View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ScholarWorks@UMass Amherst

University of Massachusetts Amherst

ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

November 2017

Coverings of Graphs and Tiered Trees

Sam Glennon

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

b Part of the Mathematics Commons

Recommended Citation

Glennon, Sam, "Coverings of Graphs and Tiered Trees" (2017). Doctoral Dissertations. 1092.
https://scholarworks.umass.edu/dissertations_2/1092

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Ambherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.


https://core.ac.uk/display/220125820?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1092&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1092&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1092?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1092&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

COVERINGS OF GRAPHS AND TIERED TREES

A Dissertation Presented
by
SAM GLENNON

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
September 2017

Mathematics



(© Copyright by Sam Glennon 2017
All Rights Reserved



COVERINGS OF GRAPHS AND TIERED TREES

A Dissertation Presented
by
SAM GLENNON

Approved as to style and content by:

Paul Gunnells, Chair

Farshid Hajir, Member

Tom Braden, Member

David Mix-Barrington, Member

Farshid Hajir, Department Head
Mathematics



ACKNOWLEDGMENTS

I would first like to thank my advisor, Paul Gunnells, for his support and guidance
over the past few years. I would like to thank the other members of the committee
for their time and their suggestions. I also thank William Dugan for his help on last
summer’s project on alternating trees. Lastly, I would like to thank my parents, Jim

and Stephanie, and my siblings, Noah, Emma, and Suzannah.

v



ABSTRACT

COVERINGS OF GRAPHS AND TIERED TREES
SEPTEMBER 2017

SAM GLENNON
B.A., BRANDEIS UNIVERSITY
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Paul Gunnells

This dissertation will cover two separate topics. The first of these topics will
be coverings of graphs. We will discuss a recent paper by Marcus, Spielman, and
Srivastava proving the existence of infinite families of bipartite Ramanujan graphs for
all regularities [11]. The proof works by showing that for any d-regular Ramanujan
graph, there exists an infinite tower of bipartite Ramanujan graphs in which each
graph is a twofold covering of the previous one. Since twofold coverings of a graph
correspond to ways of labeling the edges of the graph with elements of a group of
order 2, we will generalize the content of [11] by discussing what happens when we
label the edges of a graph by larger groups. We will give a version of their proof
using threefold coverings instead of twofold coverings. We will also examine ways of
reducing the size of the set of twofold coverings that we must consider when we follow
the proof in [11].

The other topic that will be covered in this dissertation will be alternating trees

and tiered trees. We will define a new generalization of alternating trees, which we will



call tiered trees. We will also define a generalized weight system on these tiered trees.
We will prove some enumerative results about tiered trees that demonstrate how they
can be viewed as being obtained by applying certain procedures to certain types of
alternating trees. We also provide a bijection between the set of permutations in S,
and the set of weight 0 alternating trees with n + 1 vertices. We use this bijection
to define a new statistic of permutations called the weight of a permutation, and use

this weight to define a new ¢-Eulerian polynomial.
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CHAPTER 1
INTRODUCTION

This dissertation will cover two separate topics. The first of these topics will
be ways of generalizing the content of a recent paper by Marcus, Spielman, and
Srivastava involving signings and coverings of graphs [11]. The second topic will
be alternating trees and a generalization thereof called tiered trees. All material
appearing in chapters 2 and 3 of this dissertation outside of the background sections
(Sections 2.1 and 3.1) is original unless otherwise stated.

The well-connectedness of a graph G is deeply related to the spectrum of its
adjacency matrix. This matrix is formed by indexing the rows and columns by the
vertices of G and letting the uv entry be the number of edges in G that connect
the vertices u and v (See Figure 1.1). We say that G is d-regular if each vertex is
an endpoint of exactly d edges. If G is d-regular, then the adjacency matrix of G
will have d as one of its eigenvalues, and if GG is bipartite, then it will also have the
eigenvalue —d (We sometimes refer to the eigenvalues of the adjacency matrix of G
as simply the eigenvalues of GG). We call d and —d the trivial eigenvalues of G. If
all nontrivial eigenvalues of G are between —2v/d — 1 and 2v/d — 1, then G is called
a Ramanugjan graph. This bound of 2v/d — 1 on the absolute value of the nontrivial
eigenvalues becomes sharp as the number of vertices grows in the following sense: for
any A < 2v/d — 1, there is no infinite family of d-regular graphs (with the number
of vertices growing to infinity) for which all nontrivial eigenvalues are bounded in

absolute value by .
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Figure 1.1. An example of a graph and its adjacency matrix

Ramanujan graphs are, in a sense, maximally well-connected, because a graph’s
spectral gap (the difference between the absolute values of its two largest eigenvalues)
and the speed with which a random walk on the graph converges to the uniform
distribution are directly related [1, 3]. Prior to [11], the existence of infinite families
of d-regular bipartite Ramanujan graphs had only been proven for certain values
of d using deep results from number theory, namely the Eichler-Deligne bound on
the Fourier coefficients of cuspidal holomorphic modular forms. These families were
discovered by Lubotzky, Phillips, and Sarnak, and are known as LPS Graphs [10].
For such graphs and closely related ones due to Morgenstern [12], d must have the
form p* 4 1 for a prime p.

In a recent paper, Marcus, Spielman, and Srivastava showed that infinite families
of d-regular bipartite Ramanujan graphs exist for all degrees d [11]. To prove this, they
considered the set of all ways of signing the edges of a graph with either the number 1
or the number —1 and showed that these signings corresponded to twofold coverings
of the graph. The eigenvalues of a twofold covering are given by the eigenvalues of a
signed adjacency matriz determined by the corresponding signing. Marcus, Spielman,
and Srivastava showed that the characteristic polynomials of these signed adjacency
matrices form an interlacing family, which allowed them to conclude that one of
these polynomials has roots that are bounded by those of the average over all of these

polynomials. Based on results from earlier papers, the roots of this average are known



to be within the Ramanujan bounds, so this allowed them to conclude that there is
a Ramanujan twofold covering for any bipartite Ramanujan graph.

In Chapter 2 of this dissertation, we discuss ways of generalizing the content of
[11]. In Section 2.2, we prove a statement similar to the main result of [11] using
threefold coverings instead of twofold coverings. In Section 2.3, we define resonance
conditions that determine whether a generalized version of Theorem 3.6 in [11] holds.
In Section 2.4, we discuss how to reduce the size of the set in which we know a Ra-
manujan covering of a graph exists. We also define an extended matching polynomial
that interpolates between the matching polynomial of a graph and the characteristic
polynomial of its adjacency matrix. In the next two sections, we consider ways of
labeling the edges of a finite graph with a more general group and defining an analog
of the signed adjacency matrix. In Section 2.5, we do this by constructing a matrix
whose entries are determined by applying a character of the group to the labels of
the graph’s edges. In Section 2.6 we do this by using a representation of the group
instead. We define ezxtended multi-matchings on a graph in order to prove a theorem
that allows us to apply our analysis from Section 2.4 to the results of a recent paper
by Hall, Puder, and Sawin [7] that generalizes [11] by using group representations.

In Chapter 3, we will discuss a type of labeled tree fist discussed by Postnikov
called alternating trees or minmax trees [13]. An alternating tree is a tree whose
vertices are labeled with positive integers in such a way that the label of each vertex is
either higher than that of all of its neighbors or lower than that of all of its neighbors.
These trees have been connected to several other types of combinatorial objects.
These include regions of the Linial Arrangement (the affine arrangement on R™ defined
by equations of the form z; — x; = 1 with j > i), local binary search trees (labeled
rooted plane binary trees in which every left child of a vertex is smaller than its parent
and every right child is greater than its parent) and semiacyclic tournaments (directed

complete labeled graphs where every directed cycle has more descending edges than



ascending edges) [4, 14]. We work with a weight system on these alternating trees
that arises from examining the Tutte polynomials of graphs. The problem of counting
weighted alternating trees has been connected to various other counting problems. For
example, work of Gunnells, Letellier, and Villegas connects them to Kac polynomials
of dandelion quivers and enumeration of torus orbits on homogeneous varieties [6].
We explain the latter connection here. Let S be the maximal torus in PGL, acting
on the Grassmanian X = Gr(m,n). Gunnells, Letellier, and Villegas showed that the
number of S-orbits with trivial stabilizer in X (F,) is equal to Y ¢*®, where the sum
is taken over all alternating trees with n vertices and m maximg (this polynomial can
also be viewed as a sum of Tutte polynomials of alternating graphs). For example,
when X = Gr(2,4), there are ¢ + 4 S-orbits with trivial stabilizer in X (F,), and of
the 5 alternating trees on 4 vertices with 2 maxima, four of them have weight 0 and
one has weight 1.

In Section 3.2, we define a generalization of alternating trees called tiered trees that
allows vertices to lie in an intermediate “tier” rather than just being local maxima
or minima. We also extend our weight system to these tiered trees. In Section 3.3,
we show that every weight O tiered tree with three tiers can be obtained by moving
vertices in an alternating tree into an intermediate tier. This allows us to write
formulas for the numbers of weight 0 3-tiered trees where one of the tiers contains
only one or two vertices. In Section 3.4, we describe a bijection between the symmetric
group S, and the set of weight 0 alternating trees on n + 1 vertices. We then use
this bijection to define a statistic of permutations called the weight of a permutation.
We do this by extending the domain of the map that produces permutations from
weight 0 trees to the set of all alternating trees of any weight. We use weights of
permutations to define a refinement of the Eulerian polynomial called a ¢-Eulerian
polynomial. The weight of a permutation appears not to be equivalent to any other

statistic of permutations that has been formulated before. Similarly, the resulting ¢-



Eulerian polynomial does not seem to match any other ¢-Eulerian polynomial that has
been studied in the past, so this statistic of permutations can be viewed as revealing

new information about the permutations.



CHAPTER 2
CYCLIC RAMANUJAN 3-LIFTS

2.1 Background on 2-lifts
The argument made by Marcus, Spielman, and Srivastava works by showing that
there exists some degree 2 covering of any bipartite Ramanujan graph whose eigen-

values fall within the Ramanujan bounds.

Definition 2.1.1. Let G be a graph with vertex set V(G) and edge set E(G). A
2-lift of G is a graph H with vertex set {v; | v € V(G),i € {0,1}} and edge set
{e; | e € E(G),i € {0,1}} with the following properties:

(1) For every edge e connecting vertices v and u in G, each e; connects some v; to
some Ug.

(2) For every edge e connecting vertices v and u in G, exactly one of the e; has vy as
an endpoint and the other has v; as an endpoint.

We call the two vertices {vg,v1} in H corresponding to v € v(G) the fibre of v.

Every edge (v,u) in G corresponds to two edges in the 2-lift. These two edges
connect vertices in the fibre of v to vertices in the fibre of u, and this can be done in
two ways: The edge pair can be {(vg, ug), (v1,u1)} or {(vo, u1), (v1,u9)}. Therefore,
2-lifts of a graph G are in bijection with functions s: E(G) — {£1} assigning the
value 1 to an edge if the corresponding edge pair in the 2-lift is of the first type, and
assigning the value -1 if the corresponding edge pair is of the second type.

In [11], such functions are called signings. For example, if s(u,v) = 1 for all edges

in F(G), the corresponding 2-lift is a disjoint union of two copies of G. Bilu and Linial



[2] proved that the eigenvalues of the adjacency matrix of the 2-lift corresponding to
a signing s of a graph G are the union of those of the adjacency matrix A of G, and
those of the signed adjacency matriz A,. By definition, A, is obtained by replacing
each 1 in the uv entry of A with s(u,v). Therefore, if G is a d-regular Ramanujan
graph, and it has a signing s for which the absolute values of the eigenvalues of Aj

are less than 24/d — 1, the corresponding 2-lift is also Ramanujan.

S s(esy) =1 v

S
s(est) =1 5\@‘“‘\ s(epw) =1
o ([ J
t  slew)=-1 W

Figure 2.1. A signing of a graph and the correspnding 2-lift

An i-matching on a graph G is defined as a disjoint collection of 7 edges in G.

If G has n vertices, we call an F-matching on G a perfect matching. Taking m; to

be the number of i-matchings on G (and mg = 1), the matching polynomial of G is
defined to be pug(z) = > 2" *(—1)'m;. For example, if G is the complete graph on
i>0

4 vertices, ug(r) = #* — 622 + 3, because it has 6 edges and the 3 perfect matchings

pictured in Figure 2.2.

Figure 2.2. The 3 perfect matchings on K,



Godsil and Gutman [5] showed that the matching polynomial of the graph G is the
average signed characteristic polynomial E,[det(x] — Ay)], where E; is the expected
value over all signings s of G. By [9], the roots of the matching polynomial pg(z)
of a d-regular graph G are bounded in absolute value by 2v/d — 1. This means that
the roots of the average signed characteristic polynomial are within the Ramanujan
bounds, but it does not mean that one of these polynomials has roots that achieve
these bounds. The key insight that Marcus, Spielman, and Srivastava used to make
this leap was to show that the signed characteristic polynomials form an interlacing
family (The definition of this term can be found at the beginning of section 2.2.3 of
this dissertation). This implies that one of the signed characteristic polynomials has
roots that are bounded by the largest root of the average of all signed characteristic
polynomials. Since this average is bounded by 2v/d — 1, this means that one of these
signings gives rise to a Ramanujan 2-lift of G. One can then prove that there is a
Ramanujan 2- lift of this Ramanujan 2-lift using the same method, and conclude that
there exists an infinite tower of bipartite Ramanujan 2-lifts of d-regular graphs. We
remark that this is an existence-only proof, in contrast with the explicit examples of
Lubotzky, Phillips, Sarnak, and Morgenstern. This means that we do not have an
effective way to find examples of large Ramanujan graphs of arbitrary degree because
the number of 2-lifts of a graph grows exponentially with the number of edges, so the

resulting search space becomes enormous.

2.2 Cyclic Ramanujan 3-lifts
2.2.1 Eigenvalues for Cyclic n-lifts

To generalize the work of Marcus, Spielman, and Srivastava, we will first define a
generalization of 2-lifts of a graph. In this section we will only work with graphs that

have at most one edge between any pair of vertices.



Definition 2.2.1. Let G be a graph with vertex set V(G) and edge set E(G). An
n-lift of G is a graph H with vertex set {v;jv € V(G),i € {1,2,...,n — 1,n}} and
edge set {e;le € E(G),i € {1,2,...,n —1,n}} with the following properties:

(1) For every edge e connecting vertices v and u in G, each e; connects some v; to
some .

(2) For every edge e connecting vertices v and w in G and each v; in the fibre of v,

exactly one of the e; has v; as an endpoint.

Each edge e; in the fibre of the edge e = (v, u) bijectively connects each v; to some
uj, so each possible fibre for e can be thought of as corrseponding to a permutation
in the symmetric group S,. Note that, in contrast with the case of 2-lifts, there is
a difference between choosing {(vy, us), (v, u3), ..., (vn, u1), } as the fibre of an edge
and choosing {(vy,uy,), (vo,u1), ..., (Vn,un_1)}, so when we define a generalization of
signings of a graph, we must specify orientations for the edges of the graph. Let G be
an oriented d-regular graph with adjacency matrix A. Let H be an n-lift of G. For
each edge in G, there are n! possible collections of n edges that could lie above that
edge in H, with each possibility corresponding to a permutation in the symmetric
group S,. For a permutation o: {1,...,n} — {1,...,n}, we choose the edges lying
above the oriented edge v — u by adding an edge v; — uy(;) for all i. As we are
not able to work directly with matrices whose entries are permutations in S,,, we will

only consider a smaller class of n-lifts called cyclic n-lifts.

Definition 2.2.2. An n-lift of the graph G is called a cyclic n-lift if the collection of
edges lying above each edge in the base graph corresponds to an element of the cyclic

subgroup of S,, generated by the permutation (12---n).
Next we generalize the definition of a signing of the edges of a graph.

Definition 2.2.3. Let u, be the group of nth roots of unity under multiplication. A

labeling is a map s: E(G) — u, assigning each oriented edge of the graph G to an



element of p,,. We will also use the notation s™ to refer to the labeling defined by

s"(e) = s(e)™.

The different labelings of G are in bijective correspondence with the cyclic n-
lifts of G' because we can label an edge that is lifted according to the permutation

(123 ---n)™ with the number e2™™/™ = o™,

Definition 2.2.4. We define the labeled adjacency matriz A, to be the|V (G)| x|V (G)|

matrix whose 75 entry is
(

s(eij), if G has an oriented edge v; — v;
s(e;)™", if G has an oriented edge v; — v;
0, if there is no edge connecting the two vertices.

\

Note that by this definition, labeled adjacency matrices are Hermitian.

Ul. s(e12) =1 .U2 VU1 Vg V3 U4
)
\4@ vy[ 01 1 O2
8(613) =1 5\6(5% 5(624) = (p2 (%) 10 Y ¥
vs[ 1 ¢ 0 ¢?
—@ m\ 0 ¢ ¢ 0
vs s(ess) = ¢ = s U4

Figure 2.3. An example of a labeled adjacency matrix for a labeling of a graph by
3
We can now give our description of the spectra of cyclic n-lifts.

Theorem 2.2.5. Let G be an oriented graph with adjacency matriz A. Let H be the
cyclic n-lift of G corresponding to the labeling s, and let B be the adjacency matrix of

H. Then the eigenvalues of B are precisely those of Ay, Agi, ..., and Ag—1 combined.

Proof. Let A, be the |V(G)| x |V(G)| matrix where the ij entry is 1 if G has an

oriented edge v; — v; with s(e;;) = ¢™ or G has an oriented edge v; — v; with

10



s(ej;) = ¢~™, and the ij entry is 0 otherwise. Note that the ij entry of A, is also
the ji entry of A,_,,, so A,, = AT . Under this notation, the adjacency matrix B

of the n-lift of G' corresponding to this signing can be arranged as

Ay A ... Ans
Anr Ao o0 Ao
A Ay .. A

We can decompose A, as

Ag=Ao+ A1+ QAo+ -+ " A,

We can similarly decompose Ay as

Agn = Ao+ @ A1 + P Ay + -+ MDA

Therefore, if v is an eigenvector of Agm, then

is an eigenvector of B with the same eigenvalue. We now show that these vectors are

independent. Let {v;,,,} be the eigenvectors of A;m. Suppose that for some constants

{aim}

11



"V m,

g Gim | ©* iy | =0
i,m

Then for any m, we get the equation

m m(n—1
E a; Vo + @ E A1Vl + (n=1) g Gin—1Vimn—1-
i i

(2

Since the matrix

1 1 1 1
1 ©? Y
1 902 S04 L S0n—2

1 gOn—l g02(71—2)

(n—1)?

2
is invertible (its 4th power is m?I), this can only happen if each Zai’mviﬁm is 0.
However, since for each m, the v;,, are the eigenvectors of Agm, thzey are linearly
independent. This means that each a;,, must be 0, so the eigenvectors of B we
have found are independent. Therefore, the eigenvalues of B are precisely those of

Agp,Ag, Ag2, ..., and Ag-—1 combined. O

In the case of 3-lifts, this means that the only new eigenvalues are those of A,

because A2 = A, so the two matrices have the same eigenvalues, and A, = A, so

its eigenvalues are the old eigenvalues.

Corollary 2.2.6. Let B be the adjacency matriz of the 3-lift of the graph G corre-
sponding to the labeling s of G. Then every eigenvalue of B is an eigenvalue of either

the adjacency matrix A of G or the labeled adjacency matriz As.

12



2.2.2 Average Labeled Characteristic Polynomial
Let fs(x) = det(xl — Ay). A generalization of the proof of Theorem 3.6 in Marcus,
Spielman, and Srivastava shows that the expected characteristic polynomial of Ay is

the matching polynomial.

Theorem 2.2.7. Let G be a graph with m vertices. Let Ese,m|fs(x)] denote the
average of the characteristic polynomials fs(z) over all possible labelings of the graph

s € . Then we have

Esepp[fs(2)] = po().

Proof. For any set S, let Sym(S) be the set of permutations of the set S and let
Der(S) be the subset of Sym(S) consisting of the permutations with no fixed points
(also known as derangements). Let |7| be the number of inversions in the permutation
7 (i.e |r| is even if and only if 7 is an even permutation). For any m, let [m] be the
finite set {1,...,m}. Let s;; denote the ij entry of A,.

Es[det(z] — As)]

“El Y ()P 1] - Aieg)

o€Sym([m]) i=1

=2kt Y > EJ[(=DM T sim@l (=1
SC[m],|S|=k w€Der(S) €S

Note that each s;; is independent from all other entries except for s;; and E[s;;] =
0, so only the products given by permutations 7 consisting entirely of 2-cycles survive.
Furthermore, the product will be 0 unless each of these 2-cycles in the permutation
consists of vertices in G that are connected by an edge. These permutations represent
the perfect matchings on G(S), where G(S) denotes the subgraph of G consisting of
the vertices indexed by S and all edges in G connecting these vertices. These perfect
matchings consist of |S|/2 inversions when |S| is even, and they do not exist when

|S| is odd. Since s;; and sj; are inverse roots of unity when G has an ¢ — j edge, this

gives us

Es[det(z] — As)]

13



=D pmo " 2 2. (—Dkz.1
|S|=Fk perfect matchings m on G(5)
= pa()

This completes the proof of the theorem. O

2.2.3 Interlacing Families
Definition 2.2.8. We say that a polynomial g(z) =[]/, (z — «;) interlaces a poly-
nomial f(z) =[], (z — 5) if

i< <Br<ay < <a,1 <6,

We say that polynomials f,..., fx have a common interlacing if there exists a g

that interlaces each f;.

Let Si,...,5,, be finite sets and for each assignment sq,...,s,, € Sy X--- X5, let

fs1....sm(x) be a real-rooted polynomial of degree n with a positive leading coefficient.

For a partial assignment s1,...,s; € S1 X --- X S with k < m, we define
f81,-~~73k = Z f51,~-,8k78k+17~-78m
Sk4+1E€Sk+15--,5mESm
and
f@ - Z fsl ..... Sm
s1E€S81,..., SmESm
We call {fs,. s, }s1...s, a0 interlacing family if for all K < m and all s1,...,s; €

Sy X -+ x S, the polynomials in {f517---75k7t}t65k+1 have a common interlacing.
We can generalize the argument of Marcus, Spielman, and Srivastava to show that
our more general labeled characteristic polynomials also form an interlacing family.

To do this, we will prove a statement analogous to Theorem 5.1 in their paper.

Theorem 2.2.9. Let p1o,pi1,---sPin—1,P20 - - » Pmn—1 be numbers in [0,1] where

Dio + -+ Pin—1 =1 for any fized i. Then the following polynomial is real-rooted:
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ST pio)( I pi)---C T  pin-1)fo(@)

sEU™ d:s;=1 i18;=¢ i:s;=pn 1
To prove this, we will use a generalized version of the argument of Marcus, Spiel-

man, and Srivastava using real stable polynomials.

Definition 2.2.10. The polynomial f € R[zy,. .., z,] is real stable if it is either the
zero polynomial or f(z1,. .., z,) # 0 whenever each z; has a strictly positive imaginary

part.
We will use the following facts about real stable polynomials:

Lemma 2.2.11. Let Aq,..., A,, be positive semidefinite matrices. Then the polyno-

mial det(z1 Ay + - - + 2z, Ap) is real stable.

Lemma 2.2.12. If f(z1,...,2,) is real stable, then f(z1, ..., z,_1,c¢) is real stable for

any real number c.

Lemma 2.2.13. Let pg,...,pn_1 be non negative real numbers and let ug, ..., U,_1
be variables. Let O, denote the operation of partial differentiation with respect to x.

The operator T =1+ poOuy + - -+ + Pn—-10u,_, preserves real stability.

The first two of these three statements appear directly in Marcus, Spielman, and
Srivastava. The third is a slight generalization of Corollary 6.4, to which the same

proof applies [11].

Lemma 2.2.14. Let A be an m x m invertible matrix with complex entries, let
ag, - - -, y_1 be vectors in C™, and let po,...,pn_1 be non-negative real numbers that
add up to 1. Let Z,, be the operator defined by setting the variable u; to 0. Then we

have

Zuo e Zun,1(1 +p08u0 + - +pn—laun,1) det(A + UOGOE + -+ un—lan—lagfl)

= Do det(A + aog) + -+ Pn—1 det(A + anflaz:—l)'

15



Proof. By the matrix determinant lemma, for any invertible matrix A and real number

t,
det(A + taaT) = det(A)(1 4 taT A 'a)
Applying 0, to this gives us
Oy det(A + taaT) = det(A)(aT A a)

This implies:

g+« Ly (L + D0y + -« + Pp_10,,_,) det(A + uoaog + i Uy gy jal ) =

0

det(A)(1 + po(aT A ag) + ...+ pp_i(al_ A a,_y))

Decomposing 1 into a sum of the p; and applying the matrix determinant lemma, we

see that this is equal to:

podet(A+ agal) + ... + po_y det(A + ap_1al )

m
Theorem 2.2.15. Let ai,...,01,,-1,020;---,0mn-1 be vectors in C™, and let p; ,
s Pin—1s P2,0s - - -, Pmn—1 be non-negative real numbers where for any fized i, p;o +

oot Pin—1=1. Let D be a positive semidefinite m X m matriz. Then the following

polynomial is real-rooted:

P(z) = > (I[pio)---C I pin-1)det(xl + D+

partitions {So,...,Sn—1} of [m] i€So 1€SH—1

T T
E a3, 000 + 0+ E ai,nflaz',n—l)

IS 1€SH—_1

Proof. Let u1,..., U1 n1,U20,- ., Unn-1 be variables and define
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Q(% U1,05 -5 ULpn—1,U20,- - - aum,n—1> =

det(x] + D+ Z ui70ai,0?7:[) + -+ Z um,lai’n,la;{n_l)
p -

7

By lemma 2.2.11, @ is real stable.

Let T; = 1+ pi00u,o + -+ + Din-10u,,_,.- We claim that
P(x)= (1] Zuy- - 2w, T5)Q(z, 110, . .., Ut 1, U205 - - - s U 1)
i=1

We show by induction that

k
(H Zuzo cee uzn 1T)Q(ZL',U170, s 7u1,n—1a U2.0,- - - 7um,n—1)

1=

= (1 pio)---( I1 pin-1)det(zl + D+ 3 ajoaly + -+ +

partitions {So, Sn_ 1} of |Ik:]] i€So P€ESn—1 i€So

Z (i p— 1am 1+Z(u7«0a7«0a10+ C T Wip—1Qin— 1azTn 1)
€S _1 i>k

—_

The k£ = 0 case is the definition of (), the induction step follows from Lemma
2.2.14, and the k = m case is our claim. Since each Z and T operator preserves real
stability, this means that P is real stable, and a real stable polynomial in one variable

must be real-rooted.

Let d be the regularity of G. To prove that

S (I] pio) H pia)-C [ pinor)det(al — A,) (2.1)

sepm i:s;=1 1:8;= Z;sizgpn—l

is real-rooted, we can prove that

> (I] pio) H pir)-o( [ ponor)det(al +dI — A,) (2.2)

SEUM dis;=1 i:8;= iis;=n—1

is real-rooted because their roots differ by d.

Let e, be the elementary unit vector in the u direction. For each edge (u,v) we

define n different rank 1 matrices:

17



LY = (e, — en)(ew — 977e,)T

This allows us to write dI — A, as

Z LZ(Z’U)

(u,w)ER

so if we set D = 0 and (e, — ¢/e,) = @y, We can rewrite the polynomial (2) as

Z ( H pi,O)( H pz’,l) e ( H pi,n_l)det(xl + Z auﬂ),lm 4+t

sepum i:s;=1 118, =¢ i:s;=pn—1 s(u,w)=1

Z au,v,w"’lazv cp"*1>
s(up)mpn-1 o

Since this is of the form appearing in Theorem 2.2.15, it is real-rooted.

2.2.4 Cyclic Ramanujan 3-lifts
It now follows from Theorem 2.2.9 that the labeled characteristic polynomials

form an interlacing family:
Theorem 2.2.16. The {fs}scum are an interlacing family.

Proof. Lemma 4.5 in [11] states that a set of polynomials of the same degree with
positive leading coefficients has a common interlacing if and only if all convex com-
binations of those functions are real-rooted. Therefore, it suffices to show that for
any k < m — 1, any partial assignment s; € u',...,s; € p', and every set of non-
negative real numbers py, ..., p,_1 with pg+ -+ p,_1 = 1, the following polynomial

is real-rooted:

p0f81 ..... sk,1 (ZL’) + - +pn—1fsl,...,sk,<p"*1 (ZU)

This follows from Theorem 2.2.9 when we set pyi1,; = Dj, Pr+2,js - - -, Pm = 1/n for

all 7, and p;; = 1if s; = ¢, and 0 otherwise. O

18



By Theorem 4.4 in [11], this means that there exists some labeling s = (s1, ..., sy)

for which the largest root of fs, . is less than the largest root of fj. By Theorem

2.2.7, fy is a scalar multiple of the matching polynomial. Lemma 3.5 in [11] states that
the roots of this polynomial are bounded in absolute value by 2v/d — 1. This means
that there is some labeling s for which highest root of f, is within the Ramanujan
bounds. If G is bipartite, this implies that all roots of f,; are within the Ramanujan
bounds because the spectrum of a bipartite graph is symmetric. Therefore, if n = 3
and the base graph is Ramanujan, this labeling corresponds to a Ramanujan graph
because all of this graph’s new eigenvalues are roots of f,, . It is always possible
to choose a bipartite Ramanujan base graph for any regularity d. For, example we
could start with the d-regular complete bipartite graph on 2d vertices, which is a

bipartite Ramanujan graph. This allows us to conclude that infinite towers of cyclic

Ramanujan 3-lifts of graphs on any regularity exist.

Theorem 2.2.17. For any integer d > 2, there exists an infinite tower of bipartite
Ramanujan d-reqular graphs {G1,Gq, Gs, ...} in which each Giyy is a cyclic 3-lift of
G;.

2.3 Resonance and Higher Degrees

If we try to adapt our argument to lifts of higher degrees, we will need to consider
polynomials of higher degrees that have all of the new eigenvalues of a lift as roots. We
can do this by working with products of characteristic polynomials of different powers
of the same labeling f.i, (z) fs. () . .. fq.(z). For example, if n = 4 or n = 5, the new
eigenvalues of the n-lift associated with the labeling s are the roots of f(x)fe(x).

We will, therefore, examine the averages of these products over all labelings.

Definition 2.3.1. Suppose that {aq,...,ax} is a solution to the equation ayi; +-- -+

agiry = 0 mod n with each a; € {—1,0,1}. Then we call this solution a resonance
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condition on the exponents iy, ...,4 mod n. We call the solution where each a; = 0

the trivial resonance condition.

Theorem 2.3.2. Let s be a labeling of the graph G by nth roots of unity. Then there
s no nontrivial resonance condition on the exponents iy, ...,1, mod n if and only if

we have

Eulfunr (1) fu (@) - fue (@)] = ().

Proof. By expanding each determinant, we find that the expression Ei[det(z] —
Agy)...det(zl — Agy,)] is equal to

EJ( Y (=) ]]@I-Am)im@)-( D (D] @I=Ap)ien))-

o1€Sym([m]) i=1 o €Sym([m]) i=1

kn—K

The coefficient of x in this expression is

> > E (=)™ T sit - (DI st o) (D)%
S1,eery Skc[[nﬂ 7r1EDer(Sl),...,kaDer(Sk) 1€S51 €Sy
[S1[++[Sk|=K

We can reduce a product of products of the form H 3Z7r
1€

product of independent random variables by combining povvers of 5; ;s and writing s, ;

Hs ) into a

1 l

as s;jl. When we do so, the exponent of each s; ; will be of the form a1+ - -4-ayi;, with
each a; € {—1,0,1}. If this exponent is not divisible by n, then E[s}" "] = .
Therefore, if the only solution to the equation a;i; + - - - + agtry = 0 mod n with each
a; € {—1,0,1} is the trivial solution, the only surviving terms are those in which each
m; represents a perfect matching on G(S;) (There are other surviving terms if we do
not have this condition). If we have this condition, then the coefficient of 2"~ then

becomes 0 if K is odd and

(—1)% 3 m(G,Cy)...m(G,Cy)

{(C1,,Ch)ELE | C1++Cr=K/2}
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if K is even, where m(G, N) denotes the number of matchings on the graph G con-
sisting of IV edges. Since these are the coefficients of ug(x)*, this means that if there
is no nontrivial resonance condition, the two polynomials are equal.

To prove the converse, let a be the minimal number of nonzero coefficients in any
nontrivial resonance condition on the exponents 71, ...,4 mod n, and suppose that
there are N resonance conditions with this minimal number of nonzero coefficients.
Let 8 be the minimal number of edges in any cycle in the graph G, and suppose that
there are M [-cycles in the graph. We observe from our formula for the coefficient of

7F"=K that the coefficients of 25"=%% in E,[fs, (z) fsz () ... for (2)] and pg(x)* differ

by 2N M.

]
Corollary 2.3.3. Suppose that for all resonance conditions on the exponents iy, ..., i
mod n, a; = -+ = a, = 0. Then Ey[fo, () fn () ... fan(2)] is divisible by pg(x)™.

Proof. For each i < w, the only surviving terms will be those in which 7; represents a

perfect matching on S;. For such a permutation, we have [] sh = 1. Therefore,
1€S51

we can rewrite the coefficient of "% in E,[f, (7) fon (7). .. for ()] as

i,m(d)

[S11+-+Swl Tw Tw T
Y= TRl I s (GO st ) (=D,

1€Sw+1 1€Sk

where the sum is taken over the set {(S1, ..., Sk, 71, -+« s Ty Tt 1, - -+, Tk) | Sty 0oy Sk C
[n], |S1]4+- - -+|Sk| = K, m; is a perfect matching on G(S;) if ¢ < w,m; € Der(S;) if ¢ >
w} , 80 Eg[fein () fein () ... for ()] is divisible by pg(z)* O
We can use this result to see which parts of our argument from the previous
sections can and cannot be applied to n-lifts with n > 3. Note that, for n > 3,

there is no nontrivial resonance condition on the exponents 1 and 2 mod n, so the

preceding theorem is applicable to the polynomials fs(z)fs(z), and we are able to
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conclude that Eg[fs(z)fs2(x)] is real-rooted and its roots are within the Ramanujan
bound. However, this does not allow us to conclude that one of these polynomials has
roots within the Ramanujan bound because they do not form an interlacing family
in the same way that the polynomials fs(x) do. For n > 5, the eigenvalues of the lift
corresponding to the labeling s will include the roots of f,(z), fe(x), and fa(x), an