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ABSTRACT

COVERINGS OF GRAPHS AND TIERED TREES

SEPTEMBER 2017

SAM GLENNON

B.A., BRANDEIS UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Paul Gunnells

This dissertation will cover two separate topics. The first of these topics will

be coverings of graphs. We will discuss a recent paper by Marcus, Spielman, and

Srivastava proving the existence of infinite families of bipartite Ramanujan graphs for

all regularities [11]. The proof works by showing that for any d-regular Ramanujan

graph, there exists an infinite tower of bipartite Ramanujan graphs in which each

graph is a twofold covering of the previous one. Since twofold coverings of a graph

correspond to ways of labeling the edges of the graph with elements of a group of

order 2, we will generalize the content of [11] by discussing what happens when we

label the edges of a graph by larger groups. We will give a version of their proof

using threefold coverings instead of twofold coverings. We will also examine ways of

reducing the size of the set of twofold coverings that we must consider when we follow

the proof in [11].

The other topic that will be covered in this dissertation will be alternating trees

and tiered trees. We will define a new generalization of alternating trees, which we will
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call tiered trees. We will also define a generalized weight system on these tiered trees.

We will prove some enumerative results about tiered trees that demonstrate how they

can be viewed as being obtained by applying certain procedures to certain types of

alternating trees. We also provide a bijection between the set of permutations in Sn

and the set of weight 0 alternating trees with n + 1 vertices. We use this bijection

to define a new statistic of permutations called the weight of a permutation, and use

this weight to define a new q-Eulerian polynomial.
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CHAPTER 1

INTRODUCTION

This dissertation will cover two separate topics. The first of these topics will

be ways of generalizing the content of a recent paper by Marcus, Spielman, and

Srivastava involving signings and coverings of graphs [11]. The second topic will

be alternating trees and a generalization thereof called tiered trees. All material

appearing in chapters 2 and 3 of this dissertation outside of the background sections

(Sections 2.1 and 3.1) is original unless otherwise stated.

The well-connectedness of a graph G is deeply related to the spectrum of its

adjacency matrix. This matrix is formed by indexing the rows and columns by the

vertices of G and letting the uv entry be the number of edges in G that connect

the vertices u and v (See Figure 1.1). We say that G is d-regular if each vertex is

an endpoint of exactly d edges. If G is d-regular, then the adjacency matrix of G

will have d as one of its eigenvalues, and if G is bipartite, then it will also have the

eigenvalue −d (We sometimes refer to the eigenvalues of the adjacency matrix of G

as simply the eigenvalues of G). We call d and −d the trivial eigenvalues of G. If

all nontrivial eigenvalues of G are between −2
√
d− 1 and 2

√
d− 1, then G is called

a Ramanujan graph. This bound of 2
√
d− 1 on the absolute value of the nontrivial

eigenvalues becomes sharp as the number of vertices grows in the following sense: for

any λ < 2
√
d− 1, there is no infinite family of d-regular graphs (with the number

of vertices growing to infinity) for which all nontrivial eigenvalues are bounded in

absolute value by λ.
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Figure 1.1. An example of a graph and its adjacency matrix

Ramanujan graphs are, in a sense, maximally well-connected, because a graph’s

spectral gap (the difference between the absolute values of its two largest eigenvalues)

and the speed with which a random walk on the graph converges to the uniform

distribution are directly related [1, 3]. Prior to [11], the existence of infinite families

of d-regular bipartite Ramanujan graphs had only been proven for certain values

of d using deep results from number theory, namely the Eichler-Deligne bound on

the Fourier coefficients of cuspidal holomorphic modular forms. These families were

discovered by Lubotzky, Phillips, and Sarnak, and are known as LPS Graphs [10].

For such graphs and closely related ones due to Morgenstern [12], d must have the

form pk + 1 for a prime p.

In a recent paper, Marcus, Spielman, and Srivastava showed that infinite families

of d-regular bipartite Ramanujan graphs exist for all degrees d [11]. To prove this, they

considered the set of all ways of signing the edges of a graph with either the number 1

or the number −1 and showed that these signings corresponded to twofold coverings

of the graph. The eigenvalues of a twofold covering are given by the eigenvalues of a

signed adjacency matrix determined by the corresponding signing. Marcus, Spielman,

and Srivastava showed that the characteristic polynomials of these signed adjacency

matrices form an interlacing family, which allowed them to conclude that one of

these polynomials has roots that are bounded by those of the average over all of these

polynomials. Based on results from earlier papers, the roots of this average are known

2



to be within the Ramanujan bounds, so this allowed them to conclude that there is

a Ramanujan twofold covering for any bipartite Ramanujan graph.

In Chapter 2 of this dissertation, we discuss ways of generalizing the content of

[11]. In Section 2.2, we prove a statement similar to the main result of [11] using

threefold coverings instead of twofold coverings. In Section 2.3, we define resonance

conditions that determine whether a generalized version of Theorem 3.6 in [11] holds.

In Section 2.4, we discuss how to reduce the size of the set in which we know a Ra-

manujan covering of a graph exists. We also define an extended matching polynomial

that interpolates between the matching polynomial of a graph and the characteristic

polynomial of its adjacency matrix. In the next two sections, we consider ways of

labeling the edges of a finite graph with a more general group and defining an analog

of the signed adjacency matrix. In Section 2.5, we do this by constructing a matrix

whose entries are determined by applying a character of the group to the labels of

the graph’s edges. In Section 2.6 we do this by using a representation of the group

instead. We define extended multi-matchings on a graph in order to prove a theorem

that allows us to apply our analysis from Section 2.4 to the results of a recent paper

by Hall, Puder, and Sawin [7] that generalizes [11] by using group representations.

In Chapter 3, we will discuss a type of labeled tree fist discussed by Postnikov

called alternating trees or minmax trees [13]. An alternating tree is a tree whose

vertices are labeled with positive integers in such a way that the label of each vertex is

either higher than that of all of its neighbors or lower than that of all of its neighbors.

These trees have been connected to several other types of combinatorial objects.

These include regions of the Linial Arrangement (the affine arrangement on Rn defined

by equations of the form xi − xj = 1 with j > i), local binary search trees (labeled

rooted plane binary trees in which every left child of a vertex is smaller than its parent

and every right child is greater than its parent) and semiacyclic tournaments (directed

complete labeled graphs where every directed cycle has more descending edges than

3



ascending edges) [4, 14]. We work with a weight system on these alternating trees

that arises from examining the Tutte polynomials of graphs. The problem of counting

weighted alternating trees has been connected to various other counting problems. For

example, work of Gunnells, Letellier, and Villegas connects them to Kac polynomials

of dandelion quivers and enumeration of torus orbits on homogeneous varieties [6].

We explain the latter connection here. Let S be the maximal torus in PGLn acting

on the Grassmanian X = Gr(m,n). Gunnells, Letellier, and Villegas showed that the

number of S-orbits with trivial stabilizer in X(Fq) is equal to
∑
T

qw(t), where the sum

is taken over all alternating trees with n vertices and m maxima (this polynomial can

also be viewed as a sum of Tutte polynomials of alternating graphs). For example,

when X = Gr(2, 4), there are q + 4 S-orbits with trivial stabilizer in X(Fq), and of

the 5 alternating trees on 4 vertices with 2 maxima, four of them have weight 0 and

one has weight 1.

In Section 3.2, we define a generalization of alternating trees called tiered trees that

allows vertices to lie in an intermediate “tier” rather than just being local maxima

or minima. We also extend our weight system to these tiered trees. In Section 3.3,

we show that every weight 0 tiered tree with three tiers can be obtained by moving

vertices in an alternating tree into an intermediate tier. This allows us to write

formulas for the numbers of weight 0 3-tiered trees where one of the tiers contains

only one or two vertices. In Section 3.4, we describe a bijection between the symmetric

group Sn and the set of weight 0 alternating trees on n + 1 vertices. We then use

this bijection to define a statistic of permutations called the weight of a permutation.

We do this by extending the domain of the map that produces permutations from

weight 0 trees to the set of all alternating trees of any weight. We use weights of

permutations to define a refinement of the Eulerian polynomial called a q-Eulerian

polynomial. The weight of a permutation appears not to be equivalent to any other

statistic of permutations that has been formulated before. Similarly, the resulting q-

4



Eulerian polynomial does not seem to match any other q-Eulerian polynomial that has

been studied in the past, so this statistic of permutations can be viewed as revealing

new information about the permutations.
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CHAPTER 2

CYCLIC RAMANUJAN 3-LIFTS

2.1 Background on 2-lifts

The argument made by Marcus, Spielman, and Srivastava works by showing that

there exists some degree 2 covering of any bipartite Ramanujan graph whose eigen-

values fall within the Ramanujan bounds.

Definition 2.1.1. Let G be a graph with vertex set V (G) and edge set E(G). A

2-lift of G is a graph H with vertex set {vi | v ∈ V (G), i ∈ {0, 1}} and edge set

{ei | e ∈ E(G), i ∈ {0, 1}} with the following properties:

(1) For every edge e connecting vertices v and u in G, each ei connects some vj to

some uk.

(2) For every edge e connecting vertices v and u in G, exactly one of the ei has v0 as

an endpoint and the other has v1 as an endpoint.

We call the two vertices {v0, v1} in H corresponding to v ∈ v(G) the fibre of v.

Every edge (v, u) in G corresponds to two edges in the 2-lift. These two edges

connect vertices in the fibre of v to vertices in the fibre of u, and this can be done in

two ways: The edge pair can be {(v0, u0), (v1, u1)} or {(v0, u1), (v1, u0)}. Therefore,

2-lifts of a graph G are in bijection with functions s : E(G) → {±1} assigning the

value 1 to an edge if the corresponding edge pair in the 2-lift is of the first type, and

assigning the value -1 if the corresponding edge pair is of the second type.

In [11], such functions are called signings. For example, if s(u, v) = 1 for all edges

in E(G), the corresponding 2-lift is a disjoint union of two copies of G. Bilu and Linial

6



[2] proved that the eigenvalues of the adjacency matrix of the 2-lift corresponding to

a signing s of a graph G are the union of those of the adjacency matrix A of G, and

those of the signed adjacency matrix As. By definition, As is obtained by replacing

each 1 in the uv entry of A with s(u, v). Therefore, if G is a d-regular Ramanujan

graph, and it has a signing s for which the absolute values of the eigenvalues of As

are less than 2
√
d− 1, the corresponding 2-lift is also Ramanujan.

v

wt

s s(esv) = 1

s(evw) = 1

s(etw) = −1

s(est) = 1 s(e
tv
) =

1
s0

s1

t1

t0

v1
v0

w0

w1

Figure 2.1. A signing of a graph and the correspnding 2-lift

An i-matching on a graph G is defined as a disjoint collection of i edges in G.

If G has n vertices, we call an n
2
-matching on G a perfect matching. Taking mi to

be the number of i-matchings on G (and m0 = 1), the matching polynomial of G is

defined to be µG(x) =
∑
i≥0

xn−2i(−1)imi. For example, if G is the complete graph on

4 vertices, µG(x) = x4 − 6x2 + 3, because it has 6 edges and the 3 perfect matchings

pictured in Figure 2.2.

Figure 2.2. The 3 perfect matchings on K4
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Godsil and Gutman [5] showed that the matching polynomial of the graph G is the

average signed characteristic polynomial Es[det(xI − As)], where Es is the expected

value over all signings s of G. By [9], the roots of the matching polynomial µG(x)

of a d-regular graph G are bounded in absolute value by 2
√
d− 1. This means that

the roots of the average signed characteristic polynomial are within the Ramanujan

bounds, but it does not mean that one of these polynomials has roots that achieve

these bounds. The key insight that Marcus, Spielman, and Srivastava used to make

this leap was to show that the signed characteristic polynomials form an interlacing

family (The definition of this term can be found at the beginning of section 2.2.3 of

this dissertation). This implies that one of the signed characteristic polynomials has

roots that are bounded by the largest root of the average of all signed characteristic

polynomials. Since this average is bounded by 2
√
d− 1, this means that one of these

signings gives rise to a Ramanujan 2-lift of G. One can then prove that there is a

Ramanujan 2- lift of this Ramanujan 2-lift using the same method, and conclude that

there exists an infinite tower of bipartite Ramanujan 2-lifts of d-regular graphs. We

remark that this is an existence-only proof, in contrast with the explicit examples of

Lubotzky, Phillips, Sarnak, and Morgenstern. This means that we do not have an

effective way to find examples of large Ramanujan graphs of arbitrary degree because

the number of 2-lifts of a graph grows exponentially with the number of edges, so the

resulting search space becomes enormous.

2.2 Cyclic Ramanujan 3-lifts

2.2.1 Eigenvalues for Cyclic n-lifts

To generalize the work of Marcus, Spielman, and Srivastava, we will first define a

generalization of 2-lifts of a graph. In this section we will only work with graphs that

have at most one edge between any pair of vertices.

8



Definition 2.2.1. Let G be a graph with vertex set V (G) and edge set E(G). An

n-lift of G is a graph H with vertex set {vi|v ∈ V (G), i ∈ {1, 2, . . . , n − 1, n}} and

edge set {ei|e ∈ E(G), i ∈ {1, 2, . . . , n− 1, n}} with the following properties:

(1) For every edge e connecting vertices v and u in G, each ei connects some vj to

some uk.

(2) For every edge e connecting vertices v and u in G and each vi in the fibre of v,

exactly one of the ei has vi as an endpoint.

Each edge ei in the fibre of the edge e = (v, u) bijectively connects each vi to some

uj, so each possible fibre for e can be thought of as corrseponding to a permutation

in the symmetric group Sn. Note that, in contrast with the case of 2-lifts, there is

a difference between choosing {(v1, u2), (v2, u3), . . . , (vn, u1), } as the fibre of an edge

and choosing {(v1, un), (v2, u1), . . . , (vn, un−1)}, so when we define a generalization of

signings of a graph, we must specify orientations for the edges of the graph. Let G be

an oriented d-regular graph with adjacency matrix A. Let H be an n-lift of G. For

each edge in G, there are n! possible collections of n edges that could lie above that

edge in H, with each possibility corresponding to a permutation in the symmetric

group Sn. For a permutation σ : {1, . . . , n} → {1, . . . , n}, we choose the edges lying

above the oriented edge v → u by adding an edge vi → uσ(i) for all i. As we are

not able to work directly with matrices whose entries are permutations in Sn, we will

only consider a smaller class of n-lifts called cyclic n-lifts.

Definition 2.2.2. An n-lift of the graph G is called a cyclic n-lift if the collection of

edges lying above each edge in the base graph corresponds to an element of the cyclic

subgroup of Sn generated by the permutation (12 · · ·n).

Next we generalize the definition of a signing of the edges of a graph.

Definition 2.2.3. Let µn be the group of nth roots of unity under multiplication. A

labeling is a map s : E(G) → µn assigning each oriented edge of the graph G to an

9



element of µn. We will also use the notation sm to refer to the labeling defined by

sm(e) = s(e)m.

The different labelings of G are in bijective correspondence with the cyclic n-

lifts of G because we can label an edge that is lifted according to the permutation

(123 · · ·n)m with the number e2miπ/n = ϕm.

Definition 2.2.4. We define the labeled adjacency matrix As to be the|V (G)|×|V (G)|

matrix whose ij entry is



s(eij), if G has an oriented edge vi → vj

s(eji)
−1, if G has an oriented edge vj → vi

0, if there is no edge connecting the two vertices.

Note that by this definition, labeled adjacency matrices are Hermitian.

v2

v4v3

v1 s(e12) = 1

s(e24) = ϕ2

s(e43) = ϕ = e
2πi
3

s(e13) = 1
s(e

32
) =

ϕ
2 0 1 1 0

1 0 ϕ ϕ2

1 ϕ2 0 ϕ2

0 ϕ ϕ 0







v3 v4v2v1

v1

v2

v3

v4

Figure 2.3. An example of a labeled adjacency matrix for a labeling of a graph by
µ3

We can now give our description of the spectra of cyclic n-lifts.

Theorem 2.2.5. Let G be an oriented graph with adjacency matrix A. Let H be the

cyclic n-lift of G corresponding to the labeling s, and let B be the adjacency matrix of

H. Then the eigenvalues of B are precisely those of As0 , As1 , . . . , and Asn−1 combined.

Proof. Let Am be the |V (G)| × |V (G)| matrix where the ij entry is 1 if G has an

oriented edge vi → vj with s(eij) = ϕm or G has an oriented edge vj → vi with

10



s(eji) = ϕ−m, and the ij entry is 0 otherwise. Note that the ij entry of Am is also

the ji entry of An−m, so Am = ATn−m. Under this notation, the adjacency matrix B

of the n-lift of G corresponding to this signing can be arranged as




A0 A1 . . . An−1

An−1 A0 . . . An−2

...
...

. . .
...

A1 A2 . . . A0



.

We can decompose As as

As = A0 + ϕA1 + ϕ2A2 + · · ·+ ϕn−1An−1.

We can similarly decompose Asm as

Asm = A0 + ϕmA1 + ϕ2mA2 + · · ·+ ϕm(n−1)An−1.

Therefore, if v is an eigenvector of Asm , then




v

ϕmv

ϕ2mv

...

ϕ−mv




is an eigenvector of B with the same eigenvalue. We now show that these vectors are

independent. Let {vi,m} be the eigenvectors of Asm . Suppose that for some constants

{ai,m}

11



∑

i,m

ai,m




vi,m

ϕmvi,m

ϕ2mvi,m
...

ϕ−mvi,m




= 0.

Then for any m, we get the equation

∑

i

ai,0vi,0 + ϕm
∑

i

ai,1vi,1 + · · ·+ ϕm(n−1)
∑

i

ai,n−1vi,n−1.

Since the matrix




1 1 1 . . . 1

1 ϕ ϕ2 . . . ϕn−1

1 ϕ2 ϕ4 . . . ϕn−2

...
...

...
. . .

...

1 ϕn−1 ϕ2(n−2) . . . ϕ(n−1)2




is invertible (its 4th power is n2I), this can only happen if each
∑
i

ai,mvi,m is 0.

However, since for each m, the vi,m are the eigenvectors of Asm , they are linearly

independent. This means that each ai,m must be 0, so the eigenvectors of B we

have found are independent. Therefore, the eigenvalues of B are precisely those of

As0 , As1 , As2 , . . . , and Asn−1 combined.

In the case of 3-lifts, this means that the only new eigenvalues are those of As

because As2 = As, so the two matrices have the same eigenvalues, and As0 = A, so

its eigenvalues are the old eigenvalues.

Corollary 2.2.6. Let B be the adjacency matrix of the 3-lift of the graph G corre-

sponding to the labeling s of G. Then every eigenvalue of B is an eigenvalue of either

the adjacency matrix A of G or the labeled adjacency matrix As.
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2.2.2 Average Labeled Characteristic Polynomial

Let fs(x) = det(xI−As). A generalization of the proof of Theorem 3.6 in Marcus,

Spielman, and Srivastava shows that the expected characteristic polynomial of As is

the matching polynomial.

Theorem 2.2.7. Let G be a graph with m vertices. Let Es∈µmn [fs(x)] denote the

average of the characteristic polynomials fs(x) over all possible labelings of the graph

s ∈ µmn . Then we have

Es∈µmn [fs(x)] = µG(x).

Proof. For any set S, let Sym(S) be the set of permutations of the set S and let

Der(S) be the subset of Sym(S) consisting of the permutations with no fixed points

(also known as derangements). Let |π| be the number of inversions in the permutation

π (i.e |π| is even if and only if π is an even permutation). For any m, let [[m]] be the

finite set {1, . . . ,m}. Let sij denote the ij entry of As.

Es[det(xI − As)]

= Es[
∑

σ∈Sym([[m]])

(−1)|σ|
m∏
i=1

(xI − As)i,σ(i)]

=
∑m

k=0 x
m−k ∑

S⊂[[m]],|S|=k

∑
π∈Der(S)

Es[(−1)|π|
∏
i∈S

si,π(i)](−1)|S|.

Note that each sij is independent from all other entries except for sji and E[sij] =

0, so only the products given by permutations π consisting entirely of 2-cycles survive.

Furthermore, the product will be 0 unless each of these 2-cycles in the permutation

consists of vertices in G that are connected by an edge. These permutations represent

the perfect matchings on G(S), where G(S) denotes the subgraph of G consisting of

the vertices indexed by S and all edges in G connecting these vertices. These perfect

matchings consist of |S|/2 inversions when |S| is even, and they do not exist when

|S| is odd. Since sij and sji are inverse roots of unity when G has an i→ j edge, this

gives us

Es[det(xI − As)]
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=
∑m

k=0 x
m−k ∑

|S|=k

∑
perfect matchings π on G(S)

(−1)|S|/2 · 1

= µG(x)

This completes the proof of the theorem.

2.2.3 Interlacing Families

Definition 2.2.8. We say that a polynomial g(x) =
∏n−1

i=1 (x− αi) interlaces a poly-

nomial f(x) =
∏n

i=1(x− βi) if

β1 ≤ α1 ≤ β2 ≤ α2 ≤ · · · ≤ αn−1 ≤ βn

We say that polynomials f1, . . . , fk have a common interlacing if there exists a g

that interlaces each fi.

Let S1, . . . , Sm be finite sets and for each assignment s1, . . . , sm ∈ S1×· · ·×Sm, let

fs1,...,sm(x) be a real-rooted polynomial of degree n with a positive leading coefficient.

For a partial assignment s1, . . . , sk ∈ S1 × · · · × Sk with k < m, we define

fs1,...,sk =
∑

sk+1∈Sk+1,...,sm∈Sm

fs1,...,sk,sk+1,...,sm

and

f∅ =
∑

s1∈S1,...,sm∈Sm

fs1,...,sm .

We call {fs1,...,sk}s1,...,sk an interlacing family if for all k < m and all s1, . . . , sk ∈

S1 × · · · × Sk, the polynomials in {fs1,...,sk,t}t∈Sk+1
have a common interlacing.

We can generalize the argument of Marcus, Spielman, and Srivastava to show that

our more general labeled characteristic polynomials also form an interlacing family.

To do this, we will prove a statement analogous to Theorem 5.1 in their paper.

Theorem 2.2.9. Let p1,0, p1,1, . . . , p1,n−1, p2,0, . . . , pm,n−1 be numbers in [0,1] where

pi,0 + · · ·+ pi,n−1 = 1 for any fixed i. Then the following polynomial is real-rooted:

14



∑

s∈µmn

(
∏

i:si=1

pi,0)(
∏

i:si=ϕ

pi,1) . . . (
∏

i:si=ϕn−1

pi,n−1)fs(x)

To prove this, we will use a generalized version of the argument of Marcus, Spiel-

man, and Srivastava using real stable polynomials.

Definition 2.2.10. The polynomial f ∈ R[z1, . . . , zn] is real stable if it is either the

zero polynomial or f(z1, . . . , zn) 6= 0 whenever each zi has a strictly positive imaginary

part.

We will use the following facts about real stable polynomials:

Lemma 2.2.11. Let A1, . . . , Am be positive semidefinite matrices. Then the polyno-

mial det(z1A1 + · · ·+ zmAm) is real stable.

Lemma 2.2.12. If f(z1, . . . , zn) is real stable, then f(z1, . . . , zn−1, c) is real stable for

any real number c.

Lemma 2.2.13. Let p0, . . . , pn−1 be non negative real numbers and let u0, . . . , un−1

be variables. Let ∂x denote the operation of partial differentiation with respect to x.

The operator T = 1 + p0∂u0 + · · ·+ pn−1∂un−1 preserves real stability.

The first two of these three statements appear directly in Marcus, Spielman, and

Srivastava. The third is a slight generalization of Corollary 6.4, to which the same

proof applies [11].

Lemma 2.2.14. Let A be an m × m invertible matrix with complex entries, let

a0, . . . , an−1 be vectors in Cm, and let p0, . . . , pn−1 be non-negative real numbers that

add up to 1. Let Zui be the operator defined by setting the variable ui to 0. Then we

have

Zu0 · · ·Zun−1(1 + p0∂u0 + · · ·+ pn−1∂un−1) det(A+ u0a0aT0 + · · ·+ un−1an−1aTn−1)

= p0 det(A+ a0aT0 ) + · · ·+ pn−1 det(A+ an−1aTn−1).
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Proof. By the matrix determinant lemma, for any invertible matrix A and real number

t,

det(A+ taaT ) = det(A)(1 + taTA−1a)

Applying ∂t to this gives us

∂t det(A+ taaT ) = det(A)(aTA−1a)

This implies:

Zu0 . . . Zun−1(1 + p0∂u0 + . . .+ pn−1∂un−1) det(A+ u0a0aT0 + . . .+ un−1an−1aTn−1) =

det(A)(1 + p0(aT0A
−1a0) + . . .+ pn−1(aTn−1A

−1an−1))

Decomposing 1 into a sum of the pi and applying the matrix determinant lemma, we

see that this is equal to:

p0 det(A+ a0aT0 ) + . . .+ pn−1 det(A+ an−1aTn−1)

Theorem 2.2.15. Let a1,0, . . . , a1,n−1, a2,0, . . . , am,n−1 be vectors in Cm, and let p1,0,

. . . , p1,n−1, p2,0, . . . , pm,n−1 be non-negative real numbers where for any fixed i, pi,0 +

. . . + pi,n−1 = 1. Let D be a positive semidefinite m×m matrix. Then the following

polynomial is real-rooted:

P (x) =
∑

partitions {S0,...,Sn−1} of [[m]]

(
∏

i∈S0

pi,0) . . . (
∏

i∈Sn−1

pi,n−1)det(xI +D+

∑

i∈S0

ai,0aTi,0 + · · ·+
∑

i∈Sn−1

ai,n−1aTi,n−1)

Proof. Let u1,0, . . . , u1,n−1, u2,0, . . . , um,n−1 be variables and define
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Q(x, u1,0, . . . , u1,n−1, u2,0, . . . , um,n−1) =

det(xI +D +
∑
i

ui,0ai,0aTi,0 + · · ·+∑
i

ui,n−1ai,n−1aTi,n−1)

By lemma 2.2.11, Q is real stable.

Let Ti = 1 + pi,0∂ui,0 + · · ·+ pi,n−1∂ui,n−1
. We claim that

P (x) = (
m∏
i=1

Zui,0 . . . Zui,n−1
Ti)Q(x, u1,0, . . . , u1,n−1, u2,0, . . . , um,n−1)

We show by induction that

(
k∏
i=1

Zui,0 . . . Zui,n−1
Ti)Q(x, u1,0, . . . , u1,n−1, u2,0, . . . , um,n−1)

=
∑

partitions {S0,...,Sn−1} of [[k]]

(
∏
i∈S0

pi,0) . . . (
∏

i∈Sn−1

pi,n−1)det(xI +D +
∑
i∈S0

ai,0aTi,0 + · · ·+
∑

i∈Sn−1

ai,n−1aTi,n−1 +
∑
i>k

(ui,0ai,0aTi,0 + · · ·+ ui,n−1ai,n−1aTi,n−1))

The k = 0 case is the definition of Q, the induction step follows from Lemma

2.2.14, and the k = m case is our claim. Since each Z and T operator preserves real

stability, this means that P is real stable, and a real stable polynomial in one variable

must be real-rooted.

Let d be the regularity of G. To prove that

∑

s∈µmn

(
∏

i:si=1

pi,0)(
∏

i:si=ϕ

pi,1) . . . (
∏

i:si=ϕn−1

pi,n−1)det(xI − As) (2.1)

is real-rooted, we can prove that

∑

s∈µmn

(
∏

i:si=1

pi,0)(
∏

i:si=ϕ

pi,1) . . . (
∏

i:si=ϕn−1

pi,n−1)det(xI + dI − As) (2.2)

is real-rooted because their roots differ by d.

Let eu be the elementary unit vector in the u direction. For each edge (u, v) we

define n different rank 1 matrices:
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Lϕ
j

u,v = (eu − ϕjev)(eu − ϕ−jev)T

This allows us to write dI − As as

∑

(u,v)∈E

Ls(u,v)
u,v

so if we set D = 0 and (eu − ϕjev) = au,v,j, we can rewrite the polynomial (2) as

∑
s∈µmn

(
∏

i:si=1

pi,0)(
∏

i:si=ϕ

pi,1) . . . (
∏

i:si=ϕn−1

pi,n−1)det(xI +
∑

s(u,v)=1

au,v,1aTu,v,1 + · · ·+
∑

s(u,v)=ϕn−1

au,v,ϕn−1aTu,v,ϕn−1)

Since this is of the form appearing in Theorem 2.2.15, it is real-rooted.

2.2.4 Cyclic Ramanujan 3-lifts

It now follows from Theorem 2.2.9 that the labeled characteristic polynomials

form an interlacing family:

Theorem 2.2.16. The {fs}s∈µmn are an interlacing family.

Proof. Lemma 4.5 in [11] states that a set of polynomials of the same degree with

positive leading coefficients has a common interlacing if and only if all convex com-

binations of those functions are real-rooted. Therefore, it suffices to show that for

any k ≤ m − 1, any partial assignment s1 ∈ µmn , . . . , sk ∈ µmn , and every set of non-

negative real numbers p0, . . . , pn−1 with p0 + · · ·+ pn−1 = 1, the following polynomial

is real-rooted:

p0fs1,...,sk,1(x) + · · ·+ pn−1fs1,...,sk,ϕn−1(x)

This follows from Theorem 2.2.9 when we set pk+1,j = pj, pk+2,j, . . . , pm = 1/n for

all j, and pi,j = 1 if si = ϕj, and 0 otherwise.
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By Theorem 4.4 in [11], this means that there exists some labeling s = (s1, . . . , sm)

for which the largest root of fs1,...,sm is less than the largest root of f∅. By Theorem

2.2.7, f∅ is a scalar multiple of the matching polynomial. Lemma 3.5 in [11] states that

the roots of this polynomial are bounded in absolute value by 2
√
d− 1. This means

that there is some labeling s for which highest root of fs is within the Ramanujan

bounds. If G is bipartite, this implies that all roots of fs are within the Ramanujan

bounds because the spectrum of a bipartite graph is symmetric. Therefore, if n = 3

and the base graph is Ramanujan, this labeling corresponds to a Ramanujan graph

because all of this graph’s new eigenvalues are roots of fs1,...,sm . It is always possible

to choose a bipartite Ramanujan base graph for any regularity d. For, example we

could start with the d-regular complete bipartite graph on 2d vertices, which is a

bipartite Ramanujan graph. This allows us to conclude that infinite towers of cyclic

Ramanujan 3-lifts of graphs on any regularity exist.

Theorem 2.2.17. For any integer d ≥ 2, there exists an infinite tower of bipartite

Ramanujan d-regular graphs {G1, G2, G3, . . .} in which each Gi+1 is a cyclic 3-lift of

Gi.

2.3 Resonance and Higher Degrees

If we try to adapt our argument to lifts of higher degrees, we will need to consider

polynomials of higher degrees that have all of the new eigenvalues of a lift as roots. We

can do this by working with products of characteristic polynomials of different powers

of the same labeling fsi1 (x)fsi2 (x) . . . fsik (x). For example, if n = 4 or n = 5, the new

eigenvalues of the n-lift associated with the labeling s are the roots of fs(x)fs2(x).

We will, therefore, examine the averages of these products over all labelings.

Definition 2.3.1. Suppose that {a1, . . . , ak} is a solution to the equation a1i1 + · · ·+

akik ≡ 0 mod n with each ai ∈ {−1, 0, 1}. Then we call this solution a resonance
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condition on the exponents i1, . . . , ik mod n. We call the solution where each ai = 0

the trivial resonance condition.

Theorem 2.3.2. Let s be a labeling of the graph G by nth roots of unity. Then there

is no nontrivial resonance condition on the exponents i1, . . . , ik mod n if and only if

we have

Es[fsi1 (x)fsi2 (x) . . . fsik (x)] = µG(x)k.

Proof. By expanding each determinant, we find that the expression Es[det(xI −

Asi1 ) . . . det(xI − Asik )] is equal to

Es[(
∑

σ1∈Sym([[m]])

(−1)|σ1|
m∏

i=1

(xI−Asi1 )i,σ1(i))·· · ··(
∑

σk∈Sym([[m]])

(−1)|σk|
m∏

i=1

(xI−Asik )i,σk(i))].

The coefficient of xkn−K in this expression is
∑

S1,...,Sk⊂[[n]]
|S1|+···+|Sk|=K

∑
π1∈Der(S1),...,πk∈Der(Sk)

Es[(−1)|π1|
∏
i∈S1

si1i,π1(i) . . . (−1)|πk|
∏
i∈Sk

siki,πk(i)](−1)K .

We can reduce a product of products of the form
∏
i∈S1

si1i,π1(i) · · ·
∏
i∈Sk

siki,πk(i) into a

product of independent random variables by combining powers of si,j’s and writing sj,i

as s−1
i,j . When we do so, the exponent of each si,j will be of the form a1i1+· · ·+akik with

each ai ∈ {−1, 0, 1}. If this exponent is not divisible by n, then E[sa1i1+···+akik
i,j ] = 0.

Therefore, if the only solution to the equation a1i1 + · · ·+ akik ≡ 0 mod n with each

ai ∈ {−1, 0, 1} is the trivial solution, the only surviving terms are those in which each

πi represents a perfect matching on G(Si) (There are other surviving terms if we do

not have this condition). If we have this condition, then the coefficient of xkn−K then

becomes 0 if K is odd and

(−1)
K
2

∑

{(C1,...,Ck)∈Zk
≥0|C1+···+Ck=K/2}

m(G,C1) . . .m(G,Ck)
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if K is even, where m(G,N) denotes the number of matchings on the graph G con-

sisting of N edges. Since these are the coefficients of µG(x)k, this means that if there

is no nontrivial resonance condition, the two polynomials are equal.

To prove the converse, let α be the minimal number of nonzero coefficients in any

nontrivial resonance condition on the exponents i1, . . . , ik mod n, and suppose that

there are N resonance conditions with this minimal number of nonzero coefficients.

Let β be the minimal number of edges in any cycle in the graph G, and suppose that

there are M β-cycles in the graph. We observe from our formula for the coefficient of

xkn−K that the coefficients of xkn−αβ in Es[fsi1 (x)fsi2 (x) . . . fsik (x)] and µG(x)k differ

by 2NM .

Corollary 2.3.3. Suppose that for all resonance conditions on the exponents i1, . . . , ik

mod n, a1 = · · · = aw = 0. Then Es[fsi1 (x)fsi2 (x) . . . fsik (x)] is divisible by µG(x)w.

Proof. For each i ≤ w, the only surviving terms will be those in which πi represents a

perfect matching on Si. For such a permutation, we have
∏
i∈S1

si1i,π1(i) = 1. Therefore,

we can rewrite the coefficient of xkn−K in Es[fsi1 (x)fsi2 (x) . . . fsik (x)] as

∑
(−1)

|S1|+···+|Sw|
2 Es[(−1)|πw+1|

∏

i∈Sw+1

s
iw+1

i,πw+1(i) . . . (−1)|πk|
∏

i∈Sk

siki,πk(i)](−1)K ,

where the sum is taken over the set {(S1, . . . , Sk, π1, . . . , πw, πw+1, . . . , πk) | S1, . . . , Sk ⊂

[[n]], |S1|+· · ·+|Sk| = K, πi is a perfect matching on G(Si) if i ≤ w, πi ∈ Der(Si) if i >

w} , so Es[fsi1 (x)fsi2 (x) . . . fsik (x)] is divisible by µG(x)w

We can use this result to see which parts of our argument from the previous

sections can and cannot be applied to n-lifts with n > 3. Note that, for n > 3,

there is no nontrivial resonance condition on the exponents 1 and 2 mod n, so the

preceding theorem is applicable to the polynomials fs(x)fs2(x), and we are able to
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conclude that Es[fs(x)fs2(x)] is real-rooted and its roots are within the Ramanujan

bound. However, this does not allow us to conclude that one of these polynomials has

roots within the Ramanujan bound because they do not form an interlacing family

in the same way that the polynomials fs(x) do. For n > 5, the eigenvalues of the lift

corresponding to the labeling s will include the roots of fs(x), fs2(x), and fs3(x), and

we have a nontrivial resonance condition given by 1 + 2 − 3 = 0. Therefore, we do

not have a result placing the roots of the average of the desired polynomials within

the Ramanujan bound.

2.4 Fixed Subgraphs

We now fix a subgraph H of the graph G. We will consider the average character-

istic polynomial Es[det(xI−As)] over all labelings s of G by the multiplicative group

of nth roots of unity µn in which every edge in H is mapped to the identity permu-

tation. The resulting polynomial can be interpreted combinatorially as an extended

matching polynomial.

Definition 2.4.1. We define an extended matching m on the graph G with respect

to H to be a disjoint union of edges in G and cycles in H. The extended matching

polynomial of G with respect to H is then defined as

µG,H(x) =
∑

m(−1)c(m)2z(m)xN−v(m).

Here, the sum is taken over all extended matchings m on G with respect to H, c(m)

is the number of edges and cycles in the extended matching, z(m) is the number of

cycles in the extended matching, N is the number of vertices in G, and v(m) is the

number of vertices that are included in an edge or cycle of m.

This is a generalization of an interpretation of the characteristic polynomial given

in [8]. Once extended matchings are defined, we can prove the following:

Theorem 2.4.2. Let LH be the set of labelings s of G by a cyclic group for which

s(e) = 1 for all edges e in H. Then we have Es∈LH
[det(xI − As)] = µG,H(x).
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H:

G \H:

Figure 2.4. An extended matching on G with respect to H (The edges and cycles
in the extended matching appear in red)

Proof. Let sij denote the ij entry of As. As in the proof of the analogous statement

for labeled adjacency matrices, we have

Es[det(xI − As)] =
N∑

k=0

xN−k
∑

S⊂[[n]],|S|=k

∑

π∈Der(S)

Es[(−1)|π|
∏

i∈S

si,π(i)](−1)|S|.

For the edges eij ∈ G \ H, E[sij] = 0 and these sij are independent from all

entries other than sji. Therefore, the surviving products will be those consisting of

2-cycles and cycles whose edges all come from H, so these permutations correspond

to perfect extended matchings on G(S) with respect to G(S) ∩H. Note that for an

extended matching m with z(m) cycles, there are 2z(m) permutations corresponding

to m because each cycle has two inverse permutations corresponding to it. We also

observe that the number of cycles of odd size (i.e. cycles with an even number of

involutions) in a perfect extended matching m is even if and only if |S| is even.

Therefore, the sign of term contributed by m is (−1)c(m), and the entire contribution

of m is (−1)c(m)2z(m)xN−v(m).

Note that we could have alternatively defined extended matchings as disjoint

unions of edges in G and oriented cycles in H, in which case we would no longer
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include the 2z(m) in the definition of µG,H , and we would be able to reach the same

conclusion as in Theorem 2.4.2. We will refer to extended matchings by this definition

as partially oriented extended matchings.

Observe that when we take H = ∅, we simply get the definition of the matching

polynomial (since H contains no cycles), so µG,∅(x) = µG(x). On the other hand, if

we take H = G, we find that the coefficient of xN−v(m) in µG,G is
∑

m(−1)c(m)2z(m)

where the sum is taken over all subgraphs of G with v(m) vertices whose compo-

nents are all edges or cycles. Sachs showed that this polynomial is the characteristic

polynomial of G [15], so the extended characteristic polynomial interpolates between

the characteristic polynomial and matching polynomial of G. For any choice of fixed

subgraph H, it is clear that the signed characteristic polynomials form an interlacing

family because we already know that this is the case when H = ∅, which is a stronger

condition. Therefore, the argument used by Marcus, Spielman, and Srivastava can

be used to show the following:

Theorem 2.4.3. For any bipartite graph G and subgraph H, there is a 2-lift of G

that is trivial over the subgraph H whose largest new eigenvalue is no larger than the

largest root of µG,H(x).

This argument also works if we choose a non-trivial signing to fix the edges in H

with. In particular, if G is d-regular and Ramanujan and the largest root of µG,H(x)

is less than 2
√
d− 1, then one of these 2-lifts is also Ramanujan. If we can find

conditions on H for which for which this condition holds, then we can narrow down

the search space that [11] entails because for every edge that we include in H, we

reduce the search space by a factor of two. We see a very simple example of this

when we take H to be a spanning tree of G; since H contains no cycles, we have

µG,H(x) = µG(x), and we know that the roots of µG(x) are within the Ramanujan

bound, so we are able to conclude that there is a Ramanujan 2-lift of G corresponding
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to a signing for which s(e) = 1 for all e ∈ H. If G has N vertices, this means that we

only need to check one in every 2N−1 2-lifts of G instead of all of them.

As an example where H is not contractible, we take G to be the complete bipartite

graph K3,3 and H to be a hexagonal subgraph. If we require the lifts to be trivial over

H, the average signed characteristic polynomial that we get is x6 − 9x4 + 18x2 − 8.

Since the largest root of this polynomial is approximately 2.5243, which is less than

2
√

2, we can conclude that there is a Ramanujan 2-lift of G in which the fibre of H is

a pair of disjoint hexagons. On the other hand, we could also only consider signings

in which the sign of the first edge of H is -1, and the rest of the edges in H have

a sign of 1. In this case, the average signed characteristic polynomial that we get is

x6 − 9x4 + 18x2 − 4. The largest root of this polynomial is approximately 2.4903,

which is also less that 2
√

2, so there is also a Ramanujan 2-lift of G in which the fibre

of H is a 12-gon.

2.5 Characters

To generalize our results, we would like to analyze labelings of graphs by non-

cyclic groups. To do so, we need a way of making an adjacency matrix out of a

labeling, but in order for this to make sense, the entries need to be made into complex

numbers rather than elements of a finite group. One way of doing this is by applying

characters to the group elements. Let χ be the character of an irreducible non-trivial

representation ρ of the finite group Γ. Let G be a d-regular directed graph. Let

s : E+(G) → Γ be a map assigning an element of S to each oriented edge of G. We

call s a Γ-labeling of G. Note that by this definition labelings as we have previously

defined them are Sn-labelings. Let As,χ be the matrix whose u, v entry is
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χ(s(u, v)) if (u, v) is an oriented edge,

χ(s(v, u)−1) if (v, u) is an oriented edge,

0 if there is no oriented edge (u, v) or (v, u).
.

See Figure 2.5 for an example of a matrix As,χ where χ is the unique irreducible

2-dimensional character of S4 whose table can be found in Figure 2.6. Like with

labeled adjacency matrices, we now consider the average characteristic polynomial of

As,χ over all Γ-labelings of G.

v2

v4v3

v1 s(e12) = (13)(24)

s(e24) = 1

s(e43) = (1432)

s(e13) = (243)
s(e

32
) =

(34
) 0 2 −1 0

2 0 0 2

−1 0 0 0

0 2 0 0







v3 v4v2v1
v1
v2
v3
v4

Figure 2.5. An example of an S4 labeling s of a graph and the matrix As,χ where χ
is the unique irreducible 2-dimensional character of S4.

χ

1 (12) (123) (1234)(12)(34)

2 0 -1 0 2

class:

Figure 2.6. The character table of χ.

Theorem 2.5.1. Es[det(xI − As,χ)] = µG(x)

Proof. Let sij denote the ij entry of As,χ. As in the proof of the analogous statement

for labeled adjacency matrix, we have

Es[det(xI − As,χ)] =
∑m

k=0 x
m−k ∑

S⊂[[n]],|S|=k

∑
π∈Der(S)

Es[(−1)|π|
∏
i∈S

si,π(i)](−1)|S|.

Again, we have that each sij is independent from all other entries except for sji and

E[sij] = 0 (due to orthogonality with the trivial character), so only the products given
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by permutations π consisting entirely of 2-cycles survive. By the Schur orthogonality

relation, Es[sijsji] = 1 for any pair of vertices {i, j} that are connected by an edge of

the graph. These permutations represent the perfect matchings on G(S). Therefore,

as before, the only contributing permutations represent perfect matchings on G(S)

and we find

Es[det(xI − As,χ)]

=
∑m

k=0 x
m−k ∑

|S|=k

∑
perfect matchings π on S

(−1)|S|/2 · 1

= µG(x)

2.6 Representations and Extended Multi-Matchings

A recent paper by Hall, Puder, and Sawin generalizes the work of Marcus, Spiel-

man, and Srivastava by labeling graphs by a group and using matrices formed by

replacing ones in the graph’s adjacency matrix with block matrices. These blocks are

formed by applying a finite dimensional representation to the group that the edges

of the graph have been labeled with [7]. We fix a graph G containing n vertices and

a d-dimensional representation π of the group Γ. For a labeling γ : E(G) → Γ, we

define the matrix Aγ,π to be the dn × dn matrix obtained by replacing the uv entry

of the adjacency matrix of G with the d× d block
∑

e:u→v
π(γ(e)) +

∑
e:v→u

π(γ(e))−1 (We

use a block of zeros if there is no edge from u to v or v to u).

As an example, we label the edges the graph seen in Figure 2.7 with elements of

S4 and then construct the matrix Aγ,π where π is the 2-dimensional representation

defined on a generating set by π((12)) = π((34)) = ( 1 0
−1 −1 ) and π((23)) = ( 0 1

1 0 ).
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v2

v4v3

v1 γ(e12) = (13)(24)

γ(e24) = 1

γ(e43) = (1432)

γ(e13) = (243)
γ(
e32

) =
(3
4)

0 0 1 0 −1 −1 0 0

0 0 0 1 1 0 0 0

1 0 0 0 −1 −1 1 0

0 1 1 0 0 0 0 1

0 1 −1 −1 0 0 −1 −1

−1 −1 0 0 0 0 0 1

0 0 1 0 −1 −1 0 0

0 0 0 1 0 1 0 0







v3 v4v2v1

v1

v2

v3

v4

π((12)) = π((34)) =
(

1 0
−1 −1

)
π((23)) = ( 0 1

1 0 )

Figure 2.7. An S4-labeling γ of a graph and the matrix Aγ,π where π is a 2-
dimensional representation of S4.

Hall, Puder, and Sawin define two conditions on the representation π which they

refer to as (P1) and (P2) that are required to prove certain results. The representation

(Γ, π) is said to satisfy (P1) if all exterior powers ∧mπ with 0 ≤ m ≤ d are irreducible

and pairwise-nonisomorphic. The representation (Γ, π) is said to satisfy (P2) if π(Γ)

is generated by matrices that are conjugate to a diagonal matrix of the form




λ 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1




with λ 6= 1 a root of unity. Such matrices are called pseudo-reflections.

These conditions play complementary roles in the work of Hall, Puder, and Sawin.

The condition (P2) is needed to show that the average characteristic polynomial of

Aγ,π is real-rooted and that one of these polynomials has a largest root that is smaller

than that of this average.
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The condition (P1) is used to prove the following generalization of 2.2.7 (Theorem

1.8 in [7]):

Theorem 2.6.1. Let G be connected. Let Cd,G be the set of all d-coverings of the

graph G. For every pair (Γ, π) satisfying (P1) with dim(π) = d, the following holds:

Eγ[φγ,π(x)] = EF∈Cd,G [µF (x)]

where φγ,π(x) is the characteristic polynomial of the matrix Aγ,π

In this section, we will prove a generalization of this theorem in which we restrict

to the set of labelings that are trivial over a subgraph H of G. It can also be viewed

as a generalization of Theorem 2.4.2.

Theorem 2.6.2. Let H be a subgraph of the connected graph G and let (Γ, π) be a

pair satisfying (P1). Let LH be the set of labelings γ of G by Γ for which γ(e) = 1

for all edges e in H. Let Cd,G,H be the set of d-coverings of G that are trivial over H,

i.e., for every edge (u, v) in H, the fibre of (v, u) is {(v0, u0), . . . , (vd−1, ud−1)}. Then

we have

Eγ∈LH
[φγ,π(x)] = EF∈Cd,G,H

[µF,H̃(x)]

where H̃ is the fibre of H in F .

Note that since for every F ∈ Cd,G,H , F is trivial over H, the subgraph H̃ will be

a disjoint union of d copies of H in each of these graphs.

In this section, we will adopt some of the notation used by Hall, Puder, and Sawin:

We will regard the edge set E(G) of the graph G as containing both e and −e for

every edge in G and E+(G) will contain only one orientation of each edge. We denote

the head and tail vertices of the edge e as h(e) and t(e), respectively.

In order to prove Theorem 2.6.2, we must define a generalization of d-multi-

matchings, a concept defined in [7] to prove Theorem 2.6.1. In Definition 2.8 of
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[7], a d-multi-matching on the graph G is defined to be a function m : E(G) →

Z≥0 with m(e) = m(−e) of all e ∈ E(G) and for every vertex v ∈ V (G), we have
∑

i∈V (G)m(ev,i) ≤ d. For the purposes of this section, it is also useful to think of a

d-multi-matching on G as a formal sum of non-oriented edges in G where no vertex

is contained by more than d of the edges in the sum.

We now define our generalization.

Definition 2.6.3. An extended d-multi-matching m of the graph G with respect to

the subgraph H is a formal sum of non-oriented edges in G and oriented cycles in

H where for each vertex v in G, the total number of edges and oriented cycles in

m containing v is less than or equal to d. We will write the set of all extended

d-multi-matchings of G with respect to H as Multd(G,H).

We say that a partially oriented extended matching M of a d-covering F ∈ Cd,G,H
projects to the extended multi-matching m of G with respect to H if for every edge

e in G, the number of edges in M belonging to the fibre of e is the number of times e

appears in m and for each oriented cycle c in H, the number of cycles in M belonging

to the fibre of c is the number of times c appears in m.

Note that when H is empty, the Definition 2.6.3 becomes equivalent to the def-

inition of d-multi-matchings. We also observe that each partially oriented extended

matching on a d-covering of G projects to a unique extended multi-matching. There-

fore, we can write the expected extended matching polynomial as

EF∈Cd,G,H
[µF,H̃(x)] =

∑

m∈Multd(G,H)

(−1)c(m)Wd(m)xnd−|m|

where |m| is the total number of vertices included in the edges and cycles of m

(counted with multiplicity), c(m) is the number of edges and cycles in m, and Wd(m)

is the average number of partially oriented extended matchings projecting to m in a

random element of Cd,G,H .
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To give an example of an extended multi-matching, we consider the graph G and

subgraph H appearing in Figure 2.8. We can use the notation evw for a non-oriented

edge between vertices v and w and the notation cv1v2...vk for the oriented cycle that is

comprised of the vertices v1, . . . , vk and contains an oriented edge from with v2 as its

head and v2 as its tail. Under this notation, 2eim+ebf +cfjnoplkg+2cfgkj+ccdhg+ccghd

is an example of an extended 4-multi-matching on G with respect to H. Note that

it can also be thought of as a 5-multi-matching or a 6-multi-matching, but not a

3-multi-matching because the vertex f appears in 4 of the terms in this sum (counted

with multiplicity), and no other vertex appears as often.

ba

e f

ji

nm o p

lk

g

c d

h

H:

G \H:

Figure 2.8. A graph G with a subgraph H.

Proof. To prove Theorem 2.6.2 we will follow the argument in section 3 of [7]. For an

edge e ∈ E(G), let Aγ,π(e) be the dn× dn matrix consisting of n2 blocks of size d× d

where each block is a the zero matrix except for the block corresponding to (h(e), t(e)),

where we have π(γ(e)). By this notation, we can write Aγ,π =
∑

e∈E(G)

Aγ,π(e). As in

[7], we consider pairs of partitions (Ṙ, Ċ) of the rows and columns of a nd×nd matrix

and let
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T = {(Ṙ, Ċ) | Ṙ = (Rx, Re1 , Re2 , . . . ) and Ċ = (Cx, Ce1 , Ce2 , . . . ) are partitions of

[[nd]] into 1 + |E(G)| parts indexed by {x} ∪ E(G) with Rx = Cx and |Re| = |Ce|

for all e ∈ E(G)}.

Let sgn(Ṙ, Ċ) be the sign of the permutation matrix obtained by assigning, for each l,

the |Rl|×|Rl| identity matrix to the (Rl, Cl) minor. Assume without loss of generality

that π maps the elements of Γ to unitary matrices, so we have Aγ,π(e) = Aγ,π(−e)∗

for all e ∈ E(G).

For the matrixA and subsetsR and C of the rows and columns of A with |R| = |C|,

let |A|R,C be the determinant of the (R,C)-minor of A (Let it be 1 if R and C are

empty). Equation 3.4 in [7] tells us that the expected characteristic polynomial

Eγ∈LH
[φγ,π(x)] is equal to

∑

(Ṙ,Ċ)∈T

sgn(Ṙ, Ċ)x|Rx|(−1)nd−|Rx|
∏

e∈E+(G)

Eγ∈LH
[|Aγ,π(e)|Re,Ce|Aγ,π(−e)|R−e,C−e ].

Since Aγ,π(e) = Aγ,π(−e)∗, we have

Eγ∈LH
[|Aγ,π(e)|Re,Ce|Aγ,π(−e)|R−e,C−e ] = Eγ∈LH

[|Aγ,π(e)|Re,Ce|Aγ,π(e)|C−e,R−e ].

The value of the expectation on the right hand side of this equation depends on

whether or not e belongs to the subgraph H. Let Bv be the set of d indices of rows

and columns corresponding to the vertex v. In both cases, the expectation is zero

unless Re, C−e ⊆ Bh(e) and Ce, R−e ⊆ Bt(e) because otherwise, one of the minors

will have a zero row or zero column. Assume that we do have these inclusions. We

first consider e ∈ G \ H. Since the signings in LH can take any value in Γ on e,

the expectation is equivalent to one taken over all elements of the group Γ. This

means that we can apply the same argument as in [7]: Under the assumption that

our representation satisfies (P1), it follows from the Peter-Weyl Theorem (Theorem
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3.3 in [7]) that the expectation is
(
d
|Re|

)−1
if |Re| = |R−e|, Re = C−e, and Ce = R−e,

and the expectation is zero otherwise. Now suppose e ∈ H. Since γ ∈ LH , the

matrix Aγ,π(e) has no dependence on γ. Let rv,i refer to the index of the ith row

and column corresponding to the vertex v. Since the (h(e), t(e)) block of Aγ,π(e) is

the identity matrix, the expectation is 1 if there exist two subsets S1, S2 ⊆ [d] for

which Re = {rh(e),i}i∈S1 , Ce = {rt(e),i}i∈S1 , R−e = {rt(e),i}i∈S2 , and C−e = {rh(e),i}i∈S2 ,

and the expectation is zero otherwise. We will refer to the subset of T for which
∏

e∈E+(G)

Eγ∈LH
[|Aγ,π(e)|Re,Ce|Aγ,π(−e)|R−e,C−e ] 6= 0 as T sym

H . We now have

Eγ∈LH
[φγ,π(x)] =

∑

(Ṙ,Ċ)∈T sym
H

sgn(Ṙ, Ċ)x|Rx|(−1)nd−|Rx|
∏

e∈E+(G\H)

(
d

|Re|

)−1

.

Now suppose that (Ṙ, Ċ) ∈ T sym
H . Let e1 ∈ E(H) and rh(e1),i ∈ Re1 . Since

(Ṙ, Ċ) ∈ T sym
H , this means that rt(e1),i ∈ Ce1 . Since Rx = Cx, there is some e2 ∈ E(G)

with h(e2) = t(e1) such that rt(e1),i ∈ Re2 . Furthermore, e2 must belong to H because

we do not have Re2 = C−e2 unless e2 = −e1. By making this argument repeatedly,

we can conclude that there is a cycle of edges e1, . . . , ew ∈ H such that rh(ej),i ∈ Rej

and rt(ej),i ∈ Cej ,i. We can think of the set {rej ,i}j∈[[w]] as an oriented cycle in the ith

copy of H in a disjoint union of d copies of H if w > 2, or as a non-directed edge in

the ith copy of H if w = 2.

Since (Ṙ, Ċ) ∈ T sym
H , our partitions assign the same set of rows and columns to

a subset of [[nd]] (i.e
⋃

e∈E(H)

Re =
⋃

e∈E(H)

Ce), so we can define (Ṙ, Ċ)|H as the pairs

of partition of a subset of [[nd]] given by the sets Re and Ce for e ∈ E(H). By

our discussion, (Ṙ, Ċ)|H corresponds to a partially oriented extended matching on

a disjoint union of d copies of H with respect to the entire disjoint union. Since
⋃

e∈E(G\H)

Re =
⋃

e∈E(G\H)

Ce, we can similarly define (Ṙ, Ċ)|G\H . As discussed in [7],

(Ṙ, Ċ)|G\H projects to the d-multi-matching on G \H given by
∑

e∈E+(G\H)

|Re|e.
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Therefore, we can define the projection map η : T sym
H → Multd(G,H) mapping

(Ṙ, Ċ) to the sum of the projection of (Ṙ, Ċ)|G\H and the projection of the partially

oriented extended matching corresponding to (Ṙ, Ċ)|H . With this notation, we can

write:

Eγ∈LH
[φγ,π(x)] =

∑

m∈Multd(G,H)

∑

(Ṙ,Ċ)∈T sym
H

η(Ṙ,Ċ)=m

sgn(Ṙ, Ċ)x|Rx|(−1)nd−|Rx|
∏

e∈E+(G\H)

(
d

|Re|

)−1

.

Observe that if η(Ṙ, Ċ) = m, then |Rx| = nd− |m|. As in our discussion of extended

matchings, the number of cycles with an odd number of edges in m is even if and

only if |m| is even, so sgn(Ṙ, Ċ)(−1)|m| = (−1)c(m), and we have

Eγ∈LH
[φγ,π(x)] =

∑

m∈Multd(G,H)

∑

(Ṙ,Ċ)∈T sym
H

η(Ṙ,Ċ)=m

xnd−|Rx|(−1)c(m)
∏

e∈E+(G\H)

(
d

|Re|

)−1

.

The number of (Ṙ, Ċ)|G\H projecting to m is
∏

v∈V (G\H)

(
d

m(ev,1),...,m(ev,deg(v))

)
, so if we let

CH(m) be the number of (Ṙ, Ċ) such that (Ṙ, Ċ)|G\H projects to the multi-matching

m|G\H on G \H that agrees with m on G \H, we can write Eγ∈LH
[φγ,π(x)] as

∑

m∈Multd(G,H)

xnd−|Rx|(−1)c(m)
∏

e∈E+(G\H)

(
d

|Re|

)−1 ∏

v∈V (G\H)

(
d

m(ev,1), . . . ,m(ev,deg(v))

)
CH(m).

It is shown in section 2 of [7] that
∏

e∈E+(G\H)

(
d
|Re|

)−1 ∏
v∈V (G\H)

(
d

m(ev,1),...,m(ev,deg(v))

)
is

the average number of matchings projecting to m|G\H in a random d-covering of

G \H. Therefore,
∏

e∈E+(G\H)

(
d
|Re|

)−1 ∏
v∈V (G\H)

(
d

m(ev,1),...,m(ev,deg(v))

)
CH(m) = Wd(m) and

we have proven Theorem 2.6.2.
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CHAPTER 3

TIERED TREES AND WEIGHT

3.1 Background on Alternating Trees

Let [[n]] refer to the set {1, . . . , n}. An alternating tree (sometimes called a maxmin

tree) T is a tree on n vertices where each vertex is given a label from [[n]] (each label

is used once) and each vertex represents either a local maximum or local minimum

relative to its neighbors. The weight w(T ) ∈ Z≥0 of an alternating tree can be found

either by a recursive definition or by computing the external activity of T within

a certain larger graph. We will first explain the latter method of computing w(T ).

Every alternating tree T is a spanning tree sitting inside a larger alternating graph G

in which each local maximum is connected to every local minimum that has a smaller

label. We order the edges of G lexicographically : the edge connecting the vertices

labeled by n1 and n2 is said to come before the edge with vertices labeled by m1

and m2 if either min{n1, n2} < min{m1,m2} or both min{n1, n2} = min{m1,m2}

and max{n1, n2} < max{m1,m2} (i.e. the lexicographic order for the edges of K4

labeled by {1, 2, 3, 4} would be (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)). We say that an

edge e ∈ G \ T is externally active if, of all of the edges in the unique cycle that

{e} ∪ T contains, e is the one that comes first lexicographically. The weight w(T ) of

the alternating tree is the number of externally active edges in G \ T .

The recursive definition of w(T ) is as follows:

(i) If T has only one vertex, w(T ) = 0

(ii) If T has multiple vertices, let v be the vertex with the lowest label and let {Ti} be

the set of components of the forest we obtain by deleting v from T . We then define

35



1 2

8 4

3

7

5

6

T :

1 2

8 4

3

7

5

6
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Figure 3.1. An alternating tree of weight 3. The 3 externally active edges of G \ T
appear in red.

w(T ) =
∑

iw(Ti) + wi where wi is the number of local maxima in Ti whose label is

less than that of the vertex in Ti that was connected to v.

An example of a weight computation based on this recursive definition can be

found in Figure 3.3.

3.2 Tiered Trees

We now define a generalization of alternating trees called tiered trees.

Definition 3.2.1. Let G be a graph with n vertices labeled by [[n]]. A tiering function

t : V → [[m]] is a function assigning each vertex v of G a tier t(v) such that for any

edge (v, v′) with v > v′, t(v) > t(v′). A pair (G, t) of a labeled graph G and a tiering

function on that graph is called a tiered graph. If G is a tree, we call the pair a tiered

tree.

Observe that if m = 2, this becomes a definition of alternating trees, with the tiering

function indicating whether we have a local minimum or maximum at each vertex.
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Step 1: Delete vertex 1. Since the vertex was connected

to the maximum 7, which is greater than the maxima

4 and 6, this step contributes 2 to the weight of T .

Step 2: Delete vertex 2. Since 2 was connected to 8,

which is greater than the maximum 6, this

contibutes 1 to the weight of T . The vertex 2 was

also connected to 7 and 4, but this creates no

additional weight because these are now the only

maxima in their respecive trees.

Step 3: After deleting the lowest vertex in each

remaining tree, we are left with a collection of

points, which have weight 0, so the total weight of

T is 3.

Figure 3.2. Finding the weight of the same tree using the recursive definition.

We can extend the definitions of the weight of an alternating tree to apply to

tiered trees. We will define this weight recursively, then show that it is equivalent to

an external activity-based definition.

Definition 3.2.2. The weight w(T ) of a tiered tree T is defined recursively as follows:

(i) If T has only one vertex, w(T ) = 0.

(ii) If T has multiple vertices, let v be the vertex with the lowest label and let {Ti} be

the set of components of the forest we obtain by deleting v from T . We then define

w(T ) =
∑

iw(Ti) + wi where wi is defined as follows: Let ui be the vertex in Ti to
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which v was connected in T . The integer wi is the number of vertices u in Ti with

u < ui and t(u) > t(v).

Theorem 3.2.3. Let T be a tiered tree, and let G be the tiered graph obtained from

adding every possible edge to T , i.e., G has the same vertex set and tiering function,

but it contains the edge (v, v′) with v > v′ if and only t(v) > t(v′). The weight w(T )

of the tiered tree is the number of externally active edges in G \ T .

Proof. The theorem follows from the claim that wi is the number of externally active

edges with a lower vertex of v and a higher vertex in Ti. To prove this, we note that

for any u in Ti, the edge (u, v) is in G if and only if t(u) > t(v) because v is the lowest

remaining label. If t(u) > t(v), the first two edges in the unique cycle of {(u, v)} ∪ T

lexicographically are (v, u) and (v, ui) because these are the only two edges in the

cycle that include the lowest vertex v. Therefore, (u, v) is externally active if and

only if u is in a higher tier than v and u < ui. Since wi is the number of vertices in

Ti with this property, this completes the proof.

1

4

8

2

7

3

5

Tier 3:

Tier 2:

Tier 1:

Figure 3.3. A tiered tree of weight 3. The edges of G \ T appear as dotted lines,
and the externally active edges are red.
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3.3 Counting 3-tiered Trees

In this section, we will describe a way of enumerating 3-tiered trees by relating

them to alternating trees. We note that the conjectures leading to Corollaries 3.3.4

and 3.3.5 were formulated as part of joint work with William Dugan.

Let Twa1,a2,a3,...,am be the number of m-tiered trees of weight w with |t−1(i)| = ai. As

a consequence of our bijection between permutations and weight zero alternating trees

(to be shown in Section 3.4), T 0
a,0,b is equal to the Eulerian number A(a+ b−1, a−1),

which is the number of permutations on a + b − 1 letters with a − 1 descents. The

following figure displays all values of T 0
a,b,c with a+ b+ c = 6:
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1 1

26 57 26

66 302 302 66

26 302 627 302 26

1 57 302 302 57 1

0 1 26 66 26 1 0

T 0
6,0,0

T 0
5,1,0 T

0
5,0,1

T 0
4,2,0 T

0
4,1,1 T

0
4,0,2

T 0
3,3,0 T

0
3,2,1 T

0
3,1,2 T

0
3,0,3

T 0
2,4,0 T

0
2,3,1 T

0
2,2,2 T

0
2,1,3 T

0
2,0,4

T 0
1,5,0 T

0
1,4,1 T

0
1,3,2 T

0
1,2,3 T

0
1,1,4 T

0
1,0,5

T 0
0,6,0 T

0
0,5,1 T

0
0,4,2 T

0
0,3,3 T

0
0,2,4 T

0
0,1,5 T

0
0,0,6

=

Figure 3.4. The number of weight zero tiered trees on 6 vertices for each tier type

We can observe from Figure 3.4 that, for 3-tiered trees of weight 0 with 6 vertices,

the number of weight 0 trees of a given tier type will be unchanged after applying

any permutation to the populations of the tiers. In fact, it is more generally true

that for any weight w, any tier populations a1, . . . , an, and any permutation σ on

n letters that we have Twa1,...,an = Twσ(a1),...,σ(an). As stated in [16], this can be shown

using geometric results in [6], but we do not have an elementary proof.
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We can view all weight 0 trees of type {a, c, b} as coming from trees of type

{a+ d, 0, b+ c− d} for some 0 ≤ d ≤ c after moving d vertices from tier 1 and c− d

vertices from tier 3 into tier 2.

Theorem 3.3.1. Fix four positive integers a, b, n, and m. There is a bijection be-

tween the following two sets:

T1: The set of weight 0 trees of type {a, n + m, b} in which exactly m of the tier

2 vertices connect directly to a vertex in tier 3.

T2: The set of trees of type {a+ n, 0, b+m} (of any weight) together with subsets

A of their sets of vertices with the following properties: A contains n vertices in tier

1 and m vertices in tier 3, any endpoint of any externally active edge belongs to A,

and no two vertices in A are connected by an edge. We will call the elements of A

distinguished vertices.

Proof. Given an element of set T1, we will denote the set of tier 2 vertices that are

connected to tier 3 as {v′i}i∈[[m]], and we will refer to the set of tier 2 vertices not

connected to any tier 3 vertex as {si}i∈[[n]].

We define a map g on T1 whose image consists of tiered trees of type {a+n, 0, b+m}

(We will later show that the image is T2.) as follows: First, we move every si from

tier 2 to tier 3. Note that this may create externally active edges between elements

of {v′i} and {si}, but no other externally active edges will be created. These vertices

si that we moved into tier 3 now become the distinguished tier 3 vertices of our

tree. Consider the set of edges between vertices in tier 1 and vertices in tier 2,

and order them lexicographically. Let ej be the element of this set that comes jth

lexicographically. Let wj be the tier 1 endpoint of ej and let vj be the tier 2 endpoint.

Note that the any vj is one of the vertices v′i, but a single vertex in {v′i} can have

multiple indices as an element of {vj} (It could also not appear at all). We now delete

each of the edges ej connecting a tier 1 vertex to a tier 2 vertex.
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Starting with w1, we will now construct a new edge from each vj. For a given

j, this edge will terminate in the connected component of vj. Let C1 be the set of

vertices in the component of v1 whose path to v1 contains no tier 2 vertex with a label

less than that of v1. We add an edge between w1 and the lowest-labeled tier 3 vertex

with a label greater than that of v1 in C1. We will call this vertex u1. We repeat this

process with each wj in order of increasing j to obtain a connected tree, analogously

defining Cj and uj. Finally, we move all of the vj into tier 1 and they become the

tier 1 distinguished vertices of our tree.

We now define a map f with domain T2 which we will show to be the inverse of g.

When starting with an element of T2, we will refer to the set of tier 1 distinguished

vertices as {v′i}i∈[[m]], and we will refer to the set of tier 3 distinguished vertices as

{si}i∈[[n]]. When applying f , we begin by moving all of the si into tier 2. Note that

this cannot create any new externally active edges because all tier 3 vertices have

higher labels than all of their neighbors. Next, we move all of the v′i into tier 2

(We may do this because each of these vertices is not connected to any si). This

may create externally active edges between the v′i and certain tier 1 vertices. We

identify the externally active edge between a v′i and a tier 1 vertex that comes first

lexicographically and add it to our tree. We then delete the edge in the cycle that has

been created that comes second lexicographically. We then repeat this process until

we no longer have any externally active edges. See Example 3.3.6 for an example of

how to apply the maps f and g.

To show that our two maps are inverses, we will need to prove the following lemma

about the map g:

Lemma 3.3.2. Before connecting wj to uj, there is no vertex in Cj with a label less

than that of wj, and no tier 3 vertex with a label less than that of vj.

Proof. We prove the lemma by induction. Let S1 be the set of vertices in C1 whose

labels are less than that of w1, and let S2 be the set of tier 3 vertices in C1 whose
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labels are less than that of v1. If S1 ∪S2 is nonempty, then there exists some element

w ∈ S1 ∪ S2 such that the path from w to v1 contains no other elements of S1 ∪ S2.

If w ∈ S1, then (w, v1) is an externally active edge, contradicting the fact that the

component of v1 only has externally active edges between elements of {v′i} and {si}.

On the other hand, if w ∈ S2, then (w1, w) was an externally active edge in the tree

we had before removing the edge (w1, v1), contradicting the fact that our original tree

had weight 0.

Before proceeding with the induction step, we will prove some consequences that

hold if the result is true for all i ≤ j. For a fixed j if the lemma holds for all i ≤ j,

then the tree we obtain by connecting wj to uj has an externally active edge (wi, vi)

for each i ≤ j. Furthermore, the only externally active edges of this tree (other than

those between the v′i’s and si’s) are between tier 1 vertices and tier 2 vertices, and

these edges do not come before (wj, vj) lexicographically. To see that ej = (wj, vj)

becomes externally active after connecting wj to uj, note that ej can only fail to be

externally active if either uj has a label less than that of vj, or the path from uj to vj

contains a vertex with a label less than that of wj. We will now show that connecting

wj to uj creates no externally active edges that would contradict our claim.

Suppose that after connecting wj to uj, we have an externally active edge (w, u),

where w has a lower label than u. Since the cycle that (w, u) creates includes the

edge (wj, uj), w must have a label less than or equal to that of wj. Note that the

only edges in the original path between u and w that do not appear in our new path

between u and v have both endpoints belonging to some set Ci ∪ {wi} with i ≤ j

consisting of vertices whose labels are not smaller than that of wj. If w 6= wj, this

means that (w, u) must have been an externally active edge before we removed any

edges because the second vertex in the path from w to u has not changed either.

Now suppose that (wj, u) becomes externally active. If u ∈ Cj, then u must be

tier 2 vertex because all tier 3 vertices in Cj have a label less than or equal to that of
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uj. This means that the label of u must be greater than that of vj, which implies that

(wj, u) comes after (wj, vj) lexicographically. On the other hand, suppose u /∈ Cj.

This implies that there is some tier 2 vertex v′i whose label is less than that of vj in

the path from vj to u. Since (wj, u) is externally active, and since the path between

wj and u contains v′i, the label of v′i must be greater than that of wj. This implies that

(wj, v
′
i) is externally active. But since the path from wj to v′i has only been altered by

vertices whose labels are no less than that of wj, and the label of vj is greater than

that of v′i, the edge (wj, v
′
i) must have been externally active in the original tree. This

gives us a contradiction because it would imply that the original tree had nonzero

weight.

We will now continue the proof of Lemma 3.3.2 by induction. Suppose that the

lemma is true for all i < j. Let S1 be the set of vertices in Cj whose labels are less

than that of wj, and let S2 be the set of tier 3 vertices in Cj whose labels are less

than that of vj. If S1 ∪ S2 is nonempty, then there exists some element w ∈ S1 ∪ S2

such that the path from w to vj contains no other elements of S1∪S2. If w ∈ S1, then

(w, vj) is an externally active edge. However, the path beween w and vj has not been

affected by connecting wj and uj, so (w, vj) was externally active after connecting

wj−1 and uj−1. Since the label of w is less than that of wj and that of wj−1, the

edge (w, vj) comes before (wj−1, vj−1) lexicographically. This contradicts the fact we

proved earlier that connecting wj−1 and uj−1 cannot create externally active edges

between tiers 1 and 2 that come before (wj−1, vj−1) lexicographically. Suppose that

w ∈ S2. This means that (wj, w) is externally active, but the only edges in our

original path from w to wj that do not also appear in our new path from wj to w are

either of the form (wi, vi)j̄ for i ≤ j or have both vertices belonging to some Ci with

i < j. As none of these vertices has a label below that of wj, and the label of vj is

greater than that of w, this means that (wj, w) was externally active in our original
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graph, giving us a contradiction. Therefore, the vertex w cannot exist and the lemma

is proved.

Resuming our proof of Theorem 3.3.1, we can see that this lemma implies that

the image of g is contained in T2 because after moving the vertices v′i into tier 1, the

only remaining externally active edges will be between the distinguished vertices in

{v′i} and {si}. As another consequence of our lemma, we can see that if we were to

connect wj to any tier 3 vertex in Cj other than uj or vj, the edge (wj, uj) would

become an externally active edge. Therefore, connecting vj to uj is the only way to

connect wj to Cj that results in a tree with externally active edges between tier 1 and

tier t vertices and no others except those between the si’s and v′i’s. We now consider

a class G of functions that turn elements of T1 into trees of type {a+n, 0, b+m} with

n distinguished vertices in tier 1 and m distinguished vertices in tier 3. We define G

to consist of all functions whose formula is exactly the same as g except we are not

required to choose uj as the vertex to which we connect vj, and we can instead choose

any tier 3 vertex in Cj whose label is greater than that of vj. As we have shown g is

the only element of G whose image is contained in the domain of f .

Now, suppose that we apply the following procedure to an element T in T2: We

first apply f to T . Secondly, we move the tier 2 vertices in f(T ) with no edge between

them and a tier 3 vertex into tier 3 and begin treating them as distinguished vertices.

Third, we delete the edges that we added when applying f to T . Fourth, we add the

edges that we deleted when applying f to T in the reverse of the order that we added

them when applying f . Lastly, we move the remaining tier 2 vertices into tier 1 and

treat them as distinguished vertices. Obviously, the end result of this process will be

T . We now claim that applying the last applying the last four steps of this process

to f(T ) is equivalent to applying an element of G to it. To see this, first note that

the only edges between tiers 1 and 2 in f(T ) are those that we added when applying

f to T . We can call these edges {wj, vj} and index them in decreasing lexicographic
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order. In the fourth step of our process, we will connect each wj to some other vertex

in order of increasing j. Defining Cj in the same way as in the definition of g, we see

that this vertex must be a tier 3 vertex in Cj because if, when applying f , we had

an externally active edge (x, y) with x in tier 1 and y in tier 2, and there was some

tier 2 vertex z with a lower label than y in the path from x to y, then (x, z) would

be an externally active edge that comes before (x, y) lexicographically, so it would

need to be added first. This shows the last four steps of our process are equivalent to

applying an element of G to f(T ), and since the result belongs to the domain of f ,

this element of G must be g, so g(f(T )) = T for any T ∈ T2.

We can make a similar argument to show that f(g(T )) = T for any T ∈ T1.

Suppose that we apply the following procedure to an element T in T1: We first apply

g to T . Secondly, we move the tier 3 distinguished vertices in f(T ) into tier 2. Third,

we move the tier 1 distinguished vertices into tier 2. Next, we add the edge that comes

first among those we deleted in the first step and delete the last edge we added when

applying g to T . We then add the deleted edge that comes second lexicographically

and remove the second-to-last edge that we added, and so on until we have rebuilt

T . Since adding the edge (wj, uj) when applying g turns the deleted edge ej into

an externally active edge, and since the resulting tree has no externally active edges

between tiers 1 and 2 that come before ej lexicographically (including the ei with

i > j does not affect this because it does not change anything in the proof of Lemma

3.3.2), each edge that we add to g(T ) using this process will be the externally active

edge that comes first lexicographically among the externally active edges between

tiers 1 and 2. Also, the edges that we delete will be the ones that come second in

the cycles created because they will be the only other edge in the cycle that has the

lowest-labeled vertex of the cycle as an endpoint. Therefore, our process is equivalent

to first applying g to T , then applying f to g(T ), so f(g(T )) = T , and the theorem

is proved.
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Our first corollary to this theorem will allow us to compute the number of type

{a, 1, b} weight 0 trees in terms of Eulerian numbers.

Corollary 3.3.3. T 0
a,1,b = (b+ 1)T 0

a,0,b+1 + (a+ 1)T 0
a+1,0,b.

Since we have the formula T 0
a,0,b = A(a+ b− 1, a− 1) and Eulerian numbers have

the recursive relation A(n,m) = (n −m)A(n − 1,m − 1) + (m + 1)A(n − 1,m), the

preceding corollary gives us another corollary:

Corollary 3.3.4. T 0
a,1,b = T 0

a+1,0,b+1.

Since every tree of type {a+ 1, 0, b+ 1} has a+ b+ 1 edges, there are (a+ 1)(b+

1) − (a + b + 1) = ab ways to distinguish the vertices of a weight 0 tree of type

{a+ 1, 0, b+ 1} that correspond to a weight 0 tree of type {a, 2, b}. Also, a weight 1

tree of type tree of type {a + 1, 0, b + 1} can be turned into a weight 0 tree of type

{a, 2, b} if we distinguish the endpoints of its externally active edge, so the preceding

theorem also gives us a formula for the number of weight 0 trees of type {a, 2, b}:

Corollary 3.3.5. T 0
a,2,b =

(
b+2

2

)
T 0
a,0,b+2 +

(
a+2

2

)
T 0
a+2,0,b + abT 0

a+1,0,b+1 + T 1
a+1,0,b+1.

The previous theorem does not enable us to write similar formulas for T 0
a,c,b with

c > 2 because we do not have useful expressions for the sizes of some of the sets

involved.

Example 3.3.6. We will now present an example of a weight 0 tree of type {3, 2, 3}

being turned into a tree of type {4, 0, 4} with distinguished vertices and back using

the maps g and f .
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Figure 3.5. Step 1 of applying the map g.

When applying the map g, we first move each tier 2 vertex that does not share an

edge with a tier 3 vertex into tier 3. We also distinguish these vertices (indicated in

this figure by circling them). Note that in this case, this creates an externally active

edge between vertices 3 and 7.
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Figure 3.6. Step 2 of applying the map g.

Next, we delete each edge connecting a vertex in tier 2 to a vertex in tier 1.
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Figure 3.7. Step 3 of applying the map g.
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Of the edges we deleted, the one between vertices 2 and 3 comes last lexicographi-

cally, so we replace this edge by connecting vertex 2 to a tier 3 vertex in the component

of vertex 3 (Note: When we start with only one tier 1 vertex not connected to a tier 3

vertex, the definition of Ci reduces to the component of that unique vertex v1). Since

5 is the smallest number we see in tier 3 of the component of vertex 3, we connect

vertices 2 and 5 with an edge.
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Figure 3.8. Step 4 of applying the map g.

Next, we replace the edge between vertices 1 and 3. Note that the component of

vertex 3 now also contains vertex 4, so we add an edge between vertex 1 and vertex

4.
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Figure 3.9. Step 5 of applying the map g.

Lastly, we move vertex 3 (in general, all remaining tier 2 vertices) into tier 1 and

distinguish it. Observe that we do have one externally active edge between vertices

3 and 7, but this is allowed because these two vertices are distinguished.
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Figure 3.10. Step 1 of applying the map f .

When applying f , we first move tier 3 distinguished vertices into tier 2.
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Figure 3.11. Step 2 of applying the map f .

Next, we move the tier 1 distinguished vertices into tier 2. We see that in this

case, this creates two externally active edges (indicated by dotted lines).
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Figure 3.12. Step 3 of applying the map f .

Of the two externally active edges, the one between vertices 1 and 3 comes first

lexicographically, so we add this edge to the tree. We delete the edge connecting
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vertex 1 to vertex 4 because our new edge would complete a cycle of five edges in

which the edge connecting vertex 1 to vertex 4 comes second lexicographically.
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Figure 3.13. Step 4 of applying the map f .

Lastly, we add the one remaining externally active edge. Since this creates a trian-

gular cycle in which the edge between vertices 2 and 5 comes second lexicographically,

we delete that edge. We can see that by applying g to our original tree, and then

applying f to the result, we have recovered the original tree.

3.4 Alternating Trees and Eulerian Numbers

3.4.1 Alternating Trees and Permutations

In this section, we will focus on alternating trees. All results appearing in this

section come from joint work with Dugan, Gunnells, and Steingrimsson that can be

found in [16]. We will begin by showing that there are exactly (n − 1)! alternating

trees of weight 0 on n vertices and that the numbers of maxima that they have are

determined by the Eulerian numbers.

Theorem 3.4.1. There is a bijection between the set of permutations in the sym-

metric group Sn with k descents and the set of weight 0 alternating trees with n + 1

vertices and k + 1 local maxima.

Proof. We will define the bijection h recursively. We map the identity permutation

1, 2, 3, . . . , n−1, n to the unique alternating tree on n+1 vertices with one maximum,
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and we map the permutation n, n−1, . . . 3, 2, 1 to the unique alternating tree on n+1

vertices with one minimum (see Figure 3.14). We will think of the group Sn as the

subgroup of Sn+1 consisting of permutations ending in the symbol n + 1, and our

bijection will turn elements of this subgroup into alternating trees on n+ 1 vertices.

We will represent elements of this subgroup as ordered sequences of 1, . . . , n+1 ending

in n + 1. Given a permutation π in this subgroup, we break it up into sequences on

the left and right of 1: π = πL · 1 · πR (where the operation · is concatenation

of subsequences). We then further break up πL by letting π1 be the subsequnce

starting at the beginning of πL and ending in the largest symbol m1 in πL, then

letting π2 be the subsequence beginning at the symbol following m1 and ending at

the largest remaining symbol m2 in πL. We continue in this fashion until every symbol

in πL belongs to some πi for some positive integer i. This results in the expression

π = π1 ·π2 · · · · ·πl ·1 ·πR. Let d(πj) denote the number of descents in the subsequence

πj. Note that by definition, the subsequence πR and each of the subsequences πi

ends in the largest symbol appearing in the subsequence, so by induction on the

number of vertices, we can construct from each of these subsequences πj a weight

0 alternating tree on the symbols appearing in πj with d(πj) + 1 maxima (We can

do this by temporarily relabeling the symbols with consecutive integers starting with

one in the unique way that preserves all inequalities between the symbols in πj).

We do this with each subsequence and then add an edge between the vertex 1 and

the lowest-labeled maximum in each of the trees corresponding to πR and the πi.

Since we have chosen the lowest-labeled maximum in each tree, it is clear from the

recursive definition of weight that the resulting tree will have weight 0. Since the

resulting tree has (d(π1) + 1) + · · · + (d(πl) + 1) + (d(πR) + 1) maxima, and π has

d(π1) + · · · + d(πl) + d(πR) + l descents, we can see that this tree has the correct

number of maxima.
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2 3 4 n n+ 1. . . n+ 1
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. . .

Figure 3.14. The unique alternating trees on n+ 1 vertices with one minimum and
one maximum, respectively.

We can see that this map is bijective because we can recursively define an inverse.

When applying this inverse map to an alternating tree, we first delete all edges that

have the vertex 1 as an endpoint. We let the block BR consist of the labels of vertices

in the component of the vertex n + 1. We call the other trees in our resulting forest

T1, . . . , Tl where T1 is the tree containing the highest labeled vertex not in, T2 is the

one containing the highest-labeled vertex not in T1, and so on. We let the block Bi

consist of the labls of vertices in Ti. Our resulting permutation is obtained by writing

B1 · · · · ·Bl · 1 ·BR where the order of the symbols within each block is determined by

induction on the number of vertices. Finally, we remove the n+ 1 at the end to give

us a permutation belonging to Sn. It is easy to check that our two maps are inverses

of one another.

As an example, we will construct the weight 0 tree associated with the permutation

42687153 in S8. To do this, we first begin thinking of it as the permutation π =

427861539 in S9. Since 8 is the largest symbol appearing to the left of 1 in π, and 6 is

the largest symbol between 8 and 1, the resulting decomposition into subsequences is

π = 4278 ·6 ·1 ·539. Therefore, we must find the weight 0 alternating trees associated

with the subsequence 4278, 6, and 539, so that we can connect them to the vertex 1.

Since the lowest symbol in 4278 is 2, this subsequence decomposes into 4 · 2 · 78. This

means that we should connect the vertex 2 to the vertex 4 and the only maximum in

the tree associated with 78 (see Figure 3.15). Likewise, since 3 is the lowest symbol
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in 539, it decomposes as 5 · 3 · 9, so both vertices 5 and 9 become maxima that we

connect to vertex 5. Since the symbol 6 is alone in its subsequence, vertex 6 will

become a maximum that will only be connected to vertex 1. We now add an edge

between vertex 1 and the lowest maximum in each of the trees associated with the

subsequences 4278, 6, and 538 (vertices 4, 6, and 5, respectively). This gives us the

weight 0 tree seen in Figure 3.16.
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4

The tree
associated with 4

The tree
associated with 78

Figure 3.15. The weight 0 alternating tree associated with the subsequence 4278.
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Figure 3.16. The weight 0 alternating tree on 9 vertices associated with the permu-
tation 42687153 in S8.

3.4.2 Weights of Permutations

Note that our instructions for applying the map h−1 to an alternating tree T do

not require that T have weight 0, so it makes sense to expand the domain of h−1 to

the set of all alternating trees on n+ 1 vertices. After expanding the domain of h−1,
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we will rename this function h′ to reflect the fact that it is no longer injective. This

allows us to define the weight of a permutation.

Definition 3.4.2. Let π be a permutation in Sn. The weight w(π) of the permutation

π is the highest weight of all trees T for which h′(T ) = π.

Observe that we can find the weight of the permutation π by applying a map

similar to h to it, but instead choosing to connect vertices to the highest available

maximum in a tree instead of the lowest, and then computing the weight of the

resulting tree. In our last example, this would mean connecting vertex 1 to vertices

8 and 9 instead of vertices 4 and 5, resulting in a tree of weight 2 (see Figure 3.17).
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1

5
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9

Figure 3.17. The tree on 9 vertices of maximal weight associated with the permu-
tation 42687153 in S8.

We are now able to define a q-Eulerian polynomial based on weights of permuta-

tions.

Definition 3.4.3. For any π ∈ Sn, let d(π) be the number of descents that the

permutation π has. We define the polynomial En(x, q) as follows:

En(x, q) =
∑

π∈Sn

xd(π)qw(π)

For example, we have E4(x, q) = 1 + x(q2 + 3q + 7) + x2(q2 + 4q + 6) + x3. As

discussed in [16], this is different from other q-Eulerian polynomials such as those

defined by Carlitz and Stanley.
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Theorem 3.4.4. The number of weight 0 permutations in Sn with l descents is equal

to the number of partitions of [[n]] into l + 1 nonempty subsets (This number is the

Stirling number of the second kind
{
n
d

}
).

Proof. Observe that the permutation π ∈ Sn has weight 0 if and only if, when applying

the map h to it, we obtain a decomposition π = π1 · π2 · · · · · πl · 1 · πR where each

subsequence corresponds to an alternating tree with only one maximum. Since the

number of maxima in each tree is determined by the number of ascents in each

subsequence, this is equivalent to having all of the symbols in each subsequence being

listed in ascending order. Therefore, π has weight 0 if and only if it is of the form

a1,1a1,2 . . .m1 · a2,1a2,2 . . .m2 · · · · · al,1al,2 . . .ml · 1 · aR,1aR,2 . . .mR with the following

properties:

(1) For any i ∈ {1, . . . , l, R}, and any j2 > j1, we have mi > ai,j2 > ai,j1 .

(2) For any i1, i2 ∈ {1, . . . , l}, with i2 > i1, we have mi2 > mi1 .

Therefore, we can map the permutation a1,1a1,2 . . .m1·a2,1a2,2 . . .m2·· · ··al,1al,2 . . .ml·

1 · aR,1aR,2 . . .mR to the partition of [[n]] consisting of the subsets {a1,1a1,2 . . .m1},

{a2,1a2,2 . . .m2}, . . . , {al,1al,2 . . .ml}, and {1, aR,1, . . . , aR,m}. Note that π has l de-

scents (one beginning at each mi), and the partition consists of l + 1 nonempty

subsets. This map has a clear inverse that we can make by writing the elements of

each subset in a partition of [[n]] in ascending order, placing the sets that do not in-

clude 1 in order of decreasing maximal elements, and finally adding the set containing

1 to the end, so the map is bijective, and the theorem is proved.
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