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ABSTRACT 

POLYORGANOSILOXANES: MOLECULAR NANOPARTICLES, NANOCOMPOSITES 

AND INTERFACES  

SEPTEMBER 2017 

DANIEL H. FLAGG 

 B.S., VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Thomas J. McCarthy 

 This dissertation presents research performed in the field of siloxane polymer 

science. Three research topics will be explored in five projects. The first topic involves the 

synthesis and interfacial activity of trimethylsiloxysilicate (MQ) copolymers. The second 

topic encompasses the fabrication and characterization of Silicone - Carbon Nanotube 

(CNT) composites. The last topic examines the modification of silica surfaces using 

tris(pentafluorophenyl)borane to catalyze the condensation of silanes and silanols, with a 

particular focus on the preparation and study of water-repellant siloxane polymer grafts. 

 The first chapter provides the reader a general introduction to silicones and their 

history. This chapter describes the invention of silicones and the properties of silicone 

polymers that sets them apart from carbon-based polymers. A general background on 

silicone chemistry and applications is provided. Characterization methods are discussed 

with particular attention paid to measurements of interfaces, an area where siloxane 

materials demonstrate remarkable performance. 

 Five research projects are then described. First, a reproducible, lab-scale 

synthesis of MQ silicone copolymers is presented. MQ copolymers are commercially 

important materials that have been ignored by the academic community. One possible 

reason for this is the difficulty of controlling and reproducing the preparative 
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copolymerizations that have been reported. A reproducible method for lab-scale 

preparation was developed that controls molecular weight by splitting the copolymerization 

into the discrete steps of sol growth from silicate precursor and end-capping by 

trimethylsiloxy groups. Characterization of MQ products implicates that they are 

composed of highly condensed, polycyclic structures.  

 The MQ copolymers prepared in the first project were observed to form tenacious 

emulsions and foams. This was an obvious indication of surface activity and led to further 

investigation. No open literature reports any measurements of MQ copolymers at 

interfaces. In this second project, selected MQ structures were studied at three interfaces: 

the air-water interface, the oil-water interface and the solid-air interface of supported MQ 

monolayers. The qualitative surface activity of MQ is confirmed and quantified. Residual 

silanols are found to be responsible for surfactantcy in MQ copolymers. 

 The third and fourth projects encompass research in Silicone-CNT composites. 

The first part of this work describes the ease with which CNTs can be dispersed into 

silicone matrices. Changes in silicone chemistry can improve CNT dispersion resulting in 

improved conductivities and mechanical reinforcement at CNT loadings of only fractions 

of a weight percent. The second portion of work on nanocomposites involves the discovery 

and investigation of the dramatic increase in thermal stability of silicone elastomers 

containing CNTs. Thermogravimetric analysis and pyrolysis gas chromatography-mass 

spectrometry indicate that the CNT network constrains silicone polymer chains and alters 

the mechanisms of decomposition. 

 The last project uses the Piers-Rubinsztajn reaction to rapidly and cleanly modify 

silicon oxide surfaces. This reaction has been studied very little as a method to modify 

surfaces and there has yet to be any work that measures dynamic contact angles on 

smooth surfaces. Trialkylsilane and methylsiloxane monolayers were prepared and 

analyzed. Monolayer densities are low in this reaction and result in anomalously low 
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contact angle hysteresis for alkylsilane monolayers. Wetting properties in precise 

methylsiloxane polymer monolayers are shown to depend on graft structure. Dynamic 

contact lines from the liquid-like mobility of these grafts results in low contact angle 

hysteresis. 

 Lastly, conclusions are made regarding the future directions of silicone polymer 

science in the McCarthy group. Work on ‘rediscovering’ silicones has been insightful and 

informative. It is now time to move onto ‘discovering’ silicones. 
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CHAPTER 1 

SILICON, SILICA AND SILICONES 

“Methyl silicone was so different in composition, in structure, and in physical and 

chemical properties that it was outside the ordinary day-to-day thinking of chemists 

and engineers fifty years ago.” 

- Eugene Rochow1 

 

You’ve probably heard the word silicone and are familiar with silicone products. In 

the lab, you use silicone oil baths, silicone vacuum grease and perhaps you have even 

used “PDMS” (Dow Corning Sylgard 184). Outside the lab, you use silicone caulks, 

silicone bakeware, dimethicone-containing personal care products, silicone-containing 

contact lenses and silicone antifoaming agents that keep cooking oils from foaming and 

calm an upset stomach. In contrast, It is unlikely that you have seen silicones in the 

classroom. How can these ubiquitous polymers that fill so many roles simultaneously be 

ignored in our chemistry and materials science curricula? Organosiloxane polymers, the 

chemically correct name for silicones, are polymers based on the inorganic siloxane (Si-

O-Si) bond. Organosiloxane polymers are technology-enabling materials that perform in 

places where no other polymer can. To appreciate these polymers, it is necessary to first 

explore their invention and history. After an historical introduction, the properties, structure 

and chemistry of silicones will be introduced.1-7 

 

1.1 Silicon: The Element 

Silicon is the second most abundant element (25.7% by mass), behind oxygen 

(49.5%), found on terrestrial Earth. It exists naturally in the form of silica and silicates and 

typically is not found in its elemental form. In 1823, Berzelius was the first to isolate and 

study amorphous silicon which he formed by the potassium reduction of SiF6 at red heat.8 
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In 1854, Sainte-Claire Deville9 was the first to report crystalline silicon obtained from 

impure aluminum. Since silicon is present only as an impurity in aluminum melts, this was 

not an efficient way to produce large quantities of silicon. It wasn’t until 1895 that Henri 

Moisson10 discovered an efficient method of producing silicon by reducing silica using an 

electric arc furnace with graphite electrodes. This is the same process used today in large-

scale metallurgical-grade silicon production. While at the time of its discovery there were 

very few applications of pure silicon, it has proven to be irreplaceable in modern 

semiconductor technology where ultrapure forms are required. 

 

The location of silicon below carbon on the periodic table suggests similar 

chemistry and many early researchers assumed this to be true. There were even scientists 

who proposed silicon-based life. Similar to carbon, silicon is typically tetracovalent, 

bonding with four atoms in a tetrahedral arrangement. Unlike carbon, silicon can expand 

its valency to six due to the presence of empty d-orbitals, leading to cases of unique 

bonding and reactivity. Table 1.1 exhibits some of the atomic properties of silicon in 

comparison to carbon and other common atoms. Silicon has a larger atomic radius than 

carbon (117.6 pm versus 70 pm). Silicon has a Pauling electronegativity11 of 1.8, so it is 

more electropositive than carbon with an electronegativity of 2.5. This has serious 

implications on the chemistry of its bonding: the electropositive nature of silicon means 

that bonds to halogens, oxygen and nitrogen are far more reactive than their organic 

counterparts. Perhaps the most dramatic difference in bonding can be demonstrated by 

the different reactivity of carbon-hydrogen bonds and silicon-hydrogen bonds. Carbon and 

hydrogen have similar electronegativities so they bond almost entirely covalently with a 

slight partial negative charge on carbon (carbon being slightly more electronegative). 

Carbon-hydrogen bonds are stable and we can intuit this by the almost infinite number of 

stable hydrocarbons. The opposite is true in the silicon-hydrogen bond; the hydrogen is 
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more electronegative and carries a partial negative charge. This means that a silicon-

hydrogen bond behaves chemically as a metal hydride.12 The reactivity of the 

hydridosilane is demonstrated by the instability of silanes, which ignite when exposed to 

air. That silicon behaves differently than carbon must be appreciated to understand 

silicates and siloxane polymers. 

 
Table 1.1. Atomic Properties of Silicon, Oxygen, Carbon and Hydrogen 

Atom Atomic 
Number 

Atomic Mass Atomic Radius 
(pm) 

Pauling 
Electronegativity,11 

χPauling 

Si 14 28.0855 110 1.80 
O 8 15.9994 60 3.50 
C 6 12.0096 70 2.55 
H 1 1.00794 25 2.20 

 
 

1.2 Silica and Silicates: The Oxides13-15 

As mentioned above, silicon is the second most abundant element in the Earth’s 

crust and it is found almost exclusively bound to oxygen in the form of silica and silicates. 

In these materials each silicon atom bonds with four oxygen atoms to form a tetrahedron 

and these tetrahedra organize to form a network. The exact structure of the tetrahedral 

network varies and numerous silica structures exist including quartz, tridymite and 

cristobalite. Silicates are similar in structure to silica, but contain other metal atoms that 

replace silicon atoms in the network. Examples of silicates and their structures are: 

peridote [Mg2SiO4] (isolated tetrahedron or orthosilicate), tourmaline 

[XY3Z6B3Si6(O,OH)30(OH,F)] (ring silicate or metasilicate), spodumene [LiAlSi2O6] (single 

chain silicate or pyroxene), muscovite [KAl3Si3O10(OH)2] (sheet silicate in the mica family), 

and albite [NaAlSi3O8] (framework silicate in the Feldspar family). 

 

Human history has a close relationship with silica and silicates particularly through 

ceramic arts and science. The first tools were made of silicate flints. Clay pottery was 
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developed 25,000 years ago. Glass, an amorphous form of silica, was being produced by 

Egyptians 5000 years ago. To this day developments in concrete, cement, geopolymers 

and glass are important in construction and infrastructure technology.  

 

Silica micro- and nanoparticles are a form of silica with countless uses ranging 

from inorganic fillers and filtration media, to biomedical imaging and drug delivery. Silica 

particles come in many forms that depend on how they are prepared and a few of these 

forms are illustrated in scanning electron microscope (SEM) micrographs in Figure 1.1. 

Fumed silica comes from the combustion of SiCl4 in an oxygen-rich environment and is 

commonly used after surface treatment as an additive in polymer composites. Silica gels 

and precipitated silicas are prepared from silicate sols, like sodium silicate. Chemist are 

familiar with silica gels as column packings and we find precipitated silicas in the 

household as an abrasive component in toothpastes. Another form of silica is Stöber silica, 

monodisperse silica particles prepared from alkoxysilanes, the size of which can be 

controlled.16 Lastly, a variety silicas are formed by organisms in nature.17 Diatoms, algae 

that grow a hierarchical shell of silica, are one example that has attracted the attention of 

materials scientists and engineers. 
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Figure 1.1. SEM micrographs of silicas. (a) Silica gel used in column chromatography. 
(b) Fumed silica. (c) and (d) are Stöber particles of two diameters. (e) and (f) are images 

of a diatom shell that illustrate structural hierarchy. 
 

Silica can also be found as a native oxide on the surface of pure silicon. Our group 

and others have utilized the molecularly smooth silicon oxide layer as a platform to study 

surface science.18-21 The smooth surface is a perfect model for the chemistry of wetting 

since surface topography does not contribute: liquid contact angles can be directly related 

to surface chemistry. Smooth silica substrates on silicon wafers also simplify 

characterization by ellipsometry and X-Ray Photoelectron Spectroscopy. The reactivity of 

the oxide is similar to that of other forms of silica, making it a great model system to 

develop and study the fundamental chemistry and properties of silica surface 

modifications. Our group has a long history in surface science and chemistry, and our 

current understanding of wetting would not have been possible without the availability of 

a flat, molecularly smooth, easily characterized and chemically reactive substrate. 

 

1.3 Silicones: Organosiloxane Polymers 

The history of organosiloxane polymers and “silicones” brings us back to Berzelius 

who was the first to isolate a reactive chlorosilane, silicon tetrachloride (SiCl4). From this 
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silicon tetrachloride, Friedel and Crafts in 1863 synthesized the first organosilicon 

compound, tetraethylsilane (Si(C2H5)4), using diethylzinc.22 Friedel continued work on 

organosilicon chemistry with a coworker, Ladenburg, who in 1872 independently 

discovered the synthesis of diethyldichlorosilane ((C2H5)2SiCl2). Hydrolysis of 

diethyldichlorosilane resulted in the first organosiloxane polymer.23 Poly(diethyldisiloxane) 

(or silicon diethyl oxide as Ladenburg called it) was described as a viscous, odorless syrup 

with high thermal stability. Ladenburg also prepared ethyltrichlorosilane ((C2H5)SiCl3) and 

triethylchlorosilane ((C2H5)3SiCl) and hydrolyzed these products into the first silicone ‘T’ 

resin and disiloxane. This work was the birth of organosilicon chemistry that led to the 

invention of organosiloxane polymers. But no discussion of organosilicon chemistry can 

be complete without mention of the “grandfather of silicone chemistry,” Frederic Stanley 

Kipping. 

 

Kipping’s primary goal in organosilicon chemistry was to isolate a silicon 

stereocenter and isolate the optically active D and L isomers. Kipping synthesized 

hundreds organosilicon compounds primarily via Grignard chemistry and arduous 

separations. At this time, the reactivity of silicon was imagined to be much like that of 

carbon and during the course of his investigations Kipping proposed that he had prepared 

a silicon-oxygen double bond, a silicone in analogy to a ketone.24 Kipping was incorrect, 

silicon does not form double bonds with oxygen, and the silicones did not have properties 

analogous to ketones; but, the name silicone has stuck to this day. Seyferth4 comments 

in his review of the direct process that “Kipping’s insistence on forcing organosilicon 

compounds - their properties and reactions - into the framework of organic chemistry was 

a bias that actually proved to be a handicap to his research in organosilicon chemistry.” 

Nevertheless, Kipping prepared and isolated numerous silicon compounds that laid the 

groundwork for modern organosilicon chemistry.25 It is worth noting that many of the 
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viscous byproducts he so abhorred were in fact going to be the future of organosilicon 

research that would eventually create a new industry. 

 

Another important figure in the story of siloxane polymers is Alfred Stock. Stock 

was an inorganic chemist who synthesized and isolated silanes and organosilanes in strict 

air-free environments. During the course of his investigations, he prepared numerous 

siloxanes and identified them for what they truly were: Si-O bonds and not Si=O bonds as 

Kipping had proposed. His nomenclature for silanes and siloxanes was part of his 

universal systematic nomenclature that was later adopted by the International Union of 

Pure and Applied Chemistry. Of particular value and importance to the future of siloxane 

polymers was Stocks preparation and observation of polydimethylsiloxane in 1919.26 

Although less than 20 mg of product was obtained, it was enough to observe that the new 

material was a colorless, hydrophobic oil. 

 

The academic interest in silicones had proven fruitful for synthetic chemists looking 

to make and isolate molecules, but in 1937 Kipping famously concluded that “most if not 

all the known types of organic derivates of silicon have now been considered and it may 

be seen how few they are in comparison with those which are entirely organic; as 

moreover the few which are known are very limited in their reactions, the prospect of any 

immediate and important advance in this section of organic chemistry does not seem to 

be very hopeful.”27 With academic interest waning, the future of silicones lay in industry. 

The age of electricity had arrived and the new technology required new materials, 

particularly insulators for electrical wire and cable.  The best performing insulators at the 

time were made from glass fibers in an organic polymer matrix, but their performance was 

limited by the organic binder that failed at elevated temperature and left conductive carbon 

residues. A new binder was needed that could withstand more extreme working 
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environments and optimally would be composed of less organic mass to minimize 

conductive degradation residues. 

 

The first industrial player was Corning Glass Works, which wanted to sell more 

glass. They knew that selling glass fibers for electrical insulation was one way to do this 

and developing a high performance binder would create a greater market. Dr. James 

Franklin Hyde, a Corning researcher, tackled the problem by preparing ethyl-phenyl 

siloxane polymers using Kipping’s Grignard methods.28 These polymers could be 

oxidatively cured at elevated temperatures to make a resinous binder for glass fibers. New 

ethylphenylsilicone binders enabled glass fiber insulation to operate at temperatures of 

180 °C, a 30 °C improvement over the current state-of-the-art. When Corning Glass Works 

decided to continue research on silicones and become a large scale producer, they joined 

forces with Dow Chemical Company. Dow had control over all magnesium production in 

the United States and using the Grignard method meant silicone production required large 

quantities of magnesium. The joint venture created Dow-Corning which remains one of 

the largest silicone manufacturers in the world. 

 

When Corning had discovered the new silicone resins for electrical insulation, it 

approached the key large equipment manufactures in the Unites States to sell their new 

product. General Electric (GE) was among them. Corning invited GE to their labs to see 

the new silicone materials. Winton Patnode was a GE researcher present at the visit who 

had previous interest in silicone materials for insulation and now had a renewed interest 

in developing a silicone resin that would belong to GE. He approached Dr. Eugene 

Rochow and challenged him to develop the new polymer. Rochow, an inorganic chemist 

working in the ceramics department, decided that the optimal material would have the 

minimal organic content possible and thus focused his attention onto the preparation of 
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methylsilicones. His first preparations involved the use of Grignard reagents to make 

mixtures of chloro- and bromosilanes which he cohydrolyzed over ice water.29 The ratio of 

CH3 to Si could be determined analytically and he found ratios of 1.3 to 1.5 cured into 

horny resins with the best performance for insulation (Figure 1.2). The drawback of this 

method was that it required magnesium, that was now owned by Dow-Corning, for the 

preparation of Grignard reagents. This was not an industrially feasible route for GE. 

Rochow then developed perhaps the most important process in all of silicone chemistry: 

the direct process for the preparation of methylchlorosilanes. 

 

 

Figure 1.2. Rochow’s methylsilicone resins.29-31 His first experiments utilized Grignard 
preparations of methyl chloro- and bromo- silanes. Later experiments utilized 

methylchlorosilanes from the direct synthesis to similar effect. 
 

In “the most important single experiment and the best single day’s work in the 

history of the silicone industry,”3 Rochow discovered the direct process.30,31 In the direct 

process, a mixture of methylchlorosilanes (that can be separated by distillation) is 

produced by flowing chloromethane gas over Cu-Si alloy in a tube furnace (Eq. 1-1). 

Dimethyldichlorosilane is the major product, which is good news since it makes up the 

backbone of the most important methylsilicone, polydimethylsiloxane. In Germany, 

Richard Müller32 independently discovered the direct process; because of their 

simultaneous discoveries the direct process is called the Müller-Rochow process. The 

methylchlorosilanes that result from the Müller-Rochow process are nothing short of 
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magic. They have created a new field of polymer science and opened the door to new 

technologies that would not be possible otherwise. 

CH3Cl + Si 
Cu
→  (𝐂𝐇𝟑)𝟐𝐒𝐢𝐂𝐥𝟐 + (CH3)3SiCl + CH3SiCl3 +  SiCl4 + other silanes  (Eq. 1-1) 

 

1.4 General Properties, Chemistry and Structure of Siloxane Polymers 

The new methylsiloxane polymers invented by Rochow had properties unlike any 

carbon-based polymers. Most important to General Electric was their high thermal 

stability, high dielectric strength, low dielectric power loss and non-conducting char. 

Methylsiloxane resins could be prepared directly from hydrolysis and condensation of 

chlorosilanes from the direct process. In the form of liquids these resins could be easily 

applied to glass fiber insulation and subsequently cured into solids at elevated 

temperature. Siloxane resins were developed that not only act as electrical insulation but 

also as protective, hydrophobic paints. While the resins have useful properties, the most 

well-known methylsiloxane polymer, polydimethylsiloxane (PDMS), has some of the most 

fascinating properties of any manmade material.33,34 

 

Polydimethylsiloxane (PDMS) is the most widely recognized and studied silicone 

polymer. The structure, shown in Figure 1.3, consists of a linear siloxane backbone with 

two methyl groups on each silicon. PDMS has a Tg of -125 °C and at room temperature is 

a viscoelastic liquid at all molecular weights. It is stable in air at 150 °C and in inert 

atmosphere to over 300 °C. Unique properties of PDMS are the small changes in viscosity 

with temperature, its high compressibility compared to hydrocarbon oils, its high dielectric 

strength, its gas permeability and its low cohesive energy density. These properties make 

PDMS irreplaceable in numerous applications, particularly those that require a wide 

service temperature window. 
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Figure 1.3. Structure of poly(dimethylsiloxane) (PDMS). Silicon atoms and the attached 
methyl groups can swing about the oxygen atom and even pass through bond angles of 
180° due to the high rotational freedom of the 51% ionic siloxane bond. The longer bond 

lengths in comparison to carbon-based polymers spaces organic substituents further 
apart, aiding flexibility and rotational freedom. The electronegativity differences are 
responsible for many behaviors of siloxane polymers including chemical reactivity. 

 

To make use of PDMS or other linear siloxanes as materials, siloxane networks 

need to be created. This is achieved by crosslinking linear siloxane polymers into 

elastomers. These elastomers are viscoelastic solids, but if they are not compounded with 

filler (most commonly silica) they will have the mechanical properties of tofu. This is due 

to the low cohesive energy of the siloxane chains. PDMS elastomers have physical and 

chemical properties similar to linear PDMS oils: low glass transition and high thermal 

stability enabling wide service temperature range, high gas permeability, hydrophobicity 

and great dielectric properties. Crosslinking chemistry in PDMS and other linear silicones 

is commonly accomplished using hydrolysis and condensation (RTV silicones), radicals 

(peroxide cured) or Pt-catalyzed hydrosilylation.  

 

The performance and properties of silicones that makes them special comes from 

the siloxane bond that forms their skeleton. The siloxane bond is longer than the carbon-

carbon bond (1.63 Å versus 1.53 Å) and has average bond angles of 112° (O-Si-O) and 

143° (Si-O-Si) versus the 109.5° of carbon-carbon bonds. This places the organic 
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substituents on the siloxane backbone further apart than those on a carbon backbone, 

enabling greater rotational mobility. Most important is the fundamental difference in 

bonding that arises from the different electronegativity of silicon and oxygen. The siloxane 

bond is 51% ionic (based on Pauling electronegativity) and because of this has extreme 

conformational freedom (bond angles can pass through 180° and the bond rotates 

freely)33. The flexibility of the backbone gives siloxanes extreme dynamic mobility which 

grants linear silicone polymers the lowest glass transition temperatures of all polymers (-

135 °C for polydiethylsiloxane). In the case of PDMS, Rochow described the mobility such 

that “the silicon atom and its associated pair of methyl groups swing as a unit, as though 

the silicon-oxygen bond were a ball and socket joint.”2 The extreme dynamic mobility of 

the siloxane backbone and the widely spaced organic substituents creates high free 

volumes. The high free volume of silicones is responsible for their high compressibility, 

small change in viscosity with temperature, and large molar volumes. The freely rotating, 

low energy methyl groups result in low cohesive energy densities and low boiling points 

for methylsilicone molecules in comparison to hydrocarbons. 

 

The high temperature stability of methylsiloxanes arises from the thermodynamic 

strength of the siloxane bond; however, the thermodynamic stability should not be 

confused with chemical stability. The polarity of the siloxane bond makes it is susceptible 

to attack by acid, base and hydrolysis. This reactivity is evident in the use of acid and base 

catalysts for silicone synthesis and equilibration.35-37 If not properly removed, these 

catalysts can have deleterious effects on thermal and dimensional stability of siloxane 

polymer products. Linear PDMS – containing materials are particularly susceptible to 

degradation by equilibration into cyclic oligomers and structural changes induced by 

chemical stress relaxation.38,39 
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There is an affinity of silicones for interfaces. Like many of the other properties of 

silicones, this too arises from the dynamic mobility of the siloxane backbone and organic 

substituents on the backbone. In PDMS, the freely rotating methyl groups minimize 

intermolecular interactions between neighboring chains as mentioned previously, but 

additionally minimize interactions with interfaces. The flexible backbone ensures that the 

methyl groups can be expressed at interfaces in low energy conformations. Together 

these two phenomena result in the low surface energies of PDMS. If branching is 

introduced the mobility of the PDMS is decreased and the surface tensions are observed 

to increase accordingly.3 

 

General Electric developed a convenient shorthand40 to describe the structure of 

silicone polymers that I think of as the silicone alphabet. The four letters of the silicone 

alphabet are shown in Figure 1.4 and represent the four building blocks that can be 

combined to form silicone polymers: M for monofunctional, D for difunctional, T for 

trifunctional and Q for tetrafunctional (or quatrafunctional since T is taken). Using this 

shorthand, PDMS is MDnM where n is the degree of polymerization. Cyclic PDMS 

oligomers are written as D3, D4, D5, and so on. The famous polyhedral oligomeric 

silsesquioxane (POSS) cube is simply T8. Using these four building blocks, an infinite 

number of silicone skeletal structures can be imagined. Commercially important silicone 

copolymers include those of MQ, MT, DT and TQ. Chapters 2 and 3 of this thesis will focus 

on the preparation and properties of MQ copolymers. 
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Figure 1.4. Structural components of silicone polymers and shorthand GE 
nomenclature.40 

 

Beyond the diversity in physical structures that can be formed from M, D, T and Q 

there is even greater diversity in the chemical identity silicones can inherit from the organic 

substituents (denoted by R in Figure 1.4). Methyl groups are the most commonly 

encountered organic substituents but hydride, alkane, alkene, alkyne, perfluoroalkane, 

thiol, amine, phenyl, aryl, epoxy, ionic and zwitterionic functions can be incorporated. The 

versatility of silicones is infinite. Unfortunately, silicones are relatively unexplored in 

academic literature. 

 

1.5 Ignorance of Silicones 

Silicones are technology enabling materials that were invented to fulfill a practical 

need. Not only do they possess unique properties but they tell an impressive story of 

curiosity-driven academic research united with pragmatic, applied industrial research. 

How is it that silicones are not found in materials science or polymer science curricula? 

Why is this material ignored in the classroom? What keeps modern academic researchers 

from working in the field? The reasons lay in the historical context of the story of silicones 

and the very nature of siloxane polymers. 

 

Silicones were invented by two competing industrial powers. This obviously led to 

trade secrets and limited the early literature concerning silicones to patents. To complicate 
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matters further, the development of silicones coincided with World War II. The remarkable 

new silicones, which enabled Allied aircraft to fly higher among other technological 

advantages, were a national security secret. This held the publication of any silicone 

related work back until after the war. On top of that, the silicone producers were mandated 

to work together to support wartime production and thus had temporary access to all 

silicone patents. After the war, patent lawsuits arose from these relationships that further 

delayed the release of silicone knowledge. 

 

Even with the knowledge of silicones available, there was little academic interest 

in them or polymers in general. Materials science was, and in many cases still is, focused 

on metallurgy, ceramic and semiconductor technologies. Chemistry departments did not 

yet view polymers as an academic subject. Polymers eventually gained more ground in 

academic curricula but silicones did not. Carbon-based polymers neatly fit into organic 

chemistry, general polymer science and even biology curricula. Silicone polymers do not. 

The inorganic siloxane backbone and unorthodox reactivity excludes them from organic 

chemistry. The organic substituents exclude them from inorganic chemistry. The oddball 

properties and behaviors makes them hard to fit into a general polymer science education. 

So, in the end, silicones are generally ignored in academic curricula and research 

programs.  

 

1.6 Important Reactions in Organosiloxane Polymer Chemistry 

The following sections will provide a brief introduction to important chemistries in 

organosiloxane polymer science. This overview is by no means comprehensive and the 

interested reader can find additional depth in the provided references. Attention has been 

paid to chemistries utilized in this thesis to prepare silicone polymers.  

 



16 
 

1.6.1 Hydrolysis and Condensation2,6,7,14 

The polarization of silicone-halogen bonds and silicon-oxygen bonds leaves the 

silicon atom susceptible to nucleophilic attack, often by water. Hydrolysis of these bonds 

results in silanols. Following hydrolysis, the silanols condense producing water and 

building the siloxane skeleton. The simplest hydrolysis and condensation reaction of an M 

silane to form MM disiloxane is illustrated in Figure 1.5. In the case of chlorosilanes, these 

reactions are spontaneous in the presence of water. Hydrolysis occurs rapidly for 

chlorosilanes and the HCl byproduct acts as a catalyst to speed up condensation. 

Alkoxysilanes hydrolyze much more slowly than chlorosilanes in the presence of water 

and are often, but not always, catalyzed by the addition of acid or base. The final products 

structure and properties will depend heavily on the catalyst used. For example, acid 

catalysis of tetraethoxysilane produces sols and fractal networks that can be used to 

produce aerogels, while base catalysis of tetraethyoxysilane produces condensed Stöber 

particles. Hydrolysis and condensation are random processes that can be difficult to 

control precisely but are cornerstones of silicone preparation. 

 

 

Figure 1.5. Hydrolysis and condensation of a monofunctional silane to yield disiloxane. 
 

The most commonly encountered example of a silicone material prepared by 

hydrolysis and condensation is the family of one-part RTV silicones found in sealants and 

caulking. These products are formulated to bond specific materials and function in various 

working environments but have the same basic chemistry. The chemistry utilizes 

multifunctional acetoxysilane crosslinkers that hydrolyze and condense when atmospheric 
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moisture permeates into the silicone upon exposure to air. The byproduct of the hydrolysis, 

acetic acid, gives these silicones their unique odor upon application and curing. 

 

In addition to the preparative importance of hydrolysis and condensation in silicone 

chemistry, the reactions are used to modify silica surfaces and are thus critical to surface 

chemistry. Chlorosilanes in particular are useful for the preparation of monolayers or 

multilayer from solution or the vapor phase. Fadeev and McCarthy20-21 developed a 

thorough understanding of these reactions and the McCarthy group continues to use these 

reactions to develop new insights into wetting and surface science. 

 

1.6.2 Ring Opening Polymerization41-43 

The synthesis of linear silicones is most commonly performed via ring opening 

polymerizations. These processes can be catalyzed by acid or base and can be run under 

kinetic or thermodynamic control.  

 

Kinetic control grants monodisperse linear polymer of controlled molecular weight 

and end-group functionality.44 Lithium reagents are commonly used as strong base 

initiators and the strained cyclic trimer (hexamethylcyclotrisiloxane, D3) must be used as 

monomer. The polymerization of D3 with n-butyllithium initiator is exhibited in Figure 1.6. 

Initiation proceeds by the attack of a D3 molecule by one molecule of lithium reagent which 

opens the ring and forms a linear lithium silanolate. The linear lithium silanolate trimer is 

then attacked by 2 more molecules of base to form three monomeric lithium silanolate 

initiator species.45 Propagation and growth of the polymer proceeds by ring opening of 

cyclic trimer monomer. Termination is accomplished by addition of a monofunctional 

chlorosilane. Termination must be done before monomer is consumed to avoid backbiting 
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and chain scrambling reactions that lead to equilibrium products. This typically 

corresponds to 95% conversion.43,45 

 

 

Figure 1.6. Kinetic Ring Opening Polymerization of D3 
 

Thermodynamic ring opening is the most common and simplest method for 

preparing linear silicones. Under thermodynamic control the polymer product will have the 

most probable distribution (D = 2) and will contain about 18% cyclic oligomer. Acid or base 

initiators can be used. The inexpensive cyclic tetramer (octamethylcyclotetrasiloxane, D4) 

is the most common monomer. The polymerization of D4 into linear polymer is a unique 

case of an entropically driven polymerization.46 There is no ring strain in D4 (ΔH ~ 0) but 

the increase in conformational entropy upon ring opening to linear polymer is able to drive 

the reaction (ΔS = 6.7 J/mol*K). End groups are incorporated through end-capping 

monomers, typically chlorosilanes or disiloxanes. If no end-capping monomer is used the 

final product will contain silanol end groups. Transient catalysts can be used to leave 

active end groups that are useful in the preparation of living networks.35-37 Equilibration 
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reactions are also used to produce pure cyclic oligomers by ‘cracking’ of hydrolyzed 

mixtures of chlorosilanes.2 The hydrolyzed silanes are mixed with a small amount of KOH 

catalyst and heated. Pure cyclic Dn oligomers are separated by distillation from the 

equilibrating mixture. 

 

1.6.3 Pt-catalyzed Hydrosilylation47 

Hydrosilylation describes the addition of a hydridosilane to substrates containing 

carbon-carbon double bonds to yield an ethylene linkage between silicon and substrate. 

While it can be accomplished using radical initiators, the most efficient and commonly 

used method utilizes a Pt(0) complex, such as Karstedt’s catalyst. The reaction requires 

only parts-per-million catalyst and is selective. This limits the presence of catalyst residues 

and unwanted byproducts from side reactions which can be problematic in radical 

hydrosilylation. Hydrosilylation has been used to produce a seemingly infinite number of 

organic-functional silanes and siloxanes by attaching allyl functional organic moieties to 

silicon hydrides. The chemistry is also at work in two-part RTV silicone materials. 

 

The most commonly accepted mechanism was proposed in 1965 by Chalk and 

Harrod48 and is illustrated in Figure 1.7. There is debate over the nature of the active 

species with catalytic activity reported for both heterogenous platinum colloids and 

homogeneous platinum complexes.49,50 
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Figure 1.7. Mechanism of Pt(0)-Catalyzed Hydrosilylation. 
 

1.6.4 Piers-Rubinsztajn 

The Piers-Rubinsztajn (P-R) reaction forms a siloxane bond from the reaction of 

silyl hydride and alkoxysilane or silanol using tris(pentafluorophenyl)borane (B(C6F5)3, 

BCF) as catalyst. The reaction was named by Michael Brook after Warren E. Piers, who 

in 1996 reported the BCF-catalyzed hydrosilylation of aromatic aldehydes, ketones, and 

esters,51 and Slawomir Rubinsztajn, who in 2005 reported the reaction as a new 

polycondensation method for preparing siloxane polymers.52 Many aspects of the reaction 

are still under investigation and while it has yet to gain widespread popularity as a 

preparative reaction for making siloxane polymers, there are useful advantages that the 

reaction provides: rapid rates of reaction, low required catalyst concentrations, easily 

removable catalyst residues, and typically inert byproducts. Michael Brook has studied the 

details of and made extensive use of this reaction to prepare dendrimers, surfactants and 

networks.53-58 
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The mechanism of BCF-catalyzed hydrosilylation was studied in detail with organic 

substrates by Piers58,59 and in alkoxysilane substrates by Rubinsztajn.60 The mechanism 

discussed here and shown in Figure 1.8 reflects the work of Rubinsztajn, although most 

of the mechanistic details are the same. In a system containing silane (R3SiH) and 

alkoxysilane (R’3SiOR’’), spectroscopic evidence and simulations have shown that BCF 

catalyst first forms a weak complex with the hydride atom of the silane (ɸF
3B-H-SiR3). The 

silicon atom of the silane is now more positive and undergoes nucleophilic attack by 

silylether oxygen of the alkoxysilane. This forms an oxonium ion and -H(B(C6F5)3) which 

form a salt-like intermediate containing both reactants and catalyst. The hydride is then 

transferred to any of the three nearby electrophiles bound to the oxonium ion. This hydride 

transfer results in the formation of three products: regenerated starting substrates, silane 

metathesis, or disiloxane. In this reaction disiloxane formation is irreversible while the 

other routes are reversible so the final equilibrium product is disiloxane.  

 

Figure 1.8. Mechanism of Tris(pentafluorophenyl)borane (B(C6F5)3) – catalyzed siloxane 
bond formation between hydridosilane and alkoxysilane or silanol. 

 

Due to the strong Lewis acidity of BCF the reaction is not compatible with Lewis 

base-containing substrates and must be done in the absence of water. Grande et.al.53 

studied the reaction’s tolerance to various functional alkoxysilanes. Amino groups 
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completely suppress any reaction with silane, epoxy rings are opened and thiols react 

competitively for reaction with alkoxy groups. Halogen-containing silanes and silanes 

containing unsaturation were found to be compatible with the P-R reaction. 

 

The downside of the P-R reaction is the rapid rate at which it proceeds and 

produces gas byproducts. This results in vigorous bubbling of reaction mixtures which 

requires adequate outgassing capabilities. In the case of network formation this almost 

always results in foam formation with little control over pore size and distribution. Water 

sensitivity, metathesis reactions and hydride transfer oligomerization61,62 reactions can 

lead to additional complications. 

 

 

1.7 Silicones at Interfaces 

Since their invention, organosiloxanes have been recognized for their interfacial 

activity. Stock observed that the 20 mg of PDMS he synthesized coated glass and was 

hydrophobic. Winton Patnode observed that paper products in the methylchlorosilane pilot 

plant became hydrophobic from exposure to methylchlorosilane vapors. Silicone residues 

were not only hydrophobic but were observed to destabilize foams and emulsions. What 

is most remarkable about siloxanes at interfaces is their ability to perform in seemingly 

contradictory roles: they are foam stabilizers and defoaming agents, emulsifiers and de-

emulsifiers, release coatings and pressure sensitive adhesives. How a siloxane behaves 

will depend on its chemical structure, physical structure and the characteristics of the 

interface. Here we will consider three interfaces for which examples of silicone surface 

activity will be discussed: Air-Water, Oil-Water and Solid-Air. 

 

 



23 
 

1.7.1 PDMS at the Air-Water Interface 

“Insoluble monolayers are strange things.” 

- George L. Gaines Jr.63 

The air-water interface is a specific example of a vapor-liquid interface. The air-

water interface was first studied in a scientifically rigorous way by Irving Langmuir (see 

references 64-74 for a selection of Langmuir’s monumental work). Langmuir won the 

Nobel Prize in Chemistry in 1932 for his studies and investigations into surface chemistry, 

specifically on his work regarding fatty acid monolayers on water.64 He hypothesized that 

water insoluble fatty acids adsorb to the water interface through their polar head groups 

to form molecular monolayers. This is in contrast to insoluble hydrocarbons that form a 

lens on water. Langmuir devised the Langmuir Trough to study these molecular 

monolayers at the air-water interface. Using his trough, Langmuir could compress 

monolayers to probe their structures, and by using simple geometric calculations could 

accurately predict molecular configurations before spectroscopy techniques were 

available. Langmuir also investigated the nature of chemical bonding and the dissociation 

of molecular hydrogen. Katherine Blodgett, Langmuir’s direct assistant, developed a 

technique to transfer monolayers from the air-water interface onto substrates.72-74 The 

technique is now commonly referred to as Langmuir-Blodgett deposition. Besides their 

work on surface chemistry, Langmuir and Blodgett laid the foundations of plasma physics, 

developed anti-reflective coatings and worked on GE technologies to help the Allied forces 

during World War II. Blodgett, who was indispensable to Langmuir’s work, was not only 

the first female research scientist at the GE research lab but also the first female to be 

awarded a doctorate in physics from Cambridge University.  

 

Typical measurements of monolayers using Langmuir troughs involve first 

spreading the adsorbate molecules from a dilute solution of volatile solvent onto a clean 
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water surface. Common spreading solvents are chloroform and hexanes. The molecules 

must be soluble in the spreading solvent and the solvent is typically immisble with water. 

The choice of spreading solvent can affect monolayer formation and properties so it is 

common to experiment with solvent selection to achieve the best monolayer formation. 

Once adsorbate solution is spread, solvent is evaporated and the adsorbed monolayer is 

given time to equilibrate. Pressure-area isotherms are the most common experiment used 

to study the properties of monolayers. In these experiments, the monolayer is compressed 

at a constant rate by barriers at the water surface and the surface pressure is measured. 

Surface pressure is the difference between the surface tension of the clean water/liquid 

interface and the measured surface tension. Changes in surface pressure correspond to 

changes in the structure of the monolayer. In the early stages of the experiment, where 

the trough area is large, the molecules are in a two-dimensional gas phase and are 

capable of free diffusion on the water surface. In this region, the measured surface 

pressure is zero. As the area of the trough decreases during compression, the molecules 

will form a complete monolayer and the surface pressure will increase. With further 

compression, the surface pressure – area relationship will depend on the properties of the 

monolayer. Small molecule monolayers exhibit a rich two-dimensional phase space where 

crystallization and phase transitions can be observed in pressure-area data. In polymers, 

the behavior is simpler. Polymer monolayers are typically classified as condensed (rigid, 

sharp pressure rise) or expanded (fluid, gradual pressure rise). Collapse of polymer 

monolayers is observed when surface pressure plateaus or decreases during 

compression, and can correspond to multilayer formation or expulsion of polymer from the 

monolayer into the water subphase.63 

 

The methods developed by Langmuir to study insoluble molecular monolayers 

adsorbed to the air-water interface have been extended to other vapor-liquid interfaces 
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and adsorbates. Not all molecules and polymers will adsorb to the air-water interface to 

form a monolayer. In the case of small molecules, they must be insoluble in the water 

subphase, have some attractive group to anchor them to the surface, be stable in air and 

nonvolatile. In polymers, if the monomers have a finite adsorption affinity for the interface, 

then it is possible to form monolayers even of water soluble polymers, like proteins. Water-

insoluble polymers can form monolayers if there are sufficient attractive groups present in 

the chemical structure, similar to small molecules adsorbates. Perhaps unsurprisingly, 

silicone polymers, with all their strange behaviors, spread to form monolayers on the air-

water interface.  

 

The first studies of linear siloxane polymers at the air-water interface were reported 

by Zisman and coworkers.75 PDMS in particular had interesting collapse behavior which 

was suggested to arise from the formation of a PDMS helix, similar to that of the PDMS 

crystalline phase, at the interface. These studies have been followed up by numerous 

researchers using a variety of techniques in an attempt to understand the molecular 

structure of PDMS at the air-water interface.76-80 It is now generally agreed that PDMS 

undergoes a layering transition that results in its collapse behavior. Adsorption of PDMS 

to the air-water interface involves the attractive interaction of the polar siloxane backbone 

with the water subphase and the expression of low energy methyl groups at the interface 

to lower surface energy. When a complete PDMS monolayer is compressed, the chains 

rearrange so that the oxygen atoms of the backbone are adsorbed to the water surface 

and the freely rotating methyl groups are sticking out into the air. Further compression 

leads to the formation of odd numbered layers. This description is based on Vibrational 

Sum Frequency Spectroscopy and is illustrated in Figure 1.9.79  
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Figure 1.9. PDMS at the air-water interface.79 Each regime of the pressure-area 
isotherm is labeled and illustrated. At high areas, the siloxane chains diffuse freely at the 

water interface with methyl groups predominantly expressed at the surface. As area 
decreases, PDMS molecules impinge upon one another and a monolayer forms. In the 

monolayer, backbone oxygens adsorb to the air-water interface with one methyl oriented 
normal to the water surface and the other in the plane of the water surface. At a surface 

pressure of about 8 mN/m, the PDMS monolayer collapses by forming multi-layered 
structures. Further compression increases the number of collapsed layers. 
 

The adsorption of PDMS to the air-water, and to air-oil interfaces, is important in 

defoaming. PDMS migrates and adsorbs to the interface, dramatically lowering the surface 

tension so that foam bubbles collapse. Typical anti-foaming silicone formulations use 

linear PDMS polymers adsorbed to fumed particles. By adsorbing PDMS onto high surface 

area silica, the thin layer of PDMS can spread more rapidly than if it is deposited as a bulk 

liquid. 

 

1.7.2 Silicone Surfactants at the Oil-Water Interface 

Silicone surfactants81 were first developed in the 1950’s at Union Carbide for the 

stabilization of polyurethane foams. In silicone surfactants, the low surface energy, 

hydrophobic silicone is paired with a hydrophilic group. Although the hydrophilic-

hydrophobic structure is similar to hydrocarbon surfactants, silicone surfactants generate 
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greater reductions in interfacial tensions and can stabilize organic dispersions. The first 

silicone surfactants were linear and branched PDMS-PEO block copolymers. PEO is still 

the most common hydrophile incorporated into silicone surfactants but ionic and 

zwitterionic hydrophiles are also available. The mechanism of action involves the strong 

adsorption affinity of siloxanes to interfaces to lower surface tension and the anchoring of 

the siloxane to the interface by hydrophilic groups. This anchoring is what sets silicone 

emulsifiers and foam stabilizers apart from defoaming agents. Without the anchoring 

groups present, PDMS chains will adsorb and spread on interfaces to lower the surface 

tension, as discussed in the previous section. The continued spreading of the PDMS at 

the interface destroys foams and emulsions.  

 

Other special silicone surfactants are the trisiloxane superspreaders82,83 and 

trisilanol-POSS.84 Superspreaders are T siloxanes with PEO tails that enable the rapid 

spreading of aqueous solutions. They are commonly applied in agricultural applications to 

assist wetting of fertilizer and pesticide solutions onto plant leaves. Trisilanol-POSS is an 

amphiphilic POSS molecule. One corner of the T8 cube is removed to make T7
(OH)3. The 

localized hydrophilic silanols promote adsorption to water interfaces while the alkyl groups 

on each T corner provide hydrophobicity. 

 

One way in which the action of surfactants is observed is in measurements of oil-

water interfacial tension using drop tensiometry, as illustrated in Figure 1.10. In oil-water 

drop tensiometry, a water droplet is suspended in a stationary organic liquid phase 

(alternatively, an organic liquid drop can be suspended in a stationary water phase). A 

camera captures the images of the droplet and from the shape of the droplet (which is 

assumed to be axisymmetric), interfacial tension is calculated using the Young-Laplace 
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equation. To analyze kinetics of adsorption and the equilibrium surface tension reduction, 

the interfacial tension is measured as a function of time.  

 

 

Figure 1.10. Drop tensiometry is one way to quantify surfactancy at oil-water interfaces. 
(a) An emulsion is observed during the aqueous rinse step in a work up procedure which 
suggests oil-water interface activity. (b) In a tensiometry experiment, a drop of water is 
suspended from a flat-tipped, cylindrical needle into an organic ambient solution which 
contains the surface active molecule being investigated. The drop is imaged, the profile 

of the drop is fitted by software and the Young-Laplace equation is used to calculate 
interfacial tension. (c) The interfacial tension is measured as a function of time. For a 

surface active molecule, the cartoon plot illustrates the drop in surface pressure as the 
molecules cover the interface to reduce interface tension. Kinetic (rate) and 

thermodynamic information can be gained from such experiments. 
 

1.7.3 Silane and Siloxane Monolayers: Wetting and Contact Angle Hysteresis 

The importance of silanes and silicones to surface science cannot be understated. 

Reactive alkylsilanes enable the preparation of self-assembled monolayers19, randomly-

attached monolayers, vertically polymerized brushes and three-dimensionally 

polymerized networks.20,21 Precise surfaces from these reagents has enabled surface 

science to flourish. The importance and behavior of smooth silane-derived surfaces is 

discussed in Chapter 6 and in the provided references. The focus for this introduction will 

be the hydrophobicity of silicone polymers, the properties of the siloxane bond that enable 

this behavior and how hydrophobicity is measured. 
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Before discussing hydrophobicity in silicone polymers, we must first define what 

‘hydrophobic’ means.85-89 This may seem simple at first: a hydrophobic surface isn’t wet 

by water. But as emphasized by McCarthy and Gao, such ‘simple’ words and definitions 

can be confusing and even destructive.87 A more appropriate perspective on 

hydrophobicity requires contact angle hysteresis. Contact angle hysteresis, Δ, is the 

difference between the advancing, θA, and receding, θR, contact angle of a liquid on a 

surface. What are the advancing and receding angles? When water is added to a droplet 

resting on a surface, it will grow at a constant contact area until the three phase contact 

line reaches the advancing contact angle. Once the advancing contact angle is reached, 

the contact line will advance at a constant angle and the contact area will increase. The 

constant angle with which the droplet advances is the advancing contact angle. When 

water is removed from a liquid drop resting on a surface, it will shrink at a constant contact 

area until the receding contact angle is reached. Once the receding angle is reached, the 

contact line will recede at a constant angle and the contact area will decrease. The 

constant angle with which the droplet recedes is the receding contact angle. These 

processes are depicted in Figure 1.11. The difference between the advancing and 

receding contact angles, the contact angle hysteresis, truly indicates how ‘hydrophobic’ a 

surface is. 
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Figure 1.11. Two-dimensional graphic depiction of a water drop on a surface with 
contact angle hysteresis. (a) The advancing contact angle of a water droplet is reached 

as its volume increases from the addition of water. Trace 1 shows the initial configuration 
of the droplet. Water condenses and the drop volume increases at constant contact area 

until the advancing contact angle is reached in Trace 2. As more water condenses the 
drop volume increases by increasing the contact area with constant contact angle 

(Traces 3 and 4). (b) The receding angle of a water droplet is reached as its volume 
decreases from the removal of water. Trace 5 shows the initial configuration of the 

droplet. Water evaporates and the drop volume decreases at constant contact area until 
the receding contact angle is reached in Trace 6. As more water evaporates the drop 

volume decreases by decreasing the contact area with constant contact angle (Traces 7 
and 8). (c) A droplet on an inclined surface can slide when the leading edge reaches the 

advancing contact angle and the trailing edge reaches the receding angle. 
 

A simple thought experiment can help illustrate the importance of contact angle 

hysteresis. Imagine two surfaces A and B (Figure 1.12). Surface A has water contact 

angles of θA/θR = 80°/80°. Surface B water contact angles of θA/θR = 120°/80°. Now 

imagine that both surfaces are perfectly flat and a drop of water is places on each. The 

static contact angle measured in this experiment will be 80° for Surface A and will be 

anywhere between 80° and 120° for Surface B. Let us assume its 100° for Surface B. At 

a glance, we may be tempted to say that Surface B is more hydrophobic as it has the 

higher contact angle. Now consider what happens when the surfaces are tilted 1°. The 

drop on Surface B will deform but stay pinned to the substrate while the droplet on Surface 
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A will immediately slide off because there is no contact angle hysteresis. If we continue to 

tilt the stage, the droplet on Surface B will be pinned and unable to move across the 

surface until the leading edge reaches the advancing angle of 120° and the trailing edge 

reached the receding angle of 80°. It is obvious that Surface A more easily expels water 

than Surface B although higher static angles can be measured on Surface B. 

 

 

Figure 1.12. Surface A has no contact angle hysteresis and a drop will immediately slide 
off once the surface is tilted away from horizontal. Surface B has higher contact angles 

but significant hysteresis. The drop on Surface B will not slide off until the surface is 
tilted, the drop deforms, and the advancing and receding contact angles are reached. 

 

Contact angle hysteresis is governed by motion of the contact line over a surface. 

It is sensitive to molecular scale roughness and surface defects. Minimization of contact 

angle hysteresis requires dynamic contact lines that easily transition from metastable 

advancing and receding events, and a contact line that is always simultaneously 

advancing and receding would have no hysteresis. Achieving such dynamic contact lines 

on smooth surfaces requires a surface with liquid-like molecular mobility. PDMS, due its 

extreme flexibility and conformational freedom, is able to achieve this. There are 

numerous examples of smooth PDMS grafts on smooth silicon wafers that exhibit 
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remarkably low contact angle hysteresis.90-96 These will discussed in more detail in 

Chapter 6. 

 

1.8 Rediscovering and Discovering Silicones 

Over the last decade, the McCarthy group has investigated the chemistry and 

properties of silicones. Much of this work has been a process of “rediscovering” silicones. 

Unearthing previous knowledge from patents and publications, but with an emphasis on 

addressing modern polymer materials science challenges. These goals have coincided 

with a goal of educating and inspiring the scientific community regarding the diversity and 

special behavior of silicone polymers. Work along the lines of rediscovering silicones is 

pursued in this thesis. These objectives have not only reminded the scientific community 

of silicones but have also provided the scientific community with new insights into 

silicones. However, it is also time to discover silicones. The process of discovery is 

certainly more challenging but the silicone alphabet offers an infinite number of 

possibilities. Creating a toolbox of silicones enables materials scientists to tackle 

challenges where carbon-based polymers and current silicone materials fail. The work in 

the following chapters aims to accomplish both of these tasks: rediscovery of MQ 

silicones, the discovery of a special synergy between carbon nanotubes and silicones, 

and the exploration of wetting of methylsilicone polymers using a newly discovered surface 

modification inspired by the Piers-Rubinsztajn reaction. 
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CHAPTER 2 

SYNTHESIS AND CHEMISTRY OF MQ SILICONES 

2.1 Introduction 

2.1.1 Background 

MQ silicone copolymers1-3 are commercially significant materials that have been 

largely ignored by the academic materials research community. In stark contrast to the 

widely used and well-recognized abbreviation for dimethylsiloxane polymers, "PDMS," 

and in somewhat less contrast to the abbreviation for polycyclic silsesquioxane oligomers, 

"POSS," the abbreviation, "MQ" is generally recognized only by specialists who use these 

copolymers. MQ copolymers are, however, commodity materials that uniquely enable a 

number of technologies, are manufactured on large scale by multiple companies and are 

widely used to formulate silicone elastomers, coatings, adhesives, sunscreens and 

cosmetics. They are useful as reinforcing fillers in some applications because of their silica 

content and particle-like physical structure. Their molecular characteristics and notably 

their solubility, make them useful in other applications that require film formation and 

homogeneity.   Our group has published two papers4,5 with titles that begin with the words, 

"Rediscovering Silicones," and another6 with a title that begins with "A Surprise from 

1954."  These papers and Chapter 1 point out reasons for the neglect of silicones in 

academics. Work in these papers and our group has tried to emphasize and take 

advantage of the special reactivity and properties of silicones that set them apart from 

polymers with carbon-based backbones. This chapter highlights another aspect of this 

neglect and focuses on the synthetic approach to MQ copolymers. Although MQ materials 

were developed in the 1950s and have become increasingly present in our daily lives, I 

contend that they should be more widely appreciated than they are, particularly in the 

context of molecules that can help address today's materials science needs. 
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Silicones were invented in the 1940s largely by researchers at the General Electric 

(GE) and Corning/Dow Corning companies and methylsilicones were identified as 

particularly useful.7-10 The widely-adopted GE nomenclature11 (MDTQ) is reviewed in 

Figure 2.1 that also shows examples of methylsilicones comprised of their 4 different 

chemical structural components. The structures MD72M and T8 are examples of the well-

studied PDMS (liquid) and POSS (crystalline solid) materials. M(M2Q)24M is an isomer of 

MD72M and, were it to exist,12 would also be a liquid with properties similar to those of 

MD72M. The parentheses are deliberately drawn through the oxygen atoms to represent 

the Si-O1/2 structure that is necessary for correct MDTQ stoichiometry. M8Q8 is a 

crystalline13 polycyclic co-oligomer of M and Q with the same topology as the octameric 

silsesquioxane, T8. These examples demonstrate the flexibility of the 4 methylsilicone 

building blocks and emphasize that MQ materials can be isomeric with T-based, D-based 

or TD copolymeric materials and can exhibit similar properties. In fact, MQ-based silicones 

compete with, complement and are compounded with T-based silicones in multiple 

cosmetics applications.14 

 

 



41 
 

 

Figure 2.1. Nomenclature and examples of silicones. 
 

The polycyclic structure M16Q32 in Figure 2.1 is an overly symmetrical, low 

molecular weight representative of the MQ copolymers reported here as well as 

commercial MQ resins. Three points need to be made in regard to this structure and these 

molecules.  First, there is no similar chemical structure for these compounds in the 

literature15-19 and there is an absence of any discussion concerning their variable 

polycyclic structural features. There is a depiction of a computer-generated space-filling 

model of the "molecular structure of a typical MQ resin, [M0.62 QOH
0.17Q0.83]32" in both 

encyclopedia articles cited here.1,2 This was presented by J. Wengrovius at the 10th 

International Symposium on Organosilicon Chemistry.15 Reproductions of this structure 

appear in the Gelest catalog,16 two articles,17,18 a monograph,19 and a color reproduction 

appears on the issue cover of reference 17. The space-filling model represents M20Q32 as 
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4 octameric silicate cubes linearly linked by 3 siloxane bonds with 20 trimethylsilyl groups 

and 6 residual silanols. Despite this depiction, there remains no "graphic image" that 

comes to mind for MQ in the way the T8 cube does when POSS or silsesquioxane are 

discussed. The absence of this image is perhaps because the rather non-molecular term 

"resin" rather than "copolymer" or "molecule" generally follows MQ, perhaps because of 

the neglect of silicones4-6 mentioned above, perhaps because of the difficulties in making 

these materials in an academic setting or perhaps because of all 3 of these reasons. 

Second, these copolymers are prepared by step-growth condensation of tetrafunctional 

silicic acid, Si(OH)4, and termination (end-capping) by monofunctional trimethylsilanol, 

Me3SiOH. The products are polydisperse in molecular weight, topology (branching and 

polycyclic structure), M:Q ratio, and residual silanol content (end-capping reaction yield). 

They are, however, mixtures of discrete molecules and M16Q32 in Figure 2.1, were it to be 

prepared, would be one component of a polydisperse mixture, most of which would be 

comprised of much less symmetrical structures that contain silanols from incomplete end-

capping. Third, the Q content (silica content) can be high (~70 mol%, M:Q ~ 0.4) yet the 

compounds readily dissolve in hydrocarbon solvents (most commercially available MQ 

resins are sold as hydrocarbon solutions) and, as well, in PDMS (one of their principal 

uses). This solubility, which has been referred1,2 to as their "most unique and perhaps 

most useful characteristic," is counterintuitive to chemists and suggests that wetting and 

dispersion of nanoparticles by solvents and adsorption of PDMS chains to surfaces are 

better perspectives than solubility to rationalize the compatibility of these molecules with 

low surface energy media. These solid, white, free-flowing powders, however, are 

comprised of discrete molecules with molecular formulas and should be regarded as 

solutes when dispersed as molecules. MQ resins have been called nanoparticles,20 "small 

silica-like particles,"21 and "organic-solvent-soluble silicate particles,"22 but they are in fact 
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molecules that exhibit nanoparticle-like properties when compounded with silicone 

polymers.  

 

There is an enormous patent literature concerning MQ resin preparations23 that is 

derivative of the 1950s reports of Daudt and Taylor24 and Goodwin.25 The Daudt/Taylor 

method involves preparing a silica sol by acidifying sodium silicate and reacting it with 

trimethylchlorosilane. Goodwin prepared MQ resins by co-hydrolysis of alkyl silicates and 

reactive trimethylsilyl compounds. More recent patents26-28 illustrate that MQ resins are 

prepared using continuous processes and that precise control of resin properties is 

possible with proper engineering controls. Processing steps involve equipment such as jet 

mixers and spray dryers that are not available in typical academic laboratories. Several 

academic groups20,22,29-40 have attempted to follow the Goodwin and Daudt/Tyler methods, 

with each group publishing different preparative procedures and reporting different 

products. The variations in reported properties illustrate the sensitivity of MQ resins to 

reaction conditions. None of the reports illustrate control of final product structure and 

there are no guidelines for designing a synthesis to prepare a specific molecular weight, 

M:Q ratio or other structural feature. In general, there is a lack of understanding of the 

reactions taking place to form these molecules and how they can be controlled.  

 

2.1.2  Objective 

In this chapter, a straight-forward and convenient laboratory scale synthesis of MQ 

copolymers is developed where the sol growth and end-capping reactions are separated. 

This method is reproducible with certain qualifications. Using this method, numerous MQ 

copolymers of different molecular weights and chemical functionalities are prepared. 

Characterization of the chemistry and composition of these MQ copolymers allows 

conjectures to be made concerning their structure. Structural control is demonstrated by 
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rationally varying molecular weight and chemical versatility is exhibited by preparing 

controlled composition hydridodimethyl-M and vinyldimethyl-M derivatives. These 

derivatives allow MQ to be utilized as a molecular nanoparticle substrate for further 

chemical modification. These materials can be considered models for commercial MQ 

resins. 

 

2.2 Experimental Section 

2.2.1 Reagents 

Absolute ethanol, toluene and sulfuric acid (18M) were obtained from Fisher. 

Tetraethoxysilane (TEOS), hexamethyldisiloxane, divinyltetramethyldisiloxane, and 

tetramethyldisiloxane were obtained from Gelest. All chemicals were used as received. 

House purified water (reverse osmosis) was further purified using a Millipore Milli-Q 

system (18.2 MΩ). 

 

2.2.2 Preparation of MQ silicone 

1 equiv of TEOS (Q) is added to a round bottom flask containing a stirred mixture 

of 10 equiv water and 5 equiv ethanol that is acidified with H2SO4 (3.75 mM). This mixture 

is held at 50 °C for the desired sol growth duration (under these conditions, the gel time is 

roughly 50 hours), at which time 0.5 equiv of hexamethyldisiloxane (MM), toluene and 

additional H2SO4 (0.375 M to initial water-ethanol mixture) are added. The temperature of 

the mixture is increased to 60 °C for 1 hour, 70 °C for 1 hour and 80 °C for 2 hours. The 

organic phase is rinsed with water, neutralized with sodium bicarbonate solution and 

optionally rinsed with brine. After neutralization and separation, the organic phase is dried 

over magnesium sulfate and filtered. Solvent is removed using a rotary evaporator. 

The preparation of M14Q29 (Table 1) is provided as an example: In a two-neck 

round bottom flask fitted with a condenser and PTFE stopper, 17.8 g water (0.98 mol) and 
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23 g ethanol (0.5 mol) is heated to 50 °C with stirring. 10 μL of 18M H2SO4 is added to the 

stirred mixture. 20.1 g TEOS (0.097 mol) is then added. The mixture is stirred at 50 °C for 

4 hours, at which time 8.12 g hexamethyldisiloxane (0.05 mol) in 30 mL of toluene is 

rapidly added forming an emulsion. 1 mL of 18M H2SO4 is then added dropwise to the 

stirred emulsion. The temperature is increased to 60 °C for 1 hour, 70 °C for 1 hour and 

80 °C for 2 hours. The reaction mixture is transferred to a separatory funnel, rinsed with 

water, rinsed with sodium bicarbonate and finally rinsed with brine. Once separated, the 

organic phase is dried over magnesium sulfate and filtered. Upon removal of solvent, 9.3 

g of white powder is obtained. Mn = 2900, Mw = 4400; M:Q = 0.48 (1H NMR with 

cyclohexane internal standard). The yield is 94% based on TEOS and the determined M:Q 

ratio. 

 

Vinyl and hydride functional MQ copolymers are prepared using the same 

procedure with addition of divinyltetramethyldisiloxane or tetramethyldisiloxane end-

capping monomers.  

 

MQ via Goodwin25 Method. The Goodwin method is based on a patent for MQ 

copolymers used in pressure sensitive adhesives. The product of this reaction has been 

noted in our lab for its tackiness, emulsifying behavior, and sensitivity to reaction 

conditions. To prepare MQ, TEOS and trialkylsilane in the desired M:Q ratio are dissolved 

in toluene. This mixture is added to stirring 60 °C water (with acid catalyst if necessary) in 

a round bottom flask. Stirring conditions and temperature control were found to be crucial 

to the success of this reaction. Following one hour of reaction at 60 °C, the temperature 

was incrementally increased to 80 °C and held for two hours. The reaction mixture is 

carefully rinsed with water, neutralized with sodium bicarbonate and dried over 

magnesium sulfate. Toluene is then removed using a rotary evaporator and an additional 
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24 hours under vacuum. This reaction produces a soluble solid MQ resin with few residual 

alkoxy or silanol groups that is stable in solution for months. 

 

Example of the Goodwin preparation: 22.5 g water (1.25 mol, 5 EQ to TEOS) and 

1.125 mL sulfuric acid (5 vol% to water) are mixed in a round bottom flask and heated to 

60 °C. 52 g TEOS (0.25 mol) is mixed with 55 mL toluene and 16 g (0.2 mol M, 0.8 EQ to 

TEOS) hexamethyldisiloxane. The silane-toluene solution is poured into the stirring 

aqueous acid. The reaction is held at 60 °C for 1 hour, 70 °C for one hour and 80 °C for 2 

hours. MQ is isolated by repeated (3x) rinsing of the organic phase with water, one rinse 

with aqueous sodium bicarbonate, drying of the organic phase with magnesium sulfate, 

filtration and rotary evaporation. The product is an organic solvent – soluble white powder. 

 

MQ via Magee42 Method. Magee and coworkers disclose a method of making MQ 

resins from poly(ethylsilicates). This method uses partially hydrolyzed TEOS as a 

precursor to MQ. In comparison to the one-pot methods used elsewhere, this is a two-

step reaction involving the formation of a stable poly(ethylsilicate) followed by end-capping 

with trialkylsilane. To form the poly(ethylsilicate) prepolymer, ethanol and 1 EQ TEOS are 

mixed with hydrochloric acid and phosphonitrilic chloride catalysts. This mixture is heated 

to 70 °C and a substoichiometric volume of water is added (up to 1.8 EQ). This mixture is 

stirred for 2 hours and the temperature is slowly increased to 140 °C where volatiles are 

collected by distillation. The product of this reaction is a clear, viscous fluid. An example 

of prepolymer preparation follows:  52 g (0.25 mol) TEOS is mixed with 12 g (0.25 mol) 

ethanol and acidified with 12 μL 37% HCl (~0.01 mmol) in a round bottom flask with 

magnetic stirring. 6.3 g (0.35 mol) water (MilliQ, 18.2 MΩ), and 6.5 mg (0.02 mmol) 

phosphonitrilic chloride trimer is added to the flask and the stirring mixture is heated to 80 

°C. The temperature is held at 80 °C for 2 hours then heated to 100 °C for 1 hour, 120 °C 
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for one hour and finally 140 °C for one hour. After stirring at 140 °C for one hour, 40 mL 

of volatiles were distilled off at Tvap = 78 °C (ethanol). Distillation was carried out until Tvap 

reached 80 °C, at which point vapor condensation and collection had slowed dramatically. 

The product was a clear viscous oil.  

 

Sulfuric acid was also tested as catalyst in place of HCl and phosphonitrilic chloride 

trimer and similar results were obtained. For example, 104 g (0.5 mol) TEOS was stirred 

in a round bottom flask with 56 mL reagent alcohol and 40 μL sulfuric acid (~0.8 mmol). 

The mixture was heated to 80 °C and 12.6 g (0.7 mol) water was added. The mixture was 

held at 80 °C for one hour, 100 °C for one hour, 120 °C for one hour and 140 °C for one 

hour. 100 mL was distilled at Tvap = 78 °C. 73 mL of clear, viscous prepolymer was 

collected. Characteristics of the prepolymers prepared with sulfuric acid were similar to 

those prepared with phosphonitrilic chloride trimer. Sulfuric acid therefore became the 

preferred catalyst.  

 

To prepare MQ resin, the prepolymer is diluted in ethanol and catalytic acid is 

added. The remaining water for hydrolysis is added and the mixture is refluxed for two 

hours. Toluene and hexamethyldisiloxane for the desired M:Q ratio are then added. The 

end-capping reaction is carried out for 2 hours at 80 °C. At this point volatiles can be 

removed by distillation or the mixture can be worked up by rinsing with water, 

neutralization with sodium bicarbonate, drying over magnesium sulfate and finally solvent 

removal. As an example, an MQ copolymer was prepared by the dropwise addition of 42 

mL prepolymer (formed from 0.25 mol TEOS) to an 80 °C stirring mixture of 42 mL toluene, 

22.5 g water (5 EQ), 17 g hexamethyldisiloxane (0.8 EQ M) and 2 g sulfuric acid (.08 EQ). 

Following addition of prepolymer, the reaction mixture was held at 80 °C for 2 hours. MQ 

copolymer was isolated by repeated (3x) rinsing of the organic phase with water, one rinse 
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with aqueous sodium bicarbonate, drying of the organic phase over magnesium sulfate, 

filtration and rotary evaporation. The MQ product is an organic solvent – soluble, white 

powder. 

 

This reaction proved difficult to control in the benchtop batch scales we worked 

with. Reproducible production of a poly(ethylsilicate) was a challenge. Additionally, 

gelation and formation of insoluble solids often limited yields. The reaction was found to 

be sensitive to stirring, temperature, concentration, and method of reagent addition. 

Soluble MQ resins obtained by this method contained a large amount of residual alkoxy 

groups visible in IR and NMR spectra. Although the patent claims GPC MW peaks of 

34600, the highest obtained in our lab was 9300. 

 

2.2.3 MQ Copolymer Chemical Modification 

Condensation reactions on silanol-containing MQ copolymers were conducted 

using trimethylsilyliodide (TMSI) and divinyltetramethyldisilazane (DVTMDZ). For both 

reactions, MQ copolymer was dissolved in anhydrous toluene in a nitrogen-purged round 

bottom flask. In TMSI reactions, excess TMSI (~1 mmol per gram MQ) is added by syringe. 

The reaction proceeds rapidly at room temperature and is complete in under 2 hours. In 

DVTMDZ reactions, excess DVTMDZ is added by syringe. DVTMDZ requires elevated 

temperatures (80 °C) and longer times (4 hours) for reaction completion. Both reactions 

are worked up by aqueous rinsing, neutralization with sodium bicarbonate, isolation of the 

organic phase, drying with magnesium sulfate and solvent stripping. Any excess silane is 

removed during stripping. 

 

Piers-Rubinsztajn reactions of MQ silanols with silicon hydrides (silanes and 

hydride-containing methylsilicones) were conducted in anhydrous toluene. MQ is 
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dissolved in anhydrous toluene and excess silane reagent is added. 0.1 mol% (to Si-H) 

tris(pentafluorophenyl)borane catalyst (40 mg/mL in toluene) is added. Sufficient air flow 

should be allowed for the rapid evolution of H2 associated with this reaction! Typically, 

there is a brief induction period before rapid bubbling is observed. Reactions are complete 

after 1 hour at room temperature. Reactions are worked up by stirring over alumina, 

followed by filtration and solvent stripping. For volatile low molecular weight silanes, any 

excess silane is stripped under reduced pressure. Due to the difficulty of separating non-

volatile silanes or siloxane polymers from MQ, such reagents are typically used below 1 

EQ. 

 

Hydrosilylation reactions are run in anhydrous toluene solutions of vinyl or hydride 

containing MQ. The desired silane or unsaturated modifying reagent is added and 

dissolved followed by the addition of 20 ppm Karstedt’s catalyst (2% Pt in xylenes, Gelest). 

Reactions are run at 80 °C for 4 to 16 hours. Reactions are worked up by stirring over 

activated charcoal and filtration of the solution through a column of diatomaceous earth. 

MQ is isolated after solvent stripping. 

 

I must emphasize here that modifications reactions were not optimized. Numerous 

reactions were run to demonstrate that MQ can be useful as a substrate but reaction 

conditions and work up procedures were not optimized. I suspect that each method of 

modifying MQ will have unique challenges. Perhaps the most difficult of these challenges 

will be isolating MQ product and separating reagents. For this reason, most MQ 

modifications were run with volatile reagents that could be removed in a vacuum oven or 

with excess MQ so that excess reagent would not be present. 
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2.2.4 Characterization 

Size exclusion chromatography was conducted on an Agilent 1260 GPC equipped 

with two PLgel Mixed-C and one PLgel Mixed-D columns (Polymer Laboratories) and a 

refractive index detector. Tetrahydrofuran (THF) at a flow rate of 1 mL/min was the mobile 

phase. Linear poly(methylmethacryclate) (PMMA) standards were used to assign relative 

molecular weights from which estimates of hydrodynamic radii were calculated using 

literature41 Mark-Houwink parameters.  

 

Attenuated Total Reflection-Infrared spectra (FT ATR-IR) were recorded using a 

PerkinElmer Spectrum 100 spectrometer. NMR studies were performed on a Bruker 

Avance III HD 500 MHz spectrometer in CDCl3. 0.02M Cr(acac)3 was used as a relaxation 

agent for 29Si spectra and a Hahn pulse echo program was used to minimize background 

signals from glass NMR tubes. After optimization of the pulse echo program to remove the 

background of the NMR tube, we still observed a persistent Q region background signal. 

1H NMR spectra were recorded in CDCl3 solutions of samples containing a measured 

mass of MQ and known concentration of cyclohexane as an internal standard. M:Q ratios 

were calculated using integrations of the cyclohexane and trimethylsilyl peaks to 

determine the organic mass fraction of a known mass of MQ. The M:Q ratio is determined 

from the organic mass %.34 

 

Diffusion NMR was conducted using 32 or 64 magnetic gradient scans from 2% to 

95% with quadratic distribution. The intensity difference between the 2% and 95% gradient 

spectra was optimized to between 1% and 5% for all samples by controlling gradient pulse 

duration and the delay time between pulses. For M32Q64, concentrations from 0.5 to 20 

wt/vol CDCl3 were tested. Decay curves show the same behavior for each concentration 

indicating that no aggregation is occurring and only diffusion of single MQ molecules is 
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being observed. 10 wt/vol concentrations were chosen for all other MQ samples since this 

concentration provided adequate signal without aggregation.  

 

Diffusion NMR is particularly useful for analysis of MQ chemical modifications. 

Measuring the change in diffusion behavior of a grafted MQ species indicates successful 

grafting. This requires separate measurements of (1) the MQ substrate, (2) the species to 

be grafted and (3) the grafted MQ product. Each species will have its own diffusion 

behavior and it is most useful to plot the grafted species in two-dimensions (chemical shift 

vs diffusion coefficient). By plotting in two dimensions, grafted and ungrafted/unreacted 

species can be separated by their chemical shift and diffusion behavior. Successful 

grafting and clean work-up is indicated when one diffusing species in measured in DNMR. 

 

Dynamic light scattering was conducted using a Brookhaven 637 nm laser with a 

TurboCorr digital correlator. Correlation functions were collected for angles from 15-75º. 

A 100 μm aperture was used with sampling times ranging from 10-30 min. Dust free 

samples were prepared using a thorough washing and filtering procedure: sample vials 

are rinsed with 3-5 times with water (MilliQ, 18.2 MΩ), 3 times with clean acetone, dried 

upside down in a clean oven and sample solutions are added to vials through syringe 

filters in a clean fume hood. M32Q64 was examined at concentrations from 5-30 mg/ml. All 

correlation functions demonstrated monomodal exponential decays and decay constants 

did not change with concentration. The 30 mg/mL sample provided acceptable correlation 

intensities with no apparent aggregate formation. We acknowledge that this cannot be 

considered a dilute solution and that multiple scattering is expected to lead to an 

underestimation in size, but are comfortable using these results for estimation. For the 

smaller MQ copolymers the same 30 mg/ml concentration was chosen, however the 

smaller size of the molecules and lower contrast decreased the intensity of the correlation 
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functions, decreasing our confidence in the data. Thus, the size of the smaller MQs 

appears to approach the limitations of our scattering system. Scattering of the largest MQs 

was possible at lower concentrations due to improved contrast and slower diffusion. 

Concentrations of <5 mg/ml were found to be appropriate. Our assessment of light 

scattering techniques for MQ silicones is that it is difficult due to the size of the molecules 

and the low contrast. Even after experimenting with multiple solvents under a variety of 

experimental conditions, it was found to be difficult if not impossible to obtain reliable data. 

 

Determination of hydrodynamic radius (DLS, D-NMR, and GPC). Correlation 

functions for dust free DLS experiments were fit with a single exponential decay function 

using OriginPro 9.0 software. The decay constants (Γ) were plotted against the square of 

the scattering vector, q2 (eq. 1). The slope of the linear fit to this data provides the 

diffusion coefficient, D. The hydrodynamic radius can be calculated using the Stokes-

Einstein equation (eq. 2). 

𝑞 =  
4𝜋

𝜆
sin

θ

2
   (1) 

𝑅ℎ =
𝑘𝑇

6𝜋𝜂𝐷0
   (2) 

For D-NMR the diffusion coefficient is extracted from the slope of ln(I/I0) vs  

g2γ2δ2(Δ-δ/3) plots (eq. 3), where g is the magnetic gradient, γ is the gyromagnetic ratio, 

δ is the length of the gradient pulse, and Δ is the length between pulses. Again the 

Stokes-Einstein equation is used to determine a hydrodynamic radius. 

𝐼 = 𝐼0𝑒
−𝐷𝛾2𝑔2𝛿2(∆−𝛿/3)   (3) 

For GPC, Mark-Houwink parameters can be used to estimate the intrinsic 

viscosity (eq. 4) from which the hydrodynamic radius can be estimated using the 

Einstein viscosity relation for an equivalent sphere (eq. 5). 

[𝜂] = 𝐾𝑀𝑎   (4) 
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[𝜂] =
2.5𝑁𝑉𝑒

𝑀
   (5) 

Thermogravimetric analysis (TGA) was performed under nitrogen using a TA Q80 

TGA. Temperature ramps were from 25 ºC to 900 ºC at a rate of 10 ºC/min. Residual mass 

content was used to gain insight into the inorganic composition of the MQ copolymers. 

Differential scanning calorimetry (DSC) was conducted on a TA Q200 DSC with liquid 

nitrogen cooling. Samples were prepared in hermetically sealed aluminum pans and were 

heated to between 150 and 350 ºC (depending on sample degradation temperature) at 10 

ºC/min, then cooled to -150 ºC at 10 ºC/min, and finally heated to 150-350 ºC at 10 ºC/min. 

Softening points were observed using a Stanford Research Instruments Optimelt 

MPA100. Samples were heated from room temperature to 400 °C at a rate of 10 °C/min. 

The softening point was defined as the point at which the sample became transparent or 

began to flow. 

 

Transmission electron microscopy samples were prepared by placing a drop of 

water onto a copper-supported carbon film grid (Electron Microscopy Sciences, CF400-

Cu) and dipping this into a 1 mg/ml solution of MQ copolymer in toluene. After being 

immersed in the MQ solution for 60 seconds, the grid was removed and dried at room 

temperature. The sample was imaged at 200kV on a JEOL JEM-2200FS transmission 

electron microscope. 

 

2.3 Results and Discussion 

2.3.1  MQ Copolymer Synthesis 

Some comments that detail the complexity of MQ copolymer synthesis are in order 

and are made in the next paragraph. This complexity was not recognized at the onset of 

these studies but became readily apparent in short time. Although product could be 
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prepared in good yield rather easily, the same material could not be made consistently - 

often not twice in a row. There are dozens of reported procedures and we tried many of 

them (changing and trying to tune variables with combinatorial methods) at small scale in 

20 mL scintillation vials using a temperature-controlled 63-cell shaken reaction block. 

None of these data are reported here; there was zero success in scaling up the most 

promising methods. Stirring reaction mixtures gave very different results than did shaking 

them and we did not want to develop reactions that needed to be "shaken, not stirred." 

Even the shape of the reaction vessels was important, likely due to differences in agitation. 

Work up procedures impacted product structure: solids could be prepared by rapid 

removal of solvent from solutions that would render oils by slower solvent removal. Oils 

could be converted to solids by freeze-drying cyclohexane solutions, but these solids 

would sometimes (inconsistently) revert to oils. It became clear that the literature reports 

of MQ resins are not useful preparative guides and that product structure is sensitive to 

slight changes in reaction conditions. One report29 in particular demonstrates the 

sensitivity of MQ properties to reaction conditions. Six resins are reported to have been 

prepared with the same composition using 6 different synthetic methods. Structural 

differences, inherent from the syntheses, resulted in distinct differences in rheological 

behavior for all 6. At this point, I realized that I would not be able to compare the materials 

I was preparing with any in the literature and that a readily (commercially) available 

"model" MQ resin was needed to compare, contrast and calibrate my MQ copolymers 

against. Dow Corning MQ-1600 was chosen and characterized (Figure 2.2); the logic used 

in making this choice is discussed below. 
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Figure 2.2. (a) GPC, (b) IR, (c) 1H-NMR, (d) 29Si-NMR, and (e) TGA data for Dow 

Corning MQ1600. 

 

It must be emphasized that the patent literature dwarfs the reviewed literature on 

the topic of MQ copolymer synthesis and that all of the reports can be considered 

derivatives of two 1950s patents.24,25 One of these approaches involves hydrolysis of 

Me3SiOH (M) precursors (Me3SiCl, Me3SiOSiMe3, Me3SiNHSiMe3) in the presence of a 

silica (Q) sol (acidified aqueous sodium silicate, water glass) and subsequent co-

condensation. The other involves co-hydrolysis and co-condensation of M precursors and 

the Q precursor, Si(OEt)4 (TEOS). Both approaches involve heterogeneous 2-phase 

reactions, the rates of which depend on, in addition to concentrations, catalyst, and 

temperature, the mixing of organic and aqueous phases (most often water and toluene or 

xylene). The end-capping condensation (M-Q bond formation) is competitive with the 

growth of the sol (Q-Q bond formation) and both of these reactions are, in principle, 

reversible. Intermediates in the reaction (as well as the products) are surfactants and 

emulsions are formed. The structure of these surfactants and emulsions evolve with the 

extent of reaction as well as vary with changes in agitation. Both types of reactions are of 
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the "sol-gel" type and procedures require careful temperature control and termination to 

avoid gelation. The difficulties in gaining control over and reproducibility with these 

complex systems is apparent. 

 

In my first attempts to prepare MQ, I became successful in reproducibly replicating 

a procedure based on the Goodwin patent25 and prepared dozens of MQ copolymers 

using this method. This approach was abandoned, however, because at least in my 

hands, there was no molecular weight control and most samples had very high 

polydispersity indices. The method of Magee42 (derivative of Goodwin) appeared 

promising and I prepared dozens of samples; however, this line of research was also 

abandoned because of the high, variable and uncontrollable content of residual ethoxy 

groups. It appeared that incomplete hydrolysis or re-esterification was a recurring issue. 

These procedures and data for samples prepared by these methods are described in the 

experimental section and Figures 2.3 and 2.4. Both of these synthetic approaches are 

convenient methods to prepare materials that may be useful. The Goodwin approach 

yields materials that are tacky and exhibit strong emulsifying behavior. The Magee 

approach gives products with much lower polydispersity indices and high residual ethoxy 

content, which may find utility as a reactive handle for chemical modification. 
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Figure 2.3. (a) GPC, (b) IR, (c) 1H-NMR, and (d) 29Si-NMR data for a sample of MQ 
prepared using the Goodwin method. 

 

Figure 2.4. (a) GPC, (b) IR, (c) 1H-NMR, and (d) 29Si-NMR data for a sample of MQ 
prepared using the Magee method. 
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The method that is reported here is a derivative of the Goodwin method and my 

approach was to separate, as much as possible, the copolymerization of M and Q into 

distinct steps: (1) initial condensation of silicic acid (Q, Si(OH)4), to form a silica sol, (2) 

subsequent end-capping the nascent sol with M (trimethylsilylation). The polymerization 

of silicic acid is extremely well documented and there is abundant evidence that the sol 

growth rate can be controlled using solvent ratios, water concentration and catalyst choice, 

and that the gelation time can be controlled (delayed) under appropriate conditions.43-45 

My strategy was to arrest the sol growth at various times in the polymerization reaction 

before it reached the gel state. The alkoxysilane method over the silica sol approach 

(Daudt/Tyler) was chosen somewhat arbitrarily, but mostly because previous experiments 

and initial studies determined it to be more controllable and easier to work with. 

 

Table 2.1 shows GPC relative molecular weight and M:Q ratio data for a number 

of MQ copolymer samples that were prepared by the method detailed in the Experimental 

Section. Briefly, after adding TEOS to a stirred solution of water, ethanol and sulfuric acid 

at 50 °C and heating at this temperature for specific times, excess hexamethyldisiloxane 

in toluene and additional sulfuric acid are added. The temperature is increased to and 

maintained at 60 ºC for 1 hour, then 70 ºC for 1 hour, and then 80 ºC for 2 hours. This 

procedure was arrived at (optimized) based on dozens of reactions with many variations. 

Table 2.1 permits several general observations concerning the reaction: (1) The yields of 

the reactions, based on TEOS, are "good" and 0.1 mole of TEOS generally yields >8 g of 

isolated MQ product. This not the case for the samples abbreviated in Table as M66Q164, 

M52Q178 and M46Q121 (the samples prepared with a 48 h sol reaction); these were recovered 

in yields of 0.5-2 g. I did not try to optimize yields with fastidious work up procedures, as 

the reactions are easy to run and adequate amounts were readily prepared. (2) The 

second aliquot of acid and the staged temperature rise are important and were found to 
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minimize gelation and maximize the end-capping yield. (3) The H2SO4 concentration in 

the first step (sol formation) affects the M:Q ratio in the product, however this was not 

studied methodically and data are not included in Table 2.1. The acid concentration was 

increased 10-fold and 100-fold and decreasing M:Q ratios were observed with increasing 

H2SO4 concentration.  This is in line with what would be predicted from more condensed 

sols. Molecular weight and composition data indicating this trend are presented in Table 

2.2 and are not discussed further. If controlling M:Q ratio at constant molecular weight 

were an objective, changing the Q precursor and/or the catalyst may have been effective. 

(4) At the relatively low H2SO4 concentration that was used for all of the samples described 

in Table 2.1, the M:Q ratio in the product was independent of the amount of disiloxane M-

precursor added. An M:Q feed ratio of 1 was generally used, but it was possible to produce 

MQ copolymers with ratios as low as 0.6 with no obvious loss in yield. If, however, ratios 

lower than 0.6 are used, sol growth and gel formation compete with end-capping, limiting 

yield and making the work up more difficult. M17Q15 and M16Q13 were prepared using 

conditions deliberately chosen to form low molecular weight, liquid MQ copolymer. The 

sol reaction was quenched very early and required an M:Q feed ratio of 2 to efficiently 

end-cap the large number of silanols. All of the other copolymers in Table 2.1 are solids. 

(5) The highest molecular weight samples reported in Table 2.1, M66Q164, M52Q178 and 

M46Q121 can be prepared with the reproducibility indicated, but gelation competes, 

rendering insoluble products and significantly lower amounts of toluene-soluble materials 

than the other reactions reported. The time of 48 h is very close to the "gelation time" for 

these reaction conditions. Higher molecular weights than those reported can be obtained, 

but at yields that would not be considered adequate for practical use. One reaction yielded 

a sample of several hundred milligrams that exhibited Mn = 10 300, Mw = 78 000, Mp = 86 

200 (peak molecular weight), an M:Q ratio of 0.38, and a stoichiometry of M46Q121. (6) 

There is a certain amount of "art" to this reaction and no doubt the conditions that are 
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reported are specific to our reaction set up and temperature control. I hesitate to use the 

word "reproducible," but point to the 4 samples prepared using 4 h sol gel reactions, 9 

samples prepared at 16 and 18 h and the 3 samples prepared at 48 h sol reaction time in 

regard to this description. In addition to samples I have prepared, the reaction has been 

run by two other group members with similar results. Samples clearly vary, but there is an 

obvious reproducibility that is qualified by the variance in these data. An additional 

practical issue of note is that if the TEOS used is from a new, "fresh" bottle, a longer sol 

reaction is required to replicate the molecular weight of a sample prepared from old (likely 

partially hydrolyzed) TEOS. The sample labeled M32Q64 was prepared from new TEOS 

with a sol reaction time of 18 h. It had molecular weight characteristics in line with those 

products prepared from older TEOS using 16 h sol reactions. 

Figure 2.5 shows infrared, 1H-NMR and 29Si-NMR spectra for VM28Q68 and HM35Q100 

and M32Q64. VM28Q68 and HM35Q100 are samples (Table 2.1) prepared using 

divinyltetramethyldisiloxane and tetramethyldisiloxane as capping agents (M precursors) 

and contain only vinyldimethylsilyl- (VM) and hydridodimethylsilyl- (HM) M units, 

respectively, thus their spectra show strong absorbance and resonance signals from vinyl 

and hydride functional groups. Using only VM or HM precursors leads to MQ copolymers 

with high functional densities. If specific functional density is desired, it can be easily 

adjusted by substituting trimethylsilyl groups in this procedure, demonstrating that this 

preparative method is chemically versatile. We prepared a series of both VMMQ and 

HMMQ copolymers with varying ratios of VM:M and HM:M and these materials are 

described in Table 2.3 and Figure 2.6. The spectra (Figure 2.5 and Figure 2.6) permit 

quantitative analysis of end-capping reactivity and MQ product functional density. It was 

observed that VM is incorporated at about the same rate as M in competitive reactions; HM 

reacts slightly faster than M. MQ resins with these mixtures of functional groups, which 
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are useful in hydrosilylation reactions, are important commercial products and useful 

substrates for further modification. 

 

Table 2.1. MQ Copolymer Molecular Weights and Compositions 
sample sol rxn timea Mn

b Mw
b Mw/Mn M:Qc 

M17Q15 5 min2.0 2300 3000 1.30 1.1 

M16Q13 5 min2.0 2100 2800 1.33 1.2 

M14Q31 4 h1.0 3000 4300 1.43 0.45 

M14Q29 4 h1.0 2900 4400 1.52 0.48 

M17Q32 4 h1.0 3200 4300 1.34 0.52 

M16Q32 4 h0.8 3100 4200 1.35 0.50 

M32Q64 18 h1.0 6500 12 300 1.89 0.49 

M42Q100 16 h1.0 8600 16 800 1.95 0.42 

M37Q91 16 h1.0 8500 15 900 1.87 0.41 

M30Q60 16 h0.8 6000 12 600 2.10 0.49 

M30Q100 16 h0.8 8400 19 900 2.37 0.30 

M31Q78 16 h0.8 7200 14 700 2.04 0.40 

M27Q67 16 h0.6 6200 14 700 2.37 0.40 

M66Q164 48 h1.0 15 100 39 800 2.64 0.38 

M52Q178 48 h0.8 14 900 51 200 3.44 0.29 

M46Q121 48 h1.0 10 300 78 000 7.57 0.38 

VM28Q68 16 h1.0 6500 16 000 2.46 0.40 

HM35Q100 16 h1.0 8300 21 000 2.53 0.35 

MQ-1600  5700 10 700 1.87 0.63 

athe superscript indicates the equivalents of M added. brelative molecular weight based 
on linear PMMA standards in THF cdetermined by 1H-NMR 
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Table 2.2. Effect of H2SO4 Concentration during sol growth on MQ product 

 

sol rxn 

timea 

[H2SO4] 

mM Mn Mw D M:Qb  

M33Q47 3 h1.0 - 5500 19700 3.55 0.71 

M32Q64 18 h1.0 3.75 6500 12300 1.89 0.49 

M26Q61 20 h1.0 37.5 5800 10000 1.72 0.43 

M31Q79 14 h1.0 375 7200 13600 1.89 0.39 

athe superscript indicates the equivalents of M added. bdetermined by 1H-NMR. 

 

Figure 2.5. (a) 1H NMR, (b) 29Si NMR and (c) IR spectra of M32Q64 (top), VM28Q68 (middle) 
and HM35Q100 (bottom). 
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Figure 2.6. (a,c) Infrared and (b,d) 29Si NMR spectra of VMMQ and HMMQ silicones. 

Samples are names by the M functionality (hydride or vinyl) and the mol% of the 

functional M incorporated into the reaction 

 

Table 2.3. Vinyl and Hydride MQ silicones 
a mol% XM Form Mn Mw xM Content (EQ/g) b fraction xM b fraction xM c 

V100 Solid 6500 16000 1.10E-01 1 1 

V50 Solid 4500 8700 4.54E-02 0.21 0.44 

V25 Solid 5200 8800 3.69E-02 0.08 0.2 

V12.5 Solid 7200 13000 8.95E-03 0.03 0.1 

V100 Liquid   1.10E-01 1 1 

V60 Liquid   5.32E-02 0.30 0.52 

V20 Liquid   3.95E-02 0.07 0.15 

H100 Solid 8286 20988 7.55E-03 1.00 1 

H60 Solid 7041 12900 4.45E-03 0.73 0.61 

H30 Solid 5100 13800 2.02E-03 0.49 0.32 

H100 Liquid   6.14E-03 1.00 1 

H60 Liquid   3.93E-03 0.69 0.52 

H30 Liquid   1.70E-03 0.41 0.27 

amol% xM in feed bdetermined by 1H NMR cdetermined by 29Si NMR 
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2.3.2 MQ Copolymer Characterization 

 Figure 2.7a-c exhibits infrared, 1H-NMR and 29Si-NMR spectra for one MQ 

copolymer, M32Q64. The spectra of all of these samples, including those of MQ-1600 are 

nearly indistinguishable and almost identical spectra of very similar materials have been 

published many times.29-35,46 Thus the spectra in Figure 2.7 are representative of all of the 

methyl MQ samples listed in Table 2.1. Spectra for MQ-1600 and MQ copolymers 

prepared using the Goodwin and Magee methods are included in Figures 2.2, 2.3 and 2.4. 

The 1H-NMR spectrum (Figure 2.7a) shows a singlet for trimethylsilyoxy (M) groups at δ 

= 0.1 and a sharp singlet at δ = 1.43 for cyclohexane, an internal standard added to the 

CDCl3 (δ = 7.26 - 1H impurity). The small peaks at δ = 1.2 and δ = 3.9 are due to residual 

ethoxy groups and the signals at δ = 2.36 and δ = 7.17/7.25 are due to toluene. The silanol 

proton is not apparent. The 29Si-NMR spectrum (Figure 2.7b) shows a peak for M groups 

at δ = 12.4, a Q3 region (silicon with three siloxane bonds and containing one silanol or 

one residual ethoxy group) centered at δ ~ -100 and a Q4 region (silicon with 4 siloxane 

bonds) centered at δ ~ -110. There is also a very broad background signal from δ ~ -40 to 

-130 from the glass NMR tube that could not be completely removed using a Hahn pulse 

echo technique. I chose not to manually baseline correct the spectra shown in the Figures; 

this data was not used for quantitative analysis. The infrared spectrum for M32Q64 shows 

a strong siloxane stretching vibration (~1050 cm-1), CH3 stretching (2904, 2950 cm-1) and 

bending (1250 cm-1) vibrations, as well as a broad peak due to residual Si-OH stretching 

(~3100-3800 cm-1). 
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Figure 2.7. (a) 1H and (b) 29Si NMR of M32Q64. (c) IR and (d) 29Si NMR Q region of 
M42Q100 before (top) and after (bottom) reaction with trimethylsilyl iodide. 

 

Also shown in Figure 2.7c are infrared data for the product of the reaction of 

M42Q100 with excess trimethylsilyl iodide. This is a more reactive trimethylsilylating reagent 

than hexamethyldisiloxane. The intensity of the broad Si-OH stretching peak (~3700-3000 

cm-1) is significantly reduced (inset of Figure 2.7c). Figure 2.7d shows the Q region of the 

29Si-NMR spectra for M42Q100 before and after reaction with excess trimethylsilyl iodide. 

The signal for Q3 is significantly reduced (from Q3:Q4 ~ 0.30 to Q3:Q4 ~ 0.05) from its initial 

intensity indicating that the reaction of residual silanols with trimethylsilyl iodide proceeds 

in good yield. Residual ethoxy groups, which also contribute to the Q3 signal do not react 

with this reagent, as evidenced by 1H-NMR spectra. By 1H NMR the M:Q ratio increases 

from 0.42 to 0.51. 

 

Figure 2.8 shows GPC data for 4 of the preparative samples and the commercial 

sample, MQ-1600. These chromatograms are representative of those for all of the MQ 
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copolymers described in Table 2.1. The molecular weights assigned to MQ copolymers in 

Table 2.1 are based on linear PMMA standards in THF. I am aware that these are relative 

values that cannot be used to assign an absolute molecular weight; however, the data 

clearly show that this preparative procedure permits fairly good control of average 

molecular weight, that the molecular weight characteristics of the commercial sample, MQ-

1600, are bracketed by samples prepared with 4 h and 16 h sol reaction times and that 

much higher molecular weight polymers can be prepared, albeit with lower yield, at 48 h 

sol reaction times. All of these samples exhibit high polydispersity indices and these 

values increase with increasing molecular weight. M66Q164 contains molecules with 

molecular weight values over 300 000 g/mole. M46Q121 has a component with molecular 

weight over 106 g/mole! In addition to GPC, diffusion NMR47 (D-NMR) and dynamic light 

scattering (DLS) experiments were carried out to study the size of MQ silicones. The 

hydrodynamic radii measured using these methods and a calculated value based on GPC 

data are shown in Table 2.4. The value determined from GPC is based on each sample’s 

peak molecular weight, Mp relative to linear PMMA in THF41, thus providing an estimate of 

the hydrodynamic radius of the most abundant species in solution. DLS is biased toward 

the largest diffusing species and D-NMR is biased toward the smallest diffusing species 

in solution. Figure 2.9 contains DLS correlation functions and D-NMR decay curves 

measured for MQ copolymer samples.  
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Figure 2.8. GPC chromatographs of preparative samples and commercial MQ 
copolymers.  

Table 2.4. Estimated hydrodynamic radii (in nm) based on GPC, D-NMR and DLS 

sample 
GPC 

 (Mp, THF) 

D-NMR  

(d-chloroform) 

DLS  

(o-xylene) 

M17Q15 1.02 0.55 - 

M17Q29 1.48 0.94 - 

M32Q64 2.35 1.72 3.45 

M66Q164 4.22 2.53 33.5 
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Figure 2.9. (a) DLS correlation function of M32Q64 in o-xylene at 15° with inset of 
correlation functions at increasing angles. The red line is a single exponential fit to the 

black data points. (b) DLS correlation function of M66Q164 in o-xylene at 30° with inset of 
correlation functions at increased angle. The red line is a single exponential fit to the 

black data points. Diffusion coefficients for the MQ copolymers were determined by the 
linear fit of decay constants (Γ) plotted against the square of the scattering vector (q2). 

(c) D-NMR diffusion decays for M17Q15 (orange), M17Q29 (blue), M32Q64 (black) and 
M66Q164 (red) in d-chloroform. For diffusion coefficients determined by DLS and D-NMR, 

the Stokes-Einstein relationship was used to estimate the hydrodynamic radius. 

 

In the dynamic light scattering experiments, correlation functions at multiple angles 

were fitted to single exponential decay functions to obtain a diffusion coefficient in o-xylene 

from which a hydrodynamic radius was calculated. Multiple concentrations were tested to 

ensure that individual molecules and not aggregates were being observed. There are 

challenges regarding characterization of MQ copolymers using light scattering techniques. 

Low scattering contrast gave weak correlation functions and required long scattering times 

at low angles. The contrast was too low to obtain meaningful data for M17Q15 and M17Q29. 

High concentrations of M32Q64 were required for adequate contrast which can lead to 

multiple scattering, resulting in a faster apparent decay time and an underestimation of 

hydrodynamic radius. M66Q164 provided better contrast but the high polydispersity and 
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multimodal distribution (Figure 2.8) led to greater error in the exponential fitting. 

Additionally, DLS measurements are sensitive to the largest molecules in solution 

(scattering intensity being proportional to the sixth power of the radius). This is apparent 

for M66Q164 where the estimated radius corresponds to the front shoulder of the GPC data 

and not the number average or peak estimate. Static light scattering (SLS) and multi-angle 

light scattering (MALS) were also attempted in hopes of determining the radius of gyration, 

the second virial coefficient and absolute molecular weight, but proved ineffective. The 

size and low dn/dc values of the MQ copolymers provided insufficient contrast at the low 

concentrations required for accurate, meaningful data. Multiple solvents were tested but 

none provided adequate contrast. Only careful solvent selection and testing made 

dynamic light scattering of the higher molecular weight MQ copolymer samples possible. 

Addition of high refractive index moieties onto MQ resins would be a method to increase 

scattering contrast that we did not pursue. 

 

D-NMR proved to be a useful tool in characterizing MQ copolymers in solution. 

The slope of the decay curves for each copolymer in Figure 2.9 represents a diffusion 

coefficient of a species in chloroform. The shape of the decay curves is an indication of 

the dispersity of the sample. The lower molecular weight MQ copolymers have the 

steepest slopes, the fastest diffusion, and the lowest polydispersity (as supported by 

GPC). The largest MQ copolymer exhibits slower diffusion and the curvature indicates 

high polydispersity. From the diffusion coefficient, a hydrodynamic radius can be 

estimated using the Stokes-Einstein equation. D-NMR appears to be most sensitive to the 

smallest molecules in solution as shown by the data in Table 2.4. 

 

Transmission electron microscopy is likely a very useful technique to study MQ 

copolymers. With the help of Dr. Alex Ribbe, sufficient data was obtained to make this 
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statement but I did not follow through on more careful studies. My interest was to focus on 

these materials as molecules and I consciously abandoned microscopy, largely to my lack 

of skill in this technique. Figure 2.10 shows one of several TEM micrographs of M32Q64 

that were obtained by dipping a wet (water) TEM grid into a toluene solution of M32Q64 and 

drying. The contrast clearly shows the particle-like structure of these molecules. The 

diameters of 100 imaged molecules were measured to be 4.15 ± 2.12 nm. 

 

 

Figure 2.10. Dark field TEM micrographs of M32Q64 sample. Scale bar is 50 nm. (Image 
courtesy Dr. Alex Ribbe) 

 

The thermal stability and degradation behavior of MQ copolymers was studied 

using TGA. MQ copolymers were heated to 900 ºC in a nitrogen atmosphere at a rate of 

10 ºC/min. As seen in Figure 2.11, there is a notable molecular weight - dependent thermal 

stability for the lower molecular weight samples. M17Q15 contains a significant volatile 

component and exhibits almost 60% mass loss below 300 ºC. M17Q29 degrades at 

temperatures and rates that are similar to MQ-1600. M32Q64 and M66Q164 exhibit greater 

thermal stability than the commercial sample. Residual mass values for the solid 

copolymers at 900 ºC increase with increasing Q content.  Differential scanning 

calorimetry was performed to determine any thermal transitions in MQ copolymers. No 
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thermal transitions were observed for M17Q29, M32Q64, M66Q164, or MQ-1600; M17Q15 

exhibits a Tg at -109 ºC. Although there was no measurable glass transition observed for 

M17Q29 or MQ-1600,  "softening points" were observed at ~100 ºC and ~300 °C 

respectively using a melting point apparatus; M32Q64 and M66Q164 did not show softening 

points.  

 

Figure 2.11. TGA decomposition profiles of MQ copolymers under nitrogen. 

 

2.3.3 MQ Copolymer Structure 

The data described in the previous section can be interpreted to yield chemical 

structural information concerning these molecules. These interpretations, in some ways, 

are unambiguous and give rather lucid insight into MQ copolymer structure. In other ways 

ambiguity is unavoidable. These materials are polydisperse in molecular weight and this 

is obvious from the data presented in Table 2.1 and Figure 2.8. They are also polydisperse 

in M:Q ratio, branching and polycyclic ring structure (topology), as well as in residual 

silanol content. Although it is possible to interpret the data and draw consistent chemical 

structures, the preparative difficulties described above spawn obvious challenges in 

comparing these samples and structures with materials reported from other labs. I use a 

commercial sample, Dow Corning MQ-1600, to calibrate my MQ copolymers against and 
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some comments are warranted concerning this choice. There is no standard MQ resin. 

Numerous companies market these materials. Dow Corning offers MQ-1600 as an 

isolated solid resin in addition to many silicone formulations containing MQ resins, 

Momentive Performance Products offers SX1000 as a solid resin, Wacker produces an 

MQ resin powder 803TF, Shin-Etsu markets MQ resins as components of emulsifiers, 

BlueStar sells numerous MQ resins as powders or dissolved in organic solvents, SilTech 

has a library of MQ resins which range from viscous liquids to solids and come pure or in 

solvent, and Gelest sells vinyl and hydride functional MQ resins. Literature reports 

describe samples obtained primarily from Dow Corning,48-53 but also from Wuhan Green 

Chemical Technology54, Shandong Dayi Chemical55, Shanghai Ai Shi Bo Silicon 

Material56, Shenzhen Haili Chemical57, Runhe Chemical Industry58 and GuangZhou 

Gigantic Silicon Material59.  MQ-1600 stands out among these possible choices. It is 

mentioned by name (and product number) in over 100 patents as a component in the 

formulation of cosmetics, sunscreens, adhesives and elastomers. It is sold as "solid 100% 

trimethylsilylsilicate resin." Dow Corning compares their other products with it in marketing 

literature and provides free samples. It is likely prepared using a modern continuous 

version of the Daudt/Tyler procedure.  

 

The composition of the MQ copolymers (M:Q ratio) was determined from the 1H-

NMR data using the mass of the MQ copolymer sample and the concentration of the 

internal standard, cyclohexane. These data (Table 2.1) are precise and the analytical 

method is much more accurate and reproducible than the synthesis. Of 7 samples 

prepared with sol reactions of 16 or 18 h, four had M:Q ratios of 0.40-0.42, but two had 

0.49 and one had 0.30. The four samples prepared with 4 h sol reactions had M:Q ratios 

of 0.45-0.52 and the three samples prepared with 48 h sol reactions had M:Q ratios of 
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0.29-0.38. There is a clear trend of decreasing M:Q ratio with increasing molecular weight 

and sol reaction time. 

 

I have not measured an absolute molecular weight for any of the MQ copolymers 

and note that freezing point depression (cyclohexane) did not give reproducible results 

and that no meaningful data were obtained from attempts at static light scattering or 

MALDI-TOF mass spectrometry. I would expect higher absolute molecular weight values 

than what we measure using GPC molecular weights relative to linear PMMA due to the 

dense, polycyclic structure and this has in fact been observed by other researchers 

measuring low molecular weight MQ copolymers.32 That said, I am very comfortable with 

the GPC relative molecular weight data reported in Table 2.1. All of the reported samples 

are so polydisperse that a precise absolute value would give no better insight into the 

structure of these polymers. The D-NMR and dynamic light scattering experiments are 

consistent with the GPC data. Figure 2.8 shows graphically that molecular weight can 

clearly be controlled and MQ copolymers can be prepared with peak molecular weights 

(Mp) of ~3500, ~9500 and ~33 000 g/mol by controlling the sol reaction time. The 

polydispersity index (Mw/Mn) increases with increasing molecular weight, a characteristic 

of sol gel reactions. Samples are labeled as MXXQYY based on the Mn value and the M:Q 

ratio. 

 

All of the MQ copolymers contain residual silanols and a small amount of residual 

ethoxy groups. The Q3:Q4 ratio, as assessed by 29Si NMR, is strikingly similar (~1:10) for 

all samples including the commercial sample, MQ-1600 (Figure 2.2). The reaction of 

M42Q100 with trimethylsilyl iodide converts ~90% of the Q3 silicon to Q4 and the O-H 

absorbance in the infrared spectrum is similarly attenuated (Figure 2.7). 1H NMR reveals 

that the M:Q ratio increases from 0.42 to 0.51 upon reaction, that the ratio of ethoxy groups 



74 
 

to trimethylsilyl (M) groups is ~1:40 (before reaction) and that ethoxy groups are not 

removed by reaction with Me3SiI. These data allow the structure M42Q100(OH)10(OEt)1 to 

be formulated for the MQ molecule that reacts with trimethylsilyl iodide to form 

M51Q100(OH)1(OEt)1. Molecular weights for M42Q100(OH)10(OEt)1 and M51Q100(OH)1(OEt)1 

are 9617 and 10 193 g/mol. This sample is polydisperse and contains molecules ranging 

from ~1300 to ~106 000 g/mol.  

 

A hypothetical symmetrical structure for M16Q32 is shown in Figure 2.1 that does 

not indicate the residual silanols or ethoxy groups that are present in the actual sample. 

This is depicted again as "M16Q32" in Figure 2.12 using a line drawing scheme in which 

the intersections indicate tetra-coordinate Q units that contain attached M units (not 

shown) in remaining valence sites. Also shown are chemical structures that are consistent 

with the spectroscopic and molecular weight data for M16Q32 and M42Q100. A different 

isomer for M16Q32 that contains 4 silanols is shown and labeled M16Q32(OH)4. 

M42Q100(OH)10(OEt)1 is a structure consistent with the data discussed above. 
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Figure 2.12. MQ copolymer structures 
 

The "fabricated" cage-like structures labeled M16Q32(OH)4 and 

M42Q100(OH)10(OEt)1 in Figure 2.12 are presented with no direct evidence that any of the 

specific components exist as drawn. However, these structures are useful as graphic 

depictions of a particular molecular weight component of the MQ copolymers and the 

specific components drawn are representative of the features present in these molecules. 

In fact, the analytical data put rather severe restrictions on and dictate the molecular 

structure of the components present. In particular, the low M:Q ratios for these copolymers 

(0.29 - 0.52) prescribe large numbers of rings, thus dense polycyclic ring systems are 

required to be present to account for the stoichiometry. For example, any structure for 

M42Q100(OH)10(OEt)1 must contain 70 rings. Copolymers with lower M:Q ratios contain 

greater ring density. The pentacyclic Q8 motif is favored in the drawn structures for several 

reasons: cyclic tetramer rings form more readily and are less strained than cyclic trimer 

rings in silicic acid polymerization,43 M8Q8 can be prepared in good yield,13 and this 
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structure (T8) is the major oligomeric component in equilibrated silsesquioxanes.60 The 

structures drawn at the bottom of Figure 2.12 with repeat unit structures M4Q4, M6Q8, M4Q6 

and M4Q8 have M:Q ratios of 1.0, 0.75, 0.67 and 0.5. The low observed M:Q ratios dictate 

that these structural elements cannot be prevalent in these MQ materials. 

 

It must be reiterated that these copolymers are polydisperse in molecular weight 

and M:Q ratio.  M42Q100 contains, in addition to the M ~ 10 000 g/mol component shown in 

Figure 2.12, portions with Mn ~ 2 000 g/mol and Mn ~ 100 000 g/mol. Lower molecular 

weight fractions have less condensed Q skeletons and higher M:Q ratios (fewer rings) 

whereas higher molecular weight fractions have more condensed Q skeletons and lower 

M:Q ratios (more rings). This trend in molecular weight - dependent composition (and 

structure) is observed in Table 2.1 for samples prepared with controlled sol reaction time 

and is expected as a consequence of separating the sol reaction and the end-capping 

reaction in order to control molecular weight. The sol becomes more condensed as it 

grows in size under conditions designed to delay gelation. A schematic representation of 

this process is shown in Figure 2.13, which depicts silicic acid polymerizing in a fashion 

which the density of cyclic structures increases with extent of reaction and which explains 

the trends in M:Q ratios that are observed.  That intramolecular (non-random) cyclization 

is favored in acid-catalyzed TEOS hydrolysis/condensation (sol-gel reactions) has been 

addressed45 and the repeat unit structure, M4Q6 (Figure 2.12), is used by these authors to 

explain delayed gelation. The analytical data reported here (low M:Q ratios) indicates that 

the non-random cyclization trend described45 is more extensive than indicated.  
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Figure 2.13. Formation of polycyclic structures during sol growth. 
 

The MQ copolymers that are reported (Table 2.1) are different than those prepared 

by the Goodwin and the Magee methods and different also than those reported in other 

publications. The low M:Q ratios of these samples, with the retention of solubility, sets 

them apart from other reported MQ copolymers. This is likely due to the separation of the 

sol and end-capping reactions. These MQ copolymers have significantly lower M:Q ratios 

than the commercial sample, Dow Corning MQ-1600 (M:Q = 0.63), but can be prepared 

with similar molecular weight. The composition of MQ-1600 is M32Q51 based on its Mn 

value and 1H-NMR data. This suggests that a denser silica core is grown when the end-

capping reaction no longer competes with growth. The inorganic core and organic shell in 

these MQ copolymers makes them particle-like hybrid molecules.33 
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2.3.4  MQ Copolymer Chemical Modification 

Having developed a reproducible method of preparing MQ copolymers and 

exploring their physical structure, the final objective of this work involved investigating the 

chemistry of MQ copolymers. I believe that MQ copolymers are ideal candidates for 

chemical modification for expansion of both academic study and practical applications. 

Advantages of MQ over other nanoparticle platforms include its solubility, synthetic control 

of molecular weight and the synthetic control of chemical functionality.  As prepared, MQ 

copolymers contain functional silanols (Figure 2.7) but there is limited control over the 

functional density afforded in the synthetic method presented here. Controllable levels of 

functionality can be incorporated using functional M silanes (Figure 2.6). Three 

modification methods of MQ are presented to demonstrate versatility as a synthetic 

platform: (1) reaction through silanols, (2) reaction through silicon hydrides and (3) 

reactions through vinyl groups. 

Silanol-containing MQ affords two modification methods common to siloxane 

chemistry: condensation reactions and the Piers-Rubinsztajn reaction. The condensation 

of silanol residues has already been demonstrated above using trimethylsilyliodide (Figure 

2.7). Additional, condensation reactions using disilazanes are commonly utilized in patents 

to incorporation vinyl groups into MQ and proved effective as shown in Figure 2.14. 

Tris(pentafluorophenyl)borane (B(C6F5)3) catalyzed condensation of silanols with 

hydridosilanes (the Piers-Rubinsztajn reaction) was very effective on MQ substrates. Two 

reactions are demonstrated: (1) a model reaction with pentamethyldisiloxane (Figure 2.15) 

and (2) the addition of octadecyldimethylsilane to MQ (Figure 2.16). Yields for these 

reactions are high based on the nearly complete removal of silanols as evidenced in 29Si 

NMR and IR spectra. In addition to these modifications that result in discrete MQ 

molecules, BCF catalyst can also be used to form MQ-PDMS elastomers via condensation 
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of MQ silanols and hydride-terminated PDMS. This was confirmed in a handful of 

experiments but not investigated. 

 

Figure 2.14. Condensation of silanol residues on M14Q29 using 
divinyltetramethyldisilazane. (a) 1H NMR and (b) IR show incorporation of vinyl groups 

and loss of silanols. 

 

Figure 2.15. B(C6F5)3-catalyzed condensation of residual silanols on MQ with 
pentamethyldisiloxane. (a) 1H NMR spectrum shows a peak associated with DMe and (b) 

29Si NMR shows disappearance of Q3 and appearance of D. (c) IR shows loss of 
silanols. 
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Figure 2.16. B(C6F5)3-catalyzed condensation of residual silanols on MQ with 
octadecyldimethylsilane. (a) 1H NMR spectrum shows octadecyl peak and no residual 

Si-H. (b) IR shows loss of silanols. 

 

MQ copolymers prepared using tetramethyldisiloxane (HMMH) and 

divinyltetramethyldisiloxane (VMMV) lend themselves to hydrosilylation. Networks were 

prepared using HMQ and VD or VMQ and HD, however these materials were not 

investigated in detail. Two hydrosilylation-catalyzed grafting reactions of MQ are shown in 

Figure 2.17 and Figure 2.18. Grafting of allyl-poly(ethyleneoxide) (Gelest, ENEA0260, Mn 

= 480) onto HMQ, shown in Figure 2.17, results in a water dispersible MQ. HD18
Me (Gelest 

MCR-H11) was grafted to VMQ, shown in Figure 2.18 by diffusion NMR and GPC. Grafting 

of molecules and macromolecules onto MQ copolymers changes the physical and 

chemical properties of the MQ in ways which expand its utility. 
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d 

 

 

Figure 2.17. Pt-catalyzed hydrosilylation of HMQ and allyl-PEO. (a) 1H NMR shows 
disappearance of Si-H and allyl protons and appearance of ethyleneoxide protons. (b) IR 
confirms disappearance of Si-H and PEO addition. (c) GPC chromatographs and (d) 2D 
DNMR spectrum of HMQ and allyl-PEO and HMQ-graft-PEO. Due to dispersity of the MQ 

sample, grafting is not clear in GPC but DNMR provides evidence that both PEO and 
MQ peaks diffusion simultaneously. Along with the disappearance of Si-H and allyl 

groups, this clearly shows that the grafting was successful. 
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Figure 2.18. Pt-catalyzed hydrosilylation of HD18
Me onto VMQ. (a) 1H NMR shows 

disappearance of Si-H and vinyl protons indicating complete reaction and clean product. 
(b) GPC and (c) D-NMR show increase in molecular weight/size from HD18

Me and VMQ to 
VMQ-graft-D18

Me. 

 

I must emphasize again that modifications reactions were not optimized. The 

reactions presented above and numerous other reactions have been run as illustrative 

examples of MQ’s utility as a substrate. The conditions for the various reactions were not 

optimized for yield or efficiency. No precise kinetics were carried out. I suspect that each 

method of modifying MQ will have unique challenges: perhaps the most difficult being the 

purification MQ product. For this reason, most MQ modifications were run with volatile 

reagents that could be removed in a vacuum oven or with excess MQ so that excess 

reagent would not be present. There is much to be explored in the domain of functional 

MQ copolymers that involves optimizing functional densities, characterizing novel MQ 

properties and understanding if and how the unique structure of MQ can act synergistically 

with new chemistries. 
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2.4  Conclusions and Comments 

MQ copolymers are important commodity materials that we believe should have 

broader impact than they currently do. I want to encourage chemists, engineers and 

scientists to explore the versatility of MQ copolymers to address the challenges of modern 

materials science. These unusual molecules are structurally similar to silica nanoparticles, 

yet ‘dissolve’ in organic solvents. These copolymers can be described as phantom 

nanoparticles due to the unique position they occupy between solid particle and soluble 

macromolecule. The method reported here allows MQ copolymers to be reproducibly 

synthesized in the form of viscous liquids (liquid nanoparticles) or solid organic-soluble 

powders. The incorporation and utilization of functional handles permits derivatization for 

specific physical properties and chemical reactivity. Characterization of these MQ 

silicones highlights their polycyclic silica-like structure; however, further investigations into 

the physical structure of MQ remains an open challenge. There is an art to the reproducible 

synthesis of MQ copolymers, but I believe the method developed in this research makes 

it possible for academic labs to create their own designer MQ silicones and I highly 

encourage these pursuits. 
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CHAPTER  3 

SURFACE ACTIVITY OF MQ SILICONES 

3.1  Introduction 

3.1.1 Background 

MQ silicone copolymers1,2 are commercially important materials that are used as 

reinforcing fillers3-6, tackifiers7-11 and surfactants,12-17 but have been generally ignored by 

academic research. A handful of open literature reports have investigated the reinforcing 

effects of MQ3-6 and the performance of MQ in pressure sensitive adhesives9-11, but no 

study has quantified the properties of MQ at interfaces. This is peculiar due to the obvious 

surface activity of MQ to anyone who is familiar with its preparation: either through 

reviewing the patent literature7,8,17 where emulsions are commonly described, or from 

direct experience of MQ emulsions formed during the reaction and work up procedures. 

How can it be that, to my knowledge, no open literature exists that quantifies the behavior 

of MQ copolymers at interfaces. Perhaps this is due to the perspective of MQ copolymers 

as organic solvent-soluble nanosilicate particles rather than viewing them as molecules 

which is the perspective of Chapter 2 and our recent publication.18 By limiting the view of 

MQ copolymers to that of a chemically homogenous particle, its fascinating molecular 

structure and properties are overlooked. 

 

Considering the family of silicones of which MQ is a member, its surface activity 

should not come as a surprise. Siloxane polymers and molecules have been recognized 

for their unique surface properties since their invention in the 1930’s.19,20 

Poly(dimethylsiloxane) (PDMS) and other linear siloxanes were immediately recognized 

for their abilities to hydrophobize21,22 and destabilize foams.23 The ability of PDMS to 

generate hydrophobic, low hysteresis, covalently attached liquid surfaces has been 

studied and applied by numerous researchers.24-30 Zisman and coworkers31 were the first 
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to study PDMS at the air-water interface and numerous researchers have continued to 

probe the structure of these PDMS monolayers.32-38 Polyhedral oligomeric silsesquioxane 

(POSS) materials have been investigated as omniphobic surface treatments39 and in 

Langmuir monolayers.40-46 A special class of trisiloxane surfactants are infamous as 

superspreaders.47-49 In addition to silicone polymers, silica particles have long been used 

as models to investigate the surface activity of particles.50-55 Silica particles at the air-water 

interface have been studied with regard to their behavior in Langmuir monolayers and 

these studies show that the hydrophobicity of silanized silica is important for monolayer 

stability and collapse mechanisms.53,54 Recently silica particles were studied at the oil-

water interface using drop tensiometry to show that silanized particles adsorb to the 

interface to reduce interfacial tension.55 MQ copolymers are hybrid molecules that can not 

only utilize the chemical versatility of silicone polymers but can have a variety of physical 

structures: from oligomeric and cagelike to condensed and silica-like. Tuning the 

chemistry and structure of MQ provides routes to an infinite number of materials which 

may exhibit unique interfacial behavior, yet there is no literature regarding MQ copolymers 

at interfaces. The contrast between the literature on its silicone and silica relatives is quite 

stark. Having previously developed a synthetic technique to prepare MQ with control over 

size and silanol content, the goal in this work was to explore how the physical and chemical 

structures of MQ affect its interfacial activity. 

 

Even without open literature regarding the interfacial properties of MQ, surface 

activity is obvious based on patent literature and personal experiences. Patent and 

marketing literature indicates that the surface activity of MQ is leveraged in emulsion 

formation, foam stabilization and hydrophobic surface coatings.56 In fact, the first MQ 

material was a superhydrophobic coating produced using the vapor phase of the 

azeotrope of silicon tetrachloride and trimethylchlorosilane.57 In personal experience, 
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developing synthetic procedures for preparing MQ copolymers, strong emulsions were 

commonly encountered that did not separate with prolonged rest or with the addition of 

brine solutions. These tenacious emulsions resulted in losses in product until proper 

rinsing procedures were developed. With patent suggestions and after experiencing the 

MQ emulsions firsthand, it was clear that these molecules were surface active. Qualitative 

observations of MQ surface activity indicated apparent differences in the characteristics 

of MQ interfaces that were dependent on molecular weight and chemical composition. 

Again, it must be stressed that unlike other silicones and silica, there is no open literature 

that quantifies MQ silicone interfacial behavior. It is clear that these are important 

characteristics of these polymers that should be measured. In particular, the behavior of 

MQ at interfaces highlights that MQ silicones need to be regarded as molecules with both 

a chemical and physical identity. When MQ is approached solely from a nanoparticle 

perspective, we miss out on the full picture of its surface activity. In this work, it is shown 

that the size of MQ affects surface activity; however, it is discovered that MQ is only 

surface active when it contains silanols from incomplete end-capping. 

 

3.1.2 Objective 

The objectives of this work involved three studies of MQ interfaces: (1) MQ at the 

oil-water interface using drop tensiometry, (2) MQ at the air-water interface using 

Langmuir monolayers and (3) MQ surface modifications on smooth silicon wafers via 

Blodgett depositions and adsorption from solution. Using the synthetic preparation 

described previously18, MQ copolymers of various apparent average molecular weights 

are compared and an effect of MQ size is determined. The importance of silanol residues 

in surface activity is examined by comparing the behavior of silanol-containing and fully 

trimethylsilylated MQ. These findings emphasize the importance of MQ molecular 
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structure, both chemical and physical, to its macroscopic properties at interfaces and 

suggests routes to tune the surface activity of MQ systems. 

 

3.2 Experimental Section 

3.2.1 Materials 

Four MQ copolymers were prepared with number average molecular weights 

(GPC, PMMA Standards in THF) from 2300 to 15100 g/mol. In addition to MQ copolymers 

of various molecular weight, a trimethylsilylated MQ copolymer was prepared using 

trimethylsilyl iodide. These resins are discussed in Chapter 2 and reported.18 Their 

properties are reproduced in Table 3.1.  

 

Table 3.1: Molecular Weight and M:Q Ratios of MQ copolymers examined in this study 

sample Mn Mw Mw/Mn M:Qa 

M17Q15 2300 3000 1.30 1.1 

M16Q32 3100 4200 1.35 0.50 

M32Q64 6500 12 300 1.89 0.49 

M42Q100/M51Q100
b 8600 16 800 1.95 0.42/0.51b 

M66Q164 15 100 39 800 2.64 0.38 

a) M:Q Ratio determined by 1H NMR w/ cyclohexane reference 
b) Trimethylsilyl iodide-treated 

 

3.2.2 Pendant Drop Tensiometry 

A Dataphysics OCA 20 pendant drop tensiometer was used to measure interfacial 

tension of water drops (Milli-Q, 18.2 MΩ) in toluene and MQ-toluene solutions. 1 mg/mL 

MQ solutions were prepared using 99.9% Toluene (ARCOS) and were filtered through 

PTFE syringe filters into quartz cuvettes. Deionized water drops were rapidly dispensed 
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and suspended from a flat 1.65 mm diameter needle tip. Interfacial tension was measured 

as a function of time, the initial time corresponding to the moment the drop was dispensed. 

 

3.2.3 Langmuir Monolayers and Blodgett depositions  

Chloroform was used as spreading solvent for the deposition of MQ at the water-

air interface. 1 mg/ml solutions of MQ copolymer were prepared and deposited using a 10 

μL Hamilton syringe. 

 

Langmuir monolayers were prepared on deionized water (Milli-Q, 18.2 MΩ) in a 

Kibron MicroTrough XS. Before every experiment, the trough was thoroughly cleaned with 

ethanol and water and dried with nitrogen. After filling the trough with water, the surface 

was cleaned by repeated compression and suction cycles until the change in surface 

pressure was less than 0.1 mN/m for an entire compression-expansion cycle. The MQ 

solution was deposited by touching drops from the needle tip onto the water surface. A 

minimum evaporation period of 30 minutes was allowed before compression. For all 

experiments the compression rate was 5 mm/min. Compression isotherms were carried 

out to the instrument’s minimum trough area. Hysteresis experiments involved 

compressed monolayers from 0 mN/m to 20 mN/m, returning to 2 mN/m then compressing 

to 20 mN/m for three cycles. 

 

MQ Langmuir monolayers were transferred onto O2 plasma-cleaned silicon wafer 

sections by Blodgett deposition. Each MQ monolayer was compressed and held at a 

constant surface pressure of 20 mN/m. Dry substrates were lowered into the trough until 

submersed and MQ deposited during retraction (substrate immersion and retraction speed 

was 5 mm/min). Wet substrates were lowered onto the water surface and upon contact an 

MQ monolayer spread on the wetted substrate. Surfaces from both methods were 



93 
 

indistinguishable, but dipping and retraction of dry substrates provided more reproducible 

surfaces. Multiple layers could be deposited by repeated deposition steps. Following 

deposition, wafer sections were dried at room temperature under reduced pressure. 

 

3.2.4 Surface Adsorption 

Smooth silicon wafers were diced into 1 cm x 1 cm sections. Sections were rinsed 

(toluene, acetone, ethanol, water) and dried under a stream of nitrogen before O2 plasma 

treatment for 15 minutes (Harrick Plasma Cleaner, 250 mtorr O2, 30 W). 

 

Adsorption of MQ copolymers onto silicon wafers was achieved by incubating 

cleaned silicon wafer sections in 10 mg/mL solutions of MQ in toluene at 100 °C for 24 

hours. Following this treatment, wafers were rinsed with toluene, acetone, ethanol and 

water and dried with a stream of nitrogen. 

 

Dynamic water contact angle was measured with a Ramé-Hart goniometer. 

Surface thickness was measured using a Gaertner LSE Stokes Ellipsometer. Atomic force 

microscopy (AFM) imaging was carried out on a Bruker MultiMode Scanning Probe 

Microscope in tapping mode. Tip fouling was common and micrographs required cropping 

to isolate clean images. Adequate AFM images for the lowest molecular weight MQ 

samples (M17Q15) and trimethylsilylated MQ samples could not be obtained. Tip fouling 

and resolution were a problem with M17Q15, while tip fouling and surface heterogeneities 

were problematic for trimethylsilylated MQ. 

 

3.3  Results and Discussion 

Studies of MQ copolymers at interfaces were catalyzed by observations and 

frustrations with water-toluene emulsions that formed during work-up procedures of MQ 
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synthesis. When preparing the lowest molecular weight copolymers, the emulsions that 

formed were weak and the aqueous and organic phases would separate after resting. 

However, at higher molecular weights, the emulsions became tenacious; they would not 

separate over time or with brine. Without careful rinsing procedures, large amounts of the 

product or entire reactions would be lost. In addition to these observations regarding the 

physical size of the MQ copolymers, it was also observed that trimethylsilyl iodide-treated 

MQ, in which all silanol residues has been trimethylsilylated did not form emulsions. These 

qualitative observations led to the study of MQ at the Oil-Water interface by pendant drop 

tensiometry. 

 

3.3.1 MQ Copolymers at the Oil-Water Interface 

Pendant drop tensiometry measurements confirmed our observations of MQ oil-

water interface activity, with significant decreases in water-toluene interfacial tension in 1 

mg/mL MQ solutions as shown in Figure 3.1. The lowest molecular weight MQ copolymer 

only slightly reduced the interfacial tension from 35 mN/m to 33.2 mN/m. The higher 

molecular weight copolymers led to reductions from 35 mN/m to 27.4 ± 0.1 mN/m, 25.5 ± 

0.5 mN/m and 26.5 ± 0.6 mN/m for M66Q164, M32Q64 and M16Q32 respectively. Due to the 

limited number of samples, no comment on the statistical significance of these differences 

can be made, however the effect of nanoparticle size on surface tension reduction has 

been predicted and observed.58-62 In a second set of experiments, M42Q100 was treated 

with trimethylsilyl iodide to trimethylsilylate residual silanols and yield M51Q100. The silanol-

containing M42Q100 reduced the interfacial tension to 25.4 mN/m. Removing the silanol 

residues led to a complete loss of surface activity with no reduction in surface tension.  
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Figure 3.1. (A) Interfacial tension of water drops in MQ-toluene solutions (1 mg/mL) for 
M17Q15 (orange), M16Q32 (red), M32Q64 (black) and M66Q164 (blue). The interfacial tension 
of the clean water-toluene interface is 35 mN/m. (B) Interfacial tension of water drops in 

MQ-toluene solutions (1 mg/mL) for silanol-containing M42Q100 (red) and trimethylsilyl 
iodide-treated M51Q100 (black). (C) Images of pendant drops at the lowest measured 

interface tension. (from left to right: M17Q15, M16Q32, M32Q64, and M66Q164). 
 

The molecular weight, dispersity and chemistry of MQ affect the kinetics and 

equilibrium structure of their assembly at the toluene-water interface. Most importantly, 

the presence or absence of silanols dictates if MQ can adsorb to the interface. Silanols 

act as hydrophilic spots on the hydrophobic methyl MQ granting amphiphilic surfactant-

like character. The observed behavior of silanol-containing MQ suggests that assembly of 

MQ at the toluene-water interface is driven by the favorable wetting and adsorption that 

results from these hydrophilic silanol defects. If we consider only the particle-like physical 

structure of MQ, we lose this perspective. The particle-like nature of trimethylsilylated MQ 

may still lend itself to adsorption similar to other nanoparticles; however, either due to 

intrinsic wettability or molecular size, it readily desorbs and thus cannot assemble to lower 

the interfacial tension. If the silanol-containing MQ strongly favors adsorption to the 

interface, it is possible to explain the effects of molecular weight and dispersity. In the case 
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of M17Q15, the lowest molecular weight MQ, there are two possible reasons for its low 

surface activity: (1) there are fewer residual silanols per molecule leading to reduced 

amphiphilicity and (2) the small size means that its adsorption strength is below that of 

thermal fluctuations (kT) so that it cannot permanently absorb. As molecular weight 

increases, the ability of MQ to assemble at the interface will be dictated by physical 

properties, such as diffusion and packing efficiency, and chemical properties, such as the 

number of silanols and trimethylsilyl capping efficiency, which will be further complicated 

by dispersity. Small molecules diffuse faster (D ~ r-1), can pack more efficiently, but will 

adsorb more weakly (ΔEads ~ r2). Larger molecules diffuse more slowly, pack less 

efficiently, but adsorb with greater strength. As dispersity increases the competition 

between small and large molecules comes into play and the packing efficiency increases. 

Chemically, if we assume the same silanol density for all MQ copolymers, small molecules 

will have fewer silanols available to adsorb and so will adsorb more weakly than large 

molecules which contain a greater number of silanols. Since the MQ copolymers we report 

and studied are polydisperse mixtures both physically and chemically, the situation is 

complex. Regardless of the complexity, it is obvious that MQ is an effective surfactant and 

presents interesting opportunities for tuning surface activity for specific goals. 

 

The critical concentration required for interface saturation was determined for the 

M32Q64 copolymer. This particular sample was chosen for further study because: (1) it 

showed the greatest decrease in interfacial tension at 1 mg/ml and (2) it is the most similar 

to a commercially available MQ silicone (Dow Corning MQ1600) that we use as our 

‘standard MQ.’ Concentrations from 0.005 mg/mL to 10 mg/mL were tested and presented 

in Figure 3.2. Interfacial tension reduction begins at concentrations as low as 0.0075 

mg/mL (7.5 μg/mL) and the interfacial tension reduction saturates between 1 and 5 mg/ml. 

For complete coverage of a drop with surface area equal to 40 mm2 (the average 
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measured drop surface area in these experiments), 0.1 μg of M32Q64 is required to form a 

monolayer (an estimation based on a thickness of 2.5 nm and specific gravity of 1). In 

these experiments, drops were deposited in about 1 mL of MQ-toluene solution which 

means there is from 50 to 105 excesses of MQ in 0.005 to 10 mg/mL solutions, 

respectively. Based on this estimation of monolayer surface coverage and the mass of 

MQ in solution, it is apparent that a large excess of MQ is required in the solution for 

surface tension reduction. Additionally, the adsorption kinetics and equilibrium interfacial 

tension reduction show a strong dependence on concentration: as concentration 

increases the equilibrium interfacial tension decreases and is reached faster. These 

results indicate (1) a partitioning of MQ between the interface and the solution, (2) an 

adsorption-desorption equilibrium occurs at the interface and (3) that multilayer formation 

may be important for maximum interfacial tension reduction based on the large excess of 

MQ in solution. The initial tension at t = 0 decreases with increasing concentration, 

suggesting a rapid initial adsorption that is dependent on [MQ] followed by slower 

reversible equilibration. Although it has not been tested, it is expected that each MQ 

copolymer will have a unique critical concentration and maximal surface tension reduction 

that will depend on molecular weight, dispersity and chemical structure. 

 

Figure 3.2. Impact of [M32Q64] on interfacial tension reduction. [M32Q64] = 0.005 (purple), 
0.0075 (red), 0.01 (orange), 0.05 (blue), 0.1 (pink), 0.5 (green), 1.0 (black), 5.0 (gray), 

10.0 (cyan) mg/ml. The interfacial tension of a clean water-toluene interface is 35 mN/m. 
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3.3.2 MQ Copolymers at the Air-Water interface 

Since the first observations of PDMS surface activity by Zisman and coworkers31 

there have been numerous studies of linear silicones33-38 and polyhedral oligomeric 

silsesquioxane (POSS)40-46 at the air-water interface using Langmuir monolayers. I 

discovered that MQ copolymers can also be deposited onto a water surface from 

chloroform to form Langmuir monolayers. Pressure-area isotherms of these monolayers 

are shown in Figure 3.3. Surface concentrations are reported in mg/m2 and not area per 

repeat unit or per molecule because a repeat unit for MQ cannot be defined, an absolute 

molecular weight for MQ had not been measured, and because of the dispersity of each 

MQ copolymer. The lift-off concentration and collapse behavior of MQ monolayers has a 

strong dependence on molecular weight. As molecular weight increases, lift-off 

concentration increases, collapse pressure increases and surface rigidity increases. The 

lift-off concentration can be used to make a rough estimate of the initial monolayer 

thickness; if we assume that MQ has a density of 1, the estimated thickness is close to 

that of a true monolayer of MQ based on estimates of RH from size exclusion 

chromatography, diffusion NMR and dynamic light scattering.18 A spectrum of behaviors 

is observed starting from the M17Q15 to M66Q164 that ranges from a PDMS-like collapse-

plateau to solid-like rigidity with high maximum surface pressures. 
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Figure 3.3. (A) Pressure-area isotherms to minimum trough area at 5 mm/min and (B) 
pressure-area hysteresis loops (5 mm/min, 3 cycles from 2-20 mN/m) of M17Q15 

(orange), M16Q32 (red), M32Q64 (black) and M66Q164 (blue) monolayers on water. (C) 
Photos of the elastic surface wrinkles that form during high pressure compression of 

M32Q64. Wrinkles grow in compression and relax on expansion reversibly. The surface 
tension probe was removed to allow imaging so exact surface pressures in these images 

is unavailable but it in the range of 50 to 60 mN/m. 

 

M17Q15 shows a single collapse at ~16 mN/m that plateaus and reaches a 

maximum pressure of 22 mN/m. M16Q32 has more complex behavior. Surface pressure 

initially rises sharply, but the rate of pressure increase begins to decrease at ~15 mN/m. 

Unlike M17Q15 which reaches a plateau in surface pressure, the M16Q32 monolayer can 

sustain higher surface pressures as it rearranges during compression and reaches a 

maximum pressure of 50 mN/m. Due to the limited size of the trough it is not possible to 

further compress the M16Q32 monolayer further while still capturing the lift-off behavior. It 

is possible that the monolayer can sustain still higher pressures by continued 

rearrangement although this has not been confirmed. M32Q64 and M66Q164 form more rigid, 

elastic monolayers than the two smaller MQ copolymers and have near identical behavior 

apart from their lift-off concentrations. Both rise sharply following lift-off and have a slight 
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change in slope ~25 mN/m until ~55 mN/m where collapse is observed and with maximum 

pressure of 60 mN/m being reached at the minimal trough areas. The hysteresis 

experiments demonstrate the irreversible collapse of M17Q15 and M16Q32 monolayers at 

surface pressures of 20 mN/m while M32Q64 and M66Q164 remain elastic in this region of 

pressures, although they do show some evidence of rearrangement following the first 

compression cycle. At very high pressures, the compressed MQ monolayers were 

observed to reversibly wrinkle into structures observable by eye. The structures initially 

appear as faint threads that run parallel to the barriers compressing the sample and 

eventually grow in number and brightness. The structures form reversibly although it could 

not be determined with the available instrumentation and methods if or how the structures 

change during repeated cycling.  

 

The transition from soft, collapsible monolayers at low molecular weights to rigid, 

elastic monolayers at high molecular weights indicates that the physical and chemical 

structures of MQ copolymers affect adsorption to the air-water interface in a manner 

similar to MQ at the oil-water interface. At low molecular weights, adsorption is weakest 

and monolayers collapse irreversibly because of their less condensed, more open 

structure and lower silanol content per molecule. At higher molecular weights, adsorption 

is stronger and monolayers are elastic because of the condensed, silica-like structure and 

greater silanol content per molecule. The transition from less condensed, branched 

structures to condensed, polycyclic structures can be inferred from M:Q ratios as 

discussed in Chapter 2 and published work.18 This dependence of Langmuir monolayer 

behavior on molecular weight provides insight into the physical structure of MQ molecules 

that supports the understanding of MQ based on M:Q ratios. The transition from soft to 

rigid corresponds to a transition from less to more condensed silica-like structures. 
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The role of silanol residues on MQ was determined by preparing monolayers from 

M42Q100 and the trimethylsilylated derivative. Comparisons were made using a modified 

hysteresis experiment in which monolayers were compresses from liftoff to 10 mN/m then 

cycled between 2 and 10 mN/m for 2 cycles, 2 and 20 mN/m for 1 cycle and 2 and 50 

mN/m for 1 cycle. Figure 3.4 shows that the TMS-treated MQ forms an inelastic monolayer 

that irreversibly collapses with each compression cycle whereas the silanol-containing MQ 

shows elastic behavior with very little permanent collapse even after compression to 50 

mN/m. The lift-off pressures are similar since both molecules are the same size. The 

importance of silanols in the strong adsorption of MQ to the air-water interface is clear. 

The stability of the silanol-containing MQ monolayers arises from the adsorption of the 

hydrophilic sites to the water interface. Without the hydrophilic silanols the MQ irreversibly 

collapses under pressure, preferring to stick to itself in the collapsed aggregated structure. 

The differences in lift-off pressure can also be attributed to the silanols, since the TMS 

derivative monolayer is likely to have a greater number of aggregated structures before 

compression. 

 

Figure 3.4 Pressure-area hysteresis loop (0-10 mN/m x1, 2-10-2 mN/m x2, 2-20-2 
mN/m, 2-50-2 mN/m) for silanol-containing M42Q100 (red) and trimethylsilyliodide-treated 

M51Q100 (black). 
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3.3.3 MQ copolymer surfaces 

The structure of the air-water monolayers under moderate compressions was 

studied by Blodgett deposition onto cleaned silicon wafer substrates. Deposition of MQ 

occurs two ways: (1) for dry substrates, deposition occurs on the withdraw step only  or 

(2) for wet substrates, the first deposition occurs upon contact with the water surface, with 

surface pressure driving the first monolayer onto the wet substrate area. In both cases, 

subsequent deposition only occurs during the withdraw step of an immersed substrate. 

Table 3.2 presents the properties of the MQ surfaces prepared by Langmuir-Blodgett 

deposition from the air-water interface. Thickness by ellipsometry matches the estimated 

thicknesses of a monolayer from lift-off pressures and RH measurements. Advancing water 

contact angles are consistent with a disordered methyl surface while receding contact 

angles demonstrate both chemical and topological heterogeneities. The high contact 

angle hysteresis is the result of contact line pinning that arises from (1) exposed surface 

silanols, (2) silanols on the MQ copolymer molecules and (3) molecular roughness of the 

MQ monolayer. AFM, presented in Figure 3.5, confirms that the surfaces are rough on a 

length scale comparable to that of the MQ molecules. The surfaces are also 

heterogenous, showing clusters of MQ molecules. In the case of M17Q15, adequate AFM 

data could not be collected due to severe tip fouling. 
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Figure 3.5. AFM micrographs of MQ copolymer surfaces from Blodgett depositions and 
solution adsorption. Note differences in scale bars.  

 

Table 3.2 MQ surfaces prepared from Langmuir Blodgett transfer (5 mm/min, 20 mN/m) 
and adsorption from toluene solution (100 °C, 24 h) 

MQ Thickness 
(nm) 

RMS 
Roughness 

(nm) 

Advancing CA, 
θa 

Receding CA,  
θr 

Hysteresis 

M17Q15 L-B 1.0 - 99 77 22 

Soln. 1.3 - 99 91 18 

M16Q32 L-B 1.3 0.4 103 85 18 

Soln. 1.8 0.6 100 81 19 

M32Q64 L-B 2.2 1.1 103 77 26 

Soln. 2.5 2.2 102 77 25 

M66Q164 L-B 2.8 2.2 103 77 26 

Soln. 3.7 3.0 102 75 27 

 

Surfaces of MQ were also prepared by adsorption from solution using a method 

similar to that reported by our group for the preparation of PDMS grafts.22,23 The surfaces 

prepared this way have similar characteristics to those prepared from Blodgett deposition. 

Data for these surfaces is also exhibited in Table 3.2. Thickness, advancing contact 

angles, contact angle hysteresis, and roughness increase with molecular weight. While 
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ellispometric thicknesses were close to that of a monolayer, AFM (Figure 3.5) showed 

clustering and multilayer formation. Again, In the case of M17Q15, adequate AFM data 

could not be collected. A comparison of silanol-containing M42Q100 to trimethylsilylated 

M51Q100 is presented in Table 3.3. The trimethylsilylated derivative has lower contact 

angles, higher contact angle hysteresis and is very heterogeneous as observed by 

variance in ellipsometry and stick-slip contact line motion. 

 
 

Table 3.3. Surfaces prepared by solution adsorption (toluene, 100 °C, 24 h) of silanol-
containing MQ (M42Q100(OH)10(OEt)1) and trimethylsilyliodide-treated MQ (M51Q100(OH)1 

(OEt)1) 

MQ Thickness (nm) 
Advancing 

CA (θa) 
Receding CA 

(θr) 
Hysteresis 

M42Q100(OH)10(OEt)1 2.1 105 80 25 

M51Q100(OH)1 (OEt)1 
2.6 

(Large Variance) 
88 48 40 

 

These surfaces provide useful insight into the physical structure of MQ. The 

particle-like structure can be directly observed with AFM and the contact angle data 

indicate that the molecules are hydrophobic, but contain numerous defects as a result of 

silanols and molecular topography. Like the observations of other interfaces, the presence 

of silanols plays an important role in the ability of MQ copolymers to adsorb. Weak 

physisorption of trimethylsilylated MQ is indicated by the wettability and heterogeneity of 

the surfaces while silanol-containing MQ appears to chemisorb to the silicon surface. 

 

3.4 Conclusions 

For the first time, the properties of MQ silicone copolymers at interfaces has been 

quantified. These silicone copolymers exhibit unique surface activity that highlights their 

position between molecule and particle. Examinations of MQ at toluene-water, air-water 



105 
 

and on smooth solid substrates provides insight into the role of physical and chemical 

structure of MQ copolymers on interfacial behavior and surface activity. It has been shown 

that the apparent molecular weight of silanol-containing MQ copolymers is important but 

that the silanols are the critical component that enables MQ surface activity. Without the 

silanol residues MQ no longer demonstrates robust surface activity. I suspect that the 

characteristics of MQ silicones at interfaces could be precisely tuned by controlling 

molecular weight and silanol content. Future investigations in MQ surface activity could 

develop more precise structure-property relationships by fractionation of MQ samples into 

well-defined populations. The current conclusions are limited by the use of polydisperse 

samples that complicate the picture of MQ behavior. Characterization of precise MQ 

fractions would enable a more complete understanding of the relationship between 

molecular weight and surface activity. 

 

The unique behavior of MQ silicones at various interfaces is leveraged in 

numerous commercial applications, but has been ignored by the academic community. 

The synthetic versatility of MQ as a platform and its unique properties beg for further, 

widespread investigation. 
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CHAPTER 4 

SILICONE-CARBON NANOTUBE COMPOSITES: TUNING DIPSERSIONS AND 

PROPERTIES WITH POLYSILOXANE BACKBONE CHEMISTRY 

4.1 Introduction 

4.1.1  Carbon Nanotubes 

Nanomaterials have been proposed as the future of materials science. 

Applications of newly discovered nanomaterials cover the spectrum of sensing, imaging, 

electronics, catalysis, drug delivery and strong lightweight composites. One application of 

nanomaterials is in polymer nanocomposites where a nanomaterial is incorporated into a 

polymer matrix for enhanced properties; as a historical example, carbon black has been 

used to reinforce rubbers for over a century.1,2 Of the numerous nanomaterials that are 

being explored today, few have generated the buzz and hype of carbon nanotubes 

(CNTs).3,4 Since their discovery in 19875 and first open literature report in 1991,6 few 

materials have matched the level of excitement that surrounds CNTs. However, realizing 

the promise of CNTs has been elusive and research into their practical utilization has hit 

numerous roadblocks. Nanotubes are not living up to their expectations. Despite the 

frustrating challenges they have posed to researchers and industry, work continues in 

hope that CNTs will one day be a solution to problems in materials science. 

 

What are Carbon Nanotubes? It depends: CNTs come in an array of flavors.7, 8 

There are single-walled (SWCNT) and multi-walled (MWCNT), capped and uncapped and 

various chiral forms. The simplest way to think about the structure of a nanotube is to 

imagine wrapping a sheet of graphene (a one atom thick, hexagonally bonded, 2D carbon 

sheet) into a tube. SWCNTs can have diameters between 0.8 and 2 nm while MWCNTs 

are between 5 and 20 nm. Nanotubes have extraordinary properties: individual nanotubes 

can have metallic conductivity, thermal conductivities greater than diamond and elastic 
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modulus approaching 1 TPa with ultimate strength of 100 GPa. The length of a CNT 

depends on how it is prepared and ranges from below 100 nm to many millimeters. The 

high aspect ratio of CNTs allows then to achieve electrically and mechanically percolated 

networks at very low loadings in polymer composite applications.9-11 With such properties, 

it is obvious that nanotubes have attracted a great deal of attention; however practical 

application of nanotubes faces numerous challenges, including a range of fundamental 

scientific, economic, health and safety, and practical issues.3,12,13 

 

Although CNTs have experienced growing pains and no CNT space elevator is in 

the works, they have found niche applications in polymer composites9-17 and energy 

storage/management.12,13,16 Critical to their practical utilization in polymer composites is 

that they provide a significant advantage over conventional fillers at lower filler loadings. 

When this is achieved, materials scientists can begin to use them in commercial 

applications. Currently, the production of CNTs is far greater than the demand,2 but as 

scientists and engineers understand more regarding nanotube processing/chemistry-

structure-property relationships, more and novel applications will appear. 

 

4.1.2 Challenges facing CNT polymer nanocomposites 

Aside from the challenges facing CNTs in general, there are some specific, 

relevant challenges to the utilization of CNTs in polymer nanocomposites. The largest of 

these challenges involves the dispersion of nanotubes in polymer matrices.9-17,19-22 Like all 

nanomaterials, CNTs have a very high surface area to volume ratio. This makes interfacial 

interactions crucial in nanocomposites. Attractive nanotube-nanotube van der Waals 

interactions means that CNTs tend to aggregate and agglomerate. To overcome the 

aggregation of CNTs, polymer-nanotube interactions must be favored. This may seem like 

a simple task but finding solvents or polymers that can solubilize nanotubes has 
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challenged researchers for decades. To make things more difficult, the extreme aspect 

ratios of CNTs makes it almost impossible for them to reach true equilibrium states, 

resulting in kinetically trapped aggregates even if a preferable solvent is used. 

 

Why does the dispersion or structure of CNTs in a polymer matrix matter? 

Performance and cost. CNTs are expensive and for them to compete with traditional fillers 

they must not only offer an advantage in performance, but also be comparable in cost. For 

CNTs to become a feasible technology, they must realize performance at ultra-low 

loadings so that their high cost is offset by low volume. In principle, the homogeneous 

dispersion of CNTs should lead to dramatic improvements in composite properties at filler 

loadings orders of magnitude lower than conventional macroscopic fillers. Dispersing 

CNTs and understanding structure-property relationships in CNT-polymer 

nanocomposites has therefore been a significant thrust in research.23-31 Much of the work 

has been focused on creating homogenous dispersions and the results indicate that 

improving the dispersion of CNTs, either via processing or chemical modification, 

improves the performance of composites and uses the CNTs more efficiently. 

Heterogenous structuring32 of CNTs in polymers has been observed to introduce 

anisotropy and in some cases can improve properties in composites. Having control over 

the formation of such CNT structures is desired because in uncontrolled cases, 

heterogenous dispersions act as defects which have a negative impact on composite 

properties.  

 

There are numerous reviews on methods used to disperse nanotubes into polymer 

matrices and a few are cited in the references.19,20,22 Current mechanical processing 

methods used to achieve homogeneous dispersions involve prolonged shear melt mixing 

or high powered sonication. These methods alone do not normally result in good quality 
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dispersions. Additionally, if the sonication power is too high, CNTs break thus reducing 

the aspect ratio that we aim to take advantage of. Chemical processes have been 

developed that significantly aid dispersion. These processes involve the use of 

cosolvents33 and surfactants34 as processing aides and the chemical modification of the 

nanotube surface.8,35,36 The downside to these methods are the introduction of solvent or 

surfactant which must be removed from the final product and the possible degradation of 

nanotubes that results from chemical modification. This adds additional steps to CNT 

manufacturing that raises cost, especially in the case of chemical modifications. Optimally, 

dispersions of nanotubes would be achieved by simply dropping them into a polymer 

matrix and mixing, like what is done with carbon black. 

 

In addition to the challenges in achieving dispersion, direct measurements of 

global dispersion can be difficult to carry out and to interpret.30 Microscopy is a great tool 

to gain local information. Rheology23-31, conductivity28,29, scattering32 and nuclear magnetic 

resonance37,38 are typically used to analyze global information. The only way to truly 

understand the dispersion and performance of a polymer nanocomposite is by combining 

these techniques in a way that fits the desired application. One technique alone will 

provide limited information while a combination can begin to uncover the whole picture. 

 

4.1.3 Nanocomp Technologies, Inc. 

A fundamental scientific challenge regarding the study and application of 

nanotubes is nanotube variability.2,3 There are numerous preparative methods for CNTs 

and each yields CNTs with different structural characteristics (such as SWCNT vs 

MWCNT or capped vs uncapped).7,8 In addition to the characteristics inherent to the 

method, nanotube structure is sensitive to minute changes in preparative conditions, so 

that different batches from the same method tend to suffer from high variability. On top of 
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this, commercial CNTs are often ‘dirty.’ Catalyst residues are present and processes used 

to remove the catalyst introduce chemical and structural defects that vary depending on 

the process. How the nanotubes are treated, or not treated, to remove catalyst particles 

will be important to their properties. Nanotubes in commercial samples are also ‘dirty’ in 

the sense that they are polydisperse in size and aspect ratio, something especially 

important in electronic applications. Given the above circumstances, it is nearly impossible 

to compare research results which (1) use different sources of nanotubes, since each 

preparative and post-preparative process will yield different chemical and physical 

structures, and (2) use different batches of nanotubes if production methods are not 

adequately controlled. The challenge of variability has limited large scale production and 

utilization of CNTs, thus limiting availability and raising costs. Luckily for us, we have 

collaborators at Nanocomp Technologies, Inc., a New Hampshire based producer of 

MWCNTs. Nanocomp has achieved process controls so that each batch of nanotube 

product we receive is comparable to those we have used before, something that cannot 

be said of other suppliers. This is critical in overcoming the problems of batch variability, 

allowing us to reproduce our results and make definitive conclusions regarding our CNT 

composites. The collaboration between our lab and Nanocomp is advantageous for both 

parties. For us, we get an ample supply of free, consistent CNT products. For Nanocomp, 

we are developing processing methods and investigating applications of their product.  

 

Before shifting the attention to silicone-CNT nanocomposites, a few words about 

the CNT materials that we will be using are warranted. Nanocomp Technologies, Inc. 

produces MWCNTs from a continuous chemical vapor deposition (CVD) process from 

carbon fuel gasses onto iron nanoparticles. The process used by Nanocomp has been 

engineered to limit variability and can produce CNTs at rates of grams per hour. The CNTs 

are 10’s of nanometers in diameter and have been measured to be millimeters in length. 
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This extreme aspect ratio is a unique outcome of this production method and maintaining 

this aspect ratio in subsequent processing is important in order to make effective use of 

this product. In the Nanocomp CVD preparation, nanotubes grow from the iron catalyst in 

a furnace and form an entangled mass that is collected onto a rotating drum. The final 

product is a sheet of entangled nanotubes with partial alignment along the circumference 

of the collection drum. This sheet can then be further densified by solvents. CNT powders 

are made by vigorous mechanical mixing and chopping of a CNT sheet with solvents or 

surfactants. There are a few open publications available which use Nanocomp CNTs in 

composites.38-41  

 

4.1.4 Siloxane-Carbon Nanotube Polymer Nanocomposites 

We work on silicones and we believe that siloxane polymers are a special matrix 

material for CNT composites. The flexibility and conformational freedom of siloxanes 

allows them to adsorb and maximize polymer-nanotube interactions unlike any carbon-

based polymer. The additional chemical versatility allows the adsorption strength to be 

tuned by the choice of functional group attached to the backbone. That methylsilicones 

are capable of dispersing CNTs have been reported and utilized.42-49 Leveraging the 

unique properties of silicones and CNTs would open the door to specialty composites for 

use in flexible electronics, thermal management and flame retardants.  

 

Besides applications in composites, siloxane polymers offer a convenient platform 

with which to study fundamental properties of CNT dispersions in polymer melts. Most 

studies regarding the structure-property relationships of CNT dispersions in polymer melts 

use carbon-based polymers and/or use different processing methods to achieve different 

dispersion states. Due to the higher glass transition temperatures of the polymers that 

have been studied, these experiments must be run at elevated temperatures for flow and 
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rheological observations. Silicones can be studied at room temperature, which is not only 

easier but mitigates any problems that may arise from degradation at high temperatures. 

Silicones also grant chemical versatility that allows adsorption behavior to be tuned. This 

allows silicone CNT nanocomposites to be prepared of varying dispersion quality with 

polymers of the same backbone using the same processing conditions. More direct 

comparisons can then be made between the properties of dispersion states allowing 

structure-property relationships to be formulated. This is not the case when CNTs are 

dispersed using different processing methods because improved dispersions are 

achieved in a manner that introduces solvent, surfactants, changes in nanotube chemistry 

or nanotube defects. 

 

There are numerous studies on siloxane based CNT nanocomposites; however, 

the majority of them use Sylgard 184 as ‘PDMS’.27,43,48 This can be misleading since 

Sylgard 184 contains filler and is not strictly polydimethylsiloxane. Others have used 

various RTV formulations45-47 and only one has used a phenyl containing siloxane as a 

dispersion agent.44 The ability of silicones to disperse CNTs and investigations into the 

properties of various dispersion states in silicones remains unexplored. 

 

4.1.5 Objective 

The objective of this work was to formulate relationships between CNT dispersion 

states and properties of silicone-CNT nanocomposites. Dispersion states were 

qualitatively observed using optical microscopy. Quantitative analysis was accomplished 

using melt rheology and surface resistivity of silicone-CNT nanocomposites. The 

development of processing methods and chemistry-structure-property relationships in 

silicone-CNT composites has improved our fundamental understanding of these material 

systems and has enabled us to engineer composite properties for specific applications. 
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4.2 Experimental Section 

4.2.1 Materials and Abbreviations 

Multi-walled carbon nanotubes (MWCNTs/CNTs) were provided by Nanocomp 

Technologies, Inc. A powder/pulp form of CNTs was used in these studies to prepare 

isotropic polymer composites. To prepare the powder/pulp product, a CNT sheet was 

‘chopped’ in a mechanical mixer with the aid of a cosolvent and dried. 

 

The linear silicone polymers studied are trimethylsilyl-terminated. For simplicity, 

the GE nomenclature49 is used to refer to the silicone polymers. Low viscosity, low 

molecular weight silicone fluids (η ~ 500 cSt / 0.5 Pa*s): polydimethylsiloxane (M~17 500, 

Gelest DMS-T25, D230), polydiethylsiloxane (M~2000, Gelest DES-T23, DEt
20), 

poly(phenylmethyl)siloxane (M~2700, Gelest PMM-0025, DPh-Me
20), poly(phenylmethyl-co-

dimethyl)siloxane (M~10 000, 10 mol% phenylmethyl, Gelest PMM-1025, D112DPh-Me
13) 

and poly(diphenyl-co-dimethyl)siloxane (M~2400, 20 mol% diphenyl, Gelest PDM-1922, 

D19DPh
5). High viscosity, high molecular weight silicone fluid (η ~ 60 000 cSt / 60 Pa*s): 

polydimethylsiloxane (M~116 500, Gelest DMS-T46, D1570). All the above silicones were 

purchased from Gelest and used as received.  

 

Elastomers were prepared with vinyl-terminated silicone fluids and hydridomethyl-

dimethyl copolymers using Karstedt’s catalyst (2% Pt solution in xylene, Gelest). Vinyl 

terminated silicone fluids purchased from Gelest were: polydimethylsiloxane (M~17 200, 

Gelest DMS-V25, VD230 and M~28 000, Gelest DMS-V31, VD380), poly(dimethyl-co-

diethyl)siloxane (M~10 000, 20 mol% diethyl, Gelest EDV-2022, VD100DEt
25), poly(diphenyl-

co-dimethyl)siloxane(M~12 500, 22 mol% diphenyl, Gelest PDV-2331, VD98DPh
27) and 

poly(phenylmethyl)siloxane (M~3000, Gelest PMV-9925, VDPh-Me
22) . Vinyl-terminated 
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dimethylsiloxane was prepared by equilibrium ring-opening polymerization of cyclic 

diethylsiloxane oligomers (Gelest) using tetramethylammonium hydroxide as catalyst and 

divinyltetramethyldisiloxane end-capping. The product has a molecular weight of 6000 

(VDEt
58). 30 mol% hydridomethyl copolymer (Gelest HMS-301, D18DH

8) was used as 

crosslinker.  

 

4.2.2  Sample Preparation  

Linear Silicones. Trimethylsilyl-terminated, linear silicone-MWCNT nanocomposite 

preparation depends on the neat silicone viscosity. High viscosity (η > 5 Pa*s) silicones 

are prepared with the Flacktek Speedmixer (3000 RPM, 2 minutes). Lower viscosity 

silicones (η < 5 Pa*s) require ultrasonic treatment (Branson 250 Digital Sonifier- 35% 

power, 5 sec pulse, 25 second rest, 1 minute total pulse time). In these studies, all 

silicones with viscosities less than 5 Pa*s were prepared using sonication. 

 

Elastomers. Vinyl-terminated, linear silicone-MWCNT composites were prepared 

in the same manner as linear trimethylsilyl-terminated silicone composites. The vinyl-

terminated composite was then mixed with poly(hydridomethyl-co-dimethyl)siloxane (30 

mol% hydridomethyl, HMS-301) to a Si-H:Vinyl ratio of 2:1. Karstedt’s catalyst was added 

(20 ppm) and the mixture was cured into a solid elastomer at 80 °C for 4 hours. Gelest 

OE41 polydimethylsiloxane (D) based, unfilled elastomer was used as received according 

to manufacturer instructions (1:1 ratio of part A and B, cured at 80 °C for 4 hours). 

 

4.2.3  Characterization 

Optical Microscopy. Dispersions were qualitatively studied with optical microscopy 

(Zeiss Axiovert 200). Samples for imaging were prepared by depositing a drop of silicone-
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CNT composite onto a gridded microscope slide (Electron Microscopy Sciences) using a 

capillary tube.  

 

Rheology. Silicone rheology was studied using a TA AR2000 Rheometer with 40 

mm aluminum parallel plates. The high aspect ratio of CNTs can result in dramatic shear 

thinning from CNT alignment and the ability of CNTs to form elastic networks can be 

probed by measuring the viscoelastic properties of CNT reinforced composites. We use 

rheology as a means of quantifying the effect of dispersion quality on the viscoelasticity of 

PDMS-CNT composites. 

 

Steady flow experiments of silicone and silicone-MWCNT fluids were run by 

ramping torque from 0.1 μN*m to 10000 μN*m (logarithmic ramp, 10 points per decade) 

and measuring shear rate. Viscosity was measured at each point and was then plotted as 

a function of shear rate. The steady flow viscosity was calculated from the average of 

three consecutive measurements per torque value. A 5% tolerance between points was 

used to determine if steady flow had been reached. Sampling time for each measurement 

is 15 seconds and point time is 3 minutes. The relationship between viscosity and shear 

rate was used to determine the zero shear viscosity and shear thinning behavior of 

silicone-MWCNT fluid composites.  

 

Oscillatory shear experiments were used to probe the formation and elasticity of 

the MWCNT network within the silicones. Oscillatory stress sweeps from 0.1 to 10 000 

μN*m were run at 1 Hz. Oscillatory frequency sweeps from 0.01 to 10 Hz were run within 

the linear viscoelastic region determined from stress sweeps (~ 1% strain). For both 

experiments, points were distributed logarithmically with 10 points per decade. All 

experiments were run at room temperature. Frequency sweeps are useful for analyzing 
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polymer dynamics. The low frequency domain corresponds to slow relaxations which may 

be associated with chain center-of-mass diffusion or reptation. High frequencies 

correspond to fast relaxations associated with segmental mobility. Because the glass 

transition in silicones (-125 °C and -135 °C for D and DEt, respectively) is far below room 

temperature, it is unlikely that segmental relaxations will be detected, but diffusive 

processes and larger scale relaxations can be analyzed. 

 

Surface Resistivity. The surface resistivity of composite elastomers was measured 

using a DESCO Concentric Ring Surface Conductivity Meter. 3-5 mm thick composites 

were prepared in 90 mm petri dishes. Above 3 mm, there is no observable change in the 

measured surface resistivity in these samples. Three measurements are made for each 

composite. 

 

4.3  Results and Discussion 

4.3.1 Polydimethylsiloxane (Dn): Processing, Dispersions and Viscoelastic 

Reinforcement in high (M > Ment) and low (M < Ment) molecular weight linear D polymers 

Qualitatively homogeneous dispersions of Nanocomp CNT powder in 

polydimethylsiloxane are remarkably easy to achieve. With high viscosity D1570, shear 

mixing of CNTs into the polymer melt using a Dual Assymetric Centrifuge (Speedmixer) 

results in dispersions of CNT bundles that could be observed by optical microscopy. Some 

large aggregates are visible by eye in thin samples. Figure 4.1a shows a representative 

20x optical micrograph of the 0.1 wt% CNT filled D1570 composite which exhibits wormlike 

CNT bundles. At loadings of 0.5 wt% CNT or higher, D1570 becomes a semi-solid pasty 

material. Flow rheology shown in Figure 4.1b illustrates a dramatic 1000x increase in zero 

shear viscosity upon addition of 1 wt% CNTs to D1570. The composites exhibit extreme 

shear thinning, returning to the unfilled polymer viscosity at high shear rates. This indicates 
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that the CNTs align in the shear field generated during flow. This has been reported 

previously24, 25, 31 and is expected for high aspect ratio fillers. The thixotropic loops in Figure 

4.1c indicate that after alignment and shear thinning at high shear rates, the composites 

still retain the CNT reinforcement at low shear rates. Due to their size and the viscosity of 

the matrix, it is unlikely that the CNTs can rearrange from an aligned state to the initial 

random state on the time scale of the experiment. That the zero shear viscosity is retained 

in the aligned composite indicates that the interactions of the aligned CNT network are 

able to retard flow similar to the random network. These flow responses are schematically 

illustrated in Figure 4.2. The hysteresis observed at intermediate shear rates arises from 

the difference between flow during the process of aligning CNTs in the increasing shear 

rate step (up step) and the flow of aligned CNTs in the decreasing shear rate step (down 

step). 

 

Figure 4.1. (a) Optical micrograph (20x) of 0.1 wt% - D1570 composite. (b) Steady-state 
flow experiment of CNT- D1570 composites and control showing dramatic shear thinning. 

(c) Thixotropic loops where filled symbols are for the increasing shear rate step (Up 
step) and crossed open symbols are for the decreasing shear rate step (Down step). For 

(b) squares and (c) circles: black = 1.0 wt% CNT, red = 0.5 wt% CNT, pink = 0.1 wt% 
CNT, 0.05 wt% = blue, control = black diamond. Note the hysteresis between up and 

down steps observed in (c) at higher loadings. 
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Figure 4.2: Alignment of CNTs during shear flow. The initially random CNT network 
aligns in the direction of flow as shearing forces are applied (Up step in thixotropic loop). 
At the highest shear rates the CNTs are aligned in the direction of flow and the viscosity 

of the fluid is low. On the Down step in the thixotropic loop, the CNTs are still roughly 
aligned in the direction of flow but they are able to interact as shear rate decreases, thus 

reinforcing the composite and raising viscosity. 

 

Figure 4.3 further exhibits the effect of shear-induced structuring of the CNTs by 

comparing oscillatory rheology of unsheared and sheared composite fluids. In the 

unsheared state, the CNTs form a random network. The arrangement of CNTs in this 

network could be imagined as a stack of hay with interpenetrating silicone polymer chains 

(Figure 4.2). This random, physical network is elastic as indicated by the low phase shift 

(delta) measured in stress and frequency sweeps. Shearing of the physical CNT network 

during flow breaks it down and the CNTs align in the flow direction as previously discussed 

(and illustrated in Figure 4.2). After the CNT network is broken down and the CNTs are 

aligned, they are no longer as effective at reinforcing the silicone fluid (as indicated by the 

lower elasticity) in the range of stresses and frequencies tests. The decreased elasticity 

is exhibited by the decrease in G’ and increased phase shift of the sheared composites 

as well as the decreased viscosity in the intermediate shear rates of the thixotropic loops 

(Figure 4.1c). Network elasticity can likely be returned by remixing the composite or over 

time if the CNTs are capable of rearranging back into a random physical network.29  
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Figure 4.3. Breakdown of elastic CNT network by shear alignment in CNT-D1570 

composites. (a) Oscillatory stress sweeps and (b) oscillatory frequency sweeps show 
reductions in elasticity after shear alignment accomplished by a preshear conditioning 

step. Black symbols are G’ and red symbols are delta. Unfilled controls are hollow 
circles. CNT loadings are 0, 0.01, 0.05, 0.1, 0.5 and 1 wt% and increase in the directions 
shown by the arrows. Generally G’ increases and delta decreases with CNT loading. All 

experiments are run at room temperature. Frequency sweeps are run in the linear 
viscoelastic region. 

 

The dispersions of CNTs in D1570 are stable for long periods of time: no additional 

aggregation or sedimentation was observed over periods of months. This is due to kinetic 

trapping of the CNTs in the high viscosity matrix. The diffusion of the high aspect ratio 

CNTs in the entangled D1570 is slow and would require long times for CNTs to aggregate 

by diffusion. The high viscosity of the D1570 not only aides in stability but also in processing. 

The Speedmixer is a dual assymetric centrifugal mixer that generates high shear forces 

in the polymer melt that depend on polymer melt viscosity. The shear energy put into the 

system is evident in the case of the D1570 composites by the heat generated during the 

short mixing process. After 2-3 minutes of mixing at 3000 rpm, the D1570 is warm to the 

touch. 
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With lower viscosity D230, shear mixing in the Speedmixer is not capable of 

dispersing nanotubes. The low viscosity of the matrix does not generate and transmit the 

shear energy required to break up the nanotube aggregates in the same way that the high 

viscosity matrix can. For D230 and other low viscosity matrices that cannot produce the 

required shear energy in the Speedmixer, sonication must be used to disperse the 

nanotubes. GPC analysis of polymers subjected to sonication showed that the process 

does not cleave polymer chains. No test was conducted to test if CNTs are broken under 

these conditions, but based on discussions with personnel at Nanocomp, it is unlikely that 

the CNTs would break under the relatively low sonication power used. Figure 4.4 shows 

that sonication of CNTs in D230 resulted in dispersions of the same qualitative state as 

those prepared by Speedmixing D1570. Some aggregates are observable by eye and 

optical micrographs exhibited bundles. The D230 dispersions are not as stable against 

sedimentation. Sedimentation is observed in periods of approximately weeks to one 

month; however, simply stirring the fluid can disperse the CNT sediment with no signs of 

additional aggregation. 

 
Figure 4.4. (a) D230 and (b) D1570 linear silicone-CNT composite micrographs (20x). 

Numbers indicate wt% CNT in silicone 
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The qualitative microscopy in Figure 4.4 indicates similar dispersion states in the 

two PDMS fluids, yet obvious quantitative differences are observed by the rheology shown 

in Figure 4.5. In the D230 composite processed by sonication, the elastic modulus (G’) 

increases by 1000 times with 0.1 wt% CNT and the phase shift (delta) demonstrates the 

formation of an elastic CNT network at 0.025 wt% CNTs. In the case of D1570, processed 

by shear mixing, a similar increase in G’ occurs but only with the addition of 0.5 wt% CNTs 

and the elastic network becomes apparent at 0.05 wt%. Comparing phase shift in the two 

composites highlights that the elastic contribution of the CNT network in the D1570 

composite is much lower than that of the D230 composite. Differences in the composite 

fluid’s rheology clearly indicate that although the dispersions appear similar by 

microscopy, the CNT network that forms in these silicones is much different. Sonication in 

the D230 silicone composites can break up the nanotube bundles enabling the formation of 

a CNT network at remarkably low CNT loadings. This is exhibited by the 0.1 wt% CNT-

D230 composite, which behaves like a physical CNT gel swollen with PDMS chains as 

indicated by its highly elastic character (delta ~ 15°).  

 

Figure 4.5. Oscillatory frequency sweeps at room temperature of (a) D1570 composites 
and (b) D230 composites. Arrows indicate increasing CNT concentration. Unfilled control 
samples are unfilled circles. In (a) increasing color intensity corresponds to loadings of 
0.01, 0.05, 0.1, 0.5, and 1.0 wt% CNT. In (b) increasing color intensity corresponds to 

loadings of 0.01, 0.025, 0.05 and 0.1 wt% CNT. In general, G’ increases and delta 
decreases with CNT loading. All experiments were run the linear viscoelastic region. 
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Across the tested frequencies (at room temperature), the shape of the responses 

for the two silicones and their composites is similar. The only noticeable difference arises 

in the higher frequency domain because of entanglements present in D1570 and not in D230. 

The increase in G’ and elasticity in D1570 at high frequency comes from entanglements in 

the polymer acting as physical crosslinks. With the incorporation of 0.5 wt% or more CNTs 

we see that G’ and elasticity in this region begin to increase suggesting that the entangled 

silicone network is being constrained by the CNT network. The formation of an 

interpenetrating entanglement-CNT network has interesting implications for polymer 

dynamics. The D230 samples do not show this change in behavior: G’ and elasticity 

increase steadily in all frequency regions as CNT loading increases. 

 

Based on the above measurements, sonication proved to be a superior method of 

dispersing CNTs in neat silicones. One downside of the sonication method is that it was 

only found to be useful in lower viscosity fluids. At high viscosities, the sonication is locally 

confined to the tip of the ultrasonic probe due to the inability of the silicone to flow during 

the short sonic pulses, whereas flow occurs in low viscosity fluids to allow complete mixing 

of samples. Luckily, the viscosity of silicone polymers can be controlled by adjusting 

molecular weight. Addition of solvent is not required to prepare silicone composites as 

long as their viscosity (molecular weight) is low enough to enable sample mixing during 

sonication. If a higher molecular weight silicone composite was desired, addition of 

plasticizing solvent would be required to adequately utilize sonication. This was not 

studied, as an objective of this work was to achieve dispersions in neat silicones without 

addition of solvent, surfactant or chemical modification. Future work on the differences 

between the effects of CNT reinforcement in matrices above and below the entanglement 

threshold could provide insight into chain dynamics and relaxations in silicone polymer 

nanocomposites. 
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4.3.2 Effect of siloxane polymer chemistry on CNT dispersion 

Having determined the optimal processing conditions for achieving dispersions in 

silicones, the next step was to determine how the chemistry of the silicone polymer effects 

the dispersion. Changes in the organic substituents attached to the silicone backbone 

change the polymer-nanotube interactions. Increasing the strength of polymer-nanotube 

interactions can improve CNT dispersability in the silicone matrix. An obvious choice of 

side group to improve polymer-nanotube interactions is phenyl rings which introduce 

attractive π-π interactions between the polymer chain and the nanotube. Diethylsiloxane 

was also chosen because it has been shown to be effective at dispersing pigments in 

silicone cosmetic formulations.49 All of the linear silicones were purchased from Gelest 

and have comparable room temperature viscosities of approximately 0.5 Pa*s and are 

below the entanglement molecular weight. Their molecular weights vary since the 

molecular weight-viscosity relationship depends on the side group composition of the 

silicone. All composites were prepared using the same sonication procedure. The 

difference between these silicone-CNT composites therefore arises solely from the 

chemistry of the backbone. Figure 4.6 exhibits representative micrographics of three 

homopolymer composites: D230, DMe-Ph
20 and DEt

20. 
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Figure 4.6. Optical micrographs (20x) of linear siloxane homopolymer – CNT 
composites. 

 

There are obvious qualitative differences in the CNT dispersions in the 

homopolymer composites. The incorporation of phenyl and ethyl groups improves the 

dispersion as indicated by the reduction in the size and number of large CNT bundles. In 

the phenylmethylsiloxane homopolymer micrographs, dark CNT ‘clouds’ are apparent in 

a lighter background. In diethylsiloxane homopolymer, the CNTs appear to be dispersed 

homogeneously with some bundling.  

 

Dimethylsiloxane copolymers containing phenyl groups were also investigated: 

D112DPh-Me
13 and D19DPh

5. Optical micrographs of CNT dispersions are exhibited in Figure 

4.7. The D112DPh-Me
13 copolymer has very similar properties to D230 homopolymer. With only 

10 mol% phenylmethyl comonomer present, there are too few phenyl groups to 

significantly improve the dispersions. Incorporating 20 mol% diphenyl comonomer did 
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improve dispersion. This suggests a systematically study for future work to investigate the 

change in dispersion quality with increasing phenyl content on the backbone. Such a study 

would enable optimization of matrix properties and dispersion quality. 

 

 
Figure 4.7. Optical micrographs (20x) of linear dimethylsiloxane copolymer – CNT 

composites. 
 

Rheology of the composite fluids demonstrates that the qualitative improvements 

in dispersion do translate to improved reinforcement and CNT network formation. Figure 

4.8 shows oscillatory frequency sweeps for each silicone chemistry with CNT loadings of 

0 (control), 0.01, 0.025, 0.05 and 0.1 wt%. In all cases, as the concentration of CNTs 

increases, storage modulus (G’) increases and phase shift (delta) decreases. The shapes 

of the curves are similar: across all samples G’ and phase shift increases with frequency. 

The reinforcement of the siloxane fluids by CNTs is greatest in the phenylmethyl 
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homopolymer which shows a ~10 000x increase in G’. The phenylmethyl homopolymer 

also shows the most efficient reinforcement as indicated by the large decrease in delta at 

0.01 wt% CNTs. This indicates that the CNTs form an elastic network at remarkably low 

loadings in this siloxane polymer.  

 

Figure 4.8. Oscillatory frequency sweeps at room temperature of siloxane polymer – 
CNT composites. CNT loadings are 0, 0.01, 0.025, 0.05 and 0.1 wt%. Black symbols are 

G’ and red symbols are phase shift (delta). Empty circles are unfilled controls. Color 
intensity indicates loading from lightest (0.01 wt%) to darkest (0.1 wt%). Generally, G’ 
increases and delta decreases with CNT loading. All experiments were run the linear 

viscoelastic region. 

 

Figure 4.9a shows comparative steady flow viscosity measurements of control and 

0.1 wt% CNT composites. The unfilled silicones display shear rate - independent viscosity 

meaning that in the accessible shear rates, they are Newtonian. The composites, on the 

other hand, demonstrate dramatic shear thinning: the zero-shear viscosity is 104-105 times 

greater than unfilled controls, but at high shear rates the viscosity decreases to that of the 

unfilled controls. These same observations were made in the D1570 sample and the same 

mechanism is responsible. The ranking of zero-shear viscosity in silicone-CNT composites 

is: DPh-Me > DEt > DDPh > DDPh-Me > D. At 0.1 wt% these composites are paste-like. This 
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dramatic increases in zero shear viscosity at only 0.1 wt% CNTs is unprecedented. The 

remarkable reinforcement is due to the unique high aspect ratio of the Nanocomp CNTs. 

If we assume that nanotubes have an average number of interactions per length, as 

nanotube length increases the number of nanotube-nanotube interactions per nanotube 

increases. The longer the nanotubes, the more interactions, the stronger the physical 

network that forms from these interactions, and thus the greater the reinforcing effect. 

 

Figure 4.9b shows comparative oscillatory frequency sweep measurements of 

control and 0.1 wt% CNT composite fluids. At 0.1 wt% CNT, all composites have 

predominantly elastic behavior (phase shifts less than 45°) at low frequencies. The 

similarity in the elastic contribution of the CNT network at low frequencies, for all the 

siloxanes, indicates that under these conditions we are probing the CNT network. The 

CNT network appears to constrain diffusive relaxations of siloxane chains, resulting in the 

observed elastic bulk properties. At the highest tested frequencies, delta increases and all 

the composites exhibit viscous behavior. The elasticity at these frequencies is still greater 

than the unfilled controls (which have phase shifts of 90° indicating completely viscous 

behavior) which indicates that the CNT network is constraining the polymer chains to some 

degree. This region corresponds to where the effect of entanglements is observed in D1570 

which suggests that the constraints of the CNT network are of a similar length and time 

scale as entangled polymer relaxations. It is unlikely that the segmental motions of the 

chains are restricted, but these frequencies were not accessed in these experiments. This 

could be detected using time-temperature superposition methods or with differential 

scanning calorimetry measurements of glass transitions in these polymers. 

Instrumentation limitations in our labs did not allow these measurements. If such 

experiments were to be run, a small or absence of shift in glass transition would be 

expected. At intermediate frequencies, better dispersed samples are more elastic than the 
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lower quality dispersions. The DPh-Me composite has the most elasticity in this region. This 

shows that the CNT network is more robust in the better dispersed samples, creating a 

gel-like material where the siloxane polymer chain mobility and freedom is constrained to 

a greater extent. 

 

 

Figure 4.9. (a) Steady state flow and (b) oscillatory frequency sweeps of siloxane-CNT 
composites. In (a) filled symbols are 0.1 wt% CNT composites and open symbols are 
unfilled controls. In (b) black, G’, and red, delta, plots are for 0.1 wt% CNT samples.  

Symbol Key: DPh-Me = Down Triangle, DEt = circle, DDPh = star, DDPh-Me = pentagon, D = 
square. 

 

The best mechanical reinforcement (by oscillatory shear) occurred in the DPh-Me 

composites, with the DDPh copolymer composite a close second. This is contradictory to 

the dispersion quality observed in optical microscopy. These phenyl containing silicones 

composites exhibit cloudy, heterogeneous CNT-rich domains. How is it that the CNT 

reinforcement is better in this heterogenous dispersion than in the homogenous DEt 

silicone composite? My hypothesis is that the mechanisms of load bearing in the CNT 

network and load transfer between CNT network and silicone matrix are enhanced by the 

heterogeneity. Too heterogenous a mixture leads to inefficient use of the CNTs (like in the 

D composites) or, in the worst case, aggregates that act as defects that have a negative 

impact on properties. Too homogenous a mixture leads to weaker nanotube-nanotube 
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interactions and a weaker CNT network. With just the right about of heterogeneity, the 

CNT network is strong but also well dispersed through the composite. This could be 

imagined as a percolated CNT superstructure. 

 

4.3.3 Conductivity in Silicone-CNT Elastomer Composites 

Silicone elastomers were prepared that mimicked the backbone chemistry of the 

silicone fluids. Vinyl-terminated siloxane polymers were crosslinked using an oligomeric 

hydridomethyl crosslinker and Pt catalyst. An additional entry is a PDMS-based elastomer 

from Gelest, OE41. Surface resistivity measurements are shown in Table 4.1. Conductivity 

in the elastomers increases from: DEt > DDEt > DDPh > D. A DPh-Me elastomer was attempted 

but phase separation occurred between the crosslinker and the polymer and no apparent 

crosslinking occurred. The most conductive silicone, DEt, is also the silicone with the most 

homogeneous dispersion in microscopy. Electrical conductivity requires a continuous path 

for electrons through a material and a more homogeneous dispersion of conductive CNTs 

provides the greatest number of such continuous paths. For this reason the DEt silicones 

were the most conductive of the materials tested. Unfortunately, the DPh-Me system does 

not cure and could not be compared. 

Table 4.1. Surface Resistivity of Silicone-CNT Elastomers (Ω/□) 

Siloxane Matrix 
wt % CNT 

0.01 0.025 0.05 0.1 
VD230  3.77E+08 1.31E+06 1.10E+05 4.58E+03 
VD380 - 8.90E+07 1.65E+06 6.95E+04 

OE41 (Dn) - 1.60E+12 7.56E+08 4.58E+04 
VD98DPh

27 5.13E+09 7.00E+06 1.39E+06 1.20E+05 
VD100DEt

25 8.00E+05 1.14E+06 8.00E+04 2.40E+03 
VDEt

58 4.87E+04 1.53E+05 4.07E+03 1.50E+03 
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4.4 Conclusions 

The results clearly show that CNTs can be dispersed into silicones with ease and 

that small amounts of CNT filler can go a long way toward improving mechanical properties 

and electrical conductivity. The processing methods depend on the silicone molecular 

weight (or viscosity) and sonication of low molecular weight (low viscosity) silicones 

proved to be optimal over shear mixing of high molecular weight (high viscosity) silicones. 

Silicone chemistry allows dispersion quality to be tuned without the use of cosolvents, 

surfactants or CNT modification. As expected, the lowest quality dispersions in D polymers 

had the lowest mechanical reinforcement and electrical conductivity. However, in the other 

silicones, interesting differences occur in the rheology and conductivity performance. 

Qualitative microscopy of the composites showed that DEt had the most homogenous 

appearing dispersions. The DEt elastomers also have the lowest surface resistivity (highest 

conductivity). But, in the case of mechanical properties, the DPh-Me composites perform 

best even though they have less ‘optimal’, homogenous dispersions. Qualitatively the DPh-

Me and DDPh polymers have intermediate dispersion but rheology shows that the CNT 

network that forms is stronger and more elastic. Figure 4.10 illustrates three dispersion 

states of CNT filler: heterogeneous (D), homogeneous (DEt) and intermediate (DPh). The 

heterogenous case contains CNT bundles that limit the interconnectedness of the CNT 

network thus reducing the ability to conduct or reinforce. The homogenous case contains 

no large bundles. The uniform dispersion of CNTs allows electron transport for high 

conductivity but does not have a strong network structure that transfers load thus 

reinforcement is limited. The intermediate case has an elastic, percolated CNT 

superstructure that supports load but reduces the number of electron conducting paths. 

This results in good reinforcement but reduced electrical conductivity. 
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Figure 4.10: Schematic representations of heterogeneous, homogeneous and 
intermediate CNT dispersions. 

 

This presents an important lesson when deciding what is ‘optimal.’ The optimal 

dispersion depends on the application. A perfectly homogeneous dispersion is 

advantageous for transport of electricity or heat. A degree of heterogeneity is 

advantageous for the formation of a strong CNT network with adequate load bearing and 

transfer to result in improved mechanical properties. The effect of different dispersion 

qualities on different properties illustrates that each property has a unique mechanism of 

action that requires specific filler-matrix or filler-filler interactions. This work shows that 

with silicones, the dispersion quality can be tuned and the tuning of the dispersion enables 

engineering of composite properties. The chemistry of the silicone polymer becomes the 

knob for engineering CNT structures that are reflected in silicone-CNT composite 

properties. 
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CHAPTER 5 

SILICONE CARBON NANOTUBE COMPOSITES: THERMAL STABILITY 

ENHANCEMENTS AND DECOMPOSITION MECHANISM 

5.1  Introduction 

5.1.1 Background 

In Chapter 4 and a recent publication1, silicone polymers have been recognized 

for their special interactions with carbon nanotubes. Carbon nanotubes (CNTs) have 

generated tremendous interest as polymer additives2 to enhance electrical3, thermal4 and 

mechanical properties5. A major challenge in the effective utilization of CNTs in polymers 

is achieving homogeneous and/or controlled filler dispersion.6-10 Typically, CNTs require 

chemical modifications11-13, solution processing14,15, surfactants16,17, intense mechanical 

mixing, such as high power sonication, or combinations of processes to be dispersed. 

Unfortunately, these processes can introduce defects or fracture nanotubes, hindering 

performance in composites. Due to their size, nanotubes and other nanoparticles have 

high surface area-to-volume ratios in comparison to conventional microscale fillers. In 

polymer nanocomposites, such high surface area–to-volume ratios make the polymer-

nanotube interface critical. Our approach to nanocomposite preparation comes from the 

perspective of polymer adsorption to and wetting of nanotube surfaces. A multi-walled 

carbon nanotube (MWCNT) with 50 nm diameter has dimensions of a similar scale to a 

high molecular weight polymer coil but is much larger than the segments that make up the 

polymer. Should the segments of the polymer favor adsorption, spontaneous adsorption 

will occur on the nanotube surface.  This disrupts the nanotube-nanotube interactions that 

promote aggregation and has been recognized as a non-covalent method to functionalize 

CNTs and improve dispersion and stability.11 
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Silicones are a family of polymers based on the siloxane backbone that have very 

different properties than carbon-based polymers. Owing to the structure of the backbone 

and the mobility of the methyl groups attached to the silicon atom, poly(dimethyl siloxane) 

(PDMS, Figure 5.1) has an anomalously low glass transition temperature (Tg ~ -125°C), 

low surface energy (21.6 mN/m), high vapor permeability and high thermal stability (Si-O 

bond strength of ~800 kJ/mol).18,19 In considering matrix polymers for the wetting and 

adsorption to CNTs, methylsilicones seemed like an obvious choice. The mobility of the 

methyl groups allows favorable segmental interactions with CNTs and the backbone is 

flexible enough to allow conformations that maximize the number of segmental 

interactions between polymer and nanotube. The ability to melt process PDMS at room 

temperature is an additional preparative advantage in terms of ease and energy 

requirements. The advantages of PDMS as a matrix for CNT nanocomposites has been 

observed previously in the work of Beigbeder et. al.1 and was attributed by molecular 

dynamics simulations to CH-π interactions between PDMS segments and CNTs. In their 

work, the authors mechanically dispersed MWCNTs into Dow Corning Sylgard 184, a 

commercially available, filled PDMS-based elastomer, and observed dramatic increases 

in zero shear viscosity. Molecular dynamics simulations showed that PDMS chains 

completely wrap the nanotube with strong CH-π interactions between one methyl group 

of each repeat unit. 

 

Figure 5.1. Structure and mobility of PDMS (MDnM in GE nomenclature20) 



141 
 

5.2 Objective 

I began investigating the properties of various silicone-CNT composites with the 

goal of creating composites that take advantage of the unique properties of 

methylsilicones and carbon nanotubes. This first required the development of processing 

methods to overcome the dispersion challenges facing CNT nanocomposites. In the 

course of these studies, it was unexpectedly discovered that small additions of CNTs to 

PDMS-based elastomers dramatically increase their thermal stability. In this work, stable 

dispersions of MWCNTs are incorporated into polydimethylsiloxanes (PDMS) without 

chemical modification using a simple shear melt mixing process. These dispersions are 

characterized using optical microscopy, rheology and electrical surface resistivity. 

Thermogravimetric Analysis (TGA) of the PDMS-MWCNT composites shows an increase 

in thermal stability. Kinetic analysis and Pyrolysis Gas Chromatography – Mass 

Spectroscopy (Py GC-MS) of the composites indicate that the mechanism of 

decomposition changes upon addition of MWCNTs. The impact on thermal properties we 

discover from adding fractions of a percent of MWCNTs to PDMS materials is 

unprecedented and suggests a special synergy between silicone and carbon nanotubes. 

 

5.2 Experimental Section 

5.2.1 Materials 

Unfilled PDMS-based two-part silicone elastomer (Gelest OE 41 Optical 

Encapsulant) and trimethylsilyl-terminated PDMS (MW = 17 250, 116 500) were 

purchased from Gelest and used as received. Multi-walled carbon nanotubes (MWCNTs) 

were provided by Nanocomp Technologies, Inc. 
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5.2.2 Sample Preparation  

OE41 PDMS elastomer was prepared by mixing a 1:1 ratio of Part A and Part B as 

recommended by the manufacturer. PDMS-MWCNT composites were prepared by mixing 

MWCNTs into OE41 Part A in a Flacktek Speedmixer (3000 RPM, 2 minutes). OE41 Part 

B was added and mixed. All samples were cured at 80 °C for 4 hours.  

 

Trimethylsilyl-terminated linear PDMS-MWCNT composites were prepared in a 

similar manner. High viscosity (η > 5 Pa*s) PDMS fluids could be prepared with the 

Flacktek Speedmixer in the same manner as the OE41 Part A fluid (3000 RPM, 2 minutes). 

Lower viscosity PMDS fluids (η < 5 Pa*s) required ultrasonic treatment (Branson 250 

Digital Sonifier- 35% power, 5 sec pulse, 25 second rest, 1 minute total pulse time).  

 

5.2.3  Characterization 

Optical Microscopy. Dispersions were qualitatively studied with optical microscopy 

(Zeiss Axiovert 200). Samples for imaging were prepared by depositing a drop of liquid 

PDMS or PDMS-MWCNT onto a gridded microscope slide (Electron Microscopy 

Sciences) using a capillary tube.  

 

Rheology. PDMS fluid rheology was studied using a TA AR2000 Rheometer with 

40 mm aluminum parallel plates. The high aspect ratio of CNTs can result in dramatic 

shear thinning from CNT alignment and the ability of CNTs to form elastic networks can 

be probed by measuring the viscoelastic properties of CNT reinforced fluids.14,21-24 We 

used rheology as a means of quantifying the dispersion quality of PDMS-CNT composites, 

since better dispersions provide more efficient improvement in properties. 
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Steady flow experiments of PDMS and PDMS-MWCNT fluids were run by ramping 

torque from 0.1 μN*m to 10000 μN*m (logarithmic ramp, 10 points per decade) and 

measuring shear rate. The steady flow viscosity was calculated from the average of three 

consecutive measurements per torque value. A 5% tolerance between points was used to 

determine if steady flow had been reached. Sampling time for each measurement was 15 

seconds and point time was 3 minutes. The relationship between viscosity and shear rate 

is used to determine the zero shear viscosity and shear thinning behavior of PDMS-

MWCNT fluid composites.  

 

Oscillatory shear experiments were used to probe the formation and elasticity of 

the MWCNT network within the PDMS liquid. Oscillatory stress sweeps from 0.1 to 10 000 

μN*m were run at 1 Hz. Oscillatory frequency sweeps from 0.01 to 10 Hz were run within 

the linear viscoelastic region (strain ~ 1%) determined from stress sweeps. For both 

experiments, points were distributed logarithmically with 10 points per decade. 

 

Surface Resistivity. The surface resistivity of PDMS-MWCNT composites was 

measured using a DESCO Concentric Ring Surface Conductivity Meter. 3-5 mm thick 

PDMS-MWCNT composites were prepared in 90 mm petri dishes. Above 3 mm, there was 

no observable change in the measured surface resistivity in these samples. Three 

measurements were made for each composite. 

 

Thermogravimetric Analysis. A TA TGA Q50 was used to study the thermal 

decomposition of PDMS and PDMS-MWCNT composites. Samples (2-3 mg) were heated 

in a nitrogen atmosphere from 30 °C to 900 °C at a rate of 10 °C/min. Kinetics were studied 

using an isoconversion method (Kissinger-Akahira-Sunose)25 with heating rates of 1, 2.5, 

5, 10 and 20 °C/min. Stepwise isothermal experiments were run with a heating rate of 5 
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°C/min and a weight loss rate threshold of 1%/min. Isothermal experiments at 300 °C were 

conducted for 180 minutes. 

 

Pyrolysis Combustion Flow Calorimetry. PCFC measurements were made on a 

Microscale Combustion Calorimeter (MCC, FAA). A sample is heated from 80 to 800 °C 

at a heating rate of 1 °C/min under a stream of nitrogen. Gas decomposition byproducts 

enter the combustion furnace where they are mixed with 20% O2/80% N2 atmosphere at 

900 °C. Oxygen consumption during byproduct combustion is measured and used to 

calculate energy/heat release (Reference 26 details all aspects of PCFC measurement 

and is provided for the interested reader). 

 

Pyrolysis Gas Chromatography – Mass Spectrometry. Pyrolysis was conducted 

with a CDS Analytical Pyroprobe 2000. Samples were pyrolyzed in quartz tubes 

surrounded by a platinum wire coil that was heated to 900 °C at a rate of 1 °C/ms and held 

at 900 °C for 10 seconds. Pyrolyzed samples were injected into a Hewlett-Packard 5890 

Series II Gas Chromatograph with helium carrier gas. The GC oven temperature was set 

to 50 °C for 1 minute and ramped at 8 °C/min to 240 °C. Pyrolysis products separated by 

GC were detected by a Hewlett-Packard 5972 Series mass spectrometer. 

 

5.3 Results and Discussion 

5.3.1 Sample preparation and dispersion of MWCNTs in PDMS 

It has previously been observed that MWCNTs can be easily dispersed into a 

PDMS-based elastomer (Dow Corning Sylgard 184).1 We confirmed these findings using 

an unfilled PDMS elastomer as well as in linear trimethylsilyl-terminated PDMS fluids. We 

chose these systems to avoid effects from other fillers or additives in the Sylgard 184 

formula. By using ‘neat’ PDMS elastomers we aimed to isolate the effects of carbon 
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nanotubes on the silicone properties. Processing methods for dispersions depend on the 

viscosity of the PDMS (see Experimental section). Stable CNT dispersions can be 

prepared in one step in high viscosity silicones using a Dual Assymetric Centrifuge 

(Flacktek Speedmixer). No aggregation or sedimentation is observed in the dispersions 

for up to a month of storage, but no longer term study was conducted. Figure 5.2a, shows 

heterogeneities that can be observed by eye in thin elastomer samples and optical 

microscopy (Figure 5.2b) of the PDMS-MWCNT composite fluid shows that the CNTs are 

bundled into long fibers. These long fibers are further aggregated to form the larger 

heterogeneities observed by eye. Longer mixing times and ultrasonic treatment does not 

improve the quality of these dispersions. We did not pursue solvent or surfactant assisted 

dispersion or chemical modification of the nanotubes. Our goal was to prepare silicone 

nanocomposites without damaging the nanotubes and to use the simplest methods 

possible. It must be emphasized that these dispersions, while still containing MWCNT 

bundles and aggregates, are achieved in only a single, simple, 2 minute mixing procedure. 

Further characterization of these dispersions demonstrates the efficient use of CNT filler 

even without achieving “optimal” dispersion states: electrical percolation is reached at 

0.025 wt% CNT (Figure 5.2e), zero shear viscosity increases by ~100 times at 0.5 wt% 

CNT and ~10 000 times at 1.0 wt% (Figure 5.2c), and signs of elastic MWCNT network 

formation can be detected at 0.05 wt% (Figure 5.2d). 
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Figure 5.2. (a) Photos of 1 cm x 1 cm x 1 mm PDMS-MWCNT elastomer samples with 
MWCNT loadings from left to right of 0, 0.01, 0.025, 0.05, 0.1, 0.25 and 0.5 wt%. (b) 

Optical micrographs of 0.01 wt% and 0.1 wt% MWCNTs dispersed in linear PDMS116k. 
(c) Stead flow and (d) oscillatory frequency sweeps of PDMS116k-MWCNT composite 

fluids. In (c) square symbols represent composite samples of 1.0, 0.5, 0.1 and 0.05 wt% 
MWCNTs from black to light gray. Black diamonds are the unfilled control. Shear 

thinning is observed by the large reduction in viscosity with increasing shear rate. In (d) 
black and maroon circles are for 1.0 wt% MWCNTs and black and red diamonds are the 
unfilled controls. Composites of 0.01, 0.05, 0.1 and 0.5 wt% are squares from light gray 
to dark gray and light red to red. G’ increases with CNT loading and delta decreases. (e) 

Surface resistivity as a function of MWCNT loading. Measured using DESCO surface 
conductivity meter. 
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5.3.2 Thermogravimetric Analysis 

Improvements in electrical and viscoelastic properties of PDMS-MWCNT 

composites are expected. Unexpected is the observed increase in thermal stability of 

MWCNT-reinforced PDMS elastomers. TGA weight loss and derivative weight loss plots 

are shown in Figure 5.3 for composites containing 0, 0.05, 0.1, 0.25 and 0.5 wt% 

MWCNTs. The first signs of increased thermal stability appear in the 0.05 wt% MWCNT 

composite, where there is a 10 °C increase in the peak decomposition temperature. 

Increasing the MWCNT loading to 0.5 wt% leads to a 54 °C increase in peak 

decomposition temperature from 446 °C to 500 °C and a 5% weight loss increase of 20 

°C. Char formation increases by a factor of two from ~20% to ~40% with 0.5 wt% CNTs. 

Similar increases in the thermal stability of silicone-CNT composites have been observed 

but only at higher loadings27, in the presence of other nanofillers28,29 or with modified 

nanotubes30. These finding at such low CNT loadings have been verified internally with 

numerous reruns and externally by Nanocomp Technologies Inc. 

 

Figure 5.3. TGA (a) weight loss and (b) derivative weight loss of PDMS-MWCNT 
elastomer composites in nitrogen atmosphere. Results for unfilled control (solid black), 
0.05 (light gray), 0.1 (gray), 0.25 (dark gray) and 0.5 wt% (dashed black) are shown. 

Peak degradation temperatures are labeled in (b) 
 

 
Figure 5.4 exhibits studies into the kinetics of decomposition of the control 

elastomer and the 0.5 wt% MWCNT composite elastomer. Kinetics are studied using a 
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variable heating rate isoconversion method (KAS)25 (Figure 5.4 a-d) along with an 

isothermal method (Figure 5.4e) and a stepwise isothermal method (Figure 5.4f). 

Isoconversion analysis with heating rates of 1, 2.5, 5, 10 and 20 °C/min shows an increase 

in activation energy of the primary decomposition process when carbon nanotubes are 

incorporated. For the unfilled silicone elastomer, an activation energy of 158 kJ/mol is 

calculated for the first 30% of decomposition. When 0.5 wt% MWCNTs is added to the 

silicone elastomer, the activation energy of the first 30% of the decomposition process 

increases to 233 kJ/mol. No heating rate dependence on the estimated activation energy 

of the primary decomposition process is observed, as has been reported previously.31 This 

may be due to the smaller sample masses we use or due to differences in the network 

structures of the silicone elastomers under investigation. Increasing the activation energy 

for decomposition should practically manifest in the ability of the composite to function at 

higher operating temperatures. To verify that the composites have increased high 

temperature stability, isothermal experiments are carried out where a 0.5 wt% composite 

sample and an unfilled control are held at 300 °C for 180 minutes. The 10% difference in 

weight loss (95% versus 85%) and the difference in the weight loss rates (0.008 %/min 

versus 0.047 %/min) clearly indicate the improved thermal stability of the composite. A 

step isothermal experiment also reinforces the improved stability with the primary 

decomposition process starting at 373 °C for the unfilled control and 430 °C for the 0.5 

wt% MWCNT composite. 
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Figure 5.4. Decomposition kinetics studied by TGA. (a) Weight loss and (b) derivative 
weight loss curves of unfilled PDMS elastomer (Gelest OE41) at heating rates of 1 
(black), 2.5 (dark gray), 5 (gray), 10 (light gray) and 20 (dashed black) °C/min. (c) 
Weight loss and (d) derivative weight loss curves of 0.5 wt% MWCNT in PDMS 

elastomer at heating rates of 1 (black), 2.5 (dark gray), 5 (gray), 10 (light gray) and 20 
(dashed black) °C/min. (e) 300 °C isothermal weight loss of unfilled (solid line) and 0.5 
wt% MWCNT filled (dashed line) PDMS elastomers. (f) Stepwise isothermal analysis of 

unfilled PDMS elastomer (solid lines) and 0.5 wt% MWCNT filled PDMS elastomer 
(dashed lines). Black curves are for weight loss and blue curves show the temperature 

profile of the experiment.  

 

In addition to the increased onset and peak temperature of decomposition and 

additional char in the PDMS-MWCNT composites, there is a higher temperature 
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decomposition process evident in derivative weight loss curves. The first, larger weight 

loss peak is considered the primary decomposition process as the majority of the weight 

loss occurs in this step. The primary process alone is observed in the unfilled PMDS 

elastomer. The second peak is considered a secondary process and is detected at CNT 

loadings greater than 0.1 wt%. In 0.5 wt% MWCNT composites, the weight loss that occurs 

from each process also appears to be dependent on the heating rate. The shape of the 

second weight loss peak changes from a well-defined peak at heating rates greater than 

5 °C/min, to a weak shoulder at heating rates less than or equal to 5 °C/min. Two defined 

decomposition processes are also detected in stepwise isothermal experiments. To 

determine how each process contributes to the overall weight loss, TGA derivative weight 

loss curves are deconvoluted into Gaussian expressions. Figure 5.5 shows example 

results of the overall fit of derivative weight loss (TGA) at 10 °C/min from the sum of 

Gaussians for the 0.5 wt% composite and the unfilled control. All unfilled control samples 

can be fit using a single Gaussian representing the primary decomposition process. 

Composite samples are fit using three Gaussians representing the primary and secondary 

processes discussed above, as well as a third small, high temperature peak. The third 

peak has a similar contribution of about 10% of the total degradation for all the samples 

and is detected in unfilled controls; it will not be further analyzed here since it is a minor 

contributor to the total decomposition process, has similar contributions at all rates and for 

all PDMS elastomers and composties, and does not seem unique to the weight loss 

process in composites. By integration of the total curve fit and determining the contribution 

of each Gaussian to that curve, it is possible to estimate the contribution of each process 

to the overall process. The fitting results for the composite elastomers are exhibited in 

Table 5.1. For heating rates of 1, 2.5 and 5 °C/min the primary process contributes 86% 

of the total weight loss and the secondary process accounts for only 3%. At heating rates 

of 10 and 20 °C/min the contribution of the primary process decreases to 78% and 75% 
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with an increase in the secondary process to 10% and 13%. Along with these changes in 

the degradation processes that occur in the composites, char formation also depends on 

the heating rate. Similar char residues of about 43% form at heating rates of 1, 2.5 and 5 

°C/min but the char residue decreases to 40% and 37% at rates of 10 and 20 °C/min. The 

increased contribution of the second decomposition process and the decrease in char 

formation at higher heating rates suggests that there are kinetic limitations in 

decomposition that arise from rates of decomposition reactions or rates of adsorption-

desorption of decomposition products. 

 

 

Figure 5.5. Derivative weight loss (black) and total curve fit (red) from deconvolution into 
Gaussian functions for (a) 0.5 wt% MWCNT composite and (b) unfilled control at a 

heating rate of 10 °C/min. 
 
 

Table 5.1. Contributions of degradation processes calculated from Gaussian 
deconvolution for 0.5 wt% PDMS-MWCNT Composite 

Heating Rate, 
°C/min 

Peak 1, % Peak 2, % Peak 3, % 
Total Area, 

wt% 
Char, wt% 

1 86 4 10 53 43.7 

2.5 89 2 9 53.5 44 

5 87 3 10 54 42.8 

10 78 10 12 54 40 

20 75 13 12 59 37 
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5.3.3  Pyrolysis Combustion Flow Calorimetry 

The increased degradation temperature and char formation suggest that the 

silicone-CNT nanocomposites may have promising flame retardant properties. Pyrolysis 

Combustion Flow Calorimetry (PCFC) results are summarized in Table 5.2 and Figure 5.6. 

Addition of 0.5 wt% CNTs led to a total heat release decrease from 18.8 kJ/g (for unfilled 

elastomer) to 14.8 kJ/g (for 0.5 wt% composite) and a heat release capacity decrease 

from 538 J/g*K to 188 J/g*K. Figure 5.6 shows the fitted heat release rates from PCFC 

experiments conducted at a heating rate of 1 °C/sec for an unfilled control sample and 

composites containing 0.1, 0.25, and 0.5 wt% CNTs. These data mimic the derivative 

weight loss curves from TGA indicating that the degradation byproducts act as fuel for 

combustion. CNTs have previously been recognized as char forming and char stabilizing 

flame retardants32-34, and these experiments demonstrate that self-extinguishing silicone 

elastomers can be prepared by adding small amounts of CNT fillers. 

 

Table 5.2. PCFC results for PDMS-MWCNT Composites 

 Peak Temp 
(TGA, °C) 

Char 
(TGA,900 

°C) 

Total HR  
(kJ/g) 

HRC 
 (J/g*K) 

Peak Temp 
(PCFC, °C) 

Control 445 0.19 18.8 538 466 

0.1 wt% CNT 456 0.2 18.8 411 479 

0.25 wt% CNT 470 0.3 17.8 207 493 

0.5 wt% CNT 500 0.4 14.8 188 515 
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Figure 5.6. PCFC HRR (reds) with TGA weight loss (blacks) results for unfilled control 
(solid) and 0.1 (light gray/pink), 0.25 (gray/maroon), and 0.5 wt% (dash) PDMS-MWCNT 

Composites.  
 

5.3.4  Differential Scanning Calorimetry of Elastomer Composites 

DSC of PMDS elastomers allowed for the detection of Tg, as well as any changes 

in crystallization behavior in MWCNT composite samples. Differences detected by DSC 

were minor and are presented in Figure 5.7, which compares the unfilled control with a 

0.5 wt% MWCNT composite, Table 5.3 exhibits results for composites of MWCNT 

loadings from 0.01 wt% to 0.5 wt% and Table 5.4 shows calculations from crystallization 

and melting peaks in unfilled and 0.5 wt% CNT composites. 
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Figure 5.7. DSC (exotherm up) of unfilled and 0.5 wt% MWCNT composite elastomers. 
Crystallization is observed in the cooling step (top curve) and melting is observed in the 
heating step (bottom curve). The glass transition is detected in the heating step (bottom 

curve) by the shift of the baseline indicating a change in heat capacity. 
 

Table 5.3. Glass Transition measurements from DSC of PDMS-MWCNT elastomers 

Sample Onset Inflection End 

Control- Unfilled -121.0 ± 6.30 -117.27 ± 5.84 -111.47 ± 4.60 

0.01% -118.92 -113.50 -103.81 

0.025% -117.08 -115.87 -105.27 

0.05% -118.39 -112.19 -104.33 

0.1% -120.47 -114.92 -106.6 

0.25% -125.09 -119.46 -110.47 

0.5% -115.26± 1.63 -109.39±3.94 -98.85±4.48 

 
 

Table 5.4. DSC Glass Transition and Crystallization Data for 0.5 wt% MWCNT in PDMS 
Elastomer 

 
T

g
 T

c, heating
 T

c, cooling
 H

c, heating
 H

c, cooling
 

No Filler -121 -47.6 -86.1 10.18 14.27 

0.5 wt% CNT -112 -47.1 -82.6 8.877 12.46 
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5.3.5  Decomposition Products in Elastomer Composites 

To investigate how the decomposition mechanism of PDMS-MWCNT composites 

might be changing, Py GC-MS was used to analyze decomposition products. Typically, 

clean, end-terminated PDMS decomposes in inert atmosphere by an intramolecular 

backbiting mechanism shown in Figure 5.8 in which cyclic trimer 

(hexamethylcyclotrisiloxane, D3) is the primary byproduct.35-37 Silicone elastomers 

degrade by a similar backbiting mechanism but with a range of cyclic byproducts, the 

distribution of which depends on network structure.38,39 The degradation products of the 

unfilled elastomer and the 0.5 wt% composite are summarized in Figure 5.9 and Table 

5.4. The incorporation of 0.5 wt% MWCNTs into the PDMS elastomer leads to an 8% 

increase in D3 formation with a 7% decrease in D4 and a 1% decrease higher cyclic 

formation. No significant differences in the relative distribution of higher cyclic byproducts 

is detected: in both unfilled and composite elastomers, cyclic products greater than D4 are 

composed of approximately 40%D5, 30% D6, 24% D7 and 6% Dn. Based on these 

experiments, it appears the decomposition products in the composites do not change 

dramatically from the control. The similarity in cyclic byproducts greater than D4 suggests 

that the chemical structure of the silicone network is not significantly altered by the 

presence of MWCNTs.38 The higher D3 production could reflect the higher temperature at 

which degradation occurs. Degradation into D3 leads to a greater entropy than degradation 

into larger cyclics but requires additional enthalpy to form the strained ring. At higher 

temperatures, entropy overcomes this enthalpic penalty and free energy is minimized by 

D3 production. 

 

Figure 5.8. Intramolecular depolymerization of PMDS to cyclic trimer 
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Figure 5.9. Pyrolysis GC-MS chromatograms of (a) unfilled PDMS elastomer and (b) 0.5 
wt% CNT PDMS composite. Pyrolysis conducted at 900 °C in helium atmosphere. 

 

Table 5.5. Py GC-MS Results of Elastomers and Linear PDMS Model 

 D3 (%) D4 (%) 
Higher Cyclics 

(%) 
D3:D4 

OE41  
55 33.4 11.6 1.65 

56 33 11 1.70      
OE41-0.5 wt% 

MWCNT 

64 26 10.0 2.46 

63.8 26.1 10.1 2.44      

PDMS 
86.0 13.8 <0.5 6.23 

91.5 8.4 <0.5 10.90      
MWCNT 
enriched 
PDMS 

58.6 24.9 16.5 2.35 

65.5 25.2 9.3 2.60 

 

5.3.6 Decomposition in Linear PDMS Models 

From the study of PDMS and PDMS-MWCNT composite elastomers it was clear 

that the presence of MWCNTs was increasing thermal stability, increasing char, increasing 

the activation energy of decomposition and altering decomposition products. How the 

mechanism of decomposition could be changing in these composites to produce such 

changes remains unclear from these experiments alone. To gain more insight, linear 

trimethylsilyl-terminated PDMS is used as a model in which the constraints and 

contributions of the elastomer network can be removed. 
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Two linear PDMS samples were studied: one above the entanglement molecular 

weight (PMDS116k) and one below (PDMS17k). TGA of the fluids, presented in Figure 5.10, 

shows very similar decomposition processes and a slightly higher thermal stability in the 

PMDS116k. Py GC-MS analysis of PDMS17k shows the expected cyclic oligomer products: 

90% D3 and 10% D4 Figure 5.10c and Table 5.4). The decomposition products of 

trimethylsilyl-terminated PDMS do not depend on molecular weight36 so similar products 

would be expected from PDMS116k. Compounding the fluids with 0.1 and 1.0 wt% 

MWCNTs exhibits only a slight increase in thermal stability but a significant difference in 

weight loss behavior. In the composite fluids, the decomposition process shifts to higher 

temperatures and a second sharp degradation peak appears similar to what is observed 

in the composite elastomers. To attempt to isolate this process, a PDMS17k sample 

containing 1 wt% MWCNT was drained of excess PDMS by squeezing between filter 

paper. The composition of the resulting paste was not determined. TGA of the MWCNT 

enriched PDMS shows a small primary weight loss peak similar to the neat PDMS and a 

large sharp weight loss peak at higher temperatures. Py GC-MS of the MWCNT-enriched 

PDMS illustrates a dramatic change in degradation products (Figure 5.10d and Table 5.4) 

that is closer in composition to the elastomer networks than the linear polymers. D3 yield 

decreases from 90% to 60%, D4 yield increases by roughly 2 times to 25% and higher 

cyclic species which are not observed in the neat PDMS make up the remaining 15% of 

the degradation products. The second degradation process observed in the model linear 

composites presumably arises from polymer that interacts strongly with MWCNTs through 

adsorption to increase the activation energy of decomposition. Adsorption of linear 

polymer onto the physical network formed by the MWCNTs not only leads to the second 

decomposition peak, but also to the generation of larger cyclic decomposition products 

that appear similar to those observed in covalent elastomer networks. 
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Figure 5.10. TGA of (a) PDMS17k and (b) PDMS116k. Black lines are unfilled controls, dark 
gray are 0.1 wt% MWCNTs and light gray lines are 1 wt% MWCNTs. The dashed line in 
(a) is the MWCNT enriched PDMS17k sample prepared by pressing and draining the 1 
wt% MWCNT-PDMS17k sample. Py GC chromatographs of (c) neat PDMS17k and (d) 
PDMS17k saturated MWCNTs. All pyrolysis experiments were conducted at 900 °C in 

helium atmosphere. 

 

5.3.7 Proposed mechanism of Thermal Decomposition in PDMS-CNT composites.  

A mechanism to describe the effect of MWCNTs on the decomposition of PDMS 

must account for numerous changes: (1) increased activation energy of primary 

decomposition, (2) the appearance of a high temperature secondary decomposition 

process, (3) increased char formation, (4) heating rate dependence of secondary 

decomposition and char formation and (5) dramatic changes in decomposition products in 

linear models. 

The increased activation energy of decomposition, the second decomposition 

process, and the changes in decomposition products can be explained by adsorption of 

PDMS onto the MWCNT network. The adsorption energy of PDMS segments onto the 
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surface of MWCNTs has been calculated to be approximately 10.9 kJ/mol.1 This strong 

adsorption results in a bound layer of PDMS on MWCNTs. The cooperative adsorption of 

PDMS segments must be overcome in the composite before decomposition of the bound 

chains can occur. The desorption is important not only in the ability of PDMS to form cyclic 

intermediates during decomposition, but also in the ability of high molecular weight 

byproducts to vaporize. The bound layer that forms from adsorption accounts for the 

second decomposition process. Acting synergistically with the direct adsorption of PDMS 

chains to form a bound polymer layer, the MWCNTs themselves form a three-dimensional 

physical network that imparts constraints on the bulk PDMS that is not part of the bound 

layer. Rheology of the PDMS composite fluids exhibits an increase in storage modulus in 

low frequencies that is attributed to the reduced diffusional mobility of the polymer that 

results from the formation of a PDMS-MWCNT network. The shift of the primary 

decomposition process to higher temperatures and the increased activation energy of the 

primary decomposition arise from the constraints imposed by the PDMS-MWCNT 

network. The effect of the physical constraints on degradation byproducts is most apparent 

in the linear PDMS model. In linear, uncrosslinked PDMS composites, polymer chains that 

are not part of the adsorbed layer cannot freely diffuse around the physical junctions 

formed by the PDMS-MWCNT physical network; Py GC-MS results indicate that this 

physical network is capable of constraining these PDMS chains to create a dramatic 

difference in the structure of cyclic transition states that is reflected in cyclic decomposition 

products. Restricting the motion of individual PDMS chains hinders their ability to form 

intramolecular cyclic transition states and pushes them towards the formation of 

intermolecular cyclic transition states between adjacent network strands. This 

intermolecular decomposition mechanism enables the formation of larger cyclic transition 

states and products, like those observed in the linear PDMS model. It also increases the 
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apparent activation energy and alters reaction kinetics since two reactions must occur to 

form the cyclic product (Figure 5.11). 

 

 

Figure 5.11. Intramolecular depolymerization of PDMS to cyclic pentamer (D5) 

 

Adsorption and physical constraint of PDMS chains in MWCNT composites can 

account for the differences in activation energy, the second decomposition process and 

the change in cyclic decomposition products, but do not provide a good explanation for 

increased char formation. MWCNTs contain numerous reactive defects in form of edges, 

dangling bonds, vacancies, dislocations, kinks and 5,7 rings.11,40-42 It is plausible that at 

elevated temperatures, oxidized defects on CNT surfaces may react with physisorbed 

PDMS chains or cyclic decomposition byproducts. These thermally activated ‘grafting’ 

reactions immobilize PDMS that would otherwise escape during decomposition and 

ultimately increase the residual mass. CNTs are also reactive towards radicals and are 

commonly functionalized using radical chemistries.11,13,42 Radicals generated during 

PDMS decomposition would be expected to react with nanotubes. Greater generation of 

radical decomposition products will occur at the higher decomposition temperatures of the 

composites and reactions of these radicals with nanotube surfaces would increase the 

residual mass in the same way that the ‘grafting’ reactions described above do. These 
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hypothesizes are purely speculative and we have not been able to identify if these 

reactions are occurring. It remains unclear why char formation or the secondary 

decomposition process depend on heating rate.  

 

5.3.8 Are Nanocomp CNTs Unique? 

To determine if the Nanocomp Technologies, Inc. MWCNTs are unique in their 

ability to increase thermal stability of PDMS elastomer, various other nanocarbon fillers 

were incorporated into Gelest OE41 elastomer at 0.5 wt% using the same sample 

preparation procedures. TGA results shown in Figure 5.12, show that the dramatic 

increase in thermal stability from Nanocomp MWCNTs is unique. This may be attributed 

to the high aspect ratio of Nanocomp MWCNTs that arises from their preparation method. 

 

 

Figure 5.12. Effect of nanocarbon fillers at 0.5 wt% on thermal stability of Gelest OE41 
PDMS elastomer 

 

In addition to the carbon nanofillers tested, Boron Nitride Nanotubes (BNNTs) and 

Boron nanopowders were provided by Nanocomp and tested. The results in Figure 5.13 
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illustrate a remarkable increase in thermal stability that exceeds that of the CNTs. The 

reason for this dramatic improvement is not known. 

 

Figure 5.13. Effect of Boron Nitride Nanotube (BNNT) and Boron Nanopowder fillers at 
0.5 wt% on thermal stability of Gelest OE41 PDMS elastomer. Nanocomp MWCNTs and 

control provided as reference. 
 

5.3.9 Is the Thermal Stabilization by CNTs Universal to All Silicones? 

The effect of CNTs on thermal decomposition was investigated in other silicone 

elastomers and model silicone fluids. TGA was conducted on 3 additional elastomers: 

Dow Corning Sylgard 184, Gelest D200, and Gelest HV22. The results in Figure 5.14 

demonstrate that the effect of MWCNTs on thermal stability are different in each 

elastomer. The differences between these silicones is a result of their compositions. In 

Sylgard 184, there is no change in the initial degradation steps but there is a decrease in 

degradation at higher temperatures (greater than 500 °C) and slightly higher char 

formation. We are unsure of the exact composition of Sylgard 184 but know that it is 

PDMS-based and contains fillers. Addition of CNTs to Sylgard 184 does not appear to 

constrain the polymer chains beyond what is already done by the other fillers in Sylgard 

184. The additional high temperature stability in Sylgard 184 could be due to radical 
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scavenging by the CNTs as discussed in the case of OE41. In Gelest D200 and HV22 

elastomers there is evidence of thermal stabilization during the first degradation process 

but there is greater weight loss at high temperatures and decreased char. Gelest D200 is 

PDMS-based and we do not know its composition, however the high char suggests that 

there is filler present. HV22 contains only linear PDMS (or silica in the dashed data): it is 

a unique elastomer in that it is composed solely of ultra-high molecular weight linear 

polymer that is highly entangled. The stabilization at intermediate temperatures in the 

D200 and neat HV22 elastomers suggests constraints on polymer mobility by the CNT 

network. At higher temperatures (greater than 600 °C), a second decomposition process 

is accelerated with the addition of CNTs. While this opposes the hypothesis that CNTs act 

as radical scavengers during high temperature decomposition of PDMS, it may be an 

indication that these reactions are less efficient in these composites at these 

temperatures.  In the silica-filled HV22 there is no change in decomposition with the 

addition of CNT’s suggesting that the high silica content (15 wt%) overrides any benefits 

of the CNTs. 

 

Figure 5.14. TGA of silicone elastomers and composites containing 0.5 wt% MWCNTs. 
Blue lines are unfilled controls and black lines are composites. Dashed curves for the 

HV22 elastomer are filled with an additional 15 wt% hexamethyldisilazane-treated silica. 
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TGA was also conducted on 6 model silicone fluids: PDMS17.5k, PDMS116k, 

poly(diethylsiloxane), poly(phenylmethyl)siloxane, poly(phenylmethyl-co-

dimethyl)siloxane and poly(diphenyl-co-dimethyl)siloxane. These composite fluids and 

their preparation are reported in Chapter 4. Results shown in Figure 5.15 indicate that at 

loadings of up to 1 wt% MWCNT, there is only evidence of slight thermal stabilization in 

the PDMS models, as discussed above. The other silicones do not show any significant 

change in degradation behavior. This could be due to differences in degradation 

mechanisms in phenyl and ethyl siloxanes.31 Interestingly, char formation is seen to 

decrease in phenyl siloxanes as CNT loading is increased. Char in phenyl containing 

siloxane polymers is typically attributed to radical crosslinking that occurs with scission of 

phenyl groups at temperatures above 450 °C. CNTs appear to effect this reaction in a 

manner that leads to less crosslinking and less char. 

 

Figure 5.15. TGA of linear model silicone composites of varied chemistry. Blue curves 
are control samples, black solid curves are 0.1 wt% CNT composites and black dashed 

curves are 1 wt% CNT composites. 

 

5.4 Conclusions 

This work on PDMS-MWCNT nanocomposites has confirmed the facile 

preparation of stable MWCNT dispersions. It supports the hypothesis that the favorable 
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wetting and adsorption of PDMS chains onto MWCNTs is responsible for this. Along with 

the expected improvements in electrical conductivity and viscoelastic properties, it is 

unexpectedly found that the thermal stability of PDMS elastomers is dramatically improved 

by the addition of fractions of a wt% of MWCNT filler. Experimental evidence suggest that: 

(1) the adsorption of PDMS onto MWCNTs creates a bound polymer layer that results in 

a second decomposition process, (2) the formation of a physical MWCNT network results 

in a constrained PDMS-MWCNT network resulting in increases activation energy of 

decomposition and a change in cyclic oligomer decomposition products, and (3) reactions 

with defects on MWCNTs or with radical decomposition products results in increased char 

formation. The increase in thermal stability of PDMS by fractions of a wt% of filler is 

unprecedented. It is suggestive of the untapped potential of PDMS nanocomposites and 

of new routes for the effective utilization of nanotube fillers. 
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CHAPTER 6 

RAPID AND CLEAN COVALENT ATTACHMENT OF METHYLSILOXANE 

POLYMERS AND OLIGOMERS TO SILICA USING B(C6F5)3 CATALYSIS 

6.1  Introduction 

6.1.1 Background 

Silica and silicates are the most common materials in which silicon exists on Earth. 

The importance of silica to modern technologies cannot be understated and with all the 

ways we use silica, it is important that we are able to modify its surface to optimize 

performance in different environments. Chemical modification through covalent 

attachment is preferred since it will result in the most stable linkage between the silica 

surface and the desired modifier. Such chemical modification of silica surfaces through 

the covalent attachment most often utilizes alkylsilanes.1-5 Typically, the attachment is 

achieved through the reaction of surface silanols (Si-OH) with reactive chloro-, amino- or 

alkoxy- silanes either in solution or from the vapor. Molecular monolayers can be prepared 

through random attachment of functional silanes6,7 or self-assembly of trifunctional n-alkyl 

silanes.8,9 Polymerized grafted structures can also be formed from di- and tri- functional 

silanes, but control of structure is challenging or impossible due to the sensitivities of the 

hydrolysis and condensation reactions to the experimental/environmental conditions.7 

These silane modifications typically require long reaction times (>24 hours) at elevated 

temperatures (>70 °C) to form complete monolayers, making this a time and energy 

intensive process. Moreover, their hydrolysis byproducts may damage substrates, 

competitively adsorb during reaction (which can negatively affect monolayer structure), 

catalyze restructuring the monolayer, and need to be removed.  

 

It would be advantageous to use hydridosilanes to modify silica surfaces for two 

major reasons: (1) the byproduct of the condensation of a hydridosilane with a silanol, H2 
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gas, is non-adsorbing, non-corrosive and does not need to be removed, (2) hydridosilanes 

are more stable than chloro-, amino- or alkoxy- silanes, making them easier to handle, 

and can be purified by simple column chromatography. The challenge of using 

hydridosilanes to modify silica is the low reactivity between silanols and hydridosilanes. In 

1999, Fadeev reported the facile modification of titania and other metal oxide surfaces 

with hydridosilanes and observed that similar reactions were not effective at modifying 

silica surfaces.10 These reactions were carried out without catalysis. Having explored the 

use of the Piers-Rubinsztajn reaction of hydridosilanes with silanols on MQ copolymers, I 

hypothesized that tris(pentafluorophenyl)borane (B(C6F5)3, BCF) could be used to 

catalyze hydridosilane modifications of surface silanols. The additional expected benefit 

of the reaction was its rapid rate at room temperature which promised a fast, low energy, 

byproduct-free surface modification method. 

 

I was not the first to hypothesize that this reaction would be useful to modify 

surfaces. Very recently, Escorihuela et al.1 reported the rapid modification of oxidized 

single silicon surfaces, Si(111) wafers, using BCF catalysis. In this work, five n-

alkyldimethylsilanes (one semifluorinated) were covalently attached using catalyst 

concentrations of 1 mol% with reaction times of 5-10 minutes at room temperature 

(equation 1): 

 

The results confirmed my expectations that this method would be efficient, fast and 

possibly useful. Characterization using x-ray photoelectron spectroscopy (XPS), infrared 

reflection absorption spectroscopy (IRRAS), atomic force microscopy (AFM), ellipsometry, 

static contact angle analysis, as well as hydrolytic and thermal stability studies, suggest 
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the formation of ‘highly stable self-assembled monolayers.’ Quantum mechanical 

calculations are consistent with a mechanism similar to the Piers-Rubinsztajn reaction that 

involves the formation of a borane-hydridosilane adduct followed by nucleophilic attack of 

the electron deficient Si atom by a surface silanol. Following hydride transfer from silicon 

to boron, a siloxane bond forms with the surface, molecular hydrogen is formed by acid-

base chemistry between the borohydride and protonated surface siloxane, and finally the 

BCF catalyst is regenerated. This work demonstrates the versatility of the reaction by 

chemically patterning a surface using microcontact printing and the rapid preparation of 

superhydrophobic hydridosilane-functionalized silicon nanowires. 

 

Prior to this work, Moitra et al.2 reported the modification of amorphous silica with 

a variety hydridosilanes using BCF catalysis. These authors also noted that the reaction 

proceeds rapidly (<5 minutes) at room temperature with 1 mol% catalyst concentration 

and produces only H2 as a byproduct and proposed a mechanism essentially identical to 

the one discussed above. The synthetic versatility of hydridosilanes and functional group 

tolerance of the modification method was demonstrated through the preparation and 

purification of numerous (23) functional hydridosilanes that were successfully attached to 

silica. Sweetman et al.3 used this method to prepare phenyl-modified porous silicon 

surfaces for surface-assisted laser desorption/ionization mass spectrometry.  

 

The previous research1-3 illustrates advantages in speed, chemical versatility and 

technological applicability for this BCF-catalyzed surface modification reaction. In this 

work, monolayers of several trialkylsilanes are prepared to compare with samples derived 

from analogous trialkylchlorosilanes and to those recently reported. 1 Dynamic contact 

angle analysis is used to study these reactions, with particular regard to the density of n-

alkyl groups and the time required to achieve maximum bonding density. The importance 
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of reporting both advancing (θA) and receding (θR) contact angle values has been 

discussed earlier but it deserves restating: the static angles most often reported in the 

literature are merely one value in between these two. No other researchers who used this 

reaction have measured advancing and receding angles making a complete 

understanding of this reaction impossible.  

 

Additionally, I wanted to show that this reaction is also useful for preparing 

poly(dimethylsiloxane) (PDMS) grafts on silica surfaces. Low molecular weight model 

hydridomethylsiloxanes are first investigated to provide insight into both the steric issues 

of this surface modification reaction and the structure-wetting relationships for 

methylsiloxanes. I have particular interest in the wetting behavior of PDMS-grafted 

surfaces, which is special and in some ways unique with regard to water repellency. As 

described in the introductory chapter, repellency can be quantified by contact angle 

hysteresis - the difference between θA and θR. PDMS-grafted silica can be prepared by a 

number of approaches and some of these are summarized along with conditions and 

contact angle data in Figure 6.1. The literature contains numerous reports of surfaces of 

this (silica/PDMS) structure; those in Figure 6.1 were chosen because of their reported 

contact angle data. Two others that that deserve attention are the first report13 (1947) of 

the wetting of PDMS-grafted silica and a more recent paper14 that claims "laterally 

chemisorbed" PDMS is a highly robust surface modifier. In route a, a silicon wafer was 

simply wet with PDMS oil (Mn ~ 9000 g/mol) and heated at 100 °C for 24 h. Water contact 

angles of θA/θR = 104°/102° and a thickness of ~1.2 nm were observed.15 The PDMS thin 

film structure and wetting properties depend on temperature, reaction time and polymer 

molecular weight in nontrivial ways. No details of the bonding structure are known. In route 

b, a silicon wafer was treated with dimethyldichlorosilane in the vapor phase at 70 °C for 

72 h.16 Hydrolysis by water in the hydrated silica and condensation rendered a covalently 
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attached PDMS layer that was 2.5 nm thick and exhibited water contact angles of θA/θR = 

104°/103°. Again, no details of the bonding, structure or molecular weight are known. 

Indistinguishable (identical contact angles and thicknesses) grafted layers can also be 

formed from the three oligomers, Cl(SiMe2O)nSiMe2Cl, where n = 1-3. In route c, the wafer 

was treated with dimethylsilanediol in the vapor phase at 150 °C.17 Ellipsometry indicated 

the thickness was ~2.5 nm and water contact angles were θA/θR = 106°/96°. Although 

Me2Si(OH)2 is the presumed intermediate in the reaction with Me2SiCl2, the wetting 

behavior suggests a different structured monolayer. Route d involved the sulfuric acid-

catalyzed hydrolysis and condensation of dimethyldimethoxysilane in isopropanol.18 A 

step growth graft polymerization from the silicon surface occurred and the thickness 

depended on time and reaction temperature. Reaction for 30 min at 21 °C yielded 

minimum hysteresis and a surface with a thickness of 4.7 nm and water contact angles of 

θA/θR = 103°/102°. Many other silica-PDMS surfaces and wetting data are reported in this 

paper and the wetting behavior depends on every variable. This "grafting from" method 

produces chains that are "vertically oriented" as opposed to the "laterally chemisorbed" 

chains described as robust.14 These vertically oriented monolayers exhibit better hydrolytic 

stability than samples prepared from routes a, b and c. Route e entailed the platinum-

catalyzed hydrosilylation of vinyl-terminated PDMS (VPDMSV, Mn ~ 6000 g/mol) with a 

silicon wafer that contained Si-H bonds, introduced by reaction with 1,3,5,7-

tetramethylcyclotetrasiloxane (D4
H).19 The thickness of this PDMS layer was 3.0 nm and 

water contact angles were θA/θR = 109°/104°.  
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Figure 6.1. Five reported15-19 methods for the preparation of covalently attached 
monolayers of PDMS on silicon wafers along with ellipsometric thickness and water 

contact angle data. 

 

Although Figure 6.1 and the associated references15-20 indicate that there are 

multiple routes to PDMS-grafted silica surfaces and that a few of these yield surfaces with 

low contact angle hysteresis, there is little known concerning the molecular weight of the 

attached chains, and nothing known about how bonding density or grafted chain 

architecture affect wetting. Why some surfaces exhibit almost no hysteresis while others, 

that are indistinguishable by every other technique, exhibit significant hysteresis is not 

understood. The BCF-catalyzed reaction between surface silanols and hydridosilane 

groups placed in controlled position(s) in the PDMS chains should in principle permit 

control of grafted chain architecture and correlations with wetting behavior; this was the 

major impetus of these studies. 
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6.1.2 Objectives 

The objectives of this work were to (1) develop a more complete understanding of 

the BCF-catalyzed modification of silica surfaces by measuring and analyzing dynamic 

contact angle of trialkylsilane monolayers, (2) prepare model methylsiloxane surfaces and 

(3) prepare precise methylsiloxane polymer grafts. Preparations of methylsiloxane model 

and polymer surfaces provides insight into the unique water repellency of ‘PDMS’ surfaces 

and allows the formulation of structure-dynamic wetting relationships. Understanding the 

wetting of methylsiloxane polymer grafts is considered the primary objective of this work. 

 

6.2 Experimental Section 

6.2.1 Materials.  

Solvents were purchased from Fisher Scientific and used as received. Alkylsilanes, 

monohydridomethylsiloxanes, hydride-terminated poly(dimethylsiloxane)s, 

monohydride/butyl-terminated poly(dimethylsiloxane)s, monohydride/vinyl-terminated 

poly(dimethylsiloxane)s, poly(hydridomethyl-co-dimethylsiloxane)s, 

poly(hydridomethylsiloxane), and BCF/toluene solution were obtained from Gelest and 

used as received.  Silicon wafers (100 mm diameter, ~500 μm thickness, 100 orientation, 

resistivity from 20 to 40 Ω·cm) were obtained from International Wafer Service and cut into 

~1 cm square sections. Wafer sections were sonicated in toluene, ethanol and deionized 

water, rinsed with additional deionized water and dried under nitrogen. Wafer sections 

were then cleaned in a Harrick oxygen plasma cleaner at an oxygen pressure ~250 mtorr 

for 15 minutes. 

 

Hydride/methyl terminated poly(dimethylsiloxane)s were prepared using lithium 

trimethylsilanolate-initiated anionic polymerization of hexamethylcyclotrisiloxane (D3) 

followed by termination with dimethylchlorosilane. D3 was dissolved in hexane and dried 
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overnight with calcium hydride. The dry D3-hexane mixture was distilled under reduced 

pressure into a liquid nitrogen - cooled trap and transferred via cannula to a flame-dried 

round bottom flask. Lithium trimethylsilanolate initiator was generated in situ by the 

addition of methyllithium by syringe. Following initiator generation, anhydrous 

dimethylformamide was added to promote polymerization. Polymerization was followed 

using 1H NMR until 90-95% conversion was achieved and terminated by the addition of a 

2 mol% excess (over methyllithium) of dimethylchlorosilane. For higher molecular weights, 

the end-capping reaction was run overnight to ensure complete reaction. The reaction was 

worked up with an aqueous rinse, neutralization with aqueous sodium bicarbonate, drying 

of the organic phase with magnesium sulfate, filtration, and solvent removal by rotary 

evaporation.  Number average molecular weights were calculated from 1H NMR and 

polydispersity was determined by gel permeation chromatography. 

 

6.2.2 General Reaction Information.  

Reactions were carried out in Fisher septum-sealed 20 mL scintillation vials. 

Cleaned wafers were introduced to vials followed by capping, nitrogen purging and the 

addition via syringe of anhydrous toluene (99.8% ARCOS), siloxane, silane or 

polysiloxane, and then BCF catalyst solution - in that order. All reactions were carried out 

at room temperature. Following reaction, wafers were removed from the reaction vial and 

rinsed with toluene, ethanol, and deionized water (MilliQ 18.2 MΩ) and dried with a stream 

of nitrogen. Wafers were stored in a vacuum desiccator prior to analysis. Silane 

concentrations, catalyst concentrations and reaction times were varied as indicated. 

 

Control reactions of silanes and siloxanes. Control reactions of 

hexamethyldisiloxane, octamethylcyclotetrasiloxane (D4) and trimethyl-terminated 

poly(dimethylsiloxane) (PDMS) were carried out under equivalent conditions as BCF-
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catalyzed reactions. Additional control reactions were carried out using hydride-containing 

silanes and polysiloxanes under equivalent conditions but with no BCF catalyst. For these 

control experiments, wafers that were removed from the reaction solution and rinsed 

exhibited contact angle data that was indistinguishable from data on wafers that were 

stored in toluene, removed and rinsed. 

 

Vinyltetramethyldisiloxane surfaces. Vinyltetramethyldisiloxane (VTMDS) surfaces 

were prepared by immersion of silicon wafers into a 0.1 M solution of VTMDS in dry 

toluene. 0.5 mol% BCF catalyst was added and the reaction proceeded at room 

temperature for 60 minutes. Wafers were then removed from the reaction solution and 

rinsed with toluene, ethanol and water. After drying under nitrogen, contact angle and 

ellipsometric thicknesses were measured.  

 

Platinum-catalyzed hydrosilylation of vinyl surfaces. Vinyl functional surfaces were 

immersed in 0.1 M Bis(nonafluorohexyldimethylsiloxy)methylsilane in dry toluene. 1 drop 

(~3μL) of 2% Pt catalyst (Karstedt’s catalyst in xylene, Gelest) was added and the solution 

was heated to 60 °C for 1 hour. Wafers were then rinsing with toluene, ethanol and water, 

dried with nitrogen, and stored under vacuum.  

 

UV-initiated thiol-ene reactions of vinyl surfaces. Vinyl functional surfaces were 

immersed in 0.2 M mercaptopropionic acid in dry THF. 1 mol % ERGACURE 2959 UV-

initiator was added and the solution was exposed to UV irritation (Newport Flood Exposure 

Source, Hg(Xe) Lamp, 300 W) for 2 minutes. Wafers were then rinsing with toluene, 

ethanol and water, dried with nitrogen, and stored under vacuum. 
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1H NMR Kinetics of D4
H. To study the previously reported21 oligomerization of D4

H 

under the reaction conditions used for surface modifications, a 0.1 M Si-H (0.025 M D4
H) 

toluene-d8 solution was prepared in a septum-sealed NMR tube. At t = 0, a spectrum was 

recorded before the addition of BCF catalyst. Catalyst (0.5 mol% BCF, 40 mg/ml in 

toluene) was added and spectra were recorded every 3 minutes for 2 hours. 

 

6.2.3 Characterization. 

Advancing and receding contact angles of water were measured using a Ramé-

Hart telescopic goniometer. Smooth (no stick-slip) motion of the contact line during 

advancing and receding events indicated the absence of macroscopic pinning defects on 

the smooth substrates. The reported contact angle values are one of 3-5 measurements 

made at different locations on the wafer surface. In general, variations in advancing and 

receding angles for a sample are less than 2°. Ellipsometry measurements were made 

with a Gaertner LSE Stokes Ellipsometer with a 6328 Å laser. The oxide was modeled 

with a thickness of 10Å and refractive index of n = 1.46.  The refractive index of silanes 

and siloxanes was estimated as n = 1.4. Reported thicknesses are the average of 5 

measurements per modified wafer section. Angle-resolved X-ray photoelectron 

spectroscopy (XPS) was performed using a Physical Electronics Quantum 2000 at take-

off angles of 15°, 45° and 75°. 

 

6.3 Results and Discussion 

All of the experiments described in this work involve reactions of the native oxide 

of silicon wafers that were manufactured to expose the (100) face of silicon. Wafer 

sections were diced to be ~1 cm x ~1 cm and were cleaned by methods consistent with 

those historically used in our group to prepare thousands of supported 

monolayers6,7,10,11,15-18 from (mostly) alkyldimethylchlorosilanes. The reaction conditions 
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chosen were influenced by those reported by Escorihuela et al.,1 but differ in subtle but 

significant ways. These researchers used Si(111) wafers and dichloromethane as solvent. 

This work used the more available, less expensive Si(100) wafers and toluene as a 

solvent. As stated above, the principal objective involved PDMS-grafted surfaces, but 

research began with the study the BCF-catalyzed surface modifications with trialkylsilanes 

and low molecular weight model hydridosiloxanes. These studies permitted comparisons 

with monolayers of identical alkylsilane structure that were prepared from chlorosilanes in 

toluene as well as with samples described in the recent report.1 They also gave insight 

into steric effects on reaction kinetics. 

 

6.3.1 Alkylsilane Monolayers 

Four comments concerning silicon-supported trialkylsilane monolayers prepared 

from chlorosilanes are warranted. (1) n-Alkyldimethylsilane monolayers do not form on 

silica by self-assembly, as is the case for certain n-alkyltrichlorosilanes and n-alkylthiols 

on gold. The density of groups in n-alkyldimethylsilane monolayers is ~2.5 groups/nm2 as 

opposed to the 4.5-5 groups/nm2 observed in self-assembled monolayers prepared from 

n-alkyltrichlorosilanes and n-alkylthiols.7 The two methyl groups on silicon require a larger 

"footprint" for the silane resulting in n-alkyl groups that are further apart and disordered 

rather than arrayed in the nearly vertical, all-trans configuration of self-assembled 

trifunctional silanes. (2) The reaction of chlorosilanes proceeds by hydrolysis and random 

covalent attachment (condensation) with the surface, thus the kinetics of reactions is 

unusual. In the initial stages the reaction is very fast, but as the surface fills and surface 

silanols become less accessible, the reaction slows considerably. The kinetics of 

formation of a trimethylsilyl monolayer illustrates this:6 water contact angles increase from 

θA/θR = 0°/0° (wets) to θA/θR = 80°/35° after 6 min, θA/θR = 99°/93° after 60 min and θA/θR 

= 100°/97° after 150 min, but the reaction is not complete (θA/θR = 105°/96°) until a time 



180 
 

in between 24 and 48 h. Hysteresis is minimized at 150 min reaction time and this is 

explained by the rotational mobility of trimethylsilyl groups in this non-close-packed 

monolayer. This mobility is inhibited by the greater bonding density that occurs during the 

later stages of the reaction. The reaction is not limited by lack of surface silanols; these 

are present in excess and completely reacted monolayers still contain ~2 surface silanols 

per nm2 that can impact the wetting behavior.6 (3) The yield of reactions of chlorosilanes 

with surfaces and the structure of the resulting monolayers are dependent on multiple 

variables in the reaction conditions. Much denser monolayers are formed using toluene 

as the solvent than when benzene is used. Ethyldiisopropylamine is a catalyst (and 

reagent to neutralize HCl) that increases bonding density over uncatalyzed reactions, but 

pyridine and triethylamine both decrease bonding density. The most dense monolayers 

are formed using vapor phase reactions with no base. The reactions and resulting bonding 

density are affected by competitive adsorption/desorption equilibria of reagents, solvents, 

catalysts and byproducts. (4) The reactions of chlorosilanes are thermally activated and 

proceed faster at elevated temperatures, but more dense monolayers are most often 

formed at lower temperatures. 

 

These points concerning chlorosilane-derived monolayers, which the McCarthy 

group has developed over years of wrestling with surface preparation and contact angle 

data, are mentioned to advocate that the BCF-catalyzed reaction of silica with 

hydridosilanes is most certainly also condition-dependent and warrants study beyond what 

has been reported.1-3 Table 6.1 shows water contact angle and XPS atomic composition 

data for nine monolayer surfaces prepared by reaction with 1 M silane and 0.5 mole% 

BCF in toluene at room temperature for 2, 16 and 72 hours. In all cases the wafer was 

sealed in a reaction vial that was subsequently purged with nitrogen before anhydrous 

toluene, silane and then a toluene solution of BCF was added by syringe (in this order). 
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Careful kinetics studies were not performed, but longer and shorter reaction times were 

studied to determine insight into the time required for maximum bonding density. All 

reactions exhibited rapid hydrogen evolution upon catalyst introduction and samples 

isolated at times of 15 min or less exhibited dramatic increases in advancing contact angle. 

Only the phenyldimethyl monolayer was complete as assessed by receding contact angle 

after 2 h. The results for triisopropylsilane and tert-butyldimethylsilane implicate sterics as 

an important criterion in this reaction as these reagents react much more slowly than less 

hindered silanes. Neither of these reactions is complete after 16 h. Although the BCF 

catalyst clearly functions with these sterically demanding reagents, the bonding density 

on the surface is much lower than that observed with n-alkyl groups. XPS atomic 

composition data show the expected trend of increasing carbon content as a function of 

the number of carbon atoms in the silane.  

 

Water contact angle data for monolayers prepared from chlorosilanes with identical 

alkyl group structure are available6 for 7 of the entries in Table 6.1. These data are 

reproduced in Table 6.2 for comparison. The triisopropyl- and tert-butyl- dimethylsilyl 

monolayers prepared from the chlorosilanes in the vapor phase exhibit water contact 

angles of θA/θR = 80°/63° and 104°/98°, respectively, indicating higher bonding density 

than those prepared from hydridosilanes with BCF catalysis (θA/θR = 58°/42° and 90°/76° 

- 72 h reactions). This suggests that steric congestion at the interface during BCF-

catalyzed silylation limits bonding density. Data for surfaces modified with these 

chlorosilanes in solution are not reported, but the experiments were carried out and it is 

noted6 that much lower contact angles were observed and that bonding density increased 

with increasing reaction temperature. These observations suggest that steric 

requirements of the BCF-catalyzed silylation are not as great as those for the 

ethyldiisopropylamine-catalyzed reaction of chlorosilanes with silica. Significant amounts 
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of reaction occur at room temperature with BCF-catalysis, but it was not determined if 

more dense monolayers will form at elevated temperatures. The ethyldimethylsilyl 

monolayers prepared from the chlorosilane under all three conditions exhibit higher 

contact angles (θA/θR = 104-110°/91-98°) than the monolayer prepared from the 

hydridosilane (θA/θR = 96°/90°), indicating higher bonding density. Monolayers prepared 

from chlorosilanes also have higher hysteresis than those prepared from hydridosilanes 

(12-13° versus 6°). This suggests that the lower bonding density monolayer produced by 

BCF-catalysis is smoother and/or more flexible than the chlorosilane-derived monolayers. 

The same effect appears to be operative in the cases of the n-butyl, n-octyl and n-

octadecyl surfaces. Lower contact angles, but also lower hysteresis values are observed 

for BCF-catalyzed hydridosilane modifications. These contact angle values of θA/θR = 

100°/97°, 104°/101° and 103°/97° suggest very smooth/flexible, liquid-like surfaces. 

These hysteresis values are anomalously low for n-alkyl monolayers and this can be 

considered an advantage of BCF-catalyzed silylation over traditional methods. The steric 

requirements of the BCF-catalyzed silylation controls bonding density to fortuitously yield 

low hysteresis surfaces. A comparison to the work of Escorihuela et al.1 can be made for 

the n-octyl- and n-octadecyl-dimethylsilane surfaces. The authors report a static contact 

angle of 103° for the n-octyldimethylsilane monolayer, that is consistent with this data, and 

a value of 111° for the n-octadecyldimethylsilane monolayer, that is much higher than any 

we observed and suggests roughness (molecular topography). Without θA and θR values, 

further comparison is not possible. 
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Table 6.1 Water Contact Angle and XPS Data (15° take-off angle) for Alkylsilane 
Monolayers (1 M Silane, anhydrous toluene, 0.5 mol% BCF) 

Silane 
Reaction Time 

(h) 
θ

A
/θ

R
 %C %O %Si %F 

ethyldimethyl 

2 94°/83°     

16 96°/90° 13.5 48.3 38.1  

72 96°/90°     

isopropyldimethyl 

2 93°/86°     

16 96°/89° 14.9 47.5 37.6  

72 95°/89°     

triisopropyl 

2 48°/35°     

16 50°/32° 14.6 49.6 35.8  

72 58°/42°     

n-butyldimethyl 

2 98°/92°     

16 100°/97° 22.8 43.1 34  

72 101°/98°     

tert-butyldimethyl 

2 42°/28°     

16 50°/37° 18.2 47.1 34.6  

72 90°/76°     

n-octyldimethyl 

2 103°/100°     

16 104°/101° 26 40.5 33.5  

72 101°/92°     

n-octadecyldimethyl 

2 100°/92°     

16 103°/97° 41.4 31.7 26.9  

72 104°/96°     

phenyldimethyl 

2 89°/82°     

16 90°/83° 26.1 40.2 26.9  

72 90°/84°     

Bis(nonafluorohexyldimethylsiloxy)- 

methylsilane 

2 84°/73°     

16 91°/80° 17.2 40.2 30.6 12.0 

72 93°/84°     

 

 

 

 

 

 

 



184 
 

Table 6.2. Water Contact Angle for Alkylsilane Monolayers Prepared from Chlorosilanes 
for Comparison. 

Alkylsilane 
Solution 

 60-70 °C 

Solution  

RT 

Vapor, 

60-70 °C 

BCF-

Catalyzed  

RT, 16 h 

ethyldimethyl 104°/91° 108°/96° 110°/98° 96°/90° 

isopropyldimethyl   108°/96° 96°/89° 

triisopropyl     80°/63° 52°/32° 

n-butyldimethyl 104°/92° 105°/93° 105°/93° 100°/97° 

tert-butyldimethyl     104°/98° 50°/37° 

n-octyldimethyl 103°/91° 106°/93° 106°/99° 104°/101° 

n-octadecyldimethyl 103°/91° 107°/95°   103°/97° 

 

 

6.3.2 Model Methylsiloxane Monolayers 

To optimize reaction conditions, investigate steric issues for BCF-catalyzed 

surface modifications and begin to understand structure-wetting properties of 

methylsiloxanes, model low molecular weight monohydridomethylsiloxanes were studied. 

These are better model reagents for PDMS copolymer attachment reactions than the 

alkyldimethylsilane reagents. It should also be emphasized that these monolayers would 

be very difficult to prepare by conventional techniques as most of the discrete 

chlorosilanes are not available; this is yet another advantage of the BCF-catalyzed 

modification method. Pentamethyldisiloxane, Me3SiOSiMe2H (MMH), both isomers of 

heptamethyltrisiloxane, Me3SiOSiMe2OSiMe2H (MDMH) and Me3SiOSi(H)MeOSiMe3 

(MDHM), tris(trimethylsiloxy)silane, (Me3SiO)3SiH (M3TH), and 

heptamethylcyclotetrasiloxane (D4
1H) were studied. The convenient General Electric 

nomenclature (M, D, T, Q)22 is used to abbreviate silicone reagents and the superscripts, 

V, H and Bu to represent that one methyl group is replaced with one vinyl, hydro or n-butyl 

group. 
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Many reactions were run with MMH, which reacts faster than any of the alkylsilanes 

discussed above, to test and optimize conditions and procedures. It was found that the 

order of addition of the hydridosiloxane/BCF/toluene/wafer has a pronounced effect on 

monolayer structure as evidenced by contact angle analysis (Table A6.1). The preferred 

method is to purge the reaction vial containing a silicon wafer section with nitrogen, add 

toluene, then hydridosiloxane, and finally BCF catalyst. If the BCF catalyst is added before 

the hydridosiloxane, or if the wafer is submerged as the final step, significantly lower 

advancing and receding contact angles result. The reaction is extremely fast and attempts 

to determine kinetics at 0.1 M Si-H and 0.5 mol% BCF yielded the data shown in Table 

6.3. The reaction is complete (statistically) within 1 minute as evidenced by both contact 

angle and ellipsometric thickness data. Although Table 6.3 shows practically nothing 

concerning the kinetics of the reaction, it is included as representative data describing a 

well-behaved random covalent attachment reaction.  The scatter in the contact angle data 

is real and expected from slightly different, completely modified surfaces. These surfaces 

contain "holes" between randomly attached disiloxane groups that are smaller than the 

disiloxane, contain surface silanols, and cannot be filled by further reaction (at least at this 

temperature). The residual silanols present in these "holes" on the silicon wafer are 

shrouded to a high degree by the disiloxane, but can be accessed by the water probe fluid 

resulting in the observed hysteresis.  It might be argued that the reaction is not complete 

after 1 or 5 min and is after 10 or 15 min, based on the 1° contact angle differences, but 

this is not significant other than that it suggests reactions be run for 15 min or more. No 

deleterious effects of longer reaction times, up to 2 h, are observed. The sample prepared 

with 90 min reaction has slightly higher contact angles. These differences are real, but 

indicate only that smaller "holes" or different disiloxane group random placement occurred 

in this particular reaction; there is nothing special about the 90 min reaction time.  
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Table 6.3. Contact Angle and Ellipsometric Thickness Values for the BCF-Catalyzed 
Reaction of Pentamethyldisiloxane with Si(100). 

Time, min θ
A
 θ

R
 Hysteresis Thickness (Å) 

1 96° 89° 7° 2.66 

5 96° 89° 7° 3.72 

10 97° 90° 7° 2.76 

15 97° 90° 7° 2.6 

30 97° 90° 7° 3.03 

60 97° 90° 7° 2.92 

90 99° 92° 7° 1.95 

120 97° 90° 7° 2.8 

 

Decreasing the BCF catalyst concentration by two orders of magnitude decreases 

the rate of reaction, but monolayer formation still occurs. Table A6.2 shows data for 1, 0.5, 

0.1, 0.05 and 0.01 mol% BCF. Higher contact angles were observed more often at 0.5 

mol% than at 1 mol% concentration, perhaps due to the competing adsorption of BCF. 

Decreasing MMH concentration from 0.1M to 0.05M and 0.01M also decreased the 

reaction rate (Table A6.3), but monolayers were still formed. It must be emphasized that 

0.01M MMH and 0.00001M BCF in toluene (extremely dilute conditions) formed 

hydrophobic monolayers with θA/θR = 92°/87° in 15 min (longer times were not studied). 

That monolayers form under such dilute conditions indicates (1) that there is some 

adsorption affinity of the silane to the silica surface such that silane molecules form an 

enriched layer, and (2) the important fact that in 2D surface modifications in solutions, 

there is always a large excess of reagent present. The conditions chosen for further 

studies were 0.1 M hydridosiloxane and 0.0005M BCF (0.5 mol%).  

 

The rates of reaction for other model hydridomethylsiloxanes were determined in 

similar fashion and the kinetics data for MDMH (Table A6.4), MDHM (Table A6.5), (M3TH) 

(Table A6.6), and D4
1H (Table A6.7) are included in the appendix following this chapter. 
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Figure 6.2 summarizes the results of these experiments with regard to reaction time 

required for maximum bonding density. MDMH reacts rapidly, but more slowly than MMH. 

Significant hydrophobization is evident after 15 min reaction, but the reaction is not 

complete until ~2 h. The contact angles are higher than those of the MMH-derived 

monolayer indicating more complete coverage of surface silanol groups. The hysteresis 

is lower with the trisiloxane than the disiloxane suggesting a smoother and/or more flexible 

surface. More complete shrouding of surface silanols by the trisiloxane may also explain 

the longer reaction times required to reach completion. MDHM reacts more slowly and 

contact angles did not level until ~16 h reaction. The lower contact angles and higher 

hysteresis observed in comparison with the end-functional isomer, MDMH, suggest that 

the steric issues observed with the tert-butyldimethylsilane and triisopropylsilane (Table 

6.1) monolayers are operative. The same steric issues are more evident with M3TH; even 

lower contact angles and higher hysteresis are observed, indicating significant 

contributions of surface silanols to the wetting behavior. These observations suggest that 

terminal silanes (MH) are more reactive than internal silanes (DH, TH) under these 

conditions. The cyclic hydridomethylsiloxane, D4
1H, reacts somewhat anomalously and 

reaction is complete in ~10 min to yield a surface that exhibits silanols to water as a contact 

angle probe fluid, but that are unreactive to further modification by D4
1H/BCF under these 

conditions. Apparently, the ring structure increases the rate of reaction of this internal 

silane. These hydridomethylsiloxanes form an interesting and perhaps useful series of 

surfaces with a range of water contact angles: θA/θR = 101°/97°, 97°/90°, 90°/81°, 84°/70°, 

73°/47°. This is a convenient, reproducible, clean (no byproducts to remove), room 

temperature surface modification reaction that is worked up by simple solvent rinsing. BCF 

is a very effective catalyst that is removed completely upon rinsing and can be used in 

very low concentration. No fluorine (or boron) was observed in XPS spectra of any of the 

surfaces reported here. 
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Figure 6.2. Conditions for maximum bonding density for BCF-catalyzed reactions of 
Si(100) with model hydridomethylsiloxanes (toluene, room temperature, 0.1 M 

hydridomethylsiloxane and 0.0005M BCF (0.5 mol%). 
 

Surfaces prepared from the reaction of tetramethylcyclotetrasiloxane (D4
H) 

demonstrate behavior very different than the model hydridomethylsiloxanes that contain 

only one hydride, specifically D4
1H. The results of kinetics studies at 0.1 M and 1.0 M Si-H 

solutions with 0.5 mol% BCF catalyst are presented in Table 6.4. The special behavior of 

D4
H in comparison to D4

1H is the result of (1) the variety of surfaces that may arise from a 

mixture of D4
H isomers and (2) the hydride transfer oligomerization of D4

H in the presence 

of BCF catalysis.21 Unlike D4
1H which may react only once in one configuration with surface 

silanols, D4
H may react more than once with exposed silanols and will do so in a manner 
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that depends on the configuration of hydrides on the ring. For example, an all-cis 

configuration of hydrides where all the hydrides are on the same side of the ring could be 

expected to react more than once and to lie down on the surface. In cases where the 

hydrides are on different sides of the ring, a molecule may react only once and stick out 

from the surface. The randomness of this attachment will yield a heterogenous 

hydridomethylsiloxane surface which is evidences by the θA/θR = 90°/80° in the initial 

monolayer that forms at short reaction times. These initial monolayers are similar to those 

formed from D4
1H but the increased contact angles indicate that silanols are more 

shrouded by the randomly attached mixture of D4
H isomers. The additional complication 

of oligomerization arises once a D4
H molecule is attached. Hydride transfer oligomerization 

will occur from surface bound D4
H to form polycyclic grafts. Oligomerization is observed 

directly by the increase in thickness with reaction time and in 1H NMR kinetics shown in 

Figure A6.10. Graft thickness increases faster in higher concentrations of D4
H. It is shown 

in Table 6.4 that graft growth directly corresponds to increased advancing contact angles 

and greater contact angle hysteresis. Like the other silanes reported, adsorption of D4
H 

will lead to a high local concentration of D4
H at the surface. Under such conditions, the 

surface adsorbed layer is likely to form a highly branched, polycyclic, network structure 

similar to the solid materials reported21 when BCF is added to neat D4
H. This surface layer 

contains methylsiloxane groups responsible for the high advancing contact angles, but is 

heterogeneous and rigid on the molecular scale resulting in high contact angle hysteresis. 

Vinyl group - containing monolayers were prepared using VMMH. The reactivity is 

similar to MMH and complete monolayers were formed within 15 minutes (θA/θR = 96°/90°). 

Samples containing this monolayer were further modified by Pt-catalyzed hydrosilylation 

with bis(nonafluorohexyldimethylsiloxy)methylsilane and UV-initiated thiol-ene addition 

with mercaptopropionic acid. Table 6.5 exhibits XPS, contact angle and ellipsometry data 
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that are consistent with further modification of the vinyl groups. Yields estimated by XPS 

were low, but these reactions were not optimized. 

 

Table 6.4 Kinetics of BCF-catalyzed modification of Si(100) with D4
H at indicated Si-H 

concentration. (toluene, 0.5 mol% BCF, room temperature) 

[Si-H] time, min θ
A
 θ

R
 Hysteresis 

Thickness 
(Å) 

1.0 M 10 90 80 10 2.72 
 30 91 80 11 1.37 
 60 94 83 11 3.97 
 120 101 90 11 3.82 
 960 104 88 16 8.55 
 1440 105 89 15 10.04 

0.1 M 1 82 66 16 4.68 

 10 84 73 11 4.28 

 30 91 78 13 3.7 

 60 91.5 81 10.5 3.3 

 90 92.5 82 10.5 4.64 

 120 94 82 12 4.27 

 960 93 82 11 6.32 

 4320 96 76 20 9.03 

 

Table 6.5. Thickness, Contact Angles and XPS (15° ToA) of Vinyltetramethyldisiloxane 
surfaces and derivates 

 Thickness, 
Å 

θ
A
 θ

R
 Δ %C %S %F 

Vinyltetramethyldisiloxane 0.76 96° 90° 6° 14.3  <0.1 

Bis(nonaflurohexyl) 
methylsilane Pt-Catalyzed 

Hydrosilylation 
6.06 106° 97° 9° 19  6 

Mercaptopropionic Acid 
Thiol-ene 

2.91 77° 63° 14° 20.2 1.6  
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6.3.3 Covalently Attached Polymeric Methylsiloxane Monolayers 

Three types of hydridosilane-containing methylsiloxane polymer were studied: 

PDMS containing one terminal hydridosilane, RMDnMH (R = Me, vinyl, n-butyl), PDMS 

containing two terminal hydridosilanes, HMDnMH, PDMS containing different 

concentrations of randomly placed hydridomethylsiloxane comonomer, MDxDH
yM. 

Samples of different molecular weight HMDnMH, BuMDnMH and VMDnMH and samples of 

MDxDH
yM that contained 3-100 mol% hydridomethylsiloxane backbone units were 

obtained commercially (Gelest); their molecular weight data were determined using 1H-

NMR. MDnMH samples (M = trimethylsilyl) were prepared by methyllithium-initiated ring-

opening polymerization of D3 and termination with dimethylchlorosilane.  

 

Surface modification experiments were carried out using the conditions and 

procedure optimized for the model methylsiloxane monolayers discussed above: 

anhydrous toluene, 0.1 M Si-H, 0.5 mol% (0.0005 M) BCF. Toluene and then the 

hydridomethylsiloxane polymer, sufficient to generate 0.1 M Si-H, were added to the 

nitrogen-purged wafer-containing reaction vial followed by addition of BCF. The polymer 

concentration in solution varied significantly in terms of g/mL; Si-H and BCF 

concentrations remained constant. After reaction, the wafer was removed, rinsed with a 

series of solvents and dried with a stream of nitrogen.  

 

Table 6.6 exhibits ellipsometric thickness, water contact angle and angle-

dependent XPS data for RMDnMH and HMDnMH samples. Sufficient kinetics data were 

obtained to indicate that these data are reproducible and that reactions are complete after 

2h. These reactions were rapid and often complete within minutes. Scatter in the data was 
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minimal. Although toluene was used as the solvent for all of these preparations, other 

solvents were investigated for their compatibility. Table A6.10 shows contact angle and 

ellipsometry data for BCF-catalyzed reactions of BuMD20MH with silica surfaces in seven 

additional solvents. We note that higher contact angles and lower hysteresis were 

observed with heptane and cyclohexane. These may be better solvents (render more 

repellent surfaces) for this reaction than toluene.  

 

Table 6.6. Ellipsometric Thickness, Water Contact Angle and Angle-Dependent XPS 
Data for RMDnMH and HMDnMH - Derived Monolayers. 

Silicone 
Thickness 

(Å) 
θ

A
/ θ

R
 

%C 

(15° ToA) 

%C 

(45° ToA) 

%C 

(75° ToA) 

MD
15

M
H
 (M=1070)

 
 9.16 103°/98° 33.0 18.1 15.7 

MD
28

M
H
 (M=2070)

 
 17.44 104°/101° 33.0 19.5 15.5 

MD
36

M
H
 (M=2664)

 
 24.71 104°/100° 34.9 23.5 19.8 

MD
68

M
H
 (M=5000)

 
 31.68 104°/102° 41.0 30.5 24.1 

MD
112

M
H
 (M=8280)

 
 39.90 104°/101° 45.6 33.8 29.0 

MD
117

M
H
 (M=8660)

 
 50.81 104°/101° 44.0 35.9 33.1 

MD
423

M
H
 (M=31 300) 122.61 111°/92° 49.4 45.3 42.9 

Bu
MD

15
M

H
 (M=1080) 13.54 104°/100° 21.6 12.1 8.9 

Bu
MD

20
M

H
 (M=1450)

 
 15.40 106°/103° 27.5 14.5 10.3 

Bu
MD

97
M

H
 (M=7150)

 
 44.66 105°/100° 45.1 32.8 27.2 

V
MD

53
M

H 
(M=3920) 26.16 105°/102° 40.0 27.5 23.6 

V
MD

270
M

H 
(M=19 980) 67.02 107°/93° 46.9 40.5 37.2 

H
MD

10
M

H
 (M=740)  5.58 101°/95° 18.7 9.1 6.5 

H
MD

17
M

H
 (M=1260)

 
 10.28 103°/98° 30.3 17.1 13.0 

H
MD

60
M

H
 (M=4440)  25.92 105°/102° 41.0 26.0 21.4 

H
MD

195
M

H
 (M=14 400)

 
 56.70 108°/101° 46.3 41.7 35.7 

H
MD

283
M

H
 (M=20 900)  86.70 109°/99° 47.7 46.7 43.1 
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A cursory look at the water contact angle data in Table 6.6 suggests that all of 

these modification reactions produce rather similar highly hydrophobic PDMS-grafted 

surfaces. This is indeed the case, however several trends give insight into the structure-

wetting behavior of the PDMS-grafted surfaces. Figure 6.3 shows the scaling of measured 

ellipsometric thickness with N, the number of repeat units in the end-functional polymers. 

The scaling exponent for these surfaces in the dry state is 0.71, which is close to the 

predicted 0.66 scaling exponent of a dry/‘melt’ brush in Alexander-de Genne brush theory. 

This indicated that the PDMS grafts have an extended brush-like conformation and that in 

the solvent swollen state thickness would scale linearly with N. As a more visually intuitive 

depiction, Figure 6.4 shows the shape of individual grafted chains for all samples 

analyzed. The rectangles are drawn (based on molecular weight, bulk density and 

measured ellipsometric thickness) to represent the calculated shape (degree of stretching) 

and packing density of individual chains as though they were monodisperse, close-

packed, non-penetrating arrays of square prisms with their long axis perpendicular to the 

surface. Of course, the chains penetrate, are stretched to different extents and the PDMS 

samples are polydisperse, but the rectangles in the Figure represent averages and are 

insightful. Evident in both Figure 6.4 and Table 6.6 is that grafted layer thickness and 

degree of chain stretching increase with molecular weight for both RMDnMH and HMDnMH 

polymers. The series of samples on the left in the blue box in Figure 6.4, MDnMH with n = 

15, 28, 36, 68, 112, 117 and 423, contain grafted polymers with average aspect ratios of 

0.63, 1.2, 1.7, 1.9, 2.1, 3.0 and 5.9, respectively. Data used in similar calculations for all 

samples are in Table A6.11. The other RMDnMH polymers (vinyldimethylsilyl- and n-

butyldimethylsilyl-terminated) in the blue box and the HMDnMH polymers (pink box) show 

similar (indistinguishable) molecular weight - dependent chemisorption/chain stretching 

tendencies. Having two chain end anchors, or n-butyl or vinyl groups rather than methyl 
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groups, has little or no effect on chain density. The measured thickness value of HMD60MH 

(26 Å) is similar to those of VMD53MH (26 Å) and MD68MH (32 Å). Based on the rapid BCF-

catalyzed reaction discussed above, it is expected that both chain ends of HMDnMH 

polymers have reacted, but this apparently does not significantly affect thickness. Toluene 

is a good solvent for these polymers and the adsorption and attachment steps of the 

reaction occur in toluene-swollen adsorbed chains. As previously mentioned with regard 

to scaling, the swollen chains have higher aspect ratios than those calculated from the 

ellipsometric thickness data of dry samples.  The carbon content in XPS data reflects this 

molecular weight / thickness correlation as well, and the take-off angle dependence of the 

carbon content is consistent with carbon-containing layers of the thicknesses measured 

by ellipsometry on silicon/silica (non-carbon-containing) substrates. This is obvious in the 

sharp take-off angle dependence in thinner films: carbon content in the ~9 Å thick MD15MH-

derived monolayer is 33.0% (15°), 18.1% (45°) and 15.7% (75°), while those values for 

the ~123 Å thick MD423MH sample are 49.4% (15°), 45.3% (45°) and 42.9% (75°).  

 

 

Figure 6.3: Log-Log plot of ellipsometric thickness versus the number of repeat units, N, 
of XMDMH polymer grafts from BCF catalysis on Si(100) surface. The slope of the fitted 

data indicates the scaling exponent for the relationship of thickness and N. 
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Figure 6.4. Graphic depictions the average degree of stretching of individual grafted 
chains based on molecular weight and ellipsometric thickness values. The abbreviations 
are abridged in the figure, leaving out the terminal M groups, thus VD53

H represents VM 

D53M H. 
 

There are subtle differences in the water contact angle data that confirm very 

similar tendencies observed in other methods of grafting PDMS onto silica, in particular 

Methods a, d and e in Figure 6.1.15,18,19 For both RMDnMH and HMDnMH (end grafted) 

polymers, contact angles increase with molecular weight in the low molecular weight range 

while hysteresis decreases. This is consistent with the arguments that were made above 

for the differences between MMH and MDMH monolayers - silanols are more completely 

shrouded by the additional dimethylsiloxane groups. Contact angles for MMH, MDMH, 
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MD15MH, and MD28MH are θA/θR = 97°/90°, 101°/97°, 103°/98° and 104°/101°. Contact 

angles of surfaces prepared from polymers ranging from Mn ~2000 g/mol (MD28MH) to 

~8000 g/mol (MD117MH) show indistinguishable contact angles with low hysteresis, but 

surfaces prepared from higher molecular weight polymers show pronounced hysteresis: 

θA/θR = 111°/92° for MD423MH (Mn~30 000). The same differences are observed between 

VMD53MH (θA/θR = 105°/102°, Mn~4000) and VMD270MH (θA/θR = 107°/93°, Mn~20 000), as 

well as in the series of difunctional HMDnMH polymers. Contact angle data for HMD10MH, 

HMD17MH, HMD60MH, HMD195MH and HMD283MH are θA/θR = 101°/95°, 103°/98°, 105°/102°, 

108°/101° and 109°/99°. Samples prepared by Method a in Figure 6.1 (thermal 

equilibration of PDMS oils with silicon wafers) exhibited contact angles of θA/θR = 93°/79°, 

104°/102°, 106°/105°, and 113°/94° with PDMS samples of Mn = 770, 2000, 9430 and 116 

000 g/mol, respectively. The ellipsometric thickness values are consistent with molecular 

weight for all of these samples and surfaces exhibiting low hysteresis all have thickness 

values of 5 nm or less. The thickness values for MD423MH, VMD270MH, HMD195MH, HMD283MH 

and PDMS116K that exhibit significant hysteresis are ~12.3, 6.7, 5.7, 8.7 and 12.5 nm, 

respectively. Samples prepared by Method e in Figure 6.1 (hydrosilylation of vinyl-

terminated PDMS to D4
H modified wafers) exhibited contact angles of ~θA/θR = 108°/104°, 

112°/99°, 115°/98°, 117°/97°, 116°/94° and 117°/95°with VMDnMV samples of Mn = 6000, 

17 200, 28 000, 49 500, 72 000, and 117 000 g/mol, respectively. The measured thickness 

values of these surfaces fall between 3 and 8 nm making them thinner than what would 

be expected from these molecular weights: this may be due to several factors including 

but low reaction yields for surface hydrosilylation or polymer degradation resulting from 

long reaction times. Regardless, the same trend of increasing hysteresis in high molecular 

weight/thick PDMS grafts is observed. Data for samples prepared using Method d in 

Figure 6.1 are also consistent with this thickness-wettability behavior (the molecular 

weight values of these grafted chains are not known).17  
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Two explanations are presented in Figure 6.5 for why the thicker (~10 nm) films of 

higher molecular weight end-grafted polymer exhibit significantly greater hysteresis (θA - 

θR = 14-19°) than the thinner (1-5 nm) ones of lower molecular weight polymer (θA - θR = 

1-3°). Difunctional end-grafted polymers, HMDnMH, show intermediate contact angle 

disparities, θA - θR = 3-6° for the 0.6-2.6 nm thick layers and θA - θR = 7 and 10° for the 5.7 

and 8.7 nm thick layers. All of these surfaces contain covalently attached liquid PDMS (Tg 

~ - 125 °C) and the rotational motions of these chains at room temperature (~150 °C above 

Tg) should be sufficient to negate contact line pinning and eliminate hysteresis. PDMS, 

however, spontaneously spreads on the air-water interface; Langmuir films can be 

prepared.23,24 Grafted chains at the 3-phase PDMS/water/air contact line should spread 

onto the liquid surface (Figure 6.5a). During motion of a drop (contact line) on a surface, 

either through sliding or in a contact angle measurement, this spreading of PDMS chains 

has to be occurring reversibly.  Evidently the lower molecular weight chains can 

spread/despread (or adsorb/desorb or wet/dewet) on the water surface rapidly enough (at 

rates in nanometers per millisecond) so that they do not impede the mm/sec (identical 

units as nm/msec) motions of the contact line; in fact, they move the contact line. This 

motion of the contact line on methylsiloxane surfaces can visually depicted using 

molecular umbrellas.25 The higher molecular weight chains, however, can spread further 

from the 3-phase contact line up onto the water drop surface and their 

spreading/despreading, adsorption/desorption or wetting/dewetting kinetics impedes the 

contact line motion. It could be argued that chains in monolayers composed of samples 

grafted at both ends, HMDnMH, are slightly less mobile at low molecular weight and cannot 

spread as far onto the drop at high molecular weight to rationalize the intermediate 

hysteresis values. This mechanism is consistent with the data, but is also probably over-

analysis of very small differences. A second, less molecular and more continuum 
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explanation (Figure 6.5b) is that the three phase contact line changes from one that 

behaves as a solid/liquid/vapor interface to one of a liquid/liquid/vapor interface with 

increasing PDMS layer thickness. With sufficient attached liquid film thickness, the 

interface is deformed at the contact line to a degree that the liquid (PDMS) motion required 

to advance and recede is a significant component of the activation barrier between 

metastable contact line states. The events depicted in both of these explanations may be 

occurring together and they may, in fact, be two different perspectives of the same events.  

 

Figure 6.5. Two explanations for why thicker (~10 nm) films of higher molecular weight) 
end-grafted PDMS exhibit greater contact angle hysteresis. In a, polymer chains spread 
onto the water drop and impede advancing and receding events. In b, the liquid PDMS  

interface distorts at the contact line forming a liquid/liquid/air interface that must 
restructure for advancing and receding events to occur. 

 

Surface modification reactions with the poly(hydridomethyl-co-dimethyl)siloxane 

polymers were less well behaved and kinetics data are included in Tables A6.12-16 for 
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MD26DH
1M, MD25DH

2M, MD23DH
4M, MD18DH

8M, and MDH
27M, respectively. The hydride 

content varies from 3 to 100 mol% (at a constant molecular weight of Mn~2000) and 

increasing hydride content leads to a decrease in thickness, a decrease in contact angle 

and an increase in contact angle hysteresis (Table 6.7, Figure 6.4, green box). The two 

copolymers with the lowest hydride content exhibit wetting behavior that is very similar to 

the end-grafted polymers. As hydride content in the polymer increases, the number of 

surface attachments per chain increases and the average molecular weight between 

surface attachments decreases. With a lower molecular weight between attachments, the 

average thickness decreases and the effective mobility of the siloxane decreases.  

 

Table 6.7. Ellipsometric Thickness, Water Contact Angle and XPS Data for MDxDy
HM - 

Derived Monolayers. 

Silicone 
Thickness 

(Å) 

θ
A
/ θ

R
 

%C 

(15° ToA) 

%C 

(45° ToA) 

%C 

(75° ToA) 

MD
26

D
H

1
M 13.88 103°/99° 27.4 15.0 11.2 

MD
25

D
H

2
M 11.38 104°/99° 24.7 14.5 10.9 

MD
23

D
H

4
M 8.77 102°/92° 19.5 9.4 7.7 

MD
18

D
H

8
M 8.73 100°/90° 19.1 8.8 7.3 

MD
H

27
M 3.61 98°/88° 15.9 8.7 6.7 

 

 

There are additional complexities involved in the reactions of MDxDH
yM with 

surface silanols as evidenced by the time required to reach reaction completion (24 hours 

as compared to 2 hours for end-terminated siloxanes). The model hydridomethylsiloxanes 

illustrate that the internal hydridosilanes are less reactive, but that alone does not explain 
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the differences. Additional disparities are: (1) The siloxane polymers are polydisperse not 

only in molecular weight but also in backbone hydridosilane content (the end-functional 

polymers do not have this issue). The Si-H mol% determined by NMR is an average of the 

entire sample and some chains contain greater or fewer Si-H groups. Each molecule thus 

has an Si-H content - dependent probability of reaction as well as a molecular weight - 

dependent physical adsorption-desorption equilibrium constant. (2) Physical adsorption 

and desorption are simultaneous with grafting reactions. Polymers with a greater number 

of Si-H groups per chain are more likely to react with a surface upon adsorption and be 

kinetically trapped in non-equilibrium states. (3) Polymers that are grafted covalently are 

still mobile. Their conformations can fluctuate to both cover and uncover reactive silanols 

on the surface. The high hysteresis values for these samples are likely due to unreacted 

surface silanols that are covered from additional grafting reactions by toluene-swollen 

oligodimethylsiloxane chains, but are accessible to the water probe fluid in the dry state. 

 

6.3.4 Mechanism of BCF Catalysis of Hydridosilanes on Silica 

Escorihuela et al.1 and Moitra et al.2 propose a mechanism for the BCF-catalyzed 

silylation of silica with alkylhydridosilanes, the skeleton of which is consistent with results 

that are reported here. The experiments presented here had preparative goals and were 

not designed as mechanistic studies, but some of these results suggest details of the 

mechanism that warrant comment and hypotheses, particularly with regard to the 

polymeric monolayers. Three arguments first need outlined: (1) All of the hydridosilanes 

studied here- the alkylhydridosilanes, the model methylhydridosiloxanes and 

polymethylhydridosiloxanes- adsorb (physisorb) from toluene to silica (meaning that their 

concentration at the interface is greater than the solution concentration). There are no 

data on adsorption isotherms for any of these materials from any solvent to any surface, 

however this is self-evident in that the alkylhydridosiloxanes can be purified by column 
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chromatography on silica and that PDMS (with no Si-H bonds) adsorbs to silica from 

toluene solution at room temperature as evidenced by thin layer chromatography. The low 

dependence of the reaction rate on concentration for MMH (Table A6.3) suggests a high 

affinity isotherm for the smallest methylhydridosiloxane. The polymers must adsorb to an 

appreciably greater extent. (2) The BCF catalyst is extremely reactive and effective at 

much lower concentrations than have been previously reported. The catalyst likely 

adsorbs to silica from toluene as well, as it is less effective when added to the reaction 

prior to addition of MMH (Table A6.1), but extremely effective when added to preadsorbed 

(from 0.01 M solution) MMH at a BCF concentration of 0.00001 M (Table A6.3). The ratio 

of Si-H:BCF in the reaction vial is 1000:1 and likely significantly higher than this at the 

interface during reaction. (3) Arguments 1 and 2 suggest that the reaction takes place at 

a physisorbed layer of hydridosilane and is catalyzed by BCF that adsorbs to the Si-H-rich 

physisorbed layer and reacts many times without adsorption to silica. Figure 6.6 shows a 

mechanism using an end-functional PDMS, MDnMH, that details this perspective of the 

process. This is similar to the mechanism reported by Escorihuela et al.1 and Moitra et al.2 

with the details of a pre-adsorbed hydridosilane that reacts with catalytic BCF (that is 

moving from surface site-to-site) rather than a hydridosilane-BCF adduct that competes 

with adsorbed species to react with silica, and oxidative addition of silanol followed by 

reductive elimination of H2 from a 6-coordinate silicon rather than acid-base chemistry 

between a discrete borohydride and protonated silanol. Hexavalent silicon is known and 

this method of hydride transfer avoids the formation of highly reactive intermediates. The 

very flexible siloxane bonds, Si-O-Si - that adsorb to the air-water interface, most certainly 

adsorb to hydrated silica from toluene. Due to the mobility of the siloxane backbone, it is 

expected that the MH group is rotating freely at the chain end until BCF interacts with the 

silicon bound hydride.  
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Figure 6.6. Proposed mechanism (after Escorihuela et al.1) for BCF-catalyzed reaction of 
Si(100) with hydride-terminated PDMS. OA and RE abbreviate oxidative addition and 

reductive elimination. 
 

6.4 Conclusions 

This work confirms and further explores the recent reports1-3 of the useful catalysis 

of the Si-OH + H-Si → Si-O-Si + H2 reaction by tris(pentafluorophenyl)borane (B(C6F5)3, 

BCF) and demonstrates that for at least certain hydridosilanes under certain conditions, 

BCF functions well at 2 orders of magnitude lower concentration than that used in previous 

reports. This is a very rapid, effective and simple surface modification procedure that 

should be considered along with conventional methods to functionalize silica surfaces. 

Indeed, this reaction offers routes to certain monolayers that are not accessible by 

conventional techniques. Kinetics of the modification reactions, followed by dynamic 

contact angle measurements of modified silicon wafer surfaces, suggest that the reaction 

occurs by a random covalent attachment mechanism that that is reminiscent of reactions 

of monochlorosilanes and silica. Rapid, close-to-complete monolayer formation occurs in 

minutes, but complete monolayer formation, as assessed by minimization of contact angle 
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hysteresis, does not occur until ~2 h of reaction at room temperature. The density of 

attached trialkylsilanes in monolayers is lower than in monolayers prepared from 

trialkylchlorosilanes and this lower density permits rotational mobility that results in lower 

contact angle hysteresis. 

 

BCF catalysis works very well to prepare both oligomeric and polymeric 

methylsiloxane monolayers and offers chemical structural control that is not possible with 

conventional reactive silanes. Model monolayers from MMH, XMDMH, MDHM, M3TH and 

D4
1H as well as numerous polymer (PDMS) monolayers from series of MDnMH, HMDnMH 

and MDxDH
yM samples were prepared and studied by contact angle analysis. These 

surfaces provide insight into structure-wetting relationships of methylsiloxane surfaces 

that permit cogent arguments concerning events at 3-phase contact lines that contribute 

to contact angle hysteresis. In particular, well-defined polymer monolayers prepared from 

linear hydride-terminated PDMS exhibit decreasing contact angle hysteresis with 

increasing molecular weight until the thickness of the monolayer reaches ~5 nm.  Above 

this value of molecular weight hysteresis is becomes much greater.  A thin, low molecular 

weight covalently attached PDMS film contribute to mobile 3-phase contact lines and 

thicker attached liquid films behave as liquids that pin contact lines. 
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A6 Chapter 6 Data Appendix 

MDnMH Characterization 

Size exclusion chromatography was conducted on an Agilent 1260 GPC equipped 

with two PLgel Mixed-C and one PLgel Mixed-D columns (Polymer Laboratories) and a 

refractive index detector. Tetrahydrofuran (THF) at a flow rate of 1 mL/min was the mobile 

phase. Attenuated Total Reflection-Infrared spectra (FT ATR-IR) were recorded using a 

PerkinElmer Spectrum 100 spectrometer. NMR analysis was performed on a Bruker 

Avance III HD 500 MHz spectrometer in CDCl3. Number average molecular weights were 

calculated from 1H NMR spectra by end-group analysis.  

 

Figure A6.1: MD12MH (M=880) (GPC: Very low signal intensity did not allow analysis) 

 

Figure A6.2: MD15MH (M=1070) 
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Figure A6.3: MD28MH (M=2070) 

 

 

Figure A6.4: MD36MH (M=2664) 

 

 

Figure A6.5: MD68MH (M=5000) 
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Figure A6.6: MD112MH (M=8280) 

 

 

Figure A6.7: MD423MH (M=31 300) 
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Infared Spectroscopy of methylsiloxane polymers 

 

Figure A6.8: Stacked IR spectra of poly(methylhydro-co-dimethyl)siloxane (MDxDH
yM) 

random copolymers 

 

Figure A6.9: Stacked IR spectra of MDxMH 
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Methylsiloxane model contact angle kinetics 

Table A6.1. Pentamethyldisiloxane Kinetics- Order of Addition (0.1 M Silane, 1 mol% 
BCF) 

Order of Addition θA θR 

1-Wafer 2-Toluene 3-Silane 4-Catalyst 96° 89° 

1- Toluene 2- Silane 3- Catalyst 4- Wafer  91° 82° 

1-Wafer 2-Toluene 3- Catalyst 4- Silane  91° 82° 

 
Table A6.2. Pentamethyldisiloxane Kinetics- [BCF], 0.1 M Silane 

 [BCF], mol% 

Reaction Time, 
min 

0.01 0.05 0.1 0.5 1 

1 50°/30° 48°/30° 74°/66° 91°/85° 96°/89° 

2 91°/83° 90°/78° 94°/88° 97°/91°  

3 92°/86° 90°/79° 93°/87° 97°/86°  

5 92°/86° 95°/85° 95°/88° 97°/87° 96°/89° 

10 92°/85° 93°/82° 96°/89° 98°/92° 97°/90° 

15 94°/88° 93°/83° 96°/89° 99°/95° 97°/90° 

 
Table A6.3. Pentamethyldisiloxane Kinetics- [Si-H] (0.1 mol% BCF) 
 [PMDS], M 

Reaction Time, 
min 

0.01 0.05 0.1 

1 55°/32° 93°/87° 90°/82° 

2 85°/80° 93°/88°  

3 80°/75° 93°/89°  

5 61°/45° 94°/88°  

10 92°/86° 95°/89°  

15 92°/87° 86°/88° 97°/90°, 98°/92° 
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Table A6.4. Heptamethyltrisiloxane (MDMH) Kinetics  

Time, h Thickness, Å θA θR 

0.25 2.28 101° 91° 

0.5 1.24 102° 95° 

1 2.9 101° 97° 

2 2.8 102° 99° 

8 1.8 102° 98° 

24 2.86 100° 96° 

72 3.9 103° 98° 

 
 

Table A6.5. bis(trimethylsiloxy)methylsilane (MDHM) Kinetics 

Time, h Thickness, Å θA θR 

0.5 1.34 83° 72° 

1  87° 79° 

2  90° 79° 

4  90° 79° 

8  90° 81° 

16  91° 82° 

24 1.15 91° 81° 

 
Table A6.6. tris(trimethylsiloxy)silane (M3TH) Kinetics 

Time, h Thickness, Å θA θR 

1 4.01 63° 46° 

2 3.59 64° 45° 

4 4.75 65° 46° 

16 5.15 66° 45° 

24 6.32 73° 47° 

72  72° 49° 

 
Table A6.7. Heptamethylcylcotetrasiloxane (D4

1H) Kinetics 

Time, min Thickness, Å θA θR 

1 3.15 65° 49° 

10 3.95 84° 70° 

30 3.27 82° 71° 

60 3.48 83° 71° 

90 3.74 82° 70° 

120 3.74 83° 71° 

960 3.14 84° 71° 

4320 4.18 84° 71° 
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Figure A6.10. 1H NMR Kinetics of D4
H (0.1 M Si-H, 0.5 mol% BCF, anhydrous toluene-

d8). Hydride transfer oligomerization is evident by the broadening of the Si-CH3 peaks 
(δ~0.4 ppm) and the appearance of the peaks at δ~3.5 ppm corresponding to CH3SiH3 

byproduct.21 

 
Methylsiloxane polymer surfaces and contact angle kinetics 

Table A6.8. HMD17MH (Mn 1260) 

Time, min θA θR Δ Thickness, Å 

1 104° 93° 11° 14.99 

10 105° 100° 5° 16.18 

10 104° 95° 9° 16.5 

30 105° 99° 6° 16.84 

60 106° 102° 4° 16.51 

90 105° 101° 4° 17.51 

120 105° 102° 3° 19.14 

960 105° 102° 3° 13.2 
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Table A6.9. BuMD20MH (Mn 1450) 

Time, min θA θR Δ Thickness, Å 

10 105° 102° 3° 25.5 

960 107° 103° 4° 19.85 

1 104° 100° 4° 26.15 

10 105° 101° 4° 23.08 

30 105° 101° 4° 25.26 

60 106° 101° 5° 24.47 

90 105° 101° 4° 26.45 

120 105° 101° 4° 26.3 

 
Table A6.10. 

Solvent effects (BuMD20MH (M=1450), 0.1 M Si-H, 0.5 mol% BCF, 2 h reactions at RT) 

Solvent θA θR 
Thickness, 

Å 

Heptane 106° 104° 17.9 

Hexane 105° 102° 17.4 

Cyclohexane 106° 105° 16.5 

Toluene 106° 103° 16.3 

o-xylene 106° 104° 16.5 

Ethyl Acetate 98° 81° 9.66 

Chloroform 50° 33° 2.55 

Methylene 

Chloride 
105° 100° 12.5 
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Table A6.11. Polydimethylsiloxane graft thicknesses (t) and graft density 

 Mn N t (nm) chains/nm2 
nm2 per 
chain 

BuMD15MH  1080 14.6 1.35 0.70 1.42 
BuMD20MH 1450 19.6 1.54 0.60 1.67 
BuMD97MH 7150 96.7 4.47 0.36 2.75 

MD15MH 1070 14.5 0.92 0.48 2.09 

MD28MH 2070 28 1.74 0.48 2.07 

MD68MH 5000 67.6 3.17 0.37 2.72 

MD112MH 8280 111.9 3.99 0.28 3.56 

MD36MH 2664 36 2.47 0.53 1.87 

MD117MH 8658 117 5.09 0.34 2.92 

MD423MH 31302 423 12.26 0.23 4.37 
VMD53MH 3920 53 2.62 0.39 2.59 
VMD270MH 19980 270 6.70 0.20 5.10 
HMD10MH 740 10 0.56 0.41 2.45 
HMD17MH 1260 17 1.03 0.46 2.19 
HMD60MH 4440 60 2.59 0.34 2.93 
HMD195MH 14000 195 5.67 0.23 4.35 
HMD283MH 20960 283 8.67 0.24 4.14 

MD26DH
1M 2000 ~27 1.39 0.41 2.47 

MD25DH
2M 2000 ~27 1.14 0.33 3.01 

MD23DH
4M 2000 ~27 0.88 0.26 3.90 

MD18DH
8M 2000 ~27 0.87 0.25 3.92 

MDH
27M 1800 27 0.36 0.12 8.54 
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Table A6.12. MD26DH
1M kinetics 

Time, min θA θR Δ Thickness, Å 

1 40° 30° 10° 4.19 

10 100° 81° 19° 11.65 

10 100° 83° 17° 11.81 

30 102° 84° 18° 14.37 

60 102° 89° 13° 10.52 

60 102° 90° 12° 14.05 

90 102° 89° 13° 10.09 

120 103° 90° 13° 14.09 

120 104° 89° 15° 13.88 

120 102° 96° 6° 16.07 

960 102° 89° 13° 8.39 

960 104° 87° 17° 13.26 

1440 104° 98° 6° 9.99 

10080 103° 99° 4° 10.77 

 
Table A6.13. MD25DH

2M kinetics 

Time, min θA θR Δ Thickness, Å 

30 102° 90° 12° 12.46 

60 103° 89° 14° 13.43 

120 105° 91° 14° 11.38 

120 105° 99° 6° 15.25 

960 104° 88° 16° 14.26 

1440 105° 99° 6° 10.07 

10080 104° 99° 5° 11.69 

10080 104° 99° 5° 13.18 

 
Table A6.14. MD23DH

4M kinetics 

Time, min θA θR Δ Thickness, Å 

30 100° 91° 9° 8.3 

60 103° 93° 10° 9.6 

120 103° 90° 13° 8.77 

120 100° 93° 7° 9.56 

960 102° 91° 11° 6.91 

1440 102° 95° 7° 6.33 

10080 102° 92° 10° 8.31 

10080 103° 92° 11° 9.18 
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Table A6.15. MD18DH
8M kinetics 

Time, min θA θR Δ Thickness, Å 

1 42° 30° 12° 3.54 

10 93° 78° 15° 8.26 

30 97° 84° 13° 7.69 

30 102° 89° 13° 6.95 

60 98° 86° 12° 8.56 

60 94° 80° 14° 5.97 

90 99° 85° 14° 8.51 

120 98° 85° 13° 7.52 

120 102° 91° 11° 7.38 

120 103° 90° 13° 8.73 

120 99° 91° 8° 7.11 

960 98° 85° 13° 5.2 

960 102° 90° 12° 6.26 

1440 102° 93° 9° 4.87 

10080 100° 90° 10° 5.75 

10080 100° 89° 11° 7.37 

 
 

Table A6.16. poly(hydromethyldisiloxane) (MDH
27M) kinetics 

Time, min θA θR Δ Thickness, Å 

1 46° 31° 15° 3.32 

10 92° 77° 15° 7.28 

10 91° 75° 16° 5.32 

30 93° 81° 12° 4.14 

30 96° 86° 10° 4.68 

60 92° 79° 13° 6.9 

60 96° 89° 7° 5.02 

90 93° 80° 13° 4.44 

120 91° 79° 12° 4.81 

120 99° 86° 13° 4.86 

120 98° 88° 10° 3.61 

120 93° 80° 13° 9.22 

960 95° 83° 12° 4.87 

960 99° 79° 20° 8.95 

1440 98° 88° 10° 3.42 
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X-Ray Photoelectron Spectra 

 

Figure A6.11. XPS Spectra of MeMDxMH grafts 
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Figure A6.12. XPS Spectra of BuMDxMH grafts 
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Figure A6.13. XPS Spectra of HMDxDH grafts 

 

Figure A6.14. XPS Spectra of VMDxMH grafts 
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Figure A6.15. XPS Spectra of poly(hydromethyl-co-dimethyl)siloxane (MDxDH
y) grafts 

 
 

Figure A6.16. XPS Spectra of Alkyldimethylsilane grafts 
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Figure A6.17. XPS Spectra of vinyl surfaces and derivatives 
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CHAPTER 7 

DISCOVERING SILICONES 

The insight gained over the last decade of research in the McCarthy group has 

established a foundation from which new silicone materials will be prepared, studied and 

applied. For example, developing our understanding of MQ copolymers and their 

synthesis through hydrolysis and condensation, has enabled us to prepare MQ-based 

materials and to extend MQ chemistry to the preparation of T and MT silicones. The 

growing toolbox of organosiloxane polymers and materials opens up numerous avenues 

of research (see Appendix A for an example). With each addition to the silicone family, 

more questions regarding silicone chemistry, physics and engineering will need 

addressing. In this final chapter, I would like to discuss open questions and opportunities 

that relate to the work in this thesis. 

 

7.1 MQ Silicones 

One of my primary objectives when starting work on MQ copolymers did not 

involve their synthesis or interfacial activity. In fact, I wrongly assumed that the preparation 

of MQ would be the easy part. Instead, my interest in MQ was in its physical structure. 

There are no open literature reports that give an absolute molecular weight or a radius of 

gyration for any MQ. Static light scattering seemed like the answer but trimethylsilyl-

terminated MQ copolymers had inadequate contrast in all the solvents I tried. These 

challenges were discussed in Chapter 2. To overcome this problem in the future, one 

could incorporate phenyl groups to increase the refractive index of the MQ and provide 

scattering contrast. Studying the scattering of MQ copolymers would provide an absolute 

weight average molecular weight, a radius of gyration and the second virial coefficient. 

Comparisons of the radius of gyration to the hydrodynamic radius will provide insight into 
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the physical shape of MQ in solution. One other experiment that would provide a number 

average absolute molecular weight is osmotic pressure measurements, but there are 

currently no membrane osmometers at UMass. Having an absolute molecular weight and 

a full understanding of the solvated shape of MQ can allow more complete chemistry-

structure-property relationships to be developed. 

 

At interfaces there are a few studies remaining that would best be carried out by 

fractionating a highly disperse MQ. Once well-defined fractions had been collected in 

adequate yield, the studies at the Air-Water and Oil-Water interfaces should be repeated 

to eliminate any complications from polydispersity in molecular weight; although dispersity 

in structure, M:Q ratio and silanol content will persist. At the Air-Water interface, studying 

fractions of MQ would provide a precise transition from soft, collapsing monolayers to rigid, 

elastic monolayers. Studying MQ at the Air-Water interface would also be aided by using 

Brewster Angle Microscopy to visualize the structure of MQ monolayers. At the Oil-Water 

interface, determination of the critical concentration, maximal reduction in interfacial 

tension, and kinetics of surface tension reduction at each molecular weight would grant 

useful structure-property relations for MQ surfactants.  

 

Beyond fundamental studies of the molecular characteristics of MQ there are a 

variety of studies that can be done on MQ materials and composites. Preparation of MQ-

PDMS composites is one direction. The most appropriate method for studying these 

composites would be rheology. First, the relationship between MQ molecular weight and 

loading on viscoelasticity in composite fluids would be investigated. From there, the effect 

of PDMS matrix molecular weight would need to be tested. Finally, the effects of the same 

MQ-PDMS composites should be tested in a cured state. MQ has been shown to be a 

plasticizer and a reinforcer in PDMS fluids depending on the molecular weights of the MQ 
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and the PDMS. This was shown in Dow Corning MQ1600 fractions in PDMS. How do the 

MQ copolymers prepared with the method presented in Chapter 2 compare? How do the 

properties of the uncured fluid compare to the cured elastomer? I hypothesize that an 

advantage of MQ formulations is their ability to plasticize a melt and reinforce in a cured 

state, but this hypothesis requires testing. 

 

Similar to the above experiments, MQ pressure sensitive adhesives (PSAs) can 

be investigated. This would again be studied mainly by rheology, but would also involve 

tack and adhesion measurements. Typical formulations of MQ PSAs involve silanol-

containing MQ and silanol-terminated PDMS that will condense at high temperature or 

with addition of catalyst. Other methods use hydrosilylation reactions to accomplish the 

same. The preparation of PSAs is an art and at this moment we have no experience in 

the formulation of such materials. This would be a challenging direction but would provide 

fruitful research opportunities. The ability to tailor MQ properties and chemistry would lead 

to an infinite number of PSA compositions. This could open up addition avenues to other 

silicone-based PSAs; for example, PSAs that contain no problematic D units.  

 

Our group has pursued the creation of ‘PDMS’ elastomers containing no D units. 

This is an obvious goal to any silicones chemist since D units in PDMS form an equilibrium 

concentration of cyclic oligomers that will leach out during a products lifetime. This is an 

issue in ‘PDMS’ elastomers used for contact printing, imprint lithography and electronics. 

D units are also responsible for hydrophobic recovery of hydrophilic silicones. MQ 

copolymers could be a useful component in a formulation of PDMS with no D. 

 

Extensions of MQ chemistry are being carried out by Dr. Pei Bain. His work on T 

and MT silicones is leading to the creation of new silicone materials in our labs. Of 



225 
 

additional interest is the preparation of MQ’ materials where Q’ is some other metal oxide. 

Such MQ’ materials may include titanium, boron or aluminum. Some preliminary studies 

using titanium isopropoxide were started but not pursued. I believe a route through 

Ti(acac)2 is promising but complete removal of acac ligands was difficult. 

 

7.2  Silicone-Carbon Nanotube Composites 

Silicone-carbon nanotube composites have interesting opportunities for 

fundamental and applied research. On the applied side, making functional composites that 

address specific needs/requirements is going to require well defined performance metrics 

and objectives that can be addressed with materials engineering. Until goals are 

established, it will be impossible to design and optimize composites. Currently, much of 

the work involves adding CNTs to silicones and seeing what happens. This fundamental 

work is required to understand the Silicone-CNT materials system but does not 

necessarily result in applicable outcomes.  

 

Two fundamental questions regarding Silicone-CNT composites stand out to me. 

One involves optimizing the balance between dispersion and material properties by 

incorporating phenyl groups into PDMS. At what phenyl substituent concentration do 

copolymers achieve improved dispersions over PDMS with the most PDMS-like 

properties? PDMS is special even for silicones and many applications call specifically for 

its properties. By minimizing phenyl substitution, the properties of the polymer should be 

changed only slightly while maximizing dispersion quality. The second question involves 

polymer dynamics in CNT composites. I have hypothesized that the dynamics of PDMS 

chains and network strands is constrained by a CNT network. The rheology supports this 

but was done in a narrow range of frequencies at room temperature. Additional 

experiments would provide deeper insights. These could include multiple quantum NMR, 
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low field NMR, differential scanning calorimetry (DSC) and expanding the frequency range 

in rheological experiments by time-temperature superposition (TTSP). All could in principle 

be set up here at UMass, although DSC and TTSP would require some changes and 

improvements to current instrumentation. These experiments would directly show how 

chain mobility and dynamics at different length scales (segmental to whole chain) are 

effected by the CNT filler. 

 

7.3 Tris(pentafluorophenyl)borane-catalyzed modifications of silanols 

There is much to be done regarding the B(C6F5)3-catalyzed modification of silica 

presented in Chapter 6. Investigating solvent effects, temperature effects and precise 

kinetic studies are warranted. Mixed and functional monolayers are open for further 

investigation. The D4
H surface should also be investigated in a thorough, multivariable 

manner. I suspect it will provide a technique to engineer surfaces of dramatically different 

properties by changing the reaction conditions (concentration, solvent, time, temperature, 

etc.) but using only one reagent. The structural complexity of the D4
H surfaces invites 

academic consideration. Fundamentally, this reaction has been studied very little in 

comparison to chlorosilane and alkoxysilane modifications, so there is much to be done 

before our understanding of BCF-catalyzed monolayer formation catches up. 

 

Practically, there is the question of scaling this reaction to modify silica which would 

mean optimizing and engineering a new reaction system. The application of this method 

as a replacement or substitute for traditional modification methods requires investigation 

in a more applied sense. This would involve demonstrating not only feasibility but 

performance. 
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7.4  Discovering Silicones 

Work along the lines of rediscovering silicones must continue to be pursued. These 

objectives have not only reminded the scientific community of silicones but have also 

provided the scientific community with new insights into silicones. However, now is the 

time to discover silicones. The process of discovery is certainly more challenging but the 

silicone alphabet offers an infinite number of possibilities. In my opinion, the future of 

silicones involves developing chemistries that allow control over the placement of M, D, T 

and Q units. Precisely structured silicones can then be engineered for specific properties. 

Creating a toolbox of silicones will enable materials scientists to tackle challenges were 

carbon-based polymers and current silicone materials fail.  

Silicone tell a unique story of industrial research and development. They are a 

material class that was invented for a specific need, but through dedicated science 

became much more. Throughout their history, silicones have been technology enablers 

and this will continue due to their special properties and excellent performance in 

environments and applications where other materials fail. There is an exciting future in 

silicone materials for industry and academics. I am glad to have made a contribution to 

the story of silicones. 
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APPENDIX A 

 

SULFOLANE-FUNCTIONALIZED SILICONES FOR LITHIUM ION CONDUCTION 

 

A.1 Introduction 

There are a variety of functional silicone polymers, all with useful properties 

inherited from the organic groups which are incorporated as side chains, end groups or 

as a part backbone.1 Hybrid organic-inorganic silicones are often utilized to create 

materials which take advantage of each component’s properties. To see the variety of 

commercially available functional silicones, one has to look no further than the Gelest 

catalog,2 which contains amine, epoxy, methacylate, mercapto, isocyanate, fluoro, 

ethylene oxide, cyanoproyl, N-pyrrolidonepropyl, and many other functional silicone 

polymers. Perhaps the greatest advantage of the attachment of organic compounds onto 

a linear silicone is the mobility that the siloxane backbone grants. At all molecular weights, 

linear PDMS is a fluid (Tg≈-125 °C) which argues that organic groups attached to the 

siloxane backbone have liquid-like mobility.  

 

Of all the various functional groups that have been attached to silicones, sulfones 

are rare; there are only a few examples of sulfone containing silicones in patent literature.3–

5 I am interested in adding sulfolane, the most abundant sulfone, to silicones to study its 

properties and application as a lithium ion conducting polymer. 

 

A.1.1 Polymer Electrolytes and Ion Conductors 

We use lithium ion batteries everyday in our laptops, phones and portable 

electronic devices. As the need for energy storage increases, we need to continue 

developing cheap, efficient, and safe battery technologies. Current lithium battery 

technology is based on a 1991 Sony patent6 and consists of a graphitic carbon anode and 
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a lithium metal cathode separated by a liquid electrolyte. There are five general 

classifications for electrolytes: (I) classical electrolytes that are small molecule solvents, 

(II) gel electrolytes that are polymer networks swollen by a classical electrolyte, (III) dry 

polymer electrolytes that are polymer without solvent, (IV) dry single-ion conductors where 

one ion is bound to the polymer and (V) solvated single-ion conductors where a single-ion 

conducting polymer is mixed with solvent.7 Before discussing specific polymer-based 

electrolytes, it is important to first discuss ion transport in polymers. 

 

The transport of ions in polymer electrolytes is characterized by three transport 

properties: conductivity(σ), salt diffusion coefficient (D) and cation tranference number 

(t+).7,8 These quantities are measured for a given electrolye via impedence spectroscopy, 

diffusion experiments (either NMR based or bulk diffusion measurements) and 

electrochemical current-interrupt and open circuit potential measurments. These 

properties can be measured to predict the performance of an electrolye in a battery. 

Alternatively, one can prepare an actual battery using coin cells and test performance 

directly.9 The mechanisms of salt diffusion depends on molecular weight and can either 

be dominated by segmental motions or whole polymer diffusion. Whole polymer diffusion 

mechanisms are only observed for very low molecular weight polymers, therefore 

segmental dynamics are often targeted to increase salt diffusion in high polymers.10 Cation 

transference number refers to the ratio of charge transported by lithium cation compared 

to the total charge transported and is effected by the salt dissociation in the electrolyte. 

 

Reference 7 includes transport properties for examples of each type of electrolyte. 

The highest performing polymer electrolytes are gel-type (type II) and solvated single-ion 

conductors (type V). There is currently interest in removing classical electrolytes and small 

molecules from batteries and thus moving toward dry systems. These dry solids systems 
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have advantages in cost, processability and safety. Dry solid polymer electrolytes (type 

III) based on poly(ethyleneoxide) (PEO) have found commerical use.11,12 However, these 

electrolytes require elevated operating temperatures to achieve adequate conductivity due 

to their high cystallinity and low cation tranference number. To overcome these obstacles, 

researchers have attached PEO side chains to siloxane backbones11,13 or fabricated 

networks from PDMS and PEO.14 In these systems, the flexibility of PDMS is utilized to 

lower Tg and faciliate segmental motions for better ion conduction. Dry single-ion 

conducting polymer electrolytes (type IV) have not yet attained the conductivity values of 

other polymer electrolytes but research into this class of electrolyte is ongoing. In a similar 

manner to dry polymer electrolytes, siloxanes are being used to improve the performance 

of single-ion conducting polymers and extensive work has been done by Colby and 

coworkers to design a materials system based on siloxane copolymers.15–17 This system 

is based on siloxane backbones with pendant borates which weakly bind lithium ions and 

cylic carbonate side chains which increase the dielectric constant of the polymer to reduce 

ion interactions.15 While these copolymers alone did not have high conductivities (σ ≈ 10-

7 S/cm @ 25°C), oligomeric siloxane plasticizers with carbonate and PEO pendant groups 

were shown to improve performance(σ ≈ 5*10-7 S/cm @ 20°C).16 Challenges of this 

system are the dramatic increase in Tg with increasing carbonate content and phase 

separation of perfluorophenyl borate pendant groups. 

 

A.1.2 Sulfolane 

Sulfur has an interesting role in organic chemistry due to its many oxidation 

states.18 Sulfones are the most oxidized form of sulfides and possess interesting chemical 

and physical properties.19 Sulfolane is the most abundant sulfone small molecule due to 

its extensive use in separations of aromatic compounds from crude hydrocarbon 



231 
 

mixtures.20,21 It is synthesized by the hydrogenation of sulfolene using Raney Ni catalyst. 

Sulfolene is prepared by the reaction of butadiene with sulfur dioxide.  

 

Sulfolane is a useful solvent for a wide range of reactions22 and as an electrolyte 

for high voltage lithium batteries.23,24 The advantageous properties of sulfolane as a 

solvent come from its high temperature stability, its inertness toward acid, base, and 

oxidation, its high boiling point, and its polarity. As an electrolyte, sulfolane is able 

solubilize lithium salts and has a high dielectric constant. When mixed with dimethylsulfite 

as cosolvent, sulfolane electrolytes can be prepared with oxidation potentials >5V and 

conductivities around 3 mS/cm.24 One notable disadvantage of sulfolane is its high toxicity, 

however its low skin penetration limits its harm.22 Table A.1 compares the properties of 

sulfolane to other dipolar aprotic solvents. Sulfolane is attractive not only for its 

advantageous properties but also because of its abundance and low cost. 

 

Very little research in polymer science has been devoted to sulfolane. It has been 

used as a solvent in ATRP25 and in cationic ring opening polymerizations.26 Additionally, 

it has received interest as a solvent in gel type polymer electrolytes.27 Recent research in 

the McCarthy group incorporated sulfolane into methacrylate polymers.28 These 

homopolymers had a glass transition (Tg) of 183°C, significantly greater than ~105°C of 

poly(methylmethacylate).29 Films of these polymers showed both good hydrophilicity and 

oleophilicity in comparison to methyl and ethyl sulfone methacrylate polymers. 

Incorporation of sulfolane into polymers has not been thoroughly explored and any 

progress in this field would lead to new polymers which may exhibit useful solubility or 

conductivity. 
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Table A.1: Physical properties of sulfolane and four related, commonly used dipolar 
aprotic solvents22,30 

Property Sulfolane 
Ethylene 

Carbonate 
Dimethyl 
sulfoxide 

N-methyl-2-
pyrrolidone 

Dimethyl-
formamide 

Boiling 
Point (°C) 

287.3 243.0 189.1 201.9 153.1 

Relative 
Permittivity 

43.4 (30°C) 90.5 (40°C) 46.7 (25°C) 32.2 (25°C) 36.7 (25°C) 

Dipole 
Moment 

4.69 4.81 3.96 4.09 3.8 

Viscosity 10.35  2 1.67 0.9 

Flash 
Point(°C) 

177 150 89 86 58 

Autoignition 
Point (°C) 

528 465 302 270 445 

Vapor 
Pressure 

(kPa) 

0.0091 
(30°C) 

 0.06 (25°C) 0.05 (25°C) 0.37 (25°C) 

 

A.1.3 Objective 

Methyl silicones have a low dielectric constant and are unable to dissolve lithium 

salts. Poly(dimethylsiloxane-co-ethylene oxide) polymers were first shown to dissolve and 

conduct lithium perchlorate by Nagaoka et.al.31 Other solubilizing modifications including 

carbonate and carbamate pendant groups have been demonstrated since.32–34 The 

performance of PEO-PDMS copolymers, or PDMS containing PEO side chains, is limited 

by their inability to effectively dissociate lithium salts. PDMS containing carbonate pendant 

groups made a silicone with the highest dielectric constant known (ε=44), however this 

polymer was a poor conductor due to the restricted mobility and strong dipole-dipole 

interactions of the carbonate groups.32 The best performing siloxanes electrolytes contain 

both PEO and carbonate side chains.34 Incorporating sulfolane as a solubilizing and 

lithium conducting functional group onto a siloxane has not been investigated. Sulfolane 

has a lower dielectric constant and lower dipole moment than ethylene carbonate and has 
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shown promise as a classical lithium electrolyte. Attaching sulfolane to the PDMS 

backbone can enable the silicone to dissociate the lithium salts and allow conduction 

without overly restricting the motion of the polymer from pendant group dipole-dipole 

interactions (as occurs in more polar carbonates pendant groups). The high mobility of the 

siloxane backbone will aid lithium conduction by segmental motion mechanisms. Taken 

together, this new class of sulfone-containing silicones has promise for polymer electrolyte 

applications. 

 

I have incorporated sulfolane into siloxane backbones as pendant groups. I hope, 

but have not determined, that addition of sulfolane onto silicone will allow the polymer do 

dissolve lithium salts to make a dry polymer electrolyte. I believe that the versatility of 

silicone chemistry means that these polymers could be prepared as high molecular weight 

liquid electrolytes or as solid electrolytes. 

 

A.2 Results and Discussion 

The most common method of functionalizing silicones is through hydrosilylation 

reactions of hydridosiloxanes and unsaturated organic molecules.13,15,35,36 

Pentamethyldisiloxane (HMM) is a useful substrate to study hydrosilylation reactions due 

to its low cost and volatility (easing removal of excess/unreacted reagent). Hydrosilylation 

of HMM and sulfolene was attempted using 2-5 excesses of HMM. Platinum and radical 

catalysis was attempted but no reaction occurred. A search of chemical abstracts shows 

no radical reactions with sulfolene and no hydrogenation reactions of sulfolene outside of 

that catalyzed by Rainey Ni to produce sulfolane. 

 

The lack of reactivity of the sulfolene meant that a different unsaturated sulfolane 

substrate would need synthesized. Luckily, the synthesis of allyloxysulfolane (Figure A.1) 



234 
 

is simple: 1 EQ sulfolene is cooled to 0 °C in a round bottom flask. 0.1 EQ Potassium 

Hydroxide is dissolved into 2 EQ Allylalcohol which is cooled to 0 °C and added to the 

sulfolene. The mixture is warmed to room temperature. After 24 hours, the reaction is 

neutralized with hydrochloric acid. Allyloxysulfolane is purified by column chromatography 

(3:1 Hexanes:Acetone). The pure product is a clear viscous liquid. Yield: 95+ %. 1H NMR 

(500 MHz, CDCl3): δ (ppm) = 2.34 (s,2H), 3.01 (m, 1H), 3.14 (m, 1H), 3.21 (m, 2H), 3.97 

(s, 2H), 4.30 (s, 1H), 5.17-5.19 (d, 1H), 5.25-5.27 (d, 1H), 5.77-5.89 (m, 1H).  13C NMR 

(500 MHz, CDCl3): δ (ppm) = 29.0, 49.5, 56.4, 69.9, 73.9, 117.7, 133.5. 

 

 

Figure A.1. Preparation and characterization of allyloxysulfolane  

 

Hydrosilylation of allyloxysulfolane (AS) with HMM was successful as shown by the 

disappearance of allyl protons in 1H NMR. Reactions of excess HMM (1.1-2 EQ) were run 

in toluene solutions at 60 °C for 4 hours using 20 ppm Karstedt’s catalyst (Gelest, 2% Pt 

in xylene). Figure A.2 shows 1H  NMR and IR characterization. The product, 

propoxysulfolane-pentamethyldisiloxane (POSMM), was a clear, viscous liquid. 1H NMR 



235 
 

(500 MHz, CDCl3): δ (ppm) = 0.062 (s, 15H), 0.49 (m, 2H), 1.58 (m, 2H), 2.37 (m, 2), 3.05 

(m, 1H), 3.13-3.19 (m, 1H), 3.21-3.31 (m, 2H), 3.39 (m, 2H), 4.26 (m, 1H). 

 

 

Figure A.2. 1H NMR and IR of HMM-AS Pt-catalyzed hydrosilylation product, POSMM 

 

Having determined successful conditions for the Pt-catalyzed hydrosilylation of 

HMM and AS, I next began to prepare propoxysulfolane (POS) grafts on methylsiloxane 

polymers using AS. Six methylsiloxane polymers were modified: HMD50MH (Gelest DMS-

Hm15), MDH
27M (Gelest HMS-991), and MDxDH

yM (Gelest HMS – 031 (y=1), 071 (y=2), 

151 (y=4) and 301 (y=8), x+y = 27). Figure A.3 shows the three target methylsiloxane 

polymers 
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Figure A.3. Target propoxysulfolane-methylsiloxane polymers 

 

The modification of HMD50MH proceeds smoothly with 2 EQ of AS and 20 ppm Pt 

as shown by the disappearance of Si-H and allyl protons in 1H NMR (Figure A.4). To 

ensure complete end-capping reaction in the polymer sample, reactions were run at 60 °C 

for 16 hours. The work up procedure is important for obtaining pure product. First, Pt 

residue is removed by stirring over activated carbon for 1 hour. Following filtration, the 

toluene-siloxane solution is rinsed 5x with water to remove excess AS. If the solution is 

not rinsed, residual AS will be present. The toluene-siloxane solution is dried over 

magnesium sulfate, filtered and stripped by rotary evaporation.1H NMR shows no signs of 

residual Si-H or AS and the appearance of a peak at δ = 4.26  ppm. 
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Figure A.4. 1H NMR of propoxysulfolane-terminated PDMS, POSMDMPOS 

 

Hydrosilylation of MDH
27M polymers was unsuccessful and in all cases led to the 

formation of insoluble gels and solids.  

 

MDxDH
yM polymers could be modified but with low efficiency. Reaction conditions 

that yielded the greatest grafting efficiency were 2 EQ AS and 20 ppm Pt carried out at 80 

°C for 72 hours. These conditions yielded modifications of 38%, 48%, 65% and 78% for 

MD26DH
1M, MD25DH

2M, MD23DH
4M and MD19DH

8M, respectively. Figure A.5 exhibits 1H 

NMR for the purified polymers that shows residual Si-H signals at δ = 4.7 ppm and grafting 

signals at δ = 4.27 ppm. The ratio of these was used to determine yield. IR shows residual 

Si-H at 2155 cm-1 and grafted sulfone at 1312 cm-1. GPC also showed a broadening in 

molecular weight for the MD19DH
8M polymer indicating coupling of polymers through 

condensation side reactions. The aqueous rinsing procedure used to purify the HMDMH 

polymers was also important in the purification of these polymers as shown in Figure A.6. 

The AS proton at δ = 4.34 ppm is eliminated after rinsing. As POS content in the 

methylsiloxane polymers increases, separation of the organic and aqueous phases 

became more difficult due to the formation of emulsions. This suggests that the polar 

sulfolane groups are providing amphiphilic character. 
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Figure A.5. 1H NMR, IR and GPC of AS-MDxDH
yM Pt-catalyzed hydrosilylation products. 

 

Figure A.6. 1H NMR of crude and rinsed MD25DH
2M-AS hydrosilylation. The conversion in 

this sample was 22% (2 EQ AS, 20 ppm Pt, 80 °C,16 hours) 

 

The low efficiency of AS incorporation into MDxDH
yM copolymers led me to the 

synthesis of a cyclic POS-methylsiloxane monomer that could be polymerized by ring-

opening. I chose D4
1H as the methylsiloxane substrate. It is available from Gelest, would 

be easy to remove by stripping of the crude product and it produces one product as 

opposed to the mixture of products that results from the hydrosilylation of D4
H. The 
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downside of using D4
1H is that it only affords polymers with a maximum of 25 mol% POS. 

Lower POS contents can be prepared by ROP of mixtures of D4
1POS with D4. 

Hydrosilylation of D4
1H was successful and yielded D4

1POS (Figure A.7). 1H NMR (500 MHz, 

CDCl3) = 0.08 (s, 21H), 0.52 (m, 2H), 1.6 (m, 2H), 2.37 (m, 2H), 3.04 (m, 1H), 3.12-3.17 

(m, 1H), 3.20-3.35 (m, 2H), 3.39 (m, 2H), 4.26 (s, 1H). 

 

 

Figure A.7. 1H NMR and IR of D4
1H-AS Pt-catalyzed hydrosilylation product, D4

1POS. 

 

Ring-opening of the neat D4
1POS monomer and toluene solutions of D4

1POS monomer 

were attempted with sulfuric acid and tetramethylammonium hydroxide catalyst. In all 

cases, insoluble solids and gels were obtained. These solids swell in toluene and 

tetrahydrofuran (THF). Mixtures of D4
1POS and D4 produced solids as well. 
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A.3  Project Outlook and Future Directions 

So far, this project has demonstrated that sulfolane can be incorporated into 

methylsilicone polymers, however there is a lot of room for optimization of the chemistry, 

and complete characterization of the products. The most promising method of achieving 

a linear oxysulfolane-methylsiloxane polymer is through the ring-opening of oxysulfolane-

methylsiloxane cyclic oligomer (D4
1POS). The low efficiency of hydrosilylation, extensive 

rinsing procedure and residual reactivity of Si-H groups in hydridomethyl copolymers 

suggest that this is not a good route. Synthesis of D4
1POS, however was efficient and it is 

easily purified. Determining the ROP conditions for this monomer remains as the 

challenge, as my experiments yielded insoluble solids.  

 

Once D4
1POS can be used effectively to yield linear polymer, characterization of a 

series of POS-methylsiloxane polymers with different POS contents must be carried out 

to determine structure-property relationships in this linear model system. The most 

important characterization will involve determining the effect of POS incorporation on glass 

transition, wettability/water solubility, and solubility and conductivity of Li+ ions as specific 

characterization for electrolyte applications. 

 

The creation of solid polymer electrolytes, the original motivation of this work, 

requires a crosslinking chemistry to be incorporated into the linear polymers. In this case, 

the residual Si-H groups in the MDxDH
yM polymers may be useful. Another, yet to be 

explored route could be through thiol-ene chemistry. Mercaptopropyl-methylsiloxane 

polymers can be purchased from Gelest. Thiol-ene chemistry with AS and a difunctional 

crosslinker (VMDMV for example) could be used to make AS-methylsiloxane networks. 

Structure-property relationships developed from the linear models will be useful in 
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establishing a starting point and guiding further optimization of POS incorporation into 

methylsiloxane networks.  

 

There are numerous pathways through which the goal of this work may be 

achieved. A small portion of those was explored in limited depth; however, there are no 

reports in the open literature of sulfolane-containing silicones making this a worthwhile 

pursuit. If the history of silicone polymers has shown us anything, combining the properties 

of silicones with sulfolane (and other sulfones) will make materials with properties that will 

at least be interesting, but have the potential to be revolutionary. 
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APPENDIX B 

 CLIMBING OF SUPERHYDROPHOBIC MICROPARTICLES ON WATER WETTED 

SURFACES 

B.1. Introduction 

For about two decades there has been extensive use of scintillation vials in the 

McCarthy group. They have proven useful as reaction vessels and were reported as the 

only container in which perfectly hydrophobic (θA/θR = 180°/180°) surfaces could be 

prepared. A fascinating phenomenon occurs when superhydrophobic powders are shaken 

in clean scintillation vials with a few milliliters of clean water: a continuous, elastic particle 

film forms on the walls of the vial. Figure B.1 is a photo of a vial containing 1 μm PTFE 

powder (Sigma-Aldrich) that has been vigorously shaken with 5 mL water. This is a solid 

stabilized air bubble surrounded by water wetted glass, or an “inverse liquid marble.” The 

particle film shows elasticity through wrinkling, folding, and the ability to support load 

(excess particles, sand or even a toothpick placed into or onto the film). If the vial is shaken 

and the particle film is rinsed off the walls, it will spontaneously and rapidly climb the walls 

to reform a continuous particle film. The particle film can move independent of the vial: if 

the vial is rotated on its side, the film may remain stationary. Having played with this 

phenomenon in the lab, I wanted to run some of my own experiments to gain insight into 

what was happening.  

 

To study the climbing particle films formed in scintillation vials I asked a few questions: 

1. What hydrophobic particles form the best films?  

2. What is the structure of the particle film? 

3. Why does this happen? 

4. Is there good science here or is this simply a parlor trick? 
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Figure B.1. 1 μm PTFE powder that has been vigorously shaken with 5 mL water in a 
Fisher scintillation vial. The opaque particle film coats the wetted walls of the glass. This 

film exhibits elastic behavior and will climb the walls if it is rinsed down. 
 

B.2.  Experiments, Results and Discussion 

What hydrophobic particles perform best? The qualification ‘best’ must first be 

defined. Performance criteria for particle films in scintillation vials were qualitative in nature 

and selection was subjective but differences in performance were obvious. These criteria 

were: particle availability, particle stability, reproducibility of film formation, insolubility in 

water (no signs of dispersion or clumps of particle in water) and elasticity of the film. 

Numerous particles were found to form films, including hydrophobized silica 

(hexamethyldisilazane treated silica, Gelest and Cab-o-sil treated fumed silica, Cabot), 

Stöber particles treated with perfluorochlorosilane (tridecafluorotetrahydro-

octyldimethylchlorosilane), Tospearl (Momentive), freeze-dried MQ copolymer and all 

sizes of PTFE (1, 12, 35 μm, Sigma-Aldrich). Of these, 1 μm PTFE was determined to 

perform best. It forms the most robust films that are extremely reproducible. The films 

climb rinsed vials rapidly and do no puncture or fracture when poked with a clean spatula. 

It is available from Sigma-Aldrich for about $10 per gram and was the particle that initially 

sparked our interest. Last, it is inert to water, air and glass and will not undergo chemical 

changes over time in these experiments.  
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What is the structure of the particle film? To investigate the structure of the rafts, I 

first examined the structure of the particles using Scanning Electron Microscopy with Dr. 

Alex Ribbe. Micrographs in Figure B.2 show that the ‘particles’ have a large dispersity is 

size and appear to be highly structured aggregates of roughly 100 nm particles. Structure 

is apparent on multiple length scales: from single particle (100 nm) to the entire aggregate 

(1-5 μm). The hierarchical structure of the hydrophobic PTFE is responsible for the 

“superhydrophobic” properties but the large-scale roughness also ensures that contact 

line pinning occurs. This contact line pinning fixes the particles to a water interface, thus 

enabling the formation of stable films on water in the form of liquid marbles or the inverse 

liquid marbles discussed here. In this text, I will refer to the microscopic aggregates of 

primary particles that are seen in SEM as ‘particles’ and to macroscopic collections of 

particles as ‘aggregates.’ 

 

 

Figure B.2. SEM micrographs of 1 μm PTFE particles. Increasing the magnification 
shows that the particles have structure on multiple length scales. 

 

The morphology of the particles indicates that their ability to form robust, elastic 

films on water is due to contact line pinning of a superhydrophobic object. Now I wanted 
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to determine the structure of the particle film. To do so I isolated two films: one directly 

from a vial from which the supporting water film had been evaporated in a clean oven and 

one deposited onto wetted glass using the Langmuir-Blodgett technique. Use of the 

Langmuir trough also enabled me to study pressure-area isotherms of the particles at the 

air-water interface. 

 

First, let’s consider the Langmuir monolayer and the film deposited onto glass from 

this monolayer. These monolayers were prepared by dispersing PTFE powders into 

chloroform (1 mg/ml) using an ultrasonic bath. This dispersion was immediately deposited 

onto the water surface using a syringe. After deposition and solvent evaporation, freely 

diffusing, isolated particle ‘islands’ were visible. Upon compression, the islands merge and 

a uniform particle raft forms that wrinkles, folds, and buckles. When the surface pressure 

is relieved (trough area expanded), the particle raft breaks back into islands. The raft can 

be reformed with compression, indicating the reversibility of the process. The pressure-

area isotherm is shown in Figure B.3 and displays a sharp, solid-like response in surface 

pressure. Hysteresis experiments, also in Figure B.3, show that the film does not collapse 

and is elastic at surface pressures of 10 mN/m. Based on the lift-off area, 1 mg of the 

PTFE particles covers 2000 mm2 which corresponds to 4.5 million spherical, 1 μm PTFE 

spheres per mm2. A close-packed monolayer of 1 μm spheres is estimated to consist of 

1.5 million particles per mm2. While these estimates are of the same order of magnitude, 

it is likely that the film formed on the Langmuir trough is a multilayered structure or contains 

many aggregated structures.  

 

To probe the structure of the PTFE Langmuir film, films were driven up wetted 

glass slides for characterization. This was accomplished by compressing films to a stable, 

constant surface pressure (in this case 30 mN/m was sufficient) and touching film surfaces 
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with the wetted glass slides. At the moment the wet glass touched a particle film, the film 

jumped up the sides of the glass and the measured surface pressure was relieved due to 

the increase in water interface area provided by the water film on glass. Once the particle 

film stopped climbing the glass slide due to relaxation of surface pressure, the slide was 

removed from the interface and dried. The result is shown in a photo and optical 

micrograph in Figure B.4. The isolated film appears homogenous by eye but shows many 

aggregate structures at 20x magnification.  

 

 

Figure B.3. Pressure-area isotherm (left) and hysteresis of 1 μm PTFE particles are the 
air-water interface. 

 

 

Figure B.4. Photograph and 20x optical micrograph of 1 μm PTFE film isolated from the 
air-water interface of a Langmuir monolayer 

 

A film was isolated from the vial by preparing a particle film in a vial and 

evaporation of the water subphase in a warm oven (65 °C). A 20x optical micrograph of 
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the vial wall is shown in Figure B.5. The structure appears homogenous to the naked eye, 

with only a few large particle aggregates standing out. The micrograph similarly shows a 

homogenous film made up of aggregated particles. Compared to the film isolated by 

Blodgett deposition, the film from the vial is more opaque and appears to be thicker either 

due to multilayer formation or more aggregated particles. That the particles are more 

aggregated suggests that the mechanical agitation that occurs during shaking does not 

break up the particles as well as ultrasound in an organic solvent, which is to be expected. 

 

 

Figure B.5. Photograph and 20x optical micrograph of 1 μm PTFE film isolated from the 
air-water interface within a scintillation vial 

 

Why does this happen? Other experiments were run to test the effects of liquid 

subphase viscosity and surface tension. As viscosity increases, by addition of glycerol, 

the climbing of the raft slows, but the elasticity remains. Increasing viscosity slows the 

motion of the liquid and thus slows the apparent motion of the particles at the interface. A 

particle pinned to the fluid surface can only move up the walls as fast as the liquid it is 

pinned to. Decreasing the surface tension of the subphase, by addition of methanol, leads 

to no particle film formation and eventually to the dispersion of the particles. 

 

Surface pressure is responsible for the climbing of PTFE particles up the wet glass 

walls of scintillation vials. This is most obvious from the Blodgett depositions where a film 
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under pressure spontaneously climbs wet glass. The surface pressure comes from excess 

particles. Shaking breaks up aggregated particles, which explains the need to shake vials 

vigorously before a stable film forms: in the aggregated state the effective particle 

concentration is low and the aggregates are less effective at forming films than the 

separated particles.  With only a few mg’s of particles in a vial, there is a large excess over 

what is needed to form a monolayer over the vial’s inner surface area. During shaking, 

particles form films over air-water interfaces (droplets surfaces and whatever other water 

surfaces are available during shaking). When the shaking stops, the water settles into a 

configuration with the minimum surface area but the particles which covered the larger 

shaken area are still pinned to the air-water interface. This leads to a large excess of 

particles at the interface. This excess concentration at the air-water interface creates a 

surface pressure that drives the film up the wet walls of the vial. The pressure is relieved 

by the increase in film area/decrease in surface concentration. The film climbs until (1) no 

more excess particles are present to create the required surface pressure or (2) the 

pressure is too low to drive the film higher due to the weight of the film. The second case 

might be observed in a very long tube but it not seen in the short vials. In the case of the 

scintillation vials, there is often still a large excess of particles present. While I was unable 

to directly measure this, I suspect that this creates a high surface pressure at the interface. 

Figure B.6 is a schematic representation of the process. 
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Figure B.6. Surface pressure - driven climbing of hydrophobic particles. In the first 
image, the walls of the vessel are dry and no climbing will occur: there is no water 

surface for the excess particles to expand onto. In the second image, the walls of the 
vessel are wet and excess particles are trapped (this could be in the form of bubbles or 
agglomerates that form from the collapse of the high surface area of the water during 
shaking). In the final image, the excess particles are merging with the film, creating a 

surface excess of particles. This exerts a surface pressure that drives the film up the wet 
walls of the vessel. Climbing continues until all excess particles have merged, the entire 
water interface has been covered or the surface pressure cannot overcome the weight of 

the climbing film. 
 

It is important to mention that the cleanliness of the vials is critical. A water film on 

the walls of the glass is required for the observed climbing and film formation to occur. 

This film forms during the shaking process in clean glass vials. In dirty vials, a stable water 

film does not form and the particle film will not climb. 

 

Elasticity in the particle raft comes from contact line pinning and capillary 

interactions of the superhydrophobic powders, which are the same forces that hold liquid 

marbles and dry water together. These are manifestations of the high surface tension of 

water. 

 

Is there good science here or is this simply a parlor trick? The climbing of PTFE 

particle films on wetted substrates contains interesting scientific questions and might be a 

useful model for other surface pressure driven phenomena. There might even be practical 

applications of this lab curiosity. 
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Numerous researchers are interested in colloidal arrays and self-assembly of 

colloidal particles. The surface pressure - driven climbing of hydrophobic objects might be 

a way to transfer 2-dimensional particle assemblies or to form such assemblies. In one 

experiment, water was removed from a vial containing a particle film using a syringe. As 

the water level dropped, the particle film coated the walls of the vial. This is a way to create 

particle coatings. 

 

Scientifically, I believe that the behaviors observed for these pinned hydrophobic 

powders are macroscopic analogs to what occurs in insoluble monolayers of molecules 

(like fatty acids at the air-water interface). The similarities to spreading, film elasticity and 

surface pressure - driven climbing onto wetted substrates is striking. However, the 

colloidal system presents new problems and opportunities. The most interesting of these 

new challenges is the kinetics of assembly of colloidal particles. Is it possible to create a 

true equilibrium state or are the particles always kinetically trapped? If the particles are 

always trapped, how can kinetics bre used to create specific particle assemblies? What 

are the effects of particle dispersity in both size and structure? I am sure these are 

questions that colloid scientists are working on and perhaps this system and phenomenon 

could be useful.  

 

Ultimately, there is more to be done in studying the climbing of PTFE particle films 

in wet scintillation vials experimentally, theoretically and practically.  
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