 9.86, P < 0.0001) but on this 

timescale use of all angiosperm hosts formed a single cluster of mostly positive 

associations (Fig. 2.4b). Use of Pinales was isolated from the angiosperm cluster, 

exhibiting a statistically significant negative mean pairwise correlation with use of the 

other hosts (-0.22, Z = -3.17, P = 0.0015). In contrast, hemipteran host-use correlations 

indicated significant support for a single host-use cluster encompassing all focal hosts 

over both phylogenetic (Z = 11.90, P < 0.0001; Fig. 2.4c) and residual timescales (Z = 

23.18, P < 0.0001; Fig. 2.4d).

The patterns of host-use correlations found in the more conservative dataset (with 

each insect observed using at least two genera in each host-plant order) produced results 

30



nearly identical to those of the original analysis, though statistical power was reduced 

(Fig. S4). Moreover, our analysis of correlations between use of the focal host-plant 

families also corroborated the network of evolutionary host-use associations revealed at 

the host order level (Fig. S5).

Figure 2.3. Empirical phylogenetic correlation by residual correlation plots of all 55 
pairwise combinations of the focal host orders for Lepidoptera (A) and Hemiptera (B).
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Figure 2.4. Network graphs of pairwise host-use trait correlations. (A) Lepidoptera – 
phylogenetic correlations. (B) Lepidoptera – residual correlations. (C) Hemiptera – 
phylogenetic correlations. (D) Hemiptera – residual correlations. Each vertex represents a
host order, with vertex area proportional to the number of insects that were observed on 
that host. Positive interactions between presence on a pair of hosts are represented by 
solid, black lines and negative correlations by dashed, red lines, with line thickness 
proportional to the magnitude of the correlation. Network spatial structure was 
determined using the Kamada-Kawai (1989) algorithm, a force-directed layout method in
which “repulsion” between vertices was proportional to the inverse of one plus the 
correlation values between the respective hosts. Vertices are labeled with the following 
abbreviations – Ast.: Asterales, Car.: Caryophyllales, Eri.: Ericales, Fab.: Fabales, Fag.: 
Fagales, Lam.: Lamiales, Mal.: Malpighiales, Pin.: Pinales, Poa.: Poales, Ros.: Rosales, 
Sap.: Sapindales. Vertices are colored by taxonomic group – eudicots: blue, monocots: 
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yellow, conifers: green. Statistically significant clusters (P < 0.05) are indicated by gray 
bubbles. Individual host orders with mean correlations of significantly higher magnitude 
than expected (P < 0.05) are indicated by bold vertex outlines (black for positive means, 
red for negative means).

2.5 Discussion

Most models of the evolution of ecological specialization assume negative 

interactions (trade-offs) between adaptations to different environments (Ravigné et al. 

2009), but such interactions could also be neutral or positive (Gompert et al. 2015; 

Peterson et al. 2015). Here we used a statistical, phylogenetic approach to estimate the 

micro- and macroevolutionary correlations between use of eleven common host plant 

orders in both caterpillars and true bugs. Our results suggest that distinct micro- and 

macroevolutionary trade-offs constrain host-use in caterpillars, but use of all focal hosts 

are positively correlated on both timescales in true bugs. Overall, positive interactions 

between host-use adaptations appear to be more common than trade-offs in these plant-

feeding insects.

We found some support for the idea that microevolutionary constraints (e.g. 

antagonistic pleiotropy) can produce host-use trade-offs in plant-feeding insects: 

lepidopteran presence on angiosperms was negatively correlated with presence on 

conifers over a short-term, phylogenetically independent timescale. This pattern suggests 

that caterpillar species tend to be found on either angiosperm or conifer hosts (not both), 

yet they can shift between these alternative host-plant clades over relatively short 

evolutionary timescales. Such trade-offs between labile but mutually exclusive host-use 

traits are particularly significant because they can promote rapid speciation (Nosil et al. 
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2002) and adaptive radiations (Farrell 1998; Janz et al. 2006). In this case, 

microevolutionary constraints appear to reflect ancient phylogenetic divergence between 

host clades (Soltis et al. 2011). A similar pattern of microevolutionary trade-offs between 

use of phylogenetically distant hosts has been observed in networks of ecological 

interactions between fleas and their mammal hosts (Hadfield et al. 2014) and pollinators 

and their plant hosts (Rafferty & Ives 2013). Nevertheless, the prevalence of such 

constraints in plant-feeding insects, for instance between alternative host genera or 

species, remains unclear given that the single microevolutionary trade-off observed here 

occurred over the largest phylogenetic distance present among our focal host-plant taxa.

Most theoretical work on host-use evolution has focused on microevolutionary 

trade-offs, but we found that host-use constraints can also act over longer, 

macroevolutionary timescales. Over the phylogeny of the Lepidoptera, we observed a 

negative correlation between presence on hosts in two large, taxonomically diverse 

clusters. Interestingly, the clusters appeared to divided by morphology rather than 

phylogeny, with predominantly woody plant taxa (e.g. Pinales, Fagales) in one cluster 

and predominantly herbaceous taxa (e.g. Asterales, Poales) in the other. This pattern 

could reflect a long-term trade-off for lepidopteran lineages between use of alternative 

host growth forms or the habitats where those growth forms are found (Futuyma 1976; 

Janz & Nylin 1998). However, it is difficult to attribute macroevolutionary patterns to 

any particular mechanism. The phylogenetic correlations we detected here could be 

driven by any number of processes, including the accumulation of epistatic interactions 

(Weinreich et al. 2005; Remold 2012), evolutionary feedback between host performance 
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and host choice (Whitlock 1996; Ravigné et al. 2009), or geographic specificity of plant 

and insect lineages (Hadfield et al. 2014). Regardless, host-specificity in the Lepidoptera 

is clearly influenced by macroevolutionary processes that may be undetectable within a 

single insect population.

In contrast to the patterns observed in the Lepidoptera, the Hemiptera showed 

mostly positive associations between use of all focal host taxa over both micro- and 

macroevolutionary timescales. This surprising result suggests that adaptations to one host

also increase fitness, on average, on all other hosts (Peterson et al. 2015). Moreover, 

hemipteran generalism appears completely unrestrained by host taxonomy even over very

long timescales, leading to the evolution of both super-generalist species and clades 

where generalist strategies are common (Normark & Johnson 2011). However, we do not 

account for differences in fecundity between specialist and generalist insects on particular

hosts; it may be that generalists usually have lower fitness – i.e. they are jacks of all 

trades but masters of none (Futuyma and Moreno 1988). Nevertheless, costs of 

generalism have been difficult to document (Forister et al. 2012; Gompert et al. 2015), so 

the positive residual correlations we observed may instead represent evolutionary 

breakthroughs made possible by novel mechanisms of phenotypic plasticity or other 

generalist adaptations (Barrett and Heil 2012).

There are many differences between Lepidoptera and Hemiptera (and between the

two datasets analyzed here), but their fundamentally distinct relationships with host 

plants may be important to understanding why evolutionary interactions between host-use

traits appear to be different in the two groups (Pires & Guimarães 2012). Hemiptera are 
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sucking insects, while Lepidoptera are generally leaf-chewers (Forister et al. 2015). 

These two feeding modes elicit different modes of plant defensive responses (Ali & 

Agrawal 2012), and sap-sucking may be particularly amenable to generalist adaptations 

that circumvent host defenses (Barrett and Heil 2012). In contrast, Lepidoptera often rely 

on specialized enzymes to detoxify defensive chemicals (Berenbaum & Feeny 2008), 

which may constrain the evolution of generalism, although generalist Lepidoptera do 

exist, possibly powered by phenotypic plasticity in enzyme expression (Yu et al. 1979; Li

et al. 2002). 

Overall, the relatively few, broad-scale trade-offs found here fail to explain the 

prevalence of specialization in plant-feeding insects, which are often restricted to hosts in

a single plant family or genus (Forister et al. 2015). Our main analysis grouped hosts by 

order, obscuring potential variation within orders in defensive strategies; host plant 

families or genera with strong or physiologically unique defenses may be more likely to 

produce trade-offs for plant-feeding insects than host plant taxa with weaker or more 

common defenses. However, our analysis of evolutionary correlations between use of 

common host-plant families revealed results nearly identical to those for the focal host-

plant orders. Moreover, a previous study of genus-level host-use in the large hemipteran 

family Diaspididae found positive correlations between use of all hosts but one within a 

network of 64 taxonomically diverse host genera (Peterson et al. 2015), indicating that 

greater taxonomic resolution does not necessarily reveal trade-offs between host-use 

traits. 
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We also took a broad approach in looking for correlations between host-use traits 

across whole insect orders, thereby overlooking any idiosyncratic trade-offs that may 

arise from the unique natural history of individual insect species. Species-specific trade-

offs have been documented (e.g. Nosil et al. 2002), yet our results suggest that few 

microevolutionary trade-offs constrain host-use across large numbers of insect species. 

Thus, although trade-offs may emerge at any time due to novel epistatic interactions 

(Remold 2012; Satterwhite and Cooper 2015), the fact that generalist species frequently 

escape such trade-offs suggests that long-term evolutionary interactions between host-use

traits are dominated by positively pleiotropic or neutral adaptations.

It is important to note that our conclusions reflect the particular data we analyzed. 

Research and publication bias have undoubtedly influenced the insect species that appear 

in our host-use databases, as well as those for which genetic sequences are available. It 

may be that insect pests, which are often polyphagous, are over-represented, which could 

bias our analyses in favor of positive correlations. Moreover, our analyses are restricted 

to North American insects, which tend to be more polyphagous than tropical insects 

(Dyer et al. 2007; Forister et al. 2015; but see Hardy et al. 2015 for a counterexample in 

the Hemiptera). Another limitation of our approach is that we could only analyze host-use

trait relationships between host plant taxa used by at least 10% of the insect species 

present in our databases. Thus, we were not able to look for trade-offs between hosts that 

are used by few Hemiptera and Lepidoptera. Ultimately, we can conclude that persistent 

trade-offs between taxonomically broad host groups do not appear to be the most 

important factor limiting host breadth in North American Lepidoptera or Hemiptera, but 
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more focused studies of well characterized insect families or genera will be necessary to 

evaluate whether trade-offs act over taxonomic scales or ecological axes not considered 

here.

Trade-offs play an intuitive and possibly inescapable role in constraining 

performance across multiple tasks (Shoval et al. 2012), but performance limits may not 

define the ecological niches of plant-feeding insects. Alternative factors, such as mate-

finding (Hawthorne & Via 2002), natural enemies (Singer & Stireman 2005), or neural 

constraints in host identification (Bernays 2001), may shape the evolution of each 

species' ecological niche. Host-range may also be limited by genetic drift even if adaptive

interactions between host-use traits are positive or neutral (Gompert et al. 2015). 

Specialization-by-drift might be particularly significant in a geographical context, as 

interactions between host-range and geographical range can strongly affect the host-use 

selection pressures experienced by an insect lineage (Janz & Nylin 2008). In the absence 

of much evidence for negative interactions between host-use adaptations in plant-feeding 

insects, we should consider neutral models both for the structure of ecological networks 

(Canard et al. 2014) and for how those networks evolve over time.
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CHAPTER 3

ARMORED SCALE INSECT HOST-USE IN TWO TROPICAL RAINFORESTS

REVEALS SPECIALIZATION WITHOUT TRADE-OFFS

3.1 Abstract

Most plant-feeding insects are ecological specialists in spite of the apparent 

advantages to being a generalist. This conundrum might be explained by adaptive trade-

offs between performance on alternative hosts, yet evidence of such trade-offs has been 

difficult to find. Another hypothesis is that specialization is not adaptive, but rather the 

result of host-use trait loss and subsequent phylogenetic conservation of the reduced host 

breadth. Here we assessed the evidence for trade-offs and phylogenetic constraints in the 

evolution of host-plant use by conducting systematic surveys of host-use by armored 

scale insects (Hemiptera: Diaspididae) in two tropical rainforest plots. We found strong 

evidence for specialization in the host-ranges of individual diaspidid species and in the 

phylogenetic conservation of host-use across species, yet we found no evidence for 

performance trade-offs on alternative hosts. Instead, host-specialization in armored scale 

insects may represent the nonadaptive consequences of phylogenetic inertia. The 

phylogenetic and biogeographic history of insect species are therefore essential for 

understanding their ecological interactions.
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3.2 Introduction

The immense diversity of life on Earth has been attributed to the partitioning of 

available resources into ecological niches (Hutchinson 1959), yet niche width varies 

greatly among species. In plant-feeding insects, a classic system for the study of 

ecological specialization, niches can range from a single host-plant species to sets of 

more than 100 host-plant families (Normark & Johnson 2011). In fact, although 

ecological specialists are prevalent, a continuous distribution of host breadths is observed

in most insect taxa and habitats, with generalists rare but not absent (Forister et al. 2015).

How this diversity of ecological niches is maintained, and what forces cause a species to 

become a specialist or a generalist, remains a conundrum for biologists.

One intuitive hypothesis holds that trade-offs between adaptations to alternative 

resources drive specialization (Futuyma & Moreno 1988). In fact, most theoretical 

models of specialization assume that rival alleles at individual genetic loci produce 

opposite fitness effects in alternative environments (antagonistic pleiotropy; Ravigné et 

al. 2009) even though empirical evidence for that kind of genetic trade-off is scarce 

(Futuyma 2008; Forister et al. 2012). However, trade-offs between alleles at host-related 

loci may be difficult to detect within individual populations because they can be hidden 

by inter-individual fitness variation at other loci (Joshi & Thompson 1995). Moreover, 

trade-offs could also arise from epistatic interactions between alleles at different loci, 

suggesting that a lineage’s genomic background and evolutionary history influence its 

susceptibility to trade-offs (Remold 2012; Rodriguez-Verdugo et al. 2014; Celorio-

Mancera et al. 2016). 
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Despite a historical focus on adaptive explanations for ecological specialization, 

niche breadth may be strongly influenced by non-adaptive processes (Futuyma et al. 

1995; Gompert et al. 2015). In fact, theoretical spatial models have demonstrated that 

adaptation to particular plant resources is not necessary to produce a distribution of 

apparent specialists and generalists resembling the distributions observed in natural 

communities (Forister & Jenkins 2017). Nonadaptive processes are especially likely to 

reduce host breadth in insect species that are composed of many small, geographically 

isolated populations (Gompert et al. 2015; Hardy et al. 2016). Ultimately, adaptive and 

non-adaptive factors likely interact over multiple timescales to produce the observed 

empirical distribution of niche widths. Understanding host-breadth in plant-feeding 

insects therefore requires examination of short-term adaptive constraints along with long-

term phylogenetic trends (Peterson et al. 2016).

Host-use trade-offs in plant-feeding insects have traditionally been investigated by

comparing the performance of different insect genotypes within a population on multiple 

host-plant taxa, but a comparison of host-use traits across multiple insect species can 

offer a complementary perspective on the processes driving host-use evolution (Funk et 

al. 1995; Futuyma 2010; Hardy & Otto 2014; Peterson et al. 2015, 2016). In particular, a 

comparative approach can illuminate whether specialist species benefit from any 

performance advantages (relative to generalist species) that offset the disadvantages of 

their limited host repertoire. While comparing any individual specialist-generalist pair 

can be confounded by the evolutionary history of those two species, examining a large 

number of species with broadly distributed host range sizes should reveal the overall 
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relationship between host range size and performance on individual hosts. If 

specialization is an adaptive response to host-use trade-offs, we would expect that 

specialists, on average, outperform generalists on any given host. On the other hand, if 

specialization is a non-adaptive outcome of phylogenetic inertia, we would not expect to 

find any relationship between host range and host performance. Although such a high-

level macroevolutionary approach does not capture the mechanistic details of the 

evolutionary pressures faced by any one species, it provides a direct test of competing 

adaptive and non-adaptive hypotheses for the evolutionary processes responsible for the 

prevalence of specialization in plant-feeding insects.

The armored scale insect family (Hemiptera: Diaspididae), which includes more 

than 2400 described species distributed throughout the world (García Morales et al. 

2015), provides an ideal system in which to integrate long-term evolutionary and short-

term ecological data concerning host-use in plant-feeding insects. Diaspidids are 

particularly abundant on woody hosts, and they have a simple, pathogen-like life history 

in which new host trees are colonized by wingless, wind-dispersed first-instar larvae 

(Gullan & Kosztarab 1997). Potential for host-choice is therefore quite limited, and host-

range is mostly determined by host performance (Hill & Holmes 2009). These constraints

create strong selection to use all locally present host-plants, an evolutionary situation 

quite different from the canonical insect herbivore that easily evolves selective host-use. 

Trade-offs and other adaptive constraints on host-use in diaspidids should therefore be 

readily apparent by comparing patterns of host-use between species. In fact, we have 

previously shown that trade-offs between presence on alternative hosts are not supported 
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by host-use observations associated with museum specimens (Peterson et al. 2015). 

Nevertheless, that analysis did not test for quantitative performance trade-offs, which 

require some measurement of performance on alternative hosts. Moreover, it remains 

unclear whether armored scale insects specialize on particular host plants over small 

geographic scales, given that their undirected dispersal should select strongly for the 

ability to use all locally present hosts. 

Here we quantified host-use in natural populations of diaspidids at tropical 

rainforest sites on two continents. By systematically searching for diaspidids across all 

canopy tree species present in each habitat and sequencing the collected insect specimens

at three genetic loci, we investigated the distribution of 172 diaspidid species across 138 

tree species. We tested for ecological specialization in the use of particular host taxa by 

comparing our empirical observations to those expected from a null model of random 

host-use. Specialization was assessed at three taxonomic levels: host-tree species, genus, 

and family. 

To investigate whether any observed specialization could be attributed to 

performance trade-offs between use of alternative host plants, we estimated the 

relationship between diaspidid host-range and mean abundance per host. We treated 

abundance as a proxy for performance on each host because the presence of sessile adult 

female diaspidids and second-instar juveniles indicates successful feeding and growth on 

that individual host tree (Hill & Holmes 2009). Moreover, most diaspidids settle on their 

natal host plant, producing a patchy distribution of colonies on individual trees across the 

habitat (Gullan & Kosztarab 1997). Diaspidid density appears to be primarily regulated 
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by parasitoids (Reeve & Murdoch 1986; Murdoch et al. 2005), which often decimate an 

entire local patch of diaspidids, while competition within or between diaspidid species 

appears to be weak due to their low overall density. The mean number of individuals 

produced in a local patch before it is found and destroyed by parasitoids is therefore a 

holistic and practical proxy for diaspidid performance on each host type in a natural 

setting. If host-use trade-offs are strong, we expected that generalist diaspidids would be 

less abundant than specialists when found on any given host tree. 

However, because dispersal and colonization of empty patches is so important in a

metapopulation of ephemeral patches (Metz & Gyllenberg 2001; Ronce 2007), we also 

estimated the relationship between diaspidid host-range and the proportion of host tree 

individuals colonized. If trade-offs arise from differences in the ability to colonize new 

host individuals or maintain living colonies, we expected that generalists would be 

present on a smaller proportion of trees belonging to each host taxon (even if they were 

present on more host trees overall). 

3.3 Methods

We surveyed diaspidids at two tropical rainforest sites: San Lorenzo National 

Park, Panama and Lambir Hills National Park, Malaysia (on the island of Borneo). At 

each site, we used a crane to access the forest canopy, spending 20 person-minutes at 

each focal tree visually searching for diaspidids on all foliage accessible from a single 

location in the canopy of that tree. We were not able to search all the trees in each plot, so

we used pre-existing databases of the trees at each site to divide the identified tree 
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individuals (those over 10 cm dbh) into sampling “rounds” of one randomly selected 

individual per tree species. We did not sample any tree individual more than once, so 

species with only one individual were present only in the first round of sampling, those 

with two individuals were present in the first two rounds, and so on. This protocol 

allowed us to sample across the full diversity of host taxa, while also getting multiple 

independent samples from common host types.

All plant material that appeared to be infested by diaspidids was placed in plastic 

bags in the field and brought back to the lab where individual live diaspidids were 

confirmed under magnification, cut out of the leaf or twig, and preserved in 95% ethanol. 

Specimens were subsequently sorted to life stage and second-instars and adult females 

were regarded as evidence of successful establishment. We then extracted DNA from all 

adult females and second-instars using Qiagen DNeasy Blood & Tissue kits (Qiagen, 

Valencia, CA) following the procedure outlined in Normark et al. (2014). 

We amplified three genetic regions previously used for phylogenetic inference in 

diaspidids: the nuclear protein-coding gene elongation factor 1 α (EF1α), the D2 and D3 

expansion segments of the large ribosomal subunit rDNA gene (28S), and a region of 

mitochondrial DNA encompassing portions of cytochrome c oxidase I and II (COI-II). 

PCR primers and protocols followed Andersen et al. (2010) and Gwiazdowski et al. 

(2011). PCR products were visualized using 1.5% agarose gels with SYBRsafe 

(Invitrogen, Carlsbad, CA, USA) and successful reactions were purified with Exo SAP-

IT enzymatic digestion (Affymetrix, Cleveland, OH, USA). Sanger sequencing of the 
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PCR products was completed by Macrogen (Cambridge, MA, USA) or Eton Biosciences 

(San Diego, CA, USA).

To determine species identities and phylogenetic relationships within our 

diaspidid samples, we constructed a molecular phylogeny of all collected individuals. 

Alignments of each genetic locus were produced and iteratively refined using PASTA 

(Mirarab et al. 2014). Each alignment was then trimmed to include only sites with non-

gap sequence for at least 80% of specimens (Capella-Gutiérrez et al. 2009), and we 

inferred a phylogeny for each locus using the GTR+CAT model in RAxML (Stamatakis 

2014). The three single-locus alignments were then concatenated into a single alignment, 

from which we also inferred a phylogeny with RAxML. We delimited species in the final 

concatenated phylogeny by checking for the presence of each clade in at least two gene 

trees. All clades shared between gene trees, and not contradicted by the third gene tree, 

were considered evolutionarily independent. Species were provisionally defined as the 

largest clades within which no smaller clades were independent. This approach 

implements the genealogical concordance method of species delimitation (following 

Gwiazdowski et al. 2011). Next, we calculated the minimum branch-length divergence 

between these evolutionarily independent clades to estimate a maximum within-species 

branch-length distance. Any specimens separated by this distance were considered 

distinct species, which allowed us to determine whether isolated pairs of specimens 

should be considered conspecific. Finally, a pruned, ultrametric phylogeny with one tip 

per diaspidid species was produced using treePL (Smith & O’Meara 2012) for subsequent
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phylogenetic analysis, calibrated with a diaspidid ancestral divergence date of 50-75 

million years ago (Vea & Grimaldi 2016).

We looked for evidence of host-use specialization by diaspidids in two ways, and 

at three levels of host taxonomy (species, genus, and family). First, we asked whether 

there was evidence for specialization in the distribution of host taxa among the individual

host trees associated with each diaspidid species. If diaspidids are specialized for 

particular hosts, the diversity of host taxa across the individual trees on which they are 

observed should be lower than that expected under a model of random host-use with 

respect to host taxa. We quantified host-tree diversity using Simpson’s reciprocal 

diversity index of host taxa, which can be thought of as the number of host taxa with a 

correction for uneven distribution. To simulate data under the null model, we produced 

1000 null datasets by randomly permuting the associations between diaspidid species and

individual host trees and again calculating the mean reciprocal diversity index of host 

taxa. Second, we asked whether there was evidence for specialization when comparing 

host-use between diaspidid species – specifically, whether use of each host taxon was 

correlated with the diaspidid phylogeny. We calculated the phylogenetic signal of 

diaspidid presence/absence on each host taxon along the diaspidid species phylogeny by 

estimating the proportion of variance in the response variable explained by the insect 

phylogeny (Hadfield & Nakagawa 2010). The empirical values for phylogenetic signal 

were then compared to those calculated under a null model. In this case, null datasets 

were produced by randomly swapping associations between diaspidid species and host 

taxa until the associations were thoroughly shuffled (the number of random swaps was 10

47



times the overall number of associations). This null model preserved the empirical 

distribution of generalist and specialist diaspidid species while randomizing the host-

taxon-by-diaspidid-species associations. P-values for the empirical phylogenetic signal 

values were calculated using a Z-test against each parameter's null dataset values (which 

were approximately normally distributed). We corrected for multiple comparisons by 

assigning statistical significance according to a false discovery rate (FDR; Benjamini & 

Hochberg 1995) of 0.05. The FDR procedure was conducted separately for each host-

taxon level because these analyses were not independent, and must be interpreted as 

alternative configurations of the same data. 

We investigated the strength of performance trade-offs between use of alternative 

hosts by calculating the correlation between diaspidid host range (number of host taxa 

used) and mean abundance per host tree on which at least one armored scale insect 

individual was found. If performance trade-offs are strong, we expected that generalist 

diaspidids would be less abundant than specialists on any given host tree. We also 

investigated the relationship between host range and the proportion of host trees 

colonized because patch occupancy rate may be a better indicator of performance than 

local abundance in a metapopulation of discrete colonies (Gyllenberg & Metz 2001). For 

each response variable separately (abundance per host and proportion of hosts colonized),

we fit a generalized linear model with host range as the predictor variable using the glm()

function in the R statistical environment (R Core Team 2015). For the local abundance 

model, the response variable was the number of diaspidid individuals identified per host 

tree, assuming a Poisson distribution. For the metapopulation performance model, the 
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response variable was the probability that an individual tree within each host taxon would

be colonized by a diaspidid species, assuming a binomial distribution (and excluding host

taxa with fewer than 3 trees surveyed). Both models only incorporated data for host-

taxon-by-diaspidid associations with at least one record; thus there were no zeros in the 

data used to parameterize either model. This approach allowed us to avoid penalizing 

specialists for pursuing the potentially valid ecological strategy of maximizing 

performance on particular host taxa. To assess the statistical significance of each model's 

results, we compared the model parameters estimated from the empirical data with those 

from 1000 null datasets produced by randomly permuting the empirical data.

3.4 Results

In Panama, the first of two collection sites, we surveyed 90 trees over 3 rounds, 

representing 53 species, 48 genera, and 29 families. We found live diaspidids on 75 trees, 

yielding 380 second instar and adult female specimens. At least two loci were 

successfully amplified for 184 specimens, belonging to 53 species according to our 

method of species delimitation (Fig. S6; Table 3.1). In Malaysia, we surveyed 211 trees 

over 20 rounds, including 85 species, 48 genera, and 27 families. We found live 

diaspidids on 102 trees, yielding 480 second instar and adult female specimens. At least 

two loci were successfully amplified for 255 specimens, belonging to 119 species (Fig. 

S7).
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Table 3.1: Trimmed genetic sequence alignment data for diaspidid specimens collected in 
Panama and Malaysia.

Location Locus
Number of 
Specimens

Alignment 
Length

(bp)

Proportion 
Missing

Proportion 
Variable

sites

Proportion 
Parsimony
Informative

Panama 28S 290 520 0.02 0.59 0.53
Panama COI_II 212 745 0.00 0.74 0.68
Panama EF1a 206 747 0.04 0.53 0.48
Malaysia 28S 359 611 0.04 0.55 0.47
Malaysia COI_II 271 734 0.02 0.86 0.80
Malaysia EF1a 234 798 0.08 0.53 0.45

In Panama, 29 of the 53 diaspidid species were only found on one host species, 

but 12 diaspidid species were observed on 3 or more different host plant species, 

including one extreme generalist observed on 18 host species in 14 families (Fig. 3.1). In 

Malaysia, 106 of the 119 diaspidid species were found on a single host plant species, and 

no diaspidid species was observed on more than three host plant species.
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Figure 3.1. Histograms of the number of diaspidid species with each host-range size. 
Results are divided by location and host taxonomic level: a) Panama, species; b) Panama,
genus; c) Panama, family;  d) Malaysia, species; e) Malaysia, genus; f) Malaysia, family.
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We found strong evidence for host-use specialization, both as a reduction of taxon

diversity within the observed hosts of individual diaspidid species compared to a null 

model and as phylogenetic signals of host-use across diaspidid species. The Simpson’s 

reciprocal diversity index of host taxa within each diaspidid species’ observed host trees 

was lower than expected at all host taxonomic levels and in both locations, and this result

was statistically significant at all host taxon levels and locations except at the host species

level in Panama (Table 3.2). Phylogenetic signal was significantly different from its null 

expectation for 19 host taxa, and in all of those cases the signal was greater than expected

(Fig. 3.2). Phylogenetic signal for host taxon use was generally higher at the Malaysia 

site (mean 0.61) than at the Panama site (mean 0.45), and 16 of the 19 host taxa showing 

a significant increase over their null phylogenetic signal expectations did so among 

Malaysian diaspidids.

Table 3.2: Mean Simpson’s reciprocal diversity index (1/D) of individual host trees 
colonized by each diaspidid species for both sampling locations and all three host 
taxonomic levels.

Location Taxon Level Emp. 1/D Null 1/D Z P

Panama Species 3.162 3.321 -1.449 0.147
Panama Genus 3.008 3.295 -2.721 0.007
Panama Family 2.671 2.983 -2.887 0.004
Malaysia Species 1.643 2.087 -9.902 < 0.001
Malaysia Genus 1.461 1.955 -6.400 < 0.001
Malaysia Family 1.461 1.785 -3.472 < 0.001
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Figure 3.2. Phylogenetic signal of presence on each host taxon used by at least three 
diaspidid species. The dot indicates the empirical value, and the line is drawn to its 
expected value under the null model. Empirical values significantly different from the 
expected value (with a false discovery rate of 0.05) are marked with an asterisk. Results 
are divided by location and host taxonomic level: a) Panama, species; b) Panama, genus; 
c) Panama, family;  d) Malaysia, species; e) Malaysia, genus; f) Malaysia, family.
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Despite the prevalence of host-use specialization among diaspidids at our two 

sites, we found no evidence for trade-offs between performance on alternative hosts. 

Specialists were not more abundant than generalists per tree; the number of live adult or 

second instar female diaspidids of a particular species found on each tree was not 

significantly correlated with the host-range of that diaspidid species (P > 0.9 in all tests; 

Fig. 3.3; Table 3.3). Moreover, we did not observe the negative correlation between 

diaspidid host range and the proportion of host trees colonized expected under a 

metapopulation trade-off model. In fact, we observed the opposite pattern: diaspidids 

with larger observed host ranges were observed on a higher proportion of the trees in 

their host taxa than were diaspidids apparently specialized on those taxa (Fig. 3.4; Table 

3.4). 

Table 3.3: Statistical results from the models relating abundance per host to the local host 
range of each diaspidid species. 

Location Taxon Level Slope Z P

Panama Species 0.000 0.059 0.953
Panama Genus 0.000 0.070 0.944
Panama Family 0.001 0.074 0.941
Malaysia Species 0.007 0.098 0.922
Malaysia Genus 0.006 0.115 0.909
Malaysia Family 0.006 0.111 0.912
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Table 3.4: Statistical results from the models relating proportion of colonized host tree 
individuals to the local host range of each diaspidid species.

Location Taxon Level Slope Z P

Panama Species 0.030 2.616 0.009
Panama Genus 0.036 3.125 0.002
Panama Family 0.052 2.908 0.004
Malaysia Species 0.361 2.077 0.038
Malaysia Genus 0.455 1.867 0.062
Malaysia Family 0.765 5.381 < 0.001
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Figure 3.3. Scatter plot of the number of diaspidid individuals per colonized host by the 
local host-range of that diaspidid species. Dot area is proportional to the number of data 
points at that location. Results are divided by location and host taxonomic level: a) 
Panama, species; b) Panama, genus; c) Panama, family;  d) Malaysia, species; e) 
Malaysia, genus; f) Malaysia, family. None of these relationships (as fitted by a linear 
model, dashed line) was statistically different from expectations under a null model (all P
> 0.9).
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Figure 3.4. Scatter plot of the proportion of host trees colonized by the local host-range 
of that diaspidid species. Each observed host-taxon-by-diaspidid-species interaction is 
plotted independently, although host taxa with fewer than three tree individuals surveyed 
were excluded from this analysis. Circle area is proportional to the number of data points 
at that location. Results are divided by location and host taxonomic level: a) Panama, 
species; b) Panama, genus; c) Panama, family;  d) Malaysia, species; e) Malaysia, genus; 
f) Malaysia, family. All fitted slopes (dashed lines) were positive and all were statistically
significant (P < 0.05), except in Malaysia by host genus (P = 0.062).
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3.5 Discussion

Through our systematic surveys of armored scale insect host-use in two tropical 

rainforest canopy habitats, we found evidence that most armored scale insect species use 

only a small proportion of the host-plant taxa present in their local environment. 

However, this distribution does not appear to be adaptive, as specialists were no more 

abundant on their host plants than were generalists. If adaptive performance trade-offs are

not the main force driving specialization in this group, host breadth may instead be 

limited by non-adaptive processes playing out over macroevolutionary timescales 

(Gompert et al. 2015; Hardy et al. 2016; Forister & Jenkins 2017).

It is important to note that our sampling of host trees was very limited relative to 

the number of diaspidid species observed at each site (particularly in Malaysia), and that 

our observed host-ranges may therefore be much smaller than the true host-ranges for 

many of these species. Nevertheless, we observed no apparent specialists that were 

particularly abundant on their individual host trees, suggesting either that there are no 

true specialists, or that trade-offs do not have a strong effect on host performance. In fact,

the highest single-tree abundance of any diaspidid species was claimed by the most 

extreme generalist found in Panama, with a host range of 18 plant species in 14 families. 

We therefore conclude that performance trade-offs are not strong in this system, and are 

unlikely to drive the evolution of specialization. This conclusion corroborates our 

previous phylogenetic analysis of host-use evolution in North American diaspidids 

(Peterson et al. 2015).
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Another striking result from this study was that many host-use traits displayed a 

strong phylogenetic signal across the diversification of diaspidid species. Although this 

finding matches the phylogenetic conservatism of host-use observed in many 

comparative studies of plant-feeding insects, including butterflies (Janz et al. 2001), 

beetles (Kelley & Farrell 1998), and aphids (Hardy et al. 2015), phylogenetic 

conservatism of host specialization takes on increased significance when it is uncoupled 

from directed dispersal between hosts. For diaspidids, nearly all of which colonize new 

hosts haphazardly via wind (Magsig-Castillo et al. 2010), a phylogenetic signal of 

specialization indicates a constraint on the evolution of host-use – an inability to adapt to 

additional hosts despite a significant fitness cost (Hill & Holmes 2009). Moreover, we 

found no evidence for performance trade-offs between alternative hosts in this study or in

our previous phylogenetic work (Peterson et al. 2015), suggesting that the phylogenetic 

host-use constraints observed among armored scale insects persist in the face of strong 

selection for increased host-range. Nevertheless, a few diaspidid species are known to 

have huge host-ranges and broad geographic distributions (Normark & Johnson 2011), 

indicating that the generalist lifestyle is a biological possibility. Thus, our results suggest 

that while host-use constraints may not be adaptive, they can define host-use for insect 

lineages over micro- and macroevolutionary timescales.

The lack of evidence for adaptive specialization in diaspidids suggests an 

important role for nonadaptive processes in host-use evolution – if diaspidid populations 

are small and isolated from each other, they may rapidly lose the functional alleles 

required to use hosts that are absent from their environment. The rarity of evolutionary 
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transitions from specialist to generalist is supported by our recent global study of 

diaspidid host-use, which found that generalist lineages appear to be the long-lived 

“trunks” of the diaspidid phylogeny, with specialist lineages representing short-lived, 

dead-end branches (Hardy et al. 2016). The “specialization-as-dead-end” model has 

received mixed support in other groups (Day et al. 2016), but it seems clear that non-

adaptive processes can be a significant constraint on host-range in plant-feeding insects. 

Although we observed here what appear to be radiations of specialist species among 

Malaysian diaspidids, those lineages are likely trapped in the local habitat due to their 

dependence on particular hosts. In fact, the water barriers around the island of Borneo 

may offer protection from invasive generalist species, allowing the specialized local 

fauna to persist in spite of their ecological disadvantages and increasing the rate of gene 

loss through drift. The prevalence of dipterocarps within the Bornean forest also increases

the likelihood that dipterocarp specialists can persist. Overall, the geographic history of a 

diaspidid lineage may be the most important determinant of what hosts it can use. 

Our results can also help to illuminate the complexity of host-use traits in plant-

feeding insects (Forister et al. 2012; Barrett & Heil 2012). We found that specialization in

armored scale insects occurs at all three of the host-taxonomic levels that we considered 

(species, genus, and family), suggesting that the genomic architecture of host-use traits is 

both complex and hierarchical. Use of multiple hosts is often associated with close 

phylogenetic relationships among those hosts (Gilbert & Webb 2007; Krasnov et al. 

2012), yet such results in flying insects may reflect host-preference or ease of host 

recognition more than host performance (Bernays 2001). The particular natural history of 
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diaspidids depends upon host-performance much more than host-preference in 

determining realized host-use, so the importance of multiple taxonomic levels implies 

that performance on any given host likely depends on a large number of traits of various 

effect sizes. In fact, the involvement of many genetic loci in plant-insect interactions is 

corroborated by both ecological (Singer & Stireman 2005) and genetic (Remold 2012) 

theory, yet the actual mechanistic basis of host performance is not well understood in 

scale insects or even in the closely related aphids. Previous work suggests that 

effector/inhibitor dynamics play a significant role in determining feeding success for 

sucking insects (Hogenhout & Bos 2011; Ali & Agrawal 2012), but how evolutionary 

dynamics in those interactions have produced the patterns of host-use that we observe in 

the wild remains obscure. 
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APPENDIX A

SUPPLEMENTARY METHODS

Diaspidid Phylogeny Reconstruction

We constructed a phylogeny of Diaspididae using Genbank sequences published 

by Morse & Normark (2006) and Andersen et al. (2010) as well as additional sequences 

obtained from specimens held by the University of Massachusetts Insect Collection.

Individual specimens with small amounts of host plant material were preserved in 

100% ethanol and stored at -20 °C freezer until further processed. Each specimen was 

subjected to a joint molecular/morphological preparation protocol that results in genomic 

DNA from a single individual specimen that corresponded to a permanent slide-mount of 

the cuticle.  Total genomic DNA from individual specimens was isolated using Qiagen 

DNeasy Blood & Tissue kit (Qiagen, Valencia, California). In order to facilitate digestion,

each insect was punctured with a 000 entomological pin on its abdominal region before 

being placed in the lysis solution. Upon digestion, individual cuticles were retrieved from

the lysate using a sterile micropipette tip and slide mounted as voucher specimens for 

later morphological identification. The remainder of the Qiagen protocol was followed, 

except at the first elution only 60μl of Buffer AE was used. 

Polymerase chain reaction (PCR) was performed to amplify regions of the 

mitochondrial genes cytochrome c oxidase I and II (COI and COII, ~800 bp), nuclear 

protein-coding gene elongation factor 1-alpha (EF1α, ~1150 bp), and the D2 and D3 

expansion segments of the large subunit ribosomal RNA (28S, ~800 bp).  Standard 

amplification protocols were followed using oligonucleotide primers as reported by 
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Morse & Normark (2006) and Andersen et al. (2010). Amplification products were 

visualized using 1.5% agarose gels stained with SYBRsafe™ (Invitrogen, Carlsbad, 

California) in 1X TBE and purified with an ExoSAP-IT PCR Product Clean-Up enzyme 

digest (Affymetrix, Cleveland, Ohio).

PCR products were sequenced directly using an ABI-3130XL Genetic Analyzer at

University of Massachusetts Genomics Resource Laboratory. Sequence fragments were 

assembled and edited using Sequencher 4.9 (Gene Codes Corporation, Ann Arbor, 

Michigan). Datasets for all genes were trimmed at the 5’ and 3’ ends such that there was 

no missing data. No insertions or deletions were present in the coding regions of COI and

COII, which were aligned using amino acid sequences. Four separate introns of EF1α 

marked by starting position (GT) and ending position (AG) were removed from the 

analysis and exons were aligned based on the amino acid sequences. Hyper-variable 

regions of D2 and D3 expansion segments of 28S were unalignable without reliable 

homology assessment, and therefore removed from the analysis and the remaining 

conserved regions were aligned using MAFFT (Katoh et al. 2005). We used RAxML 

v8.0.23 (Stamatakis 2014) in rapid hill-climbing mode to estimate the diaspidid 

phylogeny, using a GTR model of nucleotide substitution plus CAT approximation of 

among-site rate variation with 25 categories. 

Lepidoptera and Hemiptera Phylogeny Reconstruction

Phylogenetic datasets were assembled from published DNA sequence data using 

the PHLAWD megaphylogeny pipeline (Smith et al. 2009). The Lepidoptera dataset 
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consisted of 7470 sites sampled from 9 loci across 1604 species. The Hemiptera dataset 

comprised 9,015 sites sampled from 15 loci across 955 species. For each taxon 

(Lepidoptera and Hemiptera), we used the NCBI taxonomy as a constraint tree in a ML 

search under a GTR nucleotide substitution model with CAT-approximated among-site 

rate variation, with model parameters estimated independently for each locus. Using 

RAxML (Stamatakis 2014), we estimated phylogenies from 100 non-parametric 

bootstrap replicates of the multiple sequence alignment supermatrix and then used every 

fifth bootstrap tree as the starting tree for optimization of the empirical data. We scaled 

the branch lengths of the ML tree to time using Penalized Likelihood, assuming an 

autocorrelated model of among-lineage rate variation and selecting a value for the 

smoother parameter with a cross-validation procedure (treePL; Smith and O’Meara 

2012).

We calibrated the Lepidoptera divergence time estimates with three constraints: 

the age of the root, which corresponds to the crown node of Ditrysia, was fixed at 140 

Ma, to match the the published estimate of Wahlberg et al. (2013). Based on estimates of 

the ages of fossil taxa (Sohn et al. 2012), a uniform constraint with a minimum age of 

100 and a maximum age of 140 Ma was placed on the crown node of Gracillariidae 

(Labandeira et al. 1994), and a uniform constraint with a minimum age of 56 and a 

maximum age of 140 Ma was placed on the crown node of Nymphalidae (Kristensen & 

Skalski 1998). We calibrated Hemiptera divergence time estimates with five constraints. 

The age of the Hemiptera root was fixed 291 Ma, to match the published median estimate

of Misof et al. (2014). A minimum age of 240 and maximum age of 291 Ma were 
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imposed on the crown node of Aphidomorpha (Szwedo & Nel 2011). A minimum age of 

99 and a maximum age of 291 were placed on the crown node of Pemphiginae and that of

Coccidae (Kononova 1977; Vea & Grimaldi 2015). A minimum age of 142 and a 

maximum age of 291 were placed on the crown node of Heteroptera (Popov 1971).
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APPENDIX B

SUPPLEMENTARY FIGURES

66



Figure S1. Phylogeny of armored scale insect species inferred with RaxML.
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Figure S2. Distribution of correlations between diaspidid presences and absences on 
pairs of focal host plant species (a) and genera (b) using the Pearson product-moment 
correlation calculation (uncorrected for phylogeny).
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Figure S3. Distribution of phylogenetic correlations between diaspidid presences and 
absences on 1000 randomly selected pairs of host plant species (a) and genera (b) and 
Pearson product-moment correlations between diaspidid presences and absences on the 
same pairs of host plant species (c) and genera (d).

69



Figure S4. Network graphs of pairwise host-use trait correlations, by host plant order, 
calculated using plant-insect interaction matrices in which insect species were counted as 
using a given host order only if they were observed on at least two genera in that order. 
(A) Lepidoptera – phylogenetic correlations. (B) Lepidoptera – residual correlations. (C) 
Hemiptera – phylogenetic correlations. (D) Hemiptera – residual correlations. Each 
vertex represents a host order, with vertex area proportional to the number of insects that 
were observed on that host. Positive interactions between presence on a pair of hosts are 
represented by solid, black lines and negative correlations by dashed, red lines, with line 
thickness proportional to the magnitude of the correlation. Network spatial structure was 
determined using the Kamada-Kawai (1989) algorithm, a force-directed layout method in
which “repulsion” between vertices was proportional to the inverse of one plus the 
correlation values between the respective hosts. Vertices are labeled with the following 
abbreviations – Ast.: Asterales, Car.: Caryophyllales, Eri.: Ericales, Fab.: Fabales, Fag.: 
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Fagales, Lam.: Lamiales, Mal.: Malpighiales, Pin.: Pinales, Poa.: Poales, Ros.: Rosales, 
Sap.: Sapindales. Vertices are colored by taxonomic group – eudicots: blue, monocots: 
yellow, conifers: green. Statistically significant clusters (P < 0.05) are indicated by gray 
bubbles. Individual host orders with mean correlations of significantly higher magnitude 
than expected (P < 0.05) are indicated by bold vertex outlines (black for positive means, 
red for negative means).
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Figure S5. Network graphs of pairwise host-use trait correlations, by host plant family. 
(A) Lepidoptera – phylogenetic correlations. (B) Lepidoptera – residual correlations. (C) 
Hemiptera – phylogenetic correlations. (D) Hemiptera – residual correlations. Each 
vertex represents a host order, with vertex area proportional to the number of insects that 
were observed on that host. Positive interactions between presence on a pair of hosts are 
represented by solid, black lines and negative correlations by dashed, red lines, with line 
thickness proportional to the magnitude of the correlation. Network spatial structure was 
determined using the Kamada-Kawai (1989) algorithm, a force-directed layout method in
which “repulsion” between vertices was proportional to the inverse of one plus the 
correlation values between the respective hosts. Vertices are labeled with the following 
abbreviations – Ast.: Asteraceae, Bet.: Betulaceae, Eri.: Ericaceae, Fab.: Fabaceae, Fag.: 
Fagaceae, Pin.: Pinaceae, Poa.: Poaceae, Ros.: Rosaceae, Sal.: Salicaceae, Sap.: 
Sapindaceae. Vertices are colored by taxonomic group – eudicots: blue, monocots: 
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yellow, conifers: green. Statistically significant clusters (P < 0.05) are indicated by gray 
bubbles. Individual host orders with mean correlations of significantly higher magnitude 
than expected (P < 0.05) are indicated by bold vertex outlines (black for positive means, 
red for negative means).

Figure S6. Phylogeny of diaspidid species sampled in Panama. Labels indicate the host 
plant species (and families) used by each diaspidid species.
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Figure S7. Phylogeny of diaspidid species sampled in Malaysia. Labels indicate the host 
plant species (and families) used by each diaspidid species.
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