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ABSTRACT

KNOWLEDGE REPRESENTATION AND REASONING
WITH DEEP NEURAL NETWORKS

SEPTEMBER 2017

ARVIND NEELAKANTAN

B.Tech, NATIONAL INSTITUTE OF TECHNOLOGY TRICHY

M.Sc., COLUMBIA UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew K. McCallum

Knowledge representation and reasoning is one of the central challenges of ar-

tificial intelligence, and has important implications in many fields including natural

language understanding and robotics. Representing knowledge with symbols, and

reasoning via search and logic has been the dominant paradigm for many decades. In

this work, we use deep neural networks to learn to both represent symbols and per-

form reasoning end-to-end from data. By learning powerful non-linear models, our

approach generalizes to massive amounts of knowledge and works well with messy

real-world data using minimal human effort. First, we show that recurrent neural

networks with an attention mechanism achieve state-of-the-art reasoning on a large

structured knowledge graph. Next, we develop Neural Programmer, a neural network

augmented with discrete operations that can be learned to induce latent programs

with backpropagation. We apply Neural Programmer to induce short programs on

v



two datasets: a synthetic dataset requiring arithmetic and logic reasoning, and a nat-

ural language question answering dataset that requires reasoning on semi-structured

Wikipedia tables. We present what is to our awareness the first weakly supervised,

end-to-end neural network model to induce such programs on a real-world dataset.

Unlike previous learning approaches to program induction, the model does not re-

quire domain-specific grammars, rules, or annotations. Finally, we discuss methods

to scale Neural Programmer training to large databases.
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CHAPTER 1

INTRODUCTION

1.1 Knowledge Representation and Reasoning

Knowledge representation and reasoning (KRR) is one of the central challenges of

artificial intelligence, and has important implications in many fields including natural

language understanding and robotics. Knowledge representation deals with repre-

senting world knowledge in a form that can be used by computers, and reasoning

involves manipulating knowledge to answer a query. An ideal knowledge representa-

tion and reasoning system should be able to generalize to large number of concepts

and relationships, should work well in real-world settings, and should be broadly ap-

plicable across tasks and domains. Example KRR systems include natural language

interface models (Zelle & Mooney, 1996; Zettlemoyer & Collins, 2005) which map

text questions to concepts and perform reasoning in a provided knowledge base to

produce the required answer.

Representing knowledge with symbols, and reasoning via search and logic has been

the dominant paradigm for many decades. The General Problem Solver (Simon et al.,

1959) is one of the earliest examples of such a system where knowledge is represented

as a set of rules that express permissible transformation operations, and reasoning

is performed using means-end analysis, a heuristic search algorithm. Several other

general purpose systems (Simon et al., 1956; Robinson, 1965) were built in the same

spirit. The advantage of these systems are that they are precise, however, they failed

to work beyond toy problems since manually programming general purpose rules are

challenging and the search algorithms do not scale well to large number of rules.
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The failure of general purpose systems led to the development of expert sys-

tems which are designed to work on a narrow task (Buchanan & Feigenbaum, 1980;

Feigenbaum, 1980; of the KL-ONE Knowledge Representation System, 1985). Expert

systems enjoyed considerable success in scaling to larger knowledge bases (KBs). For

example, Pease et al. (2010) discuss methods that scale to 20,000 symbols. Prolog-

based (Gallaire et al., 1984) systems also provide reasoning solutions for large KBs

containing millions of symbols and rules (Kiryakov, 2007). These systems require

enormous human effort as they are manually programmed and not learned. Induc-

tive Logic Programming (Lavrac & Dzeroski, 1994; Muggleton, 1990) methods learn

hypothesis rules given background knowledge, and a set of positive and negative ex-

amples.

The systems we have discussed till now do not model uncertainty which is essential

in practical applications. Markov Logic Networks (Richardson & Domingos, 2006)

(MLNs) handle uncertainty using weight attached to every rule. Practical applications

of MLNs have been limited because inference in MLNs is not scalable to large number

of rules. By restricting to a simpler model family, Probabilistic Soft Logic (Kimmig

et al., 2012) provide a more scalable solution to handle uncertainty.

While symbolic KRR systems developed so far have had some success, they suffer

from multiple drawbacks. First, since knowledge is represented using symbols it is

challenging to generalize to large number of concepts and relationships since each

symbol is modeled independently without sharing information between them. Next,

even though some of the more modern systems have a learning component they still

rely on laborious manual effort severely limiting the applicability of these systems.

Finally, these systems typically only have a simple symbol grounding component,

the process of mapping raw inputs to high level concepts, to map sensory data to

knowledge concepts making them not suitable for dealing with messy real-world data.
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1.2 Knowledge Representation and Reasoning with Deep Neu-

ral Networks

In this work, we use deep neural networks (DNNs) to learn to both represent

symbols and perform reasoning end-to-end from data. We represent concepts and

relationships using distributed (or vector) representations which naturally leads to

sharing information between the symbols. By learning powerful non-linear composi-

tion models we avoid the combinatorial explosion problem faced by symbolic systems.

Finally, symbol grounding is also modeled by a DNN which can be learned from data

using minimal human effort.

While DNNs have been around for many decades, the first big successes of these

models happened recently in perception tasks such as speech recognition (Hinton

et al., 2012) and image recognition (Krizhevsky et al., 2012). As mentioned previously,

the application of DNNs to KRR is attractive, however, it is not straightforward

due to the following challenges: 1) input in perception tasks are continuous data

while in KRR they are discrete, and 2) reasoning typically involves programs with

discrete operations or rules while perception tasks often involve fuzzy processing. The

challenges associated with handling discrete data and discrete processing have raised

questions on whether DNNs are applicable for KRR.

Symbol processing with rules and logic, and machine learning with DNNs have

remained mostly parallel research areas for many decades (Lake et al., 2016). In

this thesis, we ask two big questions: 1) can we represent discrete symbols with

distributed representations and learn them?, 2) can we learn neural network models

to perform reasoning using these representations?. By developing new DNN models

and adapting existing ones, we show that knowledge representation and symbolic

reasoning can be successfully performed with DNNs. We consider two specific tasks:

1) simple reasoning on a large structured knowledge graph, and 2) reasoning that

involves inducing latent programs on semi-structured database tables.
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1.3 Reasoning in Knowledge Graphs

Recent years has seen the creation of massive knowledge bases (KBs) (Bollacker

et al., 2008; Suchanek et al., 2007; Carlson et al., 2010) that are useful in downstream

tasks such as question answering and dialogue systems. These KBs contain structured

information of the form relation(entity1, entity2). While these KBs contain millions of

facts, they are still incomplete. A promising way to complete the KB is by performing

logic reasoning in the KB (Schoenmackers et al., 2010).

Here, the paths connecting an entity pair are used to infer missing relations be-

tween them. For example, using the facts IsBasedIn(Microsoft, Seattle), StateLocate-

dIn(Seattle, Washington) and CountryLocatedIn(Washington, USA) we can infer the

fact CountryOfHeadquarters(Microsoft, USA). Here we have used a path connecting

the entities Microsoft and USA to infer a new fact. The logical rule used here is:

IsBasedIn(X,A) ∧ StateLocatedIn(A, B) ∧ CountryLocatedIn(B, Y) ⇒

CountryOfHeadquarters(X, Y)

where IsBasedIn - StateLocatedIn - CountryLocatedIn is a path connecting the entity

pair (Microsoft, USA) in the KB graph, and IsBasedIn, StateLocatedIn and Coun-

tryLocatedIn are the relations in the path.

Previous symbolic approaches to this task do not generalize to unseen paths as

they model each path individually without sharing information across them (Schoen-

mackers et al., 2010; Lao et al., 2011, 2012). We model the paths using recurrent

neural networks (RNNs) and select predictive paths among the set of paths con-

necting the entity pair by an attention mechanism. Since modern KBs have tens

of thousands of relations, there are many unseen paths at test time. Our approach

can generalize to paths that are unseen during training and achieves state-of-the-art

results. We show that the choice of attention mechanism has a significant effect on

the performance and additionally modeling the entities in the path leads to large ac-

4



Which section is the longest ?
how many portions are located in Netanya ?

Figure 1.1: An example table with questions that can be answered by reasoning on
the contents of the table.

curacy improvements. We discuss reasoning in knowledge graphs in detail in Chapter

2 and Chapter 3.

1.4 Program Induction

While the first task focused on simple reasoning on a large structured knowledge

base, the next task involves more sophisticated reasoning on small semi-structured ta-

bles. Figure 1.1 shows an example table with the questions that needs to be answered.

The question has to be mapped to a program, consisting of sequence of discrete oper-

ations, which when executed on the table gives the required answer. Learning discrete
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operations with DNNs is notoriously challenging (Joulin & Mikolov, 2015). Existing

approaches to program induction either require the full program as supervision which

is expensive to obtain or require domain-specific grammars, rules, or annotations

making them not broadly applicable.

We develop Neural Programmer, a neural network augmented with discrete op-

erations that can be learned to induce latent programs with backpropagation. The

model can be trained with a weak supervision signal consisting of input and output

pairs while the program to be induced is latent. First, we conduct experiments on a

synthetic dataset that requires text questions to be mapped to latent programs. While

standard DNN architectures like RNNs and RNNs with attention perform poorly on

this task, Neural Programmer works almost perfectly on all the different versions of

the synthetic dataset. Neural Programmer and the synthetic data experiments are

discussed in Chapter 4 and Chapter 5 respectively.

Next we consider semantic parsing where the task is to map natural language

questions to programs or semantic parses which produce the required answer when

executed on the provided table. We experiment with WikiTableQuestions dataset

(Pasupat & Liang, 2015), a semantic parsing dataset that contains only 10,000 train-

ing examples. While it is generally believed that DNNs require large number of

training examples to work well, Neural Programmer performs competitively to cur-

rent state-of-the-art parsers on this dataset. Neural Programmer is learned end-to-end

from data while existing approaches require domain-specific grammar rules. Semantic

parsing with Neural Programmer is described in Chapter 6.

Finally, we discuss ideas to scale Neural Programmer by employing sparse atten-

tion and learning to halt in Chapter 7. Scaling Neural Programmer to large tables

is currently problematic because: 1) the model uses soft selection to be differentiable

that requires executing all built-in operations at every timestep, and 2) the model

runs for a fixed number of maximum timesteps performing many wasteful opera-
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tion executions when the program to be induced is of lesser complexity. We plan to

experiment with the proposed ideas on the WikiTableQuestions dataset.

1.5 Summary of Contributions

• We show that recurrent neural networks combined with the appropriate atten-

tion mechanism achieve state-of-the-art reasoning on knowledge graphs.

• We develop Neural Programmer, a neural network augmented with discrete

operations that can be learned to induce latent programs with backpropagation.

We first experiment with synthetic data where we use Neural Programmer to

induce latent programs involving arithmetic and logic operations.

• We apply Neural Programmer for natural language semantic parsing achieving

competitive performance using only 10,000 training examples. Unlike previous

work on semantic parsing, Neural Programmer does not require domain-specific

grammars, rules, or annotations.

• Overall, we develop DNN models for KRR that are learned end-to-end from

data and achieve state-of-the-art or competitive performance with minimal hu-

man effort. The main components of our approach consists of RNNs to model

sequences, attention mechanism as selection procedure and training by back-

propagation.

1.6 Declaration of Previous Work

We first proposed the idea of using recurrent neural networks for path reasoning in

knowledge graphs in

Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Knowledge base

completion using compositional vector space models. Workshop on Automated

Knowledge Base Construction at NIPS, 2014a
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This work later appeared as a conference paper in

Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Compositional

vector space models for knowledge base completion. ACL, 2015

An extension of this work that explores different attention mechanisms and is addi-

tionally conditioned on the entities in the path appeared in

Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum.

Chains of reasoning over entities, relations, and text using recurrent neural

networks. EACL, 2017

The Neural Programmer model was first presented in

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural Programmer:

Inducing latent programs with gradient descent. ICLR, 2016a

Application of Neural Programmer to natural language semantic parsing will appear

in

Arvind Neelakantan, Quoc V Le, Martin Abadi, Andrew McCallum, and Dario

Amodei. Learning a natural language interface with neural programmer. ICLR,

2017

During graduate school, I contributed to other publications that are not part of the

thesis

Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew McCal-

lum. Efficient non-parametric estimation of multiple embeddings per word in

vector space. EMNLP, 2014b

Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser,

Karol Kurach, and James Martens. Adding gradient noise improves learning

for very deep networks. ICLR Workshop, 2016b (First two authors contributed

equally)
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Patrick Verga, Arvind Neelakantan, and Andrew McCallum. Generalizing to

unseen entities and entity pairs with row-less universal schema. EACL, 2017

(First two authors contributed equally)
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CHAPTER 2

KNOWLEDGE GRAPH REASONING WITH
RECURRENT NEURAL NETWORKS

In this chapter, we use deep neural networks to perform logic reasoning on knowl-

edge bases. Constructing large knowledge bases supports downstream reasoning

about resolved entities and their relations, rather than the noisy textual evidence

surrounding their natural language mentions. For this reason KBs have been of in-

creasing interest in both industry and academia (Bollacker et al., 2008; Suchanek

et al., 2007; Carlson et al., 2010). Such KBs typically contain many millions of facts,

most of them relation(entity1,entity2) “triples” (also known as binary relations) such

as (Barack Obama, presidentOf, USA) and (Brad Pitt, marriedTo, Angelina Jolie).

However, even the largest KBs are woefully incomplete (Min et al., 2013), missing

many important facts, and therefore damaging their usefulness in downstream tasks.

Ironically, these missing facts can frequently be inferred from other facts already in the

KB, thus representing a sort of inconsistency that can be repaired by the application

of an automated process. The addition of new triples by leveraging existing triples is

typically known as KB completion.

Early work on this problem focused on learning symbolic rules. For example,

Schoenmackers et al. (2010) learns Horn clauses predictive of new binary relations

by exhausitively exploring relational paths of increasing length, and selecting those

surpassing an accuracy threshold. (A “path” is a sequence of triples in which the

second entity of each triple matches the first entity of the next triple.) Lao et al.

(2011) introduced the Path Ranking Algorithm (PRA), which greatly improves effi-

ciency and robustness by replacing exhaustive search with random walks, and using
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Figure 2.1: Semantically similar paths connecting entity pair (Microsoft, USA).

unique paths as features in a per-target-relation binary classifier. A typical pre-

dictive feature learned by PRA is that CountryOfHeadquarters(X, Y) is implied

by IsBasedIn(X,A) and StateLocatedIn(A, B) and CountryLocatedIn(B, Y). Given

IsBasedIn(Microsoft, Seattle), StateLocatedIn(Seattle, Washington) and CountryLo-

catedIn(Washington, USA), we can infer the fact CountryOfHeadquarters(Microsoft,

USA) using the predictive feature. In later work, Lao et al. (2012) greatly increase

available raw material for paths by augmenting KB-schema relations with relations

defined by the text connecting mentions of entities in a large corpus (also known as

OpenIE relations (Banko et al., 2007)).

However, these symbolic methods can produce many millions of distinct paths,

each of which is categorically distinct, treated by PRA as a distinct feature. (See

Figure 2.1.) Even putting aside the OpenIE relations, this limits the applicability

of these methods to modern KBs that have thousands of relation types, since the

number of distinct paths increases rapidly with the number of relation types. If

textually-defined OpenIE relations are included, the problem is obviously far more

severe.

Better generalization can be gained by operating on embedded vector representa-

tions of relations, in which vector similarity can be interpreted as semantic similarity.

For example, Bordes et al. (2013) learn low-dimensional vector representations of en-

tities and KB relations, such that vector differences between two entities should be
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close to the vectors associated with their relations. This approach can find relation

synonyms, and thus perform a kind of one-to-one, non-path-based relation prediction

for KB completion. Similarly Nickel et al. (2011) and Socher et al. (2013a) perform

KB completion by learning embeddings of relations, but based on matrices or tensors.

Universal schema (Riedel et al., 2013) learns to perform relation prediction cast as

matrix completion (likewise using vector embeddings), but predicts textually-defined

OpenIE relations as well as KB relations, and embeds entity-pairs in addition to in-

dividual entities. Like all of the above, it also reasons about individual relations, not

the evidence of a connected path of relations.

We propose an approach combining the advantages of (a) reasoning about con-

junctions of relations connected in a path, and (b) generalization through vector em-

beddings, and (c) reasoning non-atomically and compositionally about the elements

of the path, for further generalization.

Our method uses recurrent neural networks (RNNs) (Werbos, 1990) to compose

the semantics of relations in an arbitrary-length path. At each path-step it consumes

both the vector embedding of the next relation, and the vector representing the path-

so-far, then outputs a composed vector (representing the extended path-so-far), which

will be the input to the next step. After consuming a path, the RNN should output a

vector in the semantic neighborhood of the relation between the first and last entity of

the path. For example, after consuming the relation vectors along the path Melinda

Gates → Bill Gates → Microsoft → Seattle, our method produces a vector very close

to the relation livesIn.

Our compositional approach allow us at test time to make predictions from paths

that were unseen during training, because of the generalization provided by vector

neighborhoods, and because they are composed in non-atomic fashion. This allows our

model to seamlessly perform inference on many millions of paths in the KB graph.

In most of our experiments, we learn a separate RNN for predicting each relation
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type, but alternatively, by learning a single high-capacity composition function for all

relation types, our method can perform zero-shot learning—predicting new relation

types for which the composition function was never explicitly trained.

Related to our work, new versions of PRA (Gardner et al., 2013, 2014) use pre-

trained vector representations of relations to alleviate its feature explosion problem—

but the core mechanism continues to be a classifier based on atomic-path features.

In the 2013 work many paths are collapsed by clustering paths according to their

relations’ embeddings, and substituting cluster ids for the original relation types. In

the 2014 work unseen paths are mapped to nearby paths seen at training time, where

nearness is measured using the embeddings. Neither is able to perform zero-shot

learning since there must be a classifer for each predicted relation type. Further-

more their pre-trained vectors do not have the opportunity to be tuned to the KB

completion task because the two sub-tasks are completely disentangled.

An additional contribution of our work is a new large-scale data set of over 52 mil-

lion triples, and its preprocessing for purposes of path-based KB completion (can be

downloaded from http://iesl.cs.umass.edu/downloads/inferencerules/release.

tar.gz). The dataset is build from the combination of Freebase (Bollacker et al.,

2008) and Google’s entity linking in ClueWeb (Orr et al., 2013). Rather than Gard-

ner’s 1000 distinct paths per relation type, we have over 2 million. Rather than

Gardner’s 200 entity pairs, we use over 10k. All experimental comparisons below are

performed on this new data set.

On this challenging large-scale dataset our compositional method outperforms

PRA (Lao et al., 2012), and Cluster PRA (Gardner et al., 2013) by 11% and 7%

respectively. A further contribution of our work is a new, surprisingly strong baseline

method using classifiers of path bigram features, which beats PRA and Cluster PRA,

and statistically ties our compositional method. Our analysis shows that our method

has substantially different strengths than the new baseline, and the combination of
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the two yields a 15% improvement over Gardner et al. (2013). We also show that our

zero-shot model is indeed capable of predicting new unseen relation types.

2.1 Background

We give background on PRA which we use to obtain a set of paths connecting the

entity pairs and the RNN model which we employ to model the composition function.

2.1.1 Path Ranking Algorithm

Since it is impractical to exhaustively obtain the set of all paths connecting an

entity pair in the large KB graph, we use PRA (Lao et al., 2011) to obtain a set of

paths connecting the entity pairs. Given a training set of entity pairs for a relation,

PRA heuristically finds a set of paths by performing random walks from the source

and target nodes keeping the most common paths. We use PRA to find millions of

distinct paths per relation type. We do not use the random walk probabilities given

by PRA since using it did not yield improvements in our experiments.

2.2 Recurrent Neural Networks for KB Completion

We propose a RNN model for KB completion that reasons on the paths connecting

an entity pair to predict missing relation types. We call our model Path-RNN. Let

(es, et) be an entity pair and S denote the set of paths between them. The set S is

obtained by performing random walks in the knowledge graph starting from es till

et. Let π = {es, r1, e1, r2, . . . , rk, et} ∈ S denote a path between (es, et). The length

of a path is the number of relations in it, hence, (len(π) = k). Let yrt ∈ Rd denote

the vector representation of rt. The Path-RNN model combines all the relations in

π sequentially using a RNN with an intermediate representation ht ∈ Rh at step t

given by

ht = f(Wr
hhht−1 + Wr

ihyr
rt

). (2.1)
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Wr
hh ∈ Rh×h and Wr

ih ∈ Rd×h are the parameters of the RNN. Here r denotes the

query relation. Path-RNN has a specialized model for predicting each query relation

r, with separate parameters (yr
rt
,Wr

hh,W
r
ih) for each r. f is the sigmoid function.

The vector representation of path π (yπ) is the last hidden state hk. The similarity of

yπ with the query relation vector yr is computed as the dot product between them:

score(π, r) = yπ · yr (2.2)

2.2.1 Selection Mechanism

Unlike in previous work that use RNNs(Socher et al., 2011; Iyyer et al., 2014; Irsoy

& Cardie, 2014), a challenge with using them for our task is that among the set of

paths connecting an entity pair, we do not observe which of the path(s) is predictive

of a relation. We select the path that is closest to the relation type to be predicted in

the vector space. This allows for faster training compared to marginalization. This

technique has been successfully used in models other than RNNs previously (Weston

et al., 2013; Neelakantan et al., 2014b).

Let {s1, s2, . . . , sN} be the similarity scores (Equation 2.2) for N paths connecting

an entity pair (es, et). Path-RNN computes the probability that the entity pair (es, et)

participates in the query relation (r) by,

P(r|es, et) = σ(max(s1, s2, . . . , sN)) (2.3)

where σ is the sigmoid function.

2.2.2 Model Training

We train the model using existing observed facts (triples) in the KB as positive

examples and unobserved facts as negative examples. Let R = {γ1, γ2, . . . , γn} denote

the set of all query relation types that we train for. Let ∆+
R,∆

−
R denote the set of
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positive and negative triples for all the relation types in R. The parameters of the

model are trained to minimize the negative log-likelihood of the data.

L(Θ,∆+
R,∆

−
R) = − 1

M
{

∑
es,et,r∈∆+

R

logP(r|es, et)

+
∑

ês,êt,r̂∈∆−R

log( 1− P(r̂|ês, êt))} (2.4)

Here M is the total number of training examples and Θ denotes the set of all param-

eters of the model.

2.3 Zero-shot KB Completion

The KB completion task involves predicting facts on thousands of relations types

and it is highly desirable that a method can infer facts about relation types with-

out directly training for them. Given the vector representation of the relations, we

show that our model described in the previous section is capable of predicting rela-

tional facts without explicitly training for the target (or test) relation types (zero-shot

learning).

In zero-shot or zero-data learning (Larochelle et al., 2008; Palatucci et al., 2009),

some labels or classes are not available during training the model and only a descrip-

tion of those classes are given at prediction time. We make two modifications to the

model described in the previous section, (1) learn a general RNN, and (2) fix relation

vectors with pre-trained vectors, so that we can predict relations that are unseen

during training. This ability of the model to generalize to unseen relations is beyond

the capabilities of all previous methods for KB inference (Schoenmackers et al., 2010;

Lao et al., 2011; Gardner et al., 2013, 2014).

We learn a general RNN for all relations instead of learning a separate RNN for

every relation to be predicted. Here, the Path-RNN model combines all the relations
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in π sequentially using a RNN with an intermediate representation ht ∈ Rh at step t

given by

ht = f(Whhht−1 + Wihyrt). (2.5)

Whh ∈ Rh×h and Wih ∈ Rd×h are the parameters of the general RNN.

We initialize the vector representations of the binary relations using the represen-

tations learned in Riedel et al. (2013) and do not update them during training. The

relation vectors are not updated because at prediction time we would be predicting

relation types which are never seen during training and hence their vectors would

never get updated. We learn only the general RNN in this model. We train a single

model for a set of relation types by replacing the sigmoid function with a softmax

function while computing probabilities and the parameters of the RNN are learned

using the available training data containing instances of few relations. The other

aspects of the model remain unchanged. To predict facts whose relation types are

unseen during training, we compute the vector representation of the path using the

general RNN and compute the probability of the fact using the pre-trained relation

vector.

2.4 Experiments

The hyperparameters of all the models were tuned on the same held-out devel-

opment data. All the neural network models are trained for 150 iterations using 50

dimensional relation vectors, and we set the L2-regularizer and learning rate to 0.0001

and 0.1 respectively. We halved the learning rate after every 60 iterations and use

mini-batches of size 20. The neural networks and the classifiers were optimized using

AdaGrad (Duchi et al., 2011).
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Entities 18M
Freebase triples 40M
ClueWeb triples 12M
Relations 25,994
Relation types tested 46
Avg. paths/relation 2.3M
Avg. training facts/relation 6638
Avg. positive test instances/relation 3492
Avg. negative test instances/relation 43,160

Table 2.1: Statistics of our dataset.

2.4.1 Data

We ran experiments on Freebase (Bollacker et al., 2008) enriched with information

from ClueWeb. We use the publicly available entity links to Freebase in the ClueWeb

dataset (Orr et al., 2013). Hence, we create nodes only for Freebase entities in our

KB graph. We remove facts containing /type/object/type as they do not give useful

predictive information for our task. We get triples from ClueWeb by considering

sentences that contain two entities linked to Freebase. We extract the phrase between

the two entities and treat them as the relation types. For phrases that are of length

greater than four we keep only the first and last two words. This helps us to avoid

the time consuming step of dependency parsing the sentence to get the relation type.

These triples are similar to facts obtained by OpenIE (Banko et al., 2007). To reduce

noise, we select relation types that occur at least 50 times. We evaluate on 46 relation

types in Freebase that have the most number of instances. The methods are evaluated

on a subset of facts in Freebase that were hidden during training. Table 2.1 shows

important statistics of our dataset.
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Relation: /book/written work/original language/ (book “x” written in language “y”)
Seen paths:
/book/written work/previous in series → /book/written work/author → /people/person/nationality
→ /people/person/nationality−1 → /people/person/languages
/book/written work/author → /people/ethnicity/people−1 → /people/ethnicity/languages spoken
Unseen paths:
”in”−1 - ”writer”−1 → /people/person/nationality−1 → /people/person/languages
/book/written work/author → addresses → /people/person/nationality−1 → /people/person/languages
Relation: /people/person/place of birth/ (person “x” born in place “y”)
Seen paths:
“was,born,in” → /location/mailing address/citytown−1 → /location/mailing address/state province region
“from” → /location/location/contains−1

Unseen paths:
“born,in” → /location/location/contains → “near”−1

“was,born,in” → commonly,known,as−1

Relation: /geography/river/cities/ (river “x” flows through or borders “y”)
Seen paths:
“at” → /location/location/contains−1

“meets,the” → /transportation/bridge/body of water spanned−1 → /location/location/contains−1 → “in”
Unseen paths:
/geography/lake/outflow−1 → /location/location/contains−1

/geography/lake/outflow−1 → /location/location/contains−1 → “near”
Relation: /people/family/members/ (person “y” part of family “x”)
Seen paths:
/royalty/monarch/royal line−1 → /people/person/children → /royalty/monarch/royal line
→ /royalty/royal line/monarchs from this line
/royalty/royal line/monarchs from this line → /people/person/parents−1

→ /people/person/parents−1 → /people/person/parents−1

Unseen paths:
/royalty/monarch/royal line−1 → “leader”−1 → “king” → “was,married,to”−1

“of,the”−1 → “but,also,of” → “married” → “defended”−1

Table 2.2: Predictive paths, according to the RNN model, for 4 target relations.
Two examples of seen and unseen paths are shown for each target relation. Inverse
relations are marked by −1, i.e, r(x, y) =⇒ r−1(y, x),∀(x, y) ∈ r. Relations within
quotes are OpenIE (textual) relation types.

2.4.2 Predictive Paths

Table 2.2 shows predictive paths for 4 relations learned by the RNN model. The

high quality of unseen paths is indicative of the fact that the RNN model is able to

generalize to paths that are never seen during training.

2.4.3 Results

Using our dataset, we compare the performance of the following methods:

1. PRA Classifier is the method in (Lao et al., 2012) which trains a logistic re-

gression classifier by creating a feature for every path type.

2. Cluster PRA Classifier is the method in (Gardner et al., 2013) which replaces

relation types from ClueWeb triples with their cluster membership in the KB graph

before the path finding step. After this step, their method proceeds in exactly the
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same manner as (Lao et al., 2012) training a logistic regression classifier by creating

a feature for every path type. We use pre-trained relation vectors from (Riedel et al.,

2013) and use k-means clustering to cluster the relation types to 25 clusters as done

in (Gardner et al., 2013).

3. Composition-Add uses a simple element-wise addition followed by sigmoid non-

linearity as the composition function similar to (Yang et al., 2014).

4. RNN-random is the supervised Path-RNN model with the relation vectors ini-

tialized randomly.

5. RNN is the supervised Path-RNN model described in section 2.2 with the rela-

tion vectors initialized using the method in (Riedel et al., 2013).

6. PRA Classifier-b is our simple extension to the method in (Lao et al., 2012)

which additionally uses bigrams in the path as features. We add a special start and

stop symbol to the path before computing the bigram features.

7. Cluster PRA Classifier-b is our simple extension to the method in (Gard-

ner et al., 2013) which additionally uses bigram features computed as previously

described.

8. RNN + PRA Classifier combines the predictions of RNN and PRA Classi-

fier. We combine the predictions by assigning the score of a fact as the sum of their

rank in the two models after sorting them in ascending order.

9. RNN + PRA Classifier-b combines the predictions of RNN and PRA

Classifier-b using the technique described previously.

Table 2.3 shows the results of our experiments. The method described in (Gardner

et al., 2014) is not included in the table since the publicly available implementation

does not scale to our large dataset. First, we show that it is better to train the models

using all the path types instead of using only the top 1, 000 path types as done in

previous work (Gardner et al., 2013, 2014). We can see that the RNN model performs

significantly better than the baseline methods of (Lao et al., 2012) and (Gardner et al.,
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train with top 1000 paths train with all paths

Method MAP MAP
PRA Classifier 43.46 51.31
Cluster PRA Classifier 46.26 53.23

Composition-Add 40.23 45.37

RNN-random 45.52 56.91
RNN 46.61 56.95

PRA Classifier-b 48.09 58.13
Cluster PRA Classifier-b 48.72 58.02

RNN + PRA Classifier 49.92 58.42
RNN + PRA Classifier-b 51.94 61.17

Table 2.3: Results comparing different methods on 46 types. All the methods perform
better when trained using all the paths than training using the top 1, 000 paths. When
training with all the paths, RNN performs significantly (p < 0.005) better than PRA
Classifier and Cluster PRA Classifier. The small difference in performance between
RNN and both PRA Classifier-b and Cluster PRA Classifier-b is not statistically
significant. The best results are obtained by combining the predictions of RNN with
PRA Classifier-b which performs significantly (p < 10−5) better than both PRA
Classifier-b and Cluster PRA Classifier-b.

2013). The performance of the RNN model is not affected by initialization since using

random vectors and pre-trained vectors results in similar performance.

A surprising result is the impressive performance of our simple extension to the

classifier approach. After the addition of bigram features, the naive PRA method is as

effective as the Cluster PRA method. The small difference in performance between

RNN and both PRA Classifier-b and Cluster PRA Classifier-b is not statistically

significant. We conjecture that our method has substantially different strengths than

the new baseline. While the classifier with bigram features has an ability to accurately

memorize important local structure, the RNN model generalizes better to unseen

paths that are very different from the paths seen is training. Empirically, combining

the predictions of RNN and PRA Classifier-b achieves a statistically significant gain

over PRA Classifier-b.
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train with top 1000 paths train with all paths

Method MAP MAP
RNN 43.82 50.10
zero-shot 19.28 20.61
Random 7.59

Table 2.4: Results comparing the zero-shot model with supervised RNN and a ran-
dom baseline on 10 types. RNN is the fully supervised model described in section 2.2
while zero-shot is the model described in section 2.3. The zero-shot model without ex-
plicitly training for the target relation types achieves impressive results by performing
significantly (p < 0.05) better than a random baseline.

2.4.3.1 Zero-shot

Table 2.4 shows the results of the zero-shot model described in section 2.3 com-

pared with the fully supervised RNN model (section 2.2) and a baseline that produces

a random ordering of the test facts. We evaluate on randomly selected 10 (out of 46)

relation types, hence for the fully supervised version we train 10 RNNs, one for each

relation type. For evaluating the zero-shot model, we randomly split the relations

into two sets of equal size and train a zero-shot model on one set and test on the

other set. So, in this case we have two RNNs making predictions on relation types

that they have never seen during training. As expected, the fully supervised RNN

outperforms the zero-shot model by a large margin but the zero-shot model without

using any direct supervision clearly performs much better than a random baseline.

2.5 Related Work

KB completion includes methods such as (Lin & Pantel, 2001), (Yates & Etzioni,

2007) and (Berant et al., 2011) that learn inference rules of length one. (Schoen-

mackers et al., 2010) learn general inference rules by considering the set of all paths

in the KB and selecting paths that satisfy a certain precision threshold. Their method

does not scale well to modern KBs and also depends on carefully tuned thresholds.

(Lao et al., 2011) train a simple logistic regression classifier with NELL KB paths as
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features to perform KB completion while (Gardner et al., 2013) and (Gardner et al.,

2014) extend it by using pre-trained relation vectors to overcome feature sparsity.

Recently, (Yang et al., 2014) learn inference rules using simple element-wise addition

or multiplication as the composition function.

Compositional vector space models have been developed to represent phrases and

sentences in natural language as vectors (Mitchell & Lapata, 2008; Baroni & Zam-

parelli, 2010; Yessenalina & Cardie, 2011). Neural networks have been successfully

used to learn vector representations of phrases using the vector representations of the

words in that phrase. Recurrent neural networks have been used for many tasks such

as language modeling (Mikolov et al., 2010), machine translation (Sutskever et al.,

2014) and parsing (Vinyals et al., 2015b). Recursive neural networks, a more general

version of the recurrent neural networks have been used for many tasks like pars-

ing (Socher et al., 2011), sentiment classification (Socher et al., 2012, 2013c; Irsoy &

Cardie, 2014), question answering (Iyyer et al., 2014) and natural language logical

semantics (Bowman et al., 2014). Our overall approach is similar to RNNs with at-

tention (Bahdanau et al., 2014; Graves, 2013) since we select a path among the set

of paths connecting the entity pair to make the final prediction.

Zero-shot or zero-data learning was introduced in (Larochelle et al., 2008) for

character recognition and drug discovery. (Palatucci et al., 2009) perform zero-shot

learning for neural decoding while there has been plenty of work in this direction for

image recognition (Socher et al., 2013b; Frome et al., 2013; Norouzi et al., 2014).
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CHAPTER 3

CHAINS OF REASONING OVER ENTITIES,
RELATIONS, AND TEXT

We continue to improve neural network based logic reasoning in knowledge bases.

We study three modeling advances: (1) Previously, our method reasons about chains

of relations, but not the entities that form the nodes of the path. Now, we jointly

learn and reason about relation-types, entities, and entity-types. (2) Here, we use new

attention or selection mechanisms to reason about multiple paths instead of single

paths. (3) The most problematic impracticality for application to KBs with broad

semantics is their requirement to train a separate model for each relation-type to be

predicted. In contrast, now, we train a single, high-capacity RNN that can predict all

relation types. In addition to efficiency advantages, it significantly increases accuracy

because the multi-task nature of the training shares strength in the common RNN

parameters.

3.1 Modeling Approach

3.1.1 Shared Parameter Architecture

Path-RNN and other models such as the Path Ranking Algorithm (PRA) and its

extensions (Lao et al., 2011, 2012; Gardner et al., 2013, 2014) makes it impractical

to be used in downstream applications, since it requires training and maintaining a

model for each relation type. Moreover, parameters are not shared across multiple

target relation types leading to large number of parameters to be learned from the

training data.
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In response, now we share the relation type representation and the composition

matrices of the RNN across all target relations enabling lesser number of parameters

for the same training data. We refer to this model as Single-Model. This is an example

of multi-task learning (Caruana, 1997) among prediction of target relation types with

an underlying shared parameter architecture. The parameters are also shared in the

zero-shot experiment described in the previous chapter. The RNN hidden state in

(2.1) is now given by:

ht = f(Whhht−1 + Wihyrt). (3.1)

Readers should take note that the parameters here are independent of each target

relation r.

3.1.2 Selection Mechanism

The Path-RNN model selects the maximum scoring path between an entity pair to

make a prediction, possibly ignoring evidence from other important paths. Not only is

this a waste of computation (since we have to compute a forward pass for all the paths

anyway), but also the relations in all other paths do not get any gradients updates

during training as the max operation returns zero gradient for all other paths except

the maximum scoring one. This is especially ineffective during the initial stages of

the training since the maximum probable path will be random.

Here, we introduce new methods of path selection (or attention) that takes into

account multiple paths between an entity pair. Let {s1, s2, . . . , sN} be the similarity

scores (Equation 2.2) for N paths connecting an entity pair (es, et). The probability

for entity pair (es, et) to participate in relation r (Equation 2.3) is now given by,

1. Top-(k): A straightforward extension of the ‘max’ approach in which we average

the top k scoring paths. Let K denote the indices of top-k scoring paths.

P(r|es, et) = σ(
1

k

∑
j

sj),∀j ∈ K
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2. Average: Here, the final score is the average of scores of all the paths.

P(r|es, et) = σ(
1

N

N∑
i=1

si)

3. LogSumExp: In this approach the selection mechanism is a smooth approxima-

tion to the ‘max’ function - LogSumExp (LSE). Given a vector of scores, the

LSE is calculated as

LSE(s1, s2, . . . , sN) = log(
∑
i

exp(si))

and hence the probability of the triple is,

P(r|e1, e2) = σ(LSE(s1, s2, . . . , sN))

The average and the LSE selection functions apply non-zero weights to all the paths

during inference. However only a few paths between an entity pair are predictive of

a query relation. LSE has another desirable property since ∂LSE
∂si

= exp(si)∑
i exp(si)

. This

means that during the back-propagation step, every path will receive a share of the

gradient proportional to its score and hence this is a form of attention during the

gradient step. In contrast, for averaging, every path will receive equal ( 1
N

) share of

the gradient. Top-(k) (similar to max) receives sparse gradients.

3.1.3 Incorporating Entities

The Path-RNN model and other multi-hop relation extraction approaches (such

as Guu et al. (2015)) ignore the entities in the path. Consider the following paths

JFK–locatedIn–NYC–locatedIn–NY and Yankee Stadium–locatedIn–NYC–locatedIn–

NY. To predict the airport serves relation, the Path-RNN model assigns the same

scores to both the paths even though the first path should be ranked higher. This
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countryofHQ
(target relation)

Similarity metric

0.94

d 

Q 

Microsoft
  isBasedIn

Seattle
  locatedIn

USA
  (dummy_rel)

Washington
  locatedIn

(Path Vector)

Figure 3.1: At each step, the RNN consumes both entity and relation vectors of the
path. The entity representation can be obtained from its types. The path vector yπ
is the last hidden state. The parameters of the RNN and relation embeddings are
shared across all query relations. The dot product between the final representation of
the path and the query relation gives a confidence score, with higher scores indicating
that the query relation exists between the entity pair.

is because the model does not have information about the entities and just uses the

relations in the path for prediction.

A straightforward way of incorporating entities is to include entity representations

(along with relations) as input to the RNN. Learning separate representations of

entity, however has some disadvantages. The distribution of entity occurrence is

heavy tailed and hence it is hard to learn good representations of rarely occurring

entities. To alleviate this problem, we use the entity types present in the KB as

described below.

Most KBs have annotated types for entities and each entity can have multiple

types. For example, Melinda Gates has types such as CEO, Duke University Alumni,

Philanthropist, American Citizen etc. We obtain the entity representation by a sim-

ple addition of the entity type representations. The entity type representations are

learned during training. We limit the number of entity types for an entity to 7 most

frequently occurring types in the KB. Let yet ∈ Rm denote the representation of

entity et, then 3.1 now becomes
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ht = f(Whhht−1 + Wihyrt + Wehyet) (3.2)

Weh ∈ Rm×h is the new parameter matrix for projecting the entity representation.

Figure 3.1 shows our model with an example path between entities (Microsoft, USA)

with countryOfHQ (country of head-quarters) as the query relation.

3.2 Related Work

Guu et al. (2015) introduce new compositional techniques by modeling additive

and multiplicative interactions between relation matrices in the path. However they

model only a single path between an entity pair in-contrast to our ability to consider

multiple paths. Toutanova et al. (2016) improves upon them by additionally model-

ing the intermediate entities in the path and modeling multiple paths. However, in

their approach they have to store scores for intermediate path length for all entity

pairs, making it prohibitive to be used in our setting where we have more than 3M

entity pairs. They also model entities as just a scalar weight whereas we learn both

entity and type representations. Lastly as shown the previous chapter, non-linear

composition function out-performs linear functions (as used by them) for relation ex-

traction tasks. The performance of relation extraction methods have been improved

by incorporating entity types for their candidate entities, both in sentence level (Roth

& Yih, 2007; Singh et al., 2013) and KB relation extraction (Chang et al., 2014), and

in learning entailment rules (Berant et al., 2011).

3.3 Experiments

We continue to perform experiments on the same dataset as before. The dimension

of the relation type representations and the RNN hidden states are d, h = 250 and

the entity and type embeddings have m = 50 dimensions. We found rectifier units

(ReLU) (Le et al., 2015) to work much better than sigmoid units, even when compared
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to LSTMs (73.2 vs 72.4 in MAP). We use Adam (Kingma & Ba, 2014) for optimization

for all our experiments with the default hyperparameter settings (learning rate = 1e−3,

β1 = 0.9, β2 = 0.999, ε = 1e−8). Statistical significance for scores reported in Table

3.1 were done with a paired-t test.

Model Performance (%MAP) Selection

Single-Model 68.77 Max
Single-Model 55.80 Avg.
Single-Model 68.20 Top(k)
Single-Model 70.11 LogSumExp

PRA 64.43 n/a
PRA + Bigram 64.93 n/a

Path-RNN 65.23 Max
Path-RNN 68.43 LogSumExp

Single-Model 70.11 LogSumExp

PRA + Types 64.18 n/a
Single-Model 70.11 LogSumExp

Single-Model + Entity 71.74 LogSumExp
Single-Model + Types 73.26 LogSumExp

Single-Model + Entity + Types 72.22 LogSumExp

Table 3.1: The first section shows the effectiveness of LogSumExp as the score ag-
gregation function. The next section compares performance with existing multi-hop
approaches and the last section shows the performance achieved using joint reasoning
with entities and types.

3.3.1 Effect of Selection Techniques

Section 1 of Table 3.1 shows the effect of the various selection techniques presented

in section 3.1.2. LogSumExp gives the best results. This demonstrates the impor-

tance of considering information from all the paths. However, Avg. selection method

performs the worst, which shows that it is also important to weigh the paths scores

according to their values. Figure 3.2 plots the training loss w.r.t gradient update

step. Due to non-zero gradient updates for all the paths, the LogSumExp selection

strategy leads to faster training vs. max selection, which has sparse gradients. This

is especially relevant during the early stages of training, where the argmax path is
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Figure 3.2: Comparison of the training loss w.r.t gradient update steps of various
selection methods. The loss of LogSumExp decreases the fastest among all selection
methods and hence leads to faster training.

essentially a random guess. The scores of max and LSE selection are significant with

(p < 0.02).

3.3.2 Comparison with multi-hop models

We next compare the performance of the Single-Model with two other multi-hop

models - Path-RNN and PRA(Lao et al., 2011). Both of these approaches train an

individual model for each query relation. We also experiment with another exten-

sion of PRA that adds bigram features (PRA + Bigram). Additionally, we run an

experiment replacing the max-selection of Path-RNN with LogSumExp. The results

are shown in the second section of Table 3.1. It is not surprising to see that the

Single-Model, which leverages parameter sharing improves performance. It is also

encouraging to see that LogSumExp makes the Path-RNN baseline stronger. The

scores of Path-RNN (with LSE) and Single-Model are significant with (p < 0.005).

3.3.3 Effect of Incorporating Entities

Next, we provide quantitative results supporting our claim that modeling the

entities along a KB path can improve reasoning performance. The last section of

Table 3.1 lists the performance gain obtained by injecting information about entities.

We achieve the best performance when we represent entities as a function of their
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annotated types in Freebase (Single-Model + Types) (p < 0.005). In comparison,

learning separate representations of entities (Single-Model + Entities) gives slightly

worse performance. This is primarily because we encounter many new entities during

test time, for which our model does not have a learned representation. However the

relatively limited number of entity types helps us overcome the problem of represent-

ing unseen entities. We also extend PRA to include entity type information (PRA

+ Types), but this did not yield significant improvements.

3.3.4 Performance in Limited Data Regime

In constructing our dataset, we selected query relations with reasonable amounts

of data. However, for many important applications we have very limited data. To

simulate this common scenario, we create a new dataset by randomly selecting 23 out

of 46 relations and removing all but 1% of the positive and negative triples previously

used for training.

Effectively, the difference between Path-RNN and Single-Model is that Single-

Model does multitask learning, since it shares parameters for different target relation

types. Therefore, we expect it to outperform Path-RNN on this small dataset, since

this multitask learning provides additional regularization. We also experiment with

an extension of Single-Model where we introduce an additional task for multitask

learning, where we seek to predict annotated types for entities. Here, parameters for

the entity type embeddings are shared with the Single-Model. Supervision for this

task is provided by the entity type annotation in the KB. We train with a Bayesian

Personalized Ranking loss of Rendle et al. (2009). The results are listed in Table 3.2.

With Single-Model there is a clear jump in performance as we expect. The additional

multitask training with types gives a very small gain in performance.

The experiments described in the two chapters clearly show than RNNs with

the appropriate path selection mechanism perform significantly better than sym-
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Model Performance (%MAP)
Path-RNN 22.06

Single-Model 63.33
Single-Model + MTL 64.81

Table 3.2: Model performance when trained with a small fraction of the data.

bolic methods. Additionally, they can perform zero-shot reasoning which is par-

ticularly useful when employed in large KBs. The code and data are available at

https://rajarshd.github.io/ChainsofReasoning/

3.3.5 Human Performance

We conduct a study to measure the difference between human performance and

the performance of the best method from the experiments described above. The task

of labeling whether an entity pair participates in a target relation given only the

paths connecting them is extremely challenging for humans. Each entity pair has

many paths connecting them and the entities in the path are replaced by their types.

Moreover, understanding a path requires good knowledge of the Freebase schema. So,

labeling a single example takes considerable amount of time.

While we are good at labeling examples with binary labels, the methods are

good at producing a ranking. To reconcile these differences we adopt the following

strategy: 1) For a query relation, we sample 10 entity pairs (some are positive while

others are negative examples) 2) Each example is labeled as positive or negative.

Then, we measure accuracy among the labeled positive examples and this is used as

the human performance on the task. 3) Using the model’s predictions, we compute

top-k accuracy, where k is the number of positive labels in the previous step. 4) We

can use the computed top-k accuracies to compare the two systems.

Table 3.3 compares the top-k accuracy for humans vs Single-Model + Types for 4

query relations. For the first relation we use k = 7, k = 4 for the next two and k = 5
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Query Relation Human Performance Model
/architecture/structure/address 0.57 0.71

/book/written work/original language 0.75 1.0
/broadcast/content/genre 0.75 1.0
/people/person/religion 0.80 0.80

Table 3.3: Top-k accuracy of humans Vs Single-Model + Types.

for the last one. Overall, I correctly label 14
20

while the model gets 17
20

correct. This

study shows that the performance of the model is comparable to human performance.
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CHAPTER 4

NEURAL PROGRAMMER

The KB reasoning task considered in the previous chapters involves simple reason-

ing on large structured data. Now, we consider a task that involves mapping inputs

to latent programs to produce the required output. By inducing programs, we can

now support more sophisticated reasoning. While the methods we develop our fairly

general, we consider the task of mapping questions to latent programs in the context

of question answering. For example we need to answer the question “how many states

border Texas?” (see Zettlemoyer & Collins (2005)), given a database of states and its

borders. A common method for solving these problems is program induction where

the goal is to find a program (in SQL or some high-level languages) that can correctly

solve the task. An application of these models is in semantic parsing where the task

is to build a natural language interface to a structured database (Zelle & Mooney,

1996).

A drawback of existing methods in semantic parsing is that they are difficult to

train and require a great deal of human supervision. As the space over programs

is non-smooth, it is difficult to apply simple gradient descent; most often, gradi-

ent descent is augmented with a complex search procedure, such as sampling (Liang

et al., 2010). To further simplify training, the algorithmic designers have to manually

add more supervision signals to the models in the form of annotation of the com-

plete program for every question (Zettlemoyer & Collins, 2005) or a domain-specific

grammar (Liang et al., 2011). For example, designing grammars that contain rules

to associate lexical items to the correct operations, e.g., the word “largest” to the
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operation “argmax”, or to produce syntactically valid programs, e.g., disallow the

program >= dog. The role of hand-crafted grammars is crucial in semantic parsing

yet also limits its general applicability to many different domains. In a recent work

by Wang et al. (2015) to build semantic parsers for 7 domains, the authors hand

engineer a separate grammar for each domain.

The goal of this work is to develop a DNN model that does not require substantial

human supervision and is broadly applicable across different domains, data sources

and natural languages. The past few years have seen the tremendous success of deep

neural networks (DNNs) in a variety of supervised classification tasks starting with

image recognition (Krizhevsky et al., 2012) and speech recognition (Hinton et al.,

2012) where the DNNs act on a fixed-length input and output. More recently, this

success has been translated into applications that involve a variable-length sequence

as input and/or output such as machine translation (Sutskever et al., 2014; Bahdanau

et al., 2014; Luong et al., 2014), image captioning (Vinyals et al., 2015c; Xu et al.,

2015), conversational modeling (Shang et al., 2015; Vinyals & Le, 2015), end-to-end

Q&A (Sukhbaatar et al., 2015; Peng et al., 2015; Hermann et al., 2015), and end-

to-end speech recognition (Graves & Jaitly, 2014; Hannun et al., 2014; Chan et al.,

2015; Bahdanau et al., 2015). While these results strongly indicate that DNN models

are capable of learning the fuzzy underlying patterns in the data, they have not

had similar impact in applications that involve discrete or crisp reasoning. A major

limitation of these models is in their inability to learn even simple arithmetic and

logic operations. For example, Joulin & Mikolov (2015) show that recurrent neural

networks (RNNs) fail at the task of adding two binary numbers even when the result

has less than 10 bits. This makes existing DNN models unsuitable for the task under

consideration. For example, to answer the question “how many states border Texas?”,

the algorithm has to perform an act of counting in a table which is something that a

neural network is not yet good at.
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We propose Neural Programmer (Figure 4.1), a neural network augmented with a

small set of basic arithmetic and logic operations that can be trained end-to-end using

backpropagation. In our formulation, the neural network can run several steps using

a recurrent neural network. At each step, it can select a segment in the data source

and a particular operation to apply to that segment. The neural network propagates

these outputs forward at every step to form the final, more complicated output.

Using the target output, we can adjust the network to select the right data segments

and operations, thereby inducing the correct program. Key to our approach is that

the selection process (for the data source and operations) is done in a differentiable

fashion (i.e., soft selection or attention), so that the whole neural network can be

trained jointly by gradient descent. At test time, we replace soft selection with hard

selection.

Controller Soft
Selection

Arithmetic and 
logic operations

MemoryData Output

ApplyInput

t = 1, 2, …, TTimestep t

Figure 4.1: The architecture of Neural Programmer, a neural network augmented
with arithmetic and logic operations. The controller selects the operation and the
data segment. The memory stores the output of the operations applied to the data
segments and the previous actions taken by the controller. The controller runs for
several steps thereby inducing compositional programs that are more complex than
the built-in operations. The dotted line indicates that the controller uses information
in the memory to make decisions in the next time step.

By combining neural network with mathematical operations, we can utilize both

the fuzzy pattern matching capabilities of deep networks and the crisp algorithmic

power of traditional programmable computers. Our work is inspired by the success of

the soft attention mechanism (Bahdanau et al., 2014) and its application in learning
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a neural network to control an additional memory component (Graves et al., 2014;

Sukhbaatar et al., 2015).

Neural Programmer has two attractive properties. First, it learns from a weak

supervision signal which is the result of execution of the correct program. It does

not require the expensive annotation of the correct program for the training exam-

ples. The human supervision effort is in the form of question, data source and answer

triples. Second, Neural Programmer does not require additional rules to guide the

program search, making it a general framework. With Neural Programmer, the al-

gorithmic designer only defines a list of basic operations which requires lesser human

effort than in previous program induction techniques.

4.1 Model

Even though our model is quite general, we first apply Neural Programmer to the

task of question answering on tables, a task that has not been previously attempted

by neural networks. In our implementation for this task, Neural Programmer is run

for a total of T time steps chosen in advance to induce compositional programs of up

to T operations. The model consists of four modules:

• A question Recurrent Neural Network (RNN) to process the input question,

• A selector to assign two probability distributions at every step, one over the set

of operations and the other over the data segments,

• A list of operations that the model can apply and,

• A history RNN to remember the previous operations and data segments selected

by the model till the current time step.

These four modules are also shown in Figure 4.2. The history RNN combined with

the selector module functions as the controller in this case. Information about each

component is discussed in the next sections.

37



RNN step

ht-1

Input at 
step t 

ct

History RNN
Data Source

; [ ]
Input 

at
step 
t+1

Timestep t

Final
Output

=
OutputT

t = 1, 2, …, T

      hcol

qQuestion RNN

Outputt =
Op on data weighted by softmax

Softmax

Softmax

hop

Op Selector

Col Selector
ht

Operations

     
Apply

Figure 4.2: An implementation of Neural Programmer for the task of question an-
swering on tables. The output of the model at time step t is obtained by applying the
operations on the data segments weighted by their probabilities. The final output of
the model is the output at time step T . The dotted line indicates the input to the
history RNN at step t+1.

Apart from the list of operations, all the other modules are learned using gradient

descent on a training set consisting of triples, where each triple has a question, a

data source and an answer. We assume that the data source is in the form of a

table, table ∈ RM×C , containing M rows and C columns (M and C can vary amongst

examples). The data segments in our experiments are the columns, where each column

also has a column name.

4.1.1 Question Module

The question module converts the question tokens to a distributed representation.

In the basic version of our model, we use a simple RNN (Werbos, 1990) parame-

terized by W question and the last hidden state of the RNN is used as the question

representation (Figure 4.3).

Consider an input question containing Q words {w1, w2, . . . , wQ}, the question

module performs the following computations:

zi = tanh(W question [zi−1;V (wi)]), ∀i = 1, 2, . . . , Q
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Question RNN
last RNN hidden state

w1

V(w1) 

z1

w2

V(w2) 

z2 = tanh(Wquestion [z1; V(w2)])

wq

V(wq) 

q=zq

……

Figure 4.3: The question module to process the input question. q = zq denotes the
question representation used by Neural Programmer.

where V (wi) ∈ Rd represents the embedded representation of the word wi, [a; b] ∈

R2d represents the concatenation of two vectors a, b ∈ Rd, W question ∈ Rd×2d is the

recurrent matrix of the question RNN, tanh is the element-wise non-linearity function

and zQ ∈ Rd is the representation of the question. We set z0 to [0]d. We pre-process

the question by removing numbers from it and storing the numbers in a separate

list. Along with the numbers we store the word that appeared to the left of it in the

question which is useful to compute the pivot values for the comparison operations

described in Section 4.1.3.

For tasks that involve longer questions, we use a bidirectional RNN since we

find that a simple unidirectional RNN has trouble remembering the beginning of

the question. When the bidirectional RNN is used, the question representation is

obtained by concatenating the last hidden states of the two-ends of the bidirectional

RNNs. The question representation is denoted by q.

4.1.2 Selector

The selector produces two probability distributions at every time step t (t =

1, 2, . . . , T ): one probablity distribution over the set of operations and another prob-

ability distribution over the set of columns. The inputs to the selector are the question

representation (q ∈ Rd) from the question module and the output of the history RNN

(described in Section 4.1.4) at time step t (ht ∈ Rd) which stores information about

the operations and columns selected by the model up to the previous step.
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Each operation is represented using a d-dimensional vector. Let the number of

operations be O and let U ∈ RO×D be the matrix storing the representations of the

operations.

Operation Selection is performed by:

αopt = softmax (U tanh(W op[q;ht]))

where W op ∈ Rd×2d is the parameter matrix of the operation selector that produces

the probability distribution αopt ∈ [0, 1]O over the set of operations (Figure 4.4).

RNN step
ht 

ht-1

Input at 
step t 

ct

History RNN

qQuestion RNN

hop =
tanh(Wop [q; ht])
Op Selector

Op: 1
Op: 2

 Op: V

Operations

…

…
Softmax …

…

…

…

Timestep t

t = 1, 2, …, T

Figure 4.4: Operation selection at time step t where the selector assigns a probability
distribution over the set of operations.

The selector also produces a probability distribution over the columns at every

time step. We obtain vector representations for the column names using the param-

eters in the question module (Section 4.1.1) by word embedding or an RNN phrase

embedding. Let P ∈ RC×d be the matrix storing the representations of the column

names.

Data Selection is performed by:

αcolt = softmax (P tanh(W col[q;ht]))

where W col ∈ Rd×2d is the parameter matrix of the column selector that produces the

probability distribution αcolt ∈ [0, 1]C over the set of columns (Figure 4.5).
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Col:1 Col:C      ….
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Softmax

…
…

Col Selector 

      hcol = 
tanh(Wcol [q; ht])

Figure 4.5: Data selection at time step t where the selector assigns a probability
distribution over the set of columns.

4.1.3 Operations

Neural Programmer currently supports two types of outputs: a) a scalar output,

and b) a list of items selected from the table (i.e., table lookup).1 The first type of

output is for questions of type “Sum of elements in column C” while the second type of

output is for questions of type “Print elements in column A that are greater than 50.”

To facilitate this, the model maintains two kinds of output variables at every step t,

scalar answert ∈ R and lookup answert ∈ [0, 1]M×C . The output lookup answert(i , j )

stores the probability that the element (i, j) in the table is part of the output. The fi-

nal output of the model is scalar answerT or lookup answerT depending on whichever

of the two is updated after T time steps. Apart from the two output variables, the

model maintains an additional variable row selectt ∈ [0, 1]M that is updated at every

time step. The variables row selectt [i ](∀i = 1, 2, . . . ,M) maintain the probability of

selecting row i and allows the model to dynamically select a subset of rows within a

column. The output is initialized to zero while the row select variable is initialized

to [1]M .

Key to Neural Programmer is the built-in operations, which have access to the

outputs of the model at every time step before the current time step t, i.e., the

1It is trivial to extend the model to support general text responses by adding a decoder RNN to
generate text sentences.
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operations have access to (scalar answer i, lookup answer i),∀i = 1, 2, . . . , t− 1. This

enables the model to build powerful compositional programs.

It is important to design the operations such that they can work with probabilistic

row and column selection so that the model is differentiable. Table 4.1 shows the list

of operations built into the model along with their definitions. The reset operation

can be selected any number of times which when required allows the model to induce

programs whose complexity is less than T steps.

Type Operation Definition

Aggregate
Sum sumt [j] =

M∑
i=1

row selectt−1 [i] ∗ table[i][j], ∀j = 1, 2, . . . , C

Count countt =
M∑
i=1

row selectt−1 [i]

Arithmetic Difference difft = scalar outputt−3 − scalar outputt−1

Comparison
Greater gt[i][j] = table[i][j] > pivotg , ∀(i, j), i = 1, . . . ,M, j = 1, . . . , C
Lesser lt[i][j] = table[i ][j ] < pivotl , ∀(i, j), i = 1, . . . ,M, j = 1, . . . , C

Logic
And and t[i] = min(row selectt−1 [i ], row selectt−2 [i ]), ∀i = 1, 2, . . . ,M
Or or t[i] = max(row selectt−1 [i ], row selectt−2 [i ]),∀i = 1, 2, . . . ,M

Assign Lookup assign assignt[i][j] = row selectt−1 [i ], ∀(i, j)i = 1, 2, . . . ,M, j = 1, 2, . . . , C
Reset Reset resett [i ] = 1,∀i = 1, 2, . . . ,M

Table 4.1: List of operations along with their definitions at time step t, table ∈ RM×C

is the data source in the form of a table and row selectt ∈ [0, 1]M functions as a row
selector.

While the definitions of the operations are fairly straightforward, comparison op-

erations greater and lesser require a pivot value as input (refer Table 4.1), which

appears in the question. Let qn1, qn2, . . . , qnN be the numbers that appear in the

question.

For every comparison operation (greater and lesser), we compute its pivot value by

adding up all the numbers in the question each of them weighted with the probabilities

assigned to it computed using the hidden vector at position to the left of the number,2

and the operation’s embedding vector. More precisely:

2This choice is made to reflect the common case in English where the pivot number is usually
mentioned after the operation but it is trivial to extend to use hidden vectors both in the left and
the right of the number.
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βop = softmax (ZU(op))

pivotop =
N∑
i=1

βop(i)qni

where U(op) ∈ Rd is the vector representation of operation op (op ∈ {greater, lesser})

and Z ∈ RN×d is the matrix storing the hidden vectors of the question RNN at

positions to the left of the occurrence of the numbers.

By overloading the definition of αopt and αcolt , let αopt (x) and αcolt (j) denote the

probability assigned by the selector to operation x (x ∈ {sum, count, difference,

greater, lesser, and, or, assign, reset}) and column j (∀j = 1, 2, . . . , C) at time step t

respectively.

Figure 4.6 show how the output and row selector variables are computed. The

output and row selector variables at a step is obtained by additively combining the

output of the individual operations on the different data segments weighted with their

corresponding probabilities assigned by the model.

Data Source

Timestep t

t = 1, 2, …, T

Operations

     
ApplySelector

Softmax

Softmax

row_selectt-1
row_selectt-2

scalar_answert-1
scalar_answert-2
scalar_answert-3

row_selectt
scalar_answert
lookup_answert

Figure 4.6: The output and row selector variables are obtained by applying the
operations on the data segments and additively combining their outputs weighted
using the probabilities assigned by the selector.

More formally, the output variables are given by:
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scalar answert = αopt (count)countt + αopt (difference)difft +
C∑
j=1

αcolt (j)αopt (sum)sumt [j ],

lookup answert [i][j] = αcolt (j)αopt (assign)assignt [i][j],∀(i, j)i = 1, 2, . . . ,M, j = 1, 2, . . . , C

The row selector variable is given by:

row selectt [i ] = αopt (and)andt [i] + αopt (or)ort [i] + αopt (reset)resett [i]+

C∑
j=1

αcolt (j)(αopt (greater)gt[i][j] + αopt (lesser)lt[i][j]),∀i = 1, . . . ,M

It is important to note that other operations like equal to, max, min, not etc. can

be built into this model easily.

4.1.3.1 Handling Text Entries

So far, our disscusion has been only concerned with tables that have numeric

entries. Now, we describe how Neural Programmer handles text entries in the input

table. We assume a column can contain either numeric or text entries. An example

query is “what is the sum of elements in column B whose field in column C is word:1

and field in column A is word:7?”. In other words, the query is looking for text entries

in the column that match specified words in the questions. To answer these queries,

we add a text match operation that updates the row selector variable appropriately.

In our implementation, the parameters for vector representations of the column’s text

entries are shared with the question module.

The text match operation uses a two-stage soft attention mechanism, back and

forth from the text entries to question module. In the following, we explain its

implementation in detail.

Let TC1, TC2, . . . , TCK be the set of columns that each have M text entries and

A ∈M ×K × d store the vector representations of the text entries. In the first stage,

the question representation coarsely selects the appropriate text entries through the
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sigmoid operation. Concretely, coarse selection, B, is given by the sigmoid of dot

product between vector representations for text entries, A, and question representa-

tion, q:

B[m][k] = sigmoid

(
d∑
p=1

A[m][k][p] · q[p]

)
∀(m, k) m = 1, . . . ,M, k = 1, . . . , K

To obtain question-specific column representations, D, we use B as weighting

factors to compute the weighted average of the vector representations of the text

entries in that column:

D[k][p] =
1

M

M∑
m=1

(B[m][k] · A[m][k][p]) ∀(k, p) k = 1, . . . , K, p = 1, . . . , d

To allow different words in the question to be matched to the corresponding

columns (e.g., match word:1 in column C and match word:7 in column A for ques-

tion “what is the sum of elements in column B whose field in column C is word:1

and field in column A is word:7?’), we add the column name representations (de-

scribed in Section 4.1.2), P , to D to obtain column representations E. This make the

representation also sensitive to the column name.

In the second stage, we use E to compute an attention over the hidden states

of the question RNN to get attention vector G for each column of the input table.

More concretely, we compute the dot product between E and the hidden states of

the question RNN to obtain scalar values. We then pass them through softmax to

obtain weighting factors for each hidden state. G is the weighted combination of the

hidden states of the question RNN.
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Finally, text match selection is done by:

text match[m][k] = sigmoid

(
d∑
p=1

A[m][k][p] ·G[k][p]

)

∀(m, k) m = 1, . . . ,M, k = 1, . . . , K

Without loss of generality, let the first K (K ∈ [0, 1, . . . , C]) columns out of C

columns of the table contain text entries while the remaining contain numeric entries.

The row selector variable now is given by:

row selectt [i ] = αopt (and)andt [i] + αopt (or)ort [i] + αopt (reset)resett [i]+

C∑
j=K+1

αcolt (j)(αopt (greater)gt[i][j] + αopt (lesser)lt[i][j])+

K∑
j=1

αcolt (j)(αopt (text match)text matcht[i][j],∀i = 1, . . . ,M

The two-stage mechanism is required since in our experiments we find that simply

averaging the vector representations fails to make the representation of the column

specific enough to the question. Unless otherwise stated, our experiments are with

input tables whose entries are only numeric and in that case the model does not

contain the text match operation.

4.1.4 History RNN

The history RNN keeps track of the previous operations and columns selected

by the selector module so that the model can induce compositional programs. This

information is encoded in the hidden vector of the history RNN at time step t, ht ∈

Rd. This helps the selector module to induce the probability distributions over the

operations and columns by taking into account the previous actions selected by the

model. Figure 4.7 shows details of this component.
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Figure 4.7: The history RNN which helps in remembering the previous operations
and data segments selected by the model. The dotted line indicates the input to the
history RNN at step t+1.

The input to the history RNN at time step t, ct ∈ R2d is obtained by concatenating

the weighted representations of operations and column names with their correspond-

ing probability distribution produced by the selector at step t− 1. More precisely:

ct = [(αopt−1)TU ; (αcolt−1)TP ]

The hidden state of the history RNN at step t is computed as:

ht = tanh(W history [ct;ht−1]),∀i = 1, 2, . . . , Q

where W history ∈ Rd×3d is the recurrent matrix of the history RNN, and ht ∈ Rd is

the current representation of the history. The history vector at time t = 1, h1 is set

to [0]d.

4.2 Training Objective

The parameters of the model include the parameters of the question RNN,W question,

parameters of the history RNN, W history, word embeddings V (.), operation embed-

dings U , operation selector and column selector matrices, W op and W col respectively.
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During training, depending on whether the answer is a scalar or a lookup from the

table we have two different loss functions.

When the answer is a scalar, we use Huber loss (Huber, 1964) given by:

Lscalar(scalar answerT , y) =


1
2
a2, if a ≤ δ

δa− 1
2
δ2, otherwise

where a = |scalar answerT − y| is the absolute difference between the predicted and

true answer, and δ is the Huber constant treated as a model hyper-parameter. In our

experiments, we find that using square loss makes training unstable while using the

absolute loss makes the optimization difficult near the non-differentiable point.

When the answer is a list of items selected from the table, we convert the answer

to y ∈ {0, 1}M×C , where y[i, j] indicates whether the element (i, j) is part of the

output. In this case we use log-loss over the set of elements in the table given by:

Llookup(lookup answerT , y) = − 1

MC

M∑
i=1

C∑
j=1

(
y[i, j] log(lookup answerT [i, j])+

(1− y[i, j]) log(1− lookup answerT [i, j])

)

The training objective of the model is given by:

L =
1

N

N∑
k=1

(
[nk == True]L

(k)
scalar + [nk == False]λL

(k)
lookup

)

where N is the number of training examples, L
(k)
scalar and L

(k)
lookup are the scalar and

lookup loss on kth example, nk is a boolean random variable which is set to True when

the kth example’s answer is a scalar and set to False when the answer is a lookup,

and λ is a hyper-parameter of the model that allows to weight the two loss functions

appropriately.
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4.3 Prediction Procedure

At prediction time, we replace the three softmax layers in the model with the

conventional maximum (hardmax) operation and the final output of the model is

either scalar answerT or lookup answerT , depending on whichever among them is

updated after T time steps. Algorithm 1 gives a high-level view of Neural Programmer

at prediction time.

Algorithm 1 High-level view of Neural Programmer at prediction time for an input
example.

1: Input: table ∈ RM×C and question
2: Initialize: scalar answer 0 = 0, lookup answer 0 = 0M×C , row select0 = 1M ,

history vector at time t = 0, h0 = 0d and input to history RNN at time t = 0,
c0 = 02d

3: Preprocessing: Remove numbers from question and store them in a list along
with the words that appear to the left of it. The tokens in the input question are
{w1, w2, . . . , wQ}.

4: Question Module: Run question RNN on the preprocessed question to get
question representation q and list of hidden states z1, z2, . . . , zQ

5: Pivot numbers: pivotg and pivotl are computed using hidden states from ques-
tion RNN and operation representations U

6: for t = 1, 2, . . . , T do
7: Compute history vector ht by passing input ct to the history RNN
8: Operation selection using q, ht and operation representations U
9: Data selection on table using q, ht and column representations V

10: Update scalar answert , lookup answert and row select t using the selected op-
eration and column

11: Compute input to the history RNN at time t+ 1, ct+1

12: end for
13: Output: scalar answerT or lookup answerT depending on whichever of the two

is updated at step T

4.4 Related Work

Program induction has been studied in the context of semantic parsing (Zelle &

Mooney, 1996; Zettlemoyer & Collins, 2005; Liang et al., 2011) in natural language

processing. Pasupat & Liang (2015) develop a semantic parser with a hand engineered

grammar for question answering on tables with natural language questions. Methods

49



such as Piantadosi et al. (2008); Eisenstein et al. (2009); Clarke et al. (2010) learn

a compositional semantic model without hand engineered compositional grammar,

but still requiring a hand labeled lexical mapping of words to the operations. Poon

(2013) develop an unsupervised method for semantic parsing, which requires many

pre-processing steps including dependency parsing and mapping from words to oper-

ations. Liang et al. (2010) propose an hierarchical Bayesian approach to learn simple

programs.

There has been some early work in using neural networks for learning context

free grammar (Das et al., 1992a,b; Zeng et al., 1994) and context sensitive grammar

(Steijvers, 1996; Gers & Schmidhuber, 2001) for small problems. Neelakantan et al.

(2015); Lin et al. (2015) learn simple Horn clauses in a large knowledge base using

RNNs. Neural networks have also been used for Q&A on datasets that do not require

complicated arithmetic and logic reasoning (Bordes et al., 2014; Iyyer et al., 2014;

Sukhbaatar et al., 2015; Peng et al., 2015; Hermann et al., 2015). While there has

been lot of work in augmenting neural networks with additional memory (Das et al.,

1992a; Schmidhuber, 1993; Hochreiter & Schmidhuber, 1997; Graves et al., 2014;

Weston et al., 2015; Kumar et al., 2016; Joulin & Mikolov, 2015), we are not aware of

any other work that augments a neural network with a set of operations to enhance

complex reasoning capabilities.

After our work was submitted to ArXiv, many neural network models have been

developed for program induction (Andreas et al., 2016; Jia & Liang, 2016; Reed &

Freitas, 2016; Zaremba et al., 2016; Yin et al., 2015), despite the notorious difficulty

of handling discrete operations in neural networks (Joulin & Mikolov, 2015; Kaiser &

Sutskever, 2016). Most of these approaches rely on complete program as supervision

(Jia & Liang, 2016; Reed & Freitas, 2016) while others (Zaremba et al., 2016; Yin

et al., 2015) have been tried only on synthetic tasks. Recently, Kocisky et al. (2016)

50



develop a semi-supervised semantic parsing method that uses question-program pairs

as supervision.
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CHAPTER 5

SYNTHETIC DATA EXPERIMENTS WITH NEURAL
PROGRAMMER

Neural Programmer described in the previous chapter is faced with many chal-

lenges, specifically: 1) can the model learn the parameters of the different modules

with delayed supervision after T steps? 2) can it exhibit compositionality by gener-

alizing to unseen questions? and 3) can the question module handle the variability

and ambiguity of natural language? In our first experiments, we mainly focus on

answering the first two questions using synthetic data. Our reason for using synthetic

data is that it is easier to understand a new model with a synthetic dataset. We can

generate the data in a large quantity, whereas the biggest real-word semantic parsing

datasets we know of contains only about 14k training examples (Pasupat & Liang,

2015) which is very small by neural network standards. In one of our experiments,

we introduce simple word-level variability to simulate one aspect of the difficulties in

dealing with natural language input.

5.1 Data

We generate question, table and answer triples using a synthetic grammar. Tables

5.1 and 5.2 shows examples of question templates from the synthetic grammar for

single and multiple columns respectively. The elements in the table are uniformly

randomly sampled from [-100, 100] and [-200, 200] during training and test time

respectively. The number of rows is sampled randomly from [30, 100] in training

while during prediction the number of rows is 120. Each question in the test set is

unique, i.e., it is generated from a distinct template. We use the following settings:
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1. Single Column: We first perform experiments with a single column that

enables 23 different question templates which can be answered using 4 time steps

(Table 5.1).

sum
count
print
greater [number] sum
lesser [number] sum
greater [number] count
lesser [number] count
greater [number] print
lesser [number] print
greater [number1] and lesser [number2] sum
lesser [number1] and greater [number2] sum
greater [number1] or lesser [number2] sum
lesser [number1] or greater [number2] sum
greater [number1] and lesser [number2] count
lesser [number1] and greater [number2] count
greater [number1] or lesser [number2] count
lesser [number1] or greater [number2] count
greater [number1] and lesser [number2] print
lesser [number1] and greater [number2] print
greater [number1] or lesser [number2] print
lesser [number1] or greater [number2] print
sum diff count
count diff sum

Table 5.1: 23 question templates for single column experiment. We have four cate-
gories of questions: 1) simple aggregation (sum, count) 2) comparison (greater, lesser)
3) logic (and, or) and, 4) arithmetic (diff). We first sample the categories uniformly
randomly and each program within a category is equally likely. In the word variabil-
ity experiment with 5 columns we sampled from the set of all programs uniformly
randomly since greater than 90% of the test questions were unseen during training
using the other procedure.

2. Many Columns: We increase the difficulty by experimenting with multiple

columns (max columns = 3, 5 or 10). During training, the number of columns is

randomly sampled from (1, max columns) and at test time every question had the

maximum number of columns used during training (Table 5.2).
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greater [number1] A and lesser [number2] A sum A
greater [number1] B and lesser [number2] B sum B
greater [number1] A and lesser [number2] A sum B
greater [number1] A and lesser [number2] B sum A
greater [number1] B and lesser [number2] A sum A
greater [number1] A and lesser [number2] B sum B
greater [number1] B and lesser [number2] B sum A
greater [number1] B and lesser [number2] B sum A

Table 5.2: 8 question templates of type “greater [number1] and lesser [number2] sum”
when there are 2 columns.

3. Variability: To simulate one aspect of the difficulties in dealing with natural

language input, we consider multiple ways to refer to the same operation (Tables 5.3

and 5.4).

sum sum, total, total of, sum of
count count, count of, how many
greater greater, greater than, bigger, bigger than, larger, larger than
lesser lesser, lesser than, smaller, smaller than, under
assign print, display, show
difference difference, difference between

Table 5.3: Word variability, multiple ways to refer to the same operation.

4. Text Match: Now we consider cases where some columns in the input table

contain text entries. We use a small vocabulary of 10 words and fill the column by

uniformly randomly sampling from them. In our first experiment with text entries,

the table always contains two columns, one with text and other with numeric entries

(Table 5.5). In the next experiment, each example can have up to 3 columns con-

taining numeric entries and up to 2 columns containing text entries during training.

At test time, all the examples contain 3 columns with numeric entries and 2 columns

with text entries.
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greater [number] sum
greater [number] total
greater [number] total of
greater [number] sum of
greater than [number] sum
greater than [number] total
greater than [number] total of
greater than [number] sum of
bigger [number] sum
bigger [number] total
bigger [number] total of
bigger [number] sum of
bigger than [number] sum
bigger than [number] total
bigger than [number] total of
bigger than [number] sum of
larger [number] sum
larger [number] total
larger [number] total of
larger [number] sum of
larger than [number] sum
larger than [number] total
larger than [number] total of
larger than [number] sum of

Table 5.4: 24 questions templates for questions of type “greater [number] sum” in the
single column word variability experiment.

5.2 Results

In the following, we benchmark the performance of Neural Programmer on various

versions of the table-comprehension dataset. We slowly increase the difficulty of

the task by changing the table properties (more columns, mixed numeric and text

entries) and question properties (word variability). After that we discuss a comparison

between Neural Programmer, LSTM, and LSTM with Attention.

5.2.1 Neural Programmer

We use 4 time steps in our experiments (T = 4). Neural Programmer is trained

with mini-batch stochastic gradient descent with Adam optimizer (Kingma & Ba,
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word:0 A sum B
word:1 A sum B
word:2 A sum B
word:3 A sum B
word:4 A sum B
word:5 A sum B
word:6 A sum B
word:7 A sum B
word:8 A sum B
word:9 A sum B

Table 5.5: 10 questions templates for questions of type “[word] A sum B” in the two
columns text match experiment.

2014). The parameters are initialized uniformly randomly within the range [-0.1,

0.1]. In all experiments, we set the mini-batch size to 50, dimensionality d to 256, the

initial learning rate and the momentum hyper-parameters of Adam to their default

values (Kingma & Ba, 2014). We found that it is extremely useful to add random

Gaussian noise to our gradients at every training step. This acts as a regularizer

to the model and allows it to actively explore more programs. We use a schedule

inspired from Welling & Teh (2011), where at every step we sample a Gaussian of 0

mean and variance= curr step−0.55.

To prevent exploding gradients, we perform gradient clipping by scaling the gradi-

ent when the norm exceeds a threshold (Graves, 2013). The threshold value is picked

from [1, 5, 50]. We tune the ε hyper-parameter in Adam from [1e-6, 1e-8], the Hu-

ber constant δ from [10, 25, 50] and λ (weight between two losses) from [25, 50, 75,

100] using grid search. While performing experiments with multiple random restarts

we find that the performance of the model is stable with respect to ε and gradient

clipping threshold but we have to tune δ and λ for the different random seeds.

The training set consists of 50, 000 triples in all our experiments. Table 5.6 shows

the performance of Neural Programmer on synthetic data experiments. In single col-

umn experiments, the model answers all questions correctly which we manually verify
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Type No. of Test Question Templates Accuracy % seen test

Single Column 23 100.0 100

3 Columns 307 99.02 100
5 Columns 1231 99.11 98.62
10 Columns 7900 99.13 62.44

Word Variability on 1 Column 1368 96.49 100
Word Variability on 5 Columns 24000 88.99 31.31

Text Match on 2 Columns 1125 99.11 97.42
Text Match on 5 Columns 14600 98.03 31.02

Table 5.6: Summary of the performance of Neural Programmer on various versions
of the synthetic table-comprehension task. The prediction of the model is considered
correct if it is equal to the correct answer up to the first decimal place. The last column
indicates the percentage of question templates in the test set that are observed during
training. The unseen question templates generate questions containing sequences of
words that the model has never seen before. The model can generalize to unseen
question templates which is evident in the 10-columns, word variability on 5-columns
and text match on 5 columns experiments. This indicates that Neural Programmer
is a powerful compositional model since solving unseen question templates requires
performing a sequence of actions that it has never done during training.

by inspecting the programs induced by the model. In many columns experiments with

5 columns, we use a bidirectional RNN and for 10 columns we additionally perform

attention (Bahdanau et al., 2014) on the question at every time step using the his-

tory vector. The model is able to generalize to unseen question templates which

are a considerable fraction in our ten columns experiment. This can also be seen in

the word variability experiment with 5 columns and text match experiment with 5

columns where more than two-thirds of the test set contains question templates that

are unseen during training. This indicates that Neural Programmer is a powerful

compositional model since solving unseen question templates requires inducing pro-

grams that do not appear during training. Almost all the errors made by the model

were on questions that require the difference operation to be used. Table 5.7 shows

examples of how the model selects the operation and column at every time step for

three test questions.

Figure 5.1 shows an example of the effect of adding random noise to the gradients

in our experiment with 5 columns.

57



Question t
Selected Selected pivotg pivotl Row

Op Column select

greater 50.32 C and lesser 20.21 E sum H 1 Greater C

50.32 20.21

g1
What is the sum of numbers in column H 2 Lesser E l2

whose field in column C is greater than 50.32 3 And - and3
and field in Column E is lesser than 20.21. 4 Sum H [0]M

lesser -80.97 D or greater 12.57 B print F 1 Lesser D

12.57 -80.97

l1
Print elements in column F 2 Greater B g2

whose field in column D is lesser than -80.97 3 Or - or3
or field in Column B is greater than 12.57. 4 Assign F [0]M

sum A diff count 1 Sum A

-1 -1

[0]M

What is the difference 2 Reset - [1]M

between sum of elements in 3 Count - [0]M

column A and number of rows 4 Diff - [0]M

Table 5.7: Example outputs from the model for T = 4 time steps on three questions
in the test set. We show the synthetically generated question along with its natural
language translation. For each question, the model takes 4 steps and at each step
selects an operation and a column. The pivot numbers for the comparison operations
are computed before performing the 4 steps. We show the selected columns in cases
during which the selected operation acts on a particular column.
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Figure 5.1: The effect of adding random noise to the gradients versus not adding it in
our experiment with 5 columns when all hyper-parameters are the same. The models
trained with noise generalizes almost always better.

5.2.2 Comparison to LSTM and LSTM with Attention

We apply a three-layer sequence-to-sequence LSTM recurrent network model (Hochre-

iter & Schmidhuber, 1997; Sutskever et al., 2014) and LSTM model with attention

(Bahdanau et al., 2014). We explore multiple attention heads (1, 5, 10) and try two

cases, placing the input table before and after the question. We consider a simpler

version of the single column dataset with only questions that have scalar answers.
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The number of elements in the column is uniformly randomly sampled from [4, 7]

while the elements are sampled from [−10, 10]. The best accuracy using these models

is close to 80% in spite of relatively easier questions and supplying fresh training

examples at every step. When the scale of the input numbers is changed to [−50, 50]

at test time, the accuracy drops to 30%.

Neural Programmer solves this task and achieves 100% accuracy using 50, 000

training examples. Since hardmax operation is used at test time, the answers (or the

program induced) from Neural Programmer is invariant to the scale of numbers and

the length of the input.
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CHAPTER 6

SEMANTIC PARSING WITH NEURAL PROGRAMMER

Operations
Count
Select

ArgMax
ArgMin

…
…
>
<

Print

Neural Network
What was the 

total number of 
goals scored in 

2005 Row
Selector

Scalar
AnswerLookup

Answer

timestep t

Column
Selection

Data from Table

Row Selector 
from t-1

Operation
Selection

Table

Figure 6.1: Neural Programmer is a neural network augmented with a set of discrete
operations. The model runs for a fixed number of time steps, selecting an operation
and a column from the table at every time step. The induced program transfers
information across timesteps using the row selector variable while the output of the
model is stored in the scalar answer and lookup answer variables.

The experiments in the previous chapter are on synthetic data. Now, we consider

a real-world task of learning natural language interface to databases using Neural Pro-

grammer. Databases are a pervasive way to store and access knowledge. However, it

is not straightforward for users to interact with databases since it often requires pro-

gramming skills and knowledge about database schemas. Overcoming this difficulty
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by allowing users to communicate with databases via natural language is an active

research area. The common approach to this task is by semantic parsing, which is the

process of mapping natural language to symbolic representations of meaning. In this

context, semantic parsing yields logical forms or programs that provide the desired

response when executed on the databases (Zelle & Mooney, 1996). Semantic parsing

is a challenging problem that involves deep language understanding and reasoning

with discrete operations such as counting and row selection (Liang, 2016).

We develop an approach to semantic parsing based on Neural Programmer. We

show how to learn a natural language interface for answering questions using database

tables, thus integrating differentiable operations that are typical of neural networks

with the declarative knowledge contained in the tables and with discrete operations on

tables and entries. For this purpose, we make several improvements and adjustments

to Neural Programmer, in particular adapting its objective function to make it more

broadly applicable.

As described before, Neural Programmer (Neelakantan et al., 2016a) is a neural

network augmented with a set of discrete operations. It produces both a program,

made up of those operations, and the result of running the program against a given

table. As input, a model receives a question along with a table (Figure 6.1). The

model runs for a fixed number of time steps, selecting an operation and a column

from the table as the argument to the operation at each time step. During train-

ing, soft selection (Bahdanau et al., 2014) is performed so that the model can be

trained end-to-end using backpropagation. This approach allows Neural Programmer

to explore the search space with better sample complexity than hard selection with

the REINFORCE algorithm (Williams, 1992) would provide. All the parameters of

the model are learned from a weak supervision signal that consists of only the final

answer; the underlying program, which consists of a sequence of operations and of

selected columns, is latent.
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In the previous chapter, Neural Programmer is applied only on a synthetic dataset.

In that dataset, when the expected answer is an entry in the given table, its position is

explicitly marked in the table. However, real-world datasets certainly do not include

those markers, and lead to many ambiguities (e.g., (Pasupat & Liang, 2015)). In

particular, when the answer is a number that occurs literally in the table, it is not

known, a priori, whether the answer should be generated by an operation or selected

from the table. Similarly, when the answer is a natural language phrase that occurs

in multiple positions in the table, it is not known which entry (or entries) in the table

is actually responsible for the answer. We extend Neural Programmer to handle the

weaker supervision signal by backpropagating through decisions that concern how the

answer is generated when there is an ambiguity.

The work that is most similar to ours is that of Andreas et al. (2016) on the

dynamic neural module network. However, in their method, the neural network is only

employed to search over a small set of candidate layouts provided by the syntactic

parse of the question, and is trained using the REINFORCE algorithm (Williams,

1992). Hence, their method cannot recover from parser errors, and it is not trivial to

adapt the parser to the task at hand. Additionally, all their modules or operations are

parametrized by a neural network, so it is difficult to apply their method on tasks that

require discrete arithmetic operations. Finally, their experiments concern a simpler

dataset that requires fewer operations, and therefore a smaller search space, than

WikiTableQuestions. Concurrently to our work, Liang et al. (2016) propose neural

symbolic machine, a model very similar to Neural Programmer but trained using the

REINFORCE algorithm (Williams, 1992). They use only 2 discrete operations and

run for a total of 3 timesteps, hence inducing programs that are much simpler than

ours.

Our main experimental results concern WikiTableQuestions (Pasupat & Liang,

2015), a real-world question-answering dataset on database tables, with only 10,000

62



examples for weak supervision. This dataset is particularly challenging because of its

small size and the lack of strong supervision, and also because the tables provided at

test time are never seen during training, so learning requires adaptation at test time

to unseen column names. A state-of-the-art, traditional semantic parser that relies on

pruning strategies to ease program search achieves 37.1% accuracy. Standard neural

network models like sequence-to-sequence and pointer networks do not appear to be

promising for this dataset, as confirmed in our experiments below, which yield single-

digit accuracies. In comparison, a single Neural Programmer model using minimal

text pre-processing, and trained end-to-end, achieves 34.2% accuracy. This surprising

result is enabled primarily by the sample efficiency of Neural Programmer, by the

enhanced objective function, and by reducing overfitting via strong regularization

with dropout (Srivastava et al., 2014; Iyyer et al., 2015; Gal & Ghahramani, 2016) and

weight decay. An ensemble of 15 models, even with a trivial combination technique,

achieves 37.7% accuracy.

6.1 Modifications to Neural Programmer

In this section we describe the modifications made to the model.

6.1.1 Selector

We make the following modifications to the selector module. First, in Neelakantan

et al. (2016a), the column and operation selection are conditionally independent given

the representations of the question and history RNN. We introduce a dependency by

passing the weighted representation of operations with their probability distribution

produced by the selector. This change make training more stable. Next, column

selection is performed in the previous chapter using only the names of the column,

however, this selection procedure is insufficient in real-world settings. For example

the column selected in question 3 in Table 6.4 does not have a corresponding phrase
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in the question. Hence, to select a column we additionally use a boolean feature

that indicates whether an entry in that column matches some phrase in the question.

Finally, we replace tanh activations in the selector module with ReLU activations

since they are easier to train. Following Neelakantan et al. (2016a), we employ hard

selection at test time, hence, the output of the model is invariant to the size of the

table and the scale of the numbers in the table.

6.1.2 Operations

We use 15 operations in the model that were chosen to closely match the set of

operations used in the baseline model (Pasupat & Liang, 2015). All the operations

except select and most frequent entry operate only on the set of selected rows which

is given by the row selector variable. Before the first timestep, all the rows in the

table are set to be selected. The built-in operations are:

• count returns the number of selected rows in row selector.

• select and most frequent entry are operations which are computed only once for

every question and output a boolean tensor with size same as the size of the

input table. An entry in the output of the select operation is set to 1 if the entry

matches some phrase in the question. The matched phrases in the question are

anonymized to prevent overfitting. Similarly, for most frequent entry, it is set

to 1 if the entry is the most frequently occurring one in its column.

• argmax, argmin, greater than, less than, greater than or equal to, less than or

equal to are all operations that output a tensor with size same as the size of the

input table. The semantics of these operations follow their name.

• first, last, previous and next modify the row selector and the semantics follow

their name.

• print operation assigns row selector on the selected column of lookup answer.
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• reset resets row selector to its initial value. This operation also serves as no-op

when the model needs to induce programs whose complexity is less than T .

Type Operation Definition

Aggregate count countt =
M∑
i=1

row selectt−1 [i]

Superlative
argmax maxt[i][j] = max(0.0, row selectt−1 [i ]−∑M

k=1([Π[i][j] < Π[k][j]]× row selectt−1 [k ])), i = 1, . . . ,M, j = 1, . . . , C
argmin mint[i][j] = max(0.0, row selectt−1 [i ]−∑M

k=1([Π[i][j] > Π[k][j]]× row selectt−1 [k ])), i = 1, . . . ,M, j = 1, . . . , C

Comparison

> g[i][j] = Π[i][j] > pivotg , ∀(i, j), i = 1, . . . ,M, j = 1, . . . , C
< l[i][j] = Π[i][j] < pivotl , ∀(i, j), i = 1, . . . ,M, j = 1, . . . , C
≥ ge[i][j] = Π[i][j] ≥ pivotge ,∀(i, j), i = 1, . . . ,M, j = 1, . . . , C
≤ le[i][j] = Π[i][j] ≤ pivotle , ∀(i, j), i = 1, . . . ,M, j = 1, . . . , C

Table Ops

select s[i][j] = 1.0 if Π[i][j] appears in question else 0.0,
∀(i, j), i = 1, . . . ,M, j = 1, . . . , C

mfe mfe[i][j] = 1.0 if Π[i][j] is the most common entry in column j else 0.0,
∀(i, j), i = 1, . . . ,M, j = 1, . . . , C

first ft[i] = max(0.0, row selectt−1 [i ]−
∑i−1

j=1 row selectt−1 [j ]),
i = 1, . . . ,M

last lat[i] = max(0.0, row selectt−1 [i ]−
∑M

j=i+1 row selectt−1 [j ]),
i = 1, . . . ,M

previous pt[i] = row selectt−1 [i + 1 ], i = 1, . . . ,M − 1 ; pt[M ] = 0
next nt[i] = row selectt−1 [i − 1 ], i = 2, . . . ,M ; nt[1] = 0

Print print lookup answer t[i][j] = row selectt−1 [i ], ∀(i, j)i = 1, . . . ,M, j = 1, . . . , C

Reset reset rt [i ] = 1, ∀i = 1, 2, . . . ,M

Table 6.1: List of all operations provided to the model along with their definitions.
mfe is abbreviation for the operation most frequent entry. [cond] is 1 when cond
is True, and 0 otherwise. Comparison operations, select, reset and most frequent
entry operations are independent of the timestep while all the other operations are
computed at every time step. Superlative operations and most frequent entry are
computed within a column. The operations calculate the expected output with the
respect to the membership probabilities given by the row selector so that they can
work with probabilistic selection.

The operations are designed to work with probabilistic row and column selection

so that the model is differentiable. The operations compute the expected output

with the respect to the membership probabilities given by the row selector. Table 6.1

shows the list of operations built into the model along with their definitions.

6.1.3 Output and Row Selector

Neural programmer makes use of three variables: row selector, scalar answer and

lookup answer which are updated at every timestep. The variable lookup answer stores
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answers that are selected from the table while scalar answer stores numeric answers

that are not provided in the table. The induced program transfers information across

timesteps using the row selector variable which contains rows that are selected by the

model.

Given an input table Π, containing M rows and C columns (M and C can vary

across examples), the output variables at timestep t are given by:

scalar answert = αopt (count)outputt(count),

lookup answert [i][j] = αcolt (j)αopt (print)row selectt−1 [i],∀(i, j)i = 1, 2, . . . ,M, j = 1, 2, . . . , C

where αopt (op) and αcolt (j) are the probabilities assigned by the selector to operation

op and column j at timestep t respectively and outputt(count) is the output of the

count operation at timestep t. lookup answerT [i][j] is the probability that the element

(i, j) in the input table is in the final answer predicted by the model.

The row selector is computed using the output of the remaining operations and is

given by,

row selectort [i] =
C∑
j=1

{αcolt (j)αopt (>)g [i][j] + αcolt (j)αopt (<)l [i][j]

+ αcolt (j)αopt (≥)ge[i][j] + αcolt (j)αopt (≤)le[i][j],

+ αcolt (j)αopt (argmax)maxt [i][j] + αcolt (j)αopt (argmint)min[i][j],

+ αcolt (j)αopt (select)s [i][j] + αcolt (j)αopt (mfe)mfe[i][j]}

+ αopt (previous)pt [i] + αopt (next)nt [i] + αopt (reset)rt [i]

+ αopt (first)ft [i] + αopt (last)lat [i]

∀i, i = 1, 2, . . . ,M

where αopt (op) and αcolt (j) are the probabilities assigned by the selector to operation

op and column j at timestep t respectively.

66



6.1.4 Training Objective

We modify the training objective of Neural Programmer to handle the supervision

signal available in real-world settings. In previous work, the position of the answers

are explicitly marked in the table when the answer is an entry from the table. How-

ever, as discussed previously, in real-world datasets (e.g., (Pasupat & Liang, 2015))

the answer is simply written down introducing two kinds of ambiguities. First, when

the answer is a number and if the number is in the table, it is not known whether

the loss should be computed using the scalar answer variable or the lookup answer

variable. Second, when the answer is a natural language phrase and if the phrase

occurs in multiple positions in the table, we again do not know which entry (or en-

tries) in the table is actually responsible for generating the answer. We extend Neural

Programmer to handle this weaker supervision signal during training by computing

the loss only on the prediction that is closest to the desired response.

For scalar answers we compute the square loss:

Lscalar(scalar answerT , y) =
1

2
(scalar answerT − y)2

where y is the ground truth answer. We divide Lscalar by the number of rows in the

input table and do not backpropagate on examples for which the loss is greater than

a threshold since it leads to instabilities in training.

When the answer is a list of items y = (a1, a2, . . . , aN), for each element in the list

(ai, i = 1, 2, . . . , N) we compute all the entries in the table that match that element,

given by Si = {(r, c), ∀ (r, c) Π[r][c] = ai}. We tackle the ambiguity introduced when

an answer item occurs at multiple entries in the table by computing the loss only

on the entry which is assigned the highest probability by the model. We construct

g ∈ {0, 1}M×C , where g[i, j] indicates whether the element (i, j) in the input table is
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part of the output. We compute log-loss for each entry and the final loss is given by:

Llookup(lookup answerT , y) =
N∑
i=1

min(r,c)∈Si
(− log(lookup answerT [r, c]))

− 1

MC

M∑
i=1

C∑
j=1

[g[i, j] == 0] log(1− lookup answerT [i, j])

where [cond] is 1 when cond is True, and 0 otherwise.

We deal with the ambiguity that occurs when the ground truth is a number and if

the number also occurs in the table, by computing the final loss as the soft minimum

of Lscalar and Llookup. Otherwise, the loss for an example is Lscalar when the ground

truth is a number and Llookup when the ground truth matches some entries in the table.

The two loss functions, Lscalar and Llookup are in different scales, so we multiply Llookup

by a constant factor which we set to 50.0 after a small exploration in our experiments.

Since we employ hard selection at test time, only one among scalar answer and

lookup answer is modified at the last timestep. We use the variable that is set at the

last timestep as the final output of the model.

6.2 Experiments

We apply Neural Programmer on the WikiTableQuestions dataset (Pasupat &

Liang, 2015) and compare it to different non-neural baselines including a natural

language semantic parser developed by Pasupat & Liang (2015). Further, we also

report results from training the sequence-to-sequence model (Sutskever et al., 2014)

and a modified version of the pointer networks (Vinyals et al., 2015a). Our model is

implemented in TensorFlow (Abadi et al., 2016) and the model takes approximately

a day to train on a single Tesla K80 GPU. We use double-precision format to store

the model parameters since the gradients become undefined values in single-precision

format.
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6.2.1 Data

We use the train, development, and test split given by Pasupat & Liang (2015).

The dataset contains 11321, 2831, and 4344 examples for training, development,

and testing respectively. We use their tokenization, number and date pre-processing.

There are examples with answers that are neither number answers nor phrases selected

from the table. We ignore these questions during training but the model is penalized

during evaluation following Pasupat & Liang (2015). The tables provided in the test

set are unseen at training, hence requiring the model to adapt to unseen column

names at test time. We train only on examples for which the provided table has less

than 100 rows since we run out of GPU memory otherwise, but consider all examples

at test time.

6.2.2 Training Details

We use T = 4 timesteps in our experiments. Words and operations are represented

as 256 dimensional vectors, and the hidden vectors of the question and the history

RNN are also 256 dimensional. The parameters are initialized uniformly randomly

within the range [-0.1, 0.1]. We train the model using the Adam optimizer (Kingma &

Ba, 2014) with mini-batches of size 20. The ε hyperparameter in Adam is set to 1e-6

while others are set to the default values. Since the training set is small compared to

other datasets in which neural network models are usually applied, we rely on strong

regularization:

• We clip the gradients to norm 1 and employ early-stopping.

• The occurrences of words that appear less than 10 times in the training set are

replaced by a special unknown word token.

• We add a weight decay penalty with strength 0.0001.
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• We use dropout with a keep probability of 0.8 on input and output vectors of

the RNN, and selector, operation and column name representations (Srivastava

et al., 2014).

• We use dropout with keep probability of 0.9 on the recurrent connections of the

question RNN and history RNN using the technique from Gal & Ghahramani

(2016).

• We use word-dropout (Iyyer et al., 2015) with keep probability of 0.9. Here,

words in the question are randomly replaced with the unknown word token

while training.

We tune the dropout rates, regularization strength, and the ε hyperparameter using

grid search on the development data, we fix the other hyperparameters after a small

exploration during initial experiments.

6.2.3 Results

Table 6.2 shows the performance of our model in comparison to baselines from

Pasupat & Liang (2015). The best result from Neural Programmer is achieved by an

ensemble of 15 models. The only difference among these models is that the parameters

of each model is initialized with a different random seed. We combine the models

by averaging the predicted softmax distributions of the models at every timestep.

While it is generally believed that neural network models require a large number of

training examples compared to simpler linear models to get good performance, our

model achieves competitive performance on this small dataset containing only 10,000

examples with weak supervision.

6.2.3.1 Transfer Learning

We did not get better results either by using pre-trained word vectors (Mikolov

et al., 2013) or by pre-training the question RNN with a language modeling objective
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Method Dev Accuracy Test Accuracy

Baselines from Pasupat & Liang (2015)
Information Retrieval System 13.4 12.7

Simple Semantic Parser 23.6 24.3
Semantic Parser 37.0 37.1

Neural Programmer
Neural Programmer 34.1 34.2

Ensemble of 15 Neural Programmer models 37.5 37.7

Oracle Score with 15 Neural Programmer models 50.5 -

Table 6.2: Performance of Neural Programmer compared to baselines from (Pasupat
& Liang, 2015). The performance of an ensemble of 15 models is competitive to the
current state-of-the-art natural language semantic parser.

(Dai & Le, 2015).1 A possible explanation is that the word vectors obtained from un-

supervised learning may not be suitable to the task under consideration. For example,

the learned representations of words like maximum and minimum from unsupervised

learning are usually close to each other but for our task it is counterproductive.

6.2.3.2 Program Length Penalty

We add a term in the objective function that encourages the model to assign high

probability to the reset function at each timestep. This serves as a regularization term

that penalizes long programs. We find that optimizing the model with an additional

term in the objective is much harder and the performance of the model does not

improve.

6.2.3.3 Neural Network Baselines

To understand the difficulty of the task for neural network models, we also exper-

iment with two neural network baselines: the sequence-to-sequence model (Sutskever

et al., 2014) and a modified version of the pointer networks (Vinyals et al., 2015a).

The input to the sequence-to-sequence model is a concatenation of the table and the

1We use an RNN trained on 1 billion words (Józefowicz et al., 2016).
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question, and the decoder produces the output one token at a time. We consider only

examples whose input length is less than 400 to make the running time reasonable.

The resulting dataset has 8, 857 and 1, 623 training and development examples respec-

tively. The accuracy of the best model on this development set after hyperparameter

tuning is only 8.9%. Next, we experiment with pointer networks to select entries

in the table as the final answer. We modify pointer networks to have two-attention

heads: one to select the column and the other to select entries within a column. Ad-

ditionally, the model performs multiple pondering steps on the table before returning

the final answer. We train this model only on lookup questions, since the model does

not have a decoder to generate answers. We consider only examples whose tables have

less than 100 rows resulting in training and development set consisting of 7, 534 and

1, 829 examples respectively. The accuracy of the best model on this development set

after hyperparameter tuning is only 4.0%. These results confirm our intuition that

discrete operations are hard to learn for neural networks particularly with small data

sets in real-world settings.

6.2.4 Analysis

Method Dev Accuracy

Neural Programmer 34.1
Neural Programmer - anonymization 33.7
Neural Programmer - match feature 31.1

Neural Programmer - {dropout,weight decay} 30.3

Table 6.3: Model ablation studies. We find that dropout and weight decay, along
with the boolean feature indicating a matched table entry for column selection have
a significant effect on the performance of the model.

6.2.4.1 Model Ablation

Table 6.3 shows the impact of different model design choices on the final per-

formance. While anonymizing phrases in the question that match some table entry

72



seems to have a small positive effect, regularization and the boolean feature indi-

cating a matched table entry for column selection have a much larger effect on the

performance.

ID Question Step 1 Step 2 Step 3 Step 4

1 what is the total number of
teams?

Operation - - - count
Column - - - -

2 how many games had more
than 1,500 in attendance?

Operation - - >= count
Column - - attendance -

3 what is the total number
of runner-ups listed on the
chart?

Operation - - select count

Column - - outcome -

4 which year held the most
competitions?

Operation - - mfe print
Column - - year year

5 what opponent is listed last
on the table?

Operation last - last print
Column - - - opponent

6
which section is longest??

Operation - - argmax print
Column - - kilometers name

7 which engine(s) has the least
amount of power?

Operation - - argmin print
Column - - power engine

8
what was claudia roll’s time?

Operation - - select print
Column - - swimmer time

9 who had more silver medals,
cuba or brazil?

Operation argmax select argmax print
Column nation nation silver nation

10 who was the next appointed
director after lee p. brown?

Operation select next last print
Column name - - name

11 what team is listed previous
to belgium?

Operation select previous first print
Column team - - team

Table 6.4: A few examples of programs induced by Neural Programmer that generate
the correct answer in the development set. mfe is abbreviation for the operation most
frequent entry. The model runs for 4 timesteps selecting an operation and a column
at every step. The model employs hard selection during evaluation. The column
name is displayed in the table only when the operation picked at that step takes in a
column as input while the operation is displayed only when it is other than the reset
operation. Programs that choose count as the final operation produce a number as
the final answer which is stored in scalar answer. For programs that select print as
the final operation, the final answer consists of entries selected from the table which
is stored in lookup answer.

6.2.4.2 Induced Programs

Table 6.4 shows few examples of programs induced by Neural Programmer that

yield the correct answer in the development set. The programs given in Table 6.4

show a few characteristics of the learned model. First, our analysis indicates that the

model can adapt to unseen column names at test time. For example in Question 3,
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the word outcome occurs only 8 times in the training set and is replaced with the

special unknown word token. Second, the model does not always induce the most

efficient (with respect to number of operations other than the reset operation that are

picked) program to solve a task. The last 3 questions in the table can be solved using

simpler programs. Finally, the model does not always induce the correct program

to get the ground truth answer. For example, the last 2 programs will not result in

the correct response for all input database tables. The programs would produce the

correct response only when the select operation matches one entry in the table.

Operation Program in Table 6.4 Amount (%)

Scalar Answer
Only Count 1 6.5

Comparison + Count 2 2.1
Select + Count 3 22.1
Scalar Answer 1,2,3 30.7

Lookup Answer
Most Frequent Entry + Print 4 1.7

First/Last + Print 5 9.5
Superlative + Print 6,7 13.5

Select + Print 8 17.5
Select + {first, last, previous, next, superlative} + Print 9-11 27.1

Lookup Answer 4-11 69.3

Table 6.5: Statistics of the different sequence of operations among the examples
answered correctly by the model in the development set. For each sequence of oper-
ations in the table, we also point to corresponding example programs in Table 6.4.
Superlative operations include argmax and argmin, while comparison operations in-
clude greater than, less than, greater than or equal to and less than or equal to. The
model induces a program that results in a scalar answer 30.7% of the time while the
induced program is a table lookup for the remaining questions. print and select are
the two most common operations used 69.3% and 66.7% of the time respectively.

6.2.4.3 Contribution of Different Operations

Table 6.5 shows the contribution of the different operations. The model induces a

program that results in a scalar answer 30.7% of the time while the induced program is

a table lookup for the remaining questions. The two most commonly used operations

by the model are print and select.
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6.2.4.4 Error Analysis

Now, we suggest ideas to potentially improve the performance of the model. First,

the oracle performance with 15 Neural Programmer models is 50.5% on the devel-

opment set while averaging achieves only 37.5% implying that there is still room for

improvement. Next, the accuracy of a single model on the training set is 53% which

is about 20% higher than the accuracy in both the development set and the test

set. This difference in performance indicates that the model suffers from significant

overfitting even after employing strong regularization. It also suggests that the per-

formance of the model could be greatly improved by obtaining more training data.

Finally, we point out analysis in previous work (Pasupat & Liang, 2015) which shows

that 21% of questions on a random set of 200 examples in the considered dataset

are not answerable because of various issues such as annotation errors and tables

requiring advanced normalization.

The experiments in the previous chapter and this chapter show that Neural Pro-

grammer performs significantly better than previously existing DNN models on tasks

involving discrete reasoning. In this chapter, we show that Neural Programmer

achieves performance comparable to a state-of-the-art traditional semantic parser

even though the training set contains only 10,000 examples. The size of the training

data is much smaller than other common datasets on which DNN models have been

shown to work well. Moreover, unlike traditional semantic parsers, our approach does

not use task specific manual rules to guide the program search. Our code is available

at https://github.com/tensorflow/models/tree/master/neural_programmer.

6.2.4.5 Effect of Strong Supervision

We study the impact of strong supervision on Neural Programmer by annotating

50 examples with the program or the semantic parse of the sentence. While the

step-by-step program provides richer and unambiguous supervision, it is much more
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expensive to annotate programs compared to annotating only the final answer. To

use the examples with strong supervision, we use a maximum likelihood objective for

predicting the correct operation and column at each timestep. When using only these

50 examples, the accuracy of the model on the development set is 7.9% and 10.5%

using weak and strong supervision respectively.

In another experiment, we first train the model only on strong supervision using

the maximum likelihood objective for some number of training steps and then train

the model with the entire training set as before with weak supervision. We find that

performance of the model is same as before without any improvements. A possible

explanation is that the frequently occurring programs in the annotated 50 examples

occur often enough in the entire training set and the model fails to learn programs

that occur infrequently even when trained with strong supervision.

6.2.4.6 Adversarial Attack

To study the robustness of the model with respect to the output of the built-in

operations, we introduce an adversarial attack. Here, we add an operation to the

model that outputs a random number whose absolute value is always greater than a

million. The accuracy of the model in this setting is 34.1% in the test set indicating

that the model is indeed robust to the output of the built-in operations.

6.2.4.7 Probability Calibration

Neural Programmer is trained with an objective function that pushes the model

to have a peaky softmax distribution over the operations and the columns to suffer

zero loss on an example. An interesting question to study is whether the probabilities

given by the model are well calibrated i.e., are the probabilities low for questions the

model answers incorrectly and high for questions answered correctly. We find that for

close to 93% of the questions the model answers incorrectly, the probability given by

the model is greater than 0.6. 73% of the incorrect questions are given a probability
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of less than 0.9 while 60% of the questions the model answers correctly are given

a probability greater than 0.9. The threshold value of 0.9 gives the best separation

between correct and incorrect questions.

Figure 6.2 shows coverage vs accuracy for different threshold values. Coverage

is the fraction of examples whose predicted probability is greater than the threshold

while accuracy is the fraction of examples among the selected ones that are correct.

Coverage and accuracy are never simultaneously high indicating that the probabilities

predicted by the model are not well calibrated.

Figure 6.2: The figure shows coverage vs accuracy for different threshold values.

In another experiment, we added another term in the objective that allows the

model to reject an example during training and suffer a cost for it. We try different

hyperparameter settings for the cost and find that the model prefers to either reject

or accept most examples. So, the model does not have a good estimate of whether it

can answer a question.

77



CHAPTER 7

SCALING NEURAL PROGRAMMER

In the previous chapters, we show that Neural Programmer performs competitively

to state-of-the-art approaches for learning natural language interface to databases.

Moreover, Neural Programmer performs much better than other standard neural

network models and is the first neural network model trained on weak supervision

signals to achieve such results. However, the experiments in the last two chapters are

performed only on small databases. There exists databases like Freebase (Bollacker

et al., 2008) that contain billions of facts and millions of entities. In this chapter,

we make first steps towards extending Neural Programmer to learn natural language

interface to such large databases.

To enable training by backpropagation, Neural Programmer employs a soft se-

lection (or attention) mechanism where it induces two probability distributions: one

over operations and other over columns. The output of Neural Programmer at a

timestep is defined as the weighted average of outputs obtained by executing every

operation on every column. So, if the model has N built-in operations and if the

provided database table has M columns, the model executes O(M × N) operations

at every timestep for every example. This process is computationally expensive and

makes Neural Programmer training not scale well to large databases.

In this chapter, we consider two sparse attention techniques to reduce the number

of function executions at every timestep of Neural Programmer. First, we consider k-

max attention, where we re-normalize the softmax distribution such that only the top-

k elements of the softmax are non-zero. So, only the top-k most probable operations
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and columns are considered. Instead of O(M × N) function executions at every

timestep of the model, now we have only O(k2) function executions at every timestep

of the model. By working with small values of k, we can potentially scale Neural

Programmer training to large databases.

Next, we consider discrete attention where exactly one operation and one column

are selected at every timestep by sampling from the softmax. Here, we need to

execute only one operation at every timestep. However, sampling from the softmax

is a non-differentiable operation and hence, we train the model with REINFORCE

(Williams, 1992), a reinforcement learning algorithm (Sutton & Barto, 2012). While

reinforcement learning methods have produced great success in game playing (Mnih

et al., 2015; Silver et al., 2016; Moravč́ık et al., 2017; Brown & Sandholm, 2017), they

rely on large number of samples which is often impractical in real-world settings. We

discuss our results with the REINFORCE algorithm in the experiments section.

Liang et al. (2016) use the REINFORCE algorithm to train a weakly-supervised,

neural semantic parser. However, they experiment on a dataset that has several orders

of magnitude smaller program search space compared to the dataset we use. While

k-max attention has been used for scaling memory augmented neural networks (Rae

et al., 2016) and training large mixture of experts model (Shazeer et al., 2017), it has

not been used in the context of neural semantic parsing.

Since the available dataset for knowledge graph question answering requires only

simple programs (majority of the questions require only one hop) to be induced

(Berant et al., 2013a), we do not have a good dataset to evaluate program induction

methods for knowledge graph question answering. We continue to experiment on the

WikiTableQuestions dataset used in the previous chapter. In our experiments, we

find that k-max attention performs much better than training with the REINFORCE

algorithm. More importantly, we find that with k = 3 there is a small drop in

performance but requiring an order of magnitude lesser function executions at every
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timestep compared to the approach described in the previous chapter. With k = 6,

we match the performance requiring five times lesser function executions at every

timestep.

7.1 Modifications to Neural Programmer

Continuing with the modifications to Neural Programmer, we make the following

additional changes to Neural Programmer to scale training.

7.1.1 Selector

As discussed in Chapter 4, Neural Programmer employs a soft selection (or atten-

tion) mechanism where it induces two probability distributions: one over operations

and other over columns.

Operation Selection is performed by:

αopt = softmax (U tanh(W op[q;ht]))

where q ∈ Rd is the question representation, ht ∈ Rd is the hidden vector of the history

RNN at timestep t, W op ∈ Rd×2d is the parameter matrix of the operation selector

that produces the probability distribution αopt ∈ [0, 1]O over the set of operations.

The selector also produces a probability distribution over the columns at every

time step. We obtain vector representations for the column names using the param-

eters in the question module (Section 4.1.1) by word embedding or an RNN phrase

embedding. Let P ∈ RC×d be the matrix storing the representations of the column

names.

Column Selection is performed by:
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αcolt = softmax (P tanh(W col[q;ht]))

where W col ∈ Rd×2d is the parameter matrix of the column selector that produces the

probability distribution αcolt ∈ [0, 1]C over the set of columns.

Now, we consider two techniques to use a sparse selection mechanism in Neural

Programmer. Both these techniques return sparse softmax distributions, ᾱopt and

ᾱcolt .

7.1.1.1 k-max Attention

We consider only the top k most probable operations and columns at every

timestep instead of all the operations and columns where k is a model hyperpa-

rameter. The probability distribution is normalized over the top k operations and

columns. Only k elements of ᾱopt and ᾱcolt are non-zero.

ᾱopt (i) =


αopt (i), if αopt (i) ∈ top k(αopt )

0, otherwise

ᾱopt is normalized to make the elements sum up to 1. Similarly, ᾱcolt is obtained from

αcolt .

7.1.1.2 Discrete Attention

We consider the extreme case of sparse selection where the model selects only one

operation and one column. Here, we sample an operation and a column from αopt and

αcolt respectively. ᾱopt and ᾱcolt are obtained by converting the selected operation and

column into one-hot vectors.

Sampling from a softmax distribution is a non-differntiable step and hence we can

no longer train our model with standard backpropagation. We train our model with

81



the REINFORCE (Williams, 1992) algorithm where the objective is to maximize the

expected reward,

maxp(s1:T ;θ)E(R)

where R is the reward function, θ are the parameters of Neural Programmer, s1:T

is a sampled program under the current policy (or parameters), T is the number of

timesteps and p(s1:T ; θ) is the probability of the sample program with the current

parameters.

Computing the approximate gradient using the REINFORCE rule requires sam-

pling programs from the current policy which results in high variance in gradient

estimation (Sutton & Barto, 2012). To reduce variance, we adopt the common prac-

tice of subtracting the reward with a baseline. Similarly, the model gets stuck in poor

optima when training with REINFORCE and does not explore the space enough. We

discuss the different reward functions, baselines and exploitation strategies we tried

in the experiments section.

7.1.2 Output and Row Selector

As discussed previously, Neural programmer makes use of three variables: row

selector, scalar answer and lookup answer which are updated at every timestep. The

variable lookup answer stores answers that are selected from the table while scalar

answer stores numeric answers that are not provided in the table. The induced

program transfers information across timesteps using the row selector variable which

contains rows that are selected by the model.

Given an input table Π, containing M rows and C columns (M and C can vary

across examples) the output variables at timestep t are now given by:
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scalar answert = ᾱopt (count)outputt(count),

lookup answert [i][j] = ᾱcolt (j)ᾱopt (print)row selectt−1 [i],

∀(i, j)i = 1, 2, . . . ,M, j = 1, 2, . . . , C

where ᾱopt (op) and ᾱcolt (j) are the probabilities assigned by the selector to operation

op and column j at timestep t respectively and outputt(count) is the output of the

count operation at timestep t. lookup answerT [i][j] is the probability that the element

(i, j) in the input table is in the final answer predicted by the model.

The row selector is computed using the output of the remaining operations and is

now given by,

row selectort [i] =
C∑
j=1

{ᾱcolt (j)ᾱopt (>)g [i][j] + ᾱcolt (j)ᾱopt (<)l [i][j]

+ ᾱcolt (j)ᾱopt (≥)ge[i][j] + ᾱcolt (j)ᾱopt (≤)le[i][j],

+ ᾱcolt (j)ᾱopt (argmax)maxt [i][j] + ᾱcolt (j)ᾱopt (argmint)min[i][j],

+ ᾱcolt (j)ᾱopt (select)s [i][j] + ᾱcolt (j)ᾱopt (mfe)mfe[i][j]}

+ ᾱopt (previous)pt [i] + ᾱopt (next)nt [i] + ᾱopt (reset)rt [i]

+ ᾱopt (first)ft [i] + ᾱopt (last)lat [i]

∀i, i = 1, 2, . . . ,M

where ᾱopt (op) and ᾱcolt (j) are the sparse probability distributions assigned by the

selector to operation op and column j at timestep t respectively.

As can be seen from the equations above, an operations needs to be executed only

if the probability assigned to that operation in a given timestep is greater than zero.

Moreover, if the operation takes in a column as an argument, the operation needs to

be executed only if both the probability assigned to that operation and the column is
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greater than zero. By employing a sparse attention mechanism we reduce the number

of operation executions.

When using the k-max attention mechanism, instead of executing O(M × N)

operations at every timestep the model has to execute only O(k2) operations. By

training with a small value for k (in comparison to N and M), we can scale the

model to large databases. With the discrete attention mechanism, only one operation

and one column is selected at every timestep and hence, only one operation needs to

be executed at every timestep.

7.2 Related Work

Rae et al. (2016) use k-max attention technique to speed up memory augmented

neural networks. In memory augmented neural networks, a softmax distribution is

induced for read and write operations over a set of memory slots at every timestep.

This attention procedure is sped up by considering only the top-k elements of the

softmax, hence reducing the number of read and write operations. In Shazeer et al.

(2017), k-max attention is used as a sparse gating procedure to train mixture of expert

models. Here, the attention mechanism is performed over the set of experts.

Symbolic semantic parsers have been developed for freebase question answering

(Berant et al., 2013b; Kwiatkowski et al., 2013; Yih et al., 2015). The search space

is cut-down either by considering only a small set of predicates (Yih et al., 2015) or

entities for each input (Yih et al., 2015). These methods are not end-to-end methods

as the selection procedure is either rule-based or trained independently. Liang et al.

(2016) develop a neural approach for neural semantic parsing on Freebase using the

REINFORCE algorithm. However, as mentioned before most of the questions in this

dataset can be answered using programs of length one. Moreover, they require only 2

discrete operations to be built-in to the model for this dataset. Hence, the program
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Method Accuracy

Full Softmax 34.2
Top-3 30.8
Top-6 34.4

Table 7.1: Accuracy of Neural Programmer on the test set when using the full softmax,
and for k=3 and k=6.

search space is several orders of magnitude lesser compared to the search space in the

dataset we use.

7.3 Experiments

We continue to perform experiments on the WikiTableQuestions dataset. Our goal

is to study the trade-off between model accuracy and number of function executions.

We use the same train, development and test split as used in the previous chapter. We

continue to train the model with the Adam optimizer in the following experiments.

7.3.1 Neural Programmer with k-max Attention

We use exactly the same hyperparameter setting as given in the previous chapter.

Figure 7.1 shows the test accuracy vs the value of k used in k-max attention. The

number of operations in the model in this experiment is 15 while the average number

of columns in the dataset is close to 10. We can see that in Table 7.1 that even for

k=3, the performance of the model is close to using the entire softmax. This implies

that for a small drop in performance we can execute an order of magnitude lesser

number of operations at every timestep.

We analyzed the programs induced by the different methods by counting the

number of times the model correctly answers a lookup question or a number question

in the development set. The distribution is similar for k=6 and using the full softmax

as done in the previous chapter. With k=6, the model answers 316 number questions
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Figure 7.1: The figure shows test set accuracy vs the value of k. As can be seen from
the plot, the accuracy of the model is close to running all operations on all columns
even for small values of k.

and 644 lookup questions correctly while using the full softmax distribution results

in 304 number questions and 656 lookup questions being answered correctly. With

k=3, the model answers only 248 number questions correctly while answers 632 lookup

questions correctly which is close to what we get with k=6 and using the full softmax.

These statistics indicate that the drop in performance for k=3 is because overall it

misses number questions that k=6 and using the full softmax answer correctly.

7.3.2 Neural Programmer with Discrete Attention

We experiment with two reward functions: 1) binary reward indicating whether

the model predicts the correct answer or not, and 2) negative of the loss in the

supervised setting. The model fails to learn in the first case, probably because the

model has to search over millions of symbolic programs for every input question

making it highly unlikely to find a program that gives a reward. Hence, the parameters

of the model are not updated frequently enough. We use negative of the loss in the

supervised setting as the reward function. To stabilize variance, we experiment with

two baseline functions (Sutton & Barto, 2012): 1) average reward of the last 10,000
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training steps, and 2) average reward of 20 samples obtained for that input example.

We find the latter baseline to work well as it is a better approximation of the average

reward for the given input especially in our case where each input has tables in

different numerical range. Finally to encourage exploration, we try two techniques:

1) adding Gaussian noise to the softmax layer and gradients, and 2) adding a term

in the objective function that encourages the softmax to have high entropy (Sutton

& Barto, 2012). We find that adding an entropy term in the objective function leads

to more stable training and works better.

Even after training the model with the best reward function, baseline and explo-

ration technique, we find the performance of the model to be extremely sensitive to

the hyperparameter setting. We use a small learning rate of 1e-5 as higher learning

rates lead to training instabilities and we tune a weight for the entropy term in the

objective function. All the other hyperparameters are exactly the same as used in

the previous chapter. After more than a week of training, the model achieves only

5% accuracy in the development set. While the success of reinforcement learning al-

gorithms in general in real-world applications is limited, it is particularly challenging

to apply in this task. Fruitful application of reinforcement learning algorithms relies

on a well defined reward function (Sutton & Barto, 2012) which is challenging in our

case as the negative of the loss in the supervised setting depends on the contents of

the table which varies across input examples. The different input tables have different

numerical range making it difficult to design a well behaved reward function.

The experiments show that while k-max attention performs well, training the

model with the REINFORCE algorithm is not successful. More importantly, k-max

attention seems to be a promising technique for knowledge graph question answering

as there is little or no performance drop for small values of k. With k = 3 there

is a small drop in performance but requiring an order of magnitude lesser function

executions at every timestep compared to the approach described in the previous

87



chapter while with k = 6, we match the performance requiring five times lesser

function executions at every timestep.
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CHAPTER 8

CONCLUSIONS

In this thesis, we show that deep neural networks are a promising solution for

knowledge representation and reasoning. We use existing neural network models to

perform simple reasoning on large structured knowledge graphs. Our method achieves

state-of-the-art results and has an attractive property to perform zero-shot prediction.

In comparison to symbolic approaches, our method can generalize and reason on

paths that are unseen at training. Reasoning with distributed representations on a

knowledge graph is also studied in Rocktaschel et al. (2015). While our approach

learns inference rules from data, their approach relies on manually supplied rules that

are used as constraints the learned representations have to respect.

Next, we develop a novel neural network model, Neural Programmer to perform

more sophisticated reasoning via program induction on small databases. Compared

to methods that require either the full program (Reed & Freitas, 2016; Yin et al.,

2015; Cheng et al., 2017) or trace of the program (Solar-Lezama et al., 2006; Riedel

et al., 2016) as supervision, our method requires only (input, output) pairs. We show

that Neural Programmer can induce small latent programs on a synthetic dataset

and a real-world dataset. Finally, we discuss methods to scale Neural Programmer

training to large databases by reducing the number of required function executions

at every timestep without sacrificing performance. Neural Programmer has been

successfully applied for conversation question answering (Iyyer et al., 2017). The

authors of that work report that Neural Programmer achieves 40.2% accuracy while
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state-of-the-art symbolic semantic parsers achieve only 33.2% accuracy. An extension

of Neural Programmer to the conversation setting achieves 44.7% accuracy.

Deep neural networks have been employed in other reasoning applications such as

textual entailment (Bowman et al., 2015; Wang et al., 2017), visual question answering

(Andreas et al., 2016) and reading comprehension (Rajpurkar et al., 2016; Wang &

Jiang, 2016). In textual entailment, given a pair of sentences the task is to predict

whether they entail or contradict or have neutral relation between them. Visual

question answering and reading comprehension are closer to the tasks considered in

this thesis. Both of them are question answering tasks where in the former reasoning is

required to be performed on an input image while in the latter reasoning is required

to be performed on an input passage. The tasks considered in this thesis require

reasoning to be performed on structured or semi-structured databases. The reasoning

in reading comprehension tasks are more fuzzy compared to the reasoning involving

discrete operations and rules considered in this thesis. The methods used in visual

question answering (Johnson et al., 2017; Hu et al., 2017) are closely related to Neural

Programmer where reasoning is performed through programs.

Recently, deep neural networks have been used in automated theorem proving.

Here, DNNs have been employed for premise selection (Alemi et al., 2016) and proof

searching (Loos et al., 2017). Rocktäschel & Riedel (2017) develop an end-to-end

neural network method for inferring new facts in KB similar to techniques described

in Chapters 2 and 3. Here, the neural network is constructed in a similar fashion to

backward chaining using differentiable operations. Finally, similar to our work sym-

bols are represented using vector representations which enables them to potentially

scale to large KBs because of the generalization abilities of vector representations.

We have shown that representing abstract knowledge concepts with distributed

representations and reasoning with powerful non-linear models leads to generaliza-

tion to massive amounts of knowledge that can achieved with minimal human effort.
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The common theme in the methods developed in this thesis are to employ recurrent

neural networks to model sequences, a differentiable attention mechanism as selection

procedure and training by backpropagation.

8.1 Limitations

It is important to note that for program synthesis problems discrete search al-

gorithms perform better than gradient based methods (Gaunt et al., 2016). More

concretely, gradient based methods like the ones developed in the thesis require more

examples to induce the correct program than discrete search algorithms. The use-

fulness of our approach arises when the input is complicated with variabilities and

ambiguities like natural language where gradient descent based approaches offer a

more fruitful solution.

Neural Programmer relies on built-in operations that are manually defined. The

user of the system has to provide the list of operations which could be difficult in

some cases. It would be beneficial to have a model that can add new operations and

learn their definitions from data. However, this is challenging given the difficulty in

learning simple discrete operations with neural networks (Joulin & Mikolov, 2015;

Kaiser & Sutskever, 2016).

8.2 Future Research Directions

8.2.1 Intelligent Graph Exploration

The method that performs reasoning on paths in the knowledge graph discussed

in Chapters 2 and 3 relies on random walks to obtain the set of paths connecting

an entity pair. Even though, we construct the dataset with massive random walk

exploration there could still be paths connecting the entity pair that are potentially

useful for reasoning, missed by the random walk procedure. A query conditioned
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graph exploration mechanism might be able to collect a more useful set of paths

connecting the entity pairs.

8.2.2 Knowledge Graph Question Answering

The datasets on which Neural Programmer has been tested contain database ta-

bles that contain a small number of columns. Hence, we could consider the set of all

columns as possible input arguments and run each operation on each column indi-

vidually in our experiments. However, if we consider knowledge graphs which have

millions of entities where each entity could potentially be an input argument, running

Neural Programmer in the naive way is computationally infeasible. In the final exper-

iments discussed in the thesis, we can see that using only the top few elements of the

softmax still performs almost as well as using all the elements of the softmax. Since

the best available dataset for knowledge graph question answering requires only sim-

ple programs (majority of the questions require only one hop) to be induced (Berant

et al., 2013a), we do not have a good dataset to evaluate program induction methods

for knowledge graph question answering. One possibility is that the top-k elements

of the softmax (for small values of k) is good enough for knowledge graph question

answering and we can use the method described in the previous chapter directly.

8.2.3 Learning to Halt

We can extend Neural Programmer to induce programs with adaptive complexity

by learning to halt. Currently, Neural Programmer always induces programs with

complexity T . To induce programs with lesser complexity the model selects “no-

op” operation for the remaining timesteps. Hence, the model performs many wasted

executions especially at training time where all the operations need to be executed at

every timestep. To overcome this issue, we propose to add a discrete sigmoid neuron

which is used to decide whether the model continues to the next timestep or not.

Adding a discrete neuron makes the model non-differentiable and we can train using
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the REINFORCE algorithm. Our method is inspired from the adaptive computation

time technique proposed for recurrent neural networks (Graves, 2016). The technical

challenge here is that training the model with the REINFORCE algorithm is difficult

as it performs much worse than backpropagation and is extremely sensitive to the

hyperparameter setting as discussed in the discrete attention experiments before.

8.2.4 Longer Programs

Neural Programmer is evaluated only on datasets that require programs of max-

imum length four to be induced. Inducing longer programs introduces three main

challenges: a) time complexity for each input example will increase linearly with re-

spect to the length of the program, b) the number of ways the model can get the

correct answer with wrong programs would be higher, and c) the optimization prob-

lem becomes harder because of vanishing and exploding gradient issues (Hochreiter &

Schmidhuber, 1997). The first problem can be tackled by using sparse selection and

learning to halt as discussed before. The next two problems can be tacked by using

richer supervision: full program annotation (Reed & Freitas, 2016; Yin et al., 2015;

Cheng et al., 2017) and trace-level annotations (Solar-Lezama et al., 2006; Riedel

et al., 2016). An ambitious solution for the same two problems is to use methods in-

spired from Feudal Reinforcement Learning (Dayan & Hinton, 1993; Vezhnevets et al.,

2017) where there are different parts of the model “thinking” at multiple timescales

to circumvent vanishing and exploding gradient issues. In our case, the part of the

model thinking at a longer timescale can potentially represent high-level functions

consisting of sequence of operations while the part of the model thinking at a shorter

timescale is responsible for predicting the individual operation. This method can be

trained end-to-end just with weak supervision signal. A promising solution is to train

a single model with the three kinds of supervision as each of them have their own

pros and cons.
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Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack:
Expert-level artificial intelligence in heads-up no-limit poker. American Association
for the Advancement of Science, 2017.

Stephen Muggleton. Inductive logic programming. New Generation Computing, 1990.

99



Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Knowledge base com-
pletion using compositional vector space models. Workshop on Automated Knowl-
edge Base Construction at NIPS, 2014a.

Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew McCallum. Ef-
ficient non-parametric estimation of multiple embeddings per word in vector space.
EMNLP, 2014b.

Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Compositional vector
space models for knowledge base completion. ACL, 2015.

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural Programmer: Inducing
latent programs with gradient descent. ICLR, 2016a.

Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol
Kurach, and James Martens. Adding gradient noise improves learning for very deep
networks. ICLR Workshop, 2016b.

Arvind Neelakantan, Quoc V Le, Martin Abadi, Andrew McCallum, and Dario
Amodei. Learning a natural language interface with neural programmer. ICLR,
2017.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for
collective learning on multi-relational data. ICML, 2011.

Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram Singer, Jonathon Shlens,
Andrea Frome, Greg Corrado, and Jeffrey Dean. Zero-shot learning by convex
combination of semantic embeddings. ICLR, 2014.

An Overview of the KL-ONE Knowledge Representation System. Ronald j. brachman
and james g. scolze. Cognitive Science, 1985.

Dave Orr, Amarnag Subramanya, Evgeniy Gabrilovich, and Michael Ringgaard. 11
billion clues in 800 million documents: A web research corpus annotated with
freebase concepts. Report, 2013.

Mark Palatucci, Dean Pomerleau, Geoffrey Hinton, and Tom Mitchell. Zero-shot
learning with semantic output codes. 2009.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-
structured tables. ACL, 2015.

Adam Pease, Geoff Sutcliffe, Nick Siegel, and Steven Trac. Large theory reasoning
with sumo at casc. AI Communications, 2010.

Baolin Peng, Zhengdong Lu, Hang Li, and Kam-Fai Wong. Towards neural network-
based reasoning. ArXiv, 2015.

100



Steven T. Piantadosi, Noah D. Goodman, Benjamin A. Ellis, and Joshua B. Tenen-
baum. A Bayesian model of the acquisition of compositional semantics. CogSci,
2008.

Hoifung Poon. Grounded unsupervised semantic parsing. ACL, 2013.

Jack W. Rae, Jonathan J. Hunt, Tim Harley, Ivo Danihelka, Andrew W. Senior, Greg
Wayne, Alex Graves, and Timothy P. Lillicrap. Scaling memory-augmented neural
networks with sparse reads and writes. NIPS, 2016.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:
100,000+ questions for machine comprehension of text. ArXiv, 2016.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. ICLR, 2016.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. UAI, 2009.

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning,
2006.

Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. Relation
extraction with matrix factorization and universal schemas. NAACL, 2013.

Sebastian Riedel, Matko Bosnjak, and Tim Rocktäschel. Programming with a differ-
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