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ABSTRACT

ADAFT: A RESOURCE-EFFICIENT FRAMEWORK FOR
ADAPTIVE FAULT-TOLERANCE IN CYBER-PHYSICAL

SYSTEMS

SEPTEMBER 2017

YE XU

B.Sc., NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Israel Koren and Professor C. Mani Krishna

Cyber-physical systems frequently have to use massive redundancy to meet applica-

tion requirements for high reliability. While such redundancy is required, it can be activated

adaptively, based on the current state of the controlled plant. Most of the time the physical

plant is in a state that allows for a lower level of fault-tolerance. Avoiding the continuous

deployment of massive fault-tolerance will greatly reduce the workload of CPSs. In this

dissertation, we demonstrate a software simulation framework (AdaFT) that can automat-

ically generate the sub-spaces within which our adaptive fault-tolerance can be applied.

We also show the theoretical benefits of AdaFT, and its actual implementation in several

real-world CPSs.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Dramatic changes have occurred over the past few years in cyber-physical systems

(CPSs). Such systems range in complexity from simple small-scale to complex large-scale.

The traditional approach to controlling CPSs has been to use a large number of controllers

that interact with each other, and are dedicated to perform a certain subset of computational

tasks. For example, an automotive application might have a micro-controller entirely ded-

icated to braking control, another dedicated to cruise control, while another subset may be

dedicated to managing the entertainment system.

More recently, in an effort to provide increased reliability and reduce costs, designers

have been turning to a more flexible approach, with a shared, integrated, computational

platform. Such a platform is responsible for the totality of the control function; individ-

ual computers may be shared by different functions. The same physical computer can run

widely varying tasks, whose importance may range from non-critical to life-critical. Tasks

can be remapped from one processor to another depending on prevailing load conditions

and the health of the processor. Such an approach, when handled correctly, yields a con-

trol structure that can degrade more gracefully and reliably when a core fails. As nodes

fail, the still operational computational resources can focus on keeping the high-criticality

tasks running, shedding the less vital functions as necessary. Recent years have seen the

emergence of a rich theory of scheduling in such integrated, mixed-criticality platforms

[9][57].
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For obvious reasons, fault-tolerance (FT) is needed for life-critical applications. Tra-

ditional fault-tolerance that uses massive redundancy [23] can impose a considerable and

unnecessary computational burden on the system. We need, therefore, to turn to adaptive

fault-tolerance [24][25]. Here, the level of fault-tolerance provided is dynamically adapted,

during operation, to the needs of the physical plant. These needs are calculated as a function

of the current plant state and consequently, they vary by time and circumstance.

Adaptive fault-tolerance allows us to provide fault-tolerance on an as-needed basis and

has the potential to reduce the size of the computational platform. It can also result in

reduced processor operating temperatures. Since processor failure rates increase exponen-

tially with operating temperature, this often has a significant impact on processor reliability.

In order to implement adaptive fault-tolerance, the controlled plant dynamics have to

be analyzed along with domain-specific knowledge of safety requirements to indicate the

appropriate level of fault-tolerance at any given time. In many cases, the controlled plant is

operating in a deeply safe sub-space of the entire physical state space, and can survive one

or more cyber-side failures even if the failures cause the actuator to produce a worst case

incorrect control input to the plant. In such cases, there is no need to deploy the redundant

copies of the control tasks. Therefore, there is a need to design a system that would take the

physical side information into account, and determine when it is within this safe sub-space

that would need less fault-tolerance.

1.2 Contributions

This dissertation describes a simulation framework, AdaFT, to accomplish the proposed

adaptive fault-tolerance. This framework generates offline a table that allows the system,

while in operation, to select the appropriate level of fault-tolerance. It does this by carry-

ing out extensive offline analysis of the controlled plant dynamics and then uses standard

artificial intelligence techniques to express them as simple selection rules. AdaFT also per-

forms runtime workload tuning of the cyber side of the system, by introducing the concept
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of Quality of Control Constraints (QoC Constraints) and using multiple versions of certain

real-time control tasks, which can be switched during runtime to balance the QoC and the

reliability of the system. Finally, the framework allows the designer to evaluate the impact

on reliability of the thermal stress associated with the workload. Overall, AdaFT allows us

to increase the system’s lifetime, and conversely, for a given desired life time, it reduces

the amount of redundancy required.

Our contributions are summarized as follows:

1. We introduce the concept of Sub-spaces of the physical plant, which partitions the

entire state space into three parts that would need different levels of fault-tolerance

deployment during runtime. We discuss in detail the algorithms to identify these

sub-spaces, and how to handle various practical issues listed below.

2. The sub-spaces have to be expressed in a compact form so that, during operation, the

system can rapidly determine which sub-space it is in, and adjust its redundancy level

accordingly. In this dissertation we describe a classification process using machine

learning techniques that generates classification rules which are lightweight enough

to be used in practice.

3. We consider actuator noise, sensor noise and sensor failures. It is unrealistic to as-

sume that the controlled plant has perfect information regarding its current state; this

work explicitly allows for noise of any given distribution, and takes advantage of

Dynamic Bayesian Networks (DBN) for inferencing. It also deals with temporary

sensor failures and multiple sensors (sensor networks).

4. We introduce into our framework the capacity to handle reduced-order models (by

using a fitted machine learning algorithm, rather than the full-level system dynamics

model). This allows us to obtain the sub-spaces with greatly reduced overhead, even

for the offline procedure.
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5. In order to measure the reliability benefits of our approach, we use the concept of

Thermal Age Acceleration Factor (TAAF), which can then be integrated over time

to produce the long-term reliability benefits in terms of the Mean Time To Failure

or MTTF. We provide a detailed discussion of TAAF and MTTF under different

scenarios using our framework. Along the way, the long-term energy consumption

of the traditional approach and our approach are also compared.

6. We design a load tuner, which is an essential component of our framework, that

includes number of copies determination and version selection. Number of copies

determination refers to selecting the appropriate fault-tolerance level according to

the plant’s current sub-space. Version selection means selecting the proper version

of each control task, based on the QoC constraints.

7. We integrate into our framework several popular designs and modules of real-time

control systems. One is the real-time scheduling for real-time systems. With this

module, the user can see how different periods and possibly different response times

of each control task can affect the size of each sub-space. Another one is the Dynamic

Voltage and Frequency Scaling (DVFS) that can further improve the TAAF if the

actual execution time of the control task is much less than its worst case execution

time (WCET).

8. In addition to the TAAF and MTTF analysis, we show how our framework can also

be used to determine the hardware provisioning.

9. Finally, we have put all these together into a framework called AdaFT, which can be

used by other researchers. All the user has to do is to use the AdaFT API to specify

the state equations and the control law of the controlled plant. Note that both linear

and nonlinear plants can be handled.

This dissertation is organized as follows. In Chapter 2, the general background for real-

time systems, fault-tolerance, and big data in embedded systems is presented. In Chap-
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ter 3, the technical background of AdaFT and related work is discussed; this includes a

state space approach to system control and a discussion of thermally induced circuit ag-

ing. These set the stage for the design of the software framework in Chapter 4. Chapter 5

includes several case studies as examples. Chapter 6 introduces the idea of using reinforce-

ment learning to further improve the current AdaFT. Chapter 7 brings the dissertation to a

close.
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CHAPTER 2

BACKGROUND

2.1 Embedded System and Cyber Physical System

Cyber-Physical Systems (CPS) integrate multiple dynamics together including com-

puting, networking, and physical processes. Embedded sensors, micro-controllers and net-

works sense, compute, and actuate the physical processes, with feedback loops where phys-

ical processes have an impact on computation and vice versa [18]. According to Lee, et

al., CPSs have an economic and societal potential which is vastly greater than what has

been recognized [27]. Many countries have made major investments to develop the tech-

nology for various CPS solutions. CPS technology is built on top of the older discipline of

embedded systems, where computers and software embedded in devices are not aimed at

computation, but rather other specific purposes such as braking control in cars and naviga-

tion in aircraft. CPS researchers have developed modeling, design and analysis techniques

for sophisticated integrated systems.

The term cyber-physical systems may be interpreted as the combination of the cy-

berspace and the physical processes [43]. The cyberspace part refers to techniques that

have evolved over decades in computer science such as algorithms and data collection,

transforming and analysis. The physical part of CPS focuses on the dynamics, which is

the evolution of the system state over time, often modeled by differential equations and

stochastic processes.

2.1.1 The Design Process

In [27], Lee presented several challenges of CPS design. Compared to general-purpose

computing, CPSs have always been held to a higher standard of reliability and predictabil-
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Figure 2.1. Typical Structure of a Cyber-Physical System

ity. Such applications as traffic control, automotive safety and health care would cause dis-

aster without improved reliability and predictability. For that reason, there are requirements

that CPSs should satisfy in a controlled environment; they must be resistant to unexpected

conditions and adaptable to system failures.

In [18], Lee et al. provided a general structure and design process for a typical CPS

to handle these challenges. While the main objective of this dissertation is to focus on the

fault-tolerance aspects of the design, here we summarize the essential part of the process.

Figure 2.1 shows an example of a CPS. This is a typical networked platform with two

sensors and three computation components. The action taken by the actuators affects the

physical plant, whose state information is then measured by the sensors as inputs to the con-

trol computers. In this figure, computation 2 implements a control law with the input data

from sensor 2. Sensor 1 makes additional measurements of the data and sends messages to

computation 1, which cooperates with computation 3 to implement additional tasks via the

network fabric between computations 1 and 3. The whole structure uses two loops called

the feedback control loops. For example, a typical autonomous system such as Google’s

self-driving car [56] would use computation 1 for localization algorithms, computation 2
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for motion planning, and computation 3 for control. Notice that most, if not all, of these

tasks are real-time tasks, which we will discuss in detail in later sections.

The design process can be divided into three sub-processes: modeling, design, analy-

sis. This methodology is called model-based design. Models specify what a system does,

normally through mathematical differential equations. Design is the processs of creating

the system structure. It specifies how a system does what it should do based on the require-

ments. Analysis is the process of obtaining a detailed understanding of a system through

various techniques such as data analysis, simulation and mathematical proof. It specifies

why a system does what it should do [18].

The modeling sub-process mainly consists of continuous dynamics modeling, discrete

dynamics modeling, hybrid system modeling including both continuous and discrete sys-

tems, and concurrent models of computation with which parallel computations would occur

[18]. The continuous dynamics modeling uses differential equations to describe the con-

tinuous systems (these systems are typically from the physical world). On the other hand,

the discrete systems (typically from the cyber side) employ state machines for modeling.

Hybrid systems combine both techniques, and the concurrent models of computation take

advantage of popular timed models of computation such as Petri Nets. Interested readers

can refer to [18][41] for more information.

The design phase begins with selecting hardware and software components (e.g., mo-

tors, batteries, sensors, microprocessors, memory systems, operating systems, wireless net-

works), and then putting them together in an efficient and reliable way [18]. In this disserta-

tion we focus on the system and software architecture design. In particular, we will discuss

how to design for fault-tolerance in real-time systems. For comprehensive discussion about

hardware and software design, refer to [18][39].

The analysis phase is for analyzing and verification of the design [18]. For example,

the system may be analyzed for safety conditions, such as the vehicle speed should be

no greater than 0.1 meter/sec, or the system may require timing behavior verification, for
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example the air bag system should respond to an emergency within a very short time. Many

modern CPSs also require security and privacy verification. In [18] and [39], the authors

discussed several popular techniques including but not limited to, invariant and temporal

logic, reachability analysis and model checking queuing theory.

The three design phases are not isolated from each other, but interact. The design of a

CPS is an iterative process, with modeling, design and analysis mixed together with each

part of the system. For example, before the design process, engineers would be provided

system requirements, including requirements of safety, reliability and timing. If the anal-

ysis of one part of the system does not satisfy the requirement, one should go back to the

previous phase for modifications.

2.2 Fault-Tolerance

This dissertation is about design for fault-tolerance in CPSs. In this section we intro-

duce the state-of-the-art fault-tolerance techniques.

In [10], Burns et al. gave a definition of fault-tolerance: the system continues func-

tioning in the presence of faults or errors, with no significant functionality or performance

losses. In [10][23][40], the authors discussed several types of faults, errors, and failure

models of the system. We summarize these as follows.

2.2.1 System Faults, Errors, Failures, Reliability, and Safety

According to [10], a fault is a system ”bug”, hardware or software, that would inevitably

happen whether or not the system was designed correctly. An error is the result of the fault

which is activated somehow. An failure is in turn the result of the errors if the errors are

significant enough to violate the system requirements. The reliability of the system is a

measure of the success with which the system obeys the authoritative requirements of its

behavior. The safety requirement of the system is the requirement that the failure should

not cause a disaster such as the death of a human being.
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There are three types of faults: transient faults, permanent faults and intermittent faults.

Many faults in CPSs are transient, which is one of the main assumptions of our research.

System errors can be divided into value errors and timing errors. Value errors refer to

erroneous outputs due to software bugs or faulty hardware components. Timing errors

refer to the service that is delivered at the wrong time, such as missing the deadlines of a

real-time system.

System failures can also be divided into different types. According to [40], an un-

controlled system failure means that the system has not detected the fault yet, or although

having detected the fault, it has not yet invoked a controlled system failure handler, possibly

resulting in significant system damage and severe safety conditions.

Also from [40], degraded performance mode refers to a system that, in presence of

faults, operates without significant performance or safety level loss. Fail safe mode refers

to a system that would enter a safe condition after detecting faults, with some perfor-

mance degradation. An example would be a railway signaling system, which turns all

of its lights to red after detecting faults. Fail silent mode refer to a system that enters into

a pre-determined static mode, such as rebooting or shutting off the system, so that it will

cause little or no damage.

It is also worth noting that several international safety standards and guidelines have

been developed for many safety critical systems [40]. For example IEC 61508 refers to

generic industrial standards, ISO 26262 refers to automotive systems standards, etc. For

developers using C, the ”MISRA C” guidelines are widely employed as a safety ”language

subset” [1].

2.2.2 Mean Time to Failure

We now show how to calculate the system reliability and MTTF. Let T denote the

lifetime of a component, f(t), and F (t) the probability density function and the cumulative
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distribution of T , respectively. F (t) = Prob{T ≤ t} is the probability that the component

will fail at or before time t, and the density function f(t) is given by [23]:

f(t) = λeλt (2.1)

where λ is called failure rate. Then F (t) can be derived as:

F (t) = 1− e−λt (2.2)

R(t), the reliability of a component (the probability that it will survive at least until

time t), is given by

R(t) = Prob{T > t} = 1− F (t) = e−λt (2.3)

Therefore, a constant failure rate indicates that the lifetime of the component has an

exponential distribution with a constant λ. Then, MTTF, the expected lifetime of a compo-

nent, is given by:

MTTF = E[T ] =

∫ ∞
0

tf(t)dt (2.4)

Substituting dR(t)
dt

= −f(t) yields:

MTTF =

∫ ∞
0

R(t)dt (2.5)

For the case of a constant failure rate for which R(t) = e−λt,

MTTF =

∫ ∞
0

e−λtdt =
1

λ
(2.6)

For a detailed derivation of these equations, refer to [23].
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2.2.3 Current Techniques for Fault-Tolerance

In [10], Burns et al. gave definitions for different levels of fault-tolerance. Full fault-

tolerance means the system requires full masking of faults in order to perform most, if

not all, of its functionality. Graceful degradation or fail soft, means the system continues

to operate in the presence of errors, accepting a partial degradation of performance. In

this dissertation we define several different levels of fault-tolerance, but the main ideas are

similar to the above definitions, as will be discussed later.

All fault-tolerance techniques take advantage of extra redundant components intro-

duced into the system [10][23]. Traditional fault-tolerance techniques for hardware is via

continuous massive deployments with duplex, triplex or M-of-N system. Duplex refers to

two copies of the software tasks running on two processors, which can detect but not mask

out faults. Triplex refers to three copies of the tasks running on three processors, which can

mask out 1 erroneous output. M-of-N system is the generalized version of triplex, which

uses N copies of the tasks running, and can mask out N-M erroneous outputs. Software

fault-tolerance includes acceptance tests, N-version programming (which uses N different

versions of the software tasks), recovery block approach (which uses a backup version once

a fault is detected), remote procedure calls, and check pointing (which rolls back to previ-

ous time snapshot once a fault is detected). Readers may refer to [10][23] for more details.

In this dissertation, we will use an adaptive fault-tolerance technique that is able to adjust

the runtime deployment and select the most suitable versions of the tasks, based on the

safety condition of the physical plant.

2.3 Real-time System

Most of CPSs are real-time systems, where the outputs of the software control tasks

should be delivered before a deadline. The reason is that typically the input corresponds to

some physical event such as a change in the speed of a ground vehicle, and the output has

to respond to that change, for example, by invoking the braking or accelerating commands
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to adjust the vehicle speed. The delay from the input time to the output time must be

sufficiently small within some allowable time frame [10]. The field of real-time system is

extensive, and we will only summarize what is relevant to our research.

From [10], hard real-time systems refer to those systems which require completion of

certain responses within the specified deadlines. Soft real-time systems refer to those sys-

tems where response times are important but the systems will continue to operate correctly

even with occasional deadline misses. Mixed criticality systems are those systems where

the tasks can be classified according to different critical levels [11]. The higher the task

criticality level, the lower the failure rate it should have. In all of the above three systems,

the failure covers both value and timing errors. Many real-time systems today may have

hundreds of tasks, with only a sub-set of which are critical. Our main focus is to optimize

the expected lifetime and the long-term reliability of the processors running these critical

tasks.

There are two approaches to the design of software for a real-time system: a time

triggered (TT) architecture and an event triggered (ET) architecture [40]. Implementation

of a TT architecture will typically involve the use of a single interrupt, which is linked

to the periodic overflow of a hardware timer [40]. The interrupt will be used to drive a

software program called the interrupt service routine (ISR), which in this case will be a task

scheduler (a simple form of the real-time operating system or RTOS). The scheduler will,

in turn, release the system tasks (software tasks in real-time systems) at the predetermined

time points [40]. Implementation of an ET architecture will typically involve the use of

multiple interrupts. Each interrupt is linked with particular periodic and aperiodic events.

Standard RTOS will be used for the design of ET systems.

Real-time scheduling is an essential part of a real-time system. In the TT architec-

ture, the scheduler often deals with a ”co-operative” task list, within which each task must

be completed before another task can be executed; there is also provision for priority in-

terrupt, where higher priority tasks could preempt other tasks. Therefore, this scheduler
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has the highest possible determinism, which is ideal for systems where accurate execu-

tion times and minimum task jitters are required [40]. In contrast, the ET architecture

with RTOS has much lower determinism (especially when handling task jitters), however

it has more flexibility to handle the sporadic or aperiotic tasks. The main scheduling al-

gorithm used in industry today is the rate monotonic (RM) scheduling, in which the tasks

with shorter periods have higher priorities [15][28]. There is extensive research in the

real-time scheduling theory, but very few are actually used in industry. Some of the popu-

lar scheduling algorithms in academic research include earliest deadline first (EDF) [52],

fault tolerant scheduling [22][31], power aware scheduling [2]. Readers can refer to [15]

for a comprehensive survey of real-time scheduling algorithms. In this dissertation, we will

use the ET architecture with an RTOS and rate monotonic scheduling for each processor.

2.4 Machine Learning for CPSs

Traditional simulation-driven approaches for the research and the development of CPSs

are gradually being replaced by the modern data-driven approaches. Data collections can

be handled either from the real hardware, or from realistic simulators.

Machine learning therefore became a core technology for many CPS designs, especially

for robotics systems that must capture large amounts of data. For example, learning has

become a core part of the research in computer vision. Data-driven techniques are being

used to tackle problems for which it is very difficult to develop well-formatted closed form

mathematical equations. The goal is to use the ever-growing amount of data from the

sensory sources to train a particular pattern that can be used to make predictions from the

unseen data.

In this dissertation, we use many machine learning techniques, including the regres-

sions, classifications and the reinforcement learning for tasks such as the predictions of the

quality of control (QoC), reliability, fault-tolerance level, and the optimal real-time task

load.
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CHAPTER 3

TECHNICAL FUNDAMENTALS OF ADAFT

In this chapter, we will describe the problem formulation and certain important techni-

cal fundamentals of our framework.

3.1 Problem Formulation

Our framework aims to achieve computing resource efficiency in CPSs. In traditional

fault-tolerance techniques, massive redundancy such as triplex, is deployed all the time

for tolerating hardware faults [23]. Multiple versions of software real-time tasks with a

switching mechanism such as Simplex, are used for software fault-tolerance [44]. Our

framework, AdaFT, attempts to minimize the actual runtime deployment of redundancy as

much as possible, while keeping the same level of system safety.

While satisfying the safety requirement, AdaFT will reduce the level of runtime deploy-

ment of fault tolerance and still improve the long term system reliability. We use a thermal

aging acceleration factor (TAAF) to represent the thermal reliability of computer systems.

Most CPSs have both safety and quality of control/service (QoC) requirements. For

example, for a highway platoon system, the safety requirement is that the inter-vehicle

spacing should not be less than a threshold, while the QoC requirement is that the average

inter-vehicle spacing should be kept reasonably small. The safety requirements must be

satisfied, while the QoC requirements are soft constraints that should be achieved as much

as possible. These requirements can be satisfied using optimal control methods, such as

linear quadratic regulator (LQR) or model predictive control (MPC) [59]. Together with
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the TAAF, AdaFT attempts to find an optimal real-time task loading during runtime to

satisfy both safety and QoC constraints, and optimize TAAF.

3.2 Technical Background

3.2.1 Failures in Cyber-Physical Systems

It has long been understood that failures in CPSs can be treated in a more application-

specific way than failures in general-purpose systems. Meyer’s notion of performability

specifies accomplishment levels for the controlled plant and calculates the probability that

the real-time controller will function well enough to meet each of these accomplishment

levels [21][33][34]. Another approach relies on the fact that the controller is in the feedback

loop of the controlled plant [26][47]. Therefore, any computational delay contributes to

the feedback delay. The impact of feedback delay on the controlled plant performance

is well understood in control theory. By quantifying this impact on the controlled plant

performance, one can obtain cost functions to express the degradation of the quality of

control. Obviously, the state of the controlled plant affects the impact of feedback delay on

the quality of control.

Note that this approach presupposes the existence of sufficiently accurate models of the

controlled plant. Such models would be needed, in any case, to assess the effectiveness of

any control algorithm used.

3.2.2 A State-Space Approach

In contrast to general-purpose systems, cyber-side failures in a CPS can be defined in an

application-focused way. This happens when the controller is unable to keep the controlled

plant within a designated subset of its state-space, called the Safe State Space, S3. Full

details can be found in [24].

S3 is defined as follows [24][25]: based on the application, the user or application engi-

neer (or other application-domain specialist) can specify the constraints that the plant must
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satisfy in order to be considered to be operating safely. These are called the Safety Space

Constraints (SSC). For example, the maximum allowed G-force on an aircraft, together

with the aircraft dynamics, can be used to specify constraints on the pitch, yaw and roll as

well as the rate of change of these variables.

A point is in S3 if (a) the plant satisfies the SSCs at the present time and, (b) based on

the plant control laws, the control algorithm used, the actuator limitations, the control task

execution policy and rates, and the specified limits of the operating environment impact on

the plant, the plant will continue to satisfy these constraints up to a given horizon, as long

as the correct control inputs are applied.

The impact of an erroneous controller output on the plant performance depends on the

current plant state. If the plant is deep within its safe region of the state space, it may

well be able to withstand a certain number of erroneous inputs without impairing safety.

Such application specific error-tolerance translates to a lowered requirement for controller

fault-tolerance.

As an illustration, consider the canonical inverted pendulum control system, widely

used to illustrate CPS concepts. The objective of the control system is to keep the pendulum

close to vertical by applying a force to the motorized cart that the pendulum is attached to.

The state variables are the angle of the pendulum with respect to the vertical line and the

rate at which this angle changes (θ(t), θ̇(t)). Suppose we define SSC as the region where

−0.5 ≤ θ(t) ≤ 0.5 radians.

If zero-order control is provided [59], every period of P seconds, a new control input

is calculated and applied. This control is kept steady throughout the period until a new

control input has been calculated. We now examine the impact of two parameters on S3:

the period and the maximum control force that can be applied.

Figure 3.1 shows S3 for two different control periods and two different control force

bounds for a unconstrained maximum control force denoted by ulim. Note that even though

the SSC is the same for all cases, the size of S3 shrinks as the period increases, indicating
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(a) Period = 10ms (b) Period = 30ms (c) ulim = 2.5 N (d) ulim > 10 N

Figure 3.1. Safe State Space (S3) for the Inverted Pendulum System with Different Control
Periods and Control Force Bounds ((a)-(d))

the increasing vulnerability of the plant due to a reduction in control update frequency.

As the control period increases, the real-time control tasks are executed less frequently,

leading to a potentially worse quality of control. Also, note how S3 shrinks as the control

capability decreases. Increasing the range of control forces that can be applied is not always

a good idea: a decrease in control capability may sometimes reduce the plant vulnerability

to failure [24].

3.2.3 Adaptive Fault-Tolerance

We will now show how the state-space approach leads naturally to adaptive fault-

tolerance. We define three sub-spaces within S3 as follows:

S1: No fault-tolerance is required. The controlled plant is in a region of the state-

space where even if the actuators are held at their worst-case incorrect setting until the next

iteration of the control task, the plant will not leave its S3. Hence, only one copy of the

control task needs to be executed. Even if the task fails and produces the worst possible

incorrect control output value, the plant remains safe and can be recovered in later periods.

S2: It is sufficient for the controller to be fail-stop, i.e., the system generates only

two types of controller output: correct or default (e.g., zero) output. Only error detection

rather than error correction is needed in the control output calculation. For instance, one

could use a processor duplex with two independent control calculations being compared.
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If a significant mismatch (i.e., outside the range of numerical approximations) is detected

between the two outputs, then an error is declared in the computation and a zero control

input (or other default value) can be applied.

S3: Full fault-masking is required. If the controller produces an incorrect output, the

plant cannot be guaranteed to stay in the safe state-space. Therefore full-strength fault-

tolerance with fault-masking should be used, e.g., a triplex with majority voting [23].

Hence, if a plant is in S1, no fault-tolerance is needed; only one copy of the control task

needs to be executed. Even if the task fails and produces the worst possible incorrect control

input value, the plant remains safe and can be recovered in later periods. If it is in S2,

only error detection rather than error correction is needed in the control input calculation.

Finally, if the state is in S3, then the full-strength fault-tolerance with fault-masking should

be used, e.g., a triplex with majority voting [23]. Note that all other states outside of S1, S2

and S3, i.e., outside of S3, are either physically unachievable, or uncontrollable even by a

perfect controller. The latter means that even if an always correct control input is applied,

the physical plant might still enter the unsafe region violating the SSC. In such a case, it

still needs the full level of fault-tolerance, but it is not guaranteed to be always safe.

With these sub-spaces, a state-based adaptive fault-tolerance can be developed. Since

the controlled plant is in S1 for most of the time, a lower level of fault-tolerance can be

used, to reduce the amount of stress on the controller or to use the available released com-

putational capacity for other tasks [24].

3.2.4 Impact on Thermal Age Acceleration

It is well known that the workload affects processor reliability. With a higher work-

load, the thermally-induced failure rate increases [24][36][45][46]. Operating at higher

temperatures accelerates the device aging process. The rate at which such aging occurs can

be captured by means of the Thermal Age Acceleration Factor (TAAF). If the TAAF over

some time interval δt is α, the effective aging of the circuit over that interval is αδt. α is a
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strongly increasing, non-linear function of temperature. The reliability advantage of adap-

tive fault-tolerance is that its lower computational burden reduces the average operating

temperature and hence the amount of circuit aging.

3.3 Related Work

The idea of adaptive fault-tolerance is not new; it goes back more than two decades.

In [20], the authors pointed out that the fault tolerance needs of the application, and the

fault-tolerance capabilities of the micro-controller could change as time goes by, therefore

an adaptive technique was presented. In [19], the authors proposed an object oriented way

to manage adaptive fault-tolerance. The fault tolerance management unit is informed about

the reliability requirements of the application; it then adjusts the level of fault-tolerance to

suit the reliability requirements.

Considerable recent work has also contributed to the area of adaptive fault-tolerance,

due to the fact that increasingly more safety critical systems are nowadays controlled by

embedded controllers. In [32], an On-demand Real-TimEGuArd (ORTEGA) was proposed

to allow for efficient resource utilization based on the runtime state space. The idea is to

divide the state space of the controlled plant into two subsystems: a high-assurance-control

(HAC) and a high-performance-control (HPC) subsystem. They introduced a two-level FT

option to be adjusted in real-time.

Most real-time, fault-tolerance research assumes that faults cause failures at the ap-

plication level. In [51], Song, et al. explained why system-level software (e.g., RTOS

scheduling, memory management and I/O processing) is closely tied to failures; indeed,

65% of hardware errors would corrupt OS state [29]. They claimed that such a situation

has received little attention, and proposed Computational Crash Cart (C3), with the main

idea of dividing the system components based on their functionality (i.e., scheduler, I/O).

After a fault is detected, the faulty component can perform a focused micro-reboot, rather
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than having to restart the whole system. Later they extended this work in [50], to allow the

system to have a runtime monitoring as well as validation capability.

Swetha, et al introduced the Enhanced Resource Management Scheme (ERMS) and

compared it with the traditional redundancy approach [55]. They introduced a new schedul-

ing method, which combines the dynamic planning and dynamic best effort approach. This

approach allows both periodic and aperiodic tasks, as well as an online reconfiguration for

error management. During operation under this fault recovery technique, all critical tasks

will meet their deadlines, and the system can still function at a reduced but above minimal

safe functionality in the presence of errors. This scheme has been analyzed and evaluated,

using simulation, on an automotive cruise control system.

Bak, et al developed a combined online/offline approach [3] for the well known Sim-

plex architecture. Their approach uses aspects of a real-time reachability computation,

which also maintains safety, but is less conservative. The switch logic for their Simplex

architecture will, like the traditional Simplex architecture, guarantee that the system never

enters an unsafe state, but uses the complex controller as much as possible. Simplex deals

with software fault-tolerance, with the assumption that the simple controller is formally

verified and is free of software bugs, and the complex controller provides potentially better

quality of control but cannot be formally verified. Since only one copy of each controller

version is deployed during runtime, no hardware fault-tolerance is provided. One possible

combination of our work and the Simplex architecture, is to introduce a more flexible and

more powerful fault-tolerance hierarchy (both software and hardware): with the knowledge

of the physical side state information, the system might be able to determine which version

of the control task and how many copies of the control tasks to run at a specific time.

The paper by Bogdan and Marculescu [6] argues that one can expect many cyber-

physical computational workloads to show fractal behavior. They point out that if this

is the case, it will affect computational resource allocation. As far as AdaFT is concerned,

what is of relevance is the computational burden as a function of the application (controlled
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plant) physical states. In its current form, the framework accepts traditional digital control

workloads. As new workload formulations emerge from the CPS community, they can be

included in the AdaFT framework.

Note that most prior work on adaptive fault-tolerance focused on the cyber side of CPS.

The cyber system was either informed about the current state by the physical plant and the

required fault-tolerance level, or these conditions were assumed to be given. By contrast,

our work uses a cyber and plant side co-design approach to provide in real-time the physical

side state information to the cyber side, based on which the cyber fault-tolerance level can

be determined.
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CHAPTER 4

IMPLEMENTATIONS OF ADAFT

4.1 Structure of the AdaFT Framework

The structure of AdaFT is shown in Figure 4.1. It consists of two major parts: sub-

space determination and analysis. The first part focuses on the generation of the sub-

spaces, and a machine learning approach for sub-spaces classification; whereas the analysis

part uses the outputs from the sub-space classifier, and simulates the system to perform

reliability analysis. AdaFT takes the physical side information of the controlled plant as

input, implements an adaptive fault-tolerance approach to guarantee the same safety level

as the traditional approach would do, while keeping the computing resource usage as low

as possible, as well as improving the long-term reliability of the computing platform.

4.1.1 Sub-space Determination Component

The sub-space determination component consists of two parts: sub-spaces generation,

and sub-spaces classification. The system model is a mathematical description of the phys-

ical system, typically given as a set of differential equations. In this work we assume the

system model can accurately represent the real physical plant, since the major implemen-

tation is based on simulation. As one of the inputs of the sub-space generator, AdaFT

actually uses a reduced order system model, which will simplify the system model to a

reasonable level while still maintaining the key physical components. This reduced order

model has the potential of significantly reducing the total amount of time collecting data

for the sub-spaces. We will discuss how to obtain this model in later sections.

Control tasks are the real-time control tasks that control one or more of the physical

state components. We focus here on periodic tasks; sporadic tasks with the period replaced
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Figure 4.1. Software Architecture of AdaFT

by a minimum invocation between successive tasks can be incorporated easily. Typically,

each task will have a task period, deadline, a worst case execution time (WCET), and power

consumption. These parameters are usually determined during the design time and hence

are known in advance.

Constraints are the safety space constraints SSC, such as the minimum inter-vehicle

spacing for adaptive cruise control (ACC) system on highways, or the allowed angle range

for the various joints of a robot.

Sub-space generation is one of the core parts of AdaFT, which divides the operating

space of the CPS into S1, S2, and S3 sub-spaces defined in Section 3.2.3. These sub-spaces

will in turn determine the level of runtime deployment of the fault-tolerance needed to

ensure the system safety.

Sub-spaces classification takes as inputs points from the sub-spaces, and then uses ma-

chine learning techniques for their classifications. The purpose of this part is to efficiently

compute the FT level during runtime, as the total size of the three sub-spaces are typically
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very large. Most machine learning algorithms only need small memory to store the fit-

ted model for real-time classification, and the running time for these are in the order of

milliseconds, or even microseconds [38].

4.1.2 Analysis Component

The analysis component of AdaFT uses a real-time computer model, with the support of

real-time operation system (RTOS) and real-time scheduling policy to execute the control

tasks. The level of software and hardware redundancy depends on the sub-spaces and

the corresponding trained parameters. Reliability model should be included for analysis.

Our current implementation uses the TAAF metric. Finally, the physical plant model uses

realistic simulators, such as Carsim [48], for the simulations.

4.2 Implementations

We have implemented AdaFT in both Python and Matlab. We chose Matlab due to its

popularity in many engineering domains. Python is gaining popularity due to its powerful

numerical and machine learning libraries such as numpy, scipy and sklearn. In this section

we sketch several of the technically interesting aspects of the implementation.

4.2.1 Sub-Space Generation

The sub-space generator is a core component of AdaFT. It takes as inputs the control

tasks, the system dynamics model, and the SSC safety constraints. Then, for each given

state in the entire state space, AdaFT determines whether it is in S3 by simulating the

system to a certain time horizon or final condition. The three sub-spaces, S1, S2 and S3 are

then generated from S3.

Algorithm 4 shows how to generate S3 through simulation based on the system dynam-

ics. Each intermediate state before the time horizon (or final condition) needs to be checked

against SSC. If all are within SSC, then this specific initial state is within S3.
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ALGORITHM 1: S3 Generation
Input: The operational state space
Output: S3;
for All x that satisfy the SSC do

run simulation with x as initial condition, with control period (step length) δt and
correct control, until the time horizon is reached or the final condition is satisfied;
if all intermediate states satisfy the SSC then

S3.add(x);
end

end

Algorithm 2 shows how to generate S1, S2 and S3. It takes S3 as input, and for each

state x in S3, it simulates the controlled plant for one task period. For S1, the worst case

wrong control is applied. If after one task period, the physical state of the plant is still

within S3, this state x is within S1. On the other hand, if the plant is in S3 with zero

control after one control period, x belongs to S2. Finally, based on the definition of S3 and

S3, x is in S3 if it is in neither S1 nor S2. If there are multiple tasks in the system, each

individual task will have its own set of sub-spaces. When generating the sub-spaces for one

particular task, we assume other tasks are producing correct outputs. Note that there are

almost always infinitely many points in S3, therefore, one might need random sampling to

be applied, or other techniques (for example, by changing the simulation granularity), to

choose x so that the software will finish in a finite amount of time. We will discuss this

complexity issue in later sections.

Remark 1: It should be noted that both hardware and software fault-tolerance can be ap-

plied using AdaFT. We have already discussed hardware fault-tolerance using duplex and

triplex. Software fault-tolerance techniques are similar in the sense that they use redun-

dancy. Examples include N-version programming which is a static redundancy technique

[23]. There are also error detection and recovery techniques such as the recovery block ap-

proach [23]. All AdaFT needs to know is what sub-space the physical plant is currently in.

If the plant is in S1, then no FT is needed (neither hardware or software);for S2, only duplex

for hardware FT or error detection such as 2-version software is sufficient followed by a 0
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ALGORITHM 2: sub-spaces Generation
Input: S3;
Output: S1, S2, S3;
for All x in S3 do

run simulation with x as initial state with control period δt with the worst case
wrong control;
if after one period the state is within S3 then

S1.add(x);
else

run the same simulation with zero control;
if after one period the state is within S3 then

S2.add(x);
else

S3.add(x);
end

end
end

control input for a fail stop model; and finally for S3, triplex for hardware FT or 3-version

programming for software FT may be used. The user can decide whether to use hardware

only, or hardware and software fault-tolerance together. A real-world example is the Boe-

ing 777 flight control system. A single Ada program was produced but three processors

(hardware triplex) each using a distinct compiler (software 3-version dynamics) were used

for fault-tolerance [10]. For such a case, S1 corresponds to only using one processor with

one compiler, S2 corresponds to using two processors with two different compilers, while

S3 is the current default option.

Remark 2: The complexity of this approach is proportional to the number of voxels

of the state space that are evaluated. This number is obviously exponential in the number

of state space dimensions. However, we do not require that the entire safe state space be

evaluated. Each voxel in S3 starts, by default, in S3; it may be reclassified as in S1 or S2

following an evaluation. For this approach to be useful, it is sufficient to evaluate the more

frequently visited parts of the state space, which can be obtained by gathering traces of the

state space trajectory and evaluating the state space neighborhoods of these points.
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Remark 3: Note that we do not explicitly model communication faults. Highly effective

coding and other redundancy mechanisms exist to reduce communication errors to desired

levels. If necessary, the event of an undetected/uncorrected error in communication can be

included in the failure probability of the relevant task.

4.2.2 Worst Case Controller/Actuator Action

Recall from the definition of S1 as a sub-space where the application of any physically

realizable input over one control period will not cause the system to leave the safe state

space. The following approach can be used to generate S1.

The user has to specify a cost function indicating divergence from the desired state

trajectory or value. Control is usually applied to ensure minimization of such a function.

However, one can instead try to maximize such a function given the control input con-

straints. If such a maximum divergence still keeps the controlled plant within S3, that point

will be declared to be within S1. A good rule of thumb for this type of cost function is

to use cost =
∑
i

(xi−xid
xid

)2, where xi is the actual values for the ith state variable which

we care about its safety, and xid is the corresponding desired value. Note that the feature

scaling [38] of the state variables is important (i.e., normalizing each variable into the scale

of 0 to 1), since the total cost will otherwise mainly consist of the states with large absolute

values. Further details can be found in [38].

This approach to compute the worst case control is essentially a simplified optimiza-

tion problem. The only constraints for this problem are the control input bounds, normally

provided by the specifications of the actuators. Algorithms to solve optimization prob-

lems with potentially complicated state dynamics might become computationally expen-

sive, however, since this step is executed offline using simulation software, execution time

will not be an issue.

It should be noted that for many applications it is sufficient to use some heuristics to

determine the worst case control/actuator outputs. For example, in the ABS braking system,
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the controller will steer the slip ratio towards its optimal point (a typical value is 0.2). If the

current slip ratio is greater than this value, then the worst case actuator command is equal

to the upper bound of the actuator value with the opposite control direction.

4.2.3 Multiple Control Tasks

The approach introduced in Section 4.2.1 can be generalized to control plants with

multiple control inputs. At runtime, AdaFT will determine the number of copies for each

task at each iteration release. The approach to determine the subspace of S1, S2 and S3

runs as follows.

First, we need to decide which state points belong to S3. This step is the same as before,

i.e., the correct control inputs for each task are applied to the plant with a particular initial

state condition. If, to a time horizon, all intermediate states satisfy the SSC, this initial state

vector belongs to S3. Note that to speed up the process, all of the intermediate states should

also be added to S3, since the final condition for the initial state is the same as the one for

all those intermediate states.

Next, in order to determine S1, we need to determine the worst control inputs vector

for all tasks, given a specific initial state condition. We apply this worst case control inputs

vector to the plant for one control period for a particular task. Notice that each control task

may have a different period, therefore the time to apply this worst control vector might also

differ depending on which control task has been released.

The way to find a worst control inputs vector is identical to the single control task

case. First we define a cost function regarding the safety requirements of the plant, cost =∑
i

(xi−xid
xid

)2. Then, several constraints can be defined, such as the actuator bound, and the

same optimization approach can be applied, where the decision variables in this case are

the control inputs for all tasks.

For S2, the procedure is similar to S1: we apply a zero or default control (e.g. control

from last period) for the tasks under consideration and apply the worst control for all the
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other tasks. After one control period of a particular task, if the plant state vector still

remains inside S3, this initial state belongs to S2. Note that the worst control for all the

other tasks are applied here, since we don’t have control over the inputs to the other tasks;

they can be any value in case of failures.

It should be noted that for multiple control tasks, each task would have a corresponding

subspace that consists of S1, S2 and S3. Now let us take an example of 3 tasks: t1, t2 and

t3, with the period of 10 ms, 10 ms, and 20 ms, respectively. After obtaining S3 with the

correct control, the next step is to obtain S1. For S1 with respect to t1 and t2, we need to

use the worst control vector to run the simulation for 10 ms, and check if the plant is still

within S3 at the end of that period. While for S1 with respect to t3, we run for 20 ms and

then check. In order to obtain S2 for t1, we use zero control for t1 and the worst control

vector for t2 and t3 and simulate for 10 ms. If the final state is still within S3, that point

belongs to S2. S2 for t2 and t3 can be obtained using the same procedure.

4.2.4 Reduced Order System Model

For simpler controlled plants it is feasible to use a full order system model to generate

the sub-spaces. For more complex plants, we use machine learning techniques, for exam-

ple, feature selection, and precision-recall trade-off [38]. We first sample certain amount

of data with a coarse granularity, run simulations, and classify these samples as to whether

or not they violate the SSC. We split the resulting data set into training and testing sets.

The training set is for fitting a particular machine learning model, while the testing set is

for testing the accuracy of the model for unseen data using the fitted model [38]. The next

step is to use a machine learning algorithm that can calculate he importance of each fea-

ture, e.g., random forest, to fit the data. At this point, if the testing accuracy is higher than

a threshold, (e.g., higher than 98%), and the precision, i.e., the percentage of the correct

prediction of the class belonging to S3, is also high enough, (e.g., higher than 99%), we

can assume the fitted machine learning model can not only fit the training data very well,
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but can also be well generalized. We can then use this simplified fitted model, rather than

the real simulations which are more time consuming and complex, to generate more data

for S3.

On the other hand, if we observe a high training accuracy with a lower testing accuracy,

this typically means an overfitting of the model, or high variance. We must either reduce

the model complexity or get more data. For the first approach, we can remove the features

with relatively low importance from the model. For the latter, we can sample more data

with respect to the more important features, again according to the feature importance. If

there is a low training accuracy, which means an underfitting or high bias, we must first fit

the training set using more advanced techniques such as the ensemble model that combines

several weaker models to achieve a better one. Our results show that most CPSs have a high

training accuracy due to the clear relationship between the inputs (the previous state values

and the control inputs) and the outputs (the new state values), determined by differential

equations. In all of our case studies, we achieved very high training and testing accuracy.

If, for any case, it is impossible to achieve high accuracy, we need to sacrifice in terms

of recall which is the proportion of true positives (data points belonging to S3) that are

correctly predicted as such, for high precision. With a slightly lower recall, the system

might waste some computing resources for providing unnecessary redundancy; but with a

low precision, a hazardous behavior may occur.

It should be noted that other approaches can be used along with machine learning.

For example, since each simulation is independent of the other, parallel computing can

be employed to accelerate the data collecting process using multiple computers. Further,

pruning techniques like Branch-and-Bound can be used [14].

We now consider the inverted pendulum [59] as an example to demonstrate the machine

learning approach. The system consists of an inverted pendulum mounted on a motorized

cart and the pendulum is kept close to vertical by controlling the cart speed. The system

has four states: (cart position, cart velocity, pendulum angle, and pendulum angular rate).
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We first generate data with the following granularity: the step size of the cart position, cart

velocity, and pendulum angular rate are all set to 2 meters, m/s, rad/s, respectively, while

the step size of the pendulum angle is 0.1 radians. We define a reasonable operating range

for each state component, e.g., (-10, 10), (-10, 10), (-0.5, 0.5), (-10, 10), respectively. For

example, we generate data points for pendulum angles from -0.5 to 0.5 radians, with a step

size of 0.1 radians. There would be around 10000 data points, which are then simulated,

and labeled as 1 if a particular data point never violates the safety constraint (the angle

stays in the range of -0.5 to 0.5 radians), and 0 otherwise.

We use 20% of the data as the testing set, and use the random forest technique with

k-fold cross validation to fit the remaining 80% of the data. During the process, we use a

grid search to tune the hyper-parameters of the random forest, i.e., the number of trees/es-

timators.

For the initial data set we have achieved a 99% accuracy for the training set and a 95%

for the testing set. The training accuracy is higher than the testing accuracy indicating over-

fitting. We need to either reduce the complexity or get more data. The feature importance

for the four state variables was: 0.285, 0.301, 0.155, and 0.258, from which we can con-

clude that all of the four variables are equally significant for the classification. Therefore,

we followed the second approach and added more data. We decreased the granularity of

the cart velocity from 2 to 1 m/s, since it is the most important feature for this particular

problem. With the new 20000 data points, we obtained a training accuracy of 100%, a

testing accuracy of 99.7% and a testing precision of 99.5%. The random forest technique

achieved a good training and testing accuracy, as well as a high precision so we then used

it to generate data for S3.

4.2.5 Actuator Noise, Sensor Noise and Failures

Controlled plants are subject to noise or uncertainties from the operating environment.

For actuator noise, AdaFT considers the worst case scenario when generating the sub-
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spaces. In AdaFT, the motion model of the controlled plant includes a state transition

probability p(xt|ut, xt−1), where xt, xt−1 are the state values at time t and t−1, respectively,

and ut is the control input at time t. These probability distributions are derived using the

input models of the noise. For a particular final condition provided by the simulation,

AdaFT checks, up to a specified confidence interval, whether all states are safe, and if so,

the initial state is declared to belong to the corresponding sub-space.

As for the sensor noise, there are many well studied techniques for noise filtering,

among which the Kalman filter and the Particle filter are commonly used in control ap-

plications, such as self-driving cars and UAVs [56]. Both techniques are dynamic Bayesian

networks (DBN). The Kalman filter is an exact tracking algorithm, while the Particle filter

is an approximate one. Both use the system dynamics and the control inputs to generate a

prior belief about the physical states. This is called the prediction step. Then, they calculate

the likelihood of the sensor measurements given the initial prior belief. Finally, a posterior

belief distribution is obtained for the updated estimation. This is called the update step.

The Kalman filter produces optimal estimates for unimodal linear systems with Gaussian

noise. It calculates a Kalman gain which will be used during the update step.

In contrast, the Particle filter uses Monte Carlo sampling to randomly generate parti-

cles, each corresponding to an initial guess. Then, during the prediction step, it moves the

particles based on the dynamics model to obtain the next state of each particle. At the up-

date step, the Particle filter updates the weight of each particle based on the sensor reading,

which is essentially the likelihood of the sensor reading for each particle. Particles that

closely match the readings are weighted higher than those which do not match well. Fi-

nally, the Particle filter uses a resampling technique to discard highly improbable particles

and replaces them with copies of the more probable ones, in order to get the posterior belief

distributions. The Particle filter works well for nonlinear systems, whereas the Kalman fil-

ter must first perform linearization which might be difficult for some systems. The detailed

mathematical derivations of these algorithms can be found in [56].
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(a) Angle Tracking(sensor 1) (b) Angular Rate Tracking (sensor 2)

Figure 4.2. Raw Sensory Data ((a)-(b))

AdaFT uses the Kalman filter to track linear systems, and the Particle filter for non-

linear systems. We used the Kalman filter for the inverted pendulum mentioned earlier. The

initial state conditions are set to (0, 0, 0.4, 0.5) and the actuator noise standard deviation to

0.06 N. We used two sensors with different profiles for the tracking and assume that both

sensors have the ability to measure angle and angular rate. The two sensors have an angle

noise standard deviation of 0.01 rad and 0.002 rad, respectively, and have an angular rate

noise standard deviation of 0.005 rad/s and 0.1 rad/s, respectively. We assume that sensor

1 is better at sensing angular rate, while sensor 2 is better at sensing angles. Figures 4.3

- 4.5 show how filtering algorithms can reduce the sensor noise, and improve the tracking

accuracy and confidence.

In order to handle transient and persistent sensor failures, AdaFT extends the standard

Kalman and Particle filter algorithms. As discussed before, during the update step, these

filtering algorithms calculate the likelihood of the sensor measurements given the prior

beliefs. For Particle filters, the calculation of weights for each particle is the likelihood

calculations, but it is easy to calculate the likelihood of the sensor measurements given the

output of its prediction step as the prior beliefs. If the calculated likelihood is less than

a reasonable threshold (e.g., less than 1%), it is highly likely that the sensor produced a
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(a) Angle Tracking (b) Angular Rate Tracking

Figure 4.3. Kalman Filter for Sensor 1 ((a)-(b))

(a) Angle Tracking (b) Angular Rate Tracking

Figure 4.4. Kalman Filter for Sensor 2 ((a)-(b))

wrong value. In such a case, the system will skip the update step and take the value from

the prediction step for this particular sensor. Intuitively, this approach assumes that the

beliefs of the system have a certain amount of ”inertia” that would overcome the temporary

sensor failures. With respect to a persistent sensor failure, this approach would consistently

use the prior belief or the remaining working sensor(s) for the tracking. Figure 4.6 shows

how the filtering algorithms would handle sensor failures. We deliberately assign some

arbitrary wrong value (100) for sensor 2 for 1 second for the transient failure case, and for

the remaining of the simulation for the persistent failure case. We see from the figures that
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(a) Angle Tracking (b) Angular Rate Tracking

Figure 4.5. Kalman Filter for Two Sensors Combined ((a)-(b))

(a) Transient Failure (b) Persistent Failure

Figure 4.6. Kalman Filter with Sensor 2 Failure Model ((a)-(b))

the recovery from transient failures can be very fast, and performance degradation is not

very severe.

4.2.6 Estimating Thermally-Induced Aging

TAAF expresses by how much the natural circuit aging process is accelerated by op-

erating at a high temperature [24]. AdaFT uses a first-order thermal model to estimate

temperatures; if desired, this model can be replaced by the user with one that more pre-

cisely captures the thermal characteristics and the failure dependencies of the particular

hardware.
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Each processor in AdaFT is treated as a single node, dissipating p(t) Watts at time

t. A standard equivalent electrical circuit model is used to model heat flow, where resis-

tances and capacitances have thermal counterparts [49]. Thermal capacitance is the amount

of heat required to raise the temperature of a node by one degree; thermal resistance de-

termines the heat flow across a given temperature gradient (temperature is treated as an

analogue of voltage). Denote by R and C the thermal resistance (associated with heat flow

from the node to the ambient) and capacitance (of the node), respectively. Let Tproc(t)

and Tamb denote the absolute temperature of the processor and the ambient temperature,

respectively. Then, the following differential equation emerges from the equivalent circuit

model: C dTproc(t)

dt
= p(t) − Tproc(t)−Tamb

R
. Solving this yields the temperature at any given

time as a function of the power consumption.

The aging acceleration model for the hardware depends on the actual technology used.

AdaFT provides the option to define a software module which expresses this function; how-

ever, a default aging module is provided based on the widely used Arrhenius acceleration

model, in which the aging factor at time t, λ(t), is proportional to exp(−Ea/(kTproc(t)))

[58]. Here, Ea is the activation energy [58], whose value is a user-provided input. The

accumulated aging over a given interval [a, b] is then calculated as
∫ b
a
λ(t)dt.

AdaFT computes TAAF based on the power consumed as a function of the load. The

hardware configuration consists of three or more cores/processors on which tasks can be

scheduled. The default scheduling policy is to pick the coolest processor to run at each time

step; but the user can replace this scheduling algorithm by any other. AdaFT then computes

the average TAAF as well as the instantaneous TAAF for each core. Recall that when the

controlled plant is in sub-space Si, it schedules i copies or versions of the control task.

It should be noted that TAAF is closely related to a more common term in the fault

tolerance and reliability literature, i.e., the mean time to failure (MTTF), which is calculated

as:
∫∞
0
tf(t)dt, where the f(t) is the probability distribution density of the lifetime under

unstressed conditions. Therefore, if the effective age of the device at chronological time t
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is given by x(t) =
∫ t
0
λ(τ)dτ , the updated MTTF is given by:

∫∞
0
tf(x(t))dt. Once TAAF

is calculated, AdaFT uses these equations to compute the MTTF.

Remark 4: Heating is by no means the only accelerator of failure. Other stressors

include humidity, mechanical vibration and static discharge. Our focus in AdaFT is on

allocating and scheduling computational workload which primarily affects device temper-

ature. Other stressors have to be dealt with by other, orthogonal, means, such as improved

packaging, mechanical damping and changes in circuitry; their impact on reliability can be

modeled separately.

4.2.7 Sub-space Classification

During operation, the application must rapidly determine which sub-space it is in. This

is a classification problem which must be solved rapidly.

Since such a real-time classification can never guarantee 100% accuracy, a conservative

approach should be developed for system safety. The system might be allowed to make

wrong decisions from S1 to S2 or to S3, but not the other way around. Mis-classification

from S1 to a higher level of fault tolerance will do no harm to the system safety, only waste

some resources.

Since the plant state-space is well defined, we can treat this as a supervised classi-

fication problem [38]. We first perform some pre-processing techniques such as feature

scaling, feature selection or extraction using principal component analysis (PCA) [38]. We

experimented with a variety of techniques including random forest (RF), logistic regression

(LR), neural network (NN) and support vector machine (SVM) with various kernel func-

tions, including linear, polynomial and Gaussian kernels [38]. Each algorithm has several

hyper-parameters to tune, such as the number of trees for random forest, the regularization

strength for LR, NN and SVM, etc. We use the technique of grid search to find the best

possible algorithm with the best combination of hyper-parameters. Sometimes it is nec-

essary to use an ensemble approach to find the best machine learning model, i.e., to use
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several weaker individual models combined with majority voting for a stronger model. It

should be noted that, although AdaFT has an interface for classification, all of the machine

learning processes are application-specific and cannot be generalized. The interface is only

for the purpose of connecting the fitted model to the analysis part of AdaFT for execution.

We refer the reader to [38] for a detailed explanation of how these algorithms work. Here

we concentrate on how to apply these algorithms to our specific needs.

We first discuss about the training data and features. These depend on the system. The

feature list is the state vector plus the control period. For example, in modeling an anti-

lock braking system, only the vehicle speed and the wheel speed of one quarter of the car

(we used a quarter-car model for ABS control in a straight line) are required, therefore

the features are these two state variables plus the ABS control period. As for the training

data, it depends on the choice of SSC, the control period, and the physical dynamics of

the system. For example, if the size of the state spaces that satisfies SSC is small, and the

control algorithm period is long, it would result in small sub-spaces S1, S2, S3. Normally,

AdaFT will keep the default settings for the data size and the number of features. But

if the training accuracy is very low under some predefined threshold, it will decrease the

granularity of the simulation data. For example, in Figures 5.10 and 5.11, the granularity

is 1 m/s for the speed. If the training accuracy is low, AdaFT will refine the granularity

to a certain extent, such as 0.2 m/s. The learning algorithm will then re-run with the new

granularity. This is similar to the approach in Section 4.2.4.

Next, we discuss about how to deal with Safety Critical Issues: We must ensure high

precision, i.e., the proportion of the predicted positives that are actually positives. We

can sacrifice some of the recall, that is, the proportion of true positives that are correctly

predicted as such. With a slightly low recall, the system wastes some of the computing

resource for unnecessary fault-tolerance redundancy; with low precision, potential hazards

might occur.
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One approach is to adjust the threshold value used to make decisions. Normally, the

learning algorithm will produce a 1, for a two-class classification problem, if the output of

the hypothesis function is larger than a threshold of 0.5, and a 0 otherwise. In multi-class

classification problems, the algorithm will pick the class with the largest output from the

hypothesis function. These probabilistic values show how confidently the algorithm makes

certain decisions. If the confidence level of the algorithm needs to be increased, this thresh-

old can be adjusted from 0.5 to a higher value. If there is any wrong classification from

a more dangerous sub-space (e.g., S3) to a safer sub-space (e.g., S2 or S1), the threshold

value will be iteratively adjusted. If the largest value among all classes from the hypothesis

function is higher than the threshold value, the algorithm will take that value and make the

corresponding decisions; otherwise, it will determine the current system state to belong to

S3. Some machine learning libraries such as scikit learn provide automatic methods that

can be used to find the best threshold value, such as the precision-recall curve [8].

Remark 5: AdaFT uses machine learning techniques to classify states into sub-spaces

economically and efficiently. This well-known classification problem has long been the

focus of researchers in the AI and machine learning community, and these are the most

effective techniques to date. Which of these techniques will perform best depends on the

application. If the true underlying decision boundary is complex and highly non-linear,

probably a simple linear classifier such as logistic regression might not perform very well,

and a more sophisticated model such as neural network or support vector machine with

non-linear kernels should be used. With each specific application, one should use some

search technique such as a grid search to find the best classifier/model with the best hyper-

parameters associated with it. If high prediction accuracy cannot be guaranteed, then suf-

ficient precision must at least be satisfied, by using some techniques such as the precision-

recall curve to adjust the threshold with which to predict a particular class. The details are

discussed in the case studies.
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Remark 6: It should be noted that when applying to a running real-time system, AdaFT

will need to predict the level of fault-tolerance, and possibly the version of each task dur-

ing runtime, which would inevitably introduce overhead, even with machine learning tech-

niques. One should be very careful to choose an appropriate classifier for the runtime pre-

diction. This classifier should not only have high accuracy and/or precision, but it should

also introduce only light overhead in terms of execution time and power consumption.

Typically, given a particular micro-controller, the speed of the processor is fixed, unless

dynamic voltage and frequency scaling (DVFS) is used. Therefore the complexity of the

classifier in terms of the running time is particularly important. Normally, machine learning

models with better capabilities, such as more hidden layers for a neural network, or number

of trees for a random forest, will need more running time for accurate prediction. As a rule

of thumb, decision tree based models will have very small running time, and therefore little

overhead. In general, a model with less capacity would have small overhead [38].

4.2.8 Load Tuner

Sub-space generation is one of the core parts of AdaFT, its purpose is to determine

the minimum number of copies for each task that is required in order to satisfy the safety

conditions. This is one component of our Load Tuner design. Another component is to

determine the version for each task, to balance the quality of control and the safety condi-

tions, while at the same time to keep the power consumed by the computing resources as

low as possible.

Typically, the safety constraint guaranteed by the sub-space determination makes sure

that the physical plant can always operate in a safe condition. However, most of the time

there also is a quality of control (QoC) constraint. For example, in a typical highway pla-

toon, as long as the inter-vehicle space is greater than a certain threshold (e.g., 15 meters),

it is safe, but if the space is larger than another value (e.g., 50 meters), the quality of con-

trol, in this case the highway throughput, is poor. Automatic highway control tasks such
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as adaptive cruise control (ACC) algorithms control such inter-vehicle distance. More ad-

vanced ACC will yield better quality of control than simple ACC, although both could

ensure the minimum safety inter-vehicle distance.

We now define the role of the load tuner in terms of task version selection and the num-

ber of task copies determination. Task version selection refers to deciding which version

to choose for each control task. Number of task copy determination means deciding how

many copies of each control task should be executed, using the parameters from the offline

classification training for the sub-space generation.

The objective of the version selection is to decide which version of a control task to

use, in order to satisfy the QoC constraints while keeping the TAAF as low as possible,

assuming the periods of different versions of a task are the same, and assuming that a better

version would have a worse TAAF. This can be viewed as a classification problem. The

feature list here consists of the state vector, the versions to be used for each task, and the

times at which these control tasks are applied to the plant. Normally this time feature is the

period of a particular task for which we would like to decide to select a particular version.

Now suppose a system consists of a total of n tasks. At a particular time instance, there

arem tasks with new iterations becoming available. We would like to decide which version

to run for each of the m tasks. Unfortunately this problem is NP-hard and intractable, since

the complexity of finding a global optimal solution for the m task combination is O(vm),

where v is the number of versions. We provide a heuristic here to find a sub-optimal

solution for the version selection, with the complexity of O(vm). Algorithm 3 is used for

this purpose.

We initialize the task versions as the ones with the worst QoC. For each task, we in-

crementally check a better version, using the trained classifier with all other task versions

fixed. If, during the process, the QoC is satisfied, we are done with this task and move to

the next one. This algorithm might sometimes be stuck at local optima.
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ALGORITHM 3: Load Tuning
Input: The state vector and control tasks
Output: Versions and copies for each available task;
Initialize the versions of all available m tasks as the one with worst QoC, and keep
the versions of the remaining n−m tasks as is;
for Each of the available m tasks do

for Each version ordered from worst to best QoC do
if the current version is the best version then

Use the sub-space classifier to determine the number of copies;
end
Use the system model to predict the QoC after one period of this task, using
the current version assignment;
if the QoC constraint is satisfied then

Use the sub-space classifier to determine the number of copies;
Break;

end
end

end
return the current version and copy assignment;

Number of Copies Determination means picking the number of copies for each task

during runtime. Notice that this part can be decoupled from the Version Selection part,

since the worst case control and the zero/default control inputs are the same, regardless of

the versions of the tasks. Therefore Algorithm 3 also deals with the copy assignment for

each task.

Note that in the case of a multiple-version multiple-control system, the complex version

would normally have a larger S3, due to its better QoC. Therefore, each of the m versions

for every n control tasks would have a different S3 and sub-spaces. To generate all these

sub-spaces even offline calculation is intractable once n and m become large. If we include

the version number for each task in our machine learning model, the feature dimension

would grow exponentially. Thus, for computational purposes, we will use the simplest

version for each task to generate S3, assuming that if the simplest version for each task can

guarantee a safe control, the more complex version with a better QoC would also guarantee

a safe control. This S3, although conservative, can guarantee a safe control as long as all
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of the control tasks are correct (does not matter which version). After S3 is generated, we

can use the approach introduced in Section 4.2.3 to generate all the sub-spaces.

4.2.9 Real-Time Computing Model

AdaFT has an built-in real-time task model which has the following attributes: name,

period, deadline, worst case execution time (WCET), actual execution time, power, and

status (running, idle, etc.). It also has a probability density function of the execution times,

in order to randomly generate the actual execution time for simulation purposes. The period

and deadline of the task are needed for real-time scheduling, and the power is needed for

thermal aging (TAAF) analysis.

Real-time scheduling is an essential part of real-time system control. After the Load

Tuner has determined the version and number of copies for each task, the scheduling algo-

rithm will assign the tasks to appropriate cores to run. There are two widely used scheduling

algorithms, i.e., the rate monotonic (RM) and the earliest deadline first (EDF) algorithm.

The main scheduling algorithm used in industry today is RM, which determines the task

priorities as inversely proportional to task periods [15][28]. EDF determines the task pri-

orities according to their absolute deadlines.

AdaFT has scheduling modules to support both RM and EDF. For a system composed

of multiple cores/processors, AdaFT uses the widely developed EDF-based algorithms:

Global EDF (GEDF) and Partitioned EDF [15]. GEDF assigns m out of n highest priority

tasks to m available processors during runtime. GEDF has also the property of automati-

cally balancing the workload for each CPU. On the other hand, Partitioned EDF requires

the designer to assign tasks to particular processors offline according to EDF. During the

execution, when a new iteration of a task arrives, the scheduler just assigns this task to its

corresponding processor.

When users develop their CPSs using AdaFT, they must guarantee the system schedu-

lability (i.e., that all task deadlines will be met). RM, EDF and GEDF have been well
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studied for schedulability, interested readers can refer to [15] for the details, as well as a

comprehensive survey of other real-time scheduling algorithms.

With this real-time scheduling model, the user can easily experiment with different

periods and possibly different execution times of each control task, and see the impact of

these parameters on the size of each sub-space.

Remark 7: Regarding communication faults, highly effective coding mechanisms exist

to reduce them. The level of coding can be adjusted according to the reliability require-

ments of the task in question. Another alternative is to send multiple copies. The AdaFT

framework can be used to determine the impact of such choices (and others) on the rate of

degradation of the hardware. If multiple copies of individual message need to be sent, and

if this imposes non-negligible stress on active (powered) elements, the message sending

and receiving operation can be treated within AdaFT as tasks with the core generating the

message. No change to the framework is therefore required.

For example, consider the stochastic communication paradigm introduced in [7]. The

idea is to send a message to a random intermediate destination from where it is forwarded

to its destination. This requires the creation of additional send-and-receive tasks which can

be handled by AdaFT as any other task.

Note that AdaFT is equally applicable to all forms of redundant hardware, software,

time and information. The framework determines from the application dynamics whether

the output needs to be fault-masked, fault-detected (without masking) or neither. What

redundancy types are used (individually or in combination, e.g., N-version programming

with triplex) is up to the user. Based on the FT level, the framework calculates the stress

placed on the computational elements.

Remark 8: AdaFT in this dissertation is mainly for simulation purposes. In order to ap-

ply AdaFT to real-world applications, some practical issues need to be addressed. The first

one is that AdaFT needs a fairly accurate physical dynamics model of the plant. Computer-

controlled systems of the physical plant already require detailed and accurate dynamic
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models for implementation. Many design decisions are based on such models. For exam-

ple, designers must determine the appropriate task periods for the periodic control tasks.

Doing so requires a tradeoff between the quality of control and the imposed computational

workload. Another decision which requires accurate modeling, is the minimum time be-

tween the releases of sporadic tasks in a real-time system. Evaluation of the comparative

effectiveness of various competing control algorithms also requires accurate models. Such

models are also needed in the certification of life-critical cyber-physical systems.

The control engineering community has responded to such a need by constructing de-

tailed models of controlled plants. For example, CarSim [48] is based on a validated, highly

detailed model of key aspects of automotive dynamics, used by both industries as well as

universities. Similarly, detailed models of aircraft exist, such as [53].

There are many tools for system dynamics modeling. One example is to use regression

techniques to model the input-output relationships given enough data collected by running

the actual hardware and physical plant. Matlabs identification toolbox shows numerous

examples of how to derive, both linear and non-linear, dynamic models from data.

The second issue is where to incorporate the AdaFT’s load tuner, which includes both

version selection and number of copies determination. The easiest and most straightforward

way is to incorporate AdaFT into the scheduling model of the RTOS. Before the actual

scheduling, AdaFT will determine the task load by predicting which version of the new

task, as well as how many copies this task will need for the current physical state. Then,

the scheduling algorithm will schedule the determined task load for the system. As long

as AdaFT’s load tuner runtime overhead can be kept reasonably small, it will not affect

system performance.

4.2.10 DVFS

Energy efficiency in CPSs is achieved by adjusting the power consumption of the sys-

tem. Recently emerged real-time dynamic voltage and frequency scaling (RTDVFS) tech-
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nique is one of the most promising techniques for energy-efficient scheduling. Real-time

applications often have large variations in terms of their actual execution times. As a result,

they often finish much earlier than their estimated worst-case execution time [2]. RTDVFS-

based techniques exploit these variations for dynamically adjusting voltage and frequency

in order to reduce power consumption of processors. The challenge for these techniques,

however, is to preserve the feasibility of schedule and provide deadline guarantees.

In [5], the authors proposed several RTDVFS that are suitable for multi core/proces-

sor real-time systems. AdaFT implements one of the algorithms discussed in [5], called

Dynamic Slack Reclamation (DSR). The DSR algorithm is shown in Algorithm 4. It is

based on detecting the early termination of tasks with respect to their worst-case execution

times. Since it is not possible to know a priori the actual workload of a running task until it

terminates, DSR algorithm determines the amount of slack only once a task terminates by

comparing worst-case and actual-case workload. Based on the amount of available slack, if

any, the algorithm determines how much a processor could be slowed down to execute the

next dispatched task such that the dispatched task does not execute beyond its worst-case

boundary defined in the canonical schedule. Algorithm 4 demonstrates that, for a feasible

task set, Scan is obtained a priori and all tasks are sorted according to their priority order

under the selected scheduling algorithm. The highest priority m tasks are assigned to m

processors for execution at statically specified maximum frequency (fmax) and dynamic

slack is initialized to zero. Note that DSR updates current frequency (f ′) only at schedul-

ing events. If a task terminates, its earliness is determined by computing dynamic slack

time based on the difference between actual and worst-case (canonical) execution times.

For positive slack (slack greater than 0), the total amount of available time and required

time for next priority task at f ′ of the processor is determined. Based on the difference

between available and required time, a scaling ratio (SR) is computed to update f ′ for sub-

sequent task. However, if the terminating task does not generate dynamic slack, statically

determined fmax is retained for next priority task.
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ALGORITHM 4: Dynamic Slack Reclamation
Input: Control tasks profiles and priorities Scan

Output: Frequency of the processor, f ′;
Sort ready tasks in priority order;
Set slack = 0;
f ′ = fmax;
for Each scheduling event do

if scheduling event is termination then
Detect early termination;
Compute dynamic slack (slack = Ci - AET i);
if slack > 0 then

Compute available time (tavailable)for next task at f ′;
Compute required time (Ci+1) for next task at f ′;
Compute scaling ratio (SR = tavailable/Ci+1);
Update f ′ w.r.t SR;
if f ′ < fmin then

f ′ = fmin;
end
Execute next priority task at update f ′;

end
else

f ′ = fmax;
end

end
end

4.2.11 Hardware Provisioning

Controllers of life-critical plants must be designed in such as way that the overall re-

liability is higher than a user-defined requirement, while making sure that the quality of

control (QoC) satisfies the constraints, and the amount of hardware provisioned is as small

as possible.

There are two types of systems, repairable and non-repairable. For repairable systems,

the primary aim is to keep the QoC as high as possible so that it can satisfy the QoC

constraints, under the assumption that if one or more cores do fail, the system can soon be

repaired. In such a system, the simpler version of the control task is only used when the

overall system reliability is lower than a threshold, so that the system can operate in a safe

degraded mode.
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Non-repairable systems (e.g., in space missions), always have a limited operational

horizon or mission lifetime, which can be expressed in terms of the mean time to failure

(MTTF). The design objective for such systems is to resolve the trade-off between the (a)

QoC provided, (b) mission lifetime or MTTF, and (c) amount of hardware provisioned.

AdaFT can be used to design non-repairable CPS. As mentioned in Section 4.2.6,

AdaFT will compute the MTTF after TAAF is calculated. AdaFT will take the QoC con-

straint as one of its inputs,and will decide which version of each task to choose and how

many copies to run, to ensure that constraint is satisfied. The user can follow an itera-

tive approach to determine the amount of hardware (the number of processors in this case)

provisioned as follows. The user starts with the minimum number of processors required,

which is 3 since we need at least 3 processors in case of full level of fault-tolerance. Then

with several initial conditions, possibly with random fault injections, the user can check if

the MTTF after the simulation meets the requirements. If not, then one can incrementally

adjust the number of processors, until the MTTF is satisfied.

4.3 AdaFT Programming Interface

Figure 4.7 shows the major parts of AdaFT, in a UML class diagram. AdaFT provides

API function calls such as the sub-space generator in both Python and Matlab.The CPS

class wraps all major components of a CPS, including the Physical System, Sensor, Cyber

System, and Actuator. The Sub-Space Generator class uses the CPS to generate all of the

sub-spaces that are then used by the Classifier to fit a classification model, which is later

used by CPS for execution. Initially, CPS runs with correct, zero and wrong controls to

generate sub-spaces, and then uses machine learning techniques to generate a fitted model.

Once the fitted model (or classifier in our case) as the classifier is generated, it runs with the

classifier for reliability analysis. The Cyber System includes one or more Processor objects,

which has the support from RTOS, which in turn consists of several Task Model objects as
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Figure 4.7. Block Diagram of AdaFT

real-time tasks. The Worst Control is a child-class of Task Model, and the Reliability Model

and its child-class TAAF are also part of the Processor class.

To use AdaFT, one has to write a physical system implementation, possibly inherited

from the PhysicalSystem class. In particular, the update() and issafe() methods need to be

implemented. update() simulates the physical states updates, according to control inputs

and the corresponding actuator signals. issafe() checks if the SSC is met during simulation.

The next step is to implement the control tasks, both correct and worst case control,

through the API from TaskModel class. Essential attributes of a task need to be specified:

namely, power, WCET, deadline, and period. In addition, the run() abstract method must
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be implemented, which is the actual algorithm of the task. Note that the filtering algorithms

discussed before also are real-time tasks and should always be run with the highest redun-

dancy, since the physical side information will be estimated through them. The inputs of

the custom control tasks should be the outputs of these filtering tasks, whose inputs are the

raw sensor readings.

There are additional methods that users can implement or override the default imple-

mentation, such as the heuristics to sort the data points for the sub-space generation, ac-

cording to some safety rules, but they are not required, either because they are not a core

part of AdaFT, or AdaFT already has the default implementation.

If the system dimension is small, AdaFT will start the whole process to generate the

sub-spaces through getSSS() and getSubspaces() methods. Otherwise, the user has the

option to provide a fitted machine learning model discussed in Section 4.2.4 as the input to

the getSSS() method to generate S3.

After the sub-spaces S1, S2 and S3 are generated, the user must select a machine learn-

ing algorithm for the classifications, through the API from the Classifier class. This fitted

machine learning algorithm will then be used by the analysis part of AdaFT for reliabil-

ity analysis. Other additional custom parameters the user can specify include, sensor and

actuator noises, processor voltage and frequency, real-time scheduling policy for RTOS,

etc.

4.3.1 Example Program

The inverted pendulum example is a linear system with a Kalman filter, and A, B, C, D

matrices to define and track the physical states. Detailed equations can be found in the case

study. Here we demonstrate how to program such a adaptive fault-tolerance system using

AdaFT.

To provide the system dynamics, and the control task (LQR), we use two child classes

inherited from their corresponding parent classes. Note that for the worst case control, if
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the worst case output can be determined without solving an optimization problem, the user

can override the run() method to directly provide this output, since the WorstControl class

itself is a child class of TaskModel.
class Pendulum(adaft.PhysicalSystem):
def update(self, h, clock, u):
self.x = # update the state vector according to actuator input u.

def is_safe(self):
return -0.5 <= self.x[2] <= 0.5

# outside this range is unsafe

class LQRInvPen(adaft.TaskModel):
def density(self):
return max(0, min(self.wcet,

np.random.normal(self.wcet / 2, 0.001)))

def run(self, inputs):
# inputs are the outputs from kalman filter
# this is the control input from LQR algorithm
self.output = -np.dot(self.K, inputs)

class WorstLQRInvPen(adaft.WorstControl):
def cost(self, x, u):
new_x = # get new state values with control u and state x

return 1/2 * ((new_x[2] - desired_x) ** 2)

def constraints(self):
self.constraints = {# define constraints here}

The user can specify sensor and actuator noises, then insert these objects into the CPS

driver class, to start generating sub-spaces, and other tasks.
angle_noise = # specify sensor noise for angle measurements
rate_noise = # specify sensor noise for angular rate measurements
actuator_noise = # actuator noise

sensor = adaft.Sensor([angle_noise, rate_noise])
actuator = adaft.Actuator(actuator_noise)

lqr = LQRInvPen()
worst_lqr = WorstLQRInvPen()
task_list = {lqr.name:lqr}
rtos = adaft.RTOS(task_list)
# We create 3 processors for redundancy
processors = [adaft.Processor(rtos) for i in range(3)]
cyber = adaft.CyberSystem(processors)
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cps = adaft.CPS(sensor, actuator, pendulum, cyber)
subspace = adaft.SubSpaceGenerator(cps, {lqr.name:worst_lqr})
subspace.get_SSS()
subspace.get_subspaces()

clf = adaft.Classifier()
# perform machine learning techniques here
clf.fit(subspace.subspaces)

cps.classifer = clf

cps.stop_condition = # determine when the simulation should stop
cps.pendulum.x = # define initial state conditions here
cps.run()

# now we can see TAAF and/or MTTF of each processor
plot(cps.cyber.processors[0].taaf)
print(cps.cyber.processors[0].mttf)
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CHAPTER 5

CASE STUDIES

In this section we present four case studies using AdaFT. The first one is a linear system,

the second and third ones are non-linear systems, with the third one being a multi-agent

system, and the last one is an linear multiple-control multiple-version system. We use a

data analytic approach to analyze case 1; and show the impact of different environmental

conditions on sub-spaces. For case 2, we show how interactions among multiple agents can

be studied through AdaFT. Finally, in Case 4 we show an end-to-end analysis using AdaFT

on a humanoid robot system, with multiple control tasks.

5.1 Case 1: Computer Controlled Inverted Pendulum

The system in this example consists of an inverted pendulum mounted on a motorized

cart. The inverted pendulum system can be modeled using either the linear time invariant

(LTI) or the nonlinear form. The LTI form uses the following set of linear equations.

ẋ(t) = Ax(t) +Bu(t) (5.1)

y(t) = Cx(t) +Du(t) (5.2)

where x(t), y(t) and u(t) are the plant state, output vector, and input vector, respectively.

A, B, C, and D are the matrices defining the controlled plant.

The objective of the control system is to balance the inverted pendulum by applying a

force on the cart. A real-world example of this inverted pendulum system is the attitude

54



(a) Inverted Pendulum (b) Force Analysis

Figure 5.1. Inverted Pendulum Cyber-Physical System [35]

control of a booster rocket at takeoff. In particular, this case study uses an optimal control

algorithm linear quadratic regulator (LQR) [59] to control the cart’s position. In this case

study, we make the following assumptions.

1. Actuator noise for both cart position and pendulum angle is 3 N (Newton) as the

standard deviation of the measurement (with the mean value as the true value). This

means that the actuator will randomly output a control force with the underline true

value as the mean, and 3 N as the standard deviation.

2. Sensor 1 noise for the four states (cart position (m), velocity (m/s), pendulum angle

(rad), angular rate (rad/s)) are: (0.001, 0.001, 0.01, 0.005) as the standard deviation

(with the mean value as the true value).

3. Sensor 2 noise for the four states are: (0.001, 0.001, 0.002, 0.1) as the standard

deviation.

4. Initial condition for TAAF analysis is (cart position (m), velocity (m/s), pendulum

angle (rad), angular rate (rad/s)): (0, 0, 0.4, 0.5).
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5. Kalman filter is used for filtering out sensor noises.

6. LQR control task period: 20 ms; deadline 20 ms; WCET: 2 ms

The pendulum is assumed to move in a two dimensional vertical plane, as shown in

Fig 5.1. For this system, the control input is the force F that moves the cart horizontally.

The outputs of the control are the angular position of the pendulum θ and the horizontal

position of the cart x.

We further assume the following quantities:

1. Mass of the cart is M = 0.5 kg.

2. Mass of the pendulum is m = 0.2 kg.

3. Coefficient of friction for cart is b = 0.1 N/m/sec.

4. Length to pendulum center of mass is l = 0.3 m

5. Force applied to the cart: F

6. Cart position coordinate: x

7. Pendulum angle from vertical (down): θ

5.1.1 Simulation Setup

Figure 5.1(b) is the free-body diagram of the two elements of the inverted pendulum

system.

We refer the reader to [35] for the detailed mathematical state space equations for the

system. We use a standard form of the state-space matrix to represent the physical dynam-

ics, as shown below, which includes a series of first order differential equations.

In this system, there are two outputs: the cart’s position and the pendulum’s position.

Therefore, the C matrix has two rows. The cart’s position is the first element of the output
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y and the pendulum’s deviation from its vertical position (a.k.a 0 degree position) is the

second element of y.

Below is the summary of the linear equations with the values.



ẋ

ẍ

φ̇

φ̈
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0 1 0 0
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x

ẋ

φ
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0
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0
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~u (5.3)
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0 0 1 0
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

x

ẋ
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
+

0
0

 ~u (5.4)

We use the lqr function from Matlab to get the K matrix, which implements the LQR

control [59]. This function computes the control gain matrix K, with the inputs of system

dynamics matrices, the Q and R matrices. The Q matrix defines the cost experienced when

the states deviate from the desired ones, whereas the R matrix defines the cost when the

control inputs are large [59].

We define the SSC to be:−0.5 < φ < 0.5, where φ is the angle of the pendulum, as we

don’t want the pendulum’s angle to be too large, otherwise it is unsafe.

As for the cost function for the wrong controller or actuator output, we first define the

desired states for the system. The aim of the inverted pendulum system is to keep the

pendulum as close to vertical as possible, therefore, the desired state of the pendulum angle

is 0. Then, we select the cost function as follows: cost = (φ−φd
φd

)2. φd is the desired

pendulum angle. This inverted pendulum example has 4 state variables, but we only care

about the third state which is the pendulum angle.

We implemented this system using the AdaFT API, as shown in the example program

template from Section 4.3.1. We now discuss some of the results.
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Figure 5.2. Precision-Recall Curve for the Classification of the Inverted Pendulum Sys-
tem. Here we use the Random Forest algorithm as an example. In fact, most of the fitted
algorithm for this system have similar prediction performances.

5.1.2 Results

We followed the approach presented in Section 4.2.4 to generate S3, which was then

used to generate all three sub-spaces.

We have collected data for the following operating space of the system:

1. Cart position: from -6 to 6 meters

2. Cart velocity: from -6 to 6 m/s

3. Pendulum angle: from -0.5 to 0.5 radians, outside which we considered as unsafe.

4. Pendulum angular rate: from -1 to 1 rad/s

After obtaining the sub-spaces, we experimented with two cases regarding S3. The first

one only considers S3 inside S3, while the second one allows S3 to include data points

inside S3 that don’t belong to either S1 or S2, as well as all data points outside of S3. If, for
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(a) Pendulum Angle (rad) (b) TAAF

Figure 5.3. Inverted Pendulum TAAF ((a)-(b)). (a) shows the pendulum angle trajectory
during the simulation with this particular initial condition, as well as the Kalman Filter
inference results, while (b) shows the TAAFs under different configurations.

Table 5.1. Random Forest Performance for Inverted Pendulum

Feature Importance Accuracy Memory Time
Position Velocity Angle Rate Training Testing

Entire Space 0.24 0.3 0.21 0.25 100% 99.7% 6.2kB 1ms
Within S3 0.0038 0.01 0.97 0.012 100% 100% 2.5kB 1ms

any reason, the states fall out of S3, full level of fault-tolerance is required, which would

rarely happen in practice as long as the control system is properly designed.

The results show that S3 includes cart positions with the range from -1 to 1 meter, cart

velocities from -4 to 4 m/s, pendulum angle from -0.5 to 0.5 radians, and angular rate from

-1 to 1 rad/s. Inside S3, S1 has pendulum angles from -0.35 to 0.35 radians. Fig 5.5 (a)

shows the cross section sub-space with both cart position and cart velocity fixed at 0 for

simple visualizations.

As discussed in Section 4.2.7, we use several popular machine learning classification

techniques to find the fitted algorithm with the best performance. We will focus on the

accuracy here, since the storage and prediction time don’t have large differences between

machine learning algorithms. From our results, except simple logistic regression that only
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(a) 20ms (b) 30ms

Figure 5.4. MPC Sub-space with the cart position and cart velocity both fixed as 0, for the
purpose of visualization. It uses MPC with two periods of 20 ms and 30 ms. Fig 5.6(b)
shows the difference of these two sub-spaces for better visualization.

Table 5.2. Decision Tree Performance for Inverted Pendulum

Feature Importance Accuracy Memory Time
Position Velocity Angle Rate Training Testing

Entire Space 0.36 0.05 0.51 0.06 100% 99.6% 1.2kB 0.0052ms
Within S3 0.0038 0.001 0.99 0.002 100% 100% 0.5kB 0.0052ms

has 85% of testing accuracy, most of other algorithms have high score close to 100%. We

only show here the performance of random forest, since it also allows us to see the feature

importance. From Table 5.1, the fitted algorithm using random forest has high testing

accuracy. What is different from our initial guess is that the cart velocity and angular rate

also play important roles for the case of entire space, other than the angle itself.

Table 5.1 and Table 5.2 show the memory usage when storing the fitted random forest

and decision tree algorithm. We use Python’s pickle module to estimate the entire fitted

algorithm space. We can see here the decision tree algorithm uses much less memory,
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(a) 20ms (b) 30ms

Figure 5.5. LQR sub-spaces with the cart position and cart velocity both fixed as 0, for the
purpose of visualization for two periods of 20ms and 30ms.

with the same high prediction accuracy. With this amount of data stored in memory, which

nowadays typically has hundreds of MBs, and with the very small running time overhead

(e.g., for the decision tree, it is less than 0.01ms), this is a compact way to make accurate

runtime predictions. In fact, this memory usage estimation is very conservative, since we

are using the pickle module to estimate the entire fitted algorithm object in Python, which

includes other unnecessary attributes such as the feature importance, references to other

objects, etc. In a real design, we only need to store the rules in the memory. In this figure,

we limited the max depth of the decision tree to 9, for better visibility, and this limited tree

algorithm would have a testing accuracy of about 88%. In our real decision tree algorithm

, we have a max depth of 15 and testing accuracy of nearly 100%. As we see in this

figure, we only need to store this rule in memory, and the worst case execution time for

a prediction is in linear relation with the max depth, which would typically be less than

50. Therefore, decision tree based machine learning algorithms are well suited for such

real-time problems. Other machine learning algorithms would have similar performance.
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(a) LQR (b) MPC

Figure 5.6. Sub-spaces Comparison for Different Periods but the Same Algorithm. (a)
shows the sub-space regions that are in 20ms periods but not in 30ms periods for LQR,
while (b) shows the similar information when the algorithm used is MPC.

For example, Logistic Regression, Neural Networks and Support Vector Machine would

only need to store the trained weights into the memory, which would typically consist of a

few hundreds of these weights (coefficients) depending on how complex the algorithm is.

The prediction time for most algorithms, except Deep Neural Networks with many hidden

layers and hidden units, is short.

Figure 5.2 shows the precision-recall curve for S3. As expected we have a very high

precision, except when the recall for S2 is higher than 80%, its precision falls to 95%.

AdaFT can adjust the prediction threshold to improve the precision. Once we set the pre-

cision threshold to 99.5% for S2, we have a total testing accuracy of 98.61%; these are the

errors that are mis-classified from S2 to S3. The precision-recall curve for the entire space

is similar and is omitted here.

Regarding the reliability results, we experimented with two different power usages for

the control task: 25 and 50 watts. Figure 5.3(b) clearly show that using AdaFT, there
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Figure 5.7. Mean TAAF with Different Periods of LQR Control.

is a significant improvement in TAAF compared to traditional FT. Under our scheduling

algorithm (picking the coolest processor to run the task), all three processors have similar

values of TAAFs. Note that in reality 50 watts is a very high power consumption and

it rarely exists for real-time embedded tasks. we still include here only for illustrating,

theoretically, that the bigger the power consumption is, the more benefits there would be

from AdaFT.

For the impact of QoC on Sub-spaces, as shown in Fig 3.1, different qualities of control

will impact S3. In fact, QoC will potentially have a significant impact on all the sub-spaces.

Typically, a larger control period will yield a worse quality of control, and as a result, we

can expect the impact of incorrect control inputs to be greater. Therefore, we will need

63



(a) 20ms (b) 30ms

Figure 5.8. Sub-spaces Comparison with Same Period but Different Algorithms. (a) shows
the sub-space regions that are in MPC but not in LQR for 20ms period, while (b) shows the
similar information except that the 30ms period is used.

to use a higher level of fault-tolerance for a greater fraction of the state space. Fig 5.5

and Fig 5.6(a) illustrate this by showing the size difference in sub-spaces using the LQR

algorithm. In particular, Fig 5.6(a) shows by how much the sub-spaces are reduced when

using a 30 ms period, compared to a 20 ms period.

However, if there is another version of the control task that uses more complex and

better algorithm, the impact of a larger control period could be reduced. In other words,

the size difference of the sub-spaces between periods will be reduced if the quality of the

control algorithm improves. Fig 5.4 and Fig 5.6(b) illustrate this idea. Here we use a more

advanced control technique called Model Predictive Control (MPC) which is an online op-

timal control algorithm. MPC will yield a better QoC than LQR because it, compared to

LQR, takes advantages of a history of the previous control moves and solves an optimiza-

tion problem over the receding prediction horizon, which is the time horizon where the

algorithm will try to predict the plant states and to minimize the cost by yielding a update
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control input path [59]. As can be seen in Fig 5.6(b), the difference between 20 ms and 30

ms, especially for S1 and S3 is very little.

It is straightforward to compute an optimal period, in terms of the mean TAAF, for a

particular control algorithm. Increasing the control period will reduce the runtime compu-

tational burden for a single copy of the control task. However, it will also lead to a reduced

size of S3, and therefore all of the sub-spaces. In such a case, more time will be spent

using higher level of fault-tolerance (i.e., more than one copy of the task). Fig 5.7 shows

the optimal period around 30 ms, with the lowest average TAAF.

Fig 5.8 shows the comparison of sub-spaces using the different LQR and MPC algo-

rithms. It clearly shows that a smaller control period will reduce the difference between the

two algorithms. Since smaller control period yields a better QoC, it again shows that with

a better quality of control, the impact of using a worse version on the sub-spaces will be

reduced.

5.2 Case 2: Anti-lock Braking System (ABS) in a Straight Trajectory

For the case-study of an ABS in a straight line the canonical seven degree-of-freedom

car model was used [16][42], along with the Dugoff tire model [17]. The user inputs to

AdaFT are the physical plant dynamics and the SSC. The car dynamics are nonlinear;

the reader should see [16][17][42] for detailed explanations of the car state equations and

control algorithms. These equations allow us to implement the system using AdaFT API,

similar to the template shown in Section 4.3.1. Below is the summary of the setup.

1. Actuator noise standard deviation is 5 N, and the mean is the true value obtained

from the control task.

2. Sensor noise standard deviations for the two states (vehicle speed, wheel speed) are:

(0.5 m/s, 0.5 m/s).

3. Initial condition of the two states is: (30 m/s, 30 m/s)
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4. Particle filter is used for filtering out sensor noises.

5. ABS control task period: 20 ms; deadline 20 ms; WCET: 2 ms

5.2.1 Simulation Setup

Denote the front wheel steering angle as δ. Denote the longitudinal tire forces at

the front left, front right, rear left and rear right tires as Fxfl, Fxfr, Fxrl, Fxrr, respec-

tively. Denote the lateral forces at the front left, front right, rear left and rear right tires

as Fyfl, Fyfr, Fyrl, Fyrr, respectively [42].

mẍ = (Fxfl + Fxfr)cos(δ) + Fxrl + Fxrr − (Fyfl + Fyfr)sin(δ) +mφ̇ẏ (5.5)

mÿ = Fyrl + Fyrr + (Fxfl + Fxfr)sin(δ) + (Fyfl + Fyfr)cos(δ)−mφ̇ẋ (5.6)

IZ φ̈ = lf (Fxfl+Fxfr)sin(δ)+lf (Fyfl+Fyfr)cos(δ)−lr(Fyrl+Fyrr)+
lw
2
(Fxfr−Fxfl)cos(δ)+

lw
2
(Fxrr − Fxrl) +

lw
2
(Fyfl − Fyfr)sin(δ) (5.7)

where x, y, φ are vehicle longitudinal, lateral position and orientation, respectively. And

the lengths lf , lr and lw refer to the longitudinal distance from the center to the front wheels,

longitudinal distance from the c.g. to the rear wheels and the lateral distance between left

and right wheels (track width), respectively.

Define the slip angles at the front and rear tires as follows:

αf = δ − tan−1( ẏ + lf φ̇

ẋ
) (5.8)

αr = −tan−1(
ẏ − lf φ̇
ẋ

) (5.9)
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Define the longitudinal slip ratios at each of the four wheels using the following equa-

tions, where reff is the effective radius of the wheel, and ωw is the angular velocity of the

wheel:

σx =
reffωw − ẋ

ẋ
, during braking (5.10)

σx =
reffωw − ẋ
reffωw

, during acceleration (5.11)

We used the Dugoff tire model [17] to calculate the tire forces, since it can be used

separately in longitudinal and lateral directions even for a combined lateral-longitudinal

tire model.

Denote the cornering stiffness of each tire as Cα and longitudinal tire stiffness as Cσ.

Then the longitudinal force of each tire is given by:

Fx = Cσ
σ

1 + σ
f(λ) (5.12)

and the lateral tire force is given by:

Fy =
Cα(tan(α))

(1 + σ))
f(λ) (5.13)

where λ is given by:

λ =
µ× FZ(1 + σ)

2
√
((Cσσ)2 + (Cα × tan(α))2)

(5.14)

And

f(λ) = (2− λ)λ, if λ < 1 (5.15)

f(λ) = 1, otherwise (5.16)

Based on the Dugoff tire model, an optimal point of the slip ratio would give the maxi-

mum possible friction force during braking. This optimal point is typically within the range

of 0.1 to 0.25, which might be different for each tire model and could be obtained offline.
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(a) Road Friction Coefficient of 1.0 (b) Road Friction Coefficient of 0.8

Figure 5.9. ABS in a Straight Line. Here we show the state trajectories with different road
conditions. The Particle Filter is used for filtering out sensor noises, and it shows a perfect
inference here.

There are many algorithms to control the brake pressures to remain within this optimal

region. We experimented with the canonical PID control algorithm for the simulation. We

use the difference between the optimal point 0.2 and the actual slip ratio as the cost function

to estimate the worst-case wrong control input.

The vehicle’s SSC was generated by modeling the vehicle as a point mass and using

the standard Dugoff tire model [17]. Under the assumption that the vehicle mass is 1,500

kg, the initial velocity is 30 m/s and the safe stop distance is 55 meters, the generated SSC

is shown in Figures 5.10a and 5.11a for two road conditions: dry and wet, respectively.

These two figures mean that as long as the longitudinal slip ratio, defined in Equations 5.10

and 5.11, is within this region, it is safe and can guarantee a safe stop distance. Note that

with different initial conditions and safe stop distance requirements, the SSC region will be

different. Accurately determining the SSC is beyond the scope of this dissertation, and is

the responsibility of the domain specialist.

68



(a) SSC (b) FT Sub-spaces (c) TAAF

Figure 5.10. Sub-spaces and TAAF of ABS in a Straight Line with a Road Friction Coef-
ficient of 1.0. (a) shows the SSC, inside which it is sufficient for a safe stop if the control
inputs are correct. (b) shows the sub-spaces and the decision boundaries using our fitted
machine learning algorithm. (c) shows TAAFs benefits.

5.2.2 Results

Figure 5.9 shows the simulation results regarding the state trajectories under two road

friction conditions. Note how well the Particle filter tracks the system states, and that, as

expected, for a worse road condition the total time for a complete stop will increase.

Since this is a two-dimensional system, a scatter plot with the corresponding decision

boundary determined from the machine learning classification step can be easily plotted.

AdaFT generates the sub-spaces shown in Figures 5.10b and 5.11b. Note that the gains

from using adaptive fault-tolerance: almost 50% of the time, the vehicle is in the S1 sub-

space, meaning that the computational workload is significantly reduced.

Using machine learning the sub-spaces were expressed as a lookup table. Since this

system only has two dimensions, and from Figures 5.10(b) and 5.11(b) there are clear lin-

ear boundaries between the sub-spaces, therefore even a linear machine learning algorithm

such as logistic regression can perform very well. We include results from three fitted

algorithms: support vector machine with a Gaussian (rbf) kernel, logistic regression and

neural network. The lookup table had 138, 15, and 93 trained parameters for each algo-
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(a) SSC (b) FT Sub-spaces (c) TAAF

Figure 5.11. Sub Spaces and TAAF of ABS in a Straight Line with a Road Friction Coef-
ficient of 0.8. Similar information as compared to Fig 5.10 is shown here, except that this
is for a slightly worse road condition.

Table 5.3. Comparison of Learning Algorithms for ABS

LR NN SVM
Number of Trained Parameters 15 93 138
Testing Accuracy 100% 100% 100%

rithm, respectively. All three algorithms achieved 100% testing accuracy, and obviously,

the precision and recall can both be 100% since our accuracy is 100%.

To calculate the TAAF, we experimented with similar power usage levels as in the first

case study: 25 watts and 50 watts. Figures 5.10c and 5.11c show the improvement of

TAAF. Again note the reliability improvement from using adaptive fault-tolerance over the

standard redundancy-everytime approach.

We now discuss about the impact of environmental conditions on the sub-spaces. In-

tuitively, as the road condition worsens, i.e., the friction coefficient become smaller, the

road will become more slippery. Given a fixed required safe stop distance of 55 meters and

initial vehicle speed of 30 m/s, the sub-spaces will be significantly impacted by the worse

road conditions. Fig 5.12 illustrates this. For a road condition below 0.6 friction coefficient,

S1 is empty, which means that for a worst control input, even for a single control period,

the state will fall out of S3; the control inputs should be always correct for a safe stop. For
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Figure 5.12. Sub Spaces Sizes with Different Road Conditions. The baseline is a road
condition of 1.0. The two curves show the fraction of S3 and S1 compared to the baseline.

road condition below 0.5, S3 reduces to zero, which means if the road is too slippery, an

initial vehicle speed of 30 m/s (corresponding to about 65 mph) will never be able to stop

within 55 meters. As can be seen in Fig 5.13, the final stop distance under this condition is

about 60 meters, even with perfect control at every time step.

It should be noted that for this ABS case study, the required safe stop distance, the road

condition and the initial vehicle speed all impact the sub-space sizes. Therefore, in order

to handle different scenarios during the runtime execution, it would make more sense to

include all these three variables in the ”feature” list, in addition to the original two features,

when generating the sub-space and performing the offline training. As a rule of thumb,

all variables that might change during operation and that might affect the sub-space sizes

should be treated as the ”pseudo” state components included in the feature list.
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Figure 5.13. Distance of ABS-equipped Vehicle under the Road Coefficient of 0.5. It
clearly shows that even with correct control inputs, the final stop distance is about 60 me-
ters.

5.3 Case 3: Automated Highway System in a Platoon

Grouping vehicles into platoons is an approach to increase highway capacity. An auto-

mated highway system (AHS) is one technology for doing this [4].

Platoons decrease the distances between cars using coupled control approaches, which

coordinate acceleration and braking among cars. Such synchronization allows for a con-

siderable increase in traffic throughput. An overview of AHS can be found in [4]. Cars in

a platoon are an example of a distributed CPS, with numerous cooperating participants.

5.3.1 Simulation Setup

As seen before, AdaFT requires the user to provide functions to update the controlled

plant state and to generate the control signal. The physical model is much more complex

than a straight line ABS system, therefore Carsim [48] integrated with Matlab/Simulink

was used for this purpose. Carsim, a commercial automotive simulation tool, provides

realistic modeling of vehicles for a variety of road conditions; Matlab/Simulink is used
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(a) Carsim for Multiple Vehicles (b) Carsim Vehicle Body

Figure 5.14. Carsim Platoon System

to generate the control signals and update the vehicle state appropriately. As shown in

Figure 5.14, Carsim allows users to configure multiple cars interacting with each other.

User could also specify the physical parameters of the vehicle body, and Carsim would

generated sophisticated differential equations based on these parameters.

The platoon consists of a leader car and one or more followers. The state space vector

of the platoon is (v`,vf , sf ) where v` is the velocity of the platoon leader, vf is the vector

of velocities of the follower car(s), and sf is the vector of spacing between each follower

and the car in front of it.

The control task is the adaptive cruise control with the constant time-gap (CTG) policy

[42]. The idea is to set a desired inter-vehicle spacing based on this constant time gap (e.g.,

2 seconds). This desired distance then varies linearly with the relative velocity. The desired

acceleration is computed by the formula: ẍdesired(t) = − 1
h
(ε̇(t)+β(ε(t)+hẋ(t))), where h

is a design parameter, β is the desired time gap, and ε is the inter-car distance. Details about

this algorithm can be found in [42]. Obviously, a negative acceleration means braking.

As for the Safety Space Constraints, the minimum inter-car distance is set at 5 meters;

anything less is defined as control failure and unsafe conditions.
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(a) Precision Threshold Curve (b) Recall Threshold Curve

Figure 5.15. Precision Recall Trade-off.

5.3.2 Results

For the learning algorithm, the logistic regression performs poorly, while more complex

algorithms are much better. After adjusting the proper prediction thresholds, the precision

is close to 100%, as shown in Figure 5.15. Detailed plots of thermal damage to the proces-

sors also follow similar lines to those in the ABS case study and are omitted here.

We use a different perspective to analyze the results here. Figure 5.16 shows the sub-

spaces for the first follower car. Figure 5.18a shows how to deal with the follower car

joining the platoon and synchronizing its speed appropriately. Sub-spaces are shown for

various speeds of the joining car for an inter-car distance of 40 meters. If its speed is low

and it needs to accelerate to join the platoon, then little, if any, fault-tolerance is needed;

if its speed is higher, the required fault-tolerance increases. In Figure 5.18b, we consider

the impact of inter-car distance and platoon speed on the sub-spaces after speed synchro-

nization has been established between the leader and the follower vehicles. As the inter-car

distance decreases and/or the platoon speed increases, the highway throughput increases
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Figure 5.16. Platoon Follower 3D Sub-spaces for CTG Algorithm

(in terms of cars per time unit transiting at any given point) but the computational burden

also increases for each car, since a higher level of fault-tolerance is needed. For example,

at a speed of 25 meters/sec, an inter-car distance of less than 21 meters will require fault-

correction; between 22 and 34 meters, fault-detection is sufficient, and above 34 meters, no

fault-tolerance is needed.
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Figure 5.17. Platoon Follower 3D Sub-spaces for CTG Algorithm with Actuator Noise.
Here the noise level is set as zero mean, and 10% standard deviation.
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(a) Distance Fixed at 40 Meters (b) Leading car speed same as follower

Figure 5.18. Platoon Follower Car Sub-spaces. Here we fix certain variables for the visu-
alization purpose.

Figure 5.19. Platoon Leading Car Speed Pattern. X axis is the location of the car, and y
axis is the speed the car will perform.
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We now extend our model to four cars, one leading car and three following cars. The

leading car is performing a sinusoidal driving pattern (i.e., its speed follows a sine wave).

We also introduce multiple versions of the control tasks, with the complex version (version

1) as the constant time-gap (CTG) algorithm as before, and the simple version(version 2)

as the simple PID control. We claimed in Section 4.2.8 that for multiple-version multiple-

control system, it might be preferable sometimes to use the most conservative S3; that is, to

generate S3 based on the simplest version for each control task, due to high computational

burden. However, for this case, it is a single-control system, with only one control task (the

cruise control), and therefore it is reasonable to use a separate sub-space for each version

of the task. As a result, we would have two different sets of sub-spaces for the CTG and

PID versions of the task. During runtime, the load tuner will first determine which version

to run, then decide on the number of copies for that version.

Fig 5.20 shows the trade-off between TAAF and QoC, with different QoC constraints,

which in this case is the desired distance between two cars. This desired distance can also

be viewed as the average highway throughput. If this QoC constraint is set as 10 meters,

the complex version of the task will be triggered more frequently than the simple version,

and the actual average distance between two cars will be around 25 meters. Because the

average distance is larger than the desired distance, the complex version will be used most

of the time, thereby causing a larger average TAAF of about 1.20. As expected, if we relax

the QoC constraint to a larger value, the simple version will be used more often. In fact,

once the actual mean distance is greater than the desired distance, the QoC constraint is

satisfied and the simple version will be used during most of the time.

Fig 5.21 shows the trade-off between TAAF and the control period. The desired dis-

tance is fixed as 15 meters for this case. The general pattern is similar, except that for

periods greater than 35 ms, the TAAF will saturate around 1.05. This is because the period

is much larger than the actual execution time, allowing the processors to be idle for most of

the time. Even if the control algorithm is using the complex version for most of the time, as
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Figure 5.20. TAAF vs Desired Distance. The desired distance between two cars is the QoC
constraint. Here we have two versions of the cruise control task, the complex version is the
constant time-gap algorithm, while the simple version is the PID which will yield worse
QoC. The period for both versions is 20 ms. We select a more reasonable power for the
complex version as 10 watts, and for the simple version as 6 watts. The execution time for
the complex version is set as 8 ms, while the simple version is 4 ms, which were measured
using tools such as the Matlab’s Embedded Coder Profiling with a hardware target (ARM
Cortex A9)

the actual distance is larger than the desired distance, the running time of the processor will

be small so that the TAAF will also be small. However, since the period keeps increasing,

the control would be updated less frequently, and therefore the actual mean distance would

still become larger.
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Figure 5.21. TAAF vs Period. Here the desired distance is fixed at 15 meters. All other
configurations are the same as in Fig 5.20

5.4 Case 4: Humanoid Rigid-Body Robot

In this example we consider a simple model of a humanoid robot that is capable of

balancing on its own [37]. We make several assumptions:

• The robot motion is limited to a 2D plane (i.e., leaning backward and forward).

• We only have three degrees of freedom: rotation at the ankle, knee, and hip.

• The forces generated by the muscles are modeled as ideal torques between the adja-

cent body segments.

5.4.1 Simulation Setup

Figure 5.22 shows the model and its parameters.

There are four reference frames. The blue lower leg reference frame, L, is attached to

the foot by a pin joint at the ankle point A and rotates relative to the foot with an angle θ1.

The green upper leg reference frame, U, is attached to the lower leg by a pin joint at the

knee point K and rotates relative to the lower leg with an angle θ2. The red torso reference
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Figure 5.22. Humanoid Robot Balancing System [37]

frame, T, is pinned to the upper leg at the hip point, H, and rotates relative to the upper leg

with an angle θ3. Note that all rotations are along the z axis.

The three points Lo, Uo, To are the mass centers of the body segments. These are located

on the line connecting the proximal and distal joints of each body segment.

Gravity is directed downwards (y axis) and applies a force with a magnitude of mLg,

mUg, mTg at each mass center, respectively.

Three torques represent the forces from the muscle contraction. The ankle TA, knee

TK , and hip TH torques apply equal and opposite torques to the adjoining body segments.

We first list all the notations used: lower leg length: lL, lower leg mass center distance:

dL, lower leg mass: mL, lower leg inertia: ILz, upper leg length: lU , upper leg mass center

distance: dU , upper leg mass: mU , upper leg inertia: IUz, torso length: dT , torso mass: mT ,

torso inertia: ITz, gravity constant: g.
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We show below the A and B matrices, and define the physical dynamics in the form of

Equation 5.1, and plug the numerical values of the following constants into the equations:

[lL: 0.611m, dL: 0.387m, mL: 6.769kg, ILz: 0.101kg ∗m2, lU : 0.424m, dU : 0.193m, mU :

17.01kg, IUz: 0.282kg ∗m2, dT : 0.305m, mT : 32.44kg, ITz: 1.485kg ∗m2, g: 9.81m/s2].

For the details how these matrices are derived, readers can refer to [37].

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

18.337 −75.864 6.395 0 0 0

−22.175 230.549 −49.01 0 0 0

4.353 −175.393 95.29 0 0 0


(5.17)

B =



0 0 0

0 0 0

0 0 0

0.292 −0.785 0.558

−0.785 2.457 −2.178

0.558 −2.178 2.601


(5.18)

We will demonstrate in this case study a multiple-control, multiple- version example.

We use the LQR approach and the Q and R matrices to generate the control gain of K

matrix. Recall from Case Study 1 that the Q matrix defines the cost of the states deviating

from the desired ones. For this case study, we have the following setup for the control

tasks:

• There are three control tasks controlling three rates, which affect three joint angles.

These three tasks are denoted by u1, u2 and u3.

• For version 1 (the better version) we use the LQR algorithm; for version 2, we use a

simple pole placement algorithm for a typical LTI state feedback system [59].
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Table 5.4. Examples of Worst Case Control Vectors

Angle 1 Angle 2 Angle 3 Rate 1 Rate 2 Rate 3 Control 1 Control 2 Control 3
0.087 -0.087 0.087 -0.087 -0.087 -0.087 250 -250 250
-0.65 -0.087 0.087 -0.087 -0.087 -0.087 -250 250 -250
0.65 -0.087 0.087 -0.087 -0.087 -0.087 250 -250 250

• All Three control tasks have the same period of 20 ms, which are tested to ensure the

system safety and stability.

• Version 1 of each task would have 10 watts of power consumption. Version 2 would

have 6 watts. In this case study, we use McPAT to estimate the power consumption

[30].

• The WCET for each control task version 1 is 8 ms, while for version 2 is 2 ms. We

use Matlab’s Embedded Coder profiling tools to estimate the task execution time.

We also define the SSC to be:−0.78 < θ1 < 0.78, which means that as long as the

lower leg angle is from -45 to 45 degrees, the robot is safe and can always balance itself.

As for the cost function for the wrong controllers, we use the same cost function dis-

cussed in Section 4.2.2, and we define the actuator bounds as from -250 to 250 N. From

the B matrix of the system we find that each control force is not only directly applied at

one rate, but also affects the other two rates as well. Therefore, an optimization scheme is

used to find the worst combination of the control forces. Table 5.4 shows some examples

of worst control forces given particular state vectors, where the angles are in radians and

the rates are in rad/s. We use the same numerical examples in [37], i.e., with 0.087 radians

or 5 degree, 0.65 radians or 37 degree, etc.

5.4.2 Results

We use version 2 for each control task to generate S3, since with version 2 for each

control task the system would yield the worst QoC; all other version combinations would

produce a better QoC. With version 2 for all the tasks AdaFT would generate the most
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conservative S3. On the other hand, if we use every version for each task to generate

a corresponding S3, the total size of S3 would become intractable, especially when the

number of versions for each task is larger than 2 (see Section 4.2.8).

Once we have generated the most conservative S3, we can now generate the sub-spaces

for each task. Recall that each task has its own set of sub-spaces. Particularly, for u1, we

use the worst case control vector to run the simulation for 20 ms, and label the initial points

as in S1 if the final state belongs to S3. The same procedure is applied for u2 and u3. To

obtain S2 for u1, we use zero control for u1 and the worst controls for u2 and u3. After 20

ms, if the states are still inside S3, the initial states belong to S2. The same can be applied

to u2 and u3.

θ1 clearly has some relationship with the variable level, which indicates the fault-

tolerance level 1, 2 or 3; but other variables don’t show significant relationships. With

a Decision Tree classifier, we have a training accuracy of 99.92%, and a testing accuracy

of 97%. Table 5.5 shows the feature importance of each variable, and as expected, we see

θ1 with the highest importance of 0.34, and rate1 also plays a significant role with an im-

portance of 0.28. All other features are relatively unimportant, which is consistent with our

intuition, since the only SSC we care about for this system is that θ1 should be from 0 to

0.78 radians.

Recall that for the multiple control case, each control task will have its own sub-spaces,

therefore each would have a corresponding classifier. All three classifiers have very similar

results since the tasks have the same period. Our fitted machine learning algorithm has very

similar performance results for the majority of the algorithms, with a total testing accuracy

of 97%, except that the Neural Network with 3 hidden layers, each having 75 hidden units,

and a regularization factor of 0.3, has a testing accuracy of 99.6%.

Table 5.5. Feature Importance of humanoid Robot System

Angle 1 Angle 2 Angle 3 Rate 1 Rate 2 Rate 3
0.34 0.13 0.06 0.28 0.108 0.057

84



Table 5.6. Accuracy and Prediction Time of humanoid Robot System

Neural Network Random Forest Decision Tree
Testing Accuracy 99.6% 97% 97%
Prediction Time 3ms 1ms 0.0096ms

In order to apply our fitted algorithm to the system, we need to consider the trade-offs

between the algorithm’s accuracy and efficiency. Recall from the previous case studies that

even for the shallow Neural Network with only one hidden layer, and a small number of

hidden units, the testing accuracy is close to 100%. All other machine learning algorithms

have similar performance. However, in this case, due to the high dimensionality and com-

plexity, only a deep Neural Network achieves a high testing accuracy close to 100%. All

other algorithms, after tuning the hyper-parameters and increasing the training data size,

have the best testing accuracy around 97%. However, a deep Neural Network would re-

quire more parameters stored in memory and longer online prediction time. With the ARM

Cortex-A9 processor, we ran the Matlab/Simulink Embedded Coder to estimate the actual

running time for a single prediction. Table 5.6 shows the testing accuracy and the prediction

time for different algorithms. From the table, we see the advantage of using the Decision

Tree classifier for runtime prediction with very little execution time overhead, and without

much loss of accuracy.

We now show the simulation results of the QoC and TAAF. The initial condition we set

for this simulation is [-0.45, 0.087, -0.087, -0.087, -0.087, -0.087] [37]. We define our QoC

constraint as −0.15 rad < QoC < 0.15 rad, that is, θ1 should be kept inside this range

as much as possible. Figure 5.23 shows TAAFs for different combinations. In what fol-

lows we name each combination using the following pattern: Version number AdaFT(yes

or no). For example, if a combination uses version 1 and AdaFT, we name it as Ver-

sion 1 AdaFT. If a combination uses version 1 and 2 mixed together and always 3 copies

of the CPU, we will call it Version Mix All On.
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In particular, it shows the TAAF difference for several version combinations, which

clearly shows that with a higher power consumption, the benefits from AdaFT would be

larger. Here version 1 has a power consumption of 10 watts, while version 2 has 6 watts.

Therefore, the TAAF benefit from AdaFT for pure version 1 is the largest among all three

cases. Note that for the TAAF Version Mix All On and Version Mix AdaFT curves, ini-

tially version 1 is used, and after 1 second, version 2 is triggered, corresponding to the

decreasing of the TAAF staring from 1 second, until converged.

Figure 5.23 also shows TAAFs for all on and AdaFT cases with all three versions (pure

1, pure 2, and mix) together. Intuitively, for both cases, version 1 and version 2 behave like

upper and lower bounds, and the mixed version TAAF lies somewhere in between. Initially,

θ1 is 0.45 radians, which is larger than the QoC constraint of 0.15 radians, and therefore

version 1 is triggered. After 1 second, version 1 is no longer needed, since the system has

been balanced such that θ1 is inside the QoC constraint region. Thus version 2 is activated

until the end of the simulation.

If we include DVFS together with AdaFT’s load tuning, we can achieve a lower TAAF.

In AdaFT, each task has a worst case execution time (WCET) and a density function which

generates a random value according to the density function of the actual execution time of

the task. In our example we assume that the actual execution time of a task is always equal

to half of its WCET. With such a setup and the DSR algorithm described in Section 4.2.10,

we have the TAAF shown in Figure 5.23.

Figure 5.24 shows the number of copies of the control task u1. As expected, using pure

version 2 AdaFT will cause longer times when three copies are needed at the beginning of

the simulation, due to its worst QoC output. Figure 5.25 to Figure 5.28 show the actual

physical states trajectories of the system, together with the estimated Kalman filter results.

Note that AdaFT and All On scheme will actually yield very similar physical trajectories

since they are using the same control laws; the only difference will be the power consump-

tion and TAAF. Again, using pure version 2 would cause worse QoC, in terms of the value
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Figure 5.23. TAAF Of Humanoid Robot. Here we show all of the TAAFs in one figure
for comparison. The power for version 1 is 10 watts, and for version 2 is 6 watts. The
execution time for version 1 is 8 ms, and for version 2 is 2 ms. The period for both version
is 20 ms.

of θ1 at the beginning of the simulation, see Figure 5.25(b) and Figure 5.27(b). Pure version

1 has a best QoC (Figure 5.25(a) and Figure 5.27(a)), while the mixed version has a rea-

sonably good QoC (Figure 5.26(a) and Figure 5.28(a)). The mixed version uses version 1

initially, and switches to version 2 after 1 second, and thus has a good balance between QoC

and TAAF. Note that for the mixed version together with DVFS, we have a slightly worse

QoC, as shown in Fig 5.28(b), since the execution time of the control tasks is increased due

to the voltage scaling, which means the computational delay is larger. However, since the

control period does not change, the QoC becomes slightly worse.
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(a) Version 1 (b) Version 2 (c) Version Mix

Figure 5.24. Number of Copies of Control u1 using AdaFT

(a) Version 1 (b) Version 2

Figure 5.25. Humanoid Robot Rates using AdaFT or All On
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(a) Version Mix (b) Version Mix DVFS

Figure 5.26. Humanoid Robot Rates using AdaFT or All On

(a) Version 1 (b) Version 2

Figure 5.27. Humanoid Robot Angles using AdaFT or All On
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(a) Version Mix (b) Version Mix DVFS

Figure 5.28. Humanoid Robot Angles using AdaFT or All On
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Now we discuss the hardware provisioning for this case study. For this configuration,

the number of processors provisioned with the corresponding MTTF in years (which can be

computed based on the integration of TAAF over time) is shown in Table 5.7, for the case

of mixed version AdaFT with and without DVFS. The desired MTTF is set as 10 years,

which means an unstressed processor has a 10 year expected lifetime. There are several

conclusions can be made based on it. First, as expected, the higher the amount of the

hardware that is available in the system, the higher the overall average MTTF or lifetime of

the system will be. Second, additional TAAF benefits can be achieved with DVFS, which

in turn would yield higher MTTF, given the same amount of hardware. Third, if there are

many processors, the MTTF for both cases, with or without DVFS, will converge, due to

the fact that each processor will be in the idle state for most of the time. Note that even in

idle state, there is still an idle power of 0.5 watts, which is the reason for an MTTF of 9.55

years, rather than 10 years.

We now analyze MTTFs for different cyber-side configurations. We fix the power,

actual execution time, and the WCET for version 1. The configurations include power

consumption and the execution time to WCET ratio of version 2, the number of processors

provisioned, and QoC constraints. Fig 5.29 shows the correlation matrix plot between

various variables. In particular, it shows a strong positive correlation between the number of

processors and all the MTTFs. However, the correlation between the number of processors

and MTTF All On , and between the number of processors and MTTF DVFS are weaker

than that of the other two MTTFs. The intuition should be clear: using AdaFT the number

Table 5.7. MTTF In Years

AdaFT Version Mix AdaFT Version Mix DVFS
3 Processors 8.88 Years 9.16 Years
4 Processors 9.07 Years 9.28 Years
5 Processors 9.17 Years 9.34 Years
6 Processors 9.25 Years 9.38 Years
7 Processors 9.3 Years 9.42 Years
20 Processors 9.55 Years 9.55 Years
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Table 5.8. Feature Importance and Performance of Random Forest for Different MTTF
Scenarios

Processors QoC Execution Time WCET Power Rˆ2 score
All On 0.374 0.062 0.265 0.0002 0.297 0.99
AdaFT 0.598 0.122 0.134 0.0002 0.145 0.99
DVFS 0.278 0.009 0.357 0.086 0.269 0.99
AdaFT DVFS 0.563 0.019 0.208 0.048 0.161 0.99

Table 5.9. Feature Importance and Performance of Random Forest for Different Energies
Scenarios

Processors QoC Execution Time WCET Power Rˆ2 score
All On 0.355 0.038 0.289 0.0001 0.316 0.99
AdaFT 0.626 0.086 0.134 0.0002 0.153 0.99
DVFS 0.269 0.005 0.364 0.088 0.272 0.99
AdaFT DVFS 0.577 0.015 0.201 0.046 0.159 0.99

of copies will be less than 3 for most of the time, while without AdaFT, the number of

copies for the control tasks will always be 3 even for DVFS. Therefore, by increasing

the number of processors, the MTTF benefits will increase faster for MTTF AdaFT and

MTTF AdaFT DVFS.

The QoC constraint seems to have very little correlation on all the MTTFs. The reason

is intuitive: no matter what is the QoC constraint, the Robot system will only have its state

values greater than this constraint at the beginning of the simulation, and it will converge

to the balance position very quickly, as shown in Fig 5.27 and Fig 5.28. Thus, the QoC

constraint in this case would have very little correlation with MTTF. Note that this is not

always the case. For example, in the case study of Automated Highway Platoon system,

since the leading car is performing a sinusoidal speed pattern, the actual distance between

two following cars (the QoC in this case) will also change rapidly, with most of the time

within the QoC constraint (the desired distance), and other times outside. For such cases,

the QoC constraint will have stronger correlation between TAAFs and the corresponding

MTTFs, as shown in Fig 5.20.
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Figure 5.29. Correlation Matrix of MTTFs and Energy. Here a warm color means a pos-
itive correlation, and the cold color indicates a negative correlation. The more intense the
color is, the stronger is the correlation between two variables
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We next focus on the power consumption, which shows strong negative correlations. An

interesting point is that the MTTF All On case shows the strongest correlation. The reason

can be explained by intuition: since there are always three copies of the task running, if

the power consumption of the task is reduced, the effect on MTTF All On would be the

strongest. Note that here the MTTF DVFS does not have a correlation as strong as that

of MTTF All On. This is because by scaling the voltage, the power consumption of each

task would also be scaled to a certain level. As was indicated in [12][13][60], there is a

proportional relation between voltage and frequency (f ∝ v), and power is proportional to

voltage squared and frequency (p ∝ v2f ).

We will next discuss the execution time to WCET ratio. The execution time has a

similar correlation between all MTTFs, while the WCET has less correlation between

MTTF DVFS and MTTF AdaFT DVFS. Thus, the execution time to WCET ratio would

have a strong correlation between MTTF DVFS and MTTF AdaFT DVFS. To explain this,

recall that DVFS is based on the slack time after executing a control task, calculated as

slack = WCET − execution time. The greater the slack, the more scaling the DFVS

performs, thus resulting in a greater reduction of the power consumption of the actual con-

trol task.

From Fig 5.30 and 5.31 we can verify our discussions based on the correlation matrix

plot Fig 5.29. In addition, Fig 5.30(a) shows that MTTF AdaFT and MTTF AdaFT DVFS

would have much less impact than MTTF All On, from the increase of the power con-

sumption. Finally, Fig 5.31(a) also shows a ”cross” point, around 3.5 ms, beyond which

MTTF DVFS performs better than MTTF AdaFT. This means once the slack time is greater

than a threshold, 0.3 ms in this case, the pure DVFS would behave better than pure AdaFT.

Obviously, AdaFT together with DVFS would always perform the best.

It is interesting to use a machine learning algorithm to perform a regression based on

such MTTF data set. If the regression algorithm has a good result, we might be able to

predict the MTTF given arbitrary combinations of these parameters, without running any
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(a) Version 2 Powers (b) Number of Processors

Figure 5.30. MTTF Comparison 1. Here we fix the WCET of version 2 as 4 ms, execution
time as 2 ms, QoC constraint as 0.15 radians, and the number of processors as 3 for (a); all
other parameters are the same except for version 2 power, which is fixed as 6 watts, for (b)

simulation. We use the Random Forest algorithm for the regression, and show the results

in Table 5.8, which includes the feature importance and the final regression results in terms

of the R2 value. The feature importance is consistent with the correlation matrix plot in

Fig 5.29, as well as Fig 5.30 and 5.31. The R2 score shows a perfect accuracy for the

algorithm.

Finally, we consider the energy consumption. Fig 5.29 shows the energy correlations

with the five features. Fig 5.32 and 5.33 show the energy pattern as each feature changes.

From these figures, we can see an inverse relationship compared to their MTTF counter-

parts. Therefore, the analysis holds for the energy comparison, except that the patterns

are in inverse directions. Again, Table 5.9 shows a consistent feature importance matrix

compared with the figures, and the R2 score is high, indicating a good fit.
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(a) Version 2 Execution Times (b) QoC Constraints

Figure 5.31. MTTF Comparison 2. Here we fix the WCET of version 2 as 4 ms, QoC
constraint as 0.15 radians, and the number of processors as 3 for (a); all other parameters
are the same except for version 2 execution time, which is fixed as 2 ms, for (b)

(a) Version 2 Powers (b) Number of Processors

Figure 5.32. Energy Comparison 1. Here we fix the WCET of version 2 as 4 ms, execution
time as 2 ms, QoC constraint as 0.15 radians, and the number of processors as 3 for (a); all
other parameters are the same except for version 2 power, which is fixed as 6 watts, for (b)
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(a) Version 2 Execution Times (b) QoC Constraints

Figure 5.33. Energy Comparison 2. Here we fix the WCET of version 2 as 4 ms, QoC
constraint as 0.15 radians, and the number of processors as 3 for (a); all other parameters
are the same except for version 2 execution time, which is fixed as 2 ms, for (b)
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We now turn our attention to a more interesting case; we assign different periods for

each control task. Specifically, we use 10 ms for u1 and u2 and 20 ms for u3. Classifica-

tion results, TAAF, MTTF, and energy consumption show similar patterns as before. One

significant difference between this case and the previous one (with the same periods) is

that the sub-space size for each task becomes significantly different from each other. The

size of S1 for u1 and u2 would be larger than that of u3, since for u3 we need to use the

worst control vector for two times longer than u1 and u2. Since we are using the same S3

(the most conservative S3) for all three tasks, u3’s S1 would become the smallest. The S2

comparison is not as clear as S1. The reason is that we always use the worst control vector

to generate S1, on the other hand, we use zero control for the relevant control task and

the worst controls for the other control tasks, therefore the impact of zero control on the

physical state component we care about (θ1 in this case) with different periods from various

control tasks will be different. Fig 5.34 shows the size difference. It should be noted that

for the same period, only S1 for all the control tasks will be the same, since they all use the

worst case control vector. However, S2 will be different, depending on how much impact

a particular control task will have on the safety state component we care about (θ1). For

example, Fig 5.34 shows that even with a same period, u2’s S2 is larger than u1’s S2, which

means u2 will have less impact on θ1.
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Figure 5.34. Subspace Size Comparison for Each of the Control Tasks. Here u1 is set as
the baseline.
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CHAPTER 6

FUTURE WORK

6.1 Reinforcement Learning Algorithm

So far, we have taken advantage of the current physical side states to infer the level of

fault-tolerance, as well as the version of each control task to be executed. Indeed, there

exist other approaches that might further reduce the TAAF.

Recall that if the physical state is in S1, we only need to run one single copy of the

control task, since, by definition, even if the control task will yield a control signal that

would cause the worst possible actuator command, the physical state would not leave S3

before the next iteration of the task arrives. If we arbitrarily assign a control signal as the

input to the actuator, this signal cannot be worse than the worst control signal; thus the

actuator input will not lead the physical plant out of S3. We may then conclude that we

need zero copy of the control task to run at this time period! One possible approach to

assigning this control signal is simply to use the one from the previous period. This is a

greedy approach, however, that might incrementally pull the physical plant out of S1. After

certain periods, the physical plant might stay in S3 that would need three copies of version 1

control tasks to run multiple periods in order to push the plant back into S1. In such a case,

the long term TAAF might, in fact, become worse than it was in our previous approach.

In order to improve the long-term TAAF, we can use the reinforcement learning ap-

proach. In particular, we will discuss how to incorporate Q-learning [54] into AdaFT, so

that the long-term TAAF from AdaFT will indeed be improved.

Before we dive into the details of the design, we summarize the basic ideas behind

the Q-learning algorithm. Q-learning is a model-free reinforcement learning technique.
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Specifically, Q-learning can be used to find an optimal action-selection policy for any given

(finite) Markov decision process (MDP) [54]. The optimality is determined by a numer-

ical variable called Q value, which is calculated based on the state and the action taken

under this state. The Q value would give the expected utility of taking a chosen action in

a particular state and following the optimal policy afterward. A policy is a set of rules that

the agent (in the AI world, an agent is typically defined as the system that makes smart

decisions) will follow when selecting actions, based on the given state it is in. After such

an Q value function is learned, the agent will be able to select the optimal policy by sim-

ply selecting the actions which have the highest Q value in a particular state. One of the

advantages of Q-learning is that many times it does not need a model of the environment,

which is called the model-free algorithm. In addition, since Q-learning’s Q value is the ex-

pected utility, it can handle problems with stochastic transitions and rewards, without any

need for the adaptations. In fact, for any finite MDP, Q-learning would eventually find the

optimal policy, which means the agent would be able to find an action with the maximum

expected total reward over all successive steps, starting from the current state. For detailed

mathematical equations and proofs, we refer the reader to [54].

We now discuss how to apply Q-learning to AdaFT. The most important steps of de-

signing a Q-learning model include possible actions, state model, a reward function, and

the hyper-parameters such as the learning rate, the discounted factor for the long-term re-

ward. We first discuss the possible actions that the agent will explore to find the long-term

reward, or the expected utility, after taking this action, given the state it is in. As mentioned

before, if the physical plant is in S1, we might want to assign a default value to the actuator

so that zero copy of the control task will be actually executed. A reasonable choice of this

default value of the control task is the one from last period, using the zero-order hold con-

cept. Therefore, assume there are 2 versions of a control task, all possible actions can be

listed as follows: (use version 1 with 3 copies, use version 1 with two copies, use version 1
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with one copy, use version 2 with three copies, use version 2 with two copies, use version

2 with one copy, use previous value).

The state model in Q-learning is clearly different from the physical states of the plant.

The major difference is that the physical plant states are typically continuous, whereas the

Q-learning state requires that the state is finite. Additionally, the Q-learning state should

reflect somehow the long-term reward of the system, which in our case is the long-term

TAAF. Finally, the number of states should be kept reasonably small; otherwise, the Q-

learning algorithm is intractable [54]. To handle the first issue, we can use a discrete

representation of the physical states. For example, we can divide the continuous physical

states into several sections, and check which section the current physical state is in at each

update. For the second issue, a reasonable approach is to take the current TAAF value

directly from the cyber side. Since TAAF is also a continuous value, we can use it the same

way as we did the physical states.

Finally, to keep the total number of state variables small, we will use the sub-spaces

and the QoC constraint to represent the current physical side information. We will use two

variables – sub-space and QoC distance – to represent the physical side information. Let’s

first discuss the QoC distance. Take the inverted pendulum as an example, and assume that

the QoC constraint is that the angle of the pendulum should be no larger than 0.15 radians.

We will divide this value into, for example, six sections: smaller than -0.15, -0.15 to -0.075,

-0.075 to 0, 0 to 0.075, 0.075 to 0.15, and larger than 0.15, which correspond to the value

of -3, -2, -1, 1, 2, 3, respectively. If at some point, the angle of the pendulum is 0.1, then

the QoC distance will be 1, since it is in the region of 0 to 0.075. For the sub-space, we can

take the current sub-space of the plant and assign this value to this variable.

In summary, the state model will consist of three states: QoC distance, sub-space,

TAAF. This state model is discrete and represents both the physical side information and

the TAAF situation from the cyber side. Finally, this model has only three states, which

will make the Q-learning procedure converge within a reasonable amount of time.
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It should be noted that the Q value, once learned and converged, given a state and an

action is a long-term reward. This Q value is updated at each step based on Equation 6.1,

where Rt+1 is the immediate reward observed after performing at in st, α is the learning

rate, γ is the discount factor which indicates how much do we care about the future or

long-term reward (a 0 means we only care about the immediate reward).

Qt+1(st, at) = Qt(st, at) + α(Rt+1 + γmax
a
Qt(st+1, a)−Qt(st, at)) (6.1)

From Equation 6.1 we note that the update of the Q value is influenced by the immediate

reward Rt. Thus we need to introduce such a reward function into AdaFT. The goal of

AdaFT is to first to guarantee the system safety, then to satisfy the QoC constraint, and

finally to keep the long-term TAAF as small as possible. We can assign a high negative

reward if we observe, after taking an action that the system is in S3; we can assign a

medium negative reward if we observe the sub-space is S2. For that matter, we can assign

a small negative reward if we observe the physical plant is outside of the QoC constraint.

Finally, we can assign a positive reward if the TAAF is below a certain threshold.

As for the hyper-parameters such as the learning rate and the discount factor, these are

application- specific, as we will show in our case studies.

Fig 6.1 shows a sample Q-learning performance in the Humanoid Robot case study. It

shows an even further reduction of TAAF than AdaFT with Mixed Version. An explanation

for this is that, since we did not deliberately inject faults during the simulation, thus, as long

as the control task is actually executed, its output is always correct. Therefore, every time

the agent is in S2, it sees no harm in just using one copy of the control task as in S1, since

the task is triggered for both cases; the agent will always use one copy even if it is in S2.

Another reason is that, at certain times in S1, the agent may decide that it can have a higher

long-term reward by using zero-order hold value from the previous task, with zero copy.

This way, the TAAF can be significantly reduced.
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Figure 6.1. TAAF Of Humanoid Robot with/without Q-learning

One way to make TAAF worse is to manually inject faults at random times. Since the

Q-learning model gives the agent the expected long-term optimal reward, once the agent

sees some faults in S2, it will learn that if it uses one copy, the control inputs would be

wrong, and the physical states would enter into S3 with some probability. This would make

the agent more cautious about using just one copy while it is inside S2.

The design of a more advanced reward function, the tuning of the hyper-parameters and

the choice of the q-states are all worthy of future study.
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CHAPTER 7

CONCLUSION

As cyber-physical systems become ever more complicated, a trend has emerged towards

running the control tasks on an integrated computation platform rather than on isolated

controllers. Traditionally, massive always-on redundancy has been used to ensure reliable

controller performance. However, in many, if not most, instances, the controlled plant is so

deep within its allowed state space that occasional controller errors do not cause controller

plant failure. This leads to an adaptive approach to fault-tolerance. Such an approach

significantly reduces the computational burden of the controller; this reduced burden leads

to lower controller operating temperatures which prolongs mean processor lifetime.

This dissertation describes a generalized software simulation framework, AdaFT, for

an adaptive fault-tolerance approach in CPSs. AdaFT first partitions the state space of the

controlled plant based on how much fault-tolerance is required, with possibly multiple ver-

sions of each control task. Then a machine-learning based approach is used to generate

a compact memory look-up table indicating the required level of fault-tolerance. When

provided with information about power consumption, the framework carries out a thermal

analysis of the cyber elements and uses that information to estimate reliability. Possible

extensions to AdaFT include a range of control systems being evaluated (i.e., effective

handling of nonlinear and large systems); hierarchical management of distributed applica-

tions with multiple, interacting, centers of control; design space exploration for assistance

in designing the controller; automatic load tuning/balancing; and hardware provisioning

according to a user-defined expected system reliability or lifetime.
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This framework can be used in every stage of the design process. It can be used to

determine the impact of control task dispatch frequencies on system performance and re-

liability. Given processor failure rates, its calculation of thermally accelerated aging can

determine hardware provisioning for specified operational lifetime. Its analysis of con-

trolled plant dynamics can be used to set the required level of fault-tolerance for safe plant

functioning. At a time when CPS complexity and demands on reliability are both increas-

ing, AdaFT facilitates an approach to adaptive fault-tolerance that allows for economical

and safe management of resources in cyber-physical systems.
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APPENDIX

ADAFT EXAMPLE PROGRAMS

In this section we provide some examples of programs using AdaFT. These code snip-

pets are by no means complete; they only show how users can define their own fault-tolerant

CPSs using AdaFT’s API. From these templates, it is standard to define a CPS using AdaFT

API.

Case 1: Inverted Pendulum Code Snippet. Main Program:

### Inverted Pendulum ###
h = 0.001
kf_period = 0.009
kf_deadline = kf_period
kf_wcet = 0.001
kf_power = 6.5

lqr_pen_period = 0.02
lqr_pen_deadline = lqr_pen_period
lqr_pen_wcet = 0.01
lqr_pen_power = 3.5

actuator_noise = {’lqr’ : 3}

cart_pos_noise = 0.001
cart_vel_noise = 0.001
angle_noise = 0.01
rate_noise = 0.005
cart_pos_noise1 = 0.001
cart_vel_noise1 = 0.001
angle_noise1 = 0.002
rate_noise1 = 0.1

A = np.array([[0., 1.0, 0., 0.],
[0., -0.18182, 2.6727, 0.],
[0., 0., 0., 1.],
[0., -0.45455, 31.1820, 0.]])
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B = np.array([[0.0],
[1.8182],
[0.],
[4.5455]])

C = np.array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])

K = np.array([[-61.9930, -33.5054, 95.0600, 18.8300]])
P = np.array([[1000., 0., 0., 0.],

[0., 1000., 0., 0.],
[0., 0., 1000., 0.],
[0., 0., 0., 1000.]])

R0 = np.array([[cart_pos_noise, 0., 0., 0.],
[0., cart_vel_noise, 0., 0.],
[0., 0., angle_noise, 0.],
[0., 0., 0., rate_noise]])

R1 = np.array([[cart_pos_noise1, 0., 0., 0.],
[0., cart_vel_noise1, 0., 0.],
[0., 0., angle_noise1, 0.],
[0., 0., 0., rate_noise1]])

Rs = {’sensor0’ : R0, ’sensor1’ : R1}

F = 1 + kf_period * (A - np.dot(B, K))

sss = np.zeros((4, 1))
c_sss = np.zeros((4, 1))

cart_pos = [p for p in np.arange(0, 0.5, 0.5)]
cart_vel = [p for p in np.arange(0, 1, 1)]
angles = [p for p in np.arange(0.4, 0.5, 0.1)]
rate = [p for p in np.arange(0.5, 1.5, 1)]

x0 = np.array([[p],
[v],
[a],
[r]])
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init_x = copy.deepcopy(x0)
xs = x0

xtract = np.array([[0.0],
[0.0],
[0.4],
[0.5]])

actuator = Actuator(actuator_noise)

pen = InvPenDynamics(x0, A, B)

sensor = InvPenSensor([cart_pos_noise, cart_vel_noise, angle_noise, rate_noise])
sensor1 = InvPenSensor([cart_pos_noise1, cart_vel_noise1, angle_noise1, rate_noise1])
sensors = [sensor, sensor1]

kf = ct.makeLinearKF(A, B, C, P, F, x0[:, -1])
localizer = KalmanPredict(’filter’, kf_period, kf_deadline, kf_wcet, kf_power, kf, Rs)
lqr = LQRInvPen(’lqr’, lqr_pen_period, lqr_pen_deadline, lqr_pen_wcet, lqr_pen_power, K)
kalman_lqr = KalmanLQR(’kalman_lqr’, lqr_pen_period, lqr_pen_deadline, lqr_pen_wcet, lqr_pen_power, kf, Rs, K)

queue = [localizer, lqr]
queue2 = [kalman_lqr]
rtos = RTOS()
for task in queue:

rtos.create_task(task)
fail_rate = 3.1706e-09
reliability_model = TAAF(fail_rate)
processor = Processor(rtos, reliability_model)
processor2 = copy.deepcopy(processor)
processor3 = copy.deepcopy(processor)

cyber = CyberSystem([processor, processor2, processor3])

end = 4

cps = InvPenCPS(pen, cyber, sensors, actuator, end=end)

cps.run()

print("Total number of tasks released: ", cps.cyber_sys.processors[0].rtos.n)
print("Missed tasks: ", cps.cyber_sys.processors[0].rtos.missed_task)

xtract = cps.xtract
xs = cps.xs
taaf = cps.taaf[cps.taaf != 0]
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temp = cps.temp[cps.temp != 0]

plt.figure()
plt.hold(True)
plt.grid(True)
plt.plot(xtract[2, :], c = ’b’, label=’Kalman Filter’, linewidth=2)
plt.plot(xs[2, :], c= ’r’, label=’True value’, linewidth = 1)
plt.xlabel(’Time (ms)’, fontsize=18)
plt.ylabel(’Angle (rad)’, fontsize=18)
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)
plt.legend(loc=4)

f, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
ax1.plot(taaf)
ax1.set_title(’taaf’)
ax2.plot(temp)

plt.show()

Inverted Pendulum CPS Definition:user needs to implement the stop condition in should-

Stop method, and the run method to customize the running procedure of the CPS. The

parent class CyberPhysicalSystem already has a run method implemented with the mini-

mum update steps for necessary simulations. Users can override it by introducing more

customized procedures, such as logging the state trajectories.

class InvPenCPS(CyberPhysicalSystem):
def __init__(self, physical_sys, cyber_sys, sensors, actuator, h = 0.001, end = 4):

super().__init__(physical_sys, cyber_sys, sensors, actuator, h)
self.end = end
self.taaf = np.zeros([(end + 2 * h) / h, 1])
self.taaf[0] = 1
self.temp = np.zeros([(end + 2 * h) / h, 1])
self.xs = self.physical_sys.x

self.xtract = self.physical_sys.x

def should_stop(self):
return (self.clock >= self.end) or (not self.physical_sys.is_safe())

def run(self):
j = 0
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while not self.should_stop():
self.step_update()
self.clock += self.h
# print(self.clock)
self.taaf[j] = self.cyber_sys.processors[0].reliability_model.taaf
self.temp[j] = self.cyber_sys.processors[0].reliability_model.abs_temperature
j += 1
self.xs = np.append(self.xs, self.physical_sys.x, axis=1)
x_predict = np.reshape(self.cyber_sys.processors[0].rtos.task_outputs[’filter’], (-1, 1))
self.xtract = np.append(self.xtract, x_predict, axis=1)

Inverted Pendulum Physical System: User needs to implement the update method, to tell

AdaFT how the physical dynamics would update according to its current states and the

control laws.

from Physical.PhysicalSystem import PhysicalSystem
import numpy as np

class InvPenDynamics(PhysicalSystem):
def __init__(self, x0, A, B):

super().__init__(x0)
self.A = A
self.B = B

def update(self, h, clock, actuator_commands):
self.u = actuator_commands[’lqr’]
self.u = np.reshape(self.u, (-1, 1))
x_dot = np.dot(self.A, self.x) + np.dot(self.B, self.u)
self.x += h * x_dot

def is_safe(self):
return -0.5 <= self.x[2] <= 0.5

Inverted Pendulum Sensor Model: User can provide different noise scales for different

sensors, by overriding the sense method.

class InvPenSensor(Sensor):
def sense(self, x):

if len(x) != 4:
raise MyException(’The Inverted Pendulum should have 4 physical state variables!’)

return np.array([[x[0][0] + randn() * self.noise_scale[0]],
[x[1][0] + randn() * self.noise_scale[1]],
[x[2][0] + randn() * self.noise_scale[2]],
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[x[3][0] + randn() * self.noise_scale[3]]])

Inverted Pendulum Tasks, LQR and Kalman Filter: User needs to implement the density

method, which yields the actual execution time for each iteration of a task. User also needs

to implement the run method, which is the essential algorithm.
class LQRInvPen(TaskModel):

def __init__(self, name, period, deadline, wcet, power, K):
super().__init__(name, period, deadline, wcet, power)
self.K = K
self.output = np.array([[0]])

def density(self):
return self.wcet

def run(self, inputs):
self.output = -np.dot(self.K, inputs)

class KalmanPredict(TaskModel):
"""
Localization task
"""
def __init__(self, name, period, deadline, wcet, power, kf, Rs):

"""
Kalman Filter to predict linear systems
:param kf: kalman filter object
:param Rs: a dictionary of sensor noise matrix, R
"""
super().__init__(name, period, deadline, wcet, power)
self.kf = kf
self.Rs = Rs
self.output = self.kf.x

def density(self):
return self.wcet

def run(self, inputs):
"""
:param inputs: {’lqr’:....., ’sensor’: {dict of all sensor readings}}
"""
threshold = 75
inputs = inputs[’sensor’]
self.kf.predict()
predicted = copy.deepcopy(self.kf.x)
for sensor_name, z in inputs.items():

errors = abs(predicted - z)
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if errors[2] < threshold:
self.kf.update(z, self.Rs[sensor_name])

# self.kf.update(z, self.Rs[sensor_name])
self.output = self.kf.x

class KalmanLQR(TaskModel):
"""
Localization plut control task
"""
def __init__(self, name, period, deadline, wcet, power, kf, Rs, K):

"""
Kalman Filter to predict linear systems
:param kf: kalman filter object
:param Rs: a dictionary of sensor noise matrix, R
"""
super().__init__(name, period, deadline, wcet, power)
self.kf = kf
self.Rs = Rs
self.K = K
self.output = -np.dot(self.K, self.kf.x)

def density(self):
return self.wcet

def run(self, inputs):
"""
:param inputs: dictionary of all sensor measurements
"""
self.kf.predict()
for sensor_name, z in inputs.items():

self.kf.update(z, self.Rs[sensor_name])

self.output = -np.dot(self.K, self.kf.x)

Case 2: ABS Main Program:

######### Car ABS #########

### Define parameters
h = 0.001
x0 = np.array([[30.], [30.], [0.]])
xs = x0
mass_quater_car = 250
mass_effective_wheel = 20
road_friction_coeff = 1.

actuator_noise = {’abs’ : 0}
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sensor_vehicle_speed_noise = 0.5 # don’t use a very small value, which will lead to poor particle filter performance
sensor_wheel_speed_noise = 0.5
sensor_pos_noise = 0.5
all_sensor_noise_levels = {’sensor0’ : np.array([sensor_vehicle_speed_noise, sensor_wheel_speed_noise, sensor_pos_noise])}

period = 0.02
deadline = period
wcet = 0.01
power = 3.5

period_pf = 0.01
deadline_pf = period_pf
wcet_pf = 0.001
power_pf = 6.5
N = 1000

### Create and Initialize Objects
car = VehicleABSDynamics(x0, road_friction_coeff=road_friction_coeff)
car_sensor = ABSSensor([sensor_vehicle_speed_noise, sensor_wheel_speed_noise, sensor_pos_noise])
car_actuator = Actuator(actuator_noise)
abs = ABS(’abs’, period, deadline, wcet, power)

range = np.array([[0., 80.], [0., 80.], [0., 80.]])
std = np.array([1, 1, 1])
pf = ABSParticleFilter(road_friction_coeff, mass_quater_car, mass_effective_wheel, range, all_sensor_noise_levels, period_pf,

std, N=N, init_state_guess= x0)
localizer = ABSPF(’filter’, period_pf, deadline_pf, wcet_pf, power_pf, pf)

xtract = x0

queue = [abs, localizer]
rtos = RTOS()
for task in queue:

rtos.create_task(task)
fail_rate = 3.1706e-09
reliability_model = TAAF(fail_rate)
processor = Processor(rtos, reliability_model)
processor2 = copy.deepcopy(processor)
processor3 = copy.deepcopy(processor)

cyber = CyberSystem([processor, processor2, processor3])

cps = ABSCPS(car, cyber, [car_sensor], car_actuator, end=10)
cps.run()

taaf = cps.taaf[cps.taaf != 0]
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temp = cps.temp[cps.temp != 0]
xtract = cps.xtract
xs = cps.xs

print("Total number of tasks released: ", processor.rtos.n)
print("Missed tasks: ", processor.rtos.missed_task)

### Plot Results
plt.figure()
plt.hold(True)
plt.grid(True)
plt.plot(xtract[0, :], c = ’c’, label=’Particle Filter Vehicle Speed’, linewidth=4)
plt.plot(xtract[1, :], c = ’g’, label=’Particle Filter Wheel Speed’, linewidth=4)
plt.plot(xs[0, :], c = ’b’, label=’Vehicle Speed’, linewidth=1)
plt.plot(xs[1, :], c= ’r’, label=’Wheel Speed’, linewidth = 1)
plt.xlabel(’Time (ms)’, fontsize=18)
plt.ylabel(’Speed m/s’, fontsize=18)
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.legend(loc=1, fontsize = 15)

plt.figure()
plt.hold(True)
plt.grid(True)
plt.plot(xs[2, :], c = ’b’, label=’distance’, linewidth=2)
plt.xlabel(’Time (ms)’)
plt.ylabel(’Stop Dis (m)’)
plt.legend(loc=4)

f, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
ax1.plot(taaf)
ax1.set_title(’taaf’)
ax2.plot(temp)
ax2.set_title(’mttf in years’)

plt.show()

ABS CPS Definition:

class ABSCPS(CyberPhysicalSystem):
def __init__(self, physical_sys, cyber_sys, sensors, actuator, h = 0.001, end = 4):

super().__init__(physical_sys, cyber_sys, sensors, actuator, h)
self.end = end
self.taaf = np.zeros([(end + 2 * h) / h, 1])
self.taaf[0] = 1
self.temp = np.zeros([(end + 2 * h) / h, 1])
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self.xs = self.physical_sys.x

self.xtract = self.physical_sys.x

def should_stop(self):
return (self.clock >= self.end) or (self.physical_sys.x[0] <= 1)

def run(self):
j = 0
while not self.should_stop():

self.step_update()
self.clock += self.h

self.taaf[j] = self.cyber_sys.processors[0].reliability_model.taaf
self.temp[j] = self.cyber_sys.processors[0].reliability_model.abs_temperature
j += 1
self.xs = np.append(self.xs, self.physical_sys.x, axis=1)
x_predict = np.reshape(self.cyber_sys.processors[0].rtos.task_outputs[’filter’], (-1, 1))
self.xtract = np.append(self.xtract, x_predict, axis=1)

ABS Car Physical Model:

class VehicleABSDynamics(PhysicalSystem):
def __init__(self, x0, mass_quater_car = 250, mass_effective_wheel = 20, road_friction_coeff = 1.0):

"""
:param x0: [vehicle speed, wheel speed, vehicle position]
:param mass_quater_car: kg
:param mass_effective_wheel: kg
:param road_friction_coeff:
"""
super().__init__(x0)
self.mass_quater_car = mass_quater_car
self.mass_effective_wheel = mass_effective_wheel
self.road_friction_coeff = road_friction_coeff

def update(self, h, clock, actuator_commands):
actuator_commands = actuator_commands[’abs’]
g = 9.81
v = self.x[0][0]
w = self.x[1][0]
x = self.x[2][0]
slip = self._slip_ratio(v, w)
friction_force = self.road_friction_coeff * self._mu(slip) * self.mass_quater_car * g
v = v - h * friction_force / self.mass_quater_car
x = x + h * v
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w = w + h * (friction_force / self.mass_effective_wheel - actuator_commands)
w = max(0., w)

self.x = np.array([[v], [w], [x]])

def _slip_ratio(self, v, w):
return max(0., 1. - float(w) / float(v))

def _mu(self, slip):
return -1.1 * np.exp(-20 * slip) + 1.1 - 0.4 * slip

def is_safe(self):
v = self.x[0][0]
w = self.x[1][0]
slip = self._slip_ratio(v, w)
return slip <= 0.25 and slip >= 0.05

ABS Sensor:

class ABSSensor(Sensor):
def sense(self, x):

"""
:param x: [vehicle speed, wheel speed, vehicle position]
:return: sensor measurements of vehicle speed and wheel speed
"""
if len(x) != 3:

raise MyException(’The ABS should have 3 physical state variables!’)

return np.array([[x[0][0] + randn() * self.noise_scale[0]],
[x[1][0] + randn() * self.noise_scale[1]],
[x[2][0] + randn() * self.noise_scale[2]]])

ABS Tasks:

class ABS(TaskModel):
def __init__(self, name, period, deadline, wcet, power, hydraulic_speed = 3300., upper_bound = 150., lower_bound = 100.):

super().__init__(name, period, deadline, wcet, power)
self.hydraulic_speed = hydraulic_speed
self.upper_bound = upper_bound
self.lower_bound = lower_bound
self.output = max(self.lower_bound, min(self.upper_bound, self.output))

def density(self):
return self.wcet

def run(self, inputs):
optimal_slip = 0.2
v = inputs[0][0]
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w = inputs[1][0]
slip = self._slip_ratio(v, w)

if slip > optimal_slip:
brake = -1

else:
brake = 1

self.output = self.output + self.period * brake * self.hydraulic_speed
self.output = max(self.lower_bound, min(self.upper_bound, self.output))

def _slip_ratio(self, v, w):
return max(0., 1. - float(w) / float(v))

class ABSPF(TaskModel):
"""Localization task"""
def __init__(self, name, period, deadline, wcet, power, pf):

super().__init__(name, period, deadline, wcet, power)
self.pf = pf
self.output = self.pf.estimate()

def density(self):
return self.wcet

def run(self, inputs):
"""
:param inputs: dictionary of all sensor measurements, and actuator commands

e.g., {’abs’ : 100,
’sensor’ : {’sensor1’ : np.array[30., 30., 10.]

’sensor2’ : np.array[32., 31., 10.]
}

}
"""
self.pf.predict(inputs[’abs’])

self.pf.update(inputs[’sensor’])
if self.pf._neff() < self.pf.N / 2:

self.pf.resample()

self.output = self.pf.estimate()

Case 3: Humanoid Robot Main Program:

A = np.array([[ 0. , 0. , 0. , 1. , 0. ,
0. ],

118



[ 0. , 0. , 0. , 0. , 1. ,
0. ],

[ 0. , 0. , 0. , 0. , 0. ,
1. ],

[ 18.337, -75.864, 6.395, 0. , 0. ,
0. ],

[ -22.175, 230.549, -49.01 , 0. , 0. ,
0. ],

[ 4.353, -175.393, 95.29 , 0. , 0. ,
0. ]])

B = np.array([[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0.292, -0.785, 0.558],
[-0.785, 2.457, -2.178],
[ 0.558, -2.178, 2.601]])

C = eye(6)

K = np.array([[1054.367, 426.901, 153.864, 365.784, 173.577, 67.28 ],
[707.669, 610.181, 251.283, 263.836, 158.583, 72.18 ],
[12.129, 43.669, 132.469, 11.613, 16.447, 19.12 ]])

K1 = np.array([[ 929.79 , 322.082, 73.883, 317.782, 142.912,
49.865],

[ 521.09 , 431.75 , 74.787, 188.568, 105.95 , 38.039],
[ 277. , 239.326, 202.902, 108.11 , 70.849, 42.213]])

h = 0.001
kf_period = 0.01
kf_deadline = kf_period
kf_wcet = 0.001
kf_power = 6.5

lqr_period = 0.01
lqr_deadline = lqr_period
lqr_wcet = 0.008
lqr_power = 10

lqr_period1 = 0.01
lqr_deadline1 = lqr_period1
lqr_wcet1 = 0.008
lqr_power1 = 10

lqr_period2 = 0.02
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lqr_deadline2 = lqr_period2
lqr_wcet2 = 0.008
lqr_power2 = 10

actuator_noise = {’lqr’ : 0}

theta1_noise = 0.0001
theta2_noise = 0.0001
theta3_noise = 0.0001
rate1_noise = 0.0001
rate2_noise = 0.0001
rate3_noise = 0.0001

theta1_noise1 = 0.0001
theta2_noise1 = 0.0001
theta3_noise1 = 0.0001
rate1_noise1 = 0.0001
rate2_noise1 = 0.0001
rate3_noise1 =0.0001

P = 1000 * eye(6)

R0 = np.array([[theta1_noise, 0., 0., 0., 0., 0.],
[0., theta2_noise, 0., 0., 0., 0.],
[0., 0., theta3_noise, 0., 0., 0.],
[0., 0., 0., rate1_noise, 0., 0.],
[0., 0., 0., 0., rate2_noise, 0.],
[0., 0., 0., 0., 0., rate3_noise ]])

R1 = np.array([[theta1_noise1, 0., 0., 0., 0., 0.],
[0., theta2_noise1, 0., 0., 0., 0.],
[0., 0., theta3_noise1, 0., 0., 0.],
[0., 0., 0., rate1_noise1, 0., 0.],
[0., 0., 0., 0., rate2_noise1, 0.],
[0., 0., 0., 0., 0., rate3_noise1 ]])

Rs = {’sensor0’ : R0, ’sensor1’ : R1}

F = 1 + kf_period * (A - np.dot(B, K))
F1 = 1 + kf_period * (A - np.dot(B, K1))

x0 = np.array([[-0.45],
[0.087],
[-0.087],
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[-0.087],
[-0.087],
[-0.087]])

init_x = copy.deepcopy(x0)
xs = x0

xtract = copy.deepcopy(x0)

actuator = RobotActuator(actuator_noise)

actuator_multi = RobotActuator_multi_control(actuator_noise)

robot = Robot(x0, A, B)

sensor = RobotSensor([theta1_noise, theta2_noise, theta3_noise, rate1_noise, rate2_noise, rate3_noise])
sensor1 = RobotSensor([theta1_noise1, theta2_noise1, theta3_noise1, rate1_noise1, rate2_noise1, rate3_noise1])
sensors = [sensor, sensor1]

kf = ct.makeLinearKF(A, B, C, P, F, x0[:, -1], 6, 6)
kf1 = ct.makeLinearKF(A, B, C, P, F1, x0[:, -1], 6, 6)

localizer = KalmanPredict(’filter’, kf_period, kf_deadline, kf_wcet, kf_power, kf, Rs)
localizer1 = KalmanPredict(’filter’, kf_period, kf_deadline, kf_wcet, kf_power, kf1, Rs)

lqr = LQRRobot(’lqr’, lqr_period, lqr_deadline, lqr_wcet, lqr_power, K)
lqr1 = LQRRobot(’lqr’, lqr_period, lqr_deadline, lqr_wcet/2, 6, K1)

u1_1 = LQRRobotU1(’u1’, lqr_period, lqr_deadline, lqr_wcet, lqr_power, K)
u1_2 = LQRRobotU1(’u1’, lqr_period, lqr_deadline, lqr_wcet/2, 6, K1)

u2_1 = LQRRobotU2(’u2’, lqr_period1, lqr_deadline1, lqr_wcet1, lqr_power1, K)
u2_2 = LQRRobotU2(’u2’, lqr_period1, lqr_deadline1, lqr_wcet1/2, 6, K1)

u3_1 = LQRRobotU3(’u3’, lqr_period2, lqr_deadline2, lqr_wcet2, lqr_power2, K)
u3_2 = LQRRobotU3(’u3’, lqr_period2, lqr_deadline2, lqr_wcet2/2, 6, K1)

rtos = RTOS()

fail_rate = 3.1706e-09
reliability_model = TAAF(fail_rate)
processor = Processor(rtos, reliability_model)

processor_list = [copy.deepcopy(processor) for i in range(8)]

task_list = {’u1’ : (u1_1, u1_2), ’u2’ : (u2_1, u2_2), ’u3’ : (u3_1, u3_2), ’filter’ : localizer}
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clf = pickle.load(open(os.path.join(’./Cyber/’, ’subspace_clf_decision_tree.pkl’), ’rb’))

clf = {’u1’ : clf, ’u2’ : clf, ’u3’ : clf}

cyber = CyberSystem(processor_list, clf, task_list)

end = 5

cps = RobotCPS(robot, cyber, sensors, actuator_multi, end=end)

cps.run()

Humanoid Robot CPS Definition:

class RobotCPS(CyberPhysicalSystem):
def __init__(self, physical_sys, cyber_sys, sensors, actuator, h = 0.001, end = 4):

super().__init__(physical_sys, cyber_sys, sensors, actuator, h)
self.end = end
self.taaf = np.zeros([(end + 2 * h) / h, 1])
self.taaf[0] = 1
self.temp = np.zeros([(end + 2 * h) / h, 1])
self.xs = np.zeros([6, (end + 2 * h) / h])
self.xs[:, 0] = self.physical_sys.x[:, 0]
self.xtract = np.zeros([6, (end + 2 * h) / h])
self.xtract[:, 0] = self.physical_sys.x[:, 0]
self.copies = np.zeros([1, (end + 2 * h) / h])
self.version = np.zeros([1, (end + 2 * h) / h])

def should_stop(self):
return (self.clock >= self.end) or (not self.physical_sys.is_safe())

def run(self):
j = 0
while not self.should_stop():

self.step_update()
self.clock += self.h
# print(self.clock)
self.taaf[j] = self.cyber_sys.processors[0].reliability_model.taaf
self.temp[j] = self.cyber_sys.processors[0].reliability_model.abs_temperature
self.xs[:, j] = self.physical_sys.x[:, 0]
x_predict = np.reshape(self.cyber_sys.processors[0].rtos.task_outputs[’filter’], (-1, 1))
self.xtract[:, j] = x_predict[:,0]
self.copies[:, j] = self.cyber_sys.copies
self.version[:, j] = self.cyber_sys.version
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j += 1

Humanoid Robot Physical Model:

class Robot(PhysicalSystem):
def __init__(self, x0, A, B):

super().__init__(x0)
self.A = A
self.B = B

def update(self, h, clock, actuator_commands):
self.u = actuator_commands[’lqr’]
self.u = np.reshape(self.u, (-1, 1))
x_dot = np.dot(self.A, self.x) + np.dot(self.B, self.u)
self.x += h * x_dot

def is_safe(self):
return True

Humanoid Robot Sensor:

class RobotSensor(Sensor):
def sense(self, x):

if len(x) != 6:
raise MyException(’The Robot should have 6 physical state variables!’)

return np.array([[x[0][0] + randn() * self.noise_scale[0]],
[x[1][0] + randn() * self.noise_scale[1]],
[x[2][0] + randn() * self.noise_scale[2]],
[x[3][0] + randn() * self.noise_scale[3]],
[x[4][0] + randn() * self.noise_scale[4]],
[x[5][0] + randn() * self.noise_scale[5]]])

Humanoid Robot Tasks:

class LQRRobot(TaskModel):
def __init__(self, name, period, deadline, wcet, power, K):

super().__init__(name, period, deadline, wcet, power)
self.K = K
self.output = np.array([[0]])

def density(self):
return self.wcet

def run(self, inputs):
self.output = -np.dot(self.K, inputs)

class LQRRobotU1(TaskModel):
def __init__(self, name, period, deadline, wcet, power, K):
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super().__init__(name, period, deadline, wcet, power)
self.K = K
self.output = np.array([[0]])

def density(self):
return self.wcet

def run(self, inputs):
self.output = -np.dot(self.K, inputs)[0]

class LQRRobotU2(TaskModel):
def __init__(self, name, period, deadline, wcet, power, K):

super().__init__(name, period, deadline, wcet, power)
self.K = K
self.output = np.array([[0]])

def density(self):
return self.wcet

def run(self, inputs):
self.output = -np.dot(self.K, inputs)[1]

class LQRRobotU3(TaskModel):
def __init__(self, name, period, deadline, wcet, power, K):

super().__init__(name, period, deadline, wcet, power)
self.K = K
self.output = np.array([[0]])

def density(self):
return self.wcet

def run(self, inputs):
self.output = -np.dot(self.K, inputs)[2]

def makeLinearKF(A, B, C, P, F, x, R = None, dim_x = 4, dim_z = 4):

kf = KalmanFilter(dim_x=dim_x, dim_z=dim_z)
kf.x = x
kf.P = P
kf.F = F
kf.H = C
kf.R = R

return kf
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