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ABSTRACT 

PORE FORMING PROTEIN ASSEMBLY AND THE USE IN NANOPORE SENSING: A 

STUDY ON E. COLI PROTEINS CLYA AND OMPG 

SEPTEMBER 2017 

MONIFA AKILAH VERNA FAHIE, B.A. CLARK UNIVERSITY 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Min Chen 

 
Pore forming proteins are typically the proteins that form channels in 

membranes.  They have several roles ranging from molecule transport to triggering the 

death of a cell.  This work focuses on two E. coli pore forming proteins that have vastly 

differing roles in nature.  Outer membrane protein G (OmpG) is an innocuous β-barrel 

porin while Cytolysin A (ClyA) is an α-helical pore forming toxin.   

For OmpG we probed its potential to be a nanopore sensor for protein detection 

and quantification.  A small high affinity ligand, biotin, was covalently attached to loop 6 

of OmpG and used to capture biotin-binding proteins.  OmpG specifically interacted with 

target proteins and with a high sensitivity.  In addition, we found that OmpG could 

discriminate among eight target proteins, four avidin homologues and four antibody 

homologues.  Our work was the first revelation that a “noisy” nanopore sensor could not 

only discriminate among homologous proteins but could maintain this sensitivity and 

specificity in a serum sample. 

Unlike OmpG which is a monomeric pore, the ClyA pore is an oligomer which 

allowed us to probe its assembly.  We found an alternative mechanism of assembly of 

the ClyA pore from its soluble monomer.  Our results revealed an off-pathway 

oligomerization of ClyA.  These oligomers are stable in solution but are less efficient at 

converting into transmembrane pores in the membrane than monomeric ClyA.          
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INTRODUCTION 

I.1 Pore forming proteins (PFPs) 
 

Pore-forming proteins (PFPs) are a class of membrane proteins that form a hole 

across the lipid bilayer.1–5  These proteins create channels that typically allow the passage 

of water soluble molecules through the membrane.  PFPs are involved in cellular 

processes such as moving various cargo across the bilayer,6–8 signaling pathways,4,9–12 

and inducing lytic death in a target cell.1,13–15  PFPs can make the lipid bilayer permeable 

to either specific molecules such as a polypeptide,16 an anion17 or they can be unspecific 

allowing molecules equal to or smaller than its exclusion limit to pass through the 

membrane.18       

In this dissertation we will focus on two large classes of PFPs which are (i) the 

membrane porins which can be found in gram negative,19 mitochondria6,20–22 and 

chloroplasts6,22–24 and (ii) pore forming toxins (PFTs).  In the first class, known membrane 

porins typically have beta-barrel structure6,8 and create water-filled channels in the 

membrane.  On the other hand, PFTs are proteins that can convert from a soluble 

monomer into a membrane bound oligomer.2–4,12,14,15,25–27  PFTs are implicated in 

infectious disease as a large class of virulence factors,25 as well as in immunity.11,12  These 

proteins are produced as soluble monomers in a wide range of organisms for example 

bacteria28, amoebae,29 humans,30 and plants.9  These monomers are secreted from the 

organism and then interact specifically with a target cell membrane by binding to a receptor 

such as lipid domains or cholesterol31–34 a protein receptor35–37 or sugar moiety.26,38  Then 

they assemble into a membrane bound pore.14,25,26  Once bound to the target cell 

membrane PFTs can trigger cell death through lysis15 or deliver harmful molecules into 

the cell.37,39  Because of their significance in a variety of cellular functions, PFPs hold great 

interest in our fundamental understanding of biological processes and networks.  Thus, 
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there is motivation to study PFPs so that we may better understand and develop ways to 

manipulate a biological outcome.     

 
I.2 Fundamental research on PFPs  
 

Like all proteins, PFP function depends on their structure.  A protein’s structure 

depends on the correct folding mechanisms.  The study of protein folding is filled with 

many questions regarding protein regulation.  Our understanding of membrane protein 

folding, in particular, has been lagging behind that of soluble proteins.40  Membrane 

proteins are difficult to study in vitro as they are unstable because of their insolubility in 

aqueous solution and our lack of suitable detergent or lipid mimics to reconstitute them 

into a native-like membrane environment.40  Despite this difficulty we have gained some 

insight into PFP folding and thermodynamics from studies on bacterial outer membrane 

proteins.8,41–43        

On the other hand, pore forming toxins (PFTs) represent a unique class of PFPs 

whose cytotoxic function relies on the assembly into quaternary structures.  They undergo 

significant conformational changes from a soluble protein to a transmembrane pore.25  

Because PFTs are initially soluble, they are less difficult to isolate than membrane porins 

and their assembly mechanisms can be easily probed.  They are classified as either -

PFTs or β-PFTs depending on their predominant secondary structures.14  The classical 

model of PFT assembly includes (i) binding of monomers to membrane, (ii) oligomerization 

on the membrane, (iii) formation of a pre-pore complex and (iv) membrane insertion of a 

transmembrane-spanning domain (Figure I.1).2,14,25,26   
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Although the route of toxin assembly is specific for PFTs, protein complex formation is not 

unique to them.  Many other proteins such as secretion systems (types I to VI),44 and 

photosystems I45 and II46 are examples of membrane spanning multi-protein complexes.  

Thus, studying assembly of PFTs which can form either homo-oligomeric or hetero-

oligomeric complexes would have wide appeal to many other biological questions that 

focus on multi-protein complex formation and function. 

Some knowledge of PFTs and their assembly has been elucidated while studying 

infectious diseases,15 signaling pathways4,9,11,12,47 and this fundamental knowledge has 

been exploited in protein engineering and nanopore sensing.48  To paint a complete 

picture of PFTs, studying their kinetics of assembly and their thermodynamics is essential.  

Studying the kinetics of alpha hemolysin (αHL) assembly revealed that its conversion from 

monomer to oligomer is too rapid for detecting intermediate states.49  However atomic 

force microscopy characterization of MACPF/CDC pores has shown pre-pore, 

 

Figure I.1. Schematic of the classical assembly mechanism for a pore forming toxin 
(PFT). Reprinted by permission from Macmillan Publishers Ltd: Nature Publishing Group H. 
Bayley, “Membrane-protein structure: Piercing insights,” Nature, vol. 459, pp. 4–5, 2009., 
copyright (2009) 
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intermediate pore called arcs and pore states.50 Thus, studying PFT assembly may be 

limited to larger pores with slow kinetics.  One such toxin is the E. coli PFT, Cytolysin A 

(ClyA) which was recently studied with more direct assays via FRET and cross-linking 

experiments.51  ClyA converts from monomer to oligomer in the presence of detergent 

DDM within minutes.51–54 which is slow enough to study the oligomerization process.  A 

model for ClyA assembly was proposed highlighting that oligomerization is a concerted 

cooperative process.51  This model for ClyA can be extended to other PFTs and can 

explain the quick assembly kinetics of small toxins.   

 
I.3 Applied research on PFPs 

One application of PFPs that has seen a boom is in nanopore technology.  

Nanopore technology is a field of research focusing on developing sensors based on 

biological or solid state pores.  Solid state nanopores are holes of nm size that are typically 

fabricated on silica, graphene, borosilicate glass and other materials.55–57  Biological 

nanopores are mainly based on membrane pore-forming proteins, although there is 

increasing success and progress with using nucleic acid based nanopores.[15]–[22]  PFP 

nanopores have been used to detect various molecules ranging from metal ions,66,67 

neurotransmitters,68 peptides,69–71 proteins,72–77 nucleosomes,78 to even 

microorganisms.79–83  In fact, the most significant progress has been in the sequencing of 

single stranded DNA.48,57,84–104   

The principle behind nanopore detection and analysis is based on monitoring the 

changes in ionic flow through the nanopore when an analyte binds.100,105,106  because of 

this, analytes can be characterized by their size, their charge and their concentration.107,108 

Analytes can bind directly in the lumen of the nanopore,92,94,98,107,109,110 or via an adaptor 

molecule in the lumen,89,90,111 they can bind to either prevent or promote oligomerization 

of the nanopore,112 or they can bind to an non-lumen site on the nanopore.73  In addition, 
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nanopores can be used to detect analytes indirectly72 and study enzyme kinetics.109  

Although there has been much progress in nanopore sensing especially in the sub-field of 

DNA sequencing, there are some limitations.  The most commonly used protein-based 

nanopores such as αHL or ClyA range from 1–7 nm in diameter.  This means that 

molecules larger than these diameters cannot enter their lumen.  Solid-state nanopores 

(ss-nanopores) have an advantage to PFPs in their tunable sizes, however, ss-nanopore 

fabrication lacks the size and shape precision of a biologically produced protein 

nanopore.55–57,75,91,95,99,100   In addition, we would need to designate unique ss-nanopores 

to detect a specific subset of molecules.  This is because analytes that are very small will 

not generate a noticeable change in the ionic current of a large nanopore.  To alleviate 

the nanopore size limitation, researchers have used alternative approaches where large 

analytes were detected by specifically binding to native receptor sites113 or engineered 

sites114–117 on the nanopore surface where binding altered the ionic flow of the nanopore.   

Another big area for nanopores is geared towards protein analytes118–120 i.e. 

protein/peptide translocation48,121–125 as well as protein folding/aggregation analysis.126–132  

Protein translocation across the lipid bilayers is ubiquitously found in nature for example 

in secretion systems133 or across mitochondria and chloroplasts23 and the use of 

nanopores is a suitable in vitro platform to probe these mechanisms.77  Furthermore, 

nanopores have the potential to be used as analytical tools in protein/peptide sequencing 

however unlike nucleic acid which have four building blocks, proteins have 20 different 

amino acids.  Currently, nanopores cannot resolve individual amino acids but many works 

have proven the feasibility of translocating unfolded proteins through nanopores.74,134–138  

The current challenges of protein sequencing using nanopores are quite similar to the 

early challenges of DNA sequencing.  Challenges such as low capture rate due to the 

heterogeneity of charge on proteins, difficulty of peptide unfolding, rapid protein/peptide 

translocation120,136 are all barriers to protein/peptide sequencing.  Researchers have 
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started to address these challenges by adding tags to polypeptide chains to enhance 

capture rate,135–138 coupling nanopores with unfoldase enzymes,135,136 engineering binding 

sites in the nanopore,76,123,139,140 and using chaotropic agents to denature proteins.127,128,131  

However, amino acid resolution via nanopores is still a distant dream.  Thus, nanopore 

protein analysis/sequencing research will be thriving for the next several years. 

In order to advance nanopore sequencing technology, the next steps will require 

improving computer software analytical tools.141  In addition, nanopores with asymmetric 

properties i.e. geometric asymmetry as well as functional group asymmetry in the lumen 

could also improve the resolution of molecule detection.142,143  Solid state nanopores,  

monomeric protein nanopores and even DNA origami pores have an advantage over 

oligomeric nanopores based on PFTs to introduce geometric143 or functional group 

asymmetry.142  We currently do not have a large repertoire of monomeric nanopores 

whose stability rivals that of αHL nor do we have the precision to repeatedly synthesize 

an asymmetric solid-state one.  However, this limitation will drive researchers to design 

and engineer new strategies to fill the gap.  The nanopore field has many avenues to 

explore with both solid state and protein nanopores and vibrant research is needed to 

pinpoint limitations so that we can engineer schemes to overcome them.   

In addition to nanopore technology another application for PFPs is in drug 

development. We can exploit the cytotoxic behavior of PFTs for therapeutic purposes.  

Malignant cells that resist cell death such as in some cancers144–146 could undergo death 

if attacked by a specific and potent PFT147–153 or peptide154 (Figure I.2a).  Furthermore, 

PFTs can potentially be used as delivery vehicles to increase the uptake of drugs into a 

cell,147 (Figure I.2b) or in delivery vehicles such as outer membrane vesicles155,156 and can 

enhance vaccine efficacy.157  Although there is great potential for PFTs in drug 

development, the progress has been relatively slow.  One major setback in developing 

PFTs as cytocidal drugs are due to low toxin specificity which is why some researchers 



7 
 

have proposed to attach the toxin to an antibody to increase specificity.149  However these 

large immunotoxins may not survive oral delivery and may be cleared very quickly from 

the blood.  Some research has successfully targeted PFTs to tumor cells in mice models 

using engineered bacteria,150–153 however this method is limited to areas where the 

bacteria can be safely injected.  It also raises an ethical and safety concern about 

administering genetically modified organisms (GMOs) into the human populace.  Other 

limitations are related to toxin potency.  For example, PFTs that can efficiently lyse its 

target cell would be an unlikely candidate to exploit as a drug delivery vehicle.  Research 

on toxin assembly, stability and combinational methods will improve our engineering 

efforts to create specific and efficacious PFT drugs.  

 

I.4 Pore forming protein research using OmpG and ClyA 

 
I.4.1 Outer membrane protein G (OmpG) as a nanopore sensor 

One monomeric nanopore that has been recently introduced in the nanopore field 

is outer membrane protein G (OmpG).117,158–162  OmpG is a 33 kDa monomeric protein 

found in the outer membrane of E. coli.18,163  It belongs to the family of bacterial outer 

 

Figure I.2. PFTs as drugs to induce cell death or as drug delivery vehicles.  (a) A PFT is 

used to induce cell death by lysis in the malignant cell such as a cancer cell that has become 

‘immortal’.  (b) A PFT is used as a delivery mechanism to allow beneficial drugs to enter the cell 

to alleviate the malignancy.    
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membrane proteins (Omps) which are typically beta barrels and have various functions 

ranging from enzymatic activity to iron transport.8  OmpG, in particular, was found to be 

involved in the uptake of polar molecules such as maltose,18,163,164 and unlike other typical 

trimeric Omps it is a monomer.165–169 OmpG’s 14 beta strands are connected by seven 

long loops which face the exterior of the bacterial cell and seven short turns which face 

the periplasm170 (Figure I.3). 

 

Reconstituted in an artificial planar bilayer, OmpG generates a noisy ionic current 

fluctuating rapidly between high and low current states when voltage is 

applied.158,159,164,166,171  Many structural studies on OmpG under various conditions 

advanced the understanding of its gating mechanism which is largely due to the movement 

of its longest loop L6.168,172–174  Because of this gating property of OmpG, it was deemed 

undesirable for use as a nanopore sensor.158  Thus in an attempt to make it more suitable 

for nanopore sensing researchers stabilized loop 6,158,175 or shortened it.176  Thereafter 

 

Figure I.3. Side and top views of the OmpG porin structure.  OmpG consists of 14 beta 

strands, seven periplasmic turns and seven long extracellular loops.  
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ADP was successful detected by Chen et al using a cyclodextrin adaptor in the lumen.158  

Because OmpG is its widest at the periplasmic side with 1.5 nm and narrows to 0.8 nm 

near the extracellular loop side,159 thus it is limited to detecting small molecules such as 

ADP.  But the paradigm in nanopore sensing is shifting toward the detection and analysis 

of proteins.  Thus, as will be shown in the following chapters of this dissertation, we 

exploited this intrinsic gating property to engineer an OmpG nanopore sensor for protein 

analytes.  To do this we covalently attached a high affinity ligand biotin to loop 6 of OmpG 

which was used to capture biotin-binding proteins.  After attaching the biotin ligand, OmpG 

gained the ability to specifically and sensitively interact with various proteins and generate 

individual signals for each that could be used to distinguish one from the other.117,160–162  

This was the first report of a single nanopore sensor that would distinguish more than five 

protein analytes.   

  
I.4.2 Cytolysin A as a model for studying oligomeric protein assembly 
 

Another protein that has been recently probed in nanopore sensing is the PFT 

Cytolysin A (ClyA) also known as hemolysin E (HlyE) or silent hemolysin locus A 

(SheA).177  It is an -PFT and currently is the only one whose monomeric178 and 

oligomeric179 structures are known (Figure I.4).  ClyA is found in several bacterial strains 

such as Escherichia coli, Salmonella enterica and Shigella flexneri177 and may be involved 

in the pathogenicity of these strains.15,180–182  The ClyA toxin is exported to the 

periplasm[138],[139] and studies have found that it is secreted into the extracellular 

environment via outer membrane vesicles (OMVs).184–186  Subsequent studies have taken 

advantage of ClyA secretion into OMVs to engineer particles for cancer therapeutics150–

153 and vaccines.155–157  ClyA has also been exploited in nanopore sensing and was shown 

to detect DNA,86,187 distinguish between homologous proteins,110,188 trap proteins and 

reveal conformational changes 189–191 or study protein-ligand interactions.192   
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Although, ClyA has now been deemed a bona fide nanopore, our interest in ClyA 

stems from its ability to assemble into large dodecameric pores on the time scale of 

minutes.51–53  Also ClyA tends to assemble into a large distribution of oligomers as 

suggested in one study.189  Unlike αHL,49 the conversion of the ClyA monomer into the 

oligomer is a slow process.  This is advantageous as we can study the steps in PFT 

oligomerization using ClyA as a model.4,7,9  In this dissertation, we have shown that ClyA 

can undergo an off-pathway assembly into the cytotoxic transmembrane pore through a 

soluble protein conglomerate.  We have shown that ClyA forms multimeric intermediates 

in the absence of membrane or detergent.53,193  By revealing this off-pathway folding 

conglomerate we have sampled a small subset of folding mechanisms in the protein 

folding landscape of ClyA.  

  

 

Figure I.4. The structures of the inactive and active ClyA α-PFT.  The soluble ClyA 

monomer (a) is expressed in the bacteria and the transmembrane oligomeric pore (b) is 

bound to the target cell and induces them to lyse. 
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CHAPTER 1 

RESOLVED SINGLE-MOLECULE DETECTION OF INDIVIDUAL SPECIES WITHIN A 

MIXTURE OF ANTI-BIOTIN ANTIBODIES USING AN ENGINEERED MONOMERIC 

NANOPORE 

Reprinted (adapted) with permission from M. Fahie, C. Chisholm, and M. Chen, 

“Resolved Single-Molecule Detection of Individual Species within a Mixture of anti-Biotin 

Antibodies Using an Engineered Monomeric Nanopore,” ACS Nano, vol. 9, no. 2, pp. 

1089–1098, Jan. 2015. Copyright 2015 American Chemical Society. 

1.1 Summary 

Oligomeric protein nanopores with rigid structures have been engineered for the 

purpose of sensing a wide range of analytes including small molecules and biological 

species such as proteins and DNA. We chose a monomeric β-barrel porin, OmpG, as 

the platform from which to derive the nanopore sensor. OmpG is decorated with seven 

flexible loops that move dynamically to create a distinct gating pattern when ionic current 

passes through the pore.  Biotin was chemically tethered to the most flexible one of 

these loops. The gating characteristic of the loop’s movement in and out of the porin was 

substantially altered by analyte protein binding.  The gating characteristics of the pore 

with bound targets were remarkably sensitive to molecular identity – even providing the 

ability to distinguish between homologues within an antibody mixture.  A total of five 

gating parameters were analyzed for each analyte to create a unique fingerprint for each 

biotin binding protein. Our exploitation of gating noise as a molecular identifier may open 

new possibilities for more sophisticated sensor design while OmpG’s monomeric 

structure greatly simplifies nanopore production.   
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1.2 Introduction 

Protein nanopores have become powerful single-molecule analytical tools that 

enable the study of fundamental problems in chemistry and biology,1,2 including protein 

folding3 and unfolding,4–8 enzymatic activity,9–11 chemical reactions12,13 and stability of 

complex formation.14 Beyond basic research, nanopores also hold tremendous promise 

in biotech applications such as DNA sequencing11,15–17 and biosensing.1  Molecular 

detection using a single nanopore works by observing modulations in ionic current 

flowing through the pore during an applied potential. Typically, binding (or translocation) 

of an analyte within (or through) the pore’s lumen partially blocks the flow of current and 

provides information about a molecule’s size, concentration and affinity.18 Protein 

nanopores based on protein toxins, especially α-hemolysin (αHL), have been used to 

detect metal ions,19,20 organic molecules,21–23 oligonucleotides11,17,24 and measure the 

size of polymers.25,26   

Although αHL works well for small analyte detection, molecules larger than 27Å 

in diameter cannot fit in the pore’s lumen.  Direct protein detection with nanopores is 

therefore problematic, though some strategies have been developed to transmit the 

binding signal from solution to the pore’s interior.27–30 For example, binding of a kinase 

was performed using an αHL pore modified with an inhibitor peptide attached to its stem 

side.28  The binding of lethal factor to the PA63 pores of the anthrax toxin orients the N-

terminal leader sequence towards the pore’s lumen.31,32 In both cases, analyte docking 

to the binding site on the sensor pore manifest as a current blockage.28,32  In addition to 

direct current blockade, target analytes may also be detected indirectly through current 

modulation. A common strategy involves a nanopore-permeable molecule, e.g. a small 

chemical ligand or ligand-modified polymer whose partitioning into or translocation 

through the nanopore was altered after analyte binding. Following this scheme, the 

detection of streptavidin or avidin was demonstrated by tethering biotin via a PEG 
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polymer to αHL30 or monitoring the translocation of biotinylated poly nucleic acids 

through αHL.33–35   

Another strategy is to use larger nanopores for analyte detect.  For example, the 

bacterial toxin ClyA, with a 70Å diameter, was modified at one end with an aptamer 

specific to thrombin.36 So far, ClyA represents the largest protein pore for sensing. 

Although there are many proteins that form larger pores in nature,37 e.g. perfringolysin O 

(~15 nm in diameter),38 their application as sensors has yet to be realized. Synthetic 

nanopores do not have the size limitation  and are more robust39–41 and have been 

applied to identify proteins either during translocation40–42 or via capture by specific 

receptors immobilized on the wall of the pore.39,43–45  However, synthetic nanopores lack 

the well-controlled geometry common to their protein pore counterparts.   

Unlike other multimeric proteinaceous nanopores such as αHL and ClyA,27,36 

outer membrane protein G (OmpG) from Escherichia coli (E. coli) is  monomeric.46 Thus, 

complex and asymmetric alterations by chemical or genetic modifications are 

straightforward, making OmpG an attractive nanopore platform for developing nanopore-

based sensing technology. OmpG is composed of 14 β-strands connected by seven 

flexible loops on the extracellular side and seven short turns on the periplasmic side.47–49  

The extracellular opening is 8 Å in diameter and the periplasmic side is 14 Å.50  Wild-

type OmpG spontaneously gates during an applied potential as revealed by planar 

bilayer studies.46,50   Pore gating is attributed to loop 6 which flops in and out of the pore, 

intermittently blocking the current.50,51 To reduce gating, a disulfide bond or lipid anchor 

was introduced into OmpG’s structure which effectively pinned the flexible loop 6 in 

place.50,51  The resulting quiet OmpG was used to sense ADP in the presence of a 

cyclodextrin adapter.50 
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So far, a rigid and stable structure is usually sought for protein pores for 

sensing.2,52 The protein pores with demonstrated sensing applications include αHL,30 

MspA,53 ClyA,36 aerolysin54 and phi29 DNA packaging motor55 all of which are homo-

oligomers that possess a rigid structure.  Two monomeric outer membrane porins, 

OmpG50 and FhuA56 with flexible loops have also been used for sensing purposes. 

However in both cases the flexible loops were considered as the major obstacle for 

sensing. These loops were either fixed or removed to stabilize a single open 

conformation by protein engineering.50,56 Here, we directly exploit loop dynamics instead 

of pore blockage to detect protein interactions.  Our results demonstrate that the 

flexibility of OmpG’s structure represents a unique feature, which can be used for 

resolving subtle differences between the surface properties of highly homologous protein 

analytes.  This capability has not been demonstrated with other nanopores.  

1.3 Materials and Methods 

The DNA oligos and all chemicals were purchased from Fisher Scientific unless 

stated otherwise. Streptavidin (Z7041) was purchased from Promega. The biotin-

maleimide reagents, Maleimide-PEG2-Biotin and Maleimide-PEG11-Biotin were 

purchased from Piercenet (Thermo Scientific). Mouse anti-biotin monoclonal antibody 

(MS-1048-P1) was purchased from Thermo Scientific. Goat anti-biotin polyclonal 

antibody (B3640) was from Sigma Aldrich. Mouse anti-His6 (BSM-0287M) and mouse 

anti-GAPDH (BSM-0978M) antibodies were obtained from Bioss antibodies. LB media 

and DL-dithiothreitol (DTT) were purchased from Boston BioProducts. 

Diphytanoylphosphatidylcholine (DPhPC) were from Avanti polar lipids. Octyl-glucoside 

(OG) and tris(2-carboxyethyl)phosphine (TCEP) were purchased from GoldBio 

Technology. 
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1.3.1 Construction of OmpG D224C mutant  

Single cysteine was introduced to replace the aspartic acid 224 by mutagenesis 

PCR based on the plasmid pT7-OmpG wt.50 The primers for D224C were  

5’-GGGACTGGCAGTGTGATATTGAACGTGAAG (forward) and 5’-

GTTCAATATCACACTGCCAGTCCCAGTTAC (reverse). These two primers were used 

in a pair with the primer SC47: 5’-CAGAAGTGGTCCTGCAACTTTATC (reverse) and 

SC46: 5’-ATAAAGTTGCAGGACCACTTCTG (forward) which annealed to the middle of 

the plasmid. The two PCR products were mixed in a 1:1 molar ratio and subjected to 

DpnI digestion for three hours to degrade the parental plasmid. E. coli DH5α cells were 

then co-transformed with the PCR mixture and colonies containing the desired mutant 

construct pT7-OmpG D224C was identified by DNA sequencing.  

 
1.3.2 Cloning, expression and purification of OmpG D224C 

The OmpG D224C was prepared by following an established protocol.50 The 

pT7-OmpG D224C was transformed into the BL21(pLys) E. coli cells and cells were 

grown in LB medium at 37°C until the OD600 reached 0.6. IPTG (0.5 mM) was added to 

the culture to induce the protein expression. Cells were harvested 3 hours after induction 

and lysed in lysis buffer (50 mM Tris·HCl, pH 8.0, 150 mM NaCl, 200 µg/ml lysozyme, 1 

mM EDTA, 1mM TCEP). Cells were sonicated on ice to break the bacterial membranes. 

DNAase I (5ul, 2,000 U/µl) and 2 mM MgCl2 were then added to the mixture to decrease 

the viscosity. The lysate was centrifuged at 13,000 rpm for 30 min. The pellet was 

washed once with 30 ml 50 mM Tris·HCl, pH8.0, 1.5 M Urea, 1mM TCEP. Then the 

OmpG-containing inclusion body was dissolved in 50 ml 50 mM Tris·HCl, pH 8.0, 3 mM 

Tris(2-carboxyethyl)phosphine (TCEP), 8 M Urea and passed through a 0.45 µm filter 

before FPLC purification. All OmpG proteins were purified using a 5ml Q-ionic exchange 

column (GE Healthcare). 
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1.3.3 Biotinylation and refolding of OmpG proteins 

The purified OmpG D224C was incubated with 10 mM freshly prepared DL-

dithiothreitol (DTT) for 30 min on ice to reduce the thiols. The DTT was then removed 

using a desalting column equilibrated with buffer 50 mM HEPES, pH7.0, 150 mM NaCl, 

8M Urea. To label the OmpG D224C with biotin, the protein was incubated with 

maleimide-PEG-biotin in a molar ratio 1:20 (protein to biotin) at room temperature 

(~23°C) for 2 hours and then at 4 °C overnight. DTT (10 mM) was added to quench the 

reaction. The reaction mixture was passed through the desalting column once again to 

remove the unreacted chemicals. The biotin labelled OmpG was then diluted with the 

refolding buffer 50 mM Tris·HCl, pH 9.0, 3.25% OG until the final concentration of urea 

reached 3.0 M. Samples were then incubated at 37 °C for 3 days. The biotinylation and 

refolding efficiency was determined by SDS-PAGE (Figure 1.1). 

 

 

Figure 1.1 SDS-PAGE analysis of OmpG variants. The refolded OmpG variants were either 
pre-heated at 95ºC for 15 min or directly loaded on a 12.5% SDS-PAGE. Heating denatures the 
OmpG protein which migrates slower in SDS-PAGE. To determine the labelling efficiency, the 
OmpG-PEG11-biotin and OmpG-PEG2-biotin were incubated with streptavidin for 5 minutes 
which forms an SDS-resistant complex with biotin. Consequentlys, OmpG shifts to higher-
molecular weight and labeling percent can be calculated by the disappearance of the OmpG 
refolded or denatured band. 
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1.3.4 Single channel recording of OmpG proteins 

Single channel recording of OmpG was similar to the previous study.50 Briefly, 

experiments were performed in an apparatus containing two chambers separated by a 

25 µm thick Teflon film. An aperture of approximately 100 µm diameter had been made 

near the center of the film with an electric spark. The aperture was pretreated with a 

hexadecane/pentane (10% v/v) solution before each chamber was filled with buffers as 

indicated specifically. An Ag/AgCl electrode was immersed in each chamber with the cis 

chamber grounded. 1,2-Diphytanoyl-sn-glycerol-3-phosphocholine (Avanti Polar Lipids, 

USA) dissolved in pentane (10mg/ml) was deposited on the surface of the buffer in both 

chambers and monolayers formed after the pentane evaporated. The lipid bilayer was 

formed by raising the liquid level up and down across the aperture. OmpG proteins (~1 

nM, final concentration) were added to the cis chamber and +200mV was applied to 

facilitate OmpG insertion. After a single OmpG pore inserted, the applied voltage was 

lowered to 50 mV for recording.  OmpG proteins inserted in the planar lipid bilayer bi-

directionally with its extracellular loops located at either cis or trans side.  After 10 min 

recording, the orientation of the OmpG pore in the lipid bilayer was determined by 

analyzing the asymmetrical gating pattern at positive and negative potentials.  

Streptavidin or antibodies were added to the cis or trans chamber depending on the pore 

orientation and the solution was stirred for 10 s. We define a positive potential as the 

potential of the chamber where the extracellular loops were exposed to is positive.  

Current was amplified with an Axopatch 200B integrating patch clamp amplifier (Axon 

Instruments, Foster City, CA). Signals were filtered with a Bessel filter at 2 kHz (unless 

otherwise stated) and then acquired by a computer (sampling at 50 µs) after digitization 

with a Digidata 1320A/D board (Axon Instruments). 
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1.3.5 Single-channel current analysis  

For power spectra analysis, data were recorded with a Bessel filter at 50 kHz and 

acquired at 250 kHz.  Power spectra were calculated from a 20 s recording trace in 

Clampfit using segment lengths of 32768 samples (spectra resolution 7.62 Hz) by 

applying Hamming window. Data shown were derived from averaged spectra segments 

with 50% window overlap. To analyze the mAb and polyclonal antibody binding, power 

spectra of multiple binding events from a total of 20 s recording time were calculated and 

averaged. The power spectra densities for all traces were plotted in OriginPro 9.1.  

 
1.4 Results 

1.4.1 Detection of Streptavidin by OmpG-PEG11-biotin pore  

To detect proteins, we designed an OmpG nanopore with a ligand tethered to 

loop 6 to “fish” for target proteins. We hypothesized that target binding would alter the 

flexibility of loop 6 and therefore alter the gating pattern as a recognizable signal to 

indicate detection.  To validate the concept of the OmpG sensor, we first chose biotin 

and streptavidin as the model ligand and target protein because of its very low 

dissociation constant of ~10-15 M.57  The OmpG D224C was expressed in E. coli as 

inclusion bodies and purified by ion-exchange chromatography. Purified OmpG D224C 

proteins were labeled with maleimide-(PEG)11-biotin and the resulting OmpG-PEG11-

biotin construct was refolded to its native structure (Figure 1.1).  A single cysteine 

mutation was introduced to the D224 residue of OmpG by site-directed mutagenesis 

(Figure 1.2).  
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Single-channel recording of OmpG-D224C and OmpG-PEG11-biotin pores 

revealed that neither the mutation nor the tethered biotin group induced a measurable 

change in the unitary conductance or the gating pattern of OmpG when compared to 

wild type (Figures 1.3a-1.3c). The maleimide-PEG11-biotin ligand could fully extend from 

loop 6 by approximately 60Å to facilitate the capture of the analyte proteins (Figure 

1.4a).  Within minutes, the addition of 3 nM streptavidin to the chamber containing loop 6 

of the labeled OmpG-PEG11-biotin pore could induce an irreversible change in its gating 

pattern.  A marked increase in gating frequency from 111±30 s-1 to 199 ±27 s-1 (n=3) 

was observed when streptavidin was bound to OmpG-PEG11-biotin labeled pores at pH 

5.7 (Figures 1.4b, 1.4c).  We plotted all the gating events according to their amplitude 

(pA) and duration (ms) in a two-dimensional (2D) distribution plot (Figure 1.4d).  From 

the 2D plot analysis, we observes two populations of events. Population 1 only partially 

blocks the pore with amplitudes between 0 to 7.5 pA and dwell times between 0-0.4 ms 

(Figure 1.5); population 2 almost fully blocks the pore with amplitudes larger than 10 pA 

(10-20pA) and dwell times longer than 1ms i.e. 1-50 ms (Figure 1.5).   

 

Figure 1.2. Structures of OmpG and its gating activity. (a) The top view (left) and side view 
(right) of the structural alignment of the open and closed states.  Loop 6 is highlighted in blue 
in the open state and red in the closed state.  The D224C mutation is shown in ball and stick 
model.  (b) Single channel recording trace of a wild type OmpG pore.  The data was obtained 
in buffer 10 mM Tris·HCl, pH 8.0, 150 mM KCl at +50 mV.    
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Figure 1.4. Detection of streptavidin by OmpG-PEG11-biotin. (a) Schematic model showing 
the OmpG-PEG11-biotin.  The proteins were generated using PDB files of OmpG (2IWV) and 
streptavidin (3RY1).  The streptavidin was placed approximately 60Å away from the OmpG 
pore in the model of the bound state. (b) Representative traces of the OmpG pore before and 
after the addition of the streptavidin (3 nM). The measurements were performed in buffer 10 
mM sodium phosphate, pH5.7, 150 mM KCl at +50 mV.  (c) All current histogram of the 
corresponding traces in b. (d) Two dimensional histogram of the gating events. Gating events 
collected from a 15s recording trace were distributed based on their intensity versus duration.  

 
 
Figure 1.3. Point mutation or biotinylation of OmpG does not affect its inherent gating 
behavior.  Single channel recording traces of (a) OmpG wt, (b) OmpG D224C (unlabeled), (c) 
OmpG-Peg11-biotin and (d) OmpG-Peg2-biotin. Buffer used was 10 mM sodium phosphate 
buffer, pH 6.0, 300 mM KCl and the applied potential was +50 mV.  
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From previous studies and known structures of OmpG,47, 50 we expect that loop 6 

cannot fully block the pore on its own as it cannot occupy sufficient space within the 

 
 
Figure 1.5. Characteristic of the two gating event populations of streptavidin binding.  
Histograms of amplitude and dwell time of gating events before (a) and after streptavidin 
binding (b).   
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lumen.  For complete blockage, we expect that as much as one third of strand 12 must 

also unfold so that loop 6 is long enough to completely occlude the opening.  We give 

the term “flickering” and “bending” to describe partial vs complete blockages, 

respectively.  This distinction is important when considering the behavior observed in the 

2D plots.  For example, flickering events (population 1) seem relatively constant in the 

presence or absence of target, while the bending events (population 2) shorten 

considerably when the target binds (Figure 1.5d).  By contrast, the average dwell time of 

the bending events decreased from 5.1±0.14 ms to 3.8±0.15 ms (n=3) (Figure 1.6) when 

streptavidin was bound. In particular, those bending events of especially long duration 

(>10 ms), indicated with red asterisks, were eliminated during the streptavidin-bound 

state (Figures 1.4b, 1.4d).  

 

We hypothesize that the bending events are shortened by bound streptavidin by 

destabilizing the closed state. However, due to the increased gating frequency, the open 

probability of the OmpG pore actually reduced slightly from 0.58±0.09 to 0.51±0.10 (n= 

3) upon streptavidin binding as revealed by the decrease of the open state peak (Figure 

1.4c). As controls, streptavidin has also been added to the unmodified OmpG-D224C 

pores (15 pores tested), we have not observed any change in the gating pattern (Figure 

 

Figure 1.6. Effect of streptavidin binding on the bending events. Histogram of the 
duration time (τoff) of the gating events before and after streptavidin binding to OmpG-Peg11-
biotin. Data were fitted with single exponential function yielding an average τoff of 5.0 ms 
before and 3.9 ms after streptavidin binding. 
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1.7).  Thus, specific binding of streptavidin to the tethered biotin induces a clear but 

slight change in the gating properties of OmpG-PEG11-biotin pore.   

 

1.4.2 Shortening the ligand linker to strengthen signal  

Since the binding between the OmpG-PEG11-biotin and streptavidin produced a 

relatively small effect on the gating, we hypothesized that the polyethylene linker was too 

long to effectively restrict the dynamic movement of loop 6.  Therefore, we shortened the 

length of the PEG linker to just two units, creating the OmpG-PEG2-biotin construct 

where the biotin could extend ~30 Å into solution (Figure 1.8a). The shortened linker did 

not affect the gating pattern when compared to OmpG D224C or OmpGwt (Figure 1.3).  

By shortening the linker, the effect of streptavidin binding was much more pronounced, 

permanently reducing the frequency and amplitude of gating events (Figures 1.8b,1.8c).   

 
 

 
Figure 1.7. Gating behavior due to streptavidin binding is specific.  The addition of 
streptavidin to OmpG D224C does not change the behavior of the pore at either (a) 10 mM 
sodium phosphate buffer, pH 5.7, 150 mM KCl or (b) 10 mM sodium phosphate buffer, pH 6.0, 
300 mM KCl. 
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Quantitative analysis of three OmpG-PEG2-biotin pores showed that the gating 

event frequency was reduced by more than 6 fold from 104 ± 6 s-1 to 16 ± 2  s-1 (n=3).  

Comparison of the two-dimensional plots of all events reveals that the occurrence of 

bending events with long duration time (>0.1ms) and high intensity (>10 pA) were mostly 

eliminated due to streptavidin binding (Figure 1.8d).  Gating events of transient duration 

time (<0.1 µs) and low intensity (<10 pA) still persist albeit with greatly reduced 

frequency. The data indicate that streptavidin bound to the PEG2 linker can strongly 

restrict bending but not the flickering of loop 6. As a control, streptavidin was added to 

OmpG D224C pores and no change was observed (10 pores tested).   Adding excess 

BSA (1µM) to the OmpG-PEG2-biotin pore also did not show any effect (Figure 1.9). 

These observations confirmed that the alteration of the gating pattern is caused by the 

specific interaction between the streptavidin and the tethered biotin ligand.  In summary, 

binding of streptavidin to the OmpG-PEG2-biotin nanopore can be detected via reduction 

in gating behavior. 

 
 
Figure 1.8. Detection of streptavidin by OmpG-PEG2-biotin pore. (a) Schematic model 
showing the OmpG nanopore chemically modified with a maleimide-PEG2-biotin. The 
streptavidin is placed around 30Å away from the OmpG pore in the model of the bound state. 
(b) Representative single channel recording traces of the OmpG pores before and after the 
addition of the streptavidin (3 nM). The measurements were performed in buffer 10 mM sodium 
phosphate, pH 5.7, 150 mM KCl at +50 mV.  (c) All current histogram of the corresponding 
traces in (b).  (d) Two dimensional histogram of the gating events. Total number of 4000 gating 
events collected from ~220 s  and ~40s recording traces of OmpG pore with and without 
streptavidin bound were distributed based on their intensity versus duration. The color scale 
indicates the number of the events. 
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1.4.3 Detection of reversible antibody binding   

The biotin-streptavidin interaction is effectively irreversible, thus only one binding 

event can be detected with the nanopore sensor during a 4 hr recording and 

unfortunately we cannot extract kinetic information from the streptavidin analyte.  Here, 

we introduced proteins with weaker dissociation constants to take a closer look at 

reversible interactions.  Mouse monoclonal anti-biotin antibodies (mAb) were added to a 

recording chamber with a single OmpG-PEG2-biotin (Figure 1.10a).  The electrical trace 

showed that the presence of the anti-biotin antibody induced a dose-dependent gating 

pattern that was distinct from the unbound state and surprisingly also distinct from the 

streptavidin bound state (Figure 1.10b). During antibody binding, the pore shifted to 

more closed conformation as revealed by the larger closed state peak in the all-current 

histograms (Figures 1.10b, 1.10c). Indeed the calculated open probability was reduced 

from 0.73±0.04 at the no binding or unbound state to 0.52±0.04 at the bound state (n=6).  

In addition, although the current fluctuates between open and closed states during both 

the antibody-free and antibody-bound states, the current of the pore in the fully open 

conformation was slightly reduced by 3.5±0.86 pA or 13.6±3.8% (n=6) during the 

antibody bound state compared to the unbound state (Figure 1.10c).  This dampening 

effect on the open conductance was not observed during the experiments using 

 
 
Figure 1.9. BSA does not elicit change in OmpG behavior.  The addition of BSA to 
OmpG-Peg2-biotin does not change its gating pattern.  This condition was performed in 10 
mM sodium phosphate buffer, pH 6.0, 300 mM KCl. 
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streptavidin and might suggest that the antibody is in closer proximity to the pore 

opening when bound and therefore occluding ion flow through the OmpG-PEG2-biotin 

nanopore.   As a control, addition of mAb to OmpGwt and unmodified OmpG D224C 

pores did not induce any detectable binding signal (Figure 1.11a).  Neither were mouse 

anti-histag nor anti-Glyceraldehyde 3-phosphate dehydrogenase (anti-GAPDH) 

monoclonal antibodies (20 nM) detected by current recording with OmpG-PEG2-biotin 

pores (Figure 1.11b).   Thus, these gating events resulted from the specific mAb binding 

to the tethered biotin. 

 

 

 

 
Figure 1.10. Detection of monoclonal anti-biotin antibody by OmpG-PEG2-biotin pore. 
(a) Schematic model showing the reversible binding of monoclonal anti-biotin antibody to 
OmpG-PEG2-Biotin pore. The model is generated in Pymol using pdb files of OmpG (2IWV) 
and a mouse monoclonal anti-phenobarbital antibody (1IGY).  The antibody was placed 
approximately 30Å away from the OmpG pore in the captured model. (b) Representative 
single channel recording traces at various mAb concentrations. The mAb binding regions in 
the recording traces are highlighted in red. Increase of the mAb binding frequency was 
observed with increasing concentration of mAb. The measurements were performed in buffer 
10 mM sodium phosphate, pH 6.0, 300 M KCl at +50 mV. (c) All current histogram of the 
corresponding traces in (b).  The green and red dashed lines emphasize the shift of the fully 
open states in current at unoccupied and mAb bound states respectively. (d) (e) 
Concentration dependence of the 1/τoff and 1/τon. Error bars represent the standard deviations 
from the measurements of at least three independent pores. 
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Next, the dwell time (τoff) and inter-event intervals (τon) of mAb binding was 

calculated (Figure 1.12). The average dissociation rate constant (koff=1/τoff) of the mAb 

binding events was 0.25±0.04 s-1 (n=4) which was independent of the antibody 

concentration (Figure 1.10d). The observed association constant (kon’=1/τon) increased 

linearly with the increasing concentration of antibody (Figure 1.10e). The association 

rate constant kon of antibody binding was 2.30±0.43×107M-1·s-1 (n=4).  The equilibrium 

dissociation constant (Kd) of the mouse monoclonal antibody to biotin was 1.12±0.28 

×10-8M-1 (n=4).  At the lowest mAb concentration tested (1 nM), the mean inter-event 

interval was 74.5 ± 31 s meaning the OmpG-PEG2-biotin sensor can detect 1nM anti-

biotin mAb within tens of min.  

 

Figure 1.11. Monoclonal anti-biotin antibody (mAb) binding is specific.  (a) 

Representative trace of OmpG D224C pore in the absence and presence of mAb. (b) 

Representative trace of OmpG-Peg2-biotin in the absence and presence of control antibodies 

anti-GAPDH and anti-His6.  10 mM sodium phosphate buffer, pH 6.0, 300 mM KCl was used 

in both experiments. The applied potential was +50 mV.  Neither the addition of mAb to (a) 

OmpG D224C nor the addition of anti-His, anti-GAPDH mouse mAb to (b) OmpG-Peg2-biotin 
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Figure 1.12. Analysis of kinetic parameters of mAb binding to OmpG-PEG2-biotin. 
Histograms of the dwell time and the inter-event duration of these events were fitted with 

single exponential decay function to derive the average time constants.   
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1.4.4 Influence of voltage on the mAb binding  

OmpG exhibits asymmetrical gating pattern at positive and negative voltages, 

where at one voltage it generates a “quiet” gating pattern while at the opposite voltage it 

generates a “noisy” pattern.50 Therefore, we were interested to see if the polarity of the 

voltage could similarly affect the dynamic motion of loop 6 during the mAb bound state. 

Figure 1.13a shows that mAb binds to OmpG-PEG2-biotin at both +50 mV and -50 mV. 

The open probability of the mAb bound state at +50 mV and -50 mV is 0.52±0.04 (n=6) 

and 0.40±0.09 (n=6) respectively, in comparison to 0.73±0.04 (n=6) and 0.71±0.01 (n=3) 

of the non-binding or unbound state. Thus in the mAb bound state, the pore switched to 

a more closed state at both negative and positive potentials (Figure 1.13).  In addition, 

the decrease in OmpG open probability was more significant in the mAb bound state 

when a negative voltage was applied i.e. a 30% open probability decrease at negative 

voltage vs a 20% decrease in open probability at positive voltage.   

The OmpG-PEG2-biotin pore also showed a decreased current (amplitude) by 

1.2±0.4 pA (n=3) at its fully open state at -50 mV. This decrease is ~5.4% of the initial 

current of a non binding state in comparison to the 13.6% decrease in current at the 

positive potential in the bound state. Moreover it had a partial closure state with 6 pA of 

residual current as indicated by the red arrow in the recording trace and all current 

histograms (Figure 1.13b). This result shows that the loop gating during the mAb bound 

state is still significantly influenced by the polarity of the applied potential. This is a useful 

feature that can be used for sensing because the asymmetric response of OmpG to 

target protein binding adds one more parameter for specific analyte protein recognition.  
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Previous studies on nanopore detection have shown that voltage could alter 

analyte binding kinetics.28,43,58 Therefore, single channel recording was performed at 

applied voltages ranging from -50 mV to +50 mV in the presence of mouse mAbs.  The 

voltage-dependent gating of OmpG prevented us from testing higher potentials as 

OmpG tends to close completely at ±75 mV.46  Neither τon nor τoff exhibited a strong 

dependence on voltages (Figures 1.13c, 1.13d, 1.14). Thus, we concluded that the mAb 

binding to biotin is not affected at applied potentials ranging from -50mV to +50 mV.  The 

independence of binding from voltage at this range is advantageous since proteins can 

be analyzed regardless of the applied potential.   

 

Figure 1.13. Effect of voltage on the mAb binding. (a) Representative single channel 
recording trace of OmpG-PEG2-biotin showing reversible binding of mAb at both +50 mV and 
-50 mV.  We define the positive potential as the potential of the chamber where the loops are 
located is positive.  The measurement was performed in buffer, 10 mM sodium phosphate, 
pH 6.0, 300 mM KCl in the presence of 10 nM mAb.  (b) Representative single channel 
recording traces of OmpG-PEG2-biotin at the unoccupied or mAb bound states at +50 mV 
and -50 mV.  All current histogram of the corresponding current recording traces are also 
shown. The green and red dashed lines emphasize the shift of the fully open states in current 
at unoccupied and mAb bound states respectively. The positive potential caused a larger shift 
of the open state current than the negative potential.  (c) (d) Voltage independence of 1/τon 
and 1/τoff. The measurements were performed in buffers 10 mM sodium phosphate buffer, pH 
6.0, 300 mM KCl in the presence of 10 nM mAb at various applied voltages ranging from -50 
mV to +50 mV.   
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Figure 1.14. Analysis of kinetic parameters of mAb binding to OmpG-Peg2-biotin at 
various applied voltages. Histograms of the inter-event duration (τon) and dwell time (τoff) of 

mAb binding events were fitted with single exponential decay function to derive the average 

time constants.   
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1.4.5 Simultaneous detection of mouse mAb and goat polyclonal anti-biotin 

antibodies  

Although the antibody and streptavidin both bound the biotinylated OmpG, they 

produced remarkably unique gating patterns.  We wondered how sensitive the OmpG 

sensor would be to various factors such as a protein’s size, shape, surface charge or 

rigidity. In an attempt to distinguish between these, we analyzed the binding of a 

polyclonal anti-biotin antibody derived from goat. The polyclonal antibody alone did not 

induce a change in ionic current of the unmodified OmpG D224C pore (Figure 1.15), 

also no change in gating patterns were seen when antibodies and streptavidin were 

added sequentially to unmodified OmpG D224C (Figure 1.16).  

Figure 1.15.  Representative traces of single channel recording of OmpG D224C in the 
presence of polyclonal anti-biotin antibody (pAb). OmpG D224C pores were recorded for

2 hours after the addition of 200 nM pAb at +50 and -50 mV. Buffer 10 mM sodium phosphate 

buffer, pH 6.0, 300 mM KCl was used.  No detectable change in the gating pattern of the pore 

was observed.   
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However to our surprise, the polyclonal antibody produced gating patterns 

distinct from the structurally very similar mAb tested earlier (Figures 1.17a, 1.17b).  

Furthermore, the polyclonal sample showed clear evidence that at least two readily 

distinguished populations of antibody were present (Figures 1.17b, 1.17c).  We 

categorized their gating activities into two classes, called type I and type II.  During type I 

binding (pAb.1) the current decreased by 50% and contained few gating events. During 

type II (pAb.2) binding events, the open state conductance was unchanged but the 

 

Figure 1.16. A complex mixture of biotin binding proteins elicits no effect on the gating 
of OmpGwt. The gating behavior of OmpGwt was recorded after each biotin binding protein 

was subsequently added to the chamber in which loop 6 was located.  As shown in the figure, 

the gating behavior of OmpGwt never changes even after adding several biotin binding 

proteins into the same chamber.  The behavior was recorded for 1 hour.  10 mM sodium 

phosphate buffer, pH 6.0, 300 mM KCl was used.   
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gating frequency was slightly reduced (Figures 1.17c, 1.17d).  Mouse mAb was then 

added to the chamber already containing pAb and the binding was observed (Figure 

1.17b).  All types of antibodies bound with their respective characteristics regardless of 

the presence of the other antibodies.  This is the first example of a nanopore than can 

distinguish between three antibodies with virtually identical shape in a complex mixture.   

 

 
1.4.6 Power spectrum analysis and fingerprint of analyte protein binding signal 

Nanopore sensing often relies on blockade amplitude and/or the mean duration 

time of binding to discriminating target molecules. For the OmpG nanopore, the binding 

 

Figure 1.17. Detection of mouse mAb and polyclonal Ab binding by OmpG-PEG2-biotin 
pore. (a) Schematic model of simultaneous detection of multiple target proteins by OmpG 
nanopore. (b) Representative current trace of a single OmpG-biotin. The measurement was 
performed in the presence of mouse mAb (1 nM) and goat pAb (72 nM) in 10 mM sodium 
phosphate, pH 6.0, 300 mM KCl at applied potential of +50 mV. The mAb and polyAb binding 
events were highlighted in colors, i.e. mAb in red, pAb. 1 in green and pAb.2 in blue. (c) 
Representative current recording trace of OmpG-PEG2-biotin pore at the unoccupied and mAb 
and polyAb bound states. (d) All current histogram of the corresponding current recording 
traces.   
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of analyte not necessarily induced a current blockage. Instead, alteration of the 

gating/noise of OmpG was indicative of the interaction. To compare the streptavidin 

binding with other biotin-binding proteins under the same condition, streptavidin 

experiments were re-performed in 10 mM sodium phosphate, pH 6.0, 300 mM KCl 

(Figure 1.18). Electrical traces under this condition were used to derive the power 

spectra and the fingerprint characteristics.   

 

 

Noise spectral density analysis of all OmpG constructs alone were obtained and 

showed very small changes in noise (Figure 1.19a).  Noise spectral density analysis of 

each biotin-binding protein in the bound state revealed that mAb showed a higher noise 

than the unbound state. pAb.1 exhibited the lowest noise while the level of streptavidin 

and pAb.2 was between that of pAb.1 and the unbound state (Figure 1.19b).   

 

Figure 1.18. Detection of streptavidin by OmpG-PEG2-biotin pore. (a) Schematic model 

showing the OmpG-PEG2-biotin. (b) Representative single channel recording traces of the 

OmpG pores before and after the addition of the streptavidin (3 nM). The measurements 

were performed in buffer 10 mM sodium phosphate buffer, pH 6.0, 300 mM KCl at +50 mV.  

(c) All current histogram of the corresponding traces in (b). (d) 2D histogram of the gating 

events of the bound and unbound state.   
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Figure 1.20. Gating events fingerprint analysis. The current recording traces were analyzed 

by Clampfit 10.3 using single channel search to identify gating events which were defined as 

current blockages larger than 2pA (4% of fully open pore current). The open probability was 

calculated as the time the pore stays in the open state divided by the recording time. The 

gating frequency was calculated as the number gating events divided by the recording time. 

The average inter-event duration (τon) and event duration (τoff) were obtained by fitting the 

histogram of these duration values with single exponential function the same as in Figure 1.6 

and 1.12. The open pore current is indicated with a blue dashed line. 

 

 

Figure 1.19. Comparison of the gating patterns of OmpG-PEG2-biotin at analyte binding 
states.  (a) Power spectra of the OmpG constructs.  (b) Power spectra of protein-binding 

states for four biotin-binding proteins with OmpG-PEG2-biotin.  Electrical recording traces were 

obtained in 10 mM sodium phosphate buffer, pH 6.0, 300 mM KCl at +50 mV. 

  



47 

 

However, spectral noise analysis alone is insufficient for analyte identification.  For 

example, the mAb-bound state was similar to the unbound state and the open pore 

current cannot be seen by noise analysis. To thoroughly analyze the characteristics of 

the traces at the analyte binding state, we analyze five parameters: (i) open probability, 

(ii) gating events frequency, (iii) inter gating event duration, (iv) duration of gating events 

and (v) the open state conductance to identify the protein by a specific fingerprint 

characteristic (Figure 1.20).  We quantified the gating characteristics for each biotin-

binding protein and summarized the results into Table 1. We then generated a fingerprint 

graph for each analyte based on the results in Table 1 (Figure 1.21) and found that the 

OmpG-biotin sensor can unambiguously detect and discriminate between the four biotin-

binding proteins that we tested, including three antibody species (two pAb and one mAb) 

that share highly homologous structures.   

 

Table 1.1. Fingerprint of each type of gating events using the OmpG-PEG2-biotin pore 

 
Open 

probability 

Event 

frequency  

(s-1) 

Inter-event 

duration 

(ms) 

Gating 

duration 

(ms) 

Relative 

conductance 

of open state 

(%) 

No binding 0.73±0.04* 97±3.6 8.68±2.14 2.93±0.52 100 

Streptavidin 0.95±0.08 45±7 22.75±3.2 0.62±0.19 100±4.2 

mAb 0.52±0.04 201±103 3.67±1.57 4.20±1.90 86.4±1.3 

pAb.1 0.99±0.01 7±1 n/a n/a 52.3±4.7 

pAb.2 0.94±0.02 57.5±2 12.2±1.3 1.09±0.21 106.5±6.5 

*Values were calculated from at least three independent experiments. The errors 
indicate the standard deviation.  
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1.5 Discussion 

Since proteins of the same size and shape produce unique signals, we 

hypothesize that the OmpG sensor recognizes unique targets based on other factors 

such as charge, hydrophobicity or perhaps post-translational modification of the surface.  

The structure of OmpG, along with the data presented here, sheds some light on the 

possible mechanism of protein detection via the nanopore strategy.  Although the four 

biotin-binding proteins trigger a characteristic gating pattern upon binding to the OmpG 

nanopore, they can be categorized into two groups.  In pAb.2 and streptavidin cause a 

decreased gating frequency, which suggests binding to the PEG2 tethered biotin 

hindered the dynamics of the loop 6. According to the crystal structure, the D224 residue 

traverses approximately 7.5 Å between the open and closed states.47 However, a recent 

NMR study of OmpG shows this residue may migrate as far as 30 Å between the fully 

open and closed conformers.49,59  Our results suggest that such a large conformational 

change is strongly hindered by streptavidin binding and moderately by pAb.2 binding. 

 

Figure 1.21. Fingerprints of the four biotin binding proteins. The gating events of different 
analyte protein binding states were characterized by five parameters, i.e. open probability, 
gating frequency, inter-event duration, event duration and the conductance of the open pore 
state.  Changes of these parameters relative to the no binding state generate the fingerprint 
unique for each protein.  
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The results also suggest minimal interaction between the streptavidin and pAb.2 with the 

loops at the opening of OmpG.   In another category, mAb and pAb.1 both caused a 

decrease of current in the fully open state. This observation suggests that the two 

antibodies obstruct the current flow at the entrance, presumably by partially docking to 

the extracellular loops of OmpG. Because all seven loops at OmpG’s entrance are net 

negatively charged, the two antibodies are likely positively charged or have a positively 

charged patch near the biotin-binding site that mediate this interaction. This speculation 

is supported by the observation of mAb’s asymmetrical behavior under an applied 

potential.  Namely, a positive potential might push the mAb closer towards the OmpG 

pore to cause 13.6% partial block of the current (Figure 1.13). In contrast, at negative 

potential, the electric field would repel mAb away from the pore entrance. Indeed, we 

observed that the open pore conductance was less affected, only ~5.4% blockage seen. 

These results suggest that not only the ligand-tethered loop, but all the loops on the 

extracellular entrance may be involved in sampling the target proteins, which explains its 

ability to discriminate between highly structurally homologous proteins.  Our data 

suggests a novel mechanism underlying OmpG nanopore sensing that contains two 

steps (Figure 1.22). First, OmpG captures the target protein via its tethered high-affinity 

ligand. Consequently, the bound protein interferes with the movement of loop 6 

generating its characteristic gating pattern. Second, the extracellular loops of OmpG 

may sample the target protein via unspecific interactions which further alters the ionic 

current providing additional readout. While further study is required to delve deeper into 

the precise mechanism of protein detection, our sensor’s ability to discriminate between 

structurally homologous antibodies within a multi-component mixture represents a 

powerful advance over previous approaches. 
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Previously, the detection of streptavidin and anti-biotin antibody was 

demonstrated using αHL that contained a PEG biotin group tethered to its vestibule.30  In 

the absence of the target, the PEG polymer traversed through the constriction site from 

the cis and trans chamber and back through the pore. This movement was manifest as 

rapid gating. Analyte protein binding of the biotin group eliminated the gating and 

provided the readout signal for protein sensing. In contrast to our OmpG nanopore, αHL-

biotin sensor did not differentiate binding events derived from streptavidin and mAb 

which differ greatly in size, shape and surface properties. Two features of OmpG may 

contribute to its higher resolution compared to αHL (Figure 1.23). The first is the location 

of the constriction site which is the narrowest part of the pore that determines the 

conductance. The constriction site of OmpG-PEG2-biotin is located at the entrance to the 

pore next to the ligand interaction site while the location of the constriction site of αHL is 

 

Figure 1.22. Schematic model illustrating the interactions between OmpG nanopore and 

analyte protein.  The proposed principle of OmpG nanopore sampling and detection of a 

protein analyte via interactions with the OmpG loops. 
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in the middle making it inaccessible for large folded analyte protein. Because of this, 

analyte protein binding at the pore entrance directly affected the conductance of OmpG 

but not αHL.  Secondly OmpG has flexible loops at the binding site which allows 

conformational changes to occur in response to analyte protein binding. Instead, αHL 

possesses a rather stable and rigid structure at the two ends.60  Although the biotin-

binding proteins might also interact with the two entrances of αHL nanopore, the rigidity 

of the αHL structure does not allow large conformational changes to occur, so the 

interaction of different target proteins with the entrance did not induce noticeable 

changes in the current flow that passed through the constriction site.   

 

Our study points out an alternative design in the architecture of nanopore 

sensors. By creating a nanopore with a dynamic structure that changes upon analyte 

binding, new regions of data may be interpreted that give a greater sensitivity and 

            
 
Figure 1.23. Structures of αHL and OmpG. The side view shows a cross-section of both 
proteins to reveal the constriction site. For αHL, the constriction site is located in the middle of 
the pore. In contrast, the narrowest site of the pore is located at the top entrance of OmpG. The 
top view structures show that αHL has β-strands packing into a highly ordered structure at its 
entrance while OmpG contains seven flexible loops. 
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selectivity for detecting protein analytes. We have shown that even protein isoforms in a 

mixture can be clearly distinguished using this new sensing scheme.  These features are 

not available in other nanopore sensing strategies, making the OmpG sensor particularly 

useful. Further, monomeric proteins such as OmpG are ready to use after refolding and 

require no further assembly and purification steps compared to other oligomeric 

nanopores.   

 
1.6 Conclusion 

We have shown that binding of target protein to an OmpG-biotin nanopore can 

be deduced from changes in the gating activity of OmpG. The principle of the OmpG 

nanopore relies on detecting the modulation of loop dynamics upon target protein 

binding rather than the occupation in the pore lumen.  More importantly, the OmpG 

nanopore exhibited the ability to resolve protein homologues that share the same high-

affinity ligand, making this sensing approach well suitable for screening for homologous 

disease markers in complex mixtures. In the future, this principle may be extended to a 

broader spectrum of analytes, such as proteins, viruses, or bacteria without the need to 

use a far larger nanopore.  
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CHAPTER 2  

ELECTROSTATIC INTERACTIONS BETWEEN OMPG NANOPORE AND 

ANALYTE PROTEIN SURFACE CAN DISTINGUISH BETWEEN 

GLYCOSYLATED ISOFORMS 

Reprinted (adapted) with permission from M. A. Fahie and M. Chen, “Electrostatic 

Interactions between OmpG Nanopore and Analyte Protein Surface Can Distinguish 

between Glycosylated Isoforms,” J. Phys. Chem. B, vol. 119, no. 32, pp. 10198–10206, 

2015. Copyright 2015 American Chemical Society. 

2.1 Summary 

The flexible loops decorating the extracellular entrance of the OmpG nanopore 

especially the longest loop, L6, move dynamically and rapidly during ionic current 

recording.  The current fluctuations or gating caused by these flexible loops are usually 

altered when a specific target protein is bound.  We previously attached a ligand onto L6 

and observe changes in OmpG gating when target proteins are bound.  The gating is 

characterized by parameters including frequency, duration and open-pore current and 

these features combine to reveal the identity of a specific analyte protein.  Each analyte 

protein generates a specific gating fingerprint.  Here, we show that OmpG nanopore 

equipped with a biotin ligand can distinguish glycosylated and deglycosylated isoforms 

of avidin by their differences in surface charge.  Our studies demonstrate that the direct 

interaction between the nanopore and analyte surface, induced by the electrostatic 

attraction between the two molecules, are essential for protein isoform detection.  Our 

technique is remarkably sensitive to the analyte surface, which may provide a useful tool 

for glycoprotein profiling. 
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2.2 Introduction 

Conventional nanopore sensing is based on the modulation of ionic current 

flowing through a nano-scale pore as an analyte translocates through the opening.1,2  

Nanopores come in two main flavors: biological and synthetic.  Protein nanopores, which 

make up the largest class of biological nanopores, are usually derived from pore-forming 

proteins with well-defined structures at atomic precision. Solid-state nanopores that are 

fabricated from synthetic material, have the advantage of being robust and easily 

integrated into microelectronics.  Although the technique has been extensively explored 

for the detection of nucleic acids and single-molecule DNA sequencing,3–5 nanopores 

are also particularly useful for detecting protein molecules.6,7 Nanopore-based detection 

of protein analytes has used various strategies, including: i) translocation of native 

analytes through unmodified8 and modified pores;9,10 ii) binding of native proteins to 

nanopores either directly or via tethered high-affinity binding sites such as aptamers,11–13 

ligands14,15 and peptide binding sequences16 and iii) binding of proteins to an auxiliary 

polymer in solution which alters the translocation of polymers through nanopore.17–19 As 

a single molecule analytical tool, nanopores have been used to investigate the 

biochemical and biophysical properties of proteins, e.g. folding20 and unfolding,21–23 

protein aggregation,24 ubiquitin linkage type,25 and enzymatic activity.17,26 Recently, the 

unfolding and threading of a protein through a nanopore by an unfoldase demonstrated 

the unidirectional and processive translocation of a linearized peptide strand which 

opens the possibility for nanopore-based protein sequencing.27,28 Another study used a 

nanopore to identify phosphorylation sites by threading.29  

Despite these advances, it remains a challenge to detect a single protein in a 

complex analyte mixture. Bell et al. have recently addressed this problem by introducing 

DNA carriers containing precisely positioned protein binding sites along a double 

stranded DNA.18 Binding of target proteins to the DNA carrier altered the current 
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signature when it translocated through a glass solid-state nanopore. Using this 

approach, they demonstrated that a single protein species can be identified in a protein 

mixture. Recently, we have explored an alternate nanopore sensing scheme based on 

outer membrane protein G (OmpG).30 OmpG from Escherichia coli (E. coli) is a β-barrel 

protein with 14 strands connected by seven short turns on the periplasmic side and 

seven long loops on the extracellular side (Figure 2.1a).31–33 Loop 6 moves dynamically, 

switching the protein between open and closed conformations resulting in gating signal 

in the current recording (Figure 2.1b).34–36 Previously we showed that the flexible 

architecture of the OmpG nanopore can be used to resolve between structurally 

homologous protein analytes in mixtures.30 Specifically, upon binding to a biotin group 

tethered to loop 6, a mixture of anti-biotin antibodies raised from different host species 

was clearly distinguished. Each antibody species was identified by its unique gating 

fingerprint and no interference from the other antibodies was observed. So far, no other 

nanopore has shown the ability to differentiate among a mixture of proteins that bind to 

the same high affinity ligand and share similar structural organization. The principle 

behind such high selectivity in OmpG is intriguing. It was previously speculated that the 

antibodies not only bind the biotin ligand but also non-specifically interact with the OmpG 

loops.30 The latter plays an essential role in distinguishing among similar analytes.  

Here, we probe the nature of non-specific interactions between OmpG and target 

proteins. To do so, we interrogate the interaction between the loops of OmpG and three 

homologous biotin binding proteins, streptavidin, avidin and extravidin. Our results reveal 

that electrostatic forces may be the dominating inter-molecular interaction between the 

OmpG nanopore and the target protein. Such interactions between the positively 

charged target protein surface and the negatively charged loops of the OmpG sensor 

are essential for decimating among protein homologous and isoforms. 
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2.3 Materials and Methods 

Reagents were purchased from Fisher Scientific and Boston Bioproducts unless 

otherwise stated. The biotin-peg-maleimide reagent, EZ-Link Maleimide-PEG2-Biotin 

(Cat# 21902BID), was purchased from Piercenet (Thermo Scientific).  Streptavidin (Cat# 

Z7041) was purchased from Promega.  Avidin (Cat# A9275) and extravidin (Cat# 

E2511) were purchased from Sigma.  Diphytanoylphosphatidylcholine (DPhPC, Cat# 

850356P) were from Avanti polar lipids. Octyl-glucoside (OG, Cat# O-110-5) and tris(2-

carboxyethyl)phosphine (TCEP, Cat# TCEP5) were purchased from GoldBio 

Technology.  Disposable capillary cells (DTS1070) for zeta potential measurement were 

purchased from Malvern Instruments.  Anion exchange columns Hi-Trap QFF (Cat#17-

5156-01) and desalting columns (Cat#17-1408-01) were purchased from GE Healthcare.  

Protein ladder (P7702S) was purchased from New England Biolabs (NEB).   

 
2.3.1 Zeta potential Measurement 

Proteins (previously dissolved in deionized water at at least 1 mg/ml) were 

diluted to a final concentration of 0.1 mg/ml in 5 mM buffered solution. Sodium acetate, 

sodium phosphate and N-cyclohexyl-3-aminopropanesulfonic acid (CAPS) buffers were 

used to obtain the zeta potential values of the proteins at pH 4, 6 and 10 respectively. 

Protein solutions were passed through a 0.22 µm filter to remove any insoluble 

precipitates prior to analysis with Zetasizer Nano instrument (Malvern Instruments). 

Three replicates were measured and then averaged. The error values show the standard 

deviation of the three measurements.  

 
2.3.2 Purification of OmpGD224C 

OmpGD224C was constructed as previously described.30  OmpGD224C plasmid 

was expressed in BL21 (pLys) E. coli chemically competent cells and allowed to grow to 

an optical density (OD600) of 0.5-0.6 at 37°C in LB-ampicillin media.  The culture was 
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then induced with 0.5 mM IPTG for 3 hrs at 37°C.  After induction, the culture was 

harvested.  The harvested pellet was lysed in buffer  containing 50 mM Tris-HCl pH 8.0, 

1 mM EDTA, 2 mM TCEP, 200 µg/ml lysozyme at ~23°C for 15 mins and then sonicated 

on ice for 8 mins.  The lysate was centrifuged 15 mins at 13,000 rpm, 4°C and the 

supernatant was discarded.  The inclusion body pellet was resuspended in wash buffer 

containing 1.5 M Urea, 50 mM Tris-HCl pH 8.0, 2 mM TCEP for 10 mins at ~23°C.  

Thereafter the pellet was obtained after centrifugation at 13,000 rpm for 15 mins.  The 

inclusion body was then solubilized in binding buffer (8.0 M Urea, 50 mM Tris-HCl pH 

8.0, 2 mM TCEP) with constant stirring for 15 mins at ~23°C.  This solubilized inclusion 

body was then centrifuged for 15 mins at 13,000 rpm.  The supernatant was passed 

through a 0.45 µm filter before FPLC purification.  OmpG was purified using anion 

exchange with binding and elution buffer (8.0 M Urea, 50 mM Tris-HCl pH 8.0, 2 mM 

TCEP, 500 mM NaCl). 

 
2.3.3 Labeling and refolding of OmpG-biotin proteins 

OmpG proteins were desalted in buffer 50 mM HEPES pH 7.0, 200 mM NaCl, 

8.0 M Urea to remove the TCEP and Tris-HCl buffer.  The protein concentration of 

OmpG D224C was estimated by Bradford assay and then incubated with maleimide-

PEG2-biotin in a molar ratio 1:10 (protein to biotin) at room temperature (~23°C) for 1.5-2 

hours with constant shaking. The reaction mixture was passed through the desalting 

column once again to remove the unconjugated biotin. The biotin labeled OmpG was 

then diluted with refolding buffer 50 mM Tris-HCl, pH 9.0, 3.25% OG in 2:3 volume ratio 

(OmpG to refolding buffer). Samples were then incubated at 37°C for 3 days. The 

biotinylation and refolding efficiency was determined by gel shift assay with and without 

streptavidin and visualized by SDS-PAGE. 
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2.4 Results 

 
2.4.1 Discrimination among Avidin Homologues  

The OmpG-PEG2-biotin nanopore was constructed as previously described 

(Figure 2.1).30 First, we investigated the ability of OmpG nanopore to detect the three 

biotin-binding protein homologues. Streptavidin from Streptomyces avidinii and avidin 

from egg white share ~45% sequence similarity. They have very similar structures, 

molecular weights and both exhibit high affinity (dissociation constant ~ 10-15 M) for the 

biotin ligand.37 Avidin has a basic isoelectric point (pI~10.5) due to its N-linked glycan 

composed largely of mannose and N-acetylglucosamine.38 Streptavidin is a non-

glycosylated protein with a pI of ~6.3. Extravidin is a commercially available 

deglycosylated form of avidin with a pI ~6.4, similar to that of streptavidin.  

 

As a negative control and specificity test, all three biotin binding avidin proteins 

(unless otherwise stated) were added to unlabeled OmpGwt.  Neither of the proteins 

produced any noticeable change in the wild type OmpG gating behavior indicating that 

 

Figure 2.1. Schematic diagram of the OmpG nanopore sensor. (a) OmpG-PEG2-biotin 

pore. A biotin was tethered to a cysteine residue located on loop 6 (highlighted in blue) via a 

polyethylene glycol linker that could extend the biotin away from the nanopore by 30 Å. (b) A 

representative current trace of OmpG-PEG2-biotin nanopore. Buffer used was 10 mM sodium 

phosphate, pH 6.0, 300 mM KCl.  
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any change in gating signal seen when the OmpG-biotin sensor is used is specific 

binding of the analyte proteins used (Figure 2.2).  

 

As observed previously,23 streptavidin binding to OmpG-PEG2-biotin resulted in 

an irreversible decrease in OmpG’s gating frequency (Figure 2.3a). By contrast, when 

avidin was bound to OmpG-PEG2-biotin the gating frequency increased from 160±24 s-1 

to 227±26 s-1 (Table 2.1). More importantly, avidin binding resulted in a permanent 

 

Figure 2.2. Single channel current traces of OmpGwt in the presence of streptavidin 
homologues at various buffer conditions.  OmpGwt in the absence (a) and presence (b) of 
streptavidin homologues in 10mM sodium phosphate, pH 6.0, 300mM KCl buffer.  Streptavidin 
homologues do not affect OmpGwt gating behavior in 10 mM sodium acetate pH 4.0 1.0 M 
KCl buffer (c, d) 10 mM CAPS pH 10.0, 300 mM KCl (e, f) nor 10 mM CAPS pH 10.0, 4.0 M 
KCl (g, h) buffers.  
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decrease in the open pore current from 25.8±2.7 pA to 13.8±1.1 pA (n=3) (Figure 2.3b).  

When extravidin was tested its addition resulted in three different effects in OmpG 

gating.  These three populations were categorized by their effect on OmpG open pore 

current specifically. The majority (10 of 19 trials) of extravidin binding events caused a 

gating behavior that was similar to that of streptavidin (Figure 2.3a, 2.3c): the gating 

frequency decreased from 160±24 s-1 to 30±9 s-1 and unlike avidin, the open-pore current 

was not affected. We refer to this population of extravidin as E1. 

 

Two minor populations, termed extravidin 2 – E2 (6 of 19 trials) and extravidin 3 

– E3 (3 of 19 trials), caused a differential decrease in the open pore current with E3 

showing an effect similar to that of avidin while E2 showed an effect intermediate 

between E1 and E3 (Figure 2.4).  The E2 population induced a slightly decreased open 

pore current but reduced OmpG gating in a fashion similar to that of streptavidin (Figure 

2.4a).  We surmise that the extravidin gating population data may reflect sub-populations 

in the protein sample that have different levels of deglycosylation.  The E3 population for 

example seems similar to fully intact, fully glycosylated avidin (Figure 2.3b, 2.4b).  E1 

was most similar to streptavidin and could therefore be fully deglycosylated while E2 

 

Figure 2.3. Detection of biotin binding protein homologues by OmpG-PEG2-biotin 
nanopore. (a, b, c) Typical current recording traces of streptavidin (a), avidin (b) and extravidin 
(c) bound to OmpG-PEG2-biotin at +50 mV in 10 mM sodium phosphate, pH 6.0, 300mM KCl 
buffer. Red and green dashed line indicates the open pore current before and after analyte 
protein binding. The relative open pore current of analyte bound state to unbound state is 
indicated above the dashed line.  
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may represent several partially deglycosylated forms. Because of the variability of 

extravidin’s gating patterns, we focused mainly on data that represent the E1 

characteristics for the following experiments.  

 

Noise spectral density analyses showed that streptavidin (red) and extravidin E1 

(orange) had similar spectra which was lower in noise than the unbound pore (black), 

while avidin binding (blue) induced an even lower noise amplitude which was most likely 

due to its significantly reduced open pore current compared to the unbound pore (Figure 

2.5a).   

We then generated a fingerprint profile for each analyte using five parameters of 

OmpG gating.  The relative change of these parameters after analyte binding compared 

to the unbound state determined the fingerprint of the protein. Clearly, avidin showed a 

distinct fingerprint in comparison to streptavidin and extravidin E1 (Figure 2.5b).  The five 

parameters of OmpG gating included: open probability, gating frequency, inter-event 

duration, event duration and open pore current (Figure 2.5c, Table 2.1).23  To our 

knowledge, this is the first report that demonstrates the discrimination of glycosylated 

protein isoforms using protein nanopores. 

 

Figure 2.4. Detection of extravidin subpopulations by OmpG nanopore.  (a) OmpG-
PEG2-biotin in the absence and presence of extravidin 2 (E2) analyte, where the open pore 
current reduces to 85%. (b) OmpG-PEG2-biotin bound to extravidin 3 (E3) variant, where the 
open pore current reduces to 66%.  All pores were recorded in buffer containing 10mM 
sodium phosphate pH 6.0, 300mM KCl at +50mV.   
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Table 2.1. Gating characteristics for streptavidin, avidin and extravidin. 

 
Open 

probability 

Gating 
frequency 

(s-1) 

Inter-event 
duration  

(ms) 

Event 
duration 

(ms) 

Open pore 
conductance 

(pA) 

No binding 0.83±0.08 106±24 8.5±2.1 0.83±0.18 24.8±4.4 

Streptavidin 0.95±0.03 56±6 27.6±7.8 0.32±0.01 23.6±3.5 

Avidin 0.89±0.08 227±26 7.5±2.1 0.46±0.09 14.6±1.7 

Extravidin 0.95±0.03 30±9 29.1±0.4 0.29±0.06 21.7±5.7 

Values were calculated from at least three independent experiments that were carried out in 
buffer 10mM sodium phosphate pH 6.0, 300 mM KCl at +50 mV. The errors indicate the standard 
deviation. 

 

Figure 2.5. Spectral and fingerprint analysis of OmpG nanopore bound to the 
streptavidin homologues.  (a) Power spectra and (b) fingerprint analysis of before and after 
target bound to OmpG-PEG2-biotin.  (c) Single channel recording of a representative trace of 
the gating behavior of OmpG-PEG2-biotin in buffer 10mM sodium phosphate pH 6.0, 300mM 
KCl.  Three parameters of OmpG gating behavior are highlighted: event duration (red), inter-
event duration (green) and open pore conductance. The gating event frequency is defined as 
the number of events per second.  The open probability is the duration of the pore in the open 
state over unit time. The fingerprints obtained for OmpG in the unbound and bound states (5b) 
are derived from these five parameters.   
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 Because avidin has an identical amino acid sequence to extravidin and is 

homologous to streptavidin with a 41% sequence similarity, their key difference lies in 

the glycosylated vs non-glycosylated states which directly affects their unique surface 

charges.  At pH 6.0, the zeta potential of avidin is 7.8±0.9 mV making it positively 

charged while streptavidin and extravidin are negatively charged with a zeta potential 

value of -7.0±0.5 mV and -8.0±1.9 mV respectively (Table 2.2).   

 
Table 2.2. Zeta potential measurements of analyte proteins under various pH conditions 
 

pH 
Zeta potential value (mV) 

Streptavidin Avidin Extravidin 

4.0 2.5±0.8 7.8±1.5 1.0±0.5 

6.0 -7.0±0.5 7.8±0.9 -8.0±1.9 

10.0 -18.3±5.0 -0.2±0.4 -13.3±3.0 

 Values were calculated from at least three independent experiments. The errors indicate the 
standard deviation. 

 
Our experiments suggest that a positive charge on the avidin surface may be the 

key factor that caused the open-pore current to significantly reduce by ~40% when 

avidin was bound to OmpG.  The seven extracellular loops on OmpG consist of many 

charged residues including 17 aspartic acid residues (ASP), 8 glutamic residues (GLU) 

and 5 arginines (ARG) and 4 lysines (LYS).  This concentration of charged amino acid 

residues in an approximate 0.8 nm region of the pore creates a surface rich in negative 

charge (Figure 2.6).  We hypothesize that the negative charges on OmpG pull strongly 

on a positively charged region of avidin after specific binding to the biotin ligand tethered 

to loop 6.  Thus, the avidin might closely interact with the surface of the pore through 

electrostatic attractions, partially occluding ionic flow and therefore causing a reduction 

in open pore current.  In addition, the close proximity of avidin might confine the 

oscillations of loop 6 to a smaller space.  This restricted movement might explain why 

avidin binding causes an increase in gating frequency of the OmpG nanopore. 
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2.4.2 Influence of Ionic Strength on Binding 

If the reduction of open pore current is dependent on electrostatic interactions of 

the bound avidin with OmpG, then we expect this dependence to be reduced under 

charge screening conditions.  Therefore, we investigated avidin binding at various 

concentrations of salt KCl ranging from 0.3 M to 4.0 M.  We also tested 0.15 M KCl, 

however we could only detect changes in the open pore current before and after avidin 

bound to the OmpG nanopore (Tables 3.3 & 3.4).  After avidin bound to OmpG in 0.15 M 

KCl solution, the current was too small ~8 pA to accurately assign events and inter-

events.   

Evidently, with higher salt concentration, the open pore current of the unbound 

OmpG pore also increased proportionally, however, we found that the gating pattern of 

OmpG-PEG2-biotin after avidin binding was indeed influenced by the concentration of 

salt.  Specifically, as the salt concentration increased, avidin binding induced a less 

significant reduction in the open pore current (Figure 2.7).  The relative open pore 

current (of the avidin bound state) increased from 0.6±0.07 to 0.98±0.18 with increasing 

salt concentration (Figure 2.7a-e).  Thus at high salt concentrations i.e. > 1.0 M KCl the 

open pore current after avidin binding was similar to that of the unbound state.  At 4.0 M 

 

Figure 2.6. Electrostatic potential map of the extracellular loops (L1-L7) of OmpG. (a) 
Top view and (b) side view of the loop environment.  PDB file 2IWW was used.   
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KCl, there was no difference in the open pore current between the avidin bound and 

unbound states (Figure 2.7e, 2.7f).  Thus, our data suggests that electrostatic 

interactions between avidin and OmpG govern the bound-state open pore conductance 

because these interactions can be screened with excess salt.   

 

Clearly, other gating characteriscs of OmpG were also influenced by the salt 

concentration, for example the open probability generally increased with increased salt 

except at 4.0 M KCl where it decreased, while the gating frequency decreased from 0.15 

M to 0.6 M and then plateaued (Figure 2.8, Tables 2.3 & 2.4). However, as opposed to 

the open pore current, the relative changes in these parameters after avidin binding did 

not show a strong correlation with increasing ionic strength (Figure 2.8, Tables 2.3 & 

2.4).   

 

Figure 2.7. Effect of ionic strength on the gating characteristic of OmpG nanopore 
induced by avidin binding. (a-e) Typical current recording traces of OmpG-PEG2-biotin 
before and after avidin binding in buffers containing various KCl concentrations. Relative 
change in open pore current of OmpG at avidin bound state (green line) to unbound state (red 
line) is indicated in the histogram. Experiments were performed at +50 mV in 10 mM sodium 
phosphate at pH 6.0 containing KCl, the concentration of which is indicated in figures. (f) 
Fingerprint of avidin binding at various KCl concentration. 
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Figure 2.8. The effect of avidin binding on the five gating characteristics of OmpG-
PEG2-biotin in various salt concentrations.  The effect of salt concentration on OmpG 
gating characteristics in the unbound (grey) and avidin bound (blue) states (a, c, e, g, i).  The 
relative change in open probability (b), gating frequency (d), inter-event duration (f), event 
duration (h) and pore conductance (j) in the avidin bound state over several KCl 
concentrations. Values were calculated from at least three independent experiments. The 
errors indicate the standard deviation. 
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Table 2.3. Gating characteristics of avidin at various salt concentrations at pH 6.0, +50 
mV 

Salt 
concentration 
(M) 

Open 
probability 

Gating 
frequency 
(s-1) 

Inter-event 
duration 
(ms) 

Event 
duration 
(ms) 

Open 
conductance 
(pA)  

0.15 
No bind 0.84±0.06 125±11 5.2±1.5 0.52±0.08 16.3±1.0 
Avidin N/D N/D N/D N/D 8.0±1.0 

0.30 
No bind 0.83±0.08 106±24 8.5±2.1 0.83±0.18 24.8±4.4 
Avidin 0.89±0.08 227±26 7.5±2.1 0.46±0.09 14.6±1.7 

0.60 
No bind 0.90±0.07 51±6 14.0±4.9 0.48±0.02 44.6±1.6 
Avidin 0.95±0.02 68±3 9.9±0.5 0.29±0.003 34.8±1.0 

1.00 
No bind 0.93±0.01 58±14 15.1±2.4 0.61±0.01 68.2±1.4 
Avidin 0.92±0.03 95±26 8.3±1.8 0.36±0.05 59.8±1.3 

2.00 
No bind 0.92±0.05 51±7 11.7±3.1 1.52±0.18 111.8±2.4 
Avidin 0.91±0.03 89±2 10.7±2.1 0.50±0.10 104.7±3.2 

4.00 
No bind 0.71±0.12 51±11 10.1±3.0 4.40±1.30 174.2±23.3 
Avidin 0.74±0.11 68±13 10.5±2.9 1.40±0.40 171.3±20.8 

Values were calculated from at least three independent experiments. The errors indicate the 
standard deviation. 

 

Table 2.4. Fingerprint characteristics of avidin at various salt concentrations at pH 6.0, 
+50 mV 

Salt 
concentration 
(M) 

Relative 
open 
probability 

Relative 
gating 
frequency 

Relative 
inter-event 
duration  

Relative 
event 
duration  

Relative open 
conductance   

0.15 
No bind N/D N/D N/D N/D 1.00±0.06 
Avidin N/D N/D N/D N/D 0.49±0.14 

0.30 
No bind 1.00±0.09 1.00±0.23 1.00±0.25 1.00±0.22 1.00±0.18 
Avidin 1.07±0.11 2.14±0.13 0.88±0.22 0.54±0.03 0.60±0.07 

0.60 
No bind 1.00±0.07 1.00±0.11 1.00±0.35 1.00±0.05 1.00±0.04 
Avidin 1.05±0.10 1.33±0.20 0.71±0.22 0.60±0.15 0.78±0.05 

1.00 
No bind 1.00±0.01 1.00±0.24 1.00±0.16 1.00±0.01 1.00±0.02 
Avidin 0.99±0.02 1.64±0.26 0.55±0.16 0.59±0.07 0.88±0.03 

2.00 
No bind 1.00±0.05 1.00±0.14 1.00±0.26 1.00±0.12 1.00±0.02 
Avidin 0.99±0.03 1.74±0.14 0.91±0.16 0.33±0.09 0.94±0.04 

4.00 
No bind 1.00±0.17 1.00±0.22 1.00±0.30 1.00±0.30 1.00±0.13 
Avidin 1.04±0.10 1.33±0.29 1.04±0.24 0.32±0.01 0.98±0.18 

Values were calculated from at least three independent experiments. The errors indicate the 
standard deviation. 

 

2.4.3 Effect of pH on Binding 

 To further support the idea that electrostatic interactions influence the binding of 

the avidin homologues, we investigated the effect of pH on the gating signal after the 

analytes bound. Specifically, by protonating or deprotonating the loop residues at the 
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pore-protein interface, we expect the loop dynamics to change in response to the gain or 

loss of charges.  First, the binding effect of the three analytes to OmpG nanopore was 

recorded at pH 4.0.  For these experiments, we used 1.0 M KCl because the open pore 

current of OmpG in buffer pH 4.0, 300 mM KCl was on average 8 pA or less which was 

too small to allow for precise analysis of the gating parameters (Figure 2.9).   

 

Indeed the gating characteristic of the OmpG nanopore was significantly altered 

at low pH (Figure 2.10) compared to its gating behavior at pH 6.  The open probability 

significantly reduced from 0.93±0.01 at 1.0 M pH 6 to 0.34±0.07 at 1.0 M pH 4.  Thus, 

protonation of the OmpG negatively charged residues on the OmpG loops shifted the 

gating equilibria from a mainly open pore to a mainly closed pore.  However, we were 

able to detect binding of the three avidin homologues.   

At pH 4.0, avidin is strongly positively charged while streptaviin and extravidin 

have a slight net positive charge on their surfaces as indicated by zeta-potential 

measurements (Table 2.2).  When bound to OmpG all proteins shared similar gating 

features (Figure 2.10a-c): (i) a decreased open-pore current albeit to a different level and 

(ii) a significantly reduced open probability due to elongated closure events (Figure 

2.10e, Tables 2.5 & 2.6).   

As a control, we verified that none of the protein analytes bind to the wild type 

nanopore under any pH condition (Figure 2.2).  At low pH, streptavidin and extravidin 

 

Figure 2.9. OmpG generates small, closed pores in low salt, low pH buffer.  
Representative trace of an OmpG-D224C pore in 10mM sodium acetate pH 4.0, 300 mM KCl 
and recorded at +50 mV.    
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acquire positive charge and, like avidin at pH 6.0, are able to reduce the open pore 

current when bound (Figure 2.10).  As a result, the fingerprints of these three proteins 

are almost the same, suggesting that the OmpG nanopore is not able to distinguish 

among these protein analytes under acidic conditions (Figure 2.10d, 2.10e).  

 

 

Table 2.5. Effect of pH 4 on gating characteristics for streptavidin, avidin and extravidin 
at 1.0 M KCl pH 4.0, +50mV 

 
Open 
probability 

Gating 
frequency 
(s-1) 

Inter-event 
duration (ms) 

Event 
duration 
(ms) 

Open 
conductance 
(pA)  

No binding 0.34±0.07 189±28 1.44±0.39 3.1±0.8 47.0±1.3 

Streptavidin 0.21±0.05 206±39 0.98±0.19 4.5±0.2 37.5±1.0 

Avidin 0.25±0.07 211±56 0.64±0.05 3.8±0.8 39.3±1.8 

Extravidin 0.25±0.08 209±52 0.69±0.09 3.5±0.5 35.8±1.8 

Values were calculated from at least three independent experiments. The errors indicate the 
standard deviation. 

 

 

Figure 2.10. Effect of acidic pH on the gating signal of analyte proteins. (a, b, c) Typical 
current recording traces and corresponding histograms of OmpG-PEG2-biotin nanopore before 
and after binding of streptavidin (a) avidin (b) and extravidin (c). Relative open pore current of 
OmpG at avidin bound state (green line) to unbound state (red line) is indicated in the 
histogram. Experiments were performed in 10mM sodium acetate pH 4.0, 1.0 M KCl at +50 
mV. (d) Power spectra and fingerprint analysis (e) of before and after target bound to OmpG-
PEG2-biotin. 
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Table 2.6. Effect of pH 4 on fingerprint characteristics for streptavidin, avidin and 
extravidin at 1.0 M KCl pH 4.0, +50 mV 

 
Relative 
open 
probability 

Relative 
gating 
frequency 

Relative 
inter-event 
duration  

Relative 
event 
duration  

Relative 
open pore 
conductance   

No binding 1.00±0.21 1.00±0.15 1.00±0.27 1.00±0.27 1.00±0.03 

Streptavidin 0.62±0.14 1.1±0.25 0.68±0.23 1.45±0.36 0.80±0.03 

Avidin 0.67±0.18 1.12±0.23 0.47±0.13 1.23±0.04 0.84±0.05 

Extravidin 0.67±0.01 1.11±0.14 0.48±0.08 1.13±0.29 0.77±0.07 

Values were calculated from at least three independent experiments. The errors indicate the 
standard deviation. 

 

After observing that all three avidin homologues could not be distinguished by 

OmpG at acidic conditions, we then tested OmpG’s discrimination ability under basic 

conditions.  The OmpG nanopore is mainly in an open state at pH conditions above 5.0 

and so we used the original lower salt concentration of 0.3 M KCl.  At pH 10.0, OmpG-

PEG2-biotin pore fluctuates between a fully open (31.5±3.4 pA, O1), a partially open 

(23.8 pA±3.6, O2) state and gating (closed) states (Figure 2.11a-c).  We define the open 

probability as the probability of the pore staying at either fully open or partially open 

state.   

Power spectral analysis of OmpG-PEG2-biotin pore does not show a significant 

change in the noise of the unbound and analyte bound states (Figure 2.11d) at pH 10.  

However, streptavidin and extravidin binding slightly increased the open probability due 

to a 50% reduction in gating frequency and event duration (Figure 2.11e, Tables 3.7 & 

3.8).  The fingerprint pattern of streptavidin and extravidin binding are similar at pH 6.0 

and pH 10.0.  This is not surprising as the two proteins are negatively charged at both 

pH conditions.  In contrast, when avidin is bound to OmpG-PEG2-biotin the gating 

frequency increased by three fold and the open probability decreased slightly.  The open 

pore current was reduced from 31.5±3.4 pA to 16.4±4.1 pA at +50mV.  



74 

 

 

Table 2.7. Effect of pH 10 on gating characteristics for streptavidin, avidin and extravidin 
at 0.3 M KCl pH 10.0, +50 mV 

 
Open 
probability 

Gating 
frequency 
(s-1) 

Inter-event 
duration 
(ms) 

Event 
duration 
(ms) 

Open 
conductance 
(pA) 

No binding 0.94±0.05 23.4±6.6 35.4±9.8 1.35±0.30 31.5±3.4 

Streptavidin 0.95±0.03 10.2±4.2 56.5±13.1 0.63±0.09 28.5±5.9 

Avidin 0.93±0.06 68.2±18.3 25.8±8.6 1.16±0.20 16.4±4.1 

Extravidin 0.98±0.02 11.2±2.5 51.8±12.7 0.72±0.07 31.4±1.3 

Values were calculated from at least three independent experiments. The errors indicate the 
standard deviation. 

 

 
Figure 2.11. Binding of analyte proteins at pH 10. (a-c) Typical current recording traces and 
corresponding histograms of OmpG-PEG2-biotin nanopore before and after binding of 
streptavidin (a) avidin (b) and extravidin (c). Relative open pore current of OmpG at avidin 
bound state (green line) to unbound state (red line) is indicated in the histogram. Experiments 
were performed in buffer 10mM CAPS pH 10.0, 300mM KCl at +50 mV. (d) Power spectrum 
and (e) Fingerprint analysis of the three biotin binding proteins on OmpG-PEG2-biotin 
behavior. (f-h) Binding of analyte proteins at high salt concentration. Typical current recording 
traces of OmpG-PEG2-biotin nanopore and corresponding histograms before and after binding 
of streptavidin (f) avidin (g) and extravidin (h). Experiments were performed in buffer 10mM 
CAPS pH 10.0, 4.0 M KCl at +50 mV. 
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Table 2.8. Effect of pH 10 on fingerprint characteristics for streptavidin, avidin and 
extravidin at 0.3 M KCl pH 10.0, +50 mV 

 
Relative 
open 
probability 

Relative 
gating 
frequency 

Relative 
inter-event 
duration  

Relative 
event 
duration  

Relative 
open 
conductance   

No binding 1.00±0.05 1.00±0.28 1.00±0.28 1.00±0.22 1.00±0.11 

Streptavidin 1.01±0.03 0.44±0.11 1.6±0.6 0.47±0.07 0.97±0.04 

Avidin 0.99±0.09 2.90±0.27 0.73±0.16 0.86±0.40 0.53±0.09 

Extravidin 1.04±0.01 0.82±0.16 1.46±0.05 0.53±0.07 0.99±0.08 

Values were calculated from at least three independent experiments. The errors indicate the 
standard deviation. 

 
The zeta-potential measurement at pH 10 shows that the charge on the avidin 

surface approaches zero (Table 2.2).  Since the avidin still induced a strong reduction in 

open pore current at pH 10.0, we suspect that an electrostatic attraction, albeit to a 

lesser strength than at lower pH conditions, is still present between OmpG and avidin.   

One possibility to explain why electrostatic attractions between OmpG and avidin 

may still exist at pH 10 is that some of the positively charged residues on the OmpG 

loops may become deprotonated at pH 10.0.  For example, there are a total of 2 lysine 

and 3 arginine residues found in loops L2, L3, L5 and L6 of OmpG and if all are 

deprotonated, the net result would be a more negatively charged surface.  Thus, the loss 

of positive charge on avidin at high pH may be compensated by a gain of negative 

charge on OmpG’s surface.   

Alternatively, the local charge on avidin might still be positive near the biotin 

binding site even though the total charge on avidin approaches zero.  Indeed the 

glycosylation site of avidin is found on residue Asn-17 (blue), adjacent to residue Ser-16 

(gold) which comprises part of the biotin binding pocket32 (Figure 2.12) and could 

potentially interact directly with the loops of the OmpG.  
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Finally, when all proteins were tested at pH 10.0 in the presence of charge 

screening conditions (4.0 M KCl), the gating pattern of bound avidin was 

indistinguishable from streptavidin or extravidin (Figure 2.11f-h). The open probability of 

the OmpG-PEG2-biotin increased slightly from 0.87 ±0.05 to around 0.97 ± 0.02 when 

bound to any of the three protein analytes (Table 2.9). In summary, pH, ionic strength or 

both can be used to modulate the molecular interactions and hence the gating behavior 

between the loops of OmpG and bound target proteins. These findings clearly illustrate 

the role that electrostatic interactions play in OmpG’s ability to differentiate between very 

similar protein analytes. 

 

Table 2.9. Fingerprint values for bind 1 and bind 2 of streptavidin, avidin and extravidin 
at 4.0 M KCl pH 10.0, +50 mV 

 
Open 
probability 

Gating 
frequency  
(s-1) 

Inter-event 
duration 
(ms) 

Event 
duration 
(ms) 

Relative 
open 
conductance   

No binding 0.87±0.05 31.5±7.7 39.9±9.6 3.74±1.08 1.00±0.04 

All 3 0.97±0.02 9.5±2.3 92±27 0.45±0.1 0.98±0.02 
Values were calculated from at least three independent experiments for each analyte protein. The 
errors indicate the standard deviation. 

 

 

 

Figure 2.12. Proximity of the glycosylation site Asn-17 to the biotin binding pocket of 
the avidin monomer. Top view (a) and side view (b) of the biotin binding residues in gold 
with the Asn-17 residue highlighted in blue.  PDB code 1VYO was used to generate the 
images.   
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2.4.4 Influence of Applied Voltage on Bound-State Gating Behavior 

Next, we investigated how the applied potential affects the gating characteristic 

of the OmpG nanopore during the analyte bound state by varying the applied potential 

from -75 mV to +75 mV.  Here, we define the polarity of the potential relative to the 

orientation of OmpG’s loops.  A negative potential is when OmpG’s loops are on the 

negative side of the membrane relative to the positive side (Figure 2.13a).  A positive 

voltage is the opposite scenario (Figure 2.13b).  The most significant effect was 

observed using the open pore current of the avidin bound state which decreased linearly 

with increasing voltage (Figure 2.13d, 2.13g, Figure 2.14, Tables 2.10 & 2.11).  In 

addition, the gating frequency was higher at positive voltages than at negative voltages 

(Figure 2.14c, 2.14d).  Other avidin-induced changes in the gating characteristics, e.g. 

open probability, inter-event duration and event duration, appeared to be less dependent 

on applied voltage.  In contrast to avidin, there was no direct correlation between the 

gating behavior of OmpG in the streptavidin and extravidin bound states at different 

applied voltages (Figure 2.13c, 2.13e, 2.13f, 2.13h, Figure 2.14, Tables 2.10 & 2.11).   

We expect that the following phenomena could explain the dependence of the 

avidin bound state on the applied potential: electroosmosis, electrophoresis and 

electrostatics.  Molecular dynamics simulation studies indicate that the electric field is 

strongest in the center of the nanopore and becomes weaker at the entrance and 

essentially negligible outside of the pore.39,40  When the avidin molecule is captured by 

the biotin ligand it may be up to 30 Å away from the pore entrance, thus the 

electrophoretic effect may likely be negligible compared with the electroosmotic effect at 

this point.  Thus, an electroosmotic flow moving from the loop side to the periplasmic 

side might be generated at a positive potential which drives the avidin towards the 

nanopore.  At or near the pore entrance, the electrophoretic effect would bring the avidin 

analyte closer to the OmpG loops, thus promoting the electrostatic interaction between 
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the two molecules. These three effects combine to force OmpG and avidin together and 

further decrease the open pore current.  On the other hand, a negative potential has an 

opposite effect where the avidin is pushed away from the loops.  In this case the 

electroosmotic and electrophoretic effects counteract the electrostatics between avidin 

and OmpG.  As a consequence, avidin blocks the open pore current of OmpG to a 

lesser degree under an applied negative potential.  

 

 

 

Figure 2.13. Effect of voltage on the gating characteristics of OmpG at analyte bound 
state. (a, b) Schematic illustration of analyte binding at negative (a) and positive potential (b). 
(c, d, e) Single channel recording traces of OmpG-PEG2-biontin nanopore at the unbound 
(grey traces) and analyte bound state (black traces). Data were acquired in buffer 10 mM 
sodium phosphate, pH 6.0, 300 mM KCl at various applied potentials. (f, g, h) Voltage 
dependence of the open pore current in the streptavidin, avidin and extravidin bound states 
respectively.  
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Figure 2.14. Effect of voltages on the gating characteristics of OmpG-PEG2-biotin after 
analyte binding.  Absolute values of gating characteristics before and after analyte binding 
(a,c,e,g,i).  Relative change in gating characteristics after analyte binding (b,d,f,h,j).  Values 
were calculated from at least three independent experiments. The errors indicate the standard 
deviation. 
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Table 2.10. Voltage effect on gating characteristics for streptavidin, avidin and extravidin 
binding at various voltages in 300 mM KCl pH 6.0 buffer 

Voltage 
(mV)  

Open 
probability 

Gating 
frequency 
(s-1) 

Inter-
event 
duration 
(ms) 

Event 
duration 
(ms) 

Open 
conductance 
(pA)   

-75 

No 

bind 
0.83±0.06 54±11 17.2±3.9 2.43±0.52 -46.4±4.6 

Strep 0.96±0.04 8±3 46.5±9.7 0.58±0.003 -49.8±6.0 

Avidin 0.89±0.01 77±8 14.7±0.1 0.85±0.06 -37.3±1.5 

Extrav 0.98±0.01 12±3 44.8±4.0 0.25±0.05 -46.5±5.4 

-50 

No 

bind 
0.77±0.08 69±14 12.9±3.3 2.46±0.55 -27.2±5.2 

Strep 0.94±0.03 17±3 56.9±13.7 0.89±0.18 -26.7±3.3 

Avidin 0.84±0.13 89±17 13.2±1.1 1.25±0.35 -22.0±2.5 

Extrav 0.96±0.04 16±5 51.7±18.5 1.30±0.40 -24.5±7.1 

-25 

No 

bind 
0.78±0.07 74±13 11.7±2.5 2.44±0.49 -14.0±2.6 

Strep 0.97±0.02 12±3 28.6±0.3 0.45±0.07 -13.9±1.4 

Avidin 0.85±0.05 104±42 9.8±3.1 1.10±0.20 -11.0±0.8 

Extrav 0.98±0.01 15±1 31.4±4.8 0.18±0.06 -14.3±2.8 

+25 

No 

bind 
0.83±0.05 97±17 9.0±2.2 1.30±0.25 12.9±2.8 

Strep 0.98±0.02 31±4 48.9±5.4 0.33±0.02 12.5±2.9 

Avidin N/D* N/D N/D N/D 7.8±0.8 

Extrav 0.98±0.01 31±4 45.9±2.2 0.32±0.09 12.6±1.5 

+50 

No 

bind 
0.83±0.08 106±24 8.5±2.1 0.83±0.18 24.8±4.4 

Strep 0.95±0.03 56±6 27.6±7.8 0.32±0.01 23.6±3.5 

Avidin 0.89±0.08 227±26 7.5±2.1 0.46±0.09 14.6±1.7 

Extrav 0.95±0.03 30±9 29.1±0.4 0.29±0.06 21.7±5.7 

+75 

No 

bind 
0.87±0.05 103±21 8.5±1.8 0.67±0.13 38.2±7.1 

Strep 0.98±0.02 27±2 26.9±0.9 0.30±0.05 35.9±4.8 

Avidin 0.79±0.11 261±31 2.6±0.4 0.53±0.06 20.1±3.2 

Extrav 0.96±0.01 23±5 18.6±0.2 0.24±0.06 37.8±4.6 

*Avidin characteristics at +25 mV were not determined because after avidin binding, the 
conductance was too small to accurately calculate the gating characteristics other than pore 
conductance. 

Values were calculated from at least three independent experiments. The errors indicate the 
standard deviation. 
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Table 2.11. Voltage effect on fingerprint characteristics for streptavidin, avidin and 
extravidin binding in 300 mM KCl pH 6 buffer 

Voltage 
(mV) 

 
Relative 

open 
probability 

Relative 
gating 

frequency 

Relative 
inter-
event 

duration 

Relative 
event 

duration 

Relative open 
conductance 

-75 

No bind 1.00±0.07 1.00±0.19 1.00±0.23 1.00±0.21 1.00±0.10 

Strep 1.16±0.08 0.16±0.05 2.72±0.59 0.24±0.05 1.07±0.10 

Avidin 1.07±0.16 1.42±0.25 0.85±0.07 0.35±0.11 0.86±0.05 

Extrav 1.18±0.09 0.22±0.01 2.60±0.55 0.10±0.03 1.0±0.03 

-50 

No bind 1.00±0.10 1.00±0.20 1.00±0.26 1.00±0.22 1.00±0.19 

Strep 1.22±0.15 0.25±0.07 4.41±0.49 0.36±0.04 0.98±0.03 

Avidin 1.09±0.19 1.29±0.24 1.02±0.17 0.51±0.21 0.82±0.04 

Extrav 1.25±0.09 0.24±0.04 4.01±0.71 0.53±0.21 0.92±0.05 

-25 

No bind 1.00±0.09 1.00±0.18 1.00±0.22 1.00±0.20 1.00±0.19 

Strep 1.24±0.04 0.17±0.04 2.44±0.41 0.18±0.02 0.99±0.04 

Avidin 1.09±0.19 1.41±0.54 0.84±0.29 0.45±0.13 0.78±0.05 

Extrav 1.26±0.10 0.21±0.03 2.68±0.50 0.07±0.02 1.02±0.01 

+25 

No bind 1.00±0.06 1.00±0.17 1.00±0.25 1.00±0.19 1.00±0.21 

Strep 1.18±0.03 0.32±0.05 5.44±0.35 0.25±0.10 0.97±0.04 

Avidin N/D N/D N/D N/D 0.64±0.07 

Extrav 1.18±0.03 0.32±0.01 3.42±0.67 0.25±0.04 0.98±0.09 

+50 

No bind 1.00±0.09 1.00±0.23 1.00±0.25 1.00±0.22 1.00±0.18 

Strep 1.14±0.20 0.53±0.10 3.25±0.29 0.39±0.06 0.95±0.06 

Avidin 1.07±0.11 2.14±0.13 0.88±0.23 0.55±0.03 0.60±0.07 

Extrav 1.14±0.04 0.28±0.07 3.42±0.67 0.35±0.10 0.90±0.08 

+75 

No bind 1.00±0.05 1.00±0.21 1.00±0.22 1.00±0.20 1.00±0.19 

Strep 1.13±0.09 0.26±0.06 3.16±0.62 0.45±0.06 0.94±0.07 

Avidin 0.91±0.10 2.53±0.44 0.31±0.04 0.79±0.03 0.55±0.1 

Extrav 1.10±0.01 0.22±0.06 2.19±0.73 0.36±0.12 0.99±0.04 

Values were calculated from at least three independent experiments. The errors indicate the 
standard deviation. 

 

While the gating behavior of the nanopore with bound avidin was relatively 

straightforward to understand in terms of electrostatic interactions, our voltage 

dependent studies using extravidin revealed more subtle information. When we 

examined the E1 form of extravidin, the gating behavior was not affected by the voltage 

polarity (Figure 2.13e, 2.13h). However, the E2 and E3 forms of extravidin showed open 

pore currents that did respond to voltage. Namely, the open pore current of OmpG-

PEG2-biotin, upon binding to E2 or E3, decreased linearly with increasing voltage from -
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75 mV to 75 mV (Figure 2.15). This observation suggests that E2 and E3 population 

bear net positive charges due to an incomplete removal of glycan from the surface. 

Notably, the voltage induced a current reduction to similar levels in E3 and avidin while 

to a lesser extent in E2. This result supports our speculation that E3 was intact avidin 

and E2 was the intermediate product of the deglycosylation reaction. Taken together, the 

voltage can influence the binding signal of a charged analyte by either strengthening or 

weakening the interaction between the OmpG nanopore and the analyte protein. 

 

 

2.5 Discussion 

We have demonstrated that analyte proteins with positively charged surfaces are 

attracted to the negatively charged loops of OmpG. The interaction leads to a reduction 

of the open-pore current through the nanopore. In control experiments, we showed that 

our proteins did not induce any significant current change when using wild type OmpG, 

indicating the interaction of the avidin species only occurs after they bind to the biotin 

ligand. Therefore, these results strongly support a two-step mechanism for OmpG 

 

Figure 2.15. The relative open pore conductance of OmpG-PEG2-biotin when bound to 
the avidin homologues.  Binding of the homologues to OmpG-PEG2-biotin affects the open 
pore current over several voltages. All trials were recorded in buffer containing 10mM sodium 
phosphate pH 6.0, 300 mM KCl. Values were calculated from at least three independent 
experiments. The errors indicate the standard deviation. 
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nanopore sensing (Figure 2.16). The first step is the capture where the protein binds the 

ligand on OmpG. The capture of an analyte protein brings it in close proximity to the 

nanopore opening which then facilitates electrostatic attraction between the two 

surfaces. In the second step, the analyte interacts directly with the loops of OmpG to 

obstruct ionic flow through the pore and alter the dynamic movement of the loops. In 

essence, the flexible loops of OmpG sense and communicate information about the 

surface of the analyte protein. This process is termed “sampling”. 

 

Though all three avidin species were clearly captured by the biotin ligand, some 

did not undergo the sampling step. For example, streptavidin and extravidin at pH 6.0 do 

not induce a change in the open pore current which indicates that the loops and target 

surface are repelled by their like charges. At high salt concentrations (4.0 M KCl), 

charges were screened and avidin also did not cause a change in open pore current. In 

scenarios where sampling did not occur, the OmpG nanopore could not distinguish 

between biotin-binding species. Therefore, system conditions that favor sampling are 

essential for sensitive analyte discrimination.  

Importantly, protein analytes that are sampled by the OmpG loops could induce 

distinct gating signal. For example, at pH 6.0 in low salt (0.3 M KCl), avidin-OmpG loop 

interactions increased the gating frequency, indicating that loop 6 oscillates between the 

 

Figure 2.16. Schematic representation of the sampling mechanism for OmpG nanopore.  
The OmpG loops and protein analyte are attracted electrostatically. 
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closed and open state more rapidly. However, it caused a reduction in the gating event 

duration by 30%. The effect of bound avidin on the loops was remarkably different from 

the effect of a mouse monoclonal anti-biotin antibody (mAb) used in a previous study.30 

Under identical conditions, mAb binding increased both the gating frequency and event 

duration, which led to a decrease in open probability. Furthermore, one polyclonal anti-

biotin antibody eliminated all gating events and resulted in a constantly open pore.30 The 

differences in loop interactions between the monoclonal and polyclonal antibodies and 

the avidin clearly demonstrate that the gating induced by OmpG’s loops depends on the 

unique interaction with the analyte interface. In nature, protein-protein interactions are 

typically mediated by weak intermolecular forces such as hydrophobic, hydrogen-

bonding and electrostatic forces. The OmpG nanopore so far seems predominantly 

sensitive to attractive electrostatic interactions. Indeed, we note that conditions that 

leave an avidin species nearly neutral or negatively charged (i.e., conditions that prevent 

sampling) abolish OmpG’s discrimination abilities. The current version of the OmpG 

nanopore sensor is nearly identical to the wild type save the addition of the biotin ligand. 

We speculate that further modifications to the loops might allow the use of hydrophobic 

or hydrogen bond interactions for enhanced sampling of neutral and negative analytes.  

We also show that experimental conditions, such as pH, salt concentration and 

voltage can be tuned to facilitate detection. Sampling process is the key to OmpG’s 

discrimination ability, so parameters that modulate sampling may also be used to 

enhance sensitivity. This can be accomplished by two general strategies. First, the 

electrostatic interaction between the analyte and nanopore can be tuned by altering the 

surface charge of both analyte protein and nanopore. Second, we also showed that 

voltage could either enhance or weaken the interaction by electrophoretic forces that 

move the protein closer to or away from the pore entrance. Thus, by optimizing the 

conditions, we can maximize the relative difference in the fingerprint analysis to generate 
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unambiguous detection patterns. These strategies may also be particularly useful to 

ameliorate the effect of interference from other species in complex samples.  

Post-translational modifications (PTMs) have an important impact on the physical 

properties and biological functions of proteins. Altered or missing modifications have 

profound effects on cellular function and are often associated with human diseases,41,42 

such as neurodegenerative disease,43 cancer44 and inflammatory diseases.45 Mass 

spectrometry, as the key technology for identifying PMTs, has contributed tremendously 

our understanding of PTMs in cell.46–48 However, analysis of PTMs by mass 

spectrometry can be challenging due to the instability of the modifications during the MS 

analysis or the effect of the modification of the peptide’s ionization efficiency. Single-

molecule strategies using nanopore for detecting modifications are especially appealing 

because it can identify modifications and variants within an intact protein. Along these 

lines, Rosen et al. recently demonstrated the use of αHL in detecting changes in the 

phosphorylation of thioredoxin.22 Here we showed OmpG nanopores can recognize 

changes in glycosylation patterns of proteins through their differences in surface charge. 

This is especially important, as many forms of glycosylation e.g. sialylation and 

acetylglucosaminylation add negative or positive charge, respectively. Current 

glycoprotein profiling methods using mass spectrometry often run in tandem with a 

separation technique, such as liquid chromatography or gel electrophoresis. Equipped 

with a specific ligand for the protein of interest, OmpG nanopore could be used for 

differential profiling of cellular glycoproteins in native states without prior separation 

procedure or liberation of glycan.  
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2.6 Conclusion 

We demonstrated that an engineered OmpG nanopore can distinguish between 

protein homologues and post-translationally modified isoforms through their differences 

in surface charge. This is achieved by the electrostatic interaction between the nanopore 

loops and analyte proteins and yields a gating fingerprint readout for the analyte.  
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CHAPTER 3  

SELECTIVE DETECTION OF PROTEIN HOMOLOGUES IN SERUM USING AN 

OMPG NANOPORE 

 

Reprinted (adapted) with permission from M. A. Fahie, B. Yang, M. Mullis, M. A. Holden, 

and M. Chen, “Selective detection of protein homologues in serum using an OmpG na-

nopore,” Anal. Chem., vol. 87, no. 21, pp. 11143–11149, 2015. Copyright 2015 Ameri-

can Chemical Society. 

3.1 Summary 

Outer membrane protein G is a monomeric β-barrel porin that has seven flexible 

loops on its extracellular side. Conformational changes of these labile loops induce gat-

ing spikes in current recordings that we exploited as the prime sensing element for pro-

tein detection.  The gating characteristics - open probability, frequency and current de-

crease – provide rich information for analyte identification.  Here, we show that two anti-

biotin antibodies each induced a distinct gating pattern, which allowed them to be readily 

detected and simultaneously discriminated by a single OmpG nanopore in the presence 

of fetal bovine serum. Our results demonstrate the feasibility of directly profiling proteins 

in real-world samples with minimal or no sample pretreatment. 

 
3.2 Introduction  

Nanopore sensing is a single molecule technique that measures the ionic current 

flowing through a nanoscopic pore in a membrane.1–3 Analytes are detected when they 

cause transient current blockades as they bind or translocate through the pore.  The in-

tensity and duration of the blockades provide information about the structure, size and 

dynamic properties of analytes while the frequency of the blocking events indicates the 

concentration. Nanopores have been used to detect a large variety of analytes,4 ranging 
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from small molecules, e.g. metal ions,5 organic chemicals6,7 and large biological macro-

molecules, including nucleic acids8–11 and proteins.12  For protein sensing, nanopores are 

usually coupled with a binding site for target proteins to ensure specific detection.  The 

high affinity binding sites used so far have been derived from ligands,13,14 inhibitors,15 

peptide sequences,16,17 antibodies18 and aptamers.19–21  These binding sites are either 

introduced inside of the nanopore,18,21 located at the entrance,17,19,20 or conjugated with 

an auxiliary polymer in the solution.13,22–24 In the latter case, detection is achieved when 

an analyte binds to a ligand at a polymer and alters the characteristic ionic current signa-

tures derived from the polymer translocation through the nanopore.22,23  

Outer membrane protein G (OmpG) is a 14 stranded β-barrel protein derived 

from Escherichia coli (E. coli).25–27  Compared to other well studied protein nanopores, 

e.g. αHL28 and MspA9,29 that are rigid, oligomeric membrane protein channels, OmpG is 

a monomeric protein with seven long flexible loops decorated at the extracellular en-

trance (Figure 3.1).30  Loop 6 is the most flexible loop, causing the OmpG protein pore to 

oscillate between the open and closed states.25,31–33  As a result, OmpG exhibits frequent 

gating in current recordings (Figure 3.1). Although pores exhibiting continuous nongating 

conductance have been considered a necessity for nanopore sensing, the gating 

noise/pattern of OmpG has been exploited as a sensing element for protein 

detection.34,35  In OmpG sensing, analyte binding induces not only a current decrease by 

obstructing the pore entrance, but also a significant change in gating patterns by altering 

the dynamic movement of loop 6.34 The gating pattern is sensitive to the interface formed 

between OmpG and analyte proteins.35  Characteristics of gating, such as open probabil-

ity, gating frequency, event duration and inter-event duration of the gating events provide 

multiple parameters for analyte identification. Using this strategy, multiple analytes were 

identified and simultaneously discriminated using a single OmpG nanopore in buffered 

solutions.34  



92 

 

One of the main challenges of protein sensing using nanopores is to identify tar-

get proteins in a complex mixture.36  Most experiments have been performed under ideal 

conditions using only pure analytes in buffers.  To apply this technique as a diagnostic 

tool for medical use, it is necessary to test the applicability of nanopores for detecting 

target analytes in clinically relevant samples, e.g. serum, urine or saliva.  In this work, we 

show that two antibiotin antibodies can be readily detected and simultaneously discrimi-

nated by a single OmpG nanopore in the presence of 10-fold diluted serum. Our results 

demonstrate the feasibility of directly profiling proteins in real-world samples with mini-

mal or no sample pre-treatments. 

 
3.3 Materials and Methods 

All chemicals were obtained from Fisher Scientific or Boston Bioproducts unless 

otherwise stated. Chemicals were used without further purification. SB58C mouse mon-

oclonal antibody was obtained from Southern Biotech (Cat# 6406-01) and BTN.4 mouse 

monoclonal antibody was obtained from Thermo Scientific (Cat# MS-1048-P1). Diphyt-

anoylphosphatidylcholine (DPhPC) lipids were obtained from Avanti Polar Lipids. Teflon 

film was obtained from Goodfellow. The maleimide-PEG2-biotin linker was obtained from 

Thermo Scientific. Octylglucoside (OG) was obtained from Gold Biotechnology. Hexade-

cane and pentane were obtained from Sigma Aldrich. 

 
3.3.1 OmpG biosensor preparation  

OmpG D224C was purified and labeled with maleimide-PEG2-biotin as previously 

described.34, 35 Briefly, OmpG D224C was expressed in BL21 (DE3) E. coli as inclusion 

bodies. The inclusion body pellet was solubilized in 8.0 M Urea, 50 mM Tris·HCl pH 8.0, 

2 mM DTT for an hour prior to loading onto a HiTrap Q FF (GE Healthcare  Life Scienc-

es). OmpG D224C was then eluted with a gradient of 0-500 mM NaCl, 50 mM Tris-HCl, 

pH 8.0, 8 M urea and 2 mM DTT over 60 minutes. Purity of OmpG D224C was verified 
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by SDS-PAGE. Prior to labeling, OmpG D224C was desalted in 50 mM HEPES buffer, 

pH 7.0 and 8 M Urea to remove DTT and adjust the pH. OmpG D224C was then labeled 

with maleimide-PEG2-biotin by mixing OmpG and ligand in a 1:10 molar ratio for 2 hours 

with constant shaking at room temperature. OmpG was desalted once more in 50 mM 

Tris-HCl buffer, pH 8.0 in 8 M Urea to remove excess chemicals. OmpG was then diluted 

1.5 times in refolding buffer 20 mM Tris-HCl, pH 9.0 with 3.25% octylglucoside and incu-

bated for three days at 37 ºC. Refolding and labeling efficiency was tested via a gel-shift 

assay as previously described (Figure 3.1).34  OmpG-biotin was stored at -80 ºC in 20% 

glycerol until further use. 

 

3.3.2 Single Channel Recording 

Single channel recording was done as previously described.34 Briefly, a 100 µm 

diameter aperture on a 25 µm thick Teflon film separating two chambers was painted 

with 10% hexadecane in pentane. The pentane was allowed to evaporate prior to filling 

the two chambers with buffer (10 mM sodium phosphate pH 6, 300 mM KCl). The bilayer 

 

Figure 3.1. SDS-PAGE analysis of refolding and labeling efficiency of OmpG-biotin. 
After three days refolding at 37°C, samples of the OmpG-biotin protein was heated to 95°C 
for 15 minutes in Laemelli buffer or loaded without boiling to the 15% gel. To determine the 
labeling efficiency, the sample was mixed with streptavidin in a 1:1 molar ratio for 1 minute 
and then mixed with Laemelli buffer without boiling. Labeled OmpG forms a SDS-resistant 
complex with streptavidin which migrate slower in the gel. The intensity of the protein bands 
were analyzed by gel imager to calculate the labeling efficiency which was about 85%.   
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was formed by adding 15 µL 10 mg/mL DPhPC lipids in pentane on the aqueous surface 

of each chamber. Once the pentane evaporated, the buffer was pipetted up and down to 

coat the aperture with lipids. An Ag/AgCl electrode, with the cis electrode connected to 

ground, was immersed in each chamber. OmpG was pipetted into the cis chamber and 

200 mV was applied to promote pore insertion into the bilayer. Once a pore was insert-

ed, the voltage was decreased to 50 mV. Since OmpG inserts into the bilayer bidirec-

tionally, the pore gating behavior was observed at both positive and negative 50 mV for 

five minutes to determine pore orientation.37  All analyte proteins were introduced to the 

chamber where the OmpG loops are located. Unlabeled OmpG D224C was tested with 

SB analyte and did not generate a change in gating behavior (Figure 3.2).  The positive 

potential is defined as the chamber where the loops are facing is positive.  All data was 

acquired at ±50 mV unless otherwise stated. The Axopatch 200B integrating patch 

clamp amplifier (Axon Instruments) was used to amplify the current and a 2 kHz Bessel 

filter was applied. Data was digitized with a Digidata 1320A/D board (Axon Instruments) 

and acquired at a sampling rate of 100 µs. 

 

 

 

Figure 3.2. Single channel current trace of OmpG D224C.  SB58C (2 nM) was added to 
unlabeled OmpG D224C and the ionic current monitored.  There was no change in OmpG 
ionic current behavior.  Buffer used was 10 mM sodium phosphate pH 6, 300 mM KCl and the 
ionic current recorded at both -50 and +50 mV.  OmpG was recorded with a 2 kHz Bessel 
filter at a sampling rate of 100 µs.    
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3.3.3 Single Channel analysis 

OmpG gating was analyzed in Clampfit 10.3 software using the single channel 

search tool from at least 5 s of gating from several independent pores. The extracted 

dwell times of the open (inter-event) and closed state (event) were used to calculate the 

open probability, the inter-event duration, event duration, as well as the gating frequen-

cy. To determine the open probability, the sum of the open dwell times (τon) were divided 

by the total time analyzed, which includes both open and closed states of the OmpG 

pores. To determine the inter-event duration, the open dwell times (τon) were plotted in a 

histogram and fit with a single exponential function. The event duration was similarly cal-

culated, but the closed dwell times (τoff) were fit instead. For gating frequency, the trace 

was first filtered with a low pass Gaussian filter with a 1 kHz -3dB cut off. The total count 

of gating events was divided by the total time. To determine the open pore conductance, 

an all-events histogram of the trace was fit with a Gaussian function.  

 
3.3.4 Analysis of gating characteristics  

Gating characteristics used for generating the fingerprints of the two antibodies 

namely – open probability, gating frequency, event duration, inter-event duration and 

open conductance – are defined as shown in Figure 3.3. To calculate the gating charac-

teristics of SB and BT binding at least 10 binding events with dwell times of at least 1 s 

from three independent traces or more were analyzed using the single channel search 

function in Clampfit 10.3.  For SB analysis, its gating characteristics were further divided 

into three different gating types: A, B and C.  These three gating types were analyzed 

independently from one another.  Errors represent the standard deviation from the three 

independent pores (at least 30 events in total).   
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3.4 Results  

Our OmpG nanopore (OmpG-PEG2-biotin) contains a tethered biotin ligand that 

can potentially extend into the solution up to 30 Å away from the OmpG loop 6 (in red) to 

which it is attached via a covalent linkage between mutated loop residue C224 and a 

maleimide moiety on the biotin ligand (Figure 3.4).  We previously used this OmpG na-

nopore to detect and discriminate several biotin-binding proteins namely streptavidin, 

three anti-biotin antibodies: one mouse monoclonal (BTN.4) and two polyclonal antibod-

ies raised in sheep34 as well as two streptavidin homologues avidin and extravidin.35  

 

Figure 3.3. Gating characteristics of the OmpG ionic current.  Three of the five gating pa-
rameters are defined in the trace.  Open probability is the ratio of the open and closed state 
while gating frequency is the number of events per second.  This trace is the SB binding states 
in the absence of serum at +50 mV.  Buffer used was 10 mM sodium phosphate pH 6, 300 
mM KCl.  SB binding was recorded with a 2 kHz Bessel filter at a sampling rate of 100 µs.    
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Here, we first examined whether the OmpG-PEG2-biotin nanopore could also detect an 

alternative anti-biotin mouse monoclone, SB58C (SB).   

 

 

 Addition of 1 nM SB to the loop-facing chamber induced a significant change in 

current traces (Table 3.1, Figure 3.5). At -50 mV, OmpG-biotin nanopore in the SB bound 

state exhibited the following characteristics: i) the current of the fully open state de-

creases slightly by 2 pA as shown in the histogram (Figure 3.5a-3.5c); ii) the current 

traces displayed gating patterns markedly different from that of the unbound states (Fig-

ure 3.5a, 3.5b).  Interestingly, the gating pattern of the SB bound state is heterogeneous, 

i.e. a single SB binding event induced three different current fluctuation patterns which 

we named types A, B and C (Figure 3.5d).  We categorize the three types of gating pat-

 

Figure 3.4. The open (2IWV) and closed (2IWW) structures of OmpG.  The loop 6 is high-
lighted in red and is covalently attached to the biotin ligand. The ionic current trace was ob-
tained in 10mM sodium phosphate pH 6, 300mM KCl buffer.    
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terns by their open-pore current, open probability and gating frequency (Table 3.1).  Type 

A gating shows that the current was almost constant at -18.3 ± 0.8 pA which is 62 % of 

the fully open state current. Due to the lack of full gating events, the open probability is 1 

and the gating frequency is 0 (Figure 3.5c, 3.5d).   Type B binding shows that OmpG 

stays mostly closed where the open probability reduces from 0.76 ± 0.03 to 0.13 ± 0.04 

with a residual current of 2.1 ± 0.5 pA and a lowered gating frequency of 32 ± 4 s-1 (Fig-

ure 3.5d). Type C gating shows that the current fluctuates rapidly with a gating frequency 

of 77 ± 3 s-1, a 13% increase over that of the unbound state (68 ± 5 s-1) and has an open 

probability of 0.60 ± 0.06.  Each single SB binding event contains multiple combinations 

of these three types of gating (Figure 3.5a). This result is interesting as none of the pre-

vious biotin-binding protein analytes, including three streptavidin homologues and three 

biotin antibodies showed such a phenomenon.34,35  

 

Table 3.1. The relative change in open probability, gating frequency and open current of 

OmpG-biotin during type A, B and C binding of SB58C 

 

Loop Voltage 
(mV) 

SB58C binding 
state 

Relative Open 
Probability 

Relative Gating 
Frequency 

Relative Open 
pore current 

 

-50 

 

No bind 1.00 ± 0.04 1.00 ± 0.22 1.00 ± 0.05 

Type A 1.31 ± 0.06 N.D. 0.62 ± 0.02 

Type B 0.16 ± 0.05 0.46 ± 0.06 0.07 ± 0.02 

Type C 0.79 ± 0.07 1.1 ± 0.04 0.94 ± 0.04 

 

+50 

 

No bind 1.00 ± 0.02 1.00 ± 0.09 1.00 ± 0.03 

Type A 1.22 ± 0.03 N.D. 0.54 ± 0.03 

Type B 0.19 ± 0.05 0.55 ± 0.10 0.04 ± 0.01 

Type C 0.83 ± 0.06 1.38 ± 0.08 0.92 ± 0.05 

*The errors indicate standard deviations from at least three independent pores. 
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Because the gating pattern of the analyte bound state is dictated by the interac-

tion between analyte and OmpG surface, this result indicates when SB bound to the 

tethered ligand, it often altered the way in which it interacted with the OmpG surface.  

Our previous study demonstrated that electrostatic attractions are the dominant force 

that triggers the interaction between analyte and the OmpG loops.35  Consistent with our 

 

Figure 3.5. Detection of SB58C by OmpG-biotin nanopore.  (a,b) The electrophysiology 
traces and all events histograms of unbound (UB) and SB-bound states of OmpG-biotin at -50 
mV and +50 mV. (c) Zoomed-in electrophysiology traces and all-events histograms of the un-
bound state and (d) the three independent SB-binding states types A, B and C. Buffer used 
was 10 mM sodium phosphate pH 6, 300 mM KCl.  1nM SB antibody was added to the record-
ing chamber. SB binding was recorded with a 2 kHz Bessel filter at a sampling rate of 100 µs.    
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previous finding, increasing the salt concentration to 1.0 M KCl in the recording buffer 

almost abolished the type B and A binding while the type C binding became similar to the 

unbound state (Figure 3.6).  

Here, we speculate that the SB antibody might contain multiple positively 

charged regions separately located in areas close to the biotin-binding site.  Each posi-

tive region can form a unique binding interface with the negatively charged OmpG loops 

which triggers a gating pattern different from each other.  The ability to trigger multiple 

gating signatures within one binding event is a great advantage for analyte identification 

and reveals the sensitivity of our OmpG sensor to subtle changes in the analyte surface.  

At +50 mV, we also observed that a single SB induced the three types of gating 

patterns albeit with slight variations from those at -50 mV. For example, in Type A bind-

ing, the open current changes more than at -50 mV, to 54% of the fully open state cur-

rent (Table 3.1).  Type B has essentially no residual current and a gating frequency of 59 

± 10 s-1.  Finally, type C gating frequency is 149.5 ± 8.2 s-1 (a 38% increase to that of the 

unbound state) and an open probability of 0.68 ± 0.05 (17% reduction from the unbound 

state).  This observation is consistent with previous finding that the polarity of voltage 

has a strong influence on the gating characteristics of the analyte bound state. This is 

due to two factors: i) the polarity of voltage has a strong influence on the gating of OmpG 

which exhibits asymmetric current gating at positive and negative potential 34  and ii) the 

voltage could alter the strength of OmpG and analyte interaction through electroosmotic 

and/or electrophoretic effects.  The binding of SB to OmpG-biotin nanopore was specific 

as no change in behavior occurred with un-biotinylated OmpG D224C (Figure 3.2).  The 

SB antibody appeared to have a high affinity for the biotin ligand as the binding events 

usually lasted for at least 2 min, 30 times longer than that of a monoclonal antibody 

BTN.4 that was previously tested, which had a dissociation constant of 1.12 ± 0.28 x 108 
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M-1.34  SB bound for so long that we were not able to calculate the binding kinetics, main-

ly because the bilayer does not last long to allow to collect enough (~1000) events for 

accurate data analysis. The lowest concentration of SB we detected was 15 pM within 

60 min indicating the high sensitivity of our approach and sensor. 

 

 

Figure 3.6. Detection of SB58C by OmpG-biotin nanopore in high salt.   At both -50 and 
+50 mV, binding state C was the predominant state.  Binding state B was completely abol-
ished, while binding state A was periodically seen at +50 mV.  Buffer used was 10 mM Tris-HCl 
pH 8, 1.0 M KCl.  Traces were recorded with a 2 kHz Bessel filter at a sampling rate of 100 µs. 
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Previously, we have demonstrated that the OmpG-biotin nanopore could discrim-

inate among three anti-biotin antibodies in an antibody protein mixture.34 To use OmpG 

nanopore in clinical applications, OmpG would need to detect analyte and possibly dis-

criminate among homologous proteins in a biological sample such as blood serum. 

Therefore, we investigated how the presence of serum affected the gating of the OmpG-

biotin nanopore.   

In the presence of 25% (v/v) fetal bovine serum the bilayer was unstable at ±50 

mV thus we lowered the concentration to 10% (v/v).  We initially added the serum to 

both chambers, however, under these conditions OmpG could not remain in an open 

state at any applied potential for long periods of time (Figure 3.7).   

 

Thus we decided to add 10% (v/v) serum to only the chamber where the loops 

were located.  This induced a noisier gating signal in the OmpG nanopore at both volt-

 

Figure 3.7. The effect of 10% serum added to both chambers on the gating behavior of 
OmpG-biotin.  100 µl of FBS was added to both chambers to a final concentration of 10% 
(v/v).  The buffer was 10 mM sodium phosphate pH 6.0, 300 mM KCl.  OmpG was recorded 
with a 2 kHz Bessel filter at a sampling rate of 100 µs.  Arrows indicate a switch in voltage po-
larity.    
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ages (Figure 3.8). The gating frequency almost doubled at -50 mV (Table 3.2).  Also, the 

inter-event duration was significantly reduced from 6.37 ± 1.88 ms to 0.96 ± 0.31 ms i.e. 

a 6.6-fold reduction.  The open probability and event duration were also affected, under-

going a 5% and 61% reduction, respectively (Table 3.2).    

At +50 mV, in addition to an increase in gating behavior, frequent full blockage 

events were observed (similar to when serum was added to both chambers). These 

blockage events could last from seconds to minutes if the voltage was left unperturbed. 

Unblocking the pore could be achieved by switching the voltage polarity from +50 to -50 

mV. The increased gating frequency and the long closures were likely due to the interac-

tion of serum constituents. These possibly included small molecules and proteins that 

may have been driven by diffusion, electro-osmosis and electrophoresis near the OmpG 

loops and into the lumen. Importantly, despite the high protein content in serum, we did 

not observe any gating pattern changes that were similar to the analyte protein binding, 

thereby demonstrating the high specificity of OmpG nanopore detection.   

 

 

Figure 3.8. The effect of serum added to one chamber only on the gating behavior of 
OmpG-biotin.  100 µl of FBS was added to the loop-containing chamber to a final concentra-
tion of 10% (v/v).  The buffer was 10 mM sodium phosphate pH 6.0, 300 mM KCl.  OmpG was 
recorded with a 2 kHz Bessel filter at a sampling rate of 100 µs.    

 



104 

 

Table 3.2. The gating characteristics of the unbound state, the BT and SB bound states 
in the absence and presence of 10% (v/v) serum. 
 

 
Open  

probability 

Gating  
Frequency 

(s-1) 

Inter-event 
duration 

(ms) 

Event  
duration 

(ms) 

Open pore 
conductance 

(pA) 

No bind - FBS 0.78 ± 0.03 68 ± 15 6.37 ± 1.88 
2.23 ± 
0.50 

-29.3 ± 1.4 

No bind + FBS 0.73 ± 0.06 121 ± 13 0.96 ± 0.31 
1.35 ± 
0.32 

-30.1 ± 2.3 

BTN.4 - FBS 0.52 ± 0.08 113 ± 4 0.97 ± 0.21 
1.76 ± 
0.34 

-27.7 ± 1.3 

BTN.4 + FBS 0.48 ± 0.16 146 ± 24 0.56 ± 0.19 
1.46 ± 
0.34 

-28.7 ± 2.1 

SB58C Type A 
- FBS 

1.00 ± 0.00 0 ± 0 N.D. N.D. -18 ± 0.6 

SB58C Type A 
+ FBS 

1.00 ± 0.00 0 ± 0 N.D. N.D. -20.2 ± 1.0 

SB58C Type B 
- FBS 

0.13 ± 0.04 32 ± 4 0.70 ± 0.04 
3.92 ± 
0.23 

-2.1 ± 0.5 

SB58C Type B 
+ FBS 

0.12 ± 0.04 20 ± 5 0.44 ± 0.03 
2.16 ± 
0.08 

-3.8 ± 0.9 

SB58C Type C 
- FBS 

0.60 ± 0.06 77 ± 3 1.41 ± 0.07 0.86 ± 0.3 -27.5 ± 1.0 

SB58C Type C 
+ FBS 

0.60 ± 0.11 121 ± 13 0.39 ± 0.10 
0.74 ± 
0.21 

-29.9 ± 1.2 

*The error bars indicate standard deviations from at least three independent pores.  

 
Because the serum-induced blockages at +50 mV reduced the fraction of time 

that the OmpG nanopore was able to receive an analyte protein, we focused on testing 

the discriminatory ability of OmpG-biotin at -50 mV.  As shown in Figure 3.9a, the addi-

tion of two monoclonal antibodies – clones SB58C (SB) and BTN.4 (BT) – to the record-

ing chamber containing only buffer triggered binding signals with distinct characteristics 

that can be recognized qualitatively and quantitatively.  

Both proteins induced a slight decrease ~ 6% in open pore current (Table 3.2, 

Figure 3.9b).  The SB-type binding exhibited its typical heterogeneous gating signal 

while the BT-binding triggered a gating pattern containing a partially closed state with a 

residual current of 6 pA, which is consistent with previous finding when BT was added to 

the OmpG-biotin alone.34  Thus, in the absence of FBS, OmpG could discriminate SB 

from BT by their respective binding signatures (Figure 3.9a-c).    
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Figure 3.9. Discrimination of two antibodies in the presence of serum.  (a) Binding of SB 
(blue) and BT (red) to OmpG-biotin in the absence of serum.  (b) Electrophysiology traces and 
(c) histograms of the unbound state in comparison with the BT and SB bound states.  Buffer 
used was 10 mM sodium phosphate pH 6.0, 300 mM KCl and recorded at -50 mV. SB (1 nM) 
and BT (5 nM) were added to the recording chamber.  (d) BT and SB binding in the presence 
of serum.  (e) Electrophysiology traces and (f) histograms of BT and SB binding in the pres-
ence of serum.  In addition to SB and BT, serum (10% v/v) was added to the loop-containing 
chamber. SB and BT binding were recorded with a 2 kHz Bessel filter at a sampling rate of 100 
µs. 

 



106 

 

In the presence of 10% (v/v) serum, the current traces of SB and BT bound 

states were noisier than those without serum (Figure 3.9a-f). Nevertheless, individual 

binding signatures of SB and BT were well-preserved; both analytes still induced a de-

crease in the open pore current. The heterogenous gating pattern induced by SB was 

readily visible.  Clearly, the different gating patterns between SB and BT allowed us to 

resolve between two homologues in serum (Figure 3.9). 

 

Although a previous study has also shown a protein A coated solid-state na-

nopore can discriminate IgG species, the detection relied on their difference in dwell 

times, which differ by an order of magnitude.18  Although BT and SB possessed marked-

ly different dwell times (Figure 3.10), differentiation among the two analytes by OmpG 

 

Figure 3.10. Simultaneous detection of two antibodies in serum.  A continuous trace (170 
s) of SB (1 nM, blue) and BT (5 nM, red) binding to OmpG-biotin in the absence of 10% (v/v) 
serum.   Buffer used was 10 mM sodium phosphate pH 6, 300 mM KCl and the ionic current 
recorded at -50 mV.  SB and BT were recorded with a 2 kHz Bessel filter at a sampling rate of 
100 µs.    
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was achieved through their characteristic binding signals.  Therefore, this detection 

mechanism would allow the differentiation of different analytes that have similar dwell 

times, an advantage that is beginning to be seen with other engineered nanopores.20,38   

To quantitatively study how serum affected the gating of the analyte-bound state, 

we calculated five parameters: open probability, gating frequency, event duration, inter-

event duration and open pore current in the presence and absence of serum.  When BT 

bound to OmpG-biotin in the presence of serum, the open probability, event duration and 

open pore current were not significantly different from those in the absence of serum 

(Figure 3.11, Table 3.2).   

 

The inter-event duration was decreased by ~1.5 times and the gating frequency 

increased by 1.3 times. Similar to BT, moderate changes were also observed for SB type 

C binding characteristic in the presence of FBS.  FBS showed little effect on the type A 

and type B signals probably due to the lack of gating in these two types of signals.  In 

previous studies, we used the relative values of bound and unbound states to create a 

           

Figure 3.11. The effect of serum on the fingerprint pattern of BT and SB. The gating 
events of different analyte protein binding states were characterized by five parameters, i.e. 
open probability, gating frequency, inter-event duration, event duration and the conductance 
of the open pore state.  Changes of these parameters relative to the no binding state generate 
the fingerprint unique for each antibody. For SB, the three types of gating pattern were ana-
lyzed separately. The error bars indicate standard deviations from at least three independent 
pores.  
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fingerprint for analyte identification.34,35  The gating fingerprint of BT in the presence of 

serum compared to the absence of serum was different.  This altered fingerprint in the 

presence in serum was due mainly to the non-specific effects of serum molecules on 

OmpG gating, rather than a direct effect on the antibody-OmpG interaction. Despite the 

effect of serum, the fingerprints of the two analytes are clearly distinguishable.  

 

 

 

Figure 3.12. Effect of FBS on the kinetics of antibody binding. Histograms of the inter-
event duration (τon) and dwell time (τoff) of mAb binding events were fitted with single expo-
nential decay function to derive the average time constants.  Tau-on values for BT were cal-
culated from 10 nM. Buffer used was 10 mM sodium phosphate pH 6, 300 mM KCl and the 
ionic current was recorded at both -50 mV.  Averages and standard deviations were taken 
from three independent pores.   
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Next we analyzed the effect of serum on the kinetics of analyte binding.  The as-

sociation rate constant kon and dissociation rate constant koff of BT were calculated from 

the τon and τoff, respectively, in the absence and presence of FBS (Figure 3.12).  The koff 

value slightly increased in serum from 0.24 ± 0.05 s-1 to 0.30 ± 0.09 s-1 (n=3).  However, 

the kon value decreased from 2.27 ± 0.52 x107 M-1s-1 to 0.83 ± 0.18 x107 M-1s-1 by ~3-fold 

in FBS.  The slower kon of BT in the presence of serum could be due to molecular crowd-

ing effects in the high concentration of serum proteins that interact non-specifically with 

BT (and OmpG) and slow down its diffusion to the pore.39 This result indicates the serum 

slightly impedes the sensitivity of OmpG, since detection of the same number of binding 

events in serum-free buffer would require longer operating and recording time in the 

presence of serum. 

Recently several reports have focused on the issue of sensing specific analytes 

in protein mixtures.16,22  Specifically, an engineered phi29 nanopore containing an engi-

neered peptide sequence was shown to detect a target antibody in 1% (v/v) serum.16 In 

this study, current blockage histograms of antibody binding in the presence of serum ex-

hibited two slightly overlapping peaks corresponding to the target protein and serum pro-

tein, respectively. Because a small portion of serum protein binding events induced cur-

rent blockades similar to target antibody, detection could be achieved only when the 

concentration of target protein is significantly above the interfering impurities.  Our work 

shows that the target binding signals are readily distinguishable from that of serum con-

stituents, allowing unambiguous recognition of each target binding events. Moreover, the 

fact that OmpG could distinguish two homologous analytes in the presence of serum 

represents an exciting step forward in nanopore sensing. To date, our OmpG-biotin sen-

sor has been able to discriminate among eight analytes: two monoclonal antibodies, two 

polyclonal antibodies34 and four avidin glyco-isoforms.35  To our knowledge, no other na-

nopore thus far has shown such selectivity towards as many analytes. The flexible struc-
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ture of OmpG may adopt distinct conformations for each analyte, which serves as the 

foundation for generating many unique current gating signals. The high selectivity of the 

OmpG nanopore can be exploited for profiling of protein homologues or post-

translationally modified isoforms. The ability to identify cell-specific isoforms could aid in 

the discovery of potential therapeutic targets and disease diagnostics.40,41  Thus, as a 

complementary approach to mass spectrometry and protein micro-arrays for proteomic 

study, our OmpG nanopore sensor provides a powerful detection platform that could de-

liver rapid readouts with little to no sample preparation.    

 

3.6 Conclusions  

In this study, we have shown that the OmpG nanopore is able to simultaneously 

detect multiple homologous antibody analytes in serum with high specificity and selec-

tivity.  Our study demonstrates the feasibility of protein isoform profiling in a real-world 

setting. 
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CHAPTER 4 

TUNING THE SELECTIVITY AND SENSITIVITY OF AN OMPG NANOPORE SENSOR 

BY ADJUSTING LIGAND TETHER LENGTH 

Reprinted (adapted) with permission from M. A. Fahie, B. Yang, B. Pham, and M. Chen, 

“Tuning the Selectivity and Sensitivity of an OmpG Nanopore Sensor by Adjusting 

Ligand Tether Length,” ACS Sensors, vol. 1, no. 5, pp. 614–622, 2016. Copyright 2016 

American Chemical Society. 

4.1 Summary 

We have previously shown that a biotin ligand tethered to the rim of an OmpG 

nanopore can be used to detect biotin-binding proteins.  Here, we investigate the effect 

of the length of the polyethylene glycol tether on the nanopore’s sensitivity and 

selectivity.  When the tether length was increased from 2 to 45 ethylene repeats, 

sensitivity decreased substantially for a neutral protein streptavidin and slightly for a 

positively charged protein (avidin).  In addition, we found that two distinct avidin binding 

conformations were possible when using a long tether.  These conformations were 

sensitive to the salt concentration and applied voltage.  Finally, a longer tether resulted 

in reduced sensitivity due to slower association for a monoclonal anti-biotin antibody.  

Our results highlight the importance of electrostatic, electroosmotic and electrophoretic 

forces on nanopore binding kinetics and sensor readout.   

 
4.2 Introduction 

Nanopores sensing is a single molecule approach by which analytes are sensed 

when they interfere with ionic current flowing through the pore during an applied 

potential.1–5  Nanopores are broadly grouped into two classes: solid state nanopores and 

protein nanopores.1,4  Solid-state nanopores are fabricated from silicon nitride, glass or 
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polymer substrates.6–8  Solid-state nanopores possess several advantages including the 

physical and chemical robustness, tunable pore size and shape.  On the other hand 

protein nanopores always have the same, atomically precise structure.  Generally, 

nanopores detect proteins by one of two mechanisms: translocation-dependent or 

translocation-independent.  For translocation-dependent sensing, the analyte is drawn 

into the pore by electrophoresis, which partially blocks the flow of ionic current.  Both 

solid-state and protein nanopores applied this strategy to detect targets including BSA,9–

11 streptavidin/avidin,12,13 antibodies,12,14 and polyarginine peptides.15  Alternatively, some 

proteins may be sensed via binding to an auxiliary polymer that threads through the 

nanopore.16–18  Because ionic current is sensitive to the size, shape, and surface 

properties of the analyte protein, as well as analyte-lumen interactions, nanopores are 

able to distinguish complex protein isoforms,19–22 e.g. ubiquitin dimeric isoforms20 and 

two configurations of aptamer-thrombin complex.22  In addition, the amino acid 

composition of a protein may be revealed as an unfolded polypeptide is threaded 

through a nanopore.23–27  Nanopores were also used as a single molecule analytical 

approach to investigate the protein folding,28,29 unfolding,23,30 aggregation12,31 and 

enzymatic activity.32,33   

Despite the utility of these methods, the translocation-dependent approach is 

generally not suited for directly analyzing proteins that are too large to fit into the pore.  

While it is relatively straightforward to control the size of solid-state nanopores during 

fabrication, adjusting the size of protein nanopores is challenging due to our limited 

understanding of the connection between amino acid sequence and protein structure, 

(i.e. the folding riddle).  To overcome this limitation, large proteins have been detected 

by protein nanopores via a translocation-independent mechanism.  Typically, an analyte 

binds to a high affinity site located on the exterior of the nanopore.  The binding site can 

be (i) a peptide sequence introduced into a region of the protein nanopore,34–37  or (ii) a 
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covalently attached ligand in the lumen38 or on the rim of the nanopore.7,39,40  Using this 

approach, a single nanopore can detect proteins of any size, eliminating the need to 

search for pores or fabricate pores of suitable dimensions.  Recently, we have used 

outer membrane protein G (OmpG) from Escherichia coli (E. coli) to detect large 

proteins.  For example, we distinguished several structural homologues and isoforms of 

biotin-binding proteins in complex mixture.40–42  OmpG contains seven flexible loops on 

the extracellular side.43–45  Dynamic loop movement induces current fluctuations (called 

gating) in ionic current measurements.  Our engineered sensor had a biotin covalently 

attached to the long loop 6 of OmpG.46,47  Proteins were detected via changes in the 

gating pattern when they bound to biotin.  Eight biotin-binding proteins, including four 

streptavidin homologues and four anti-biotin antibodies were differentiated by their 

characteristic current gating signals.40-42  Compared to other multimeric protein 

nanopores,21,36,38,48 such as αHL,49 MspA,50 ClyA51 and phi29 motor,52 OmpG is a 

monomeric protein nanopore with flexible loops at the entrance.  OmpG sensing relies 

on the interaction of its flexible loops with the analyte protein which generates distinct 

characteristic signal for each analyte.  The high selectivity of the OmpG nanopore was 

attributed to the ability of its loops to undergo distinct conformational changes when 

interacting with each analyte.  Such a high selectivity is rarely observed among other 

nanopores because their rigid structures are unable to undergo large conformational 

changes when bound by an analyte.  

Electrostatic attractions between the nanopore loops and the analyte played an 

important role in OmpG selectivity.41  Such interactions only occurred when the analyte 

proteins were bound to the tethered ligand and confined in close proximity to the OmpG 

nanopore.  Here, we investigated how the proximity between the ligand and nanopore 

might affect the sensitivity and selectivity of our detection system.  We increased the 

length of the polyethylene glycol (PEG) biotin linker and measured changes in gating 
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signals as well as binding kinetics.  While a longer linker allowed a greater range of 

motion and therefore new gating states induced by biotin-bound proteins, this also 

adversely impacted the kinetics and impaired sensitivity.  This work shows that the linker 

length of a tethered ligand influences the selectivity and sensitivity of the OmpG sensor 

and is important in the design of future sensors.    

 
4.3 Materials and Methods 

All reagents and materials were purchased from Fisher Sci. or Boston 

Bioproducts unless otherwise noted.  Mouse anti-biotin monoclonal antibody BTN.4 

clone (MS-1048-P1) was purchased from Thermo Scientific.  Avidin (A9275) was 

purchased from Sigma.  Streptavidin (Z7041) was purchased from Promega.  

Maleimide-PEG45-biotin molecule was purchased from Creative PEG works (Biotin-

PEG-MAL, MW 2k (PJK-1930)).  Maleimide-PEG2-biotin and maleimide-PEG11-biotin 

were purchased from (ThermoFisher Scientific).  Diphytanoylphosphatidylcholine 

(DPhPC) were from Avanti polar lipids. Tris(2-carboxyethyl)phosphine (TCEP) and octyl-

glucoside (OG) and were purchased from GoldBio Technology.   

 
4.3.1 Cell culture and protein purification 

OmpG mutant D224C was created and expressed in E. coli cells as previously 

described.42  OmpG was purified from an inclusion body under denaturing conditions in 

50 mM Tris-HCl pH 8, 5 mM TCEP, 8 M urea using anion exchange chromatography.  

Prior to labeling with the MAL-PEGn-biotin ligands, OmpG-containing fractions were 

desalted on a HiTrap column into an 8 M urea, 50 mM HEPES pH 7 buffer to remove the 

reducing agent TCEP and the amine containing buffer Tris-HCl and to lower the pH for 

an optimal maleimide-thiol reaction.  After desalting, OmpGD224C and MAL-PEGn-biotin 

were immediately mixed in 1:10 (protein to ligand) molar ratio and incubated for 2 hrs at 

room temperature (~23°C) with constant, gentle shaking.  The mixture was desalted a 
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second time using a HiTrap 5 ml desalting column (GE Healthcare) to remove 

unconjugated MAL-PEGn-biotin.  The labeled OmpG was then diluted in refolding buffer 

(110 mM octyl glucoside, 20 mM Tris-HCl, pH 9) in a 2:3 v/v (OmpG to refolding buffer) 

ratio and incubated at 37°C for 3 days (no agitation needed).  The labeling and refolding 

efficiency of the OmpG proteins were analyzed by gel-shift assay.  Labeling and 

refolding percentages were both determined to be more than 70% for all constructs 

(Figure 4.1). Proteins were aliquoted and stored at -80°C in 20% glycerol.  Freshly 

thawed aliquots were used for the experiments.      

 

4.3.2 Single Channel recording 

Single channel recording experiments were performed as previously described.42  

For recording OmpG-PEGn-biotin behavior in planar lipid membranes, signals were 

filtered with a 2 kHz Bessel filter (unless otherwise stated) and acquired at a sampling 

rate of 100 μs after digitization with a Digidata 1320A/D board (Axon Instruments).  The 

current was amplified with an Axopatch 200B integrating patch clamp amplifier 

(Molecular Devices).  To create the bilayer, 2 µl of a 10% v/v hexadecane in pentane mix 

 
 
Figure 4.1. The refolding and labeling efficiency of OmpG-PEGn-biotins. Denatured 
OmpG-PEGn-biotin migrates slower than refolded protein as shown on the 15% SDS PAGE 
gel. Labeled OmpG-PEGn-biotin shifts to an SDS-resistant high molecular weight complex in 
the presence of excess streptavidin. OmpG-PEG45-biotin, OmpG-PEG11-biotin and OmpG-
PEG2-biotin each have a labeling efficiency of 75%, 83% and 87% respectively. 
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was applied to both sides of a 25 µm Teflon film with a 100 µm aperture separating two 

chambers.  Buffer (900 µL) was added to each chamber and approximately 15 µL of 10 

mg/ml 1,2-Diphytanoyl-sn-glycerol-3-phosphocholine (DPhPC) lipids dissolved in 

pentane was dropped onto the surface of the buffer.  The pentane was allowed to 

evaporate for 2 min after the addition of hexadecane and the DPhPC lipids to the chip.    

One Ag/AgCl electrode was inserted into each chamber, where one electrode 

was in the grounded cis chamber and the other connected to the trans chamber.  The 

liquid level was pipetted slowly in one chamber at a time to form the lipid bilayer in the 

aperture.  Once a stable bilayer formed that could withstand 200-300 mV for at least 5 

mins, about 1 nM (final concentration) OmpG proteins were added to the cis chamber.  A 

positive voltage of 200-250 mV was applied to induce pore insertion.  The voltage was 

lowered to 50 mV immediately after a single pore was inserted in order to hinder the 

insertion of multiple pores into the bilayer.  The orientation of nanopore was determined 

based on its asymmetric gating behavior at positive and negative potentials.53  OmpG 

behavior was recorded in the absence and presence of analyte proteins that were added 

to the chamber facing the loop side.   

 
4.3.3 Single channel data analysis 

To determine the open probability of OmpG pores, traces were analyzed in 

Clampfit 10.3 using the single channel search.  The open probability was calculated as 

the sum of the dwell time of open states divided by the total time analyzed.  To 

determine the kinetics of the mouse monoclonal antibody bound and unbound states, 

the dwell times of 300-500 bound events and 300-500 unbound events were extracted 

manually and fit with a single standard exponential to derive the averaged inter-event 

time (τon from the unbound events) and event duration (τoff from the bound events).  To 

identify when the antibody was binding to the OmpG nanopore, the decrease of the open 
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pore conductance and the increase in gating frequency were used as clear identifiers to 

guide accurate data extraction.  The dwell times of the binding sub-states of avidin B1 

and B2 (when the OmpG-PEG45-biotin sensor was used) were also extracted manually 

and similarly analyzed as the anti-biotin mAb in order to extract the binding kinetics.  

4.4 Results  

4.4.1 Effect of PEG linker length on analyte recognition 

A single cysteine mutant, OmpG (D224C) was purified under denaturing and 

reducing conditions then labeled with one of the following: maleimide-PEGn-biotin, where 

n is 2, 11 or 45, respectively.   The resulting constructs -OmpG-PEG2-biotin, OmpG-

PEG11-biotin and OmpG-PEG45-biotin - contained biotin moieties that could fully extend 

approximately up to 30, 60 and 170 Å from the cysteine, C224, on loop 6 as estimated 

by chemical linkage (Figure 4.2).  However, in reality, the biotin ligand was most likely 

closer to the OmpG pore entrance, as PEG molecules are not often in a stretched state. 

 

 

Figure 4.2. The design of the OmpG-PEGn-biotin constructs.  The biotin ligand attached to 
residue D224C of the OmpG nanopore via PEG2, PEG11 and PEG45 linkers could extend up 
to 30, 60 and 170 Å away from loop 6 respectively. 
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The dynamic movement of the loop 6, which moves in and out of the OmpG 

entrance, contributes to more than 95% of the intrinsic gating signal.46,47  Chemical 

modification of the OmpG proteins with biotin reagents had minimal effect on the gating 

behavior of OmpG (Figures 4.3, 4.4).   

 

 

 

 

Figure 4.3. Effect of the tethered ligand on OmpG gating. The tethered Maleimide-PEGn-
biotin ligands do not significantly affect the gating behavior of OmpG.  (a) Typical 
electrophysiology traces of OmpGwt, OmpG-PEG2-biotin, OmpG-PEG11-biotin and OmpG-
PEG45-biotin in 10 mM sodium phosphate pH 6, 300 mM KCl buffer at +50 mV. (b) Power 
spectra analysis of OmpGwt, OmpG-PEG2-biotin, OmpG-PEG11-biotin and OmpG-PEG45-
biotin. (c) Analysis of the open probability of OmpG pores in 10 mM sodium phosphate pH 6, 
300 mM KCl buffer at +50 mV.  Averages were calculated from at least three independent 
pores.  Error bars indicate the standard deviation.  A p value > 0.05 indicates that the open 
probabilities of the four proteins are not significantly different from one another.  Signals in (a) 
were filtered with a 2 kHz Bessel filter and acquired at a sampling of 100 μs.  For power spectra 
analysis pores were filtered with a 100 kHz Bessel filter and acquired at a sampling of 4 μs.  
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Figure 4.4 Extended electrophysiology traces of OmpGwt and OmpG-PEGn-biotin 
constructs. The tethered Maleimide-PEGn-biotin ligands do not affect the gating behavior of 
OmpG.  Single channel current traces of OmpGwt, OmpG-PEG2-biotin, OmpG-PEG11-biotin 
and OmpG-PEG45-biotin were recorded in 10 mM sodium phosphate pH 6, 150 mM KCl 
buffer at ±50 mV applied in the trans chamber.   Signals were filtered with a 2 kHz Bessel filter 
and acquired at a sampling rate of 100 μs.  
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Before we tested the biotin binding proteins with the OmpG-PEGn-biotin 

constructs we tested these proteins with unlabeled OmpG pores (OmpG-D224C).  

These negative control experiments showed that none of the biotin-binding protein 

analytes could trigger a signal change in the gating behavior of the OmpG-D224C 

nanopore indicating that non-specific binding of streptavidin, avidin (and the mouse 

monoclonal anti-biotin antibody) to unlabeled OmpG was negligible (Figure 4.5).  

 

We then examined how the different OmpG-PEGn-biotin nanopore constructs 

responded to the two biotin-binding homologous proteins – streptavidin and avidin. We 

observed that streptavidin binding resulted in a permanent increase in open probability 

(n = 10, p = 0.05) for OmpG-PEG2-biotin (Figure 4.6, Figures 4.7a, 4.7d) as we had 

previously seen.40,41 The open probability of the streptavidin bound state increased due 

to the fact that the gating frequency of the OmpG-PEG2-biotin pore significantly 

decreased when streptavidin was bound.  The duration of the closed events shortened 

while the duration of the open state increased (Figure 4.6).  Furthermore, we did not 

 

Figure 4.5. Electrophysiology traces showing the effect of biotin binding proteins on 
OmpG-D224C gating activity.  The gating behavior of OmpG-D224C is not significantly 
altered in the presence of a mixture of streptavidin, avidin and anti-biotin mAb.  This pore is a 
representative of four independent pores.  10 mM sodium phosphate pH 6, 300 mM KCl buffer 
was used at +50 mV.  Signals were filtered with a 2 kHz Bessel filter and acquired at a 
sampling rate of 100 μs.  
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observe any dissociation of the bound streptavidin molecule from the OmpG-PEG2-

biotin pore during our recordings.   

However, the addition of streptavidin to the loop facing chamber of OmpG-

PEG11-biotin as well as that of OmpG-PEG45-biotin unfortunately did not induce any 

quantifiable change in the gating activity of more than 15 OmpG-PEG11-biotin 

nanopores and 13 OmpG-PEG45-biotin pores (Figure 4.7b-4.7d).40,41  

 

 

 

 

Figure 4.6. The effect of streptavidin binding to the OmpG-PEG2-biotin pore.  The open 
probability of the OmpG-PEG2-biotin construct increases. The trace shown is a representative 
of over 15 pores.  The pore was recorded in 10 mM sodium phosphate pH 6, 300 mM KCl 
buffer at +50 mV.  Streptavidin was added to the loop chamber at a final concentration of 5 nM.  
Signals were filtered with a 2 kHz Bessel filter and acquired at a sampling of 100 μs.  
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In contrast, significant changes in current traces of all three constructs were 

observed using avidin (Figures 4.8-4.10).  Avidin binding caused a ~45% decrease of 

the OmpG-PEG2-biotin and OmpG-PGE11-biotin open pore current (Figure 4.8a, 4.b). 

The open current decreased from 24.8 ± 4.4 pA to 14.6 ± 1.7 pA (n = 6) for OmpG-

PEG2-biotin while for OmpG-PEG11-biotin it decreased from 27.4 ± 0.9 pA to 14.4 ± 3.4 

pA (n = 4).  Interestingly, when avidin bound to OmpG-PEG45-biotin, it induced two 

distinct current patterns during the bound state (Figure 4.8c).  In the predominant 

pattern, termed B1, the open pore current decreased from 23.6 ± 1.0 pA to 21.1 ± 1.3 pA 

(n = 6), an 11% decrease in the open state.  The minor pattern B2, had an open pore 

current of 14.9 ± 2.5 pA (n = 6) which was 37% decrease of the unbound state (UB) 

 

Figure 4.7. Streptavidin binding to OmpG-PEGn-biotin constructs.  Current recordings of 
(a) OmpG-PEG2-biotin (b) OmpG-PEG11-biotin and (c) OmpG-PEG45-biotin before and after 
streptavidin binding at +50 mV. Buffer used was 300mM KCl, 10mM sodium phosphate pH 6.   
(d) Comparison of open probability of OmpG nanopores before and after streptavidin binding. 
Error bars represent standard errors from at least 5 pores. Statistical analysis was performed 
with an unpaired two sample t-test (n>5, p = 0.05). 
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(Figure 4.8c).  Notably there were no significant changes to the open probability of either 

the three OmpG-PEGn-biotin pores after avidin was bound (Figure 4.8d), unlike the 

significant change in open current (Figure 4.8e).   

 

 

Figure 4.8. Avidin binding to OmpG-PEGn-biotin constructs.  Current recordings and the 
corresponding histograms of (a) OmpG-PEG2-biotin (b) OmpG-PEG11-biotin and (c) OmpG-
PEG45-biotin before and after avidin binding at +50 mV. Buffer used was 300mM KCl, 10mM 
sodium phosphate pH 6. The relative open pore current of the avidin bound states (blue and 
red dash lines) to the unbound state (UB, green dash line) are indicated on the top of the 
histograms. (d-e) Comparison of open probability (d) and open pore current (e) of OmpG 
nanopores before and after avidin binding. Error bars represent standard errors from at least 4 
pores. Statistical analysis were performed with an unpaired two sample t-test (n > 4, p = 0.05). 
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Figure 4.9. Single channel current traces of OmpG-PEGn-biotin. Representative traces of 
(a) OmpG-PEG2-biotin (b) OmpG-PEG11-biotin and (c) OmpG-PEG45-biotin before and after 
avidin binding.  B1 and B2 states of OmpG-PEG45-biotin are highlighted in black and blue, 
respectively in (c).  Pores were recorded in 10 mM sodium phosphate buffer pH 6, 300 mM 
KCl at +50 mV.  Avidin was added at a final concentration of 5 or 10 nM.     
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Previous studies using OmpG-PEG2-biotin revealed that analyte proteins could 

be classified into two categories based on their current signatures. Specifically, some 

analytes interact with the OmpG pore surface while others do not.  We found that non-

interacting proteins were either neutral or negatively charged molecules under the 

experimental conditions used.41 Typically, a decrease of the gating activity was observed 

for these proteins which may hinder the dynamic movement of loop 6 through drag or 

friction forces. One example was streptavidin. The fact that streptavidin binding inhibited 

gating in OmpG-PEG2-biotin but not OmpG-PEG11-biotin or OmpG-PEG45-biotin 

suggest that a linker with 11 or more PEG units is flexible enough to allow loop 6 to 

freely move even with a ~60 kDa protein attached.  

On the other hand, proteins that interacted with OmpG’s loops usually induced a 

reduction in the open pore current by occluding ionic flow.41 Such protein-protein 

interactions were dominated by electrostatic attraction between the negatively charged 

OmpG loops and the positively charged analyte protein surface, such as avidin.41 Avidin 

binding to OmpG-PEG11-biotin triggered an almost identical effect to that of the OmpG-

 

Figure 4.10. Power spectra analysis of noise in the absence and presence of avidin.  (a) 
Spectra noise at 5 s of OmpG-PEG45-biotin, OmpG-PEG11-biotin and OmpG-PEG2-biotin 
after avidin binding.  (b) Power spectra analysis of OmpG-PEG45-biotin before and after avidin 
binds during a 200 ms time scale.  10 mM sodium phosphate pH 6, 300 mM KCl buffer was 
used and trace recorded at +50 mV.  For power spectra analysis recordings were filtered with 
a 2 kHz Bessel filter and acquired at a sampling of 100 μs.  
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PEG2-biotin, suggesting that the avidin bound states of these two constructs were 

similar (Figures 4.8e, 4.9-4.10).  The avidin bound state of OmpG-PEG45-biotin 

exhibited two distinct gating signatures with relative open pore current of 87% and 60%.  

We presume this shows that avidin interacted with OmpG-PEG45-biotin in two different 

configurations (Figures 4.8e, 4.9-4.10).   

Our results show that OmpG lost its ability to detect neutral or negatively charged 

molecules with an elongated linker but was able to recognize the positively charged 

protein analytes.  This study also suggests that we could adjust the PEG linker to 

optimize the selectivity of OmpG toward one specific analyte such as a glycosylated 

protein, like avidin, while removing any interfering signals from related non-glycosylated 

homologues, like streptavidin.   

 
4.4.2 Effect of voltage on OmpG-PEG-biotin - avidin interaction 

The OmpG-PEG45-biotin is the first variant to show multiple unique bound 

states, specifically with avidin.  Since we suspect that electrostatic forces govern the 

interactions between the loops and analyte, we tested the effect of applied voltage on 

the bound states to see if they responded to electric fields.  Here, positive potential was 

defined as the potential of the chamber in which the OmpG loops were facing was 

positive relative to the other chamber (Figure 4.11). The relative open current of OmpG-

PEG2-biotin and that of OmpG-PEG11-biotin showed a significant voltage dependence 

(Figure 4.11a, 4.11b, 4.11d). The relative open pore current of the B1 state to the 

unbound state showed a weak voltage dependence (Figures 4.11c, 4.11d).  Increasing 

the potential from -75 mV to 75 mV caused the open pore current to decrease slightly.  

On the other hand, the relative open current of the B2 state showed a strong 

dependence.  
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Because the open pore current and voltage dependence of the B2 state were 

similar to the avidin bound states of OmpG-PEG2-biotin and OmpG-PEG11-biotin 

(Figures 4.11d, 4.12), we speculated that avidin interacted with OmpG surface in a 

similar manner in each scenario.  The avidin B1 and B2 data suggests that a long PEG 

linker such as PEG45 (<170 Å) or longer could allow the analyte (which should have 

strong electrostatic interaction with the OmpG loops) to sample or interact with more 

than one binding area of the OmpG loop surface or event a binding distance once it is 

bound to the tethered ligand.  The voltage dependent open pore current of the avidin 

 

Figure 4.11. Voltage effect on avidin binding to OmpG-PEGn-biotin.  Current recordings of 
(a) OmpG-PEG2-biotin (b) OmpG-PEG11-biotin and (c) OmpG-PEG45-biotin before and after 
avidin binding at various voltages.  (d)  Effect of voltage on the relative open pore current of the 
avidin bound states of all three OmpG-PEG-biotins. (e) Effect of voltage on the dwell time of 
B1 and B2 states of OmpG-PEG45-biotin.  The B1 and B2 avidin binding states are indicated 
by the red and blue bars respectively.  Buffer used was 300mM KCl, 10mM sodium phosphate 
pH 6.   
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bound B1 and B2 states of OmpG-PEG45-biotin was likely due to the proximity of the 

bound avidin molecule to the entrance of OmpG under an applied potential. 

 

 

  
We then measured the dwell times of both the B1 and B2 avidin bound states of 

OmpG-PEG45-biotin at voltages ranging from -75 mV to +100 mV.  First, we observed 

that the B1 dwell time in the 300 mM KCl buffer condition was not voltage dependent 

where the dwell times fluctuated rather randomly as the voltage varied.  On the other 

 

Figure 4.12. Comparison of open pore current of the OmpG-PEGn-biotin constructs 
before and after avidin binding at various voltages.  Both OmpG-PEG2-biotin and OmpG-
PEG11-biotin exhibit a significant change in open pore current from -75mV to +75mV once 
avidin is bound. The B2 signal of the avidin-bound OmpG-PEG45-biotin is significant at -75mV 
to +75mV whereas the B1 signal is only significant at positive voltages. At negative voltages, 
the B1 avidin-bound state is not different from that of the –avidin gating. Asterisks (*) represent 
data that have p values < 0.05 compared to the -avidin condition (white bars).  Data that have 
p values > 0.05 are indicated by n.s. signifying that there is no significant difference in the 
current after avidin is bound.  Error bars indicate the standard deviation.  More than 15 bound 
and 15 unbound events from at least three independent pores were analyzed.  The pores were 
recorded in 10 mM sodium phosphate pH 6, 300 mM KCl buffer at +50 mV with a 2 kHz Bessel 
filter and an acquisition sampling rate of 100 μs.  Avidin was added at a final concentration of 5 
or 10 nM.   
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hand, the B2 dwell time initially did not significantly change at negative potential but 

slowly and exponentially increased after an increasing positive potential was applied 

(Figures 4.11e, 4.13, 4.14).  This result suggests that the avidin and OmpG-PEG45-

biotin electrostatic interaction could be strengthened (increase in B2 dwell time) or 

weakened (decrease in B2 dwell time) by manipulating the applied potential across the 

bilayer.   

 

 

 

Figure 4.13. Electrophysiology traces showing the dwell times of the avidin B2 state of 
OmpG-PEG45-biotin at various loop voltages.  The B2 state dwell time (blue line) increases 
as the loop potential increases.  The pores were recorded in 10 mM sodium phosphate pH 6, 
300 mM KCl buffer at the indicated loop voltages.  Signals were filtered with a 2 kHz Bessel 
filter and acquired at a sampling of 100 μs.  
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Figure 4.14. First order exponential fitting analysis of B1 and B2 dwell times at 
various voltages.  B1 and B2 of OmpG-PEG45-biotin was analyzed from -75 to +100 mV. 
The histograms are from a single representative pore but the calculated dwell time is the 
average from at least three independent pores and the error is the standard deviation.  10 
mM sodium phosphate pH 6, 300 mM KCl buffer was used.     
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Because avidin, which bears a positive charge and OmpG’s loop surface carries 

a net negative charge, we expect a strong electrostatic attraction between them and 

previously confirmed this phenomena.41 In addition, electrophoretic (EP) and 

electroosmotic (EO) forces act on the bound avidin in a voltage dependent manner.41 

The OmpG lumen is decorated with 14 positively (12R and 2K) and 16 negatively (13E 

and 3D) charged residues.  At pH 6.0, the lumen had a -2 net negative charge.  Thus, at 

positive potential, EP and EO align to push avidin into the loop surface of the OmpG 

nanopore.  At negative potential, the two forces push in the opposite direction, 

weakening the electrostatic attraction between the OmpG nanopore and the bound 

avidin molecule.   

In protein nanopores such as αHL and solid-state nanopores such as glass, 

simulations have shown that the strength of EO and EP fields peak at the constriction 

site of the nanopore and diminish rapidly between the nanopore and bulk solution.54,55  

Because the B2 state is voltage dependent, we surmise that during this state, the bound 

avidin must be close enough to the pore to be influenced by EO and EP forces.  On the 

other hand, avidin in the B1 state might be further away from the pore entrance as it is 

not affected by voltage.  Here, we have shown that the characteristic gating pattern used 

to identify analytes and homologues can be tuned and possibly optimized to trap desired 

states by manipulating the voltage.   

  
4.4.3 Effect of salt concentration on the interaction between OmpG-PEG45-biotin 

and avidin 

The electrostatic interactions between OmpG-biotin and avidin, EP and EO are 

sensitive to salt concentration.41 Thus we observed whether the avidin-bound complex to 

OmpG-PEG45-biotin responded to changes in salt concentration at +100 mV (Figure 

4.15).   
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At 150 mM KCl, only the B2 state was observed (Figure 4.15, 4.16a).  At higher 

salt concentrations, the bound avidin switched between B1 and B2 states (Figures 

4.16b-4.16e).  The dwell time of the B2 state decreased rapidly with increasing salt 

concentration with a corresponding increase in B1 dwell time (Figures 4.16f, 4.17).   In 

addition, the relative open current of the avidin B1 and B2 states increased with 

increasing salt concentration.  At 750 mM KCl, the B2 state was still recognizable, while 

the open current of the B1 state was indistinguishable from that of the unbound state 

(Figure 4.5d, 4.5e). This suggested that the avidin molecule occluded the ionic flow 

through OmpG-PEG45-biotin to a lesser degree at higher salt concentration.  At 1.0 M 

 

Figure 4.15. The effect of KCl concentration on the avidin binding states B1 and B2 of 
the OmpG-PEG45-biotin pore. Pores were recorded in 10 mM sodium phosphate pH 6 buffer 
at +100 mV in the indicated KCl concentrations.  Asterisks (*) indicate data that have p values 
< 0.05 which are statistically significant from the -avidin condition.  Data that has p value > 
0.05 is indicated by n.s. signifying that there is no significant difference in the open current 
after avidin is bound.  Error bars indicate the standard deviation.  More than ten B1 and ten B2 
events were collected from at least three independent pores to determine the average current 
reduction.   
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KCl, we did not observe any significant change in gating after the addition of avidin, 

indicating that avidin no longer interacted electrostatically with the nanopore surface.  

 

Because salt screens the surface charge of the bound avidin and the OmpG, 

increasing salt concentration could essentially weaken all three forces that act on avidin. 

This explains why at low salt concentration (150 mM KCl), avidin stayed tightly bound 

(B2) while the loosely-bound state (B1) became dominant when salt concentration 

increased.  Thus, the salt concentration of the recording buffer is an important factor to 

modulate the detection of the binding signature of the chosen target.   

 

Figure 4.16. Salt effect on OmpG-PEG45-avidin binding states. Typical current recording 
of a single OmpG-PEG45-biotin pore at unbound and traces of avidin bound states (B1 and 
B2).  Single channel recording were carried out in 10mM sodium phosphate buffer pH 6 
containing KCl ranging from (a) 150mM (b) 300mM (c) 450mM and (d) 750mM KCl.  (e) The 
effect of salt concentration on the relative open pore current and (f) the dwell time duration of 
avidin B1 and B2 states.  
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4.4.4 Effect of linker length on the binding kinetics  

To assess the effect of PEG linker length on binding kinetics, a reversible-binding 

mouse monoclonal anti-biotin antibody (mAb) was used in place of streptavidin and 

avidin.  The recording buffer salt was lowered to 150 mM because the gating activity of 

OmpG-PEG45-biotin pores did not change in the presence of mAb in 300 mM KCl buffer 

(n = 10).  The mAb bound all three nanopore constructs and generated gating signatures 

 

Figure 4.17. First order exponential fitting analysis of B1 and B2 dwell times in various 
salt conditions. B1 and B2 of OmpG-PEG45-biotin in 300 to 750 mM KCl (10 mM sodium 
phosphate pH 6) buffers was measured at +100 mV. The histograms were generated from at 
least 300 events from a single representative pore.  The average dwell times were calculated 
from the extracted dwell times of at least three independent pores and the error is the standard 
deviation.   
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differing in open pore current and gating frequency which lowers the open probability 

compared to the unbound state (Figure 4.18, 4.19).  Although mAb increased the gating 

frequency for all OmpG-PEGn-biotin constructs (Figure 4.20a), the relative open current 

was 71± 15% (n = 15), 77 ± 10% (n = 15) and 94 ± 7% (n = 15) as the length of PEG 

increased from 2 units to 45 units (Figure 4.20b).  Additionally, the three constructs 

varied in the mAb association (k’on) as the longer PEG linker resulted in a slower kon 

(Table 4.1, Figures 4.20c, 4.21).   The linker length showed less effect on dissociation 

(koff) rates as the differences among the three constructs were insignificant (Table 4.1, 

Figures 4.20d, 4.21).  As a consequence, the observed dissociation equilibrium constant 

Kd for OmpG-PEG45-biotin was five times weaker than the OmpG-PEG2-biotin. This 

result shows the apparent binding affinity of mAb to OmpG-PEGn-biotin constructs 

decreased with the increasing length of the linker (Tables 4.1, 4.2).   

 

 

Figure 4.18. Detection of an anti-biotin mouse monoclonal antibody (mAb) by the three 
OmpG-PEGn-biotins. Current recordings and all events histograms of anti-biotin mAb binding 

to (a) OmpG-PEG2-biotin (b) OmpG-PEG11-biotin (c) OmpG-PEG45-biotin.  Green dashed 

lines indicate the open current of the pores in the unbound state and red dashed lines indicate 

the open current in the avidin bound state.  Buffer used is 150mM KCl, 10mM sodium 

phosphate pH 6.   The applied voltages were +50 mV.  
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Figure 4.19. The binding signal and the defined ton and toff events of anti-biotin mAb to 
OmpG-PEGn-biotin.  When the mAb binds to the OmpG pore (shown in red) the result is a 
reduction in the open probability of the pore as well as a reduction in the open current.  The 
pores were recorded in 10 mM sodium phosphate pH 6, 150 mM KCl buffer at +50 mV.  
Signals were filtered with a 2 kHz Bessel filter and acquired at a sampling of 100 μs.  
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In nanopore sensing, the electroosmotic flow, electrophoretic force and 

electrostatic forces strongly influence the molecule’s motion within the nanopore and 

near the entrance.56,57  Steep potential gradients and strong flow velocity that occur at 

the constriction site of a nanopore can create an absorbing force to facilitate the capture 

of the analyte by the nanopore.58,59 All three forces, when acting on the analyte in the 

same direction, can potentially promote stronger binding with OmpG-PEGn-biotin by 

 

Figure 4.20. Statistic analysis to compare the binding of mAb to the OmpG-PEGn-biotin 
constructs. The change in (a) open probability (b) open current (c) on-rate (ton) and (d) and 
off-rate toff when mAb binds to OmpG-PEG2-biotin, OmpG-PEG11-biotin and OmpG-PEG45-
biotin are shown.  The pores were recorded in 10 mM sodium phosphate pH 6, 150 mM KCl 
buffer at +50 mV.  The average open probabilities were calculated using at least 5000 open 
and closed events from each pore.  At least three independent pores were analyzed.  The 
average open current was determined from at least four independent pores.  More than 30 
mAb bound and 30 unbound events were extracted from each pore.  To determine the ton and 
toff, approximately 1000 events were extracted from each pore.  At least three independent 
pores were analyzed for binding kinetics.  P values > 0.05 (highlighted in black) reveal data 
that has no significant difference (n.s.) while p values < 0.5 (highlighted in red) reveal data 
that are statistically different.   
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enhancing the mAb association and inhibiting dissociation.  Since these forces were 

strongest in the pore entrance and decrease rapidly with increasing distance, increasing 

the PEG linker length reduced the binding affinity. Thus, although a longer linker may 

potentially improve the selective detection, it would compromise the detection sensitivity.  

 

 

 

Figure 4.21. First order exponential fitting analysis of ton and toff dwell times of antibiotin 
mAb. mAb binding to OmpG-PEG45-biotin, OmpG-PEG11-biotin, OmpG-PEG2-biotin was 
performed in 10 mM sodium phosphate pH 6, 150 mM KCl buffer and measured at +50 mV.  
Dwell times are measured in seconds.  The histograms were plotted from the dwell times 
extracted from a single representative pore.  The dwell times are the averages from three 
independent pores and the error is the standard deviation.   
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Table 4.2. Summary of the binding effects of streptavidin, avidin and anti-biotin mAb to 
OmpG-PEGn-biotin constructs. 

Target 
OmpG-
biotin  

Buffer 
Voltage 

(mV) 
Binding Signal 

Binding 
Characteristic 

Streptavidin 

PEG2 
300 
mM 
pH 6 

+50 

 

• Open probability 
increases by 
17% 

PEG11 
300 
mM 
pH 6 

+50 

 

• No change in 
gating activity 

PEG45 
300 
mM 
pH 6 

+50 

 

• No change in 
gating activity 

Avidin 
 

PEG2 

300 
mM 
pH 6 

-75 

 

• Current 
decreases by 
13.8% 

300 
mM 
pH 6 

-50 

 

• Current 
decreases by 
17.0% 

300 
mM 
pH 6 

-25 

 

• Current 
decreases by 
22.4% 

300 
mM 
pH 6 

+25 

 

• Current 
decreases by 
35.7% 

300 
mM 
pH 6 

+50 

 

• Current 
decreases by 
39.6% 

• No change in 
open probability 

300 
mM 
pH 6 

+75 

 

• Current 
decreases by 
44.8% 

Table 4.1. Linker effect on the binding kinetics of an anti-biotin 
mouse monoclonal antibody. 

Biotin 
construct 

k’on 
(x106 M-1s-1) 

koff 
(s-1) 

K’D 

(x10-8 M) 

OmpG-PEG2 20.3 ± 6.7 0.30 ± 0.08 1.5 ± 0.6 

OmpG-PEG11 16.6 ± 5.0 0.48 ± 0.06 2.9 ± 0.6 

OmpG-PEG45 7.5 ± 1.2 0.47 ± 0.07 6.3 ± 1.2 

 



143 

 

Avidin 
 

PEG11 

300 
mM 
pH 6 

-75 

 

• Current 
decreases by 
10.5% 

300 
mM 
pH 6 

-50 

 

• Current 
decreases by 
15.1% 

300 
mM 
pH 6 

-25 

 

• Current 
decreases by 
16.0% 

PEG11 

300 
mM 
pH 6 

+25 

 

• Current 
decreases by 
39.0% 

300 
mM 
pH 6 

+50 

 

• Current 
decreases by 
42.8% 

• No change in 
open probability 

300 
mM 
pH 6 

+75 

 

• Current 
decreases by 
47.3% 

Avidin PEG45 

300 
mM 
pH 6 

-75 

 

• B1 current 
indistinguishable 
from -avidin 

• B2 current 
decreases by 
16.7% 

300 
mM 
pH 6 

-50 

 

• B1 current 
indistinguishable 
from -avidin 

• B2 current 
decreases by 
18.9% 

300 
mM 
pH 6 

-25 

 

• B1 current 
indistinguishable 
from -avidin 

• B2 current 
decreases by 
28.5% 

300 
mM 
pH 6 

+25 

 

• B1 current 
decreases by 
9.4% 

• B2 current 
decreases by 
29.5% 
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300 
mM 
pH 6 

+50 

 

• B1 current 
decreases by 
10.8% 

• B2 current 
decreases by 
36.8% 

• No change in 
open probability 

300 
mM 
pH 6 

+75 

 

• B1 current 
decreases by 
17.3% 

• B2 current 
decreases by 
47.7% 

Avidin PEG45 

300 
mM 
pH 6 

+100 

 

• B1 current 
decreases by 
20.2% 

• B2 current 
decreases by 
37.8% 

150 
mM 
pH 6 

+100 

 

• Current 
decreases by 
62% 

450 
mM 
pH 6 

+100 

 

• B1 current 
decreases by 
12.7% 

• B2 current 
decreases by 
29.7% 

750 
mM 
pH 6 

+100 

 

• B1 current 
indistinguishable 
from -avidin 

• B2 current 
decreases by 
25.4% 

Anti-biotin 
mAb 

PEG2 
150 
mM 
pH 6 

+50 

 

• Current 
decreases by 
28.6% 

• Open probability 
decreases by 
27.6% 

• Kd = 14.6 ± 5.77 
nM 

PEG11 
150 
mM 
pH 6 

+50 

 

• Current 
decreases by 
22.5% 

• Open probability 
decreases by 
17.4% 
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• Kd = 29.2 ± 6.3 
nM 

PEG45 
150 
mM 
pH 6 

+50 

 

• Current 
decreases by 
6.0% 

• Open probability 
decreases by 
9.9% 

• Kd = 62.6 ± 11.6 
nM 

 

4.5 Conclusion 

By varying the length of the tether connecting biotin to OmpG, we showed how 

distance influenced OmpG’s detection selectivity and sensitivity. Our data demonstrated 

that electrostatic interactions, electroosmotic and electrophoretic forces not only strongly 

modulate the signal characteristics of the bound state but also affect their binding 

kinetics. Increasing the linker length weakened these forces resulted in the decrease in 

sensitivity. On the contrary, a longer linker allowed a bound analyte to sample multiple 

interactions at the interface with the nanopore, which may enhance analyte identification 

and differentiation.  
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CHAPTER 5 

A NON-CLASSICAL ASSEMBLY PATHWAY OF ESCHERICHIA COLI PORE 

FORMING TOXIN CYTOLYSIN A 

Reprinted (adapted) with permission from M. Fahie, F. Romano, C. Chisholm, A. P. 

Heuck, M. Zbinden, and M. Chen, “A non-classical assembly pathway of Escherichia coli 

pore forming toxin cytolysin A.,” J. Biol. Chem., vol. 288, no. 43, pp. 31042–31051, Sep. 

2013. Copyright 2013 Journal of Biological Chemistry. 

 
5.1 Summary 

Cytolysin A (ClyA) is an alpha-helical pore forming toxin (α-PFT) from pathogenic 

Escherichia coli (E. coli,) Shigella and Salmonella enteric strains.  PFTs are virulent fac-

tors secreted as monomers by bacteria but can assemble to oligomeric pores when they 

encounter their target cell membrane.  Here, we report that E. coli ClyA can assemble 

into an oligomeric structure in solution at physiological temperature in the absence of 

either bilayer membranes or detergents.  These soluble ClyA oligomers can rearrange to 

create transmembrane pores when in contact with detergents or biological membranes.  

Intrinsic fluorescence measurements revealed that the oligomers adopted an intermedi-

ate state found during the transition between monomer and transmembrane pore.  

These results suggest that the water-soluble oligomers represent a prepore intermediate 

state.  Furthermore, our data suggests that ClyA does not form transmembrane pores on 

reconstituted E. coli lipid membranes.  Since ClyA can be delivered to the target host cell 

in an oligomeric conformation within outer membrane vesicles (OMVs), our findings sup-

port a model that suggests that ClyA forms a prepore oligomeric structure independently 

of the lipid membrane within the OMV.  This proposed model for ClyA represents a non-

classical PFT assembly pathway to attack eukaryotic host cells. 
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5.2 Introduction 

 
Pore-forming toxins (PFTs) represent the largest family of bacterial protein toxins 

and constitute important bacterial virulence factors.1,2  Their cytolytic function operates 

by introducing a large, water-filled pore into target cell membranes.  These pores either 

deliver toxic effector proteins to the target cell or lead to cell lysis through leakage.3  

Most bacterial PFTs are secreted into the extracellular environment in a water-soluble 

form, where they subsequently diffuse and assemble on host cell membranes.  Pore-

forming toxins are classified as α-PFTs or β-PFTs depending on the predominant sec-

ondary structure of the transmembrane pore, i.e. α-PFTs contain α-helical transmem-

brane domains and β-PFTs form a β-barrel.1,2 

Cytolysin A (ClyA), also known as silent hemolysin A (SheA) or hemolysin E 

(HlyE), is a cytolytic α-PFT that causes the hemolytic phenotype of several Escherichia 

coli (E. coli) strains.4–9  Its homologues are also found in other pathogenic organisms, 

including Salmonella typhi and Shigella flexneri.10,11  The E. coli ClyA monomer is a 34-

kDa soluble protein that has a rod shape formed by a core bundle of four long α-helices 

(~90 Å long).10  At the end of the bundle that contains the N-terminal region, an addition-

al shorter (~30 Å long) helix from the C-terminal region packs against the core bundle, 

forming a five-helix bundle for about one-third the length of the molecule.  The structure 

of the transmembrane pore shows a hollow funnel consisting of 12 subunits (pro-

tomers).12,13  Each protomer contributes one amphipathic α-helix that packs in an iris-like 

structure to form the transmembrane barrel.  The narrowest opening of the channel at 

the transmembrane site has a diameter of 35 Å while the top or widest part of the funnel 

is 70 Å.12  
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The general model for multimeric PFT attack action involves three steps1: (i) 

docking of the soluble monomer to the target cell membrane; (ii) assembly of the mono-

mer into a ring-like prepore structure that lacks the transmembrane domain structure at 

the membrane surface; (iii) penetration of the transmembrane domain across the target 

cell membrane.  In the first step, cholesterol, carbohydrates or membrane proteins on 

the host’s cell surface may serve as receptors for the association of the toxins with the 

membrane.14–18  ClyA toxin is also believed to follow a similar strategy when attacking 

host cells.1  However, unlike the well-studied β-toxins α-hemolysin and protective anti-

gen from anthrax toxin (PA), which are secreted by gram-positive bacteria into the extra-

cellular environment as a soluble monomer,19,20  ClyA is secreted from E. coli via a vesi-

cle-mediated pathway.21–23  Similar to the budding of yeast cells, the outer membrane of 

E. coli bubbles out and pinches off to form the outer membrane vesicles (OMVs).24  Dur-

ing the formation of the OMV, many outer membrane proteins as well as periplasmic 

proteins (of which ClyA is a member) are incorporated into the OMV.  The vesicle-

mediated pathway has been found to deliver several toxins, including heat-labile entero-

toxin and Shiga toxin.25–27  So far, it remains unclear how these toxins are released from 

the OMVs to carry out their cytolytic function.25  

Of note, Wai et al. discovered that ClyA in the OMV adopted a ring-like oligomer-

ic structure when viewed under an electron-microscope.21  This observation contradicts 

the typical PFT strategy of assembling pores from water-soluble monomers at the sur-

face of the target cell.  These ClyA oligomers were speculated to represent transmem-

brane pores, thus raising a question about how transmembrane pores already embed-

ded in E. coli lipid membranes could then transfer to the host cellular membrane.  Never-

theless, its secretion pathway is distinct from the well-studied β-toxins, which suggests 

that ClyA may have an unexpected mechanism to carry out its cytolytic function.  
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In this study, we report that ClyA assembles into soluble hemolytically active oli-

gomers in the absence of lipid bilayers or detergents.  The water-soluble oligomer may 

represent a prepore intermediate undergoing the transition from the monomer to the 

transmembrane pore.  This data could provide important evidence to elucidate the struc-

tural organization of the oligomeric ClyA proteins in the OMV, which is a step further to-

wards understanding the attack mechanism for the ClyA toxin.  

 
5.3 Materials and Methods 

All the chemicals were purchased from Fisher Scientific unless otherwise speci-

fied.  Luria Broth (LB) Miller version medium was purchased from Boston BioProducts. 

 
5.3.1 Cloning and mutagenesis of ClyA 

The E. coli ClyA gene was amplified from the E. coli K-12 genome (ATCC) and 

cloned into a pT7 vector with a C-terminal hexa-histidine tag XhoI and HindIII restriction 

cut sites to insert the gene into the multiple cloning site.  The cysteine-less ClyA (C87S, 

C285S) was obtained by the overlap PCR method using the plasmid containing the C-

terminal hex-histidine tagged ClyAwt gene (pT7-ClyAwt) as a template.  The PCR was 

performed using Phusion polymerase reaction (New England Biolabs).  The primers for 

C87S were 5’- ATGAATGGTCTGGTGTTGCGACGCAATTG (forward) and 5’- 

CGTCGCAACACCAGACCATTCATACACTG (reverse).  These two primers were used 

in a pair with the primers SC47: 5’-CAGAAGTGGTCCTGCAACTTTATC (reverse) and 

SC46: 5’-ATAAAGTTGCAGGACCACTTCTG (forward) which annealed to the middle of 

the plasmid in the Ampicillin resistance cassette.  The two PCR products were then 

mixed in an approximate 1:1 molar ratio and subjected to DpnI digestion for three hours 

at 37°C to degrade the parental plasmid.  Competent E. coli DH5α cells were then co-

transformed with the PCR mixture and colonies containing the desired mutant construct 

pT7-ClyA C87S were identified by DNA sequencing.  The same procedure was repeated 
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to generate pT7-ClyA ΔCys (C87S C285S) construct using the pT7-ClyA C87S as tem-

plate.  The two primers used for introducing the C285S mutation into the C87S mutant 

plasmid were 5’-AACACCTCTAATGAGTATCAGAAAAGAC (forward) and 5’- 

ACTCATTAGAGGTGTTAATCATTTTTTTGG (reverse).  The single cysteine mutant 

pT7-ClyA C304 was constructed in the same way by using pT7-ClyA ΔCys as a template 

for PCR.  Primers were 5’-CTGAAGTCTGCCACCATCACCATCACC (forward) and 5’-

TGGTGGCAGACTTCAGGTACCTCAAAG (reverse).  All primers were obtained from 

Fisher Scientific. 

 
5.3.2 Expression and purification of ClyA 

The resulted plasmids were transformed into E. coli BL21.  Cells were grown in 

LB medium at 37°C to OD600 0.5.  Isopropyl β-D-1-thiogalactopyranoside (0.5 mM) was 

then added to the cell culture to induce protein expression.  Cells were grown for 3 hours 

and then harvested by centrifugation.  To purify the ClyA protein, cell pellets (1.0 L cul-

ture) were resuspended in 50 ml 50 mM Tris•HCl, pH 8.0, 200 µg/ml lysozyme and 1 

mM EDTA, 0.1 mM phenylmethanesulfonylfluoride (Sigma).  The cell lysate was incu-

bated on ice for 30 minutes. To reduce the viscosity, 50 kU DNase I and 3 mM MgCl2 

were added to the mixture and incubated for 30 minutes at room temperature.  The ly-

sate was centrifuged at 20,000 g for 30 min.  After passing through a 0.45 µm filter, the 

supernatant sample was loaded onto the Ni-NTA affinity column that was equilibrated 

with buffer A which contained 50 mM Tris•HCl, pH 8.0, 150 mM NaCl. His-tagged ClyA 

proteins were eluted under a gradient with buffer A and buffer B which contained the 

same Tris buffer and NaCl but included 0.5 M imidazole.  The ClyA protein eluted in 

around 30% buffer B or ~150 mM imidazole.  ClyA was then further purified to remove 

aggregates and the excess imidazole by Superdex 200 10/300 gel filtration column (GE 

Healthcare) that was equilibrated with 25mM Tris•HCl, pH 8.0, 150 mM NaCl.  The mon-
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omeric ClyA proteins were collected and stored at -80°C at a concentration of 0.7 mg/ml 

or less.  The purity of the protein (>95%) was verified by 15% SDS-PAGE (Figure 5.1).  

 

 
5.3.3 Gel filtration analysis of ClyA oligomerization  

Gel filtration chromatography (GFC) analysis of proteins was performed at room 

temperature (22-23°C) using an analytical Superdex 200 10/300 gel filtration column 

(GE healthcare).  For detergent-triggered oligomerization of ClyA, samples were incu-

bated in 0.1% DDM at the indicated temperature and time.  The proteins were then in-

jected onto the column equilibrated in buffer 50 mM Tris•HCl, pH 8.0, 150 mM NaCl, 

0.01% (w/v) n-Dodecyl β-D-maltoside (DDM) at room temperature.  For detergent inde-

pendent oligomerization, samples were incubated with buffer containing no DDM at the 

indicated temperature for 2 hours prior to GFC analysis.  The buffer used to analyze and 

collect the soluble oligomers from GFC was 50 mM Tris•HCl, pH 8.0, 150 mM NaCl.  

 

Figure 5.1. SDS-PAGE of nickel affinity purified ClyAwt protein.  The ClyA protein eluted 
in 150 mM imidazole from the nickel affinity column and was then run through gel filtration as 
a further purification step.  The protein purity is > 95%.  
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5.3.4 Intrinsic fluorescence studies 

ClyA proteins contained two tryptophan residues (W37 and W85) and were ana-

lyzed at a concentration of ~3 μM at 25°C.  For intrinsic fluorescence measurements the 

excitation wavelength was 280 nm and emission spectra were collected at 290–410 nm 

using a Fluorolog-3 spectrofluorimeter.  The fluorescence emission spectra of corre-

sponding buffers were subtracted from the emission spectrum of each ClyA sample.  For 

DDM-induced oligomerization studies, 15 µl of DDM stock solution (10% w/v) was added 

to 1.5 ml ClyA monomer at a final concentration of 0.1% (w/v).  Subsequently, the emis-

sion fluorescence spectra were recorded at 3 minute intervals.  The resulting spectra 

after DDM was added to the sample were adjusted according to the dilution factor as 

well as the buffer blank.   

 
5.3.5 Liposome preparations 

All lipids were purchased from Avanti Polar Lipids (Alabaster, AL).  E. coli total 

extract lipids or pig brain total extract lipids in chloroform at 25 mg/ml was dried at 20–

23°C under dry nitrogen and then kept under vacuum for at least 3 hours.  Lipids were 

re-hydrated in buffer 50 mM Tris•HCl, pH 8.0, 150 mM NaCl to a 25 mg/ml final concen-

tration of total lipids, and incubated for 30 minutes at 20–23°C with vortexing at 5 minute 

intervals.  The re-suspended lipid mixture was flash frozen in liquid nitrogen and thawed 

at 37°C for a total of three freeze-thaw cycles to reduce the number of multi-lamellar lip-

osomes.  Hydrated lipids were extruded 21 times through a 0.4 μm pore size polycar-

bonate filter (Whatman) using an Avanti Mini-Extruder (Alabaster, AL).  The resultant 

liposomes were stored at 4°C and used within 2 weeks of production. 

Tb(DPA)3
3- loaded liposomes were prepared as above, except that HBS buffer 

(50 mM HEPES, 100 mM NaCl pH 7.5) including 3 mM TbCl3, 9 mM 2,6-

pyridinedicarboxylic acid (DPA) was added to rehydrate 6.4 mg dried lipids to yield a fi-
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nal total lipid concentration of approximately 30 mM (final volume, 0.30 ml).  The result-

ing liposomes loaded with Tb(DPA)3
3- were separated from non-encapsulated 

Tb(DPA)3
3-  by gravity mediated gel filtration (Sepharose CL-6B-200, 0.7 cm inner di-

ameter X50 cm) in HBS buffer and the resulting concentration (~2 mM) was estimated 

by measuring the absorbance (light scattering) at 400 nm .      

 
5.3.6 Analysis of pore forming activity by hemolytic activity 

The liquid hemolysis assay with sheep defibrinated blood cells was used to 

measure the hemolytic activity of the ClyA proteins.28  Briefly, Remel sheep defibrinated 

blood (Thermo Scientific) was washed with HyClone Dulbecco’s phosphate-buffered sa-

line (DPBS) buffer (Thermo Scientific) and diluted four fold in DPBS buffer.  ClyA pro-

teins (7 µg) were added to 250 µl of blood cells and incubated at 37°C for 15 minutes.  

Samples were then centrifuged at 22,000 x g at 4°C for 8 minutes.  The absorbance of 

the supernatant at 540 nm was measured to estimate the concentration of released he-

moglobin.  The total hemolysis (100%) positive control was defined by incubation of red 

blood cells in MilliQ water, in place of buffer. 

 
5.3.7 Analysis of pore-forming activity by fluorescence quenching 

The pore-forming activity of ClyA proteins was also assessed by using a 

Tb(DPA) fluorescence quenching assay.  Tb(DPA)3
3- loaded liposomes (6 µL of ~ 2 mM 

giving a final concentration of ~12.5 µM total lipids) were added to  994 µL of quenching 

buffer (100 mM NaCl, 50 mM HEPES, 5 mM EDTA pH 7.5) containing 250 nM protein 

just before the measurement.  Samples were excited at 278 nm and the net initial emis-

sion intensity (F0) at 544 nm was determined after equilibration of the sample at 25 °C 

for 2 minutes.  The samples were then incubated for 1 hour at 37°C.  After re-

equilibration at 25°C for 10 minutes, the final net emission intensity (Ff) of the sample 



158 

 

was determined and the fraction of quenched fluorophore was calculated using 1- Ff/F0.  

Measurements were repeated 4 times for each condition.   

 
5.3.8 Oxidation of ClyA proteins 

The formation of intramolecular disulfide bonds were catalyzed using the oxidiz-

ing reagent Cu(phenanthroline)2 following a previous protocol.29  ClyA proteins were in-

cubated with 1.5 mM Cu(phenanthroline)2 at room temperature for 30 minutes with gen-

tle shaking.  EDTA (5 mM, final concentration) was then added to quench the oxidation 

reaction.  All the chemicals were then diluted to a negligible level by buffer exchange us-

ing a Centricon (Millipore) with a 3kDa cut-off.  To reduce the sample, oxidized proteins 

were incubated with 20 mM reducing agent dithiothreitol (DTT) for 60 min at room tem-

perature with continuous gentle agitation.  DTT was then removed by buffer exchange 

before the analysis of hemolytic activity.  

 
5.3.9 Single channel study of ClyA 

Planar lipid bilayer experiments were performed in an apparatus partitioned into 

two chambers with a 25 µm-thick Teflon film.  An aperture of approximately 100-µm di-

ameter had been made near the center of the film with an electric arc.  About 2 µl of 10% 

v/v hexadecane dissolved in pentane was added to both sides of the Teflon film and the 

pentane was allowed to evaporate for 2 minutes.  Each chamber was filled with 900 µl of 

25 mM Tris•HCl, pH 8.0, 1.0 M KCl. An Ag/AgCl electrode was immersed into each 

chamber with the cis chamber grounded.  A positive potential indicates a higher potential 

in the trans chamber.  20-30 µl of 1,2-diphytanoyl-sn-glycerol-3-phosphocholine at a 

concentration of 10 mg/ml (Avanti Polar Lipids, USA) dissolved in pentane was deposit-

ed on the surface of the buffer in both chambers and monolayers formed after the pen-

tane evaporated.  The lipid bilayer was formed by raising the liquid level up and down 

across the aperture, which had been pretreated with a hexadecane/pentane (1:10 v/v) 
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solution to prevent buffer solution exchange between the chambers.  The current was 

amplified with an Axopatch 200B integrating patch clamp amplifier (Axon Instruments, 

Foster City, CA).  A voltage potential of about 10 mV was applied for ClyA pore insertion 

unless otherwise stated. Signals were filtered with a Bessel filter at 2 kHz (unless other-

wise stated) and then acquired by a computer (sampling at 50 µs) after digitization with a 

Digidata 1320A/D board (Axon Instruments).  Data were analyzed with Clampex 10.0 

software.  

 
5.4 Results 

 
5.4.1 Assembly of ClyA in the absence of detergent 

It is often observed that PFT monomers assemble to form the oligomeric trans-

membrane pores upon contacting with detergents or lipid vesicles.30–32  Similar to these 

previous findings, the retention volume of ClyA monomers shifted from 15 ml to 10 ml by 

gel filtration chromatography (GFC) after incubation with 0.1% (w/v) DDM overnight at 

4ºC (Figure 5.2a).12,33 This high molecular weight oligomer was previously shown to rep-

resent the transmembrane pore structure and is termed ClyATM here.12,33  During the pu-

rification, we noticed that the ClyA protein showed a tendency to form high molecular 

weight oligomers even in the absence of detergent or lipids. We therefore explored the 

oligomerization of ClyA in the absence of detergent or membranes using GFC.  Two 

peaks with retention volumes of 8.5 ml and 9.5 ml appeared in chromatograms after in-

cubation of the ClyA monomer at 37°C in buffer containing 50 mM Tris•HCl, pH 8.0, 150 

mM NaCl for 2 hours (Figure 5.2b).  Fractions corresponding to the  two peaks were 

named oligomer 8 (ClyAO8) and oligomer 9 (ClyAO9) based on their respective retention 

volumes.  Notably, these two fractions migrated faster in the GFC column than ClyATM 

(Figure 5.2a, 5.2b).  The ClyAO8 and ClyAO9 were pooled separately and re-analyzed by 

GFC.  The two proteins still eluted at their original retention volumes of 8.5 ml and 9.5 
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ml, respectively (Figure 5.2c, 5.2d).  No monomer was observed in the chromatogram, 

suggesting that ClyAO8 and ClyAO9 did not dissociate under our conditions tested.  Be-

cause the ClyAwt monomer contains two cysteines, it is possible that ClyA could have 

formed oligomers through disulfide bond formation during the incubation at 37°C.  

 

 

 
Figure 5.2. Gel filtration chromatography of ClyA proteins. (a) Oligomerization of the ClyA 
proteins in the presence of DDM. ClyA monomers were incubated with 0.1% (w/v) DDM over-
night at 4°C and then analyzed by GFC with a running buffer 50 mM Tris•HCl, pH 8.0, 150 mM 
NaCl and 0.01% DDM. (b) Oligomerization of the ClyA protein in the absence of DDM. ClyA 
monomer was incubated at 37°C for 2 hrs. The running buffer of GFC was 50 mM Tris•HCl, pH 
8.5, 150 mM NaCl. Figure 3: GFC of ClyAO8 and ClyAO9 oligomers.  Running buffer used was 
50 mM Tris•HCl pH 8.0, 150 mM NaCl. 
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To assess this, the same experiment was repeated in buffers containing freshly 

prepared 10 mM DTT at 37°C.  The presence of DTT did not modify the elution profile of 

ClyA oligomers, excluding the involvement of disulfide bridges (Figure 5.3).  Thus, we 

conclude that ClyA was able to oligomerize in the absence of detergents/membranes 

and that the isolated oligomers were stable in solution. 

 

5.4.2 Conversion of oligomer 8 and oligomer 9 to the transmembrane pore 

To investigate whether ClyAO8 and ClyAO9 can convert to the transmembrane 

pore, we incubated them with 0.1% DDM overnight at 4°C.  The ClyAO8 shifted to a peak 

eluted at 15ml, corresponding to the monomer, and a peak at 10ml, corresponding to the 

fully-assembled transmembrane pore (Figure 5.4a, 5.4b).  The ClyAO9 also shifted to 

peak at 10ml but little monomer is observed during this process (Figure 5.4c).  These 

results indicate that ClyAO8 may contain loosely packed monomers that can be solubil-

ized by DDM.  By contrast, ClyAO9 had a more stable structure that did not disassemble 

in detergent solution.  Rather, DDM triggered a conformational change in ClyAO9 that 

transformed it into the transmembrane pore.  Because a portion of ClyAO8 also appeared 

to have converted to ClyATM, it may contain a mixture of ClyAO9-like oligomers with a 

stable structure and loosely packed monomers.  

 

 
 

Figure 5.3. ClyA oligomerization under reducing conditions.  Purified ClyA protein was 
incubated at 42°C for 2 hrs in the presence of 10 mM DTT and subjected to GFC analysis. 
The running buffer was 50 mM Tris•HCl, pH 8.0, 150 mM NaCl, 10 mM DTT.  
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Many assembled β-toxin oligomers have shown tolerance to sodium dodecyl sul-

fate (SDS) treatment and remain as oligomers on SDS-PAGE.31,34–36 We were interested 

to see if ClyA oligomers would have different stabilities in SDS and migrate differently in 

the SDS-PAGE. We found that all three oligomeric forms of ClyA dissociated to mono-

mer on SDS-PAGE (Figure 5.5). This result suggests that the interaction in the oligomer-

ic interface of ClyA is not as strong as those in β-PFTs.  

 

 

Figure 5.4. Conversion of ClyAO8 and ClyAO9 to transmembrane pore.  The purified ClyA 
protein (a) ClyAO8 (b) and ClyAO9 (c) were incubated with 0.1% (w/v) DDM overnight at 4°C 
and then analyzed by GFC with a running buffer 50 mM Tris•HCl, pH 8.0, 150 mM NaCl and 
0.01% DDM. 
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5.4.3 Hemolytic activities of the ClyA proteins 

The cytolytic activity of the oligomeric forms, ClyAO8 and ClyAO9 was determined 

using a hemolytic assay. We also quantitatively compared its functionality to the ClyA 

monomer. Sheep blood cells were incubated with ClyA proteins of the same weight con-

centration at 37°C for 15 min. The release of the hemoglobin associated with cell lysis 

was then measured. As a negative control, a denatured ClyA sample, which were pre-

heated at 95°C for 30min prior to the hemolytic assay, was tested. A sample of PBS 

buffer was included to define zero activity. Results show that thermally-denatured ClyA 

has no hemolytic activity while the monomer has the highest activity (Figure 5.6). ClyAO9 

and ClyAO8 exhibited 65% and 30% of the monomer activity, respectively. The trans-

membrane pore (collected as peak 10 from GFC) only exhibited a background level of 

hemoglobin release, supporting the notion that this population had lost its ability to lyse 

cells. This result is in agreement with previous observations that transmembrane ClyA 

pores formed in detergent octyl-glucoside solution showed no pore-forming activity on 

cell membranes.37 Because both ClyAO9 and ClyAO8 were still functional in forming pores 

 

Figure 5.5. SDS-PAGE analysis of ClyA monomer and oligomers.  ClyA oligomers 
ClyAO9, ClyAO8 ClyATM and ClyA monomer all run with the same MW in SDS-PAGE indicat-
ing that the ClyA oligomers are not SDS-resistant.    
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on erythrocyte membranes, we concluded that they might be oligomeric states with an 

ordered structure instead of disordered aggregates.  

 
 
5.4.4 Conductance of ClyA pores 

Since ClyA can form transmembrane pores by converting the monomer or oligo-

mer ClyAO9 in the presence of detergents, we asked if the stoichiometry of the trans-

membrane pores formed from these two pathways are the same. Because the ion con-

ductance of a membrane channel is proportional to the pore size, which, in turn, is de-

termined by the number of protomers in the transmembrane pore,38 we could address 

this question by comparing the conductance of ClyA channels formed in two different 

pathways. Here, single channel insertion of ClyA proteins into planar lipid bilayers was 

monitored by bilayer current recording experiments (Figure 5.7a). Similar to the results 

of the electrophysiological studies of E. coli ClyA and its homologs from Salmonella 

typhi,6,39,40 the ClyA channels formed by monomer show a broad distribution from 5-15 

nS with a major peak at around 11 nS (Figure 5.7b), suggesting that ClyA might create 

 

Figure 5.6. Hemolytic activity of ClyA proteins. Sheep blood cells were incubated with 7 µg 
of ClyA at 37°C for 15 min. The hemolytic activity was determined by measuring the absorb-
ance of the released hemoglobin at 540 nm. The plotted values are the average of three inde-
pendent samples and bars show the standard deviation. 
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pores of variable size. The broad distribution of conductance observed by electrophysi-

ology agrees with the cryo-EM data showing ClyA pores of variable size in detergent so-

lution.12 The ClyA channels formed by ClyAO9 and ClyAO8 exhibited similar conductance 

distribution patterns with the majority of ClyAO8 pores exhibiting a conductance between 

6-10 nS and ClyAO9 pores a conductance between 9-16 ns (Figure 5.7c, 5.7d). The 

population of ClyAO9 channels shifted to slightly larger pores than those formed directly 

from monomer while ClyAO8 pores appeared smaller. So far, it is unclear why the con-

ductance of the ClyAO8, ClyAO9 and ClyATM pores are different considering that they mi-

grate at the similar retention volume by GFC (Figure 5.4).  Further detailed structural 

studies will be carried out to address this issue in future.  

 

 

 
Figure 5.7. Single channel conductance of ClyA pores. (a) Single channel insertion of ClyA 
proteins. After overnight incubation with 0.1% (w/v) DDM, ClyA proteins (~0.5 μg/ml, final con-
centration) were added to the cis chamber. A voltage of 10 mV was applied to monitor the sin-
gle channel insertion events, manifested as stepwise increases of ionic current with time in 25 
mM Tris•HCl, pH8.0, 1M KCl. (b, c, d) Histogram of the conductance of ClyA pores. Samples 
analyzed were monomer ClyA (b) (105 single channel insertion steps) or ClyAO8 (c) (118 steps) 
or ClyAO9 (d) (76 steps) after overnight incubation with 0.1% (w/v) DDM at 4°C. In (e), the sam-
ple contained monomer ClyA (112 steps) after incubation with 0.1% (w/v) DDM at 4°C for 7 
days. 
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Interestingly, when we measured the conductance of the ClyA monomer sample 

after seven days of incubation at 4°C in 0.1% DDM, the histogram of conductance 

showed almost a single population of 11 nS pores (Figure 5.7e). This suggests that the 

11 nS pore is the most stable form, since it survives a long-time incubation in detergent. 

By contrast, many other forms of ClyA lose the ability to insert into the lipid bilayer, prob-

ably due to aggregation or degradation. The dodecameric structure of the transmem-

brane pore determined by x-ray crystallography was also obtained from a DDM sample 

which contained a large variety of ClyA pores of different sizes.12 We suggest that the 

ClyA transmembrane pore with dodecameric structure might correspond to the 11 nS 

pores observed in the electrophysiology recordings. 

5.4.5 Temperature and concentration dependent oligomerization 

We were interested in how the temperature and the protein concentration affect 

ClyA assembly in solution. ClyA monomer was incubated at temperatures ranging from 

4-42ºC for 2 hrs. At a temperature lower than 37°C, little ClyA oligomerization was ob-

served (Figure 5.8). Unlike the assembly in the detergent micelles which proceeded to 

completion at 4°C for 30 min, the detergent-independent assembly was strictly tempera-

ture-dependent and was a much slower process relative to the former.  

Figure 5.8. Effect of temperature on ClyA assembly. ClyA (0.3 mg/ml) was incubated at 
different temperatures for 2 hrs and subjected to GFC analysis. The running buffer was 50 
mM Tris•HCl, pH 8.0, 150 mM NaCl.  
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To see if oligomerization was also concentration dependent, we incubated 0.1 

mg ClyA protein at concentrations ranging from 1 µg/ml to 0.1 mg/ml at 42°C for 2 hours 

and samples were then analyzed by GFC.  In order to load enough protein sample to the 

GFC column for detection, the two lower concentration samples, 10 µg/ml and 1 µg/ml, 

were concentrated to 1 ml using an Amicon centrifuge concentrator at 4°C.  To eliminate 

the possibility that oligomerization or aggregation might also be induced during the cen-

trifugation concentrating procedure, we incubated 100 ml of 1 µg/ml at 4°C for 2 hrs and 

concentrated the sample to 1 ml and loaded it to the GFC column as a control.  We 

found that ClyA remained mainly as a monomer and a small amount of protein was elut-

ed at around 8 to 9 ml retention volume demonstrating the concentration step does not 

significantly induce oligomer formation (Figure 5.9).  

 

 

The percentage of each population (ClyAO8, ClyAO9 and monomer) was calculat-

ed from the area under the peaks eluted at 8.5ml, 9.5ml and 15ml in the chromatogram 

that were analyzed by the Unicorn software (GE) and are summarized in Figure 5.10.  

Even at the lowest concentration (1 µg/ml, ~30 nM), the ratio of the oligomer to mono-

mer was not reduced compared those of the higher concentrations, suggesting the oli-

 
 
Figure 5.9. Effect of continuous concentration of ClyA on its oligomerization.  ClyA 
(100 ml of 1 ug/ml) was incubated at 4°C for 2 hrs and then concentrated to 1 ml on a centri-
con.  Thereafter the protein was subjected to GFC analysis. The running buffer was 50 mM 
Tris•HCl, pH 8.0, 150 mM NaCl.  
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gomerization was independent of the protein concentration (Figure 5.10).  Due to the 

detection limit of GFC, we were not able to investigate lower concentrations.  This result 

demonstrates that ClyA has a strong tendency to oligomerize even at a low concentra-

tion (1 µg/ml) at physiological temperature. 

 

 

 
5.4.6 Probing the structural arrangement of oligomers by fluorescence 

To understand the structural arrangement of ClyAO8 and ClyAO9, we measured 

their intrinsic fluorescence spectra.  The ClyA monomer contains two tryptophan and 13 

tyrosine residues.  As shown in Figure 5.7a, the monomer had a fluorescence maximum 

at 315 nm while the fully assembled pore ClyATM had a red-shifted emission maximum at 

340 nm.  The fluorescence emission spectra of the ClyAO8 and ClyAO9 were very similar 

to each other with the fluorescence maxima also at 340 nm, close to that of the ClyA de-

tergent-induced transmembrane pore.  The spectra of the ClyAO8 and ClyAO9 samples 

from 345-400 nm overlapped well with that of the transmembrane pore while there is a 

blue shift of 2 nm in the spectra from 300-340 nm (Figure 5.11a).  Because the spectra 

 
Figure 5.10. Effect of protein concentration on ClyA assembly. ClyA at concentrations 
ranging from 1µg/ml to 0.1 mg/ml were incubated at 42°C for 2 hours and then analyzed by 
GFC. The percentage of each population (ClyAO8, ClyAO9 and monomer) was calculated from 
the area of the peaks eluted at 8.5ml, 9.5ml and 15ml in the chromatogram.  The error bars 
indicate the standard deviation of three independent trials. 
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of ClyAO8 and ClyAO9 appeared to be in between that of the monomer and transmem-

brane pore, we suspected they might be an intermediate state.  To test this, we studied 

a series of intermediate states of ClyA proteins during the DDM-triggered transition to 

transmembrane pores.  Here, DDM was added to ClyA monomer to a final concentration 

of 0.1% (w/v) of DDM at 23°C to trigger the pore formation.  The spectrum was taken 

every 3 minutes until the spectra stabilized at around 30 minutes.  Figure 5.11b shows 

that the fluorescence intensity rose sharply immediately after the addition of detergent 

and the wavelength of the peak maximum shifted from 315 to 340 within the first 3 

minutes of measurement.  After the initial fluorescence jump, the fluorescence intensity 

gradually decreased and became stable after 30 min.  The normalized spectra of these 

intermediates revealed the peak maxima undergo subtle blue-shift during the transition 

(Figure 5.11c).  Interestingly, the spectrum taken 9 min after the addition of the DDM 

overlaid well with the spectrum of ClyAO8 and ClyAO9 (Figure 5.11d), indicating that the 

structure of ClyAO8 and ClyAO9 might mimic an intermediate state of the oligomerization 

process.  

We also investigated how the composition of the lipid membrane could affect the 

assembly of a ClyA oligomer.  To avoid the occurrence of oligomerization in solution that 

would contribute to fluorescence spectrum, the ClyA monomers were incubated with lip-

osomes prepared from porcine brain lipids or E. coli lipids extract at room temperature in 

an approximate 1:50 protein to lipid molar ratio.  The spectrum of the brain lipid lipo-

somes sample overlapped very well with the spectrum of ClyATM (Figure 5.11e), which 

demonstrated that ClyA proteins have transformed into transmembrane pores on the 

brain lipid liposomes.  In contrast, the spectrum of the ClyA incubated with E. coli lipo-

somes did not resemble the DDM treated sample (Figure 5.11f).  Instead, it was located 

in between the monomer and the spectrum of the ClyAO9, suggesting that ClyA does not 

form the transmembrane pore on E. coli lipid membranes. 
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5.4.7 Effect of lipid composition on pore-forming activity 

To further examine the pore-forming activity of ClyA proteins on liposomes, we 

used a fluorescence quenching assay. The liposomes with Tb(DPA)3-
3 encapsulated in-

side were added to buffers containing the fluorescence quencher EDTA. EDTA can dif-

fuse into the liposome through ClyA pores on the liposome membrane and quench the 

fluorescence. Figure 5.12 shows that ClyA monomer caused a significant fluorescence 

decrease in the brain lipid liposomes. Consistent with our hemolytic assay, ClyAO9 and 

ClyAO8 also induced fluorescence quenching but with reduced activity.  On the contrary, 

no fluorescence quenching was observed with any of the ClyA protein samples incubat-

ed with E. coli liposomes. This experiment confirms that ClyA proteins do not form 

transmembrane pores on E. coli lipid membranes. 

 
Figure 5.11. Intrinsic fluorescence of ClyA monomer and oligomers. (a) Normalized fluo-
rescence emission spectra of monomer, ClyAO8, ClyAO9 and ClyATM. (b) DDM-triggered as-
sembly of ClyA monitored by fluorescence. DDM (0.1% w/v, final concentration) was added to 
ClyA monomer (1μM) solution and the fluorescence spectra were recorded every 3 min for 60 
min. (c) Normalized spectra from Figure 6b. (d) Comparison of the spectra of ClyAO8, ClyAO9 
and the intermediate state taken at 9 min after the addition of DDM. (e, f) Normalized fluores-
cence spectra of monomer, transmembrane pore and ClyA proteins after incubation with lipo-
somes.  ClyA was incubated with liposomes prepared from porcine brain lipids (e) and E. coli 
lipids (f) at room temperature for overnight.   
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5.4.8 Direct conversion of ClyAO8 and ClyAO9 to transmembrane pores  

The data above revealed that ClyO8 and ClyO9 can convert to the transmembrane 

pore when in contact with detergent micelles or lipid membranes. This could be achieved 

through two possible pathways: (i) ClyAO8 and ClyAO9 dissociate into monomers then re-

assemble in the micelles/ lipid membrane or, (ii) ClyAO8 and ClyAO9 directly convert to 

the transmembrane pore without undergoing the dissociation step. To distinguish be-

tween these pathways, we monitored the conversion of ClyAO8 and ClyAO9 in the pres-

ence of brain lipid membranes by intrinsic fluorescence.  Liposomes were added to 

monomer and the fluorescence was recorded (Figure 5.13a).  After 5 min, the spectrum 

showed two peak maxima at 314 nm and 340 nm indicating there was still monomer re-

maining in the sample. This result suggests the association process of the ClyA mono-

mers to oligomers on the lipid membrane occurs on the time scale of minutes, which is 

much slower than the αHL toxin (<5ms).41  If ClyAO8 and ClyAO9 dissociate into mono-

mers, we expect to observe the spectrum of the monomeric species due to the relatively 

slow association process of ClyA monomers.   Adding liposomes to ClyAO8 and ClyAO9 

 
Figure 5.12. Effect of lipid composition on the pore-forming activity of ClyA.  ClyA pro-
teins (0.034mg/ml, final concentration) were added to liposomes (5 μM) containing 3 mM en-
capsulated Tb(DPA)3

3-.  The buffer used was 50 mM HEPES, pH 7.5, 100 mM NaCl, 5 mM 
EDTA. Fluorescence quenching occurred when EDTA diffused across the liposome membrane 
through transmembrane pores formed by ClyA. Data shows the percentage of the quenched 
fluorescence signal that was an average of quadruplet measurements with the error bar indicat-
ing the standard deviation.   
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induced a slight change at the 300-340 nm range (Figure 5.13b, 5.13c), however we did 

not observe a significant shift of the spectrum towards the monomer peaks. Thus, this 

experiment suggests that ClyAO8 and ClyAO9 directly convert to the transmembrane pore 

on the lipid membrane without first dissociating to monomers. 

 

 
Figure 5.13. Examining the pathway of ClyO8 and ClyO9 conversion. Brain lipid liposomes 
(0.025 mg/ml, final concentration) were added to ClyA proteins (0.025 mg/ml): monomer (a), 
ClyO8 (b) and ClyO9 (c) solution at 25 ºC. The fluorescence spectra were recorded at the indi-
cated time intervals.  
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5.4.9 Effect of the redox environment on the activity of ClyA 

ClyA monomer contains two cysteines (C87, C285).  The structure of ClyA mon-

omer revealed that these cysteines were located within 5.2 Å (Cα to Cα), a distance that 

would allow a disulfide bond to form.  In the transmembrane pore structure, the  cyste-

ines move away from each other to be about 6.8 Å apart, which is the longest possible 

distance for a disulfide bond could form between two cysteine residues.42  This raised 

the question that a possible disulfide bond formed between the cysteine residues might 

act as a redox switch to control ClyA oligomerization and cytolytic activity on its target 

cell in vivo.   

To test this theory, we induced the disulfide bond formation of the two cysteine 

residues in ClyA wild type proteins by incubating the proteins with Cu(phenanthroline)2 

for 0.5 hours at room temperature (22-23°C).  GFC analysis of the oxidized sample 

showed ClyA proteins remained monomeric, indicating that the protein did not form any 

inter-molecular disufide bonds during the oxidation reaction (Figure 5.14).  The oxidized 

ClyA was subjected to the hemolytic activity assay.  Figure 5.15 shows that the oxidized 

ClyA (dark grey) lost around 90% of its hemolytic activity compared to that of the un-

treated control (black).  Incubation in 20 mM DTT for an hour could recover about 60% 

the hemolytic activity.  The incomplete recovery of the activity could be likely due to the 

close packing of the alpha helix bundles of ClyA that may occlude the disulfide bond 

from the reducing chemical DTT.  As a control, the double cysteine knock out mutant 

ClyA ΔCys exhibited no response to the oxidation/reduction procedure.  These results 

indicated that formation of the intra-molecular disulfide bond could inhibit the pore-

forming activity presumably by preventing the occurrence of conformational change nec-

essary for the formation of oligomeric transmembrane pore.  The periplasm of E. coli is 

an oxidizing environment and thus an oxidized ClyA protein could exist in this environ-

ment preventing ClyA from oligomerizing before being secreted in OMVs.   
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5.5 Discussion 

Previous work on ClyA has also shown that ClyA oligomerizes in solution without 

detergent at 37°C.43 In this example, monomer, dimers and high molecule-weight oligo-

mers (8-10mers as speculated by the authors) were observed by GFC.43 The 8-10mer 

             
Figure 5.15. Regulation of the ClyA pore forming activity by redox change.  The pore-
forming activity of various proteins was examined by hemolytic assay. The oxidized sample 
contained wild type ClyA (ClyAwt) and ClyA double cysteine mutant C87S, C285S (ClyA 
ΔCys) incubated with Cu(phenanthroline)2.  The reduced samples were obtained by DTT 
treatment of oxidized proteins. Blank samples were phosphate buffer saline.  

 

Figure 5.14. GFC analysis of oxidized ClyA. ClyA (30 μg) was oxidized with 1.5 mM 
Cu(phenanthroline)2 for 30 min at room temperature.  Reaction was quenched with 5 mM (final 
concentration) EDTA.  Sample was analyzed by GFC without prior desalting.  Running buffer 
used was 50 mM Tris•HCl pH 8.0, 150 mM NaCl.   
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fraction lacked hemolytic activity. However, our data clearly demonstrated that both 

ClyAO8 and ClyAO9 lysed blood cells while the thermally denatured ClyA did not.   

Because ClyAO8 and ClyAO9 retains both a stable structure and hemolytic activity, 

we expect that they are not a disordered aggregate but rather an active oligomeric form 

of ClyA proteins. In addition, the intrinsic fluorescence of these soluble oligomers 

matched that of an intermediate state. This suggests the detergent-independent oligo-

mer resembles an intermediate state between the monomer and fully assembled trans-

membrane pore. Since ClyAO8 and ClyAO9 were formed in solution, it is unlikely that the 

α-helical transmembrane barrel has formed, as this would expose the hydrophobic outer 

surface of the barrel to aqueous solution. Therefore, we believe that ClyAO8 and ClyAO9 

could be oligomeric forms without the hydrophobic transmembrane barrel domain, i.e. 

the prepore structure. Also, we have shown that ClyO8 and ClyAO9 can convert directly to 

transmembrane pore.  In summary, we propose that ClyAO8 and ClyAO9 are intermediate 

states between the monomer and transmembrane ClyA channel. Since these two popu-

lations were eluted earlier than transmembrane pores in GFC, it might have a less com-

pact structure than the transmembrane pore.  

Although many PFTs require detergents or lipid bilayers for assembly to oligo-

meric prepore, the protective antigen of anthrax toxin also oligomerizes to a prepore 

structure in the absence of detergents or lipid membranes.35,44 In fact, the water-soluble 

prepore was formed by the oligomerization of protective antigen 63 which derives from 

the proteolytic removal of a 20 kDa fragment from the full length anthrax monomer. Simi-

larly, Monalysin, a PFT from the Drosophila pathogen Pseudomonas entomophila, forms 

a multimeric structure in solution after proteoactivation.45 Therefore, not all PFTs require 

lipid membranes or similar environments to form prepore structures. Although in vitro the 

PA63 and Monalysin undergo oligomerization in solution after protease treatment, in na-
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ture the oligomerization of the PA63 and Monalysin is triggered by the proteases ex-

pressed on the host plasma membrane, where they subsequently assemble.  

The activation of ClyA may be regulated by the change of its redox status during 

the secretion of ClyA into OMVs.10,21,43 ClyA in the periplasm contains a C87–C285 disul-

fide bond,6,21,46 whereas ClyA within OMV is reduced.21 The disulfide bond may prevent 

assembly of functional pore complexes, as oxidized ClyA showed a decreased hemolytic 

activity than compared to reduced ClyA, which is consistent with previous studies.10,21,43 

This notion is further supported by the observation that ClyA expressed in an E. coli 

(dsbA- and dsbB-) strain, which is deficient in periplasmic disulfide bond formation, dis-

plays a significant hemolytic activity on blood agar plates, an effect that is not detectable 

for ClyA expressed in wild-type strain.21 Therefore, the secretion of ClyA to OMVs where 

DsbA and DsbB are absent may reduce the intracellular disulfide bonds and activate the 

toxin for oligomerization21. 

Some speculate that ClyA forms transmembrane pores upon interaction with the 

membrane of the OMV.21 However, this contradicts two observations: i) the pre-formed 

ClyA transmembrane pore lacks hemolytic activity as demonstrated by our study and 

previous data.37 A transmembrane ClyA pore embedded in the OMV membrane loses 

functionality for further attack. ii) the pore-forming activity of ClyA is strongly dependent 

on cholesterol in the membrane, which suggests that cholesterol may facilitate the 

transmembrane domain insertion.46 Since bacterial outer membranes contain no choles-

terol, the transformation of ClyA into the transmembrane pore inside of the OMV should 

be very slow. Our intrinsic fluorescence analysis supports this notion: the spectra of ClyA 

with liposomes reveal transmembrane pores in brain lipids but ClyA cannot transform in 

the presence of E. coli liposomes. The Tb fluorescence quenching assay further con-

firmed that ClyA cannot form transmembrane pores on E. coli lipid membranes.  Thus, it 
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is reasonable to believe the oligomeric structure of ClyA in the OMV may not be the 

transmembrane pore.  

The average expression level of a protein in E. coli is approximately 1000 copies, 

roughly 1μM in the cytosol.47 Our data demonstrated that ClyA forms oligomers at 37°C 

at concentrations as low as 30 nM. Under physiological conditions ClyA can associate 

into ClyAO9-like prepore structures once activated in the OMV and this process can occur 

independently of lipid membrane. Taken together, these data strongly suggest that the 

secreted ClyA proteins oligomerize to a prepore structure instead of the transmembrane 

pore inside the OMV before they reach the target cell membrane. 

We propose that ClyA adopts a non-classical assembly pathway including the fol-

lowing steps (Figure 5.16): (i) ClyA is expressed as a monomer in the cytosol and ex-

ported to the periplasmic space where it remains inactive in an oxidized form; (ii) ClyA is 

secreted in outer membrane vesicles in monomer form; (iii) Cleavage of the disulfide 

bond in the OMV activates ClyA monomers which subsequently oligomerize to the pre-

pore structure. How the OMV then delivers the active ClyA prepore to the host cell re-

mains unknown. One plausible mechanism involves internalization of the vesicle and 

subsequent release of the cargo proteins to the cytoplasm of the target cells25. Further 

studies are underway to identify how ClyA is released. 

In conclusion, we have shown that ClyA protein assembles into a functional oli-

gomer in the absence of detergents and membranes. The oligomeric form represents a 

prepore intermediate state that may resemble the ClyA oligomer structure in the OMVs. 

These data provide insight regarding the oligomeric state of ClyA proteins in the OMV, 

which represents an important step toward resolving the overall mechanism of ClyA. 

High-resolution crystal structures of the prepore might be obtained in the near future and 

they will be essential for determining how the prepore becomes the hemolytic pore. 
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Figure 5.16. Schematic model showing the proposed assembly pathway for the E. coli 
ClyA.  The classical PFT attacking mechanism involves the secreted monomer docking to the 
host membrane, followed by rapid assembly to the prepore structure. A conformational change 
triggers the formation of the transmembrane domain. By contrast, monomeric ClyA is secreted 
in OMVs where the redox environment cleaves intramolecular disulfide-bonds and activates 
ClyA. ClyA then assembles to a prepore structure in the vesicle. Through an unknown mecha-
nism, OMV release ClyA which then form a transmembrane pore on the host cell. 



179 

 

5.6 References 

1. Iacovache, I., Bischofberger, M. & van der Goot, F. G. Structure and assembly of 
pore-forming proteins. Curr. Opin. Struct. Biol. 20, 241–246 (2010). 

2. Parker, M. W. & Feil, S. C. Pore-forming protein toxins: From structure to function. 
Prog. Biophys. Mol. Biol. 88, 91–142 (2005). 

3. Tilley, S. J. & Saibil, H. R. The mechanism of pore formation by bacterial toxins. 
Curr. Opin. Struct. Biol. 16, 230–236 (2006). 

4. Reingold, J., Starr, N., Maurer, J. & Lee, M. D. Identification of a new Escherichia 
coli She haemolysin homolog in avian E. coli. Vet. Microbiol. 66, 125–134 (1999). 

5. Oscarsson, J., Mizunoe, Y., Uhlin, B. E. & Haydon, D. J. Induction of haemolytic 
activity in Escherichia coli by the s/yA gene product. Mol. Microbiol. 20, 191–199 
(1996). 

6. Ludwig,  a, Bauer, S., Benz, R., Bergmann, B. & Goebel, W. Analysis of the SlyA-
controlled expression, subcellular localization and pore-forming activity of a 34 
kDa haemolysin (ClyA) from Escherichia coli K-12. Mol. Microbiol. 31, 557–67 
(1999). 

7. Hlye, H. E., Hunt, S., Green, J. & Artymiuk, P. J. Hemolysin E (HlyE, ClyA, SheA) 
and Related Toxins. Adv. Exp. Med. Biol. 677, 116–126 (2010). 

8. del Castillo, F. J., Leal, S. C., Moreno, F. & del Castillo, I. The Escherichia coli K-
12 sheA gene encodes a 34-kDa secreted haemolysin. Mol. Microbiol. 25, 107–
115 (1997). 

9. Lai, X. et al. Cytocidal and Apoptotic Effects of the ClyA Protein from Escherichia 
coli on Primary and Cultured Monocytes and Macrophages. Infect. Immun. 68, 
4363–4367 (2000). 

10. Wallace, A. J. et al. E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure 
of the toxin and observation of membrane pores by electron microscopy. Cell 100, 
265–76 (2000). 

11. Oscarsson, J. et al. Characterization of a Pore-Forming Cytotoxin Expressed by 
Salmonella enterica Serovars Typhi and Paratyphi A. Infect. Immun. 70, 5759–
5769 (2002). 

12. Mueller, M., Grauschopf, U., Maier, T., Glockshuber, R. & Ban, N. The structure of 
a cytolytic alpha-helical toxin pore reveals its assembly mechanism. Nature 459, 
726–30 (2009). 

13. Tzokov, S. B. et al. Structure of the hemolysin E (HlyE, ClyA, and SheA) channel 
in its membrane-bound form. J. Biol. Chem. 281, 23042–9 (2006). 

14. Tweten, R. K. Cholesterol-Dependent Cytolysins , a Family of Versatile Pore-
Forming Toxins. Infect. Immun. 73, 6199–6209 (2005). 

15. Bradley, K. A., Mogridge, J., Mourez, M., Collier, R. J. & Young, J. A. Identification 
of the cellular receptor for anthrax toxin. Nature 414, 225–229 (2001). 

16. Bradley, K. A. & Young, J. A. T. Anthrax toxin receptor proteins. Biochem. 
Pharmacol. 65, 309–314 (2003). 

17. Olson, R. & Gouaux, E. Crystal structure of the Vibrio cholerae cytolysin (VCC) 
pro-toxin and its assembly into a heptameric transmembrane pore. J. Mol. Biol. 
350, 997–1016 (2005). 

18. Heuck, A. P., Moe, P. C. & Johnson, B. B. The cholesterol-dependent cytolysin 
family of gram-positive bacterial toxins. Subcell. Biochem. 51, 551–577 (2010). 

19. Young, J. A. & Collier, R. J. Anthrax toxin: receptor binding, internalization, pore 
formation, and translocation. Annu Rev Biochem 76, 243–265 (2007). 

20. Bhakdi, S. & Tranum-Jensen, J. Alpha-Toxin of Staphylococcus aureus. Microbiol. 
Rev. 55, 733–751 (1991). 



180 

 

21. Wai, S. N. et al. Vesicle-mediated export and assembly of pore-forming oligomers 
of the enterobacterial ClyA cytotoxin. Cell 115, 25–35 (2003). 

22. Chen, D. J. et al. Delivery of foreign antigens by engineered outer membrane 
vesicle vaccines. Proc. Natl. Acad. Sci. U. S. A. 107, 3099–104 (2010). 

23. Söderblom, T. et al. Effects of the Escherichia coli toxin cytolysin A on mucosal 
immunostimulation via epithelial Ca2+ signalling and Toll-like receptor 4. Cell. 
Microbiol. 7, 779–88 (2005). 

24. Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial 
outer membrane vesicles. Annu Rev Microbiol 64, 163–184 (2010). 

25. Kuehn, M. J. & Kesty, N. C. Bacterial outer membrane vesicles and the host – 
pathogen interaction. Genes Dev. 2645–2655 (2005).  

26. Wai, S. N., Takade, A., Amako, K. & March, A. The Release of Outer Membrane 
Vesicles from Strains of Enterotoxigenic Escherichia coil. 39, 451–456 (1995). 

27. Horstman, A. L. & Kuehn, M. J. Bacterial surface association of heat-labile 
enterotoxin through lipopolysaccharide after secretion via the general secretory 
pathway. J. Biol. Chem. 277, 32538–32545 (2002). 

28. Rowe, G. E. & Welch, R. A. Assays of hemolytic toxins. Methods Enzymol. 235, 
657–667 (1994). 

29. Chen, M., Khalid, S., Sansom, M. S. P. & Bayley, H. Outer membrane protein G: 
Engineering a quiet pore for biosensing. Proc. Natl. Acad. Sci. U. S. A. 105, 
6272–7 (2008). 

30. Gouaux, J. E. et al. Subunit stoichiometry of staphylococcal alpha-hemolysin in 
crystals and on membranes: a heptameric transmembrane pore. Proc. Natl. Acad. 
Sci. U. S. A. 91, 12828–31 (1994). 

31. Yamashita, K. et al. Crystal structure of the octameric pore of staphylococcal γ-
hemolysin reveals the β-barrel pore formation mechanism by two components. 
Proc. Natl. Acad. Sci. U. S. A. 108, 17314–9 (2011). 

32. De, S. & Olson, R. Crystal structure of the Vibrio cholerae cytolysin heptamer 
reveals common features among disparate pore-forming toxins. Proc. Natl. Acad. 
Sci. U. S. A. 108, 7385–90 (2011). 

33. Eifler, N. et al. Cytotoxin ClyA from Escherichia coli assembles to a 13-meric pore 
independent of its redox-state. EMBO J. 25, 2652–61 (2006). 

34. Walker, B., Braha, O., Cheley, S. & Bayley, H. An intermediate in the assembly of 
a pore-forming protein trapped with a genetically-engineered switch. Chem. Biol. 
2, 99–105 (1995). 

35. Milne, J. C., Furlong, D., Hanna, P. C., Wall, J. S. & Collier, R. J. Anthrax 
protective antigen forms oligomers during intoxication of mammalian cells. J. Biol. 
Chem. 269, 20607–20612 (1994). 

36. Shepard, L. A., Shatursky, O., Johnson, A. E. & Tweten, R. K. The mechanism of 
pore assembly for a cholesterol-dependent cytolysin: Formation of a large prepore 
complex precedes the insertion of the transmembrane ??-hairpins. Biochemistry 
39, 10284–10293 (2000). 

37. Hunt, S. et al. The formation and structure of Escherichia coli K-12 haemolysin E 
pores. Microbiology 154, 633–642 (2008). 

38. Hille, B. Ion Channels of Excitable Membranes. 3rd editio, (2001). 
39. Soskine, M. et al. An engineered ClyA nanopore detects folded target proteins by 

selective external association and pore entry. Nano Lett. 12, 4895–900 (2012). 
40. von Rhein, C. et al. ClyA cytolysin from Salmonella: distribution within the genus, 

regulation of expression by SlyA, and pore-forming characteristics. Int. J. Med. 
Microbiol. 299, 21–35 (2009). 

41. Thompson, J. R., Cronin, B., Bayley, H. & Wallace, M. I. Rapid assembly of a 



181 

 

multimeric membrane protein pore. Biophys. J. 101, 2679–83 (2011). 
42. Fass, D. Disulfide Bonding in Protein Biophysics. Annu. Rev. Biophys. 41, 63–79 

(2012). 
43. Atkins, A. et al. Structure-function relationships of a novel bacterial toxin, 

hemolysin E. The role of alpha G. J. Biol. Chem. 275, 41150–5 (2000). 
44. Petosa, C., Collier, R. J., Klimpel, K. R., Leppla, S. H. & Liddington, R. C. Crystal 

structure of the anthrax toxin protective antigen. Nature 385, 833–838 (1997). 
45. Opota, O. et al. Monalysin, a novel ß-pore-forming toxin from the drosophila 

pathogen pseudomonas entomophila, contributes to host intestinal damage and 
lethality. PLoS Pathog. 7, (2011). 

46. Oscarsson, J. et al. Molecular analysis of the cytolytic protein ClyA (SheA) from 
Escherichia coli. Mol. Microbiol. 32, 1226–38 (1999). 

47. Ishihama, Y. et al. Protein abundance profiling of the Escherichia coli cytosol. 
BMC Genomics 9, 102 (2008). 

 



182 
 

CONCLUSIONS AND FUTURE WORK  

C.1 What is on the horizon for OmpG? 

We could successfully detect biotin binding proteins using the OmpG nanopore 

by covalently attaching a chemical ligand onto loop 6 (L6).1–4  We can further extend the 

utility of the OmpG nanopore by assessing other analyte targets and chemical ligands.  

For example, other strategies we could apply are labeling the OmpG with (i) an 

oligonucleotide to detect complimentary nucleic acids or nucleic acid binding proteins (ii) 

engineer high affinity peptide sequences into loop 6 of OmpG to detect specific protein 

analytes.   

Thus far, we have exploited the dynamics of L6 to detect target proteins.  We 

found that some targets can interact with the OmpG through electrostatic interactions i.e. 

through a sampling mechanism.2  Another area we can explore is determining whether 

proteins that can sample OmpG can be detected using loops other than L6.  The 

findings of this exploration would be useful in engineering a new generation of high 

affinity OmpG sensors that have multiple binding sites engineered into several loops.   

We successfully exploited OmpG’s intrinsic ionic properties based on loop 6 to 

develop a sensitive nanopore sensor, however, the underlying mechanisms for OmpG’s 

gating behavior is also of interest to us.  It has been shown in previous studies and in 

our work, that the gating behavior of OmpG is highly altered by conditions of pH and to a 

lower extent the applied voltage.5–9  To further develop the OmpG platform, we need 

more than just a basic understanding of L6 dynamics.  Probing the molecular 

mechanisms contributing to OmpG’s ionic behavior will be essential in designing the 

appropriate mutations and alterations to its structure so that function is not 

compromised.   
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C.2 What is in the future for ClyA? 

Many aspects of pore forming toxin (PFT) oligomerization and assembly kinetics 

remain a puzzle.10,11  Recent work on ClyA from Benjamin Schuler’s lab has 

characterized the assembly dynamics of various ClyA proteins when triggered by 

detergent DDM.12,13  Since detergent is not the biological relevant membrane target of 

ClyA, assembly studies on biological membranes could give more insight into the native 

assembly mechanism of pore-forming toxins that are secreted as soluble monomers.       

In addition, the Schuler group revealed that the soluble ClyA oligomers that we 

observed in chapter 5 are in fact intermediates of an off-pathway assembly 

mechanism.14  We also found, through electron microscopy characterization that ClyAO8 

and ClyAO9 do not form pre-pore structures but instead fibril like structures (Figure F.1).  

We believe these structures could dissociate in the presence of detergent or membrane 

to re-associate and form active transmembrane pores (Figure F.2).  Thus, we 

characterized a stable misfolded intermediate in the protein folding funnel for ClyA.  The 

motivation for the study of ClyAO8 and ClyAO9 was due to the evidence that ClyA proteins 

are secreted in outer membrane vesicles (OMVs).  In these OMVs ClyA exists as ring 

like structures indicative of oligomeric pores.15  Later studies had engineered OMVs 

loaded with ClyA as delivery vehicles into the cell.16,17  However, the mechanism of ClyA 

assembly and attack via OMV secretion is still not well understood and is an area for 

further investigation in our lab since ClyAO8 and ClyAO9 were found to be non-native 

structures.    

An area that has not been explored is the study of the stability or dissociation 

kinetics of the transmembrane pore.  Researchers have found that multimeric protein 

complexes can have the ability to exchange subunits.18,19   Currently, protomer 

exchange of a PFT has not been studied and is unknown whether it occurs.  Very stable 

PFTs such as alpha-hemolysin which are SDS stable are unlikely to exchange 
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protomers, however, PFTs like ClyA which are not SDS resistant, could undergo such a 

mechanism.   

A recent study revealed that the C-terminus of ClyA was critical for pore 

formation and stability20 which was not apparent or overseen in previous studies.21–24  

The b-tongue inn ClyA is a hydrophobic rich region that is solvent exposed and it is still 

not quite clear what is its role and thus this can be further investigated.   

In conclusion, there are many biochemical and biophysical questions to explore 

using these OmpG and ClyA as models.   
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Figure C.1. Negative stain electron microscopy of ClyA proteins.  Structures of monomer, 

ClyAO8 and ClyAO9 in with and without detergent.  ClyAO8 and ClyAO9 form fibrillar like 

structures in the absence of detergent.  However in the presence of DDM the fibrillar like 

structures have dissociated and in the case of ClyAO9 some pore structures have formed.  

White arrowheads indicate the protein conglomerates while black arrows point to pores.   
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Figure C.2. ClyA assembly mechanisms.  On-pathway (black arrows) and off-pathway 

(grey arrows) oligomerization mechanisms of ClyA revealed by studies of the Schuler and 

Chen labs. 
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