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ABSTRACT 

QUANTIFYING GAIT ADAPTABILITY:  
 

FRACTALITY, COMPLEXITY, AND STABILITY DURING  
ASYMMETRIC WALKING 

 
 
 

SEPTEMBER 2017 
 

SCOTT W. DUCHARME, B.S., ITHACA COLLEGE 
 

M.S., CALIFORNIA STATE UNIVERSITY, LONG BEACH 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Richard E. A. van Emmerik 
 
 
 

 Successful walking necessitates modifying locomotor patterns when encountering 

organism, task, or environmental constraints. The structure of stride-to-stride variance 

(fractal dynamics) may represent the adaptive capacity of the locomotor system. To date, 

however, fractal dynamics have been assessed during unperturbed walking. Quantifying 

gait adaptability requires tasks that compel locomotor patterns to adapt. The purpose of 

this dissertation was to determine the potential relationship between fractal dynamics and 

gait adaptability. The studies presented herein represent a necessary endeavor to 

incorporate both an analysis of gait fractal dynamics and a task requiring adaptation of 

locomotor patterns. The adaptation task involved walking asymmetrically on a split-belt 

treadmill, whereby individuals adapted the relative phasing between legs. This 

experimental design provided a better understanding of the prospective relationship 

between fractal dynamics and adaptive capacity. Results from the first study indicated 

there was no association between unperturbed walking fractal dynamics and gait 



viii 
	

adaptability in young, healthy adults. However, there was an emergent relationship 

between asymmetric walking fractal dynamics and gait adaptability. Moreover, fractal 

dynamics increased during asymmetric walking. The second study investigated fractal 

dynamics and gait adaptability in healthy, active young and older adults. The findings 

from study 2 showed no differences between young and older adults regarding 

unperturbed or asymmetric walking fractal dynamics, or gait adaptability performance. 

The second study provided further evidence for the lack of association between 

unperturbed fractal dynamics and gait adaptability. Furthermore, study 2 delivered 

additional support that asymmetric walking not only yields increased fractal scaling 

values, but also associates with adaptive gait performance in older adults. Finally, while 

the first two studies explored stride time monofractality during various walking tasks, the 

third study aimed to understand the potential multifractality, i.e. temporal evolution of 

fractal dynamics, of unperturbed and asymmetric walking. The results suggest that 

unperturbed walking is monofractal in nature, while more challenging asymmetric 

walking reveals multifractal characteristics, and that multifractality does not associate 

with adaptive gait performance. This dissertation provides preliminary evidence for the 

lack of relationship between gait adaptability and unperturbed fractal dynamics, and the 

emergent association between adaptive gait and asymmetric walking fractality.  
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GLOSSARY OF TERMS 

Attractor State: Term that describes a coordinative pattern or behavior towards which 
 a dynamical system tends to evolve. This state is characterized by maximal 
 stability, and minimal variability and metabolic cost.  
 
Base of Support (BOS): An area that encompasses all parts of the body in direct contact 
 with the surface of support. This may also include external devices such as canes 
 that act as ‘extensions’ to the base of support. 
 
Center of Mass (COM): A theoretical point around which the body’s mass is equally 
 balanced.  
 
Complexity: The degree of uncertainty of a behavior or signal, that is, how well system 
 dynamics or emergent behaviors can be predicted. A complex behavior is non-
 random and structured, with processes interacting within and between spatio-
 temporal scales. Statistically, a signal exhibiting 1/f long-range correlations is 
 maximally complex. That is, when a signal exhibits 1/f relationship, the power of 
 the signal at any given frequency is inversely related to that frequency. 
 
Fractality / Fractal Dynamics: Behavior exhibiting self-similarity, in which small 
 spatial or time scales are statistically correlated to larger spatial or  time scales. In 
 human locomotion, fractal dynamics are present when small fluctuations in a gait 
 variable (stride time, step length, etc.) at short time scales are dependent upon or 
 correlated with larger fluctuations at  longer time scales. 
 
Gait Adaptability: The locomotor system’s ability to respond to changing 
 environmental or task demands. Adaptability may refer to the capacity to adapt 
 gait, or the speed by which these changes occur.  
 
Gait Stability: General term referring to the locomotor system’s resistance to 
 imbalances following internal, external, or self generated perturbations. Gait 
 stability is comprised of global stability and local stability. 
 
Global Stability: The capacity of the locomotor system to maintain upright 
 equilibrium following exposures to large external perturbations, such as 
 tripping over an obstacle or slipping on a low-friction surface.  
 
Local Stability: The locomotor system’s resilience to infinitesimally small 
 perturbations, such as those naturally produced by the system during 
 locomotion.  
 
State Space: Geometrical representation of time series data in which a minimal 
 number of state variables are used to define the system. The state space 
 displays the configuration of the attractor. 
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CHAPTER 1 

INTRODUCTION 

 

 Bipedal locomotion in humans is a common yet inherently complex activity. 

Successful walking demands that upright equilibrium be maintained in the face of 

constantly changing foot placement through various environmental terrains. With every 

swing phase of walking, only one foot is contacting the ground and there is a 

corresponding transient period of instability. This unstable phase must be followed 

immediately by recovery via subsequent steps. The challenge of this task is amplified 

with the addition of the natural aging-related degeneration of the visual, vestibular, 

somatosensory, muscular, and neural systems (Maki et al., 2008). Perhaps expectedly, 

older adults experience a high rate of falls, which are a primary cause of injury-based 

deaths and hospitalization in this population (CDC, 2011, 2012). Falls most often occur 

while walking at normal or hurried walking speeds (Berg, Alessio, Mills, & Tong, 1997). 

When individuals do experience falls, they may be negatively affected physically, 

psychologically, emotionally, and financially. Economically, fall-related incidents 

accounted for ~ $18.6 billion in health care costs in 2005 (CDC, 2005a, 2005b, 2005c). 

These expenses are estimated to rise to nearly $60 billion by 2020. 

 Considering the high prevalence and associated costs of falls and the multi-

faceted complexity of locomotion, a multitude of interventions have been developed in an 

attempt to reduce these fall occurrences. Interventions typically entail strength, 

cardiovascular, or balance training (Cadore, Rodriguez-Manas, Sinclair, & Izquierdo, 

2013; Lord et al., 2005), as well as fall prevention education, modifications to medication 
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causing dizziness, or improvements to eyewear prescriptions (M. Choi & Hector, 2012; 

Lord et al., 2005). While some reports indicate that multi-faceted intervention programs 

significantly reduce fall rates (Cadore et al., 2013; Gillespie et al., 2004), others suggest 

little or no benefits (M. Choi & Hector, 2012; S. Gates, Lamb, Fisher, Cooke, & Carter, 

2008; Hill-Westmoreland, Soeken, & Spellbring, 2002; Lord et al., 2005; Vind, 

Andersen, Pedersen, Jorgensen, & Schwarz, 2009). One meta-analysis concluded that 

multi-factorial interventions effectively reduced rates of falls by 4% on average (Hill-

Westmoreland et al., 2002). As fall prevention paradigms have yielded few positive 

results, two concepts in the study of gait biomechanics have emerged as highly important 

to first define and second quantify: gait adaptability and gait stability. 

 
1.1 Gait Adaptability 
	
 The term ‘adaptability’ can be defined as the locomotor system’s ability to adjust 

to changing task and environmental demands (Kelso, 1995). Moreover, adaptability may 

refer to the speed by which these changes occur. For example, a more rapid (and correct) 

adjustment in locomotor patterns indicates a more adaptable system. Considering the 

constantly changing terrains while walking (e.g., pavement vs. grass, steps, curbs), gait 

patterns must be able to aptly adapt to new constraints. With aging and disease, the 

ability to adapt gait patterns may be reduced as the locomotor system becomes more 

constrained (Lipsitz & Goldberger, 1992). 

1.1.1 Fractal Dynamics 

 Statistical analyses based on dynamical systems theory have been developed to 

describe the locomotor system’s adaptability. For example, stride time variability was 
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once considered to be unwanted random noise that the locomotor system attempts to 

minimize. However, deeper inspection has indicated that this variability is, in fact, 

patterned and complex.  

 1.1.1.1 Monofractals 

 The development of the detrended fluctuation analysis (DFA) technique (among 

others) has provided quantification of these variability patterns (Hausdorff, Peng, Ladin, 

Wei, & Goldberger, 1995; Peng, Havlin, Stanley, & Goldberger, 1995). Small 

fluctuations at short time scales (e.g., across 5-10 strides) are correlated to larger 

fluctuations at longer time scales (e.g., across 50-100 strides). These long-range 

correlations are known as ‘fractal dynamics’. When these fluctuations are plotted on a 

double logarithmic graph, the fluctuations increase linearly as a function of scale size, 

indicating a power-law scaling relationship (Figure 1.1). The slope of the regression line, 

known as the scaling exponent or α, indicates the strength of fractal dynamics. A scaling 

exponent or slope of 1 is indicative of pink noise, or the so-called ‘1/f’ phenomenon, 

whereby the power in the signal at any given frequency is inversely proportional to that 

frequency (Keshner, 1982; West & Shlesinger, 1990). Pink noise is considered to have 

optimal fractality. Fractal dynamics have been shown to reveal differences in cohorts. 

Figure 1.1 illustrates stride times of young (top) and older (middle) adults. These stride 

times are normalized by subtracting the mean and dividing by the standard deviation.  
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Figure 1.1: Detrended fluctuation analysis of stride intervals. Top) Normalized stride 
times across several hundred strides for a young and elderly participant. Bottom) DFA 
results. From Hausdorff et al, (1997). 
	
 
Fractal analysis of these stride times reveal that young healthy adults display an α of ~ 

0.75, while older adults and individuals with neurological disease display a decreased α 

closer to ~ 0.5-0.6 (Hausdorff et al., 1997). Fractal dynamics are thought to represent 

adaptable gait because the correlations across temporal scales may indicate interactivity 

among subsystems that are observed in healthy functioning organisms (Lipsitz & 

Goldberger, 1992). 
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 1.1.1.2 Multifractals 

 Monofractal analyses have been advantageous in distinguishing age and disease 

cohorts. However, a single scaling exponent cannot precisely describe some behaviors or 

signals. That is, transient periods of high or low variability indicate locally changing 

scaling exponents and, thus, fractal strength. An assumption of the monofractal DFA 

algorithm is that a single scaling exponent describes the entire system. To avoid this 

assumption, multifractal analyses have been developed to determine the local evolution 

of fractal dynamics across a time series. This provides a series of local scaling exponents, 

and the range of exponents reveal the extent of multifractality. Multifractal analysis of 

heart beat intervals has provided insights regarding healthy individuals versus those with 

heart disease (Ivanov et al., 1999). Those with healthy functioning hearts exhibited a 

wide range of scaling exponents, while those with heart pathologies exhibited a reduced 

range. This reduced range of exponents indicates overall systemic constraints. 

 While a wider range of scaling exponents indicates healthy heart activity, a 

reduced range may be indicative of a healthy locomotor system. To be clear, there is a 

general gap in the literature exploring multifractality in human gait dynamics. However, 

the few studies that have assessed gait multifractality have indicated young healthy adults 

display nearly monofractal behavior, while children, elderly, and those with neurological 

diseases exhibit greater multifractality (Muñoz-Diosdado, 2005; Munoz-Diosdado, del 

Rio Correa, & Brown, 2003). Additional experiments are needed to verify or refute these 

findings. Moreover, while most of the aforementioned gait studies evaluating fractality 

have analyzed stride time intervals, examining other gait parameters (e.g., step length, 
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step width, marker trajectory) may provide supplemental or opposing insights into the 

organization of the locomotor system. 

1.1.2 Complexity Analyses 

 In addition to fractal dynamics, mathematical analyses of complexity have been 

developed to describe gait adaptability. The term ‘complexity’ has several definitions, 

conceptualizations, and quantifications. Complexity can be defined as the degree of 

uncertainty of a behavior or signal. In other words, complexity describes how well 

system dynamics or emergent behaviors can be predicted (Burggren & Monticino, 2005). 

A similar way to define complexity based on entropy analysis is the amount of 

information required to predict future system dynamics (Lipsitz & Goldberger, 1992). If 

little information is needed to predict future conditions (e.g., a sine wave), the system is 

not complex. A complex behavior is non-random and structured, with processes 

interacting within and between spatio-temporal scales (van Emmerik, Ducharme, Amado, 

& Hamill, 2016). Relatedly, complexity may be quantified by the dimensionality of a 

system, that is, the number of independent dynamic variables that are needed to generate 

the output of the system (Lipsitz & Goldberger, 1992). In general, the higher the number 

of dimensions (or variables) required to describe the system, the more complex it is. 

Complexity can also be described as a system exhibiting fractal-like behavior or long-

range correlations, whereby a signal exhibiting the aforementioned 1/f behavior is 

considered optimally complex (Lipsitz, 2002). Finally, and generically speaking, 

complexity can be considered the amount of ‘meaningful structural richness’ (Costa, 

Goldberger, & Peng, 2005) of a behavior or biophysical signal.  
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 In general, a predictable, deterministic behavior has little complexity. A highly 

complex system is not only unpredictable (Lipsitz & Goldberger, 1992), but is also 

considered to be highly adaptive to changing environmental demands (Costa, Goldberger, 

& Peng, 2002; Costa et al., 2005; Costa, Peng, Goldberger, & Hausdorff, 2003; Gruber et 

al., 2011). As previously mentioned, however, the many descriptions of complexity 

correspond with various quantifications. For example, dimensionality can be determined 

via a state space or fractal dimension analysis (Lipsitz & Goldberger, 1992), while long-

range correlations can be determined with fractal analysis (Hausdorff et al., 1995). 

Finally, in order to evaluate the degree of uncertainty of a signal, entropy measures are 

commonly implemented (Costa et al., 2002; Lake, Richman, Griffin, & Moorman, 2002; 

Richman & Moorman, 2000). Sample Entropy (SampEn), for example, evaluates the 

degree of uncertainty of a signal by evaluating how close a signal at time point i + 1 is in 

relation to the signal at i. This algorithm also searches for repeated strings of data points, 

such as the number of times the relationship at i : i + 1 : i + 2 is repeated throughout a 

time series (Lake et al., 2002; Richman & Moorman, 2000). 

 The shortcoming of SampEn is that a random signal will yield high entropy 

values. That is, there will be a low probability of a signal being stationary from point to 

point, as well as low probability of repeating patterns within the signal. As mentioned, 

the goal of measuring complexity is to determine the degree of ‘meaningful structural 

richness’ of a signal (Costa et al., 2005). One drawback of SampEn is that it identifies a 

system’s entropy at one only time scale. Multiscale entropy (MSE) analysis evaluates 

complexity using SampEn, but across multiple scales (Busa & van Emmerik, 2016; Costa 

et al., 2002, 2005; Costa et al., 2003; Manor et al., 2010; van Emmerik et al., 2016). 
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Greater complexity across scales indicates greater adaptation of the system in standing or 

walking (Costa et al., 2002; Costa et al., 2003; Lipsitz & Goldberger, 1992). Figure 1.2 

illustrates the benefits of MSE over SampEn. Note that a white noise signal has higher 

entropy than a 1/f signal at a single scale factor, but across multiple scales, white noise 

presents with less and less complexity, while the 1/f signal remains complex. 

Determining the area under each curve, the so-called ‘complexity index’, reveals the 1/f 

signal is indeed more complex than the random signal (Busa & van Emmerik, 2016; 

Costa et al., 2007). 

 

 
Figure 1.2: Multiscale entropy analysis of 1/f pink noise and white noise. From Costa 
et al, (2003). 
 

 The MSE analysis has been shown to differentiate healthy versus neurologically 

impaired participants in standing posture. For example, healthy controls displayed a 

higher complexity index compared to individuals with idiopathic scoliosis when 

analyzing center of pressure signals in both the AP and ML directions (Gruber et al., 

2011). Healthy controls also exhibited higher complexity indices compared to individuals 
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with visual and somatosensory impairments (Manor et al., 2010). The extent to which 

MSE can discern young versus older adult cohorts in walking is currently unknown. 

1.1.3 Split-Belt Treadmill Paradigm 

 A relatively new experimental paradigm that evaluates gait adaptability is the 

split-belt treadmill paradigm (Bruijn, Van Impe, Duysens, & Swinnen, 2012; J. T. Choi 

& Bastian, 2007; Dietz, Zijlstra, & Duysens, 1994). This treadmill has two independently 

controlled motorized belts that can produce various task constraints, such as one leg 

moving twice as fast as the other leg, or the two limbs moving in opposite directions.  

Essentially, participants are exposed to an environment that promotes novel asymmetric 

gait patterns, and the locomotor system attempts to reconcile these asymmetries. That is, 

gait patterns attempt to return to a preferred state of symmetry or, from the contra-lateral 

limb coordinative perspective, pure anti-phase. For this reason, adaptability can be 

quantified by measures of gait symmetry, such as leg angle (J. T. Choi & Bastian, 2007), 

step length, stride length, or swing time (Bruijn et al., 2012). In a healthy, adapted 

system, gait patterns between legs are symmetrical, i.e., a 1:1 ratio.  Spatial-temporal 

patterns, such as joint angles, settle into anti-phase (180° or ±π radians). Deviation from 

this symmetrical state is indicative of a maladapted system, that is, a system that sub-

optimally changes locomotor patterns in response to changing task constraints. 

 In addition to evaluating gait pattern adaptation, the split-belt paradigm provides 

analysis of gait re-adaptation (Bruijn et al., 2012; J. T. Choi & Bastian, 2007). After 

adapting to asymmetrically constrained gait, as displayed by improved symmetry 

measures, participants show aftereffects when the asymmetry is removed. That is, when 

participants are exposed once more to standard treadmill walking, they exhibit 
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asymmetries in the opposite order. Specifically, the leg that lagged in the asymmetric 

condition begins to lead in the subsequent symmetric condition. This aftereffect 

phenomenon is a clear indicator of the level of adaptation that had occurred, and can also 

be used as an additional measure of adaptability, i.e., the ability to re-adapt or the speed 

by which re-adaptation occurs. 

 

1.2 Gait Stability 
	
 Stability is a term that generally refers to resilience to change. In upright posture, 

stability may refer to the ability to resist perturbations by maintaining foot placement, 

that is, not having to step to change the base of support (BOS), or to generally be able to 

maintain upright stance. In locomotion, the BOS is not static. Thus, gait stability can be 

defined as the locomotor system’s ability to maintain upright equilibrium following 

exposures to external or self-generated perturbations. Gait stability can be subcategorized 

into one of two terms: global stability and local stability.  

1.2.1 Global Stability 

 Global stability refers to the capacity of the locomotor system to resist external 

finite or large perturbations, such as tripping over an obstacle or slipping on a low-

friction surface (Dingwell, Cusumano, Cavanagh, & Sternad, 2001). In dynamical 

systems, a system is globally stable if it tends to move toward the attractor irrespective of 

the initial conditions (Kaplan & Glass, 1995; Strogatz, 1994). An ‘attractor’ is a 

coordinative pattern or behavior towards which a dynamical system tends to evolve 

(Figure 1.3). An attractor is characterized by maximal stability (Van Emmerik, Miller, & 
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Hamill, 2013) and minimal variability (Mpitsos & Soinila, 1993) and metabolic cost 

(Holt, Hamill, & Andres, 1991).  

 

 
Figure 1.3: Current and attractor states represented by a ball and a well, 
respectively. A) A deeper well indicates a more stable system. B) A shallower (less 
stable) well. C) Unstable or transitory states. D), bi- or meta-stability states. A, B, and C 
adapted from Kelso, (1995). 
 

 From the perspective of human bipedal locomotion, the state of locomotion is 

considered the global attractor state. That is, the preferred state is the rhythmic 

phenomenon of gait; the ‘gait state’. If gait persists following a perturbation, the 

locomotor system can be considered globally stable. If the perturbation leads to a 

different state, such as falling, the system can be considered globally unstable. As such, 

global stability is the simplest stability measure to conceptualize because, at its core, it 

can be reduced to binary terms. That is, when exposed to finite external perturbations, if a 

person can maintain upright stance, he or she is stable. Conversely, if a fall occurs 

following a perturbation, he or she is unstable. However, understanding the degree of 

global stability provides valuable information. For example, knowing how close one is to 

falling (or shifting into a different state) may provide insights into the magnitude of 
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perturbation one can withstand. Thus, global stability is often quantified by evaluating the 

relationship between the Center of Mass (COM) and BOS (Figure  

 

 
Figure 1.4: Representation of the center of mass (COM) relative to the base of 
support (BOS) during postural stance. COM vertical projection to the ground labeled 
as filled circle; BOS is the surface area of the feet and the white shaded area between the 
feet. 
 
 
1.4). The COM is a theoretical point around which the body’s mass is equally balanced 

(Hall, 2012). The vertical projection of the COM to the floor is sometimes called the 

center of gravity (Winter, 1995), but for the purpose of this document we use the term 

‘COM’  to refer to this vertical projection to the support surface. The BOS is the area that 

encompasses all parts of the body that are in direct contact with the surface of support 

(Hall, 2012). For postural control, the COM must remain within the BOS. During 

locomotion, the COM extends beyond the BOS during the single support phase. The 

COM and BOS provide a wealth of information regarding global stability, and various 

measures have been developed to quantify this information. For example, margin of 

stability (MOS) evaluates the extrapolated COM (position adjusted based on velocity) 
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compared to the anterior-most BOS (Barrett, Cronin, Lichtwark, Mills, & Carty, 2012; 

Hof, 2008). Time to Contact (TTC) determines the instantaneous COM position, velocity, 

and acceleration in reference to the BOS boundaries to predict future conditions 

(Remelius & van Emmerik, 2015; Slobounov, Slobounova, & Newell, 1997). These 

measures provide information regarding the extent of global stability by specifying how 

close a system is to transitioning into an unstable state. 

1.2.2 Local Stability 

 Local stability refers to the locomotor system’s resilience to infinitesimally small 

perturbations, such as those naturally produced by the system during steady state 

locomotion (Dingwell et al., 2001). In dynamical systems, a system is locally stable if it 

evolves toward the attractor when its initial conditions are close to the attractor, but does 

not move toward it if initial conditions are not close to it (Kaplan & Glass, 1995). In the 

latter case, over time small disturbances grow rather than dampen out (Strogatz, 1994).  

 1.2.2.1 Lyapunov Analysis 

 To determine local stability, non-linear methods have been developed. The 

maximal finite-time Lyapunov exponent (FTλMAX), for example, evaluates a signal’s 

resistance to very small perturbations that naturally occur during locomotion (Dingwell, 

Cusumano, Sternad, & Cavanagh, 2000). Though these perturbations are not large, they 

must still be attenuated before they grow larger and stability is lost. Analysis of local 

stability first requires that a time series is transformed into its ‘state space’ (Figure 1.5). 

A state space is a geometrical representation of time series data where a minimal number 
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of state variables is used to define the system. The state variables here are time-delayed 

versions of the signal, known as ‘delay embedding’ (D. H. Gates & Dingwell, 2009).  

 

 
Figure 1.5: State space reconstruction. A time series signal (A) is transformed into its 
state space (B) by embedding a time delay (T). The number of delays indicates the 
dimension of the state space; here illustrated as a 3-Dimensional space, with two 
embedded delays (Signal(t + T), Signal(t + 2T)). 
 

This delay can be applied to the original time series multiple times (e.g., N number of 

times), where N defines the number of dimensions of the state space (dimension = N+1). 

The FTλMAX evaluates the rate of divergence of nearby trajectories within the state space. 

A larger FTλMAX indicates a greater rate of divergence and, thus, a less stable system. 

 1.2.2.2 Floquet Theory 

 Similar to analysis of the FTλMAX, Floquet multipliers evaluate the orbital 

stability of a cyclic trajectory (Granata & Lockhart, 2008), such as those observed  

during steady state walking. Orbital stability analysis uses a Poincare section (grey box in  
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Figure 1.6: Example of orbital stability analysis using a Poincare section and 
Floquet Multipliers. From Kang & Dingwell, (2008). 
 

Figure 1.6) to evaluate convergence or divergence of trajectories. The Poincare section is 

a plane that is orthogonal to the mean (S*) of the cycles in the state space, whereby each 

trajectory passes through this plane. The distance from the mean (S*) is subtracted from 

the signal at cycle (k) and subsequent cycle (k + 1). If Sk+1 > Sk, the trajectory is 

diverging and the system is considered unstable (Figure 1.6). 

1.2.3 Scalar Variability-Based Stability Measures 

 Finally, numerous variability-based measures of stability have emerged in the 

literature, such as step width variability (Brach, Berlin, VanSwearingen, Newman, & 

Studenski, 2005; Dean, Alexander, & Kuo, 2007), stride length variability (Maki, 1997; 

Verghese, Holtzer, Lipton, & Wang, 2009), and stride time variability (Hausdorff, Rios, 

& Edelberg, 2001), as well as other gait parameters such as gait speed (Van Kan et al., 

2009; Verghese et al., 2009). These measures are associated with fall risk, and are 

classified as scalar measures of variability because they assess the overall magnitude of  
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Figure 1.7: Differences in variability between young, elderly, and elderly with a 
history of falls. From Hausdorff et al, (1997).  
 

variance without regard for the structure of variability. These biomechanical analyses of 

human gait have provided valuable information regarding differences in various gait 

parameters in young healthy adults versus older healthy adults, or older healthy adults 

versus older adults with a history of falls. For example, greater stride-time variability is 

correlated with a higher risk of falling (Hausdorff, 2007; Hausdorff et al., 2001) (Figure 

1.7). Additionally, the preferred speed of walking slows with aging (Himann, 

Cunningham, Rechnitzer, & Paterson, 1988), and slower speeds are associated with 

greater risk of falls (Van Kan et al., 2009; Verghese et al., 2009) and mortality (Van Kan 

et al., 2009). 
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1.2.4 Dynamical Systems’ Attractor State 

 Figure 1.3 displays states of varying stability levels. The attractor is represented 

by a well, and the basin of attraction (grey lines) indicate the area within the space that all 

initial conditions will eventually converge (Van Emmerik, Rosenstein, McDermott, & 

Hamill, 2004). A ball in the well represents the system’s current state, and a deeper well 

(A) specifies a more globally stable system. Small or large perturbations will not kick the 

ball out of the well (i.e., larger basin of attraction). Any disturbances to the stronger 

attractor will be followed by a rapid return to the nadir. A shallower well (B) cannot 

withstand the same perturbation magnitude and remain in the same state. Disturbances 

will require more time for the ball to return to its original state. Figure 1.3 B may 

represent a system that is locally but not globally stable. It is locally stable because the 

ball will remain within the well if it is close to the nadir and not sizably disturbed. If a 

perturbation, however, will kick the ball out of the well, the system can be considered 

globally unstable. In unstable or transitory states (C), the ball will be displaced by small 

perturbations. There are often two (bi-stability) or more (meta-stability) attractor states in 

competition (D), and the most stable state will have a higher probability of persisting. 

Arrows represent the direction the ball is ‘attracted’ to (or repelled from in C). Black and 

white balls indicate stable and unstable states, respectively.  

 

1.3 Statement of the Problem 
	
 The term ‘gait adaptability’ has often been discussed in posture and locomotion 

studies, yet it has rarely been evaluated. Adaptability has been used to describe healthy 

gait that can functionally adjust to changing environmental or task demands (Rhea & 
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Kiefer, 2013). Some studies have evaluated gait adaptability by measuring the system’s 

capacity to return to a symmetric walking state when exposed to an asymmetric 

environment (Bruijn et al., 2012; J. T. Choi & Bastian, 2007; Dietz et al., 1994). 

Although many studies have noted that an individual’s adaptive capacity may be 

described by measures of complexity (Costa et al., 2002, 2005; Gruber et al., 2011; 

Manor et al., 2010), fractal dynamics (Jordan, Challis, & Newell, 2007b) and local 

stability (Dingwell et al., 2001), these analyses were performed on steady state walking, 

i.e., absent of any necessity to adapt gait patterns. The associations between gait 

adaptability and fractality and complexity need to be assessed within the context of 

constrained gait, such as during split-belt walking. Does an individual’s fractal dynamics 

or complexity profiles determine, explain, or associate with gait adaptability? For 

example, are fractal dynamic or complexity measures during steady state associated with 

gait adaptability during an asymmetric gait paradigm? One could argue that, because 

older adults exhibit weaker fractal dynamics (scaling exponents closer to α = 0.5 or 

uncorrelated) compared to young adults (Hausdorff et al., 1997), and because older 

adults’ gait is widely considered less adaptive than young adults (Barrett et al., 2012; 

Bruijn et al., 2012), weaker fractal dynamics may indicate less adaptability. Clearly, this 

must be empirically evaluated. 

 While gait adaptability has received little empirical attention, attempts to quantify 

gait stability have been numerous and diverse. However, the predominant shortcoming of 

studies evaluating gait stability is a lack of perturbation elicited (i.e., steady state gait 

analysis). Note that in steady state gait stability analysis, ‘perturbations’ are in fact still 

present in the form of small, internally generated disturbances. Although several direct 
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and indirect measures of gait stability have been studied extensively in a variety of 

cohorts, the functional consequences of these stability parameters are currently unknown 

or, at best, speculative. For example, older adults exhibit greater stride time variability 

(Maki, 1997). Does this parameter indicate a less stable locomotor system? Additionally, 

no study has yet evaluated the global stability of perturbed gait in individuals who 

naturally walk at differing levels of local stability (as measured by the FTλMAX) during 

unperturbed gait. That is, is local stability associated with or a descriptor of global 

stability? It has been argued that the global outcomes of localized behavior are in fact, 

unpredictable (Mpitsos & Soinila, 1993). Indeed, the relationship between local and 

global stability requires empirical scrutiny. 

 Finally, evaluating system dynamics that exhibit multiple interactions across 

temporal scales is challenging. Monofractal analysis may not sufficiently describe the 

system in its entirety. Thus, a multifractal analysis may better describe the complex 

interactions occurring between temporal scales. To date, however, few studies have 

evaluated the potential for multifractality in gait parameters of young or older adults. Do 

young adults exhibit more or less multifractality in steady state walking compared to 

older adults? Moreover, what is the response to asymmetric gait exposure, and is this 

response different in young and older adults?  

 

1.4 Significance of this Dissertation 
	
 Determining which measures of gait adaptability or stability correctly describe the 

locomotor system allows for two main outcomes. First, researchers can better determine 

the odds of a future fall on an individual basis. Particularly, those individuals already at 
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higher risk of a future fall (e.g., older adults, adults with neurological disorders) may 

benefit from the knowledge of their relative risk of a future fall. If risk is high, 

interventions could be incorporated to reduce this risk. Second, training studies could 

utilize these measures to determine the efficacy of the intervention. In other words, does 

the training intervention actually improve the adaptability or stability of gait?  

 Alternatively, in the event that no measures accurately describe adaptability, new 

measurement techniques must be developed. Fully understanding what a measurement is 

revealing about the system will only serve to improve experimental validity.  

 

1.5 Proposed Experimental Designs 
	

1.5.1 Study 1 - Gait Adaptability in Young Adults 

  Nonlinear gait parameters such as fractal dynamics and complexity have been 

associated with adaptability (Costa et al., 2002; Jordan et al., 2007b). However, specific 

evaluation of gait adaptability has yet to be explored in reference to these measures. That 

is, complexity and fractality are determined during steady state walking. The extent to 

which steady state analyses predict constrained gait behavior is not established. 

Therefore, this first study will expose participants to a task that requires the locomotor 

system to adapt. Specifically, the constraint will consist of asymmetric walking that 

requires participants to attempt to adapt leg symmetry. 

 The purpose of this study is to evaluate if nonlinear measures of adaptive capacity 

are associate with gait adaptability performance. The first aim of this study is to 

determine the capacity for young, healthy adults to adapt their gait in response to 

asymmetric task constraints. The second aim is to assess the relationship between 
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indicators of adaptability under steady state conditions and gait adaptability performance. 

The goal is to better understand what information the proposed nonlinear analyses are 

revealing about the locomotor system. If fractal dynamics during steady state walking 

describe locomotor adaptability, gait symmetry performance during asymmetric walking 

and steady state fractal dynamic measures should be correlated. And if so, could 

interventions focused on improving adaptability use fractal or complexity measures as an 

assessment of efficacy? For this study, participants will first walk at their preferred 

walking speed, as well as at half of their preferred speed. Participants will then be 

exposed to asymmetric walking trials, whereby one belt of the treadmill will move at the 

participant’s preferred walking speed, and the other at half of the preferred speed. Leg 

symmetry relative phasing will determine the extent and rate of gait adaptability. For 

steady state measures of adaptability, DFA will determine the strength of fractal 

dynamics, and MSE will determine complexity. 

 Study 1 will test the following hypotheses: 

H1.1: Asymmetric walking will initially break down fractal dynamics to values closer

 to α = 0.5, followed by a return to standard fractal values observed  in unperturbed 

 walking (α ~ 0.75). This hypothesis is based on the  observed break down of long-

 range correlations in older adults and adults  with neurological disorders 

 (Hausdorff et al., 1997). When the system is constrained via aging or disease, 

 interactions across spatio-temporal scales are reduced. In this paradigm, the 

 asymmetric split-belt  walking condition is expected to serve as a task constraint 

 that will manifest as reduced fractal dynamics. With more experience, participants 
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 are hypothesized to adapt to this constraint and fractal dynamics will 

 therefore increase.  

H1.2: Fractal dynamics during steady state walking will be correlated with gait 

 adaptability. Specifically, individuals with low fractal scaling indices (i.e., α 

 closer to 0.5) will display poorer gait adaptability. This will be exhibited by 

 larger deviations from intended leg phasing (anti-phase), i.e., greater gait 

 asymmetry. The rationale here is that older adults have been shown to 

 demonstrate lower fractal scaling  exponents (Hausdorff, Mitchell, et al., 

 1997), as well as reduced ability to adapt their gait to symmetric walking (Bruijn 

 et al., 2012). Thus, if fractal dynamics are associated with gait adaptability, 

 fractality closer to α = .05 should yield poorer gait  performance. While young, 

 healthy adults exhibit α’s ~ 0.75 on average, the range within this cohort is 

 often large. The data from Hausdorff et al. (1995), for example, displayed a 

 range from α = 0.56 - 0.91. Thus, even within a younger age group, low fractal 

 dynamics are hypothesized to be correlated with reduced gait adaptability. 

H1.3: Complexity during steady state walking will be correlated with gait  adaptability. 

 Specifically, higher complexity indices, as measured by MSE analysis, will 

 be associated with greater gait adaptability. This will be displayed by smaller 

 deviations from intended leg phasing (anti-phase). The rationale is that a 

 complex behavior is considered to be highly  adaptive to environmental changes 

 (Costa et al., 2002; Costa et al., 2003). Few studies have investigated participant-

 specific differences between  complexity measures during walking, and therefore 

 it is difficult to determine expected ranges. Regardless (and assuming there will 
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 some degree of heterogeneity), greater complexity should manifest as greater 

 gait adaptability. 

H1.4: Gait adaptability will be associated with stride time variability, step length 

 variability, and step width variability. Specifically, greater variability will be 

 associated with poorer gait adaptability. This hypothesis is based on the 

 common observation that greater variability in various gait parameters is 

 associated with greater fall risk in older adults. This association suggests  greater 

 variability is indicative of less controllability of the locomotor system. A  highly 

 constrained system may display very little variability, though this generally 

 occurs with aging or disease states (Brach et al., 2005). For this young, healthy 

 cohort, however, if a participant has high gait parameter variability (e.g., stride 

 time, step length, step width), it maybe inferred that less control is  evident, and 

 manifest as reduced ability to symmetrize gait. 

Exploratory Analysis 1.1: Two variables (fractal dynamics (DFA) and complexity 

 (MSE)) will predict gait adaptability more accurately than either single variable 

 alone, based on a multiple regression analysis. Fractality and complexity 

 analyses of the same data set have been shown to be uncorrelated (Costa et al., 

 2003), indicating that each of these are autonomous measures with respect to the 

 other. While these are two independent terms, both are considered indicators of 

 the locomotor  system’s adaptability. This leads to two important questions: 1) is 

 one analysis a better predictor of gait adaptability than the other, and 2) If both 

 predict adaptability, will the combined regression analysis yield a stronger 

 (or more robust) model to predict adaptability? The working hypothesis is  that, 
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 because fractal dynamics evaluate interactions between temporal scales, and 

 complexity evaluates interactions within and across scales,  these two variables 

 combined should describe system dynamics better than either one individually.  

Exploratory Analysis 1.2: As an alternative to combining fractal dynamics and 

 complexity, this exploratory analysis will determine if stride time variability 

 and fractal dynamics can predict gait adaptability more accurately when 

 combined. This notion is based on the concept of gait dynamics, which refer to 

 evaluation of gait variability via: 1) fractal dynamics and 2) variability magnitude 

 (Hausdorff, 2007). The relationship between variability and fractality also appears 

 to be independent (Hausdorff et al.,  1996). Combining these two variables into a 

 regression model may also provide a better model for predicting gait adaptability 

 performance. 

1.5.2 Study 2 - Gait Adaptation and Re-Adaptation in Young and Older Adults  

 The split-belt training paradigm has been shown to differentiate young versus 

older adults, whereby older adults are less successful in adapting gait patterns (Bruijn et 

al., 2012). The first study will explore gait adaptability in young, healthy adults within 

this split-belt paradigm. The logical next step is to determine if there is, in fact, an age 

effect of gait adaptability or fractal or complexity measures, as older adults are at the 

highest risk of falling and are more likely to have more severe consequences in the event 

of a fall. Moreover, determining if gait stability measures are associated with the 

responses to an unexpected change in gait symmetry would provide support for or dispute 

against the utility of such measures. That is, while all measures of gait stability (e.g., 
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local, global) are thought to describe the overall stability of the system, limited research 

has empirically evaluated this notion. 

 Clinically, if one or more of the previously mentioned measures (fractality, 

complexity) in older adults is associated with gait adaptability, interventions could be 

designed around improving these measures and, thus, gait adaptability. For example, it 

has been shown that the strength of fractal dynamics increases when young, healthy 

adults adhere their foot strike timing to that of a metronome with intervals of fractal-like 

behavior (Rhea, Kiefer, D'Andrea, Warren, & Aaron, 2014). If fractal dynamics are a 

quantification of gait adaptability in older adults, does changing one’s fractal dynamics 

change one’s gait adaptability? If so, metronome-training gait interventions might help 

improve gait adaptability in this cohort. Moreover, interventions aimed at improving 

adaptability could utilize these nonlinear techniques to determine whether or not the 

intervention is successful. 

 This protocol will be similar to study 1, but will occur over the course of two 

sessions. Two healthy, active cohorts will be recruited: young and older adults. On the 

first session, participants will stand quietly with eyes open and closed, and walk at their 

preferred walking speed and at half their preferred walking speed. On the second session, 

participants will repeat the quiet standing and PWS walking trials, as well as perform 

three split-belt conditions in which one treadmill belt travels at their preferred speed, and 

the other at half their preferred speed. A final condition will consist of having the 

treadmill belts moving at the same speed once more, as is the case in preferred and half 

preferred conditions. This will provide a measure of adaptation that occurred, as well as 

an ability to re-adapt gait patterns.  



26 
		

 The purpose of this study is to better understand the connection between gait 

adaptability and nonlinear measures of adaptive capacity in young and older adults. The 

aims of this study are fivefold. First, this paradigm will address whether older adults’ gait 

is in fact less adaptable, as was previously reported (Bruijn et al., 2012). Second, this 

study will determine if indicators of gait adaptability (i.e., fractal dynamics and 

complexity) during steady state correlate with observed adaptation performance. That is, 

are fractality or complexity values during steady state walking associated with gait 

symmetry differences during asymmetrically constrained walking? Third, this paradigm 

will evaluate if fractal dynamics or complexity measures correlate with re-adaptation. 

Fourth, this study will establish if there is an age effect of re-adaptation. Finally, analysis 

of the initial shift from 1:1 to 2:1 asymmetric walking will provide quantification of gait 

stability that can be compared to those measures determined during steady state, 

unperturbed walking. Do unperturbed walking stability measures predict the responses to 

a transient perturbation? 

 Study 2 will test the following hypotheses: 

H2.1: Older adults will have an overall reduced ability to adapt to asymmetric gait, 

 compared to younger adults. This will be displayed by larger deviations from 

 intended leg phasing (more asymmetric). Bruijn and colleagues (2012) 

 demonstrated that older adults adapted to asymmetric walking less and at a 

 slower rate when analyzing relative timing in swing  phase, and stride and step 

 length symmetry. 

H2.2: Older adults will require more time to adapt their gait, compared to young adults. 

 This hypothesis is also based on reported results from Bruijn et al. (2012), 
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 whereby the older adult group adapted their gait at a slower rate than young 

 adults. 

H2.3: Older adults will display decreased aftereffects in the re-adaptation condition 

 compared to young adults. This will be a result of reduced adaptation during the 

 asymmetric conditions. Bruijn and colleagues (2012) did not observe this  effect 

 in older adults. However, their protocol only exposed participants to 10 minutes 

 of asymmetric walking, compared to  this proposed protocol of 36 minutes.  

H2.4: Fractal dynamics will be lower in older adults compared to young adults during 

 preferred speed walking. This premise is based on earlier studies that have 

 indicated older adults and those with Huntington’s disease generate lower fractal 

 scaling indices, compared to young adults Hausdorff et al. (1997). 

H2.5: Complexity will be lower in older compared to young adults. Although there 

 is empirical data that suggests postural complexity is not different between 

 young and older adults (Duarte & Sternad, 2008), walking is a more 

 challenging task. This hypothesis is based on the loss of complexity 

 hypothesis (Lipsitz & Goldberger, 1992), which would predict an age-related 

 difference, whereby aging and disease reduces systemic complexity.   

H2.6: While fractal dynamics on average will be lower (α closer to 0.5) in older  adults 

 compared to young, fractal dynamics will still be associated with gait 

 adaptability within each group. That is, irrespective of age cohort, lower fractal 

 values during  steady state walking will be associated with poorer gait 

 adaptability during asymmetric walking in both groups. The argument is that 

 older adults may exhibit poorer overall gait adaptability as well as lower fractal 
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 dynamics, but within each cohort, there will be a range of adaptability 

 performances and a range of fractal scaling.  Hausdorff et al. (1997) observed 

 fractal scaling exponents of  0.68 ± 0.14 in older adults (range was not 

 reported). The range of adaptability performances results will correlate to  fractal 

 scaling.  

H2.7: There will be a U-shaped relationship between gait adaptability and step width 

 variability during steady state walking in older adults. Specifically, very high or 

 very low variability will be associated with poorer gait adaptability. The basis for 

 this hypothesis is similar to hypothesis 1.4, in which a high degree of gait 

 parameter variability is associated with a higher risk of falling. This increased risk 

 may suggest that variability is a manifestation of less systemic controllability. 

 Conversely, when a system is naturally constrained, as is the case with aging and 

 disease, it may also display little variability. This has been displayed in prior 

 studies of ideal step width variability magnitudes (Brach et al., 2005), in which `

 very high or very low variability was associated with greater fall risk. Thus, older 

 adults with very high or very low step width variability are expected to yield 

 poorer gait adaptability. 

H2.8: Gait stability measures (minimal TTC, MOS during stance phase) during steady 

 state walking will be associated with stability measures immediately following the 

 perturbation (belt speed change). This hypothesis is based on the general idea that 

 greater steady state gait stability should yield greater transient stability following 

 locomotor perturbations.  
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H2.9: Older adults will exhibit reduced gait stability measures (smaller minimum  TTC 

 and MOS) during steady state walking. Older adults are generally considered 

 less stable with higher incidents of falls; if this is the case, the older cohort should 

 display lower overall gait stability measures during unperturbed, steady state 

 walking. 

H2.10: Older adults will exhibit lower gait stability measures (smaller minimum TTC 

 and MOS) in response to the altered belt speed. Similar to the rationale for 

 hypothesis 2.9, if older adults are generally less stable, the  rapid change in belt 

 speed should perturb this cohort more so than the younger group. 

1.5.3 Study 3 – Multifractal Analysis of Asymmetric Walking in Young and Older 
Adults 

 While monofractal analysis (e.g., DFA) may provide insights regarding locomotor 

organization and response to constraints, a multifractal analysis will allow for a more 

comprehensive assessment of subsystem autonomy or dependence. That is, there may 

exist more than one subsystem at a particular time scale interacting with other subsystems 

at other time scales. One major assumption of the DFA algorithm is that a single scaling 

exponent can faithfully describe the overall fractality of a signal or behavior. However, 

transient periods of very high or very low variability would produce local scaling 

exponents that are closer to α = 0.5 and α = 1.5, respectively. By evaluating fractality 

from a local perspective, the evolution of the signal can be determined. Few studies have 

explored the degree of multifractality in young and older adults, and of those studies, 

unanticipated results have been reported. Specifically, Munoz-Diosdado and colleagues 

(2005; Munoz-Diosdado et al., 2003) reported that young healthy adults exhibit nearly 
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monofractal behavior in gait, while children, elderly, and those with neurological disease 

display greater multifractality. The phenomena from these studies require further 

empirical scrutiny. 

 

 Study 3 will test the following hypotheses: 

H3.1: Young adults will display less multifractality compared to older adults. This 

 hypothesis is based on earlier studies evaluating multifractality across the 

 lifespan and found that the width of the multifractal spectrum was larger in 

 children and older adults compared to their younger counterparts  

 (Muñoz-Diosdado, 2005; Munoz-Diosdado et al., 2003). 

H3.2: Young adults will exhibit greater multifractality in response to asymmetric 

 walking compared to older adults. The asymmetric gait is expected to perturb 

 participants, and therefore intermittent corrections to locomotor patterns (e.g., 

 brief periods of high or low variability) may be beneficial in maintaining the 

 overall goal of continued locomotion. If young, healthy adults possess a greater 

 capacity to adapt their gait patterns, this may be achieved via these intermittent 

 corrections, while older adults may exhibit less ability to make these 

 intermittent modifications. 

H3.3: Young adults will display reduced multifractality during the 2nd and 3rd split-

 belt trials, compared to older adults. This hypothesis is based on the 

 assumption that young, healthy adults will quickly adapt their gait to the 

 asymmetric walking pattern and no longer require intermittent corrections  by the 

 2nd and 3rd split-belt conditions. Older adults may require more time to adapt gait, 
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 and thus exhibit greater multifractality compared to young  adults  in the 2nd and 

 3rd split-belt conditions. 

 

1.6 Summary 
	
 Fall events present a significant danger for the aging population. While several 

steady state gait parameters are known to have moderate associations with fall risk, 

precise measures of gait adaptability and stability have not been fully scrutinized. The 

first aim of this dissertation is to determine if measures of complexity and fractality 

during steady state align with observed gait adaptability performances. The second aim 

will address if fractality, complexity, and gait adaptability and stability are irrespective of 

or dependent upon age. The final aim of this dissertation is to determine if multifractal 

analysis reveals important information supplemental to or separate from the more 

common monofractal analysis. Determining precise quantifications of gait stability and 

adaptability allow practitioners to: 1) categorize an individual’s risk of future falls and 

provide appropriate recommendations for gait training, and 2) determine efficacy of fall 

prevention interventions.  
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CHAPTER II 

LITERATURE REVIEW 

 
 
 Walking is a common activity or task performed by most individuals for most of 

the lifespan. Upright, bipedal locomotion is a highly beneficial form of gait, providing 

advantages over quadrupedal locomotion. It has afforded humans the ability to perform 

ancillary activities with their upper limbs (dual or multitask). In addition, arm motion 

during walking and running provides an axial torque to counteract the torque generated 

by the legs (Chapman, 2008). However, freeing of the upper limbs comes at the cost of 

transient instabilities during walking. During every single-support phase, the COM often 

extends beyond the BOS, and the swing leg must catch up to prevent a fall. As we age, 

diminished vision, somatosensory information, and muscular strength further complicate 

the act of locomotion. As a result, older adults fall often, and the consequences can be 

physically or emotionally severe. While several interventions and gait parameters have 

been associated with fall risk, the quantification of adaptable and stable gait is still 

evolving.   

 
 
2.1 Falls During Locomotion 
 

2.1.1 Overview 

 Falls occur frequently in older adults. Approximately one-third of all individuals 

aged 65 years or older experience a fall every year. These fall events are the leading 

cause of hospitalization and injury-related deaths in this population (CDC, 2011, 2012). 

Falls most often occur while walking at normal or hurried walking speeds (Berg et al., 
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1997). A ‘fall’ can be defined as an unintentional decent under the acceleration of gravity 

from upright standing or walking, resulting in undesired contact with the support surface. 

There are many potential intrinsic, extrinsic, or behavioral factors that may result in a 

fall. Intrinsic factors include changes in physiology due to aging or disease, such as visual 

impairments, muscular weakness, reduced cognitive function, or general postural 

instability. Extrinsic factors involve contact with external perturbations, such as slipping 

on a slick surface or tripping on an obstacle. Finally, behavioral factors that may 

contribute to falls include lifestyle decisions in which activities undertaken ultimately 

increase overall fall risk, such as walking in a poorly lit area containing various obstacles 

(Greany & Di Fabio, 2010). Although many possible mechanisms for falls exist, Troy 

and Grabiner (2006)  indicated that up to 50% of all falls are due to slipping accidents.  

 The consequences of falls present not only a significant physical and 

psychological affliction in older adults, but also a substantial economic burden. The 

Centers for Disease Control and Prevention estimate falls accounted for ~ $18.6 billion in 

health care costs in 2005 (CDC, 2005a, 2005b, 2005c), and this number is estimated to 

rise to $59.6 billion by 2020.  

2.1.2 Fall Prevention Interventions 

 With the prevalence of falls increasing, many interventions have been developed 

to reduce fall rates. These interventions typically involve strength, cardiovascular, or 

balance training, or some combination therein (Cadore et al., 2013; Lord et al., 2005). 

Other interventions involve fall prevention education, medication adjustments, or 

eyewear prescription updates (M. Choi & Hector, 2012; Lord et al., 2005). Studies 

typically explore the efficacy of single or multifactorial fall prevention interventions by 
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determining rates of falls in an intervened versus controlled group. Results from 

individual studies, as well as review papers and meta-analyses, have been mixed.  

 One large study using data from the Cochrane Review (Gillespie et al., 2004) 

determined that multi-faceted fall prevention programs significantly reduce the 

occurrence of falls. A study by Tinetti et al. (1994) found that a 3-month multifactorial 

intervention reduced the occurrence of falls, as 35% of the intervened group reported a 

fall at a 1-year follow up, compared to 47% of the control group. Another review 

reported overall improvements in balance, strength, and fall risk following various 

interventions (balance, strength, cardiovascular training (Cadore et al., 2013). 

 While some literature reports benefits from these interventions in the form of 

reduced fall events following the intervention, others report little or no benefits achieved 

(M. Choi & Hector, 2012; S. Gates et al., 2008; Lord et al., 2005; Vind et al., 2009). 

Studies developed as a follow-up to the Cochrane review have expressed findings that 

contradict the originally published results (S. Gates et al., 2008; Vind et al., 2009). Vind 

and colleagues (2009) compared a individual-specific intervention group (based on an 

individual’s risk factors) to a control group, and determined there were no fall-reducing 

effects from the intervention. In a review and meta-analysis of 19 randomized and quasi-

randomized controlled fall-intervention studies, Gates et al. (2008) concluded that there 

was little or no evidence to support the notion that interventions reduced the number of 

falls (risk ratio 0.91). In a meta-analysis, Choi and Hector (2012) determined multi-

factorial interventions reduced the rate of falls by only 10% on average. Additionally, 

Hill-Westmoreland and colleagues (2002) concluded in a 12-study meta-analysis that 

various interventions reduced the rates of falls by only 4%. Lord et al. (2005) concluded 
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after a 6-month individualized fall prevention intervention that, while the intervened 

group improved fall risk scores (as measured by the Physiological Profile Assessment) 

compared to a control group, the actual rate of falls were not different. Lightbody and 

colleagues (2002) conducted a similar experiment, and results revealed the intervened 

group did not improve fall rates compared to the control group, even though scores of 

physical function were increased.  

 Clearly, the efficacy of fall prevention programs requires further evaluation. 

Many of the aforementioned interventions have focused on general intrinsic and 

behavioral issues associated with falls. However, determining relationships between falls 

and risk factors such as static balance provide indirect associations, as opposed to cause-

and-effect information. That is, risk factors cannot directly explain why a person may 

fall; they can only offer the statistical ‘odds’ or likelihood of a future fall. In order to 

understand physiologically and biomechanically why a person falls (or recovers), 

kinematic and kinetic analyses must be performed. Thus, many researchers have 

developed biomechanically analytic paradigms that evaluate parameters of steady state or 

perturbed gait (i.e., elicit a perturbation) to evaluate gait parameters that may distinguish 

successful versus failed recoveries.  

2.1.3. Predictors of Future Falls 

 2.1.3.1. Unperturbed Gait Parameters 

 Efforts to attenuate the burden falls place on older adults have led researchers to 

search for gait variables that distinguish fallers from non-fallers. That is, the goal of these 

studies has been to identify individuals at a high risk of falling by determining 
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characteristics of walking gait that may predict the likelihood of a future fall. These 

attempts have led to analysis of various parameters during unperturbed walking gait 

including: step length (Lockhart & Liu, 2008; Lockhart, Smith, & Woldstad, 2005), stride 

time variability (Hausdorff, 2007; Maki & McIlroy, 1997), stride length variability (Dean 

et al., 2007; Maki & McIlroy, 1997; Verghese et al., 2009), step width (Dean et al., 

2007), step width variability (Dean et al., 2007), fractal dynamics (Hausdorff, 2007; 

Hausdorff et al., 1997; Hausdorff et al., 1996; Jordan et al., 2007b; Rhea, Kiefer, 

D'Andrea, et al., 2014), local dynamic stability using the Lyapunov exponent (Dingwell 

& Cusumano, 2000; Dingwell et al., 2001; Dingwell et al., 2000; Dingwell & Marin, 

2006; England & Granata, 2007; Kang & Dingwell, 2008a; Lockhart & Liu, 2008), 

Poincare analysis (Granata & Lockhart, 2008), and limit cycle attractor analysis (Vieten, 

Sehle, & Jensen, 2013). In addition, preferred walking speed, or the speed at which an 

individual tends to walk under normal conditions, has been assessed (Himann et al., 

1988). These above-mentioned variables have been shown to differentiate cohorts and 

fall risk. For example, shorter step lengths (Lockhart & Liu, 2008; Lockhart et al., 2005), 

longer step widths (Dean et al., 2007), and greater step width variability (Dean et al., 

2007) and stride time variability (Hausdorff, 2007) have been associated with increased 

risks of falling. 

 2.1.3.2. Perturbed Gait Parameters 

 While some of these variables are associated with relative fall risk, directly 

determining fall resistance capability in the absence of a slip perturbation is difficult. For 

this reason, some studies have attempted to distinguish fallers from non-fallers by 

eliciting a slip and evaluating characteristics during the slip that differentiate between the 
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groups. These gait characteristics include: slip foot displacement (Brady, Pavol, Owings, 

& Grabiner, 2000; Lockhart & Kim, 2006; Lockhart et al., 2005; Troy, Donovan, 

Marone, Bareither, & Grabiner, 2008), slip foot velocity (Brady et al., 2000; Chambers & 

Cham, 2007; Chambers, Margerum, Redfern, & Cham, 2003; Lockhart & Kim, 2006; 

Lockhart et al., 2005; Troy et al., 2008), slip foot acceleration (Lockhart et al., 2005; 

Troy et al., 2008), foot angle at heel strike (Brady et al., 2000), ankle, knee, and hip 

moments (Cham & Redfern, 2001), arm displacements (Marigold, Bethune, & Patla, 

2002; Tang & Woollacott, 1998), center of mass (COM) displacement (You, Chou, Lin, 

& Su, 2001), and COM motion state (position and velocity) (Espy, Yang, Bhatt, & Pai, 

2010; Espy, Yang, & Pai, 2010; Yang, Bhatt, & Pai, 2011). Others have used surface 

electromyography to evaluate muscular activation patterns such as: onset timing 

(Chambers & Cham, 2007; Tang & Woollacott, 1998), activation rate (Lockhart & Kim, 

2006), burst magnitude duration (Tang & Woollacott, 1998), and co-activation duration 

(Chambers & Cham, 2007; Tang & Woollacott, 1998). While all of these parameters 

have shown some capacity to differentiate fall outcomes, two (slip displacement (Brady 

et al., 2000) and velocity (Troy et al., 2008)) have exhibited particular effectiveness at 

discriminating between fallers and non-fallers. For example, slip foot displacement 

correctly classified 70% of the perturbation outcomes as either fall or recovery (Brady et 

al., 2000). However, the methodological challenge to this paradigm is that a slip must be 

initiated before the classification can be predicted (or verified), whereas other measures 

(e.g., foot angle at heel strike and COM motion state) are determined at the onset of the 

slip or during unperturbed gait.  
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 2.1.3.3. Cautious Gait  

 Finally, when an individual anticipates a slippery floor while walking, a different 

gait pattern often emerges, including: slower gait speeds (Fong, Mao, Li, & Hong, 2008), 

shorter step lengths (Bhatt, Wang, Yang, & Pai, 2013; Cham & Redfern, 2002), more 

anterior COM position (Bhatt et al., 2013), flatter lead foot at heel strike (Cham & 

Redfern, 2002; Heiden, Sanderson, Inglis, & Siegmund, 2006; Marigold & Patla, 2002), 

slower velocity of ankle plantar flexion following heel strike (Cham & Redfern, 2002), 

greater shank angle at heel strike (Brady et al., 2000), reduced peak joint moments (Cham 

& Redfern, 2002), and increased muscular activity (Heiden et al., 2006). Taken together, 

individuals adopt a more cautious gait pattern that minimizes foot displacements in the 

event of a slip. 

 To summarize, falls occur frequently within the aging population. Most often, 

these falls occur during walking, and because of this fact, various interventions have been 

developed. The primary outcome goal of each intervention is usually a reduced number 

of falls. While some interventions have provided evidence of their efficacy to reduce 

falls, others have not. From a macroscopic perspective, reviews and meta-analyses on fall 

prevention interventions have indicated that, at best, results vary. At worst, interventions 

do little or nothing to reduce the rate of falls. Alternatively, biomechanical analyses have 

provided gait parameters during steady state and perturbed gait that are associated with 

fall risk. While these various parameters are promising, they currently serve as a 

moderate or weak predictor of future fall risk. 
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2.2 Gait Adaptability 
 

 The word ‘adaptability’ generally refers to the capacity to successfully respond to 

changing demands. ‘Changing demands’ usually refer to changes to environmental or 

task constraints. For example, Martin and colleagues (1996) instructed participants with 

neurological deficits and healthy controls to throw a  

 

 
Figure 2.1: Prism goggle adaptation paradigm. Adaptation to prism goggles that shift 
the visual field (center cluster, white circles), and re-adaptation after removal of the 
goggles (right cluster, grey circles). From Martin et al, (1996). 
 
 
clay ball several times at a target 2 meters away, attempting to hit the center of the target. 

They then performed the activity while wearing prism goggles, which shifted the entire 

visual field 17° to the left. While this initially and expectedly increased lateral error to the 

left, this error no longer occurred after an average of 8.5 throws (Figure 2.1 middle, white 

circles). Following the prism adaptation trial, participants performed a final condition 
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without the goggles. The researchers observed lateral errors in the opposite direction 

(right) that lasted for the first 6.5 throws, on average, before a return to generally 

successful attempts (Figure 2.1 right, grey circles). Essentially, when exposed to altered 

visual information, individuals show the capacity to adapt visual-haptic multi-sensory 

integration to successfully complete a task. When the altered environment is removed, 

individuals must re-adapt their multimodal integration.    

 In reference to walking, the locomotor system has the ability to change if needed. 

Specifically, gait adaptability can be defined as the locomotor system’s ability to respond 

to changing demands within the environment or task. Some researchers alternatively refer 

to this ability or skill as ‘flexibility’ (Wagenaar, Holt, Kubo, & Ho, 2002). Few studies 

have directly evaluated this notion of adaptability by quantifying a system’s ability to 

modify gait patterns, or the speed by which desired locomotor patterns are achieved.  

2.2.1 Split-Belt Treadmill Paradigm 

 An excellent paradigm to assess adaptability is the split-belt treadmill. This 

treadmill has two adjacent belts arranged so that each foot is on a separate belt. These 

two belts have separate motors, and as such are independently controlled. This allows the 

programmer to move one belt faster than the other, or in a different direction. Essentially, 

this apparatus allows researchers to expose participants to asymmetric gait constraints in 

order to determine how (and how well) they can adapt their gait patterns.  

 



41 
		

 2.2.1.1 Split-Belt Adaptation and Re-Adaptation 

 The general phenomenon with the split-belt treadmill is that, when exposed to an 

asymmetric task constraint, individuals attempt to regain symmetry rather than remain 

asymmetric. This attempt to re-symmetrize may represent the system being pulled into a 

more stable attractor state. Bruijn and colleagues (2012) compared older and young 

adults in their ability to achieve symmetry in step length, stride length, swing speed, and 

percentage swing time when exposed to asymmetric gait conditions. Older adults were 

slower in adapting their gait patterns and illustrated fewer aftereffects, indicating poorer 

capacity to adapt their gait. Choi and Bastian (2007) provided evidence that participants 

could rapidly adapt to not only different forward walking speeds for each leg (2:1 ratio), 

but also alternating directions (one leg forward and the other backward). Similar to the 

findings of Martin et al., (1996), Choi and Bastian (2007) also noticed a required re-

adaptation period. That is, there was an initial adaptation from asymmetry to symmetry 

during the asymmetric (2:1 forward walking) condition. This adaptation is illustrated in 

Figure 2.2. The forward walking (dark grey triangles) baseline (B) phase is characterized 

by anti-phase motion (phase ~ 0.5). Note that a phasing of 0.5 indicates perfect anti-

phase, which corresponds to symmetrical gait. The adaptation (A) phase changes from 

initially > 0.5 towards 0.5. When the split-belt asymmetry was removed (post-adaptation 

(P)), the adaptation resulted in asymmetry in the opposite direction (Figure 2.2 P, phase 

change from < 0.5 towards 0.5 (dark grey triangles)) That is, when the belts moved at the 

same speed, the leg phase that lagged during the split-belt condition initially led. The re-

adaptation phenomenon is illustrated by the return to 0.5 phasing. Note that the backward  
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Figure 2.2. Symmetry measures during split-belt walking. B = baseline, A = 
adaptation, and P = post-adaptation trials. Forward and backward walking represented by 
dark grey and light grey triangles, respectively. Anti-phase = 0.5. From Choi & Bastian, 
(2007). 
 

walking trials (light grey inverted triangles) did not cause an adaptation to the subsequent 

forward walking trials (Figure 2.2 P). Finally, Dietz et al. (1994) provided further 

evidence that individuals have the capacity to rapidly adapt their gait patterns (within 15-

20 strides), even when gait speeds were considerably different (2.0 m/s and 0.5 m/s) 

during asymmetric split-belt conditions. 

2.2.2 Fractal Analysis 

 In 1922, Lewis Fry Richardson, in describing his observations of the interactions 

across spatial scales in the atmosphere, remarked:  

 

“Big whirls have little whirls that feed on their velocity; and little  

whirls have lesser whirls, and so on to viscosity.” (Richardson, 1922) 
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It would not be until 1975 that mathematician Benoit Mandelbrot would first coin the 

term ‘fractal’, which was based on the latin word fractus, meaning fractured (Mandelbrot, 

1977). A fractal is essentially an infinitely repeating pattern that is self-similar across 

multiple scales. A fractal may possess geometric self-similarity, as is the case in, for 

example, the Koch snowflake (Figure 2.3) or the  

 

 
Figure 2.3: Koch snowflake as an example of a geometric fractal object. The object is 
self-similar in that smaller pieces are copies of the entire piece. Here the small box is 
enlarged to reveal more details about its structure (large box). From Liebovitch  & 
Shehadeh, (2003). 
 

Sierpinski triangle (Liebovitch & Shehadeh, 2003), or it may possess statistical self-

similarity. A statistically self-similar object or signal is one whereby smaller pieces (or 

time scales) resemble the entire piece (or time series) (Liebovitch & Shehadeh, 2003). 

Although not precisely the same, the small pieces/time scales are similar to the larger 

ones based on a power-law distribution. That is, when plotted on a log-log graph, the 

probability density function (PDF) and scale size are linearly related. While many 

structures in natural phenomena (trees, lightning) and human physiology (nerves, blood 

vessels) exhibit a fractal nature, it was not until 1995 that Peng and colleagues 

determined biophysical signals may also display fractal behavior (Peng et al., 1995). 

Peng et al. (1995) developed a modified root-mean-square analysis of a random walk, 
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termed detrended fluctuation analysis (DFA, Equation 2.1). The DFA algorithm evaluates 

the degree of variability of a signal at different time scales, or window sizes. In order to 

accomplish this, a biophysical signal is first integrated, then sectioned into non-

overlapping boxes or windows (n). In each window, a least-squares linear fit line is 

applied to the signal (Figure 2.4). A root-mean-square analysis is then performed on the 

data, subtracting the local trend line’s y-coordinate from the integrated signal’s 

fluctuations. This process is performed and averaged across all windows of a given 

window size (n), as shown in Equation (2.1). 

 

𝐹 𝑛 =  !
!

[𝑦 𝑘 −  𝑦! 𝑘 ]!!
!!!                    Equation 2.1 

 

where F(n) is the average fluctuation in a given window (n), N is the total number of 

windows of size n, y(k) is the integrated signal, and yn(k) is the y-coordinate of the local 

trend line. The average fluctuation (F) at a given window size (n) is then 
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Figure 2.4: Illustration of detrended fluctuation analysis (DFA) method on a 
biophysical signal. A time series (top) is integrated and sectioned into non-overlapping 
windows (bottom). Within each window, a linear fit line is applied, and a root-mean-
square analysis of fluctuations from the fit line is performed. From Peng et al, (1995). 
 

plotted in a log-log graph against the window size (n). A linear relationship on this 

double-log graph indicates the existence of power law scaling (Peng et al., 1995).  
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Figure 2.5: Different scaling exponents and their meanings. When the log of 
fluctuations (log(F)) is plotted against the log of the scale size (log(N)), a linear 
relationship indicates power-law scaling. The slope, or α, of the linear fit line indicates 
the presence or absence of fractality. 
 

The slope of the linear fit on the log-log graph is called the scaling exponent, singularity 

exponent, or α (Figure 2.5). The DFA algorithm is highly advantageous in biological 

signals because the local detrending avoids issues related to signal non-stationarity. A 

scaling exponent of 1 indicates 1/f phenomena, whereby the power of the signal is 

inversely related to the frequency (West & Shlesinger, 1990). A scaling exponent of α = 

0.5 indicates a completely uncorrelated signal, equivalent to white noise. A scaling 

exponent of 0.5 < α ≤ 1.0 indicates long-range persistence, whereby small or large 

fluctuations are likely to be followed by small or large fluctuations, respectively. In 

contrast, a scaling exponent of 0 < α < 0.5 indicates long-range anti-persistence, whereby 

small fluctuations are likely to be followed by large fluctuations, and vice versa. Finally, 

a scaling exponent > 1.0 no longer signifies a power-law relationship, and a scaling 

exponent of 1.5 indicates Brown noise (i.e., the integration of white noise) (Peng et al., 
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1995). Brown noise is characterized by nonstationary random drifts, whereby it is 

partially dependent upon its previous conditions, and partially random. That is, it exhibits 

random steps at short time scales, yet the overall distance traveled is dependent upon the 

number of steps taken. This is in contrast to white noise (α = 0.5), which is absent of 

dependence upon previous or future states.  Peng et al. (1995) applied the DFA algorithm 

to the heart-beat interval timing of healthy adults with no history of heart disease, and 

compared it to heartbeat intervals of individuals with severe heart failure. The DFA 

algorithm determined that the healthy individuals exhibited a scaling exponent of 1.00 ± 

.11, indicating long-range correlations and, more specifically, 1/f behavior. The 

individuals with severe heart disease, on the other hand, exhibited scaling exponents of 

1.24 ±.22, a behavior that approached brown noise (α = 1.5). This indicates these 

heartbeat intervals were no longer a power-law relationship, and they more closely 

resembled a random walk. 

 2.2.2.1 Monofractals in Human Gait 

 In a series of follow-up experiments, and the first of their kind to evaluate the 

potential fractal-like nature of human locomotion, Hausdorff and colleagues (Hausdorff 

et al., 1997; Hausdorff et al., 1995; Hausdorff et al., 1996) utilized the DFA algorithm on 

stride-time variability. A stride time or stride interval is the amount of time from heel 

strike of one foot to the subsequent heel strike of the same foot. Although appearing 

relatively random, deeper inspection of stride times over a multitude of strides provides 

evidence of patterns. Gait studies employing the DFA algorithm have provided an 

indication that young, healthy adults exhibit persistent long-range correlations, that is, 
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scaling exponents of 0.5 < α ≤ 1.0. The exact scaling exponent varies by study. For 

example, young healthy adults walking at their preferred speed have reported scaling 

exponents of α = .76 ± .11 (Hausdorff et al., 1995) and .84 (Hausdorff et al., 1996). The 

discrepancies in precise scaling exponent values can likely be explained by differences in 

experimental design or parameterization. For example, greater trial lengths create a larger 

number of stride times, which will impact the DFA algorithm. Additionally, 

determination of minimum and maximum window sizes have been debated, and while 

specific guidelines have been suggested (Damouras, Chang, Sejdic, & Chau, 2010), a 

clear consensus has not been agreed upon. Finally, treadmill versus overground walking 

has displayed differences in scaling exponents, as treadmill walking generally reduces the 

scaling exponent (Terrier & Deriaz, 2011). 

 In addition to preferred walking trials, long-range correlations in young adults 

were observed at faster or slower walking speeds. In fact, walking slower or faster than 

preferred resulted in greater scaling exponents of α = 0.9 and 1.0, respectively 

(Hausdorff et al., 1996). This phenomenon has been repeated in subsequent studies on 

walking (Jordan et al., 2007b) and running (Jordan, Challis, & Newell, 2007a). On the 

other hand, walking while keeping pace with a metronome yields uncorrelated scaling 

exponents (α ~ 0.5) (Hausdorff et al., 1996).  

 In contrast to young healthy adults, older adults were shown to walk with scaling 

exponents of α ~ 0.68, and individuals with Huntington’s disease walked with scaling 

exponents of α ~ 0.6. Both of these cohorts displayed a breakdown of long-range 

correlations, with scaling exponents closer to uncorrelated random fluctuations 

(Hausdorff et al., 1997). Additionally, the scaling exponent was linearly associated with 
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the disease severity (r = .78), whereby greater disease severity displayed scaling 

exponents closer to 0.5 (Hausdorff et al., 1997).  Based on the breakdown of long-range 

correlations with aging, Huntington’s disease, and metronome, the authors speculated 

that supraspinal processes are responsible for the fractal behavior in gait. These higher 

order centers are either diminished with age or disease, or can override the natural 

behavior when keeping with a metronome. 

 2.2.2.2 Multifractals in Human Gait 

 One major assumption with the DFA measure is that one scaling exponent 

sufficiently describes the entire biophysical signal. Qualitative inspections of some 

signals, however, reveal intermittent periods of very high variability (lower α values) and 

periods of very low variability (higher α values, Figure 2.6). Thus, multifractal analysis 

was developed to describe signals that cannot be expressed using a single scaling 

exponent. Several methods have been developed to evaluate the multifractal nature of a 

signal. One common method involves systematically amplifying large or small 

fluctuations via a parameter known as a q-order or q moment (Ivanov et al., 1999; Kelty-

Stephen, Palatinus, Saltzman, & Dixon, 2013; Muñoz-Diosdado, 2005; Munoz-Diosdado 

et al., 2003). This parameter implements weighting to different characteristics. For 

example, as q increases, the scaling exponent decreases, and vice versa. Thus, a 

monofractal signal will not be affected by this parameter, while a multifractal signal will.   
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Figure 2.6: Illustration of the difference between a monofractal and multifractal 
signal. The monofractal (bottom) is absent of periods of large variability or small 
variability. The multifractal (top), conversely, exhibits periods of very little variability 
(between black dashed lines) and periods of very large variability (between grey dashed 
lines). From Ihlen & Vereijken, (2013). 
 

 An alternative method that appropriately assesses small data sets, such as the 

stride time variability of a finite walk, was introduced by Ihlen and colleagues (Ihlen, 

2012; 2013a, 2013b). This analysis evaluates the scaling exponent in a time series by 

performing a DFA using a moving window. The benefit of this analysis is that it displays 

the evolution of the local scaling exponent across a trial. The end result is a spectrum of 

scaling exponents (Figure 2.7). The final step of this multifractal analysis is to place all of 

the scaling exponents into a probability distribution graph. This provides information 

regarding: 1) the mode, which is analogous to the results of a monofractal analysis, and 

2) the width of the spectrum. A wider spectrum indicates a more ‘multifractal’ signal. 

Figure 2.7 displays the results of a multifractal analysis of a known multifractal (black), 

monofractal (dark grey), and white noise (light grey) signal (Ihlen, 2012). The 

multifractal signal has the largest range width, while the white noise signal has the 

smallest. 
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Figure 2.7: Multifractal analysis using the probability distribution method of local 
scaling exponents. The x-axis displays the local scaling exponent, and the y-axis is the 
probability distribution. From Ihlen, (2012). 
 

 Evaluation of heartbeat intervals using multifractal analysis has revealed 

differences in healthy and diseased individuals (Ivanov et al., 1999). Specifically, young, 

healthy individuals display a multifractal spectrum that includes smaller and larger 

scaling exponents, while individuals with heart failure exhibit a drastically reduced 

spectrum width. These findings indicate a loss of adaptability of the system. 

 Analysis of stride intervals under steady state conditions, however, have 

expressed opposite findings. To be clear, few studies have evaluated stride time 

fluctuations, or any gait parameter for that matter, for multifractal characteristics. Thus 

far, though, healthy young adults appear to display nearly monofractal fluctuations, while 

older adults and adults with neurological disorders (Parkinson’s, Huntington’s, ALS) 

display a greater width of the multifractal spectrum (Muñoz-Diosdado, 2005; Munoz-

Diosdado et al., 2003). Additionally, children exhibit greater multifractality that 

progressively narrows with age until it appears similar to that of a young healthy adult 

(Munoz-Diosdado et al., 2003). The explanation for the apparent differences between 

heart rate and stride time dynamics may be methodological. For example, in the study on 

multifractal analysis of heartbeat intervals, as well as the study of gait dynamics, the 
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researchers used the q-order method in determining the scaling exponent spectrum. The 

study by Munoz-Diosdado et al. (2003) used prior gait data from 4 distinct databases. The 

data lengths for each of these databases were not reported. Considering three of the 

cohorts had neurological diseases, and the forth were older adults, the trial lengths were 

most likely limited. For this reason, determining the multifractal spectrum using q-order 

statistics may not be appropriate. Rather, determination of the probability distribution of 

local scaling exponents should have been employed. Beyond potential data length 

discrepancies, gait speed differences between groups may have skewed the data, 

considering monofractal analyses are sensitive to gait speed (Hausdorff et al., 1996; 

Jordan et al., 2007b), and these data were collected from various databases. Finally, an 

alternative explanation for these findings are that, under steady state conditions, young 

healthy adults do in fact produce a monofractal signal that is void of periods of small or 

large fluctuations. Certainly, the extent to which constraints upon the individual, task, or 

environment affect the multifractal spectrum remains unknown.  

 2.2.2.3 Fractal Entrainment 

 Finally, while attempting to adhere to a metronome removes naturally occurring 

long-range correlations (Hausdorff et al., 1996), adhering to an auditory or visual 

stimulus that exhibits fractal-like behavior has been shown to increase the strength of 

long-range correlations (Hove, Suzuki, Uchitomi, Orimo, & Miyake, 2012; Kaipust, 

McGrath, Mukherjee, & Stergiou, 2013; Rhea, Kiefer, D'Andrea, et al., 2014; Rhea, 

Kiefer, Wittstein, et al., 2014; Stephen, Stepp, Dixon, & Turvey, 2008). Gait training 

using auditory stimuli has been used in clinical settings to evaluate changes in standard 

gait parameters (Thaut et al., 1996) and more recently fractal dynamics (Hove et al., 
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2012). Specifically, Hove (2012) noted a shift in the fractal dynamics of patients with 

Parkinson’s disease closer to 1/f. Rhea and colleagues (2014) presented a visual stimulus 

that exhibited long-range correlated intervals (α = .98), and instructed participants to 

match the timing of their heel strikes to the stimulus. Participants’ scaling exponents 

increased from baseline (α = .77±.09) to more persistent values (α = .87+ .06, Figure 

2.8). In a follow-up study, participants followed a fractal-like visual stimulus for 15 

minutes, and then walked without a stimulus for an additional 15 minutes. The pattern of 

fluctuations remained persistent (i.e., higher scaling exponent compared to baseline).  

 

 
Figure 2.8: Effects of fractal entrainment on stride interval scaling exponent. There 
was an overall increase in fractal scaling during entrainment to the metronome (triangles) 
compared to baseline (squares), and reduction in fractal scaling during metronomic 
walking (diamonds). From Rhea et al, (2014). 
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2.2.3 Complexity Analysis 

 In addition to fractal dynamics, measures of complexity have been used to 

evaluate a locomotor system’s adaptability. At its root, a complex behavior is non-

random with interactions within and between spatio-temporal scales (van Emmerik et al., 

2016). However, complexity is an often cited and disparately defined concept. 

Complexity can be defined as the amount of uncertainty in a behavior. It can relatedly be 

defined by the amount of information required to predict the future conditions of a system 

(Lipsitz & Goldberger, 1992). A more complex system requires more information to 

determine its dynamic evolution. In other words, complexity describes how well a 

system’s evolving behaviors can be predicted (Burggren & Monticino, 2005). A signal 

such as a sine wave is highly deterministic, and therefore represents a system of low 

complexity. In contrast, a system that exhibits long-range correlations across spatio-

temporal scales is thought to represent a highly complex behavior.  

 Complex behaviors are considered to be well adapted to changing environmental 

conditions. Predictable behaviors, on the other hand, are less complex and may lack the 

capacity to adapt to changing conditions. However, similar to the various definitions of 

complexity, numerous algorithms exist that quantify a system’s or behavior’s complexity. 

Fractal analyses quantify the extent of long-range correlations, whereby a signal with a 

scaling exponent of α = 1.0 or 1/f indicates optimal complexity (Lipsitz, 2002). The 

fractal dimension or state space analysis evaluates the dimensionality of a signal. The 

more dimensions or independent variables needed to define a system, the more complex 

it is. Finally, various entropy measures have been developed. Based on Kolmogorov 

entropy, which determines the rate of new information that is generated, approximate 
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entropy was developed for shorter time series (Richman & Moorman, 2000). If there is a 

high probability of repeating sequences, and thus a high degree of regularity, approximate 

entropy is low. This algorithm has been deemed biased due to its self-matching nature; 

that is, sequences match themselves. This bias manifests as high dependency on the 

length of the data set, as shorter data sets are consistently lower in entropy. To account 

for this issue, a newer algorithm was developed that does not self-match, known as 

sample entropy (SampEn, Equation 2.2, Figure 2.9) (Lake et al., 2002; Richman & 

Moorman, 2000).  

 

𝑆𝑎𝑚𝑝𝐸𝑛 𝑚, 𝑟,𝑁 =  −𝑙𝑛 ∅!!!(!)
∅!(!)

                            Equation 2.2 

 

where N is the length of the data set, r is a tolerance level known as the radius of 

similarity, m is the distance between points being compared, and φ is the  

 

 
Figure 2.9: Illustration of sample entropy algorithm. The signal at u[1] is bounded by 
dotted lines whose values are ± r, where r is a criterion threshold.  Two data points are 
considered a ‘match’ if they fall within the ±r boundary. Additionally, consecutive data 
points can be linked as a pattern. From Costa et al, (2003). 
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probability that two points that are distance m apart will be within the radius of similarity 

(r) (Busa & van Emmerik, 2016). The r parameter is usually set at a percentage of 

standard deviation, such as .15 * SD, while the m parameter is often set to the minimum 

of 2. Essentially, sample entropy is the negative natural logarithm of the probability that 

two sequences will remain similar at the next iteration (Richman & Moorman, 2000). The 

algorithm determines if a signal at i is within a radial boundary (r) at the next iteration 

(i+1). A regular signal will often yield i+1 within the bounds of i, indicating the signal at 

i+1 is predictable given information about the signal at i. In the case of Figure 2.9, a data 

point is a match to u[1] if it lies within the dotted lines that bound u[1], such as those 

labeled as open circles. Xs and Δs represent parts of the signal that are matches to u[2] 

and u[3], respectively. The algorithm also searches for sequential patterns, such that a 

signal from (i) to (i + 1) to (i + 2) will repeat throughout a time series. In Figure 2.9, 

u[1]-u[2]-u[3] is later repeated at u[43]-u[44]-u[45].    

 The shortcoming of the SampEn measure is that random signals will yield high 

complexity values. That is, the algorithm is sensitive to noise, and random signals will 

yield higher complexity values than a signal of known high complexity. The most likely 

reason for this issue is that SampEn evaluates a signal at one scale. The purpose of 

complexity measures are to determine the degree of ‘meaningful structural richness’ of a 

signal (Costa et al., 2005). Physiological behaviors are occurring across multiple 

temporal and spatial scales, and thus a true description of the behavior requires a multi-

scaled approach. For this reason, Costa and colleagues (2002) developed the multiscale 

entropy (MSE) technique. This analysis uses the SampEn algorithm, yet does so across 
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multiple scales. The scaling is achieved by coarse-graining the data; that is, averaging 

together non-overlapping data points (Figure 2.10, Equation 2.3). 

 

𝑦!! =
!
!

 𝑥! , 1 ≤  𝑦!  ≤  𝑁 𝜏
!"
!! !!! !!!               Equation 2.3 

 

where yj is the new data point at timescale τ, and xi is the original time series (Busa & 

van Emmerik, 2016). By utilizing the SampEn algorithm across various  

 

 
Figure 2.10: Developing scale factors from physiological signals for MSE analysis. 
Non-overlapping data points are averaged together across the entire data set (e.g., Scale 2 
above, X1 is averaged with X2 to produce Y1). Higher scales will average more data 
points. From Costa et al, (2005). 
 

scales, a more complete profile of the signal is attained. The final step in quantifying the 

complexity of the signal is to assess the overall entropy values across the various scales. 

This is achieved by integrating the area under the SampEn curve: 

 

𝐶𝐼 =  𝑆𝑎𝑚𝑝𝐸𝑛(𝑖)!
!!!                                Equation 2.4 
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The benefits of the MSE technique over SampEn can be illustrated when comparing a 

random white noise signal with a 1/f complex signal (Figure 2.11). If  

 

 
Figure 2.11: MSE analysis of white noise versus 1/f noise. From Costa et al, (2005). 
 

complexity were evaluated based on SampEn of the raw data (scale factor = 1), white 

noise would appear more complex than 1/f noise. If, however, one were to evaluate the 

Complexity Index (Equation 2.4) based on the results of the MSE analysis in Figure 2.11, 

the 1/f signal would be significantly higher than the white noise signal. Thus, MSE 

analysis evaluates the ‘non-random yet seemingly randomness’ of a signal. 

 2.2.3.1 Multiscale Entropy in Physiological Signals 

 Costa evaluated the differences in heart rate inter-beat intervals of healthy 

individuals compared to two heart diseased groups: those with congestive heart  
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Figure 2.12: MSE analysis of healthy and diseased states. This plot represents entropy 
across various scale factors for healthy (squares) heart function versus those with 
congestive heart failure (CHF, stars) and atrial fibrillation (AF, triangles). From Costa et 
al, (2002).  
 

failure and atrial fibrillation (Figure 2.12). If only SampEn was analyzed, it would appear 

that individuals with atrial fibrillation had the most complex heart rate dynamics. 

However, across varying scales using the MSE technique, it becomes clear that the heart 

rate dynamics of healthy individuals are most complex. In addition, MSE analysis also 

revealed that older adults’ heart rate entropy measures were lower than young adults 

across all scales (Costa et al., 2002). The authors concluded that diseased states and aging 

leads to a loss of the integration of information across scales that manifests as a more 

predictable (and less complex) behavior. 

 2.2.3.2 Multiscale Entropy in Posture 

 MSE has also been used to evaluate postural dynamics during quiet standing. 

Gruber and colleagues (2011) compared the center of pressure (COP) dynamics of 
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individuals with scoliosis with healthy controls. MSE analysis revealed the control group 

had a significantly higher Complexity Index compared to the scoliosis group in both the 

ML and AP directions (Gruber et al., 2011). Manor et al. (2010) compared the postural 

complexity of healthy controls with those with visual impairments, somatosensory 

impairments, and both visual and somatosensory impairments using MSE analysis on the 

COP profiles. The control group had the highest complexity across scales (1-8 scales), 

followed by a systematic decrease in complexity in the visually impaired, somatosensory 

impaired, and finally both visual and somatosensory impaired (Figure 2.13). The 

somatosensory impaired and combined impairment groups exhibited greater COP area 

and speed compared to the control and visually impaired groups. Finally, addition of a 

secondary task (dual task) reduced complexity and increased COP area and speed in all 

groups. However, dual tasking increased postural sway speed more so in the 

somatosensory and combined-impaired groups compared to the control and visually 

impaired groups (Manor et al., 2010). 

 Finally, comparing MSE analyses of healthy young versus older adults during 

quiet standing has revealed interesting findings. Older adults exhibited greater 

complexity at and across all scale factors (Duarte & Sternad, 2008). These results suggest 

the age-related deterioration in somatosensation may not reduce but rather increase 

complexity. However, these findings may be a result of recruiting relatively young older 

adults (mean age = 68) that were enrolled in a physical activity program. 
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Figure 2.13: MSE analysis across varying levels of impairment. Controls (diamonds); 
visually impaired (squares); somatosensory impaired (triangles); combined impaired 
(circles). From Manor et al, (2010). 
 

 2.2.3.3 Multiscale Entropy in Locomotion 

 To date, studies evaluating complexity using MSE have almost entirely focused 

on heart rate dynamics or postural tasks. One study, however evaluated the complexity of 

stride interval times in young, healthy men while walking at different speeds, as well as 

with and without adherence to a metronome (Costa et al., 2003). When analyzing stride 

times during unconstrained walking, normal (preferred) paced walking resulted in the 

highest entropy measures across scales, followed by faster walking, and finally slower 

walking. All of the walking conditions displayed significantly higher entropy values than 

randomly shuffled surrogate data, which indicates the presence of complexity was not 

simply due to randomness in the signals. In addition, metronome paced walking resulted 

in entropy measures that were not different from surrogate data at all walking speeds. 

That is, walking while adhering to a metronome resulted in a random stride interval time 

series. These findings suggest unconstrained self-paced walking yields the greatest 



62 
		

physiologic complexity. The authors also concluded that MSE analysis compliments 

DFA analysis in evaluating interactions. The authors compared DFA analyses and MSE 

results at scale 4 from the same data set and found correlations < .46, indicating these two 

techniques are independent. This is probably because the DFA and MSE analyses 

quantify different components of a signal or behavior. That is, while both DFA and MSE 

evaluate systemic adaptive capacity, DFA assesses correlations between time scales, 

while MSE estimates complexity within and across time scales. Thus, while DFA may be 

interpreted as calculating the interactivity between different components of the locomotor 

system, MSE can be interpreted as analyzing the complexity of a specific component, as 

well as across various components, of the system. 

 In a recent study, MSE was applied to trunk acceleration data of children, young 

adults, and older adults during gait (Bisi & Stagni, 2016). The results revealed an overall 

age effect, whereby children exhibited greater entropy values in the anterior-posterior and 

vertical directions. These results were surprising, considering higher entropy is generally 

associated with better health. Using sample entropy, Tochigi and colleagues (2012) 

observed higher entropy values during walking in healthy adults compared to those with 

osteoarthritis. The overall discrepancies in results are likely an artifact of different 

entropy measures used, as well as methodological differences (e.g., placement of the 

accelerometer).  

 In summary, gait adaptability is a broad term that refers to the ability of the 

locomotor system to change gait patterns as needed, based on the changes in the 

environment. One approach to assess gait adaptability is to expose participants to an 

asymmetric environment. This can be achieved in several ways, and one common method 
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is to use a split-belt treadmill, whereby each belt moves at independent speeds or 

directions. This mechanically produced asymmetry requires participants to adapt their 

gait patterns accordingly to successfully continue to locomote. In addition to gait 

adaptations to imposed treadmill asymmetries, nonlinear analyses of steady state 

(symmetric) gait have been employed in order to quantify locomotor adaptability. DFA 

evaluates the extent of statistical dependence of gait parameter variability that is present 

across various time scales. MSE calculates the complexity of a gait parameter signal, that 

is, the amount of information required to predict future states. While DFA and MSE 

techniques have been able to discriminate healthy versus diseased cohorts, these analyses 

have not been evaluated with respect to asymmetric gait constraints. 

 

2.3. Gait Stability 

2.3.1. Overview 

 The term ‘stability’ is commonly used in a variety of settings, and as such holds 

many context-specific definitions. A general definition of stability is resistance to change, 

which may refer to chemical, physical, or psychological maintenance of equilibrium. In 

motor behavior, static stability or postural stability commonly refers to an individual’s 

ability to maintain upright stance in the face of external or internal perturbations. Internal 

perturbations can refer to forces produced by the system, such as voluntary or involuntary 

muscle activation (e.g., movement of limbs) or motion due to vital functions (e.g., 

respiration or heart beating). External perturbations refer to disturbances from outside the 

system, such as slipping on a low-friction surface, tripping over an obstacle or uneven 

terrain, or being physically contacted by external forces (e.g., struck by a wall, car, 
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human, breeze, etc.). The process of maintaining upright stance involves generating 

resistive forces and moments that counteract any disturbances.   

  Activities that entail whole body displacement, however, require a dynamical 

component in the evaluation of stability. For example, cyclic motion such as human 

walking or running gait demands gross body displacement that can only be achieved by a 

constantly evolving level of instantaneous stability. That is, at certain points of each 

cycle, the instant stability may be low, but overall stability is sufficient. This is in contrast 

to standing posture, whereby a high degree of stability can continuously be maintained 

without transient periods of low stability or instability. 

 In order to evaluate and interpret an individual’s level of stability, a clear 

definition must first be attained, followed by appropriate measures of assessment. If an 

individual falls following an external perturbation, he or she can be considered unstable. 

Likewise, if an individual is able to resist the perturbation and maintain upright stance, he 

or she could be considered stable. The shortcoming of defining stability in binary terms, 

however is that the magnitude of perturbation is not considered. For example, if the 

external perturbation is small in magnitude, successful recovery of balance does not 

necessarily indicate high stability. Similarly, a large perturbation (for example, being 

struck by a moving train) that yields a fall does not indicate an individual is unstable. 

Thus, two potential paradigms arise to counteract this shortcoming; 1) disturb individuals 

using various perturbation magnitudes, or 2) determine computations that quantify 

stability as a result of a perturbation that does not lead to a fall. The gait stability 

literature indicates that researchers often opt for the latter. 
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2.3.2. Global Stability 

  Global stability can be defined as a system’s ability to resist large external 

perturbations, such as slipping on a low-friction surface, or tripping over an obstacle 

(Dingwell et al., 2000).  In dynamical systems, a system or behavior is considered 

globally stable if it tends toward the attractor, even if its initial conditions are not close to 

the attractor (Kaplan & Glass, 1995; Strogatz, 1994). Gait, for example, can be 

considered the global attractor state, as the overall goal of gait is to remain upright and 

continue locomoting. Thus, a system that can retain the action of gait following a 

perturbation can be considered globally stable. If perturbed, the system may be displaced 

from this attractor transiently, yet is able to return to the preferred state or gait state. The 

global concept of stability is arguably the best understood notion because stability can be 

considered in simplified binary terms. That is, an upright system that is perturbed is 

stable if able to maintain upright locomotion, or unstable if unable to resist the 

disturbance. As mentioned earlier, however, defining stability solely via binary measures 

may result in misinterpretations. That is, a large perturbation that destabilizes a system 

does not clearly indicate the system is unstable, but rather unstable in relation to that 

specific perturbation. Likewise, a system that can handle minute disturbances can only be 

considered stable in terms of these small perturbations.   

 2.3.2.1. Margin of Stability 

 Gait stability cannot be computed in the same manner as postural stability. Both 

the COM and BOS are constantly in motion, and as such they also possess instantaneous 

velocities that have a large impact on overall stability. Hof and colleagues (2005) 

developed a measure of dynamic stability by modeling a simple inverse pendulum model, 
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similar to those used to model postural control. Hof’s model, however, takes into account 

both the COM’s position and its velocity. Hof used the term ‘extrapolated COM’, or 

XcoM, to refer to the COM’s instantaneous conditions based on position and velocity. 

The XcoM is a virtual location of the velocity-adjusted COM. For example, if velocity is 

large in the anterior direction, the XcoM is displaced farther in the anterior position. The 

XcoM would be anterior to the COM. The XcoM measure is evaluated in comparison to 

the anterior-most point of the BOS. The term ‘margin-of-stability’ (MOS) refers to the 

difference between the XcoM and the BOS (Hof, 2008; Hof et al., 2005). Using Equation 

(2.5) from Carty et al. (2011), the XcoM can be quantified as: 

 

𝑋𝑐𝑜𝑀 = 𝑃!"# +  !!"#
!/!

                          Equation 2.5 

 

where PCOM is the position of the COM, VCOM is the velocity of the COM, g is the 

acceleration due to gravity, and l is the length of the leg. The MOS can be evaluated in 

relation to the BOS using Equation (2.6): 

 

𝑀𝑂𝑆 = 𝐵𝑂𝑆 − 𝑋𝑐𝑜𝑀                     Equation 2.6 

 

Essentially, Hof’s model states that, for a stable system, the XcoM should fall within the 

BOS. If the MOS is positive, the BOS is anterior to the XcoM, and the system is stable. If 

the MOS is negative, though, XcoM is anterior to the BOS, and the system is unstable. In 

these instances, the system either falls or requires a rapid change in BOS by stepping 
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Figure 2.14: Margin of stability illustration. To obtain the extrapolated COM (XcoM), 
the COM position is adjusted based on COM velocity. Margin of stability (MOS) and 
XcoM concepts adapted from Hof et al, (2005). 
 

forward.  Figure 2.14 illustrates two possibilities for XcoM that will have varying effects 

on the MOS. In the case of COM velocity 1 (small velocity, represented by short arrow), 

the XcoM 1 will be posterior to the BOS at foot strike. This will result in a positive MOS, 

indicating stability. That is, an additional step is not required to maintain upright stance. 

In the case of COM velocity 2 (larger velocity represented by a longer arrow), The XcoM 

at foot strike is beyond the BOS. In this event, the MOS is negative and the system is 

transiently unstable, whereby an additional forward step is required to maintain upright 

balance.   
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 The MOS calculation is of particular importance because it is proportional to the 

impulse required to unbalance the system (Hof, 2008). Therefore, this measure specifies 

the quantitative degree of stability of a system. This indicates that MOS can discriminate 

between different ‘stable’ systems regarding the extent of stability, assuming the task 

goal is to maximize stability. If two individuals respond to an external perturbation 

successfully (i.e., maintain upright stance), the individual with a larger MOS can 

theoretically withstand a larger perturbation than the other. 

 2.3.2.2. Time to Contact 

 Similar to MOS, another assessment of global stability is time-to-contact (TtC). 

Originally developed by Riccio (1993), TtC takes into account the instantaneous position 

of the BOS and position and velocity of the COM or Center-of-pressure (COP). 

Additionally, the method used by Slobounov and colleagues (1997) incorporates the 

COM or COP acceleration. The instantaneous COM position, velocity, and acceleration 

are used to extrapolate a predicted time element that the COM will reach the BOS, given 

its current conditions.  Haddad and colleagues (2006) determined addition of acceleration 

yielded a more robust measure of the information the postural control system uses under 

static conditions (compared to only using position and velocity) . TtC can be attained by 

first determining the position vector (pi) of the COM or COP using a time variable (τ) in 

Equation (2.7): 

 

𝑝!(𝜏) =  𝑟! 𝑡! +  𝑣! 𝑡! ∗ 𝜏 +  !! !! !!

!
   Equation 2.7 
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where rx, vx, and ax are the instantaneous position, velocity, and acceleration at an instant 

in time (ti) (Haddad et al., 2006; Slobounov et al., 1997). Hasson and colleagues used the 

TtC measure based on the methods of Slobounov et al. (1997) using Equation 2.8: 

 

𝑇𝑡𝐶 =  −𝑣 ±  !!!!!(!!"#!!)
!

                            Equation 2.8 

 

where p, v, and a are the COM instantaneous anterior-posterior positions, velocities, and 

accelerations, respectively, and pmax is the position of the BOS (toe or heel). Smaller TtC 

values (shorter times) indicate transient periods where the COM is rapidly approaching 

the BOS, and therefore considered either less stable or close to a transition phase.  

Hasson et al. (2008) evaluated TtC with and without acceleration information, as well as 

TtC of the XcoM, during a full-body postural perturbation via a pendulum. The authors 

concluded that TtC (including acceleration) may be used as a control parameter in 

determining when to step following a perturbation. That is, individuals may opt to 

maintain postural control without moving foot position for low-intensity disturbances, but 

when the disturbance is large enough that the local minima of the TtC reaches a 

threshold, the decision to step occurs.  

 2.3.2.3. COM Motion State 

 Another elaboration of dynamic stability that incorporates COM velocity in 

addition to position is the COM motion state. Pai and Patton (1997) first developed the 

COM motion state, which refers to the COM’s position as a function of its velocity 

(Figure 2.15). This can also be considered the COM’s phase plane. Similar to Hof’s 
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MOS, Pai and Patton (1997) developed a model based on an inverse pendulum. An 

optimization algorithm was created and applied to a two segment (foot, inverted 

pendulum) model to determine the so-called feasibility region, which refers to a region on 

the phase plane that 

 
Figure 2.15: COM motion state evaluation during a sit-to-stand task. A) The feasible 
stability region for conditions in which a slip is (thick line) and is not (thin line) initiated, 
and an overlapping area (shaded area) in which stability is reached irrespective of 
condition. B) Examples of COM motion state trajectories during a slip condition (S-1) 
and non-slip condition (NS-1). Position is normalized by foot length, and velocity by 
body height. From Pai et al, (2003). 
 
 
encompasses all of the possible combinations of COM positions and velocities that yield 

a stable system. Essentially, for a given COM position, the algorithm determined the 

largest allowable COM velocity that could still return to zero prior to reaching the 

anterior BOS, and the smallest required velocity to allow the COM to reach the anterior 

BOS. If the system’s COM motion state (position and velocity combination) falls within 

the upper or lower limits of the feasibility region, the system is stable. Forward and 

backward losses of balance are initiated if the COM motion state exceeds the upper and 

lower boundaries, respectively. For example, the condition producing a slip (S-1) in 

Figure 2.15 B resulted in a backward loss of balance, while the condition without a slip 
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(NS-1) resulted in a forward loss of balance. These scenarios require a forward or 

backward step, respectively, that extends the BOS to avoid a fall. 

 The COM Motion State parameter has been used to identify changes in stability 

following repeated slip exposures during gait using a passive moveable platform. Pai and 

colleagues (Bhatt & Pai, 2005; Bhatt, Wening, & Pai, 2005; Pai, Wening, Runtz, Iqbal, & 

Pavol, 2003) evaluated the COM motion state relative to the BOS at slip onset and 

mapped these conditions onto the aforementioned feasible stability regions (Pai & Iqbal, 

1999). Specifically, stability was defined as the distance from the predicted 

threshold/boundary for balance loss and the instantaneous COM motion state. The results 

of one study (Pai et al., 2003) indicated the COM motion state’s predicted balance loss 

coincided with actual percentages of losses of balance (r2 = 0.957, p < 0.01). 

2.3.3. Dynamical Systems’ Stability 

 Mathematically, dynamical stability is determined within a trajectory’s state 

space. A stable state without motion, or an unchanging state relative to two oscillating 

components, may be considered a fixed-point attractor. That is, the system dynamics tend 

to converge to a single point (Van Emmerik, Miller, et al., 2013).  If the system evolves 

cyclically, the mean position of these cycles is considered the attractor state, or preferred 

state. Specifically, a cyclic attractor state is a limit cycle attractor. The attractor state is 

the behavior that the system will eventually evolve into. Figure 2.16 demonstrates an 

attractor state as a well, and a ball in the well represents the current state of the system. A 

system may  
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Figure 2.16: Dynamical systems’ attractor states. The attractor is represented by a 
well, and the strength (stability) of attractor is represented by the well’s depth. Adapted 
from Kelso, (1995). 
 

be in a strong stable (black ball), weak stable (grey ball), or unstable (white ball) state 

depending on the attractor strength. A deeper well (e.g., Figure 2.16 A, left versus middle 

versus right) is more resilient to disturbances; small or large perturbations will not kick 

the ball out of the well. The same magnitude of perturbations may kick a less stable 

attractor (grey ball) into a different well (i.e., different attractor state). At moments of 

transition (Figure 2.16 B), the attractor becomes systematically less stable (i.e., critical 

slowing down) and more variable (i.e., critical fluctuations). The originally stable state 

(B, left) becomes less stable (center) and eventually is annihilated (right) to allow for a 

transition to another state.  

 The general shape of the attractor state is considered the order parameter, or 

collective variable (Van Emmerik, Miller, et al., 2013). The order parameter is the 

observed behavior of the system. Observation and quantification of an order parameter 

can be achieved, for example, by a participant’s thigh segment position relative to its 

velocity. The position-velocity combination is analogous to the COM motion state 

mentioned earlier (Figure 2.15). In contrast to the order parameter, the control parameter 
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is a variable independent of the system’s behavior that is used to determine the ‘control’ 

of the system. In other words, the control parameter is an external input that probes the 

stability of the system’s behavior (order parameter) (Rickles, Hawe, & Shiell, 2007). A 

common control parameter used in locomotion studies is speed, as manipulating speed 

tests and exploits the relative ability of the system to maintain its behavior.    

 Irrespective of control parameter manipulation, determining the degree of stability 

of the attractor state involves quantifying one of two variables, 1) the variance of 

individual cycles from the attractor state, or 2) the time to recover from a disturbance and 

return to the attractor state, i.e., the relaxation time (Kelso & Ding, 1993). During phase 

transitions, the cycle variance increases, as does the relaxation time (i.e., critical slowing 

down, Figure 2.16 B). To be clear, variance or fluctuations are not considered ‘unwanted 

noise’ but rather a beneficial source of information that allows discovery of and transition 

to new patterns (Kelso, 1995). Thus, a stable system would not be invariant but instead 

possess variability and the capacity to attenuate any fluctuations that lead to deviations 

from the attractor state.  

2.3.4. Nonlinear Stability Measures 

 Beyond exploration of the relationship between the COM and the BOS, several 

nonlinear mathematical/statistical measures have been developed to determine gait 

stability. These analyses are derived from the study of nonlinear dynamical systems. In 

general, the analyses listed in this section reflect examination of a behavior’s evolution in 

time and space. 

 



74 
		

 2.3.4.1. Local Stability 

 One common nonlinear analysis of stability is determination of local stability. 

Local stability can be described as the locomotor system’s resilience to infinitesimally 

small perturbations (Dingwell & Cusumano, 2000). These perturbations are thought to 

arise as a result of the internal fluctuations of the movements producing locomotion. If 

these perturbations, albeit small, are not attenuated, the system is considered unstable. 

From a dynamical systems’ perspective, a system is locally stable if it tends to move 

toward the attractor when its initial conditions are close to the attractor, but tends to move 

away from the attractor when its initial conditions are not close to the attractor (Kaplan & 

Glass, 1995; Strogatz, 1994). Thus, in order to be considered locally stable, it must be 

able to resist infinitesimally small perturbations by not allowing these small disturbances 

from causing excessive divergence away from the attractor state. 

 Mathematicians have long evaluated the stability of a dynamical system by 

quantifying the rate of divergence of nearby trajectories within its state space. A state 

space is a geometrical representation of time series data, whereby there are n number of 

variables that define the system. The most common calculation for determining this rate 

of divergence is the Lyapunov exponent. However, as convergence and divergence can 

occur in multiple dimensions, exploration of the spectrum of maximal Lyapunov 

exponents allows a more robust analysis (Kantz & Schreiber, 2004). Considering this 

analysis is performed on a microscopic scale of convergence and divergence of 

neighboring trajectories, it provides a measure of the aforementioned ‘local stability’. 

Theoretically, if a system is highly stable, its ability to resist minute perturbations is also 

high. Thus, the maximal rate of divergence of neighboring trajectories should be low. In 
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mathematics, this analysis has been predominately used to decipher the degree of chaos 

versus noise within a system (Rosenstein, Collins, & De Luca, 1993).  

 In order to determine the maximal Lyapunov exponent, a raw time series data set 

must first be reconstructed into its state space (Equation 2.9). There are several methods 

that can be used to define the state space, but of the most commonly used method for 

local stability analysis is known as delay-embedding (D. H. Gates & Dingwell, 2009). 

This process entails graphing the original time series against a time-delayed version of it 

several times: 

 

𝑋 𝑡 = [𝑥 𝑡 , 𝑥 𝑡 + 𝑇 ,… . , 𝑥(𝑡 + 𝑑! − 1 𝑇]         Equation 2.9 

 

where X is the state space vector of dimension (dE) at time (t), x is the original time series 

data at time (t), and T is the time delay (Dingwell & Cusumano, 2000)(Figure 2.17). The 

time delay can be obtained in several different ways, including determining the first zero-

crossing of an autocorrelation function, or determining the first local minimum using an 

average mutual information (AMI) algorithm (Fraser & Swinney, 1986). The AMI 

function is essentially a non-linear version of the (linear) autocorrelation function, as it 

determines the amount of information that is shared between two signals over a multitude 

of time delays. The next step entails determining the number of dimensions required to 

faithfully describe the state space by using a global false-nearest-neighbor analysis 

(GFNN) (Kennel, Brown, & Abarbanel, 1992). This concept is based on the fact that a 

system may appear to have two trajectories that are close in an n-dimensional space, but 

adding an additional dimension (n+1) reveals distance between the trajectories. The 
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GFNN procedure involves systematically increasing the number of dimensions until a 

further increase in the dimensions no longer reveals ‘false neighbors’. Finally, once the 

appropriate embedding dimension is determined, the maximum Lyapunov exponent 

(λmax) can be evaluated (Equation 2.10). Nearest neighbors are determined as the closest 

Euclidean distance between neighbors (data points). These nearest neighbors are tracked 

across the state space, and the rate of change in the distance between the two neighbors is 

quantified by the λmax (England & Granata, 2007): 

 

𝑑 𝑡 =  𝐷!𝑒!!"#!       Equation 2.10 

 

where d(t) is the average displacement between the two neighbors, and D0 is the initial 

displacement (Dingwell & Cusumano, 2000).  

 

 
Figure 2.17: State space reconstruction and Lyapunov exponent analysis. A time 
series signal (A) is converted into an Nth dimension state space (B, here illustrated as 3-
Dimensions) by adding a time delay (T) to the original time series. C) The logarithmic 
rate of divergence of neighboring trajectories is plotted across strides, and the FTλMAX 
evaluates the short-term (0-.5 or 0-1 stride) or long-term (4-10 strides) rate of divergence 
(grey lines above divergence plot). From Van Emmerik et al, (2016). 
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 The major shortcomings with these methods are that 1) the system assessed needs 

to be deterministic in nature, and 2) the calculation requires an infinite number of data 

points. These issues are problematic in evaluating biophysical signals because 

physiological signals are generally not considered deterministic (but rather stochastic in 

nature (Riley & Turvey, 2002)), and only a finite number of data points can feasibly be 

collected and analyzed. Therefore, in order to determine the finite-time Lyapunov 

exponent (FTλMAX), Rosenstein et al.’s (1993) algorithm can be employed (Equation 

2.11, Figure 2.17): 

 

ln 𝑑! 𝑖 ≈ 𝐹𝑇𝜆!"# 𝑖Δ𝑡 +  ln [𝑑!"]           Equation 2.11 

 

where dj(i) is the distance between the jth pair of nearest neighbors after i number of 

iterations, and is averaged across all nearest neighbors. FTλMAX is then projected based 

on the slope (Equation 2.12; Figure 2.17C) of a linear fit of the curve: 

 

𝑦 𝑖 =  !
!!
< ln [𝑑! 𝑖 ] >            Equation 2.12 

 

Where y(i) is the slope of linear fit, and < > indicate the average across all j pairs of 

nearest neighbors (Dingwell & Cusumano, 2000). 

 This algorithm (Rosenstein et al., 1993) is well suited for human movement 

studies using relatively small data sets. The first studies to evaluate local dynamic 

stability on human movement data using the FTλMAX were by Dingwell & colleagues 

(Dingwell & Cusumano, 2000; Dingwell et al., 2001; 2000). In these studies, tri-axial 
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accelerometers were attached to each participant’s sternum so that acceleration signals 

could be converted into the state space and stability assessed via the FTλMAX. In two 

studies, both gait speed and FTλMAX were lower in patients with diabetic neuropathy, 

indicating these patients reduced gait speed in order to increase local stability, even 

though they also displayed greater kinematic variability (Dingwell & Cusumano, 2000; 

Dingwell et al., 2000). Furthermore, a follow-up study indicated that local dynamic 

stability was not correlated to kinematic variability (Dingwell et al., 2001). 

 2.3.4.2 Orbital Stability 

 Similar to local stability analysis, Floquet multipliers evaluate the degree of 

orbital stability of a cyclic trajectory. In order to determine if a system is  

 

 
Figure 2.18. Poincaré Section and evolution of a trajectory in its state space. The 
location of the mean of the signal (Ŝ) on the Poincaré Section is subtracted from the 
location of the signal S at cycle i. Adapted from Dingwell & Kang, (2007). 
 



79 
		

converging upon or diverging from the attractor, the time series signal is transformed into 

its state space, and a Poincaré section is created (Figure 2.18). The Poincaré section is a 

plane that is orthogonal to the mean of the signal’s trajectory, such that the signal at every 

cycle transects this plane. The distance from the mean cycle location on the Poincare 

section is subtracted from the distance at cycle i. If the subsequent distance (Si+1) 

increases (i.e., if Si+1 - Ŝ  > Si – Ŝ), the system is diverging and (relatively) unstable. 

Alternatively, if the distance decreases, the system is converging and is (relatively) 

stable. 

 Dingwell & Kang (2007) noted that in previous studies (Dingwell & Cusumano, 

2000; Dingwell et al., 2001; Dingwell & Marin, 2006) participants exhibited periods of 

high local instability, yet were able to continue upright walking (i.e., did not fall). They 

hypothesized that, although local instabilities may exist as a result of inherent noise in the 

system, participants may still be stable from cycle to cycle (i.e., orbital stability). By 

comparing local dynamic stability and orbital stability analysis, they concluded that 

participants were indeed orbitally stable, even though periods of local instability existed. 

This occurred during both overground and treadmill walking (Dingwell & Kang, 2007). 

This means participants may exhibit instabilities at infinitely small scales, yet can still 

exhibit cyclic stability from stride to stride. The small perturbations that are observed in 

periods of local instability may propagate and manifest as lower orbital stability, but for 

individuals who do not fall, the degree of orbital stability is still sufficient to maintain 

locomotion. 

 Granata and Lockhart (2008) evaluated the orbital stability of the COM relative to 

the COP at heel strike. The COP is thought to reflect the body’s attempts to resist 
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external forces and maintain the COM position. While no differences were observed 

between healthy young and healthy older adults, older adults with a history of falls had 

significantly greater average and maximal Floquet multipliers, indicating that older fall-

prone adults were less orbitally stable. 

2.3.5 Scalar Variability-Based Stability Measures 

 Finally, numerous variables within the motor behavior literature are known to be 

associated with fall risk. These associations are based on correlational data, whereby 

changes to one or more variables are accompanied by, and sometimes predict, changes in 

fall occurrences. Greater stride time variability, for example, represents a parameter that 

is correlated to greater fall risk within large datasets. These measures are called ‘scalar’ 

because they describe the magnitude of variance over the course of a stride, trial, etc., but 

do not evaluate the structure of variability in the way that other measures (e.g., fractality) 

do. 

 Variability in temporal or spatial parameters during gait have been often cited as 

indicators of gait stability. In general, greater variability is associated with lesser stability. 

Stride time variability, for example, is associated with fall risk, whereby greater 

variability is correlated to greater risks of falling (Hausdorff, 2007). In addition, greater 

step width variability (Maki, 1997; Owings & Grabiner, 2004) and stride length 

variability (Maki, 1997) are also associated with greater fall risk. These relationships are 

however not always linearly correlated. That is, too little step width variability has been 

shown to be as detrimental to postural and gait stability as too much variability (Brach et 

al., 2005; Van Emmerik, Jones, Busa, & Baird, 2013). One possible reason for this 

phenomenon is based on the loss of complexity hypothesis (Lipsitz & Goldberger, 1992), 
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whereby aging and disease reduces the available degrees of freedom to perform a task. 

This constraint manifests as reduced variability. Scientists studying dynamical systems 

have reported the benefits of variability in transitioning to new states, and that variance 

should not solely be considered unwanted noise (Kelso, 1995; Kelso & Ding, 1993; Riley 

& Turvey, 2002; Van Emmerik, Miller, et al., 2013). 

 One important point of discussion regarding variability measures is the location or 

level of variability. That is, variability can occur at the level of task performance or at the 

level of coordinative dynamics. Traditionally, variability has been considered unwanted 

noise in the physiological system. However, variability could also be considered 

‘dynamical noise’, referring to fluctuations that are inherent to and crucial for the 

dynamical system of interest (van Emmerik et al., 2016). In pistol shooting, for example, 

fluctuations at the level of the gun barrel motion is defined as end-point variability, while 

fluctuations at the level of the joints (e.g., shoulder, elbow, wrist) can be defined as 

coordinative variability. In this task, expert marksmen exhibit low end-point variability 

and high coordinative variability, relative to novices (van Emmerik et al., 2016). 

Therefore, the location or level of variability should be considered when determining if 

more or less variability is desired. 

 Another commonly observed phenomenon in lifespan motor development is that 

the speed by which individuals prefer to walk slows down with aging. This slowing is 

gradual throughout adulthood, but accelerates beginning in the 7th decade of life (Himann 

et al., 1988). Figure 2.19 illustrates the age-speed relationship. A bi-linear regression 

model was fit for both genders with an inflection point at 62 years. Note that following 

this breakpoint the slope is steeper for males, indicating this cohort slows their preferred 
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walking speed faster. Slower preferred walking speeds are associated with greater risk of 

falls (Van Kan et al., 2009; Verghese et al., 2009) and mortality (Van Kan et al., 2009) in 

older adults. The primary reason for this slowing of preferred speed has been disputed, 

but may be an attempt to optimize stability or metabolic cost. 

 

 
Figure 2.19. Changes in preferred walking speed across the adult lifespan. Males = 
left plot; Females = right plot. A bi-linear regression line is fit to both genders at age 62. 
From Himaan et al, (1988). 
 

 These measures of variability and gait speed have proven to be a valuable 

approach to categorize fall risk. To be clear, however, none of the aforementioned 

variables have been shown to cause a fall. These variables simply provide a correlation, 

and certainly warrant deeper inspection. 

 To summarize, gait stability is a term that refers to the ability of the locomotor 

system to resist perturbations. Gait stability has been quantified using numerous methods, 

including MOS, TTC, COM motion state, dynamical systems’ approach, FTλMAX, 

Floquet multipliers, and gait parameters such as preferred walking speed and variability 

measures. The most common practice thus far has been to calculate stability during 
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steady state (i.e., unperturbed) gait. A limitation to this approach is that it is difficult to 

determine stability or instability that may lead to a future fall. Indeed, the locomotor 

system must be perturbed in order to fully assess stability.    

 

2.4. Effects of Gait Speed on Adaptability and Stability 
	
 The most heavily scrutinized variable in the gait literature has been gait speed. As 

mentioned earlier, aging is associated with slower preferred walking speeds (Himann et 

al., 1988), and these slower speeds in older adults are associated with more fall incidents 

(Greany & Di Fabio, 2010; Verghese et al., 2009) and a higher risk of mortality (Van 

Kan et al., 2009). The potential mechanisms for slower preferred walking speeds with 

aging are disputed by researchers, but may include: reduced muscular strength or power 

(Reid & Fielding, 2012), greater metabolic cost of walking (Mian, Thom, Ardigo, Narici, 

& Minetti, 2006), higher fatigability (Eldadah, 2010), increased agonist-antagonist co-

activation to counteract decreased joint stability (Mian et al., 2006), or to optimize gait 

stability (Hak, Houdijk, Beek, & van Dieen, 2013). 

2.4.1 Speed Effects on Gait Adaptability 

 Few studies have evaluated gait speed’s effects on gait adaptability. However, 

both fractal dynamics and complexity analyses have been shown to be sensitive to gait 

speed. For example, studies on fractal dynamics have indicated that walking at speeds 

faster or slower than preferred increases fractal scaling  
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Figure 2.20: Influence of walking speed on fractal scaling. The scaling exponent (α) 
minima occur close to preferred walking speed (100%) for both 6-minute (white circles) 
and 12-minute (black circles). From Jordan et al, (2007). 
 
 
closer to α = 1.0, or 1/f noise (Hausdorff et al., 1996; Jordan et al., 2007b)(Figure 1.8C, 

2.20). When a system exhibits 1/f behavior, it is considered optimally complex (Lipsitz & 

Goldberger, 1992). Although paradoxical, this may indicate that walking faster or slower 

than preferred walking speed yields more adaptable gait. The effects of varying fractal 

dynamics on gait adaptability, however, have not yet been examined empirically. 

 Conversely, complexity analyses have provided evidence for an inverse U-shaped 

relationship between complexity indices and gait speed. Costa and colleagues (2003) 

manipulated gait speed and evaluated complexity using the MSE algorithm; they 

observed the highest complexity index during preferred speed walking, followed by fast 

walking, and finally slow walking. These results suggest preferred walking speed 

optimizes gait adaptability, as complexity is linked to a locomotor system’s adaptive 

capacity. Figure 2.21 displays the speed effects of two different gait adaptability 

measures. As the graph illustrates, walking faster or slower than preferred speed increases 



85 
		

fractality yet decreases complexity. The effects of gait speed on gait adaptability remain 

unknown. 

 

 
Figure 2.21: Effects of gait speed on measures of gait adaptability. Adaptability (y-
axis) is an arbitrary value between 0-100, whereby 100 = optimal adaptability. 
Complexity measures adapted from Costa et al., 2003. Fractality measures adapted from 
Hausdorff et al, (1996). 
 

2.4.2 Speed Effects on Gait Stability 

 The relationship between gait speed and gait stability is not well understood 

(Figure 1.8, 1.9). Various measures of gait stability have been examined in attempts to 

determine speed effects, yet the results are often conflicting. The most probable reason 

for mixed findings is that each stability measure is quantifying a different component of 

the locomotor system. Nevertheless, differing interpretations of gait speed’s effects on 

stability lead to differing recommendations to optimize gait stability.  

 When local dynamic stability is measured via the FTλMAX, various effects of gait 

speed have been reported. Many studies have concluded that there is an inverse 
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relationship between gait speed and local stability (Figure 1.8A). That is, as gait speed 

increases, local stability decreases (Dingwell & Cusumano, 2000; Dingwell et al., 2000; 

England & Granata, 2007; Manor, Wolenski, & Li, 2008). For example, Kang and 

Dingwell (2008a) found that local dynamic stability decreases linearly with increasing 

speeds. Dingwell and Marin (2006) compared kinematic variability to local dynamic 

stability using velocity profiles of tri-directional kinematics of a trajectory located on the 

first thoracic vertebrae, and again showed that local stability was reduced with increased 

speeds (Figure 2.22). This occurred in all three directions for the short-term FTλmax 

(λ*S, representing maximal divergence between 0 and 1 stride), and in the anterior-

posterior and vertical directions for the long-term FTλmax (λ*L, representing maximal 

divergence between 4 and 10 strides). However, between-cycle variability across the 

entire gait cycle in all three directions increased at slower and faster speeds (Figure 2.23). 

That is, the kinematic variability of the marker (representing the dynamics of the entire 

system) displayed a U-shaped relationship with gait speed. Increased variability is 

associated with greater instability, yet the FTλmax results suggest slower walking, even 

with greater variability, is still more stable than preferred or faster walking (Figure 2.22). 

In a separate study, Bruijn and colleagues (2009) observed a direction effect of short-term 

local stability, whereby faster walking yielded greater local stability in the AP direction. 

Additionally, local stability in the ML direction displayed an inverse U-shaped 

relationship, whereby the most stability occurred at faster and slower walking speeds. For 

the long-term local stability analysis, the ML direction exhibited a linear relationship 

with walking speed, whereby greater walking speeds resulted in increased local stability 

(Bruijn et al., 2009).  
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Figure 2.22: Walking velocity’s effects on local stability. Local stability (FTλMAX) 
shown in three directions for short-term (λ*S) and long-term (λ*L) divergence. Velocity 
is presented as a product of preferred walking speed (PWS). As walking velocity 
increased, FTλmax increased, indicating less local stability at faster walking speeds. 
From Dingwell & Marin, (2006). 
 
 
 Finally, Russell & Haworth (2014) manipulated stride frequency and evaluated 

local stability, and observed a U-shaped relationship, in which the greatest local stability 

was observed during preferred stride frequency, and local stability decreased at faster or 

slower stride frequencies (Figure 2.24). It should be noted, however, that these 

conflicting reports of the effects of walking speed on local stability might be explained  
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Figure 2.23: Relationship between gait speed and variability. In all three directions, 
variability is lowest at or near preferred walking speed (1.0 on x-axis). From Dingwell & 
Marin, (2006). 
 

 

 
Figure 2.24: Effects of stride frequency on local stability. Local stability = FTλMAX. 
The ‘0’ on the x-axis indicates preferred stride frequency. Conditions in which speed was 
constant (white triangles) or able to change based on participant (black circles) both 
yielded the lowest FTλMAX (highest stability) close to preferred stride frequency. From 
Russell & Haworth, (2014). 
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(at least in part) by methodological differences in determining FTλMAX (Stenum, Bruijn, 

& Jensen, 2014). In fact, Stenum et al. (2014) performed FTλMAX in three directions 

using three different methods. The first method expressed FTλMAX per stride time (i.e., 

acceleration per stride). Each stride was normalized to 100 data points (Figure 2.25 A). 

This method introduced stride number bias, as local stability was assessed by more cycles 

in faster walking than slower. The second normalized to a number of total  

  

 
Figure 2.25: Effects of walking speed and method type on local dynamic stability. 
Local stability = FTλMAX. FTλMAX evaluated (A) per stride time and varying number of 
strides, (B) per second, and (C) per stride time with a fixed number of strides. From 
Stenum et al, (2014). 
 
 
data points (number of strides * 100) and expressed FTλMAX as the logarithmic rate of 

divergence per time (i.e., acceleration per second, Figure 2.25 B), which introduces a 

dependency on stride duration. The third method also time normalized the data to a total 

number of data points, but the number of strides evaluated was kept constant and 
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expressed FTλMAX per stride (i.e., acceleration per stride, Figure 2.25 C). The authors 

discovered that, depending on which method was used, FTλMAX either increased, 

decreased, or remained constant as a function of gait speed. 

 While most of the local stability experiments suggest slower walking speeds are 

more stable, other studies indicate faster walking speeds maximize stability. Using the 

COM motion state as the measure of stability, Bhatt and colleagues (2005) determined 

there was a positive linear relationship between gait speed and gait stability (i.e., faster 

speeds are more stable, Figure 1.8 B). Espy et al. (2010) concluded that faster walking 

speeds and shorter step lengths improved gait stability. Morever, as mentioned earlier, 

Bruijn et al. (2009) manipulated gait speed and evaluated stability using the long-term 

FTλMAX and found increased stability with increased speeds in the ML direction. This 

concept can be likened to bicycle dynamics (Jones, 1970), whereby faster speeds increase 

internal stability.  

 Finally, from a dynamical system’s perspective, preferred walking speed 

represents the preferred state, or attractor state, whereby stability is maximized (Kelso & 

Ding, 1993). Deviation from this attractor state yields reduced systemic stability (i.e., 

greater sensitivity to perturbations). The attractor state is the collective variable, or order 

parameter. In locomotion, the actual act of walking upright can be considered the 

preferred state, or the aforementioned ‘gait state’. In order to test the stability of the 

attractor, a control parameter is typically introduced. The control parameter is the 

variable that is systematically manipulated to probe the attractor. Often in dynamical 

systems, the control parameter is speed. The variability of various gait parameters has 

been shown to be sensitive to gait speed. Specifically, variability is minimized during 



91 
		

preferred walking speed, and increases during slower and faster than preferred walking 

(Dingwell & Marin, 2006; Kang & Dingwell, 2008b). While increased variability may 

represent an upcoming behavior shift (i.e., critical fluctuation (Kelso & Ding, 1993)), in 

this paradigm participants are performing steady state gait. Therefore, slow or fast 

walking should be predicted to reduce gait stability.  

2.4.3. Speed Effects of Perturbed Gait Outcomes 

 Surprisingly few studies have evaluated gait speeds effects on gait stability by 

evoking a perturbation during walking. Bhatt, Wening, and Pai (2005) perturbed 

participants in the AP direction using a passive sliding platform, and found that faster gait 

speeds increased global stability by providing momentum for the COM to ‘catch up’ to 

the anteriorly-sliding foot. Espy and colleagues (2010) cleverly decoupled gait speed 

from step length and found that one standard deviation decrease in gait speed yielded 

over 4-times greater odds of falling. Moreover, one standard deviation increase in step 

length resulted in over 6-times greater odds of falling. The authors concluded the most 

globally stable gait involves walking fast while taking shorter steps. The studies by Bhatt 

et al. and Espy et al. were unique in that they were the only two that explicitly evaluated 

fall resistance by implementing a slip perturbation at differing speeds (Bhatt et al., 2005; 

Espy, Yang, Bhatt, et al., 2010). It should be noted, though, that these studies utilized a 

passive slip platform perturbation, and that the observed strategies may (at least, initially) 

reduce stability if the perturbation is a trip (Bhatt et al., 2013). 

 Alternatively, two separate studies found that local dynamic stability was lower in 

fall-prone older adults compared to healthy older adults and young adults, even though 

walking speeds were slower and step lengths were smaller (Granata & Lockhart, 2008; 
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Lockhart & Liu, 2008). Lockhart and Liu (2008) compared local dynamic stability 

measures of healthy young, healthy older, and fall-prone older adults. Adults were 

considered ‘fall-prone’ based on an earlier study in which participants were perturbed and 

unable to maintain upright stance, in addition to reporting at least one fall in the previous 

six months. The results indicated the older fall-prone adults were the least locally stable,  

 

 
Figure 2.26: Local stability analysis of healthy young and older adults, and older 
adults with a fall history. Local stability determined using the maximal finite-time 
Lyapunov exponent (FTλMAX). Local stability is lowest (highest FTλMAX) in older fall-
prone adults (FO) compared to healthy older (HO) and healthy young (HY) adults. From 
Lockart & Liu, ((2008). 
 
 
 
even though their gait speeds were slower and step lengths shorter (Figure 2.26). The 

findings of Granata and Lockhart (2008) and England and Granata (2007) either support 

the research that indicates faster gait speeds are more dynamically stable, or suggest older 

adults are less stable irrespective of step length and walking speed. 

 Finally, Hak and colleagues (2012) explored the notion that individuals slow gait 

speed to increase stability when exposed to perturbations. To test this, they allowed 

participants to regulate their gait speed while ML visual perturbations were applied. This 
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was achieved by using an interactive treadmill that would speed up or slow down based 

on the participants AP displacement. That is, if a participant slowed down, the treadmill 

belt would concomitantly slow down. The results indicated that participants did not 

change gait speed, but rather increased their step width and step frequency while 

decreasing step length. Moreover, local dynamic stability decreased in response to 

perturbations, yet MOS increased in both the ML and AP directions. The authors 

concluded the changes in gait parameters (e.g., step length, step width, step frequency) 

optimized global stability, even though local stability was reduced. 

 In summary, walking speed’s effects on gait stability has been debated 

empirically. While some research suggests slower walking is more stable, other studies 

propose that faster walking is more stable. Furthermore, some research indicates that 

preferred walking speed is the most stable, and that deviation from preferred speeds 

(faster or slower) reduces gait stability. The main reason for these discrepancies is that 

‘stability’ is quantified differently, and the paradigms vary considerably.  
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CHAPTER III  

PROPOSED METHODS 

3.1 Overview 
	
 The principal objective of this dissertation is to better understand and quantify 

gait adaptability and stability in young and older adults. Various mathematical measures 

have been developed to quantify the locomotor system’s ability to adapt gait or resist 

internal or externally generated perturbations. Most of these measures, though, are 

assessed during steady state, unperturbed walking. In order to accurately quantify 

someone’s locomotor capacity during walking, he or she must be exposed to an 

environment that compels the person to respond meaningfully and substantially, with the 

goal being continued locomotion. This perturbation paradigm will allow for comparison 

between mathematical quantifications of adaptability or stability during steady state 

conditions and a tested evaluation of such skills.  

3.1.1 Data Collection 

 All three studies will be collected in the Locomotion Neuromechanics Laboratory 

(NeuroLab). This lab houses a force plate-instrumented split-belt treadmill. Each belt is 

capable of being independently controlled such that the belts can move at different speeds 

or directions, or one (or both) belt can be rapidly accelerated or decelerated for brief or 

prolonged periods of time. In addition to the treadmill, the NeuroLab also is instrumented 

with four high-speed cameras capable of collecting kinematic data at up to 500 Hz (Oqus, 

Qualisys, Gothenburg, Sweden). The cameras and force plates are synced together via 

Qualisys software, and the treadmill can be controlled via software provided by the 

manufacturer (Bertec Corporation, Columbus, OH, USA). For all of the proposed studies, 
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kinematics will provide most of the data. Kinematics will be collected at 100 Hz for all 

three studies, while force plate data will be collected at 1000 Hz. The force plate data will 

be used to confirm timing of gait events obtained by kinematic motion data. 

3.1.2 Kinematic Model 

 Study 1 will use a 5-segment kinematic model composed of a pelvis and bilateral 

leg and foot (Figure 3.1). The pelvis will be constructed using markers on the greater 

trochanters and 2nd sacrum. The leg segment will be constructed using markers on the 

greater trochanters and ipsilateral heels. The foot will be constructed using markers on 

the toes and heels. Finally, Center of Mass (COM) will be estimated based on the 

location of the 2nd sacrum, which has been shown to correlate highly with kinematic full  

 

 
Figure 3.1. Illustration of the proposed 5-segment lower body model. Illustrated here 
from the sagittal (left), frontal (middle), and diagonal (right) plane perspectives. 
 

body (13-segment) COM estimations during steady state and perturbed walking (Yang & 

Pai, 2014). However, some gait stability calculations require a precise COM position. For 

these analyses, a virtual COM will be constructed based on the vertical height and 
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medial-lateral position of the sacral marker, and the average anterior-posterior position of 

the greater trochanters. 

 

 
Figure 3.2. Illustration of the proposed 7-segment lower body model. Illustrated here 
from the sagittal (left) and frontal (middle) plane perspectives, as well as a diagonal 
(right) view. 
 

 Study 2 will use a 7-segment kinematic model composed of a pelvis and bilateral 

thigh, shank, and foot (Figure 3.2). The pelvis and foot segments will be constructed 

using the same markers as in study 1. The thigh will be constructed using markers on the 

greater trochanters and ipsilateral lateral femoral epicondyles, while the shank segment 

will be constructed using markers on the lateral femoral epicondyles and ipsilateral heels. 

3.1.3 Data Handling 

 All markers will be identified, labeled, and (if needed) interpolated within 

Qualisys Track Manager (QTM, Gothenburg, Sweden). Data will then be exported to 

MatLAB (The MathWorks, Natick, MA, USA) for data reduction and analysis. Finally, 

statistical analyses will be performed using R-Studio version 3.0.2 (R-Studio Inc., 

Boston, MA, USA). Whenever possible, data will be graphically represented as mean ± 
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95% Confidence Intervals. For all statistics, significance will be set at an alpha = 0.05. 

Additionally, Cohen’s d effect sizes will be computed for all analyses, with 0.2, 0.5, and 

0.8 indicating a small, moderate, and large effect, respectively (Vincent & Weir, 2012). 

For Pearson’s product moment correlation modeling, a very strong positive and negative 

association will be accepted when .8 ≤ r ≤ 1 and -.8 ≥ r ≥ -1, respectively, where r is the 

correlation coefficient. A strong positive and negative association will be accepted when 

.6 ≤ r < .8 and -.6 ≥ r > -.8, respectively. Moderate positive and negative associations will 

be accepted when .4 ≤ r < .6 and -.6 > r ≥ -.4, respectively. Finally, weak positive and 

negative associations will be accepted when .2 ≤ r < .4 and -.4 > r ≥ -.2, respectively 

(Divaris, Vann Jr, Baker, & Lee, 2012). 

3.1.4 Sample Size Estimates 

 Table 3.1 provides the rationale for sample size estimates for each study. For 

study 1, sample size estimates are based on two dependent variables, fractal dynamics 

and split-belt gait symmetry measures. Data from the study by Choi and colleagues 

(2009) indicated a sample size of 10 would differentiate gait parameter symmetry 

between the first and last 5 strides in an asymmetric split-belt condition. Data from the 

study by Hausdorff et al. (1996) provided a sample size estimate of 8 in evaluating 

changes in fractal dynamics at different walking speeds. Because the proposed nonlinear 

techniques require long, continuous data sets, an additional 5 participants will be 

recruited to account for potential marker dropout, for a total of 15 participants. 

 Sample size estimates for study 2 again utilized the data from Choi et al. (2009) to 

determine adaptation to asymmetric split-belt conditions. Additionally, data from the 

study by Hausdorff et al. (1997) indicate a sample size of 11 is sufficient to determine 
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differences in fractal dynamics between young and older adults. Again, to account for 

potential marker dropout that deems the continuous data unusable, an additional 4 

participants will be recruited, totaling 15. Finally, study 3 will utilize the data from 

studies 1 and 2.  

 

Table 3.1: Estimates of sample sizes based on reference data. The ‘Pad’ column 
indicates the increased sample sizes based on the potential for data corruption (e.g., marker 
dropout). 

Study  Reference 1 Reference 2 Pad Final n 

1 

Reference Choi et al., 2009 Hausdorff et al., 
1996 

5 15 
Power (β) 80% 95% 
Sample Size 10 8 

Variable Leg angle symmetry 
Fractal dynamics at 
different walking 
speeds 

 

2 

Reference Hausdorff et al., 
1997 Choi et al., 2009 

4 15 / 
group 

Power (β) 90% 80% 
Sample Size 11 10 

Variable 
Fractal dynamics: 
young versus older 
adults 

Leg angle symmetry 

 
 

 

3.2 Study 1: Gait Adaptability in Young Adults 
	
 In order to fully assess a locomotor system’s ability to adapt gait, participants will 

be exposed to task constraints that promote asymmetric walking. Earlier studies using the 

split-belt treadmill paradigm have indicated that participants exposed to asymmetrically 

moving treadmill belts attempt to regain leg symmetry (Bruijn et al., 2012; J. T. Choi & 
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Bastian, 2007; Dietz et al., 1994). This leg symmetry may be in the form of symmetric 

step lengths, or anti-phase leg angle motion. Evaluating individual-specific responses to 

this environment provides a precise quantification of gait adaptability.   

3.2.1 Participants 

 This first study will consist of young, healthy adults aged 21-45. Recruitment will 

include a similar number of males and females (e.g., 8 of one gender, 7 of the other). 

These participants will have experienced walking on a treadmill, and be free from any 

injuries that may adversely affect walking gait. Additionally, participants will be free of 

general health risk factors (report ‘NO’ for all Physical Activity Readiness-Questionnaire 

(PAR-Q) questions, or obtain physician’s consent if answer ‘YES’ to one question). 

Because this will be the first study to evaluate fractal dynamics during asymmetric gait, 

and because many of these nonlinear measures require a large, continuous data set (i.e., 

no lost data within trial), a total of 15 participants will be recruited, which represents 

150% of estimated sample size of 10 (Table 3.1) to account for potential data issues. 

3.2.2 Protocol 

 Participants will first read and sign an informed consent document, as well as a 

standard PAR-Q questionnaire. Once deemed eligible, participants will change into 

appropriate clothing attire and height and mass will be obtained. Retro-reflective markers 

will then be placed bilaterally on each participant’s greater trochanter of the femur, heel, 

and 2nd toe. In addition, a marker will be placed near the 2nd sacrum. The markers will be 

used to create a 5-segment model for kinematic data collection and analysis (Figure 3.1).  
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 The next phase will entail familiarization with the treadmill and determination of 

preferred walking speed (PWS). To determine PWS, participants will be told that the 

treadmill will begin moving slowly and increase incrementally,  

 

 
Figure 3.3: Schematic of the protocol design for study 1. Grey arrows and parentheses 
indicate rest time. 
 

and instructed to verbally indicate when walking at ‘preferred’ or ‘comfortable’ walking 

speed. That is, the speed at which one would walk if neither rushing nor taking a leisurely 

stroll. The treadmill will begin moving at 0.5 m/s for 10 s, and increased by 0.1 m/s every 

5-10 s thereafter until the participant verbally declares the current speed to be his or her 

PWS. This process will be repeated, only the treadmill will begin at their stated PWS plus 

0.3 m/s, and incrementally decreased by 0.1 m/s every 5-10 s until the participant 

verbally declares the speed to be their PWS. The average of the two speeds will be 
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considered their PWS. If there is a discrepancy between the two values of > 0.1 m/s, the 

protocol will be repeated until a consistent speed is determined. 

 After obtaining PWS, participants will be told that the belt will move at their 

PWS for 15 minutes. After the trial is complete, they will be instructed to stay on the 

treadmill, and a chair will be placed on the treadmill for the 5-minute rest. The next trial 

will involve participants walking at half of their preferred walking speed (½ PWS) for 15 

minutes. Finally, participants will be exposed to three identical asymmetric split-belt 

(SB) trials. The SB trials will consist of the right belt traveling at the determined PWS 

and the left at ½ PWS. Participants will be instructed to use the handrails initially if 

compelled, but to attempt to minimize their use. Data recording will begin immediately, 

that is, there will not be an acclimation period, as the first strides represent the initial 

response to the asymmetric belt. Each SB trial will again last for 15 minutes, with a 5-

minute break in between (Figure 3.3). The reason for placing the chair on the treadmill 

immediately following trials is to minimize any re-adaptation to the asymmetric belt 

exposure. Previous studies have suggested that adaptation and re-adaptation (or 

relearning) occurs rapidly with this split-belt paradigm (J. T. Choi & Bastian, 2007; Dietz 

et al., 1994). 

3.2.3 Dependent Variables 

 3.2.3.1 Gait Parameters 

 All of the ensuing gait parameters will be determined bilaterally. Stride time will 

be defined as the time from heel strike to subsequent heel strike of the same heel. Step 

length will be the anterior-posterior distance of the position of the heel marker at heel 
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strike to the position of the contralateral limb’s heel marker at heel strike. Step width will 

be defined as the medial-lateral distance from the position of the heel marker of one leg at 

heel strike to the position of the heel marker of the other leg at subsequent heel strike. 

Stance time will be the  

 

 
Figure 3.4: Calculation of the sagittal plane leg angle. The leg angle will be based on 
deviation of the leg segment from absolute vertical. 
 

percentage of the gait cycle (stride time) in which the foot is in contact with the ground. 

Swing time will be the stride time minus the stance time. For stride time, step length, and 

step width variability, the standard deviation across strides will be obtained. Leg angle 

will be calculated as the angle in degrees of the leg segment from absolute vertical 

(Figure 3.4). 

 3.2.3.2 Performance Variables 

 Gait adaptability will be quantified based on symmetry measures, or more 

specifically, deviation from symmetry. Phase deviation of the leg angles (Phasedev) will 

be considered the average deviation from perfect anti-phase for each stride. Each stride 
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will be normalized to 100 points, and the cross correlation function will be calculated 

between leg angles for the right and left leg. The number of frame lags to maximal 

negative correlation (anti-phase motion) minus 0.5 (perfect anti-phase) will quantify 

Phasedev, with greater number of lags indicating greater deviation (J. T. Choi & Bastian, 

2007). In addition to Phasedev, symmetry will be calculated for several gait parameters.  

For all measures of gait parameter symmetry, a general formula for symmetry index 

(Equation 3.1) will be employed (J. T. Choi et al., 2009):  

 

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝐼𝑛𝑑𝑒𝑥 =  !"#$ !"#!!"#$ !"#
!"#$ !"#!!"#$ !"#

             Equation 3.1 

 

where Fast Leg and Slow Leg are the legs moving at PWS and half PWS, respectively. A 

symmetry index = 0 indicates perfect symmetry. Greater deviation from 0 indicates 

greater asymmetry. Positive and negative values indicate the fast leg is taking a longer or 

shorter step, respectively (J. T. Choi et al., 2009). Based on the symmetry index, for step 

length symmetry (Symlength), the following calculation will be used: 

 

𝑆𝑦𝑚!"#$%! =
!"!"#$! !"!"#$
!"!"#$! !"!"#$ 

               Equation 3.2 

 

where  Symlength is the symmetry of step length, SL is step length, and fast and slow 

represent the faster and slower moving legs, respectively. For step width symmetry, the 

following equation will be used: 
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𝑆𝑦𝑚!"#$! =
!"!"! !"!"
!"!"! !"!" 

            Equation 3.3 

 

where Symwidth is the step width symmetry, SW is step width, and RL and LR indicate the 

step width from right to left foot and left to subsequent right foot, respectively. To 

establish percentage of swing phase, the following calculation will be used) (Bruijn et al., 

2012): 

 

%𝑠𝑤𝑖𝑛𝑔 𝑖 =   
!!!!"#$%&'! ! !!!"#"$� !!!

!!!!"#$%&'! ! ! !!!!"#$%&'! !!!
∗ 100       Equation 3.4 

 

where t corresponds to timing of events, and i represents the stride index. The symmetry 

index will then be calculated as: 

 

𝑆𝑦𝑚!"#$% =  %!"#$%!"#$! %!"#$%!"#$
%!"#$%!"#$! %!"#$%!"#$

             Equation 3.5 

 

Stride time symmetry will be determined using the following calculation: 

 

𝑆𝑦𝑚!"#$%& =  !"!!"#! !"!"#$
!"!"#$! !"!"#$

     Equation 3.6 

 

where Symstride is stride time symmetry and ST is the stride time. All symmetry measures 

(Phasedev, Symstride, Symlength, Symwidth, and Symswing) will be calculated for the first and 

last 5 strides of each condition to provide comparisons with earlier studies (J. T. Choi & 

Bastian, 2007; J. T. Choi et al., 2009). Additionally, the absolute magnitude of phase and 
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symmetry deviation for non-overlapping windows of 50 strides will be quantified to 

assess the extent of deviation at the evolution of temporal scales (Bruijn et al., 2012). 

This analysis may also allow for a timing component of adaptation (e.g., deviation that is 

not different from 0 occurring at window 1 versus 2 indicates faster adaptation).  

 3.2.3.3 Nonlinear Gait Adaptability Variables 

 Fractal dynamics will be determined using Detrended Fluctuation Analysis (DFA) 

of the first 500 strides. Although the PWS and SB trials will yield stride time data of 

length ~ 700 or greater, the ½ PWS trial will only yield ~ 550. Sensitivity analyses 

conducted with pilot data (Figure 3.5) have suggested the DFA algorithm is sensitive to 

data length. Generally, greater data length is considered more appropriate for nonlinear 

techniques. While this sensitivity analysis does not provide evidence for conclusive 

recommendations, trial length will be held constant for all participants across all 

conditions. That is, rather than keeping trial time constant (i.e., 15 minutes), each trial 

will be truncated to the shortest data length for all subjects, which will likely be between 

500-600 data points. A linear fit line will be used for detrending and fluctuation 

summation. The minimal and maximal window sizes will be 5 and 50, respectively. 
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Figure 3.5: Sensitivity analysis of the effects of data length on fractal scaling 
exponent. Data presented as median ± SD for eleven participants’ left leg stride times.  
 
 
 Complexity analyses will be evaluated using Multiscale entropy (MSE) of the 

sacral marker trajectory in three directions: vertical, AP, and ML. The m and r parameters 

will be set at 2 and .15, respectively (see section 2.2.3), based on previous work (Costa et 

al., 2003). Finally, summation of the area under the MSE-scale factor curve will define 

the Complexity Index (CI, equation 2.4), whereby greater CI indicates greater 

complexity.   

3.2.4. Statistical Analyses 

 To test hypothesis 1.1 that asymmetric walking will initially break down fractal 

dynamics to values closer  to α = 0.5, followed by a return to standard fractal values 

observed in unperturbed walking (α ~ 0.75), a within-subject repeated-measures analysis 

of variance (ANOVA) will be performed, followed by post hoc adjustments using 

Tukey’s Honestly Significant Difference (HSD) testing. Hypothesis 1.1 will be accepted 
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if stride time fractal dynamics during the first SB trial are significantly lower than during 

the PWS trial, and if there is no difference between fractal dynamics in the PWS versus 

the third SB trial. 

 Hypotheses 1.2 and 1.3 state that fractal dynamics and complexity, respectively, 

during steady state walking will be correlated with gait  adaptability. To test these 

hypotheses, associations will be assessed via linear regression analyses. Specifically, two 

separate linear regressions will determine if gait adaptability (phase deviation as 

dependent variable) is associated with fractal dynamics (DFA scaling exponent as 

independent variable for first regression model) or complexity (MSE complexity index as 

independent variable for second regression model). Gait adaptability will be defined as 

the average magnitude of deviation from intended anti-phasing of the leg angles for the 

first 50 strides. Additionally, linear regression models will test hypothesis 1.4 that gait 

adaptability (phase deviation as dependent variable) will be associated with stride time 

variability, step length variability, and step width variability (separate independent 

variables). 

 Exploratory analysis 1.1 investigates whether fractal dynamics and complexity 

analyses together will better predict gait adaptability than either one algorithm alone. To 

test this, results from the fractal dynamics and complexity analyses will be submitted to a 

multiple regression analysis as independent variables, with gait adaptability treated as the 

dependent variable.  

 Finally, exploratory analysis 1.2 investigates whether stride time variability and 

fractal dynamics will predict gait adaptability more accurately combined than separate. A 

multiple regression analysis will again be used, with stride time variability and fractal 
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dynamics as independent variables, and gait adaptability as the dependent variable. For 

both exploratory analyes, gait adaptability will again be quantified as the mean amplitude 

of deviation from intended anti-phasing of the leg angles for the first 50 strides. 

 For all statistical analyses pertaining to gait adaptability, all of the proposed 

measures of gait symmetry (Phasedev, Symstride, Symlength, Symwidth, and Symswing) will be 

evaluated. However, Phasedev will be the primary measure of symmetry and adaptability 

and tested to accept or reject the hypotheses, as this parameter has been shown to 

represent adaptation of gait (Bruijn et al., 2012; J. T. Choi & Bastian, 2007; Dietz et al., 

1994) and distinguish cohorts (Bruijn et al., 2012).  

 

3.3 Study 2: Gait Adaptation and Re-Adaptation in Young and Older Adults  
	
 While identifying young adults’ capacity to adapt gait is of interest and 

importance, what may be of greater significance is evaluating those individuals at highest 

risk of falling. Specifically, older adults represent a cohort that is at high risk for falling, 

and this risk increases with increasing age. Moreover, this cohort historically has been the 

most adversely affected by falls (CDC, 2011, 2012), as these incidences lead to bone 

fractures, concussions, long-term disability, and, at worst, death.  

 Determining an individual’s capacity to successfully respond to a discrete gait 

perturbation will provide a more complete story of the capacity of the locomotor system. 

That is, can individuals respond to transient, as well as prolonged, alterations in 

locomotor demands? Furthermore, do measures of gait stability predict the ability to 

successfully respond to a discrete gait perturbation? 
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3.3.1 Participants 

 For this study, two cohorts will be recruited. The first group will consist of 

healthy, active older adults (aged 60-70) with no history of falls. The second group will 

consist of healthy, active young adults aged 21-40. For both cohorts, fifteen participants 

per group (both evenly distributed for gender) will be recruited to allow for potential data 

issues (Table 3.1). All participants will either 1) answer ‘NO’ to each PAR-Q question, or 

2) obtain physician’s consent to participate in moderate-intensity physical activity. 

Participants will be free from any conditions that affect balance or locomotion (visual, 

vestibular, somatosensory deficits, musculoskeletal injuries, medications causing 

dizziness), and have experience walking on a treadmill. In addition, both groups will be 

matched for physical activity based on a questionnaire (Godin Leisure-Time Exercise 

Questionnaire) prior to data collection (i.e., during phone screen). Participants will 

declare that they participate in at least 150 minutes per week of moderate or 75 minutes 

per week of vigorous physical activity (2008). This criterion will ensure those recruited 

are self-reported as physically active. Recruiting physically active young and older adults 

will reduce potential fatigue effects and provide more homogenous groups. Once deemed 

as qualified for the study, participants will be instructed to wear an accelerometer for 7 

days so that a precise quantification of physical activity can be attained.   

3.3.2 Protocol 

 This protocol will require two sessions (Figure 3.6). On session 1, participants 

will read and sign the informed consent and PAR-Q, complete a physical activity 

questionnaire (long form Godin Questionnaire), change into appropriate attire, and 

determine height and mass. Marker locations will be identical to study 1, except for the 
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addition of markers on the lateral epicondyles of the femur. This will allow for thigh and 

shank segment construction, and thus intra- and inter-limb coordination analyses (Figure 

3.2). Participants will first be instructed to stand on a force plate and minimize motion 

(quiet standing) for 30 seconds. Participants will then be instructed to stand quietly for an 

additional 30 seconds, but with eyes closed. After determining each participant’s 

individual PWS (see study 1 protocol), each participant will then experience the PWS 

walking trial for 15-minutes, followed by the half PWS trial for 20 minutes. Finally, 

participants will be provided with waist-worn accelerometers and detailed instructions as 

to its use over the next 7 days. 

 The second session will occur at least 7 days following the first (7-14 day range). 

Session 2 will begin with collection of the accelerometer, followed by a repeat trial of 

quiet standing eyes open and eyes closed for 30 seconds each. The next condition will be 

PWS for 10 minutes. The PWS trial will serve as the warm-up, and both the postural and 

PWS walking conditions will allow day-to-day reliability assessment. After the PWS 

trial, participants will perform three 2:1 asymmetric split-belt trials, each for 12 minutes. 

For each trial, the treadmill belts will first move at the same speed for an undisclosed 

number of strides (10-15). Following these initial strides, the belt of the non-dominant leg 

will rapidly (25 m/s2) decelerate to half PWS while the left foot is in swing phase (i.e., 

not in contact with the treadmill). This rapid change in belt speed will serve two 

purposes: 1) provide a quantification of gait stability (TTC, MOS) at the onset of altered 

gait, that is, when the left foot touches down on the slower moving belt, and 2) mark the 

start of the asymmetric 2:1 split-belt condition. Following completion of the three split-
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belt trials, participants will perform a re-adaptation trial, whereby both treadmill belts 

will move at PWS, which will last for 5 minutes (Figure 3.6).  

 
Figure 3.6: Schematic of the protocol design for study 2. 
 

 Rating of Perceived Exertion (RPE) values will be collected at the beginning, 

middle, and end of each walking trial. Five minutes of rest will be provided following 

each walking trial. However, more rest time will be provided if needed or requested by a 

participant to minimize fatigue. 

3.3.3 Dependent Variables 

 3.3.3.1 Gait Parameters 

 The same gait parameters obtained in study 1 will be determined in this study. 

These include: stride time, step length, step width, stance time, swing time, and 

variability of stride time, step length and width, and stance and swing time. Leg angles 
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will be calculated in the same manner as study 1, which will allow for comparison with 

study 1 and earlier studies (J. T. Choi & Bastian, 2007; J. T. Choi et al., 2009). In 

addition, leg angles will be calculated using the ‘thigh segment’ to determine if this 

method provides a better estimate of the interactions between legs.   

 3.3.3.2 Performance Variables 

 Gait adaptability will again be quantified based on deviation of symmetry of 

phase measures using the same equations (3.1-3.6). Phase deviation of the legs (Phasedev) 

will be considered the average deviation from perfect anti-phase for each stride. 

Symmetry parameters (Symstride, Symlength, Symwidth, and Symswing) will be evaluated 

based on deviation from perfect symmetry (symmetry index = 0). All Phasedev and 

symmetry performance variables will be calculated for the first and last 5 strides, as well 

as absolute magnitude of deviation in non-overlapping windows of 50 strides.  

 3.3.3.3 Nonlinear Gait Adaptability Variables  

 Fractal dynamics will be determined using DFA. The DFA algorithm will be 

conducted on the shortest data length for all subjects for half PWS, PWS, and SB. That is, 

data length will again be held constant. A linear fit line will be used for detrending and 

fluctuation summation. The minimal and maximal window sizes will be 5 and 50, 

respectively. 

 Complexity analyses will be evaluated using Multiscale entropy (MSE). The m 

and r parameters will again be set at 2 and .15, respectively, based on earlier studies 

(Costa et al., 2003). MSE will be performed on the sacral marker trajectory in three 
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directions. Summation of the area under the MSE-scale factor curve will define the 

Complexity Index (CI), whereby greater CI indicates greater complexity.   

 3.3.3.4 Gait Stability Measures 

 Gait stability measures will be determined during unperturbed walking and at the 

onset and immediately following each perturbation (i.e., belt speed change during split-

belt conditions). Minimal and average measures of margin of stability (MOS, equation 

2.5, 2.6) and time to contact (TTC, equation 2.7, 2.8) of the COM during the stance phase 

to the lateral and anterior boundaries will be evaluated during unperturbed walking (PWS 

and half PWS). The lateral boundary (BOSML) will be based on the 5th metatarsal marker 

of the stance foot. The anterior boundary (BOSAP) will be the stance foot’s toe marker. 

The two derived variables will be the mean and minimal MOS and TTC. When 

perturbations are elicited, the minimal MOS/TTC and MOS/TTC at instance of 

perturbation and during recovery step will be computed for both anterior and lateral 

directions. The BOSML boundaries will again be based on the 5th metatarsal markers of 

each foot, while the BOSAP boundaries will be based on the anterior-most and posterior-

most foot marker in contact with the ground.  

 Local stability will be evaluated using the maximal finite-time Lyapunov 

exponent (FTλMAX, equation 2.11, 2.12) of the sacral marker during unperturbed walking. 

Orbital stability of the sacral marker and heel marker will be assessed via Floquet 

multipliers at each percentage of normalized stride in unperturbed walking, in addition to 

a discrete measure immediately prior to, during, and immediately following each 

perturbation. 
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 Finally, scalar variability measures will be assessed for associations with gait 

stability. These measures include the variability of stride time, step length, and step 

width. 

3.3.4 Statistical Analyses 

 The hypotheses that older adults will have a reduced ability to adapt gait (2.1), as 

well as require more time to adapt gait (2.2), will be evaluated via independent samples t-

tests. Specifically, the average magnitude of deviation from intended phasing (anti-phase, 

0.5) of the leg angles for the first 50 strides will be assessed for young versus older 

adults. 

 To test the hypothesis that older adults will exhibit reduced aftereffects in the re-

adaptation condition (2.3), independent samples t-tests of the average magnitude of leg 

angle phase deviation from anti-phase for the first 50 strides will be conducted for young 

versus older adults.  

 To test hypotheses 2.4 that fractal dynamics will be lower in older adults 

compared to young adults during preferred speed walking, independent samples t-test 

will be performed on fractal scaling exponents during preferred speed walking.   

 To test hypotheses 2.5 that complexity will be lower in older adults compared to 

young adults during preferred speed walking, independent samples t-tests will be 

performed on the complexity indices during preferred speed walking. 

 Hypothesis 2.6 states that fractal dynamics will be associated with gait 

adaptability. To test this, separate linear regression models will be fit to the data for each 

group, with gait adaptability measures (magnitude of phase deviation of leg angles) as 

dependent variables and fractal dynamics (scaling exponent) as the independent variable. 
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 Hypothesis 2.7 predicts a U-shaped relationship between gait adaptability and 

step width variability in older adults. This will be evaluated by submitting the data (step 

width variability as the independent variable and gait adaptability (phase deviation) 

parameters as the dependent variable) to a quadratic regression analysis. 

 Hypothesis 2.8 predicts that there will be a relationship between gait stability 

measures during steady state and in response to the perturbation (initial change in belt 

speed). To test this, a linear correlation model will be applied to the gait stability 

measures (minimal TTC, MOS) during steady state walking at PWS and immediately 

following the belt speed change during the first split-belt condition.  

 The hypotheses that older adults will exhibit reduced gait stability during steady 

state (2.9) and following the perturbation (2.10) will be tested via separate independent 

samples t-tests of minimal TTC and MOS. 

 Once again, all measures of gait symmetry will be evaluated when testing gait 

adaptability versus other parameters. Phasedev will again be the primary measure of 

symmetry and adaptability, as this has been shown to not only represent gait adaptation 

(Bruijn et al., 2012; J. T. Choi & Bastian, 2007; Dietz et al., 1994), but also and 

distinguish young versus older adult cohorts (Bruijn et al., 2012). 

 

3.4 Study 3: Multifractal Analysis of Asymmetric Walking in Young and Older 
Adults 
	
 While monofractal analysis (DFA) may provide insights regarding locomotor 

organization and response to constraints, some behaviors or signals may not be fully 

represented by one scaling exponent (Figure 2.6, 2.7). Signals that exhibit periods of high 

or low variability require a continuum of scaling exponents to accurately detect local 
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changes to the coupling of fluctuations across temporal scales. If there is more than a 

single physiological process at a given temporal scale interacting (or, at the least, 

statistically correlated) with processes at longer temporal scales, a multifractal analysis is 

required. As mentioned earlier, at this time only a few studies have attempted to 

determine the multifractality of walking gait parameters. Of those studies that have 

analyzed multifractality of gait, surprising and disputable findings were reported. More 

studies are needed to provide evidence of the presence or absence of multifractality in 

gait parameters of young and older healthy adults. If multifractality is present, the 

standard monofractal DFA algorithm should be replaced by a multifractal analysis. 

3.4.1 Participants 

 The participants’ data from studies 1 and 2 will be used to analyze multifractality. 

This will provide two young healthy cohorts and an older healthy and active cohort. Each 

group will consist of 15 participants. Analyzing two separate young, healthy groups from 

data collected at different times will allow for a reliability test of the multifractal 

algorithm. Analyzing young versus older groups will allow for an evaluation of potential 

age effects of multifractality in locomotion. 

3.4.2 Protocol 

 Participants will experience the various conditions described in sections 3.2 and 

3.3 for studies 1 and 2, respectively. Data from each of these study’s conditions (quiet 

standing, quiet standing eyes closed, preferred speed walking, half preferred speed 

walking, asymmetric split-belt) will be used to determine the extent of multifractality. 
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3.4.3 Dependent Variables 

 3.4.3.1 Multifractality Measure 

 Multifractal Detrended Fluctuation Analysis (MFDFA) will be employed to 

determine the extent of multifractality of a signal. The scaling exponents will be 

determined ‘locally’ by performing the traditional DFA algorithm on a moving-window 

across the time series (Ihlen, 2012, 2013; Ihlen & Vereijken, 2013b). This method 

provides a spectrum of scaling exponents that are then arranged in a probability 

distribution function (PDF). The range of the PDF scaling exponents (absolute range, 

interquartile range) provides a quantification of the degree of multifractality. A greater 

range indicates greater presence of multifractality. 

 This study will primarily evaluate the multifractality of stride times. As secondary 

measures, the multifractality of step length, step width, and sacral marker trajectory will 

also be determined. 

3.4.4. Statistical Analyses 

 Hypothesis 3.1 states that the young cohort will display less multifractality 

compared to older adults. To test this, an independent samples t-test of the MFDFA 

results during PWS will be compared. A smaller multifractal spectrum width will indicate 

less multifractality. 

 While walking at slower than preferred walking speeds has been shown to 

increase fractal scaling closer to α = 1.0 (Hausdorff et al., 1996; Jordan et al., 2007a), no 

study has yet explored the effects of gait speed on multifractality. Thus, an exploratory 



118 
	

analysis will determine the effects of gait speed on the width of the multifractal spectrum, 

as well as if there is an age effect. 

 To test the 2nd hypothesis that young adults will display greater multifractality in 

response to the asymmetric walking condition (3.2), an independent samples t-test will be 

performed on the MFDFA results for the first split-belt condition. This hypothesis will be 

accepted if the multifractal spectrum width is greater in young versus older adults. 

 Finally, to test the hypothesis that young adults will exhibit reduced 

multifractality in the 2nd and 3rd split-belt conditions compared to older adults (3.3), a 

between-subject repeated measures ANOVA will be performed on the MFDFA results 

during PWS and three split-belt conditions. Tukey’s HSD post hoc analysis will be 

performed between groups for the 2nd and 3rd split-belt trials. 

3.4.5. Potential Problems and Alternative Approaches 

 The proposed 7-segment kinematic model (Figure 3.2) for study 2 (and partially 

study 3) will allow for inter- and intra-limb coordinative analyses. However, because the 

laboratory is currently limited to 4 cameras, adding more marker trajectories (and, thus, 

segments) may not be possible. The current camera set up may allow for the proposed 

kinematic model. Alternatively, it may be possible to temporarily acquire additional 

cameras. Pilot testing will confirm if this model can be used, and in the event it cannot, 

the proposed 5-segment model (Figure 3.1) from study 1 will be used.  

 An additional problem that may arise entails fatigue from the split-belt treadmill 

trials. Pilot testing has indicated that some participants report localized fatigue (e.g., hip 

flexor muscle) during the 15-minute trials but no global fatigue. To minimize the risk of 

fatigue, several considerations have been established. First, study 2 will now take place 
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over the course of two sessions. The first session will not involve asymmetric walking 

trials. On the second session, only two 30-s standing trials and a 10-min preferred 

walking speed warm-up trial will be performed prior to the asymmetric trials. In addition, 

trial length has been reduced from 15 to 12 minutes, thus reducing the overall asymmetric 

walking time from 45 to 36 minutes. Regarding trial number, while an argument could be 

made that performing three split-belt trials is insufficient in capturing full adaptation, 

pilot testing has indicated adaptation and changes to nonlinear measures are established 

by the end of the third trial. Additional trials would further increase the risk of fatigue.  

Moreover, while a minimum of 5 minutes of rest will be provided prior to each 

asymmetric trial, more rest time will be granted at any participant’s request. Furthermore, 

physically active adults will be recruited, as those who qualify will report participating in 

at least 150 minutes of moderate or 75 minutes of vigorous physical activity per week. 

Finally, while several precautions will be taken, we will collect RPE values at 0, 4, 8, and 

12 minutes for each split-belt trial. In the event of reported fatigue (or more accurately, 

increased exertion), the RPE data can be used as a covariate. 
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CHAPTER IV 

AMMENDMENTS TO THE PROPOSED EXPERIMENTS 

 
 This chapter describes the changes made between the proposed studies and the 

subsequent chapters. The studies have maintained nearly all of the originally proposed 

outlines. The main modification is that some of the proposed analyses (with 

corresponding hypotheses) will not be reported in this document. Namely, certain 

measures of complexity (i.e., multiscale entropy), stability (i.e., time-to-contact, margin-

of-stability) and gait adaptability (symmetry indices) are not included. Most of these 

analyses were still, in fact, executed. However, including all of these findings would 

likely distract from the primary aims of the dissertation, which are to determine the 

potential relationship between gait adaptability and fractality.  

 Studies 1 and 2 will not report on measures of complexity, and therefore not 

include hypothesis 1.3, 2.5, or exploratory analysis 1.1. In addition, these studies will 

focus on stride time variability magnitude and structure, and not on other measures of 

variability. Therefore, the subsequent chapters will not include hypotheses 1.4, 2.7, or 

exploratory analysis 1.2. Moreover, study 2 will not report on measures of gait stability 

(i.e., time-to-contact or margin-of-stability), and therefore hypotheses 2.8, 2.9, and 2.10 

will not be presented. 

 Study 3 initially aimed to determine stride time multifractality in young and older 

adults, and thus we proposed to analyze data from study 2. However, evaluation of the 

potential multifractality of unperturbed walking is understudied, and assessing 

multifractality of asymmetric walking has not yet been investigated. Therefore, we 

decided to instead analyze data from study 1 that included only young, healthy adults. 
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With this change, hypotheses 3.1, 3.2, and 3.3 required updating, as all hypotheses were 

initially based on age group differences. Based on previous research, we now hypothesize 

that unperturbed walking will exhibit monofractality (H3.1), asymmetric walking will 

exhibit multifractality (H3.2), and that the extent of multifractality will associate with gait 

adaptability performance (H3.3).   
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CHAPTER V 

ASSOCIATION BETWEEN STRIDE TIME FRACTALITY AND GAIT 

ADAPTABILITY DURING UNPERTURBED AND ASYMMETRIC WALKING 

 
 

5.1 Abstract 
 

 Human locomotion is an inherently complex activity that requires numerous 

processes at various spatiotemporal scales. Locomotor patterns must constantly be altered 

in the face of changing environmental or task demands, such as heterogenous terrains or 

obstacles. The variability in stride time occurring at short time scales (e.g., 5-10 strides) 

is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-

100 strides). This relationship is known as fractal dynamics, and optimal fractality 

exhibits a 1:1 proportional relationship and is thought to represent the adaptive capacity 

of the locomotor system. However, this has not been tested empirically. Thus, the 

purpose of this study was to determine if steady state stride time fractality could predict 

the ability for individuals to adapt their gait patterns when necessitated by the demands of 

the locomotor task. Participants were exposed to walking on a split-belt treadmill that 

induced an asymmetry that required adaptation of locomotor patterns. Fifteen healthy 

adults walked at their preferred speed, at half of their preferred speed, and with one leg at 

their preferred speed and the other at half speed (2:1 ratio asymmetric walking). The slow 

speed manipulation was chosen in order to determine slow walking fractal dynamics. 

Detrended fluctuation analysis was used to quantify the presence of fractality in stride 

times, and cross correlation analysis was used to measure the deviation from intended 

anti-phasing between legs as a measure of gait adaptation. Results revealed no 
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association between unperturbed walking fractal dynamics and gait adaptability 

performance. However, there was a quadratic relationship between perturbed, asymmetric 

walking fractal dynamics and adaptive performance during split-belt walking, whereby 

individuals who exhibited extreme fractal scaling values performed the poorest. 

Compared to steady state preferred walking speed, fractal dynamics increased closer to α 

= 1.0 when participants were exposed to asymmetric walking. These findings suggest 

there may not be a relationship between unperturbed preferred or slow speed walking 

fractal dynamics and gait adaptability. However, the emergent relationship between 

asymmetric walking fractal dynamics and gait adaptability may represent a functional 

reorganization of the locomotor system (i.e., improved interactivity between degrees of 

freedom within the system) to be better suited to attenuate externally generated 

perturbations at various spatiotemporal scales.  
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5.2 Introduction 
	
 Human locomotion is an inherently complex activity that requires the control and 

coordination of many neurophysiological and biomechanical degrees of freedom. To 

achieve locomotion, the body utilizes various physiological systems that are organized 

hierarchically at different spatiotemporal scales. That is, nested within larger structures 

(e.g., inter-limb dynamics) are subsystems (e.g., control of joints) that are at 

progressively smaller scales but no less important. For example, achieving a single step 

requires a network of neurons that innervate numerous muscles to activate in order to 

generate force so that the limbs are displaced. At larger scales, modifying joint angles via 

activation of these neurons occurs at higher order centers (e.g., motor cortex). At smaller 

scales, production of force in a muscle requires dynamics between calcium and filament 

components (e.g., actin, myosin) at the level of a single sarcomere. To further complicate 

matters, walking rarely occurs in the absence of endogenous or exogenous disturbances. 

Successful locomotion therefore requires the integration of sensorimotor processes (i.e., 

information from the periphery, vestibular system, visual system, brainstem, spinal reflex 

system, cerebellum or basal ganglia) across various spatiotemporal scales to attenuate 

these disturbances. From a system’s perspective, locomotor adaptability (sometimes 

referred to as flexibility) and stability emerge as a result of the interactions among these 

processes (Goldberger, 1996; Ivanov et al., 2009; Manor & Lipsitz, 2013).  

 While a healthy system can attenuate perturbations and maintain locomotion, less 

adaptable systems may experience falls. Given the abundance of fall-related 

complications reported (CDC, 2011, 2012), numerous researchers have attempted to 

identify gait characteristics that predict future falls; a question that Hausdorff (2005) 
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labels as “one of the ‘holy grails’ of geriatric and rehabilitation research.” Within the 

locomotion literature, gait parameter variance has consistently been associated with fall 

risk, whereby higher variability has often been linked to reduced stability and system 

control. For example, greater stride time variability (Hausdorff, 2005; Maki, 1997) and 

step width variability (Dean et al., 2007; Owings & Grabiner, 2004) are associated with 

increased fall risk in older adults. However, variability magnitude only provides one 

piece of information about the locomotor system. Over the past two decades, researchers 

have begun to look beyond the magnitude of variability, and instead evaluate its temporal 

structure (Hausdorff et al., 1995; Hausdorff et al., 1996; Lipsitz & Goldberger, 1992; 

Peng et al., 1995). Nearly all physical and biological systems exhibit variable behavior. 

Understanding the nature of these fluctuations can provide important information about 

the system. When the behavior at small temporal or spatial scales resembles behavior at 

larger scales, it is considered self-similar or scale-invariant (Liebovitch & Shehadeh, 

2003; Mandelbrot, 1977). Scale invariance indicates structural or behavioral complexity, 

and is a hallmark of healthy, adaptable systems. For example, scale invariance has been 

observed in biological systems both structurally (e.g., nucleotide sequences (Peng et al., 

1992), vascular system (Guidolin, Crivellato, & Ribatti, 2011)) and temporally (e.g., 

heart rate variability (Peng et al., 1995), respiration (Peng et al., 2002)). It has also been 

observed in various motor behaviors, such as finger tapping (Chen, Ding, & Kelso, 1997; 

Gilden, Thornton, & Mallon, 1995; Torre & Delignieres, 2008), serial force production 

(Wing, Daffertshofer, & Pressing, 2004), and reaction time (Van Orden, Holden, & 

Turvey, 2003). Finally, the ubiquity of scale invariance extends beyond biological 

systems, as it is observed in various aspects of nature, such as the structure of lightning 
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(Liebovitch & Shehadeh, 2003), tree and root branching (Liebovitch & Shehadeh, 2003), 

coastlines (Mandelbrot, 1967), and the organization of traffic flow on an expressway 

(Musha & Higuchi, 1976). 

Self-similar behavior is ‘persistent’ in nature. That is, statistically persistent 

processes are positively correlated such that successive deviations are statistically more 

likely to occur in the same direction. Persistent processes can be classified as either short- 

or long-term correlated. Short-term correlated processes are characterized by a rapidly 

decaying autocorrelation (e.g., first- or second-order autoregressive processes). Long-

term correlated processes, on the other hand, are characterized by an autocorrelation 

function that does not decay rapidly but rather in a power-law fashion. These processes 

exhibit multiscale dependence on previous behavioral states and lack a characteristic 

timescale. Thus, the fluctuations occurring over short timescales are statistically 

correlated to fluctuations occurring over longer time scales. Long-range correlated 

processes are often referred to as ‘fractal’ behavior because of their scale-invariant 

nature, and are considered adaptive based on their dissipative characteristics. 

Statistically persistent behavior has also been observed in human locomotion. 

There is substantial evidence demonstrating that the temporal structure of gait variability 

is not random, as previously believed, but exhibits statistically persistent fluctuations 

(Bollens, Crevecoeur, Nguyen, Detrembleur, & Lejeune, 2010; Hausdorff, 2007; 

Hausdorff et al., 1997; Hausdorff et al., 1995; Hausdorff et al., 1996; Hausdorff, Zemany, 

Peng, & Goldberger, 1999; Ihlen & Vereijken, 2014; Jordan et al., 2007b; Marmelat, 

Torre, Beek, & Daffertshofer, 2014; Rhea & Kiefer, 2013; Terrier & Deriaz, 2011, 2012). 

For example, long or short stride times are likely to be followed by subsequent long or 
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short stride times, respectively. Statistical persistence may represent adaptive gait 

behavior. That is, a fractal signal exhibits power at every frequency that is proportional to 

the period of oscillation. If the power of the signal is dispersed in a manner that allow 

perturbations at any given scale to be attenuated, the system overall is more adaptable 

(Delignieres et al., 2006). Thus, the fractal properties observed in walking appear to 

represent gait adaptability, defined as the capacity to change locomotor patterns in 

response to imposed constraints (Balasubramanian, Clark, & Fox, 2014), because these 

correlations may indicate interactivity among biological processes that help to attenuate 

perturbations (Delignieres & Marmelat, 2012; Delignieres et al., 2006; Rhea & Kiefer, 

2013; Stergiou & Decker, 2011). Fractal gait dynamics decrease in healthy older adults 

(Hausdorff et al., 1997) and those with neurological disorders, such as Parkinson’s 

(Hausdorff, 2009) and Huntington’s (Hausdorff et al., 1997) disease. Moreover, older 

adults with a fall history display lower fractality than healthy older adults (Herman, 

Giladi, Gurevich, & Hausdorff, 2005). These observations further suggest a connection 

between fractal dynamics and locomotor adaptive capabilities. However, this potential 

relationship has not yet been tested empirically. 

 While fractal analysis is a theoretical representation of adaptive gait, various 

paradigms have been developed to directly test locomotor adaptability. Empirically, gait 

adaptability can be evaluated by requiring an individual to change locomotor patterns to 

successfully continue walking. For example, obstacle clearance tasks (Heijnen, Muir, & 

Rietdyk, 2012) require increased toe height during the swing phase, while stepping onto 

specific locations on the floor (J. T. Choi, Jensen, & Nielsen, 2016) constrains spatial 

stepping parameters. However, these paradigms involve discrete locomotor pattern 
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changes (e.g., for a single step or stride), whereas real-world gait adaptations may often 

include chronic alterations. From an ecological perspective, perhaps a more appropriate 

paradigm assesses long-term locomotor adaptations while individuals walk on a split-belt 

treadmill. This treadmill has separate belts whose speeds can be independently 

controlled, allowing for exposure to asymmetric walking patterns (i.e., legs travel at 

different speeds during stance phase of walking). Generally, participants are able to adapt 

to asymmetric belt speeds by rapidly improving symmetry of leg relative phasing (J. T. 

Choi & Bastian, 2007), step length symmetry (Bruijn et al., 2012), or stance and swing 

time (Dietz et al., 1994).   

 Fractal dynamics are thought to represent the adaptive capacity of the locomotor 

system, yet this notion has not been testing empirically. The split-belt treadmill offers an 

ideal paradigm to evaluate long-term adaptive changes to asymmetries. Moreover, while 

organismic (e.g., age and disease) and task-level (e.g., gait speed (Hausdorff et al., 1996; 

Jordan et al., 2007b)) constraints alter fractal dynamics, it is unclear how asymmetric 

walking might affect fractality. Thus, the purpose of this study was to determine if stride 

time fractality during unperturbed and asymmetric walking in young, healthy adults 

predicts an individual’s ability to successfully adapt locomotor patterns when exposed to 

gait asymmetries. We exposed participants to asymmetric split-belt walking and 

compared both steady state unperturbed (symmetric belt speeds) and perturbed 

(asymmetric belt speeds) walking fractality to their adaptive gait capacity. We 

hypothesized that 1) fractality while walking unperturbed at preferred walking speed 

would be associated with gait adaptability, whereby less persistent stride time fractal 

dynamics would associate with poorer gait performance. We also hypothesized that 2) 



129 
	

asymmetric walking fractal dynamics would associate with adaptive gait performance, 

again with less correlated behaviors aligning with poorer gait performance. Third, we 

hypothesized that 3) stride time fractality would break down (i.e., resemble more random 

structure) during the more challenging asymmetric walking condition. In addition, given 

that individuals appear able to adapt rapidly to imposed gait asymmetries (J. T. Choi & 

Bastian, 2007; Dietz et al., 1994), we hypothesized that 4) repeated exposure to 

asymmetric constraints would yield more fractal-like structured variability. Finally, 

because previous research provides evidence that slower walking increases fractal 

dynamics (Hausdorff et al., 1996; Jordan et al., 2007b), we hypothesized that 5) during 

asymmetric walking, the slower moving leg would exhibit greater fractal scaling values 

compared to the faster moving leg.  

 

5.3 Methods 

5.3.1 Participants  

 Fifteen healthy adults (8 male; age: 28.5 ± 4.7 years; height: 169.4 ± 8.2 

centimeters; mass: 75.7 ± 15.8 kilograms) participated in this study. All participants were 

free of neurological, visual, or vestibular impairments that might affect walking. In 

addition, all participants reported being right leg dominant, based on the question of 

which leg they would likely use to kick a ball. All participants completed a PAR-Q 

document and informed consent. The local Institutional Review Board approved this 

study. 
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5.3.2 Experimental Setup and Apparatus 

 Participants wore tight fitting athletic shorts and shirt. Retroreflective markers 

were placed bilaterally at the toe (5th metatarsal), heel (3 cm inferior to the lateral 

malleolus), greater trochanter, and near the 1st sacral vertebrae. Kinematic data were 

collected using four high-speed Oqus cameras (Qualisys, Gothenburg, Sweden) at 120 

Hz. Data were collected as participants walked on a Bertec split-belt treadmill (Bertec 

Corporation, Columbus, OH, USA). 

5.3.3 Experimental Protocol 

 To obtain a standing calibration, participants stood on the treadmill with arms 

crossed and attempted to minimize movement for ten seconds. Next, preferred walking 

speed (PWS) was determined using a protocol similar to Jordan et al. (2007b). The 

treadmill belt speed started at 0.5 m*s-1, and increased by 0.1 m*s-1 every five to ten 

seconds. Participants informed the experimenter when ‘preferred’ or ‘comfortable’ 

walking speed was achieved.  This speed was identified as the pace they would walk if 

they were not rushing, nor taking a leisurely stroll. The belt speed was further increased 

0.3 m*s-1, and decreased in 0.1 m*s-1 decrements until participants again declared PWS. 

Two values of PWS within 0.1 m*s-1 were determined for each participant. PWS was 

computed as the mean of the self-selected speeds. 

 Once PWS was obtained, participants performed five walking trials. For each 

trial, participants were instructed to walk normally, to avoid touching the handrails as 

much as possible, and to generally remain in the center of the treadmill. The first trial 

consisted of walking at PWS. The second trial consisted of walking at half of their PWS 

(Half-PWS). The PWS and Half-PWS conditions served as symmetric steady state 
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baseline measures. During trials three to five, participants walked with the right 

(dominant limb) treadmill belt traveling at PWS and the left (non-dominant limb) belt at 

Half-PWS (i.e., 2:1 ratio asymmetric ‘split-belt’ walking; Split 1, Split 2, Split 3, 

respectively). Each trial lasted 15 minutes and was followed by a 5-minute seated rest. 

The 15-minute trial lengths ensured that enough strides were obtained for analysis.  

5.3.4 Experimental Analysis 

Kinematic data were filtered at 8 Hz using a low-pass, 4th order Butterworth filter. 

Data were collected and labeled using Qualisys Track manager, and custom MATLAB 

(The MathWorks, Natick, MA, USA) scripts were used for all analyses. Heel strike 

timing was determined based on the peak anterior position of the heel marker. Stride 

timing was defined as the temporal interval from heel strike to subsequent heel strike.  

5.3.4.1 Determination of Fractal Structure  

 To determine the potential presence and structure of long-range correlated 

behavior, detrended fluctuation analysis (DFA) was performed on the first 512 stride 

times. DFA estimates the average correlation structure by quantifying the magnitude of 

variability of a signal across various temporal scales (Hausdorff et al., 1995; Hausdorff et 

al., 1996; Peng et al., 1995). This analysis is a modified random walk analysis that takes 

advantage of the fact that the extent of self-similarity (i.e., resemblance across scales) of 

a time series exhibiting long-range correlations can be quantified via simple integration 

of the signal (Hausdorff, Peng, Wei, & Goldberger, 2000). After the signal is integrated, 

it is sectioned into non-overlapping windows of size n. In each window, a least-squares 

linear fit line is applied to the signal. A root-mean-square analysis is then performed 
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within the window, subtracting the local trend line’s y-coordinate from the integrated 

signal. This process is performed and averaged across all windows of a given size (n): 

 

𝐹(𝑛) = !
 !/!

!
!

(𝑋! − 𝑋!)!!
!!!

 !/!
!!!         Equation 5.1 

 

Where F(n) is the fluctuation magnitude at window n, N is the total number of strides in 

the time series, Xi is the integrated signal at stride interval i, and 𝑋i is the y-coordinate 

location of the local trend within window n. This process is averaged across all non-

overlapping windows (j) of size n (total number of windows = N/n). This procedure was 

performed on window sizes ranging from 4 to 50 (~ N/10) strides, providing F(n) for 

each window size. The choice to include maximal window sizes of N/10 was made 

because larger maximal window sizes (e.g., N/4) may be considered under sampled (Hu, 

Ivanov, Chen, Carpena, & Stanley, 2001; Paterson, Hill, & Lythgo, 2011). When F(n) 

and n are plotted on a double logarithmic graph, a linear relationship indicates the 

presence of scale invariant self-similarity (Hausdorff et al., 2000). The slope of the line of 

best fit on the double-log plot represents the scaling exponent (α), where: F(n) ∝ nα. A 

signal is considered to exhibit fractal-like persistent structure when 0.5 < α ≤ 1.0 

(Hausdorff et al., 1997; Hausdorff et al., 1995; Hausdorff et al., 1996), with α = 1.0 

representing 1/f behavior, whereby the power of the signal at a given frequency is 

inversely proportional to the frequency (Diniz et al., 2011; Keshner, 1982; West & 

Shlesinger, 1990). α = 0.5 indicates the absence of long-range correlations, equivalent to 

random white noise. When α > 1.0, the signal becomes nonstationary and approaches 
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Brownian motion (α = 1.5) or the integration of white noise, whereby the signal is 

random from point to point, yet its magnitude of temporal evolution is bound by the 

number of data points. While Brown noise is persistent, it can be considered overly 

structured and therefore too regular or constrained. This behavior is characterized by 

minimal fluctuations from stride to stride, and a slow drift of increasing or decreasing 

stride times. 

5.3.4.2 Gait Adaptability Performance  

 Relative phasing in the sagittal plane between the right and left legs was used to 

determine the adaptive capacity of the locomotor system (J. T. Choi & Bastian, 2007). 

Each ‘leg’ was defined as a segment from the greater trochanter to the lateral malleolus 

on the ipsilateral side (Figure 5.1). The angle of each leg was computed relative to the 

orientation of the leg during the standing calibration. Each stride was normalized to 100 

data points, and a cross correlation function was performed between the right and left leg 

for each stride. The cross correlation function evaluates correlation strengths while 

systematically shifting one signal (leg angle) by one data frame bi-directionally. The 

result is a series of correlation values across a range of lags from -1 to 1 stride cycles. 

Once normalized to the length of correlation data, if maximal negative correlation occurs 

at -1 or 1 (i.e., maximum number of lags in either direction), the signals are perfectly in-

phase, whereby the legs are moving in the same direction. When the maximal negative 

correlation occurs at zero lag, the signals are perfectly anti-phase, whereby the legs are 

moving in opposite directions. Gait performance was calculated based on the difference 

(in lags) from peak negative correlation to that of intended phasing (anti-phase) for each 

stride (Figure 5.1). A greater number of lags to reach peak negative correlation indicates 
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greater deviation from anti-phase. Two variables were calculated from these data. First, 

the summed absolute magnitude of deviation from intended phasing (PhaseDEV) (J. T. 

Choi & Bastian, 2007) across the first 50 strides represented error magnitude. Second,  

 
 

 
Figure 5.1: Determination of leg relative phasing. Left) determination of leg angle in 
the sagittal plane. The leg segment is created as a straight line from the greater trochanter 
to the ipsilateral heel. The leg angle is the angular displacement of the leg segment from 
its position during the standing calibration. Right) Determining deviation from intended 
anti-phase of the right (red solid line) and left (blue dashed-dotted line) hip angles via 
cross-correlation (grey dotted line) analysis. Phase Deviation was calculated as the shift 
(in lags) of the maximal negative correlation (Max XC (-)) to optimal anti-phasing (i.e., 
at 0-lag). 
 
 
 
time-to-adaptation (TtA, representing the rate of temporal adaptation, Figure 5.2) was 

acquired by fitting an exponential decay model to the first 400 strides of the deviation 

data (Equation 5.2). 

 

  𝑌 𝑥 = exp (𝑎 − 𝑏𝑥)                Equation 5.2 
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The variable Y represents the model fit at stride x, a is the initial value, and b is the rate 

of decay. TtA was then determined based on the conventions employed by Rabufitt et al. 

(2011) to find ‘time to stabilize’ in postural data: 

 

  𝑇𝑡𝐴 =  !
!∗!

                  Equation 5.3 

 

This method is considered a reasonable estimation of settling time, i.e., the moment at 

which 95% of the initial disturbance is dissipated, or the instant the model will shift from 

its initial value, a, to infinity (Rabuffetti et al., 2011). 

 

 

 
Figure 5.2: Exemplar of the application of an exponential decay model. Model (red 
dashed line) shown here relative to the phase deviation data (y-axis) and used to 
determine time-to-adaptation (shown here at 19 strides, green dash-dotted vertical line). 
Each blue circle represents the extent of deviation (in lags) from intended anti-phase 
between right and left legs for a given stride. Perfect anti-phase shown here as 0.0. Time-
to-adaptation based on the inverse of 3 * beta coefficient, which represents the time taken 
to dissipate 95% of the initial disturbance (i.e., area under the model curve). 
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5.3.5 Statistical Analysis 

 To distinguish fractal scaling data from non-correlated random processes, 

surrogate data sets were created by shuffling the original time series stride times for each 

subject and condition, and submitting the data to the DFA algorithm. Paired t-tests were 

used to compare surrogate data sets to the original time series fractal scaling. If the 

observed data’s fractal scaling values were statistically greater than the surrogate data’s 

scaling values, the original data were considered to exhibit long-range correlated 

behavior. Stride time fractal scaling exponents across gait conditions (PWS, half-PWS, 

Split 1, Split 2, Split 3) were assessed using separate one-way repeated measures analyses 

of variance (ANOVAs) for the right and left legs. When significant main effects of 

condition were observed, two-tailed, paired samples t-tests were used to compare fractal 

scaling exponents across conditions for each leg. In addition, paired samples t-tests were 

used to evaluate fractal scaling differences between the right and left leg within each 

condition. Results were accepted when p ≤ 0.05. The relationship between gait 

performance (PhaseDEV and TtA) and fractal scaling at PWS, Half-PWS, and during 

asymmetric trials was determined by fitting both simple linear and quadratic regression 

equations. All statistics were performed using R-studio software (Version 1.0.136, R 

Foundation for Statistical Computing, Vienna, Austria).  

 

5.4 Results 
	
 Paired t-tests between fractal scaling exponents of the observed versus surrogate 

data provided evidence for long-range correlations during all walking conditions for both 
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the right and left legs (Table 5.1, all p’s < .001). Surrogate data set α values were less 

than the empirically derived data. 

 
Table 5.1: Original and surrogate data scaling exponents across conditions. Statistical 
results of the separate repeated measures ANOVAs for the scaling exponent of the right 
and left legs. α = scaling exponent; PWS = preferred walking speed; Split = split-belt 
asymmetric walking; Adj = adjustment; Right and Left = Right and Left legs. Third row 
displays the results of paired t-tests between legs. Rows 4-5 are results of the randomly 
shuffled surrogate analysis, and rows 6-7 display results of paired t-tests between fractal 
scaling values of observed versus surrogate data. All data are reported as mean (standard 
deviation). 

Condition PWS Half-
PWS 

Split 1 Split 2 Split 3 F 
(4,56) 

P Adj. 

α-Right 0.69  
(.09) 

0.79  
(.09) 

0.94 
(.13) 

0.85 
(.14) 

0.83  
(.13) 11.004 < .001 None 

α-Left 0.72  
(.08) 

0.79  
(.08) 

0.86 
(.18) 

0.79 
(.15) 

0.76  
(.14) 3.02 .043 

Huynh- 
Feldt 
 

α  Left vs. 
α  Right 

p = 0.229 
t =  -1.26 

p = 0.214 
t = -1.30 

p < .001 
t = 6.33 

p < .001 
t = 4.84 

p < .001 
t = 9.45 

 
 
 

  

α-Right 
Surrogate 

0.53  
(.04) 

0.51  
(.03) 

0.52 
(.04) 

0.53 
(.04) 

0.51  
(.04) 

 
 
 

  

α-Left 
Surrogate 

0.52  
(.03) 

0.52  
(.07) 

0.52 
(.05) 

0.50 
(.05) 

0.51  
(.05) 

 
   

 
α-Right 
vs. α-
Right 
Surrogate 

p < .001 
t = 5.40 

p < .001 
t = 11.12 

p < .001 
t = 11.62 

p < .001 
t = 8.79 

p < .001 
t = 11.19 

 
 
 
 

  

 
α-Left vs. 
α-Left 
Surrogate 

p < .001 
t = 8.90 

p < .001 
t = 11.50 

p < .001 
t = 7.60 

p < .001 
t = 7.11 

p < .001 
t = 5.66    

 
 
 
 For fractal scaling exponents across conditions, there was an overall main effect 

of condition (Table 5.1, Figure 5.3) for the right leg (F4,56 = 11.004, p < .001) and left leg 

(F4,56 = 3.02, p = .043). The left leg fractal scaling data violated the assumption of 

sphericity (Mauchly’s p = .039), so a Huynh-Feldt adjustment was applied. For the right  
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Figure 5.3: Fractal scaling exponents across conditions. Scaling values (mean ± SEM) 
reported for the left (blue circles) and right (red triangles) legs of the first 512 strides for 
each walking trial. Horizontal pink dotted line located at y = 1.0 represents 1/f pink noise 
(optimal fractality). * = significantly greater than PWS for right leg. ^ = significantly 
greater than PWS for left leg. % = significantly greater than Half-PWS and Split-Belt 3 
for right leg. # = significant difference between right and left leg scaling exponents. 
 
 
 
leg, paired samples t-tests revealed significant differences between PWS and all other 

conditions (p = .008, < .001, < .001, and .002 for half-PWS, Split 1, Split 2, and Split 3, 

respectively). Half-PWS was significantly lower than Split 1 (p < .001). Finally, Split 1 

was greater than Split 3 (p = .030). For the left leg, paired t-tests revealed significant 

differences between PWS and half-PWS and Split 1 (p = .005 and .014, respectively). 
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Both slow walking (Half-PWS) and the first asymmetric trial (Split 1) yielded higher 

fractal scaling values compared to PWS. PWS across participants was 1.21 ± 0.12 m*s-1. 

 Linear and quadratic regression equations revealed no significant relationships 

between fractal scaling during steady state unperturbed walking (PWS or half-PWS) and 

PhaseDEV or TtA (Table 5.2, all p’s > 0.05, r2’s < 0.13). However, there were significant  

 

Table 5.2: Comparison of gait adaptability performance during asymmetric walking to 
fractal scaling exponents. Adaptive performance (PhaseDEV and TtA) compared 
separately for the right (αR) and left (αL) legs fractal scaling during steady state walking at 
preferred (PWS) and half-preferred (Half-PWS) speeds and asymmetric walking (Split 1). 
Linear models did not yield any significant effects, but a quadratic model fit resulted in 
significant associations between adaptability measures and both αR and αL during 
asymmetric walking. 

 
 

Dependent 
Variable 

Independent 
Variable 

Model p R2 Significant 

      
PhaseDEV at 1st 
Split-Belt 
Condition 

αR at PWS Linear 0.75 -0.07  
Quadratic 0.64 -0.08  

αL at PWS 
Linear 0.51 -0.04  
Quadratic 0.29 0.05  

 

αR at Half-PWS Linear 
Quadratic 

0.69 
0.40 

-0.06 
-0.00 

 

αL at Half-PWS 
Linear 
Quadratic 

0.55 
0.84 

-0.05 
-0.13 

 

 

αR at Split 1 
Linear 0.98 -0.08  
Quadratic < .001 0.70 * 

αL at Split 1 Linear 0.87 -0.07  
Quadratic < .001 0.65 * 

TtA at 1st 
Split-Belt 
Condition 

αR at PWS Liner 0.41 -0.02  
Quadratic 0.51 -0.04  

αL at PWS 
Linear 0.46 -0.03  

 
Quadratic 0.71 -0.10  

αR at Half-PWS 
Linear 
Quadratic 

0.19 
0.30 

0.06 
0.04 

 

αL at Half-PWS 
Linear 
Quadratic 

0.22 
0.49 

0.04 
-0.03 

 

 

αR at Split 1 Linear 0.29 0.01  
Quadratic 0.01 0.43 * 

αL at Split 1 Linear 0.18 0.06  
Quadratic 0.03 0.34 * 
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Figure 5.4: Relationship between gait adaptability performance and fractal scaling 
exponent. Gait adaptability performance (Phase Deviation and Time-to-Adaptation) and 
fractal scaling (α) shown during steady state (PWS, top row) and the 1st split-belt (Split 1, 
bottom row) conditions. Right leg = red circles and solid lines. Left leg = blue triangles 
and dotted lines. Right leg traveled at preferred speed, and left leg at half of preferred 
speed. Points display each participant, while lines are quadratic fits. There were no 
associations between PWS α and Phase Deviation or TtA during asymmetric walking. 
However, there were significant relationships for phase deviation and the asymmetric 
walking scaling exponent of the right (p < .001, r2 = .70) and left (p < .001, r2 = .65) legs, 
and for time-to-adaptation and the asymmetric walking scaling exponent of the right (p = 
.01, r2 = .43) and left (p = .034, r2 = .34) legs. 
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quadratic relationships between both measures of adaptability performance (PhaseDEV and 

TtA) and both legs’ fractal scaling exponents during the first asymmetric (Split 1) 

walking trial (PhaseDEV vs. right and left legs r2 = .70 and .65, respectively, and TtA vs. 

right and left legs r2 = .43 and .34, respectively). Specifically, the data displayed a U-

shaped relationship, whereby compared to the group mean, lower or higher fractal scaling 

measures were associated with the poorest performance (Figure 5.4).  

 Finally, comparing the scaling exponents of the right versus left leg, paired 

samples t-tests revealed no differences during PWS or Half-PWS. However, the right leg 

α was significantly higher than the left for all three asymmetric walking conditions 

(Table 5.1, Figure 5.3, p < .001 for Split 1, Split 2, Split 3). The right leg’s α remained 

elevated for all asymmetric conditions, and did not return to that of PWS. 

 

5.5 Discussion 
	
 The purpose of this experiment was to determine if unperturbed or asymmetric 

walking fractal dynamics were related to the adaptive capacity of the locomotor system. 

To test this, participants were exposed to task-level constraints in the form of asymmetric 

treadmill walking. No associations between fractality during preferred or half preferred 

speed walking and adaptability performance during asymmetric walking were evident. 

However, a relationship between asymmetrically constrained fractality and adaptability 

did emerge. As a group, stride interval fluctuations exhibited increased fractality closer to 

α = 1.0 in response to forced asymmetric walking. Those individuals whose stride time 

fluctuations manifested as α ~ 1.0 also displayed the best adaptive gait performance in 

response to the asymmetric walking task. Repeated exposure to asymmetric walking 
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yielded fractal scaling values that were statistically similar to those observed during 

unperturbed preferred speed walking in the non-dominant (but not the dominant) limb. 

Finally while both limbs’ α increased during asymmetric walking, it was the faster 

moving dominant leg that yielded higher scaling values compared to the slower moving 

non-dominant limb.  

5.5.1 Fractal Structure During Steady State Walking is Not Associated with Gait 
Adaptation 

 The main purpose of this study was to determine the potential relationship 

between steady state unperturbed stride time fractal dynamics and the capacity for 

individuals to adapt their locomotor patterns effectively. PWS and half-PWS fractal 

dynamics were not associated with adaptation performance during the asymmetric 

walking conditions (see Table 5.2, all p’s > .05 and r2’s < .13). Thus, prediction of gait 

adaptability does not appear to be possible by simply analyzing unperturbed walking 

fractality. 

 These results speak to a broader discussion regarding research in gait adaptability 

and stability. Scientists continue to search for gait measures during steady state, 

unperturbed walking that may predict an individual’s ability to successfully respond to a 

future perturbation or environmental stressor. While these attempts are clearly 

worthwhile, it is also apparent that unperturbed walking behavior is fundamentally 

different from the behavior that emerges when individuals are exposed to external 

perturbations or organismic, task, or environmental constraints. Indeed, in a study of 97 

healthy older women who were assessed for gait parameters, and then prospectively 

monitored for falls over a period of 12 months, stride time fractality was not different 
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between those who eventually did experience a fall and those who did not (Paterson et 

al., 2011). The findings from this current study support this notion, as unperturbed 

walking fractal scaling could not predict adaptive gait performance. 

5.5.2 Fractal Structure During Perturbed Walking Associates with Gait Adaptation 

 While fractal dynamics during unperturbed walking were not correlated to 

adaptive gait behavior, the group as a whole displayed increased fractality in response to 

asymmetric walking constraints compared to steady state walking (see section 5.5.3 

below, Figure 5.3 and Table 5.1). Moreover, this increase was not the same for everyone. 

In particular, some individuals displayed minor increases in fractality (α ~ 0.7), while 

others displayed large increases (α ~ 1.2). The lower scaling exponents indicate a more 

random, less organized behavior, while the higher scaling exponents indicate overly rigid 

and constrained behavior. These ‘extreme’ participants performed the poorest in adapting 

to anti-phase walking (Figure 5.4). That is, asymmetric walking fractal dynamics were 

quadratically related to gait adaptability performance. 

 These findings provide information regarding the purpose and utility of fractality 

in biological systems; these structured fluctuations may in fact benefit the locomotor 

system. Shifting fractality too high (i.e., α > 1.0, closer to the less flexible Brownian-type 

motion) may yield deviations that persist. Conversely, it appears that not shifting 

fractality closer to α = 1.0 (i.e., α ~ .7) may yield patterns that are not persistent enough. 

The often observed fractality exhibited by healthy young adults is α ~ 0.75. This value is 

directly between random (α = 0.5) and optimally fractal (α = 1.0). Rhea and Kiefer 

(2013) argue that this level of fractality allows for the locomotor system to behave in a 
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complex, flexible manner, while also preserving ‘adaptive variation’ in response to 

internal or external demands. While this may hold true during unperturbed walking, 

exposure to an individual, task, or environmental constraint appears to require that the 

system reorganize to increase interactions across the many subsystems at various 

spatiotemporal scales. This is precisely what occurred in this experiment, and those who 

reorganized in a manner that manifested as α ~ 1.0 exhibited the least deviation from 

intended phasing and fastest adaptation to the imposed walking constraints. Exhibiting 

fractal scaling ~ 0.75 during unperturbed, symmetric walking may not be optimizing 

fractal dynamics because some other component of the system is instead being optimized, 

such as metabolic cost or dynamic stability. When exposed to challenging gait, the 

increase in fractal scaling may improve adaptability but also likely comes at a cost to a 

different system, such as metabolic or biomechanical work performed. 

5.5.3 1/f Fractality Emerges in Response to Task-Level Constraints During Walking 

 As mentioned in the previous section, fractality increased from unperturbed to 

asymmetric walking. This finding did not support the hypothesis that exposure to 

asymmetric walking would break down long-range correlations (i.e., fractal scaling closer 

to random or α = 0.5). This idea was based on the assumption that prolonged perturbed 

walking would introduce randomness to the patterns. Perturbations have been known to 

weaken long-range correlations within a behavior (Diniz et al., 2011). To the best of the 

authors’ knowledge, determining the effects of constraining the locomotor system’s 

symmetry on fractality has not yet been tested. Contrary to the hypothesis, stride time 

fractality increased closer to α = 1.0. 
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 The fact that fractality increased closer to 1/f noise in response to a constraint is 

supported by research in alternative paradigms in motor behavior. Research in bimanual 

coordination has provided evidence that 1/f fluctuations may emerge close to phase 

transitions (Torre, 2010). Dynamical systems display criticality when approaching a shift 

from one stable state to another (Kelso, 1995; Kelso & Ding, 1993; Van Emmerik, 

Miller, et al., 2013). Specifically, systems exhibit critical fluctuations, as shown by 

increased variability, as well as critical slowing down, characterized by increased time to 

return to a stable state following perturbations. Critical fluctuations allow systems to exit 

locally stable states to transition to a more stable state. These fluctuations near phase 

transitions have typically been considered to be equivalent to white noise (e.g., see the 

Haken-Kelso-Bunz model (Haken, Kelso, & Bunz, 1985; Kelso, 1995). However, 

physics-based numerical simulations provide evidence that self-organized criticality 

exhibits 1/f fluctuations (Bak & Chen, 1991). Empirically, Torre and colleagues (2011) 

posited that 1/f fluctuations would increase the likelihood of phase transitions due to the 

inherently ‘persistent’ nature of the behavior. The authors provided evidence in bimanual 

coordinative transitions from locally stable anti-phase to a more globally stable in-phase 

that these fluctuations do in fact become more fractal-like closer to the transition point. It 

should be noted, though, that fractal-like fluctuations that emerge from self-organized 

criticality are thought to arise from local interactions (i.e., interactions between processes 

at neighboring scales) that manifest as globally scale-invariant behavior (Kelty-Stephen 

et al., 2013). Alternative methods, such as a multifractal approach, may be needed to 

provide further evidence for interactivity across various spatiotemporal scales.  
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 In the postural literature, the shift from quiet stance with eyes open to eyes closed, 

an organism-level constraint, results in fractal scaling shifting closer to 1/f in young 

healthy adults (Caballero Sanchez, Barbado Murillo, Davids, & Moreno Hernandez, 

2016; Tanaka, Uetake, Kuriki, & Ikeda, 2002). Moreover, inducing task-level constraints 

to posture, such as reducing the diameter of the standing surface, also results in fractality 

closer to 1/f (Caballero Sanchez et al., 2016). Meanwhile, postural complexity (as 

measured by multiscale entropy) is reduced when eyes are closed (Busa, Jones, Hamill, & 

van Emmerik, 2016). This may indicate that the postural system reorganizes to strengthen 

the interactivity between temporal scales (i.e., α closer to 1.0) when confronted with 

reduced complexity at and across temporal scales (i.e., reduced entropy) (Busa, 

Ducharme, & van Emmerik, 2016). 

 Perhaps the only evidence of increased fractality caused by a constraint in human 

locomotion has been via manipulation of gait speed. When individuals walk faster or 

slower than their preferred walking speed, fractality may increase closer to 1/f (Hausdorff 

et al., 1996; Jordan et al., 2007b). Our results agree with previous studies, as fractal 

scaling increased from ~0.70 in PWS to ~0.79 in half-PWS (Figure 5.3, Table 5.2). While 

preferred speed walking could be considered the most stable attractor state, slow or fast 

walking could reasonably be considered to be states that are approaching a transition to 

standing and running, respectively. Thus, the increase in fractality during fast, slow, or 

asymmetric walking may indicate that the system is preparing for a phase transition by 

increasing fractal-like critical fluctuations. 
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5.5.4 Habituation to Repeated Exposure to Asymmetric Gait 

  The hypothesis that repeated exposure to asymmetric constraints would yield 

more fractal-like structured variability was not confirmed, as the second and third split-

belt trials yielded decreasing fractal scaling values (Figure 5.3, Table 5.1). However, this 

hypothesis was based on the earlier hypothesis that asymmetric gait would yield lower 

fractal scaling values, and thus greater exposure to asymmetric walking would increase 

fractality closer to that of symmetric walking. Considering the initial asymmetric 

condition (split 1) exhibited fractal scaling indices that deviated from those observed 

during unperturbed walking (PWS), the final asymmetric walking trials’ α (split 2 and 

split 3) returned to that of PWS for the non-dominant left leg, thus indicating a learning 

or habituation effect. During a novel gait task, the locomotor system reorganizes, 

manifesting as greater fractal scaling exponents. After several minutes of asymmetric 

walking, the task is no longer novel and the system returns to fractal scaling exponents 

similar to those observed during PWS. However, the dominant right leg α did not return 

to that of steady state, indicating differential response by legs of either differing 

dominance, belt speed, or possibly task difficulty (see section 5.5.5 below).  

5.5.5 The Magnitude of Increased Fractality is Not Constant Across Limbs 

 The general phenomenon in gait fractality research is that walking slower than 

preferred gait speeds yields higher scaling exponents, i.e., closer to α = 1.0 (Hausdorff et 

al., 1996; Jordan et al., 2007b). Again, the results from this study support this 

observation. Surprisingly, though, while the asymmetric walking increased fractal scaling 

in both legs, it was the right dominant leg that increased to a greater extent (Figure 5.3), 

and remained elevated compared the left leg for all asymmetric trials. These findings are 
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of interest because the right leg was traveling at PWS, while the left leg traveled at the 

slow walking speed. Thus the hypothesis that the slower moving leg would yield larger 

fractal scaling values during asymmetric walking is rejected. If gait speed generated a 

fixed effect on fractality, our hypothesis would have likely been confirmed. Given these 

findings, it appears that the relationship between gait speed and fractal dynamics is not 

absolute. Rather, this relationship emerges under imposed constraints as a functional 

coupling between limbs to achieve the task goal. 

 One possible explanation for these results is that task difficulty was not the same 

for both limbs. The sustained increase in the dominant leg’s α may be because the faster 

moving leg experienced a more difficult component of the walking task. While PWS is 

generally considered the most comfortable and stable speed, contrasting this speed with a 

slower moving belt causes a disharmony between legs. Anecdotally, the greatest 

challenge (and possibly least stable aspect) of the asymmetric walking task was 

controlling the faster moving limb. In general, walking constraints that increase task 

difficulty appear to manifest as increased fractal scaling (α closer to 1.0) in order to best 

respond to the challenge. It stands to reason that the less challenged, slower moving leg 

habituated to the task (and whose α returned to that of symmetric walking) more rapidly 

than the more challenged faster moving leg. 

 Alternatively, these limb-specific differences may be a result of their inherent 

relationship as coupled oscillators. There is a general lack of research regarding the role 

of limb dominance in split-belt walking adaptation. Moreover, the adaptive changes to 

symmetry in response to asymmetric walking do not appear to be consistently driven by 

either the faster or slower moving leg (Bruijn et al., 2012). Thus, the independent or 
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interactive effects of speed and limb dominance on outcome measures are difficult to 

ascertain. However, the interaction between lower limbs during locomotion could be 

considered a mutual coupling between nonlinear oscillators (Sternad, Turvey, & 

Saltzman, 1999). In the study herein, the limbs’ resonant frequencies were not altered 

(e.g., via changing limb length or center of mass location), but rather the velocity of (at 

least) one component of each cycle. Even though one treadmill belt traveled at twice the 

speed of the other, the limbs were still in 1:1 relative anti-phasing. This indicates 

considerable co-dependence. That is, each stride time of the right leg was dependent upon 

the step and stride timing of the left leg, and vice versa. All of the participants were right-

leg dominant. While the locomotor system was able to respond to the asymmetry by 

retaining 1:1 phasing, the dominant leg/oscillator may have hierarchically presumed 

control of the system’s requirement for increased interactivity across temporal scales 

when exposed to perturbed gait. Indeed, it is plausible that limb dominance, stride speed, 

or task difficulty may affect the organization of fractal dynamics when gait is 

constrained. 

5.5.6 Limitations 

 Assessment of fractality was based on stride times, and therefore all reported 

findings in this study are based on a single gait measure, whereas a multitude of other 

parameters could have been evaluated. However, the choice to evaluate stride time was 

twofold: 1) stride time includes the entire gait cycle (e.g., dual support, single support, 

heel strike, push-off), and thus represents the ‘final output’ of the many processes 

occurring within the locomotor system (Hausdorff, 2007), and 2) stride time has by far 
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been the most analyzed gait parameter in the literature, and therefore analysis of stride 

time herein allows for comparisons with other studies. 

 Gait adaptability performance was defined based on the relative phasing between 

right and left legs. It can be argued that all participants displayed adaptive gait in that all 

participants were able to successfully continue walking on the treadmill (i.e., no 

participants fell or walked-off the treadmill). However, the phasing of the limbs during 

PWS and Half-PWS was anti-phase (180°). By the middle or end of the first asymmetric 

walking condition, nearly all participants returned to 180° phasing. Finally, when treating 

the legs as two coupled oscillators performing a rhythmic motion, it has been generally 

accepted to assess stable performance via the relative phasing between oscillators 

(Sternad et al., 1999). 

 Another potential limitation was that the same (left, non-dominant) leg was 

slowed down for each participant during the asymmetric trials. However, the main 

outcome in this study was that speed was the driving factor, and the faster moving 

leg/oscillator enslaved the slower moving one. Although leg dominance may affect 

oscillator dynamics, in this case it would be unlikely to modify the results. 

 

5.6 Conclusion 
	
 Stride time fractal dynamics during steady state, unperturbed walking did not 

predict the ability for participants to adapt their gait patterns in response to asymmetric 

walking constraints. However, during asymmetric split-belt walking, most participants’ 

fractal dynamics increased closer to α = 1.0. Individuals who displayed extreme fractal 

scaling during this condition (i.e., α < ~0.8 or α > ~1.1) also exhibited the poorest 
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adaptive performance, as measured by lower limb relative phase. Based on this 

experiment, stride time fractality during unperturbed walking can vary considerably 

without apparent detriment to the locomotor system. However, stride time fractality 

closer to α = 1.0 while walking under more challenging conditions was associated with 

faster adaptations to asymmetric walking. The increase in fractality closer to α = 1.0 may 

be explained by notions such as self-organized criticality, representing the meta-stability 

of the locomotor system, which would allow different gait patterns to be quickly adopted. 

Finally, the relationship between gait speed and fractal dynamics is not maintained during 

asymmetric walking, and under these task constraints, limb dominance or task difficulty 

may be a more important factor.  
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CHAPTER VI 

STRIDE TIME FRACTAL DYNAMICS AND GAIT ADAPTABILITY ARE 

SIMILAR IN ACTIVE YOUNG AND OLDER ADULTS UNDER NORMAL AND 

ASYMMETRIC WALKING  

 

6.1 Abstract 
	
 The ability to adapt locomotor patterns to task or environmental demands is a key 

component of maintaining balance. Older adults may be less adaptable, and therefore 

more prone to falling. However, physical activity status may be a critical consideration 

when attempting to evaluate age-based changes to gait. Assessment of the correlation 

structure of gait parameters (i.e., fractal dynamics) may reveal the overall adaptive 

capacity of the system. Behaviors whose fluctuation magnitudes exhibit proportional 

scale-invariance (i.e., slope (α) ~ 1.0, i.e., 1/f) may be considered more adaptable. The 

purpose of this study was to investigate potential differences between physical activity-

matched young and older adults’ fractal dynamics and gait adaptability during 

asymmetric walking, and to determine if fractal dynamics predict adaptive capacity. 

Fifteen young and 15 older active adults walked at their preferred speed, at half of their 

preferred speed, and asymmetrically whereby their dominant leg moved at preferred 

speed, and non-dominant leg at half preferred speed. Relative phasing of the lower limbs 

was used to determine adaptation to asymmetric walking, and detrended fluctuation 

analysis was used to assess the fractal correlation structure of stride times. Results 

revealed that the young and older cohorts displayed similar unperturbed and asymmetric 

walking fractal dynamics and adaptive gait performance. Fractal dynamics during 
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preferred speed walking was moderately associated with gait adaptability performance in 

the young but not older cohort. Fractal dynamics during constrained asymmetric walking 

was moderately associated with gait adaptability performance in the older adult cohort, 

whereby larger α values coincided with better adaptive performance. Fractal dynamics 

increased (α closer to 1.0) from steady state unperturbed to asymmetrically constrained 

walking in both young and older adults in the faster moving dominant leg, but not in the 

slower moving, non-dominant leg. The observed increase in fractal dynamics during 

asymmetric walking may represent a reorganization of the locomotor system (i.e., 

enhanced cooperativity of processes across spatiotemporal scales) when constrained in 

some manner, and this modification may aid in successfully adapting gait patterns. 

Findings from this study indicate there are no age-based differences in fractal dynamics 

or gait adaptability when active participants are assessed, and that fractal dynamics 

moderately associate with gait adaptability performance. 
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6.2 Introduction 
	
 Aging is associated with naturally occurring reductions in muscle mass and 

impairments to visual, somatosensory, and vestibular information. Perhaps expectedly, 

fall incidents are problematic in adults aged 65 years and older. Falls are the main cause 

of injury-based deaths and hospitalization in older adults (CDC, 2011, 2012). For this 

reason, an abundance of studies have attempted to better understand why falls occur, and 

how to reduce the likelihood of future falls. Although the issue of falls is likely 

multifaceted, one potential reason for the prevalence of falls in older adults is that their 

gait may become generally less adaptable (Bierbaum, Peper, Karamanidis, & Arampatzis, 

2010; Bruijn et al., 2012). Gait adaptability can be defined as the locomotor system’s 

ability to respond to changing demands (Balasubramanian et al., 2014). Specifically, 

adaptive gait is capable of changing locomotor patterns based on imposed constraints. 

These constraints may be at the individual, task, or environmental level (Newell, 1986). 

Indeed, successful navigation through any environment or under imposed constraints 

requires continual adjustments to otherwise steady state rhythmic patterns. However, 

describing and quantifying adaptability in locomotion has proven to be challenging. 

Generally, gait adaptability paradigms involve walking tasks that directly require 

locomotor patterns to change in response to imposed constraints. In recent decades, 

however, an alternative approach involves algorithms derived from statistical physics and 

applied to steady state gait dynamics that may inform about the overall adaptive capacity 

of the locomotor system. 

 Chaos theory has provided valuable insights regarding the empirical investigation 

of biological signals. By abandoning the notion that a given behavior or structure only 
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exists on a single temporal or spatial scale, scientists have gained access to entirely new 

information about the organization of the system of interest. Benoit Mandelbrot 

developed the concept of a ‘fractal’, which reflects a structure or behavior that is self-

similar across temporal or spatial scales (Mandelbrot, 1977). That is, small behaviors 

across short temporal or small spatial scales are statistically similar to the behavior at 

longer temporal or larger spatial scales; the small behaviors are smaller ‘copies’ of larger 

behaviors (Liebovitch, 1998). These behaviors appear to be exponentially related. That is, 

log-transforming these behaviors or structures across various scales reveals a linear 

relationship, indicating power law scale-invariance. The behavior’s description (mean, 

variance) is not universal but rather a function of the scale size that is being examined 

(Schroeder, 1991). This phenomenon can also be evaluated by examining a structure’s 

autocorrelation properties. A random process will approach a value of 0 at lag-1, 

indicating each data point lacks dependence upon any other. In contrast, a fractal-like 

process will remain correlated at lag-1, and this correlation decays in a power law 

fashion. This characteristic indicates the signal at any given point exhibits dependence 

upon previous and future states. For this reason, fractal-like processes are also known as 

long-range correlated because they depend not only upon nearby previous and future 

states, but also across several dozen observations. 

 In human physiology, statistical analyses have provided evidence for the 

existence of fractal behavior in various temporal and spatial structures. For example, 

analysis of the time interval between heart beats has shown that heart rate variability in 

young, healthy adults displays scale invariance in which the magnitude of fluctuations is 

directly proportional to the scale (i.e., number of inter beat intervals) analyzed (Peng et 
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al., 1995). This relationship represents 1/f scaling, whereby the power of the signal is 

inversely proportional to the frequency (Diniz et al., 2011; Keshner, 1982; West & 

Shlesinger, 1990). Exhibiting 1/f organization signifies a behaviorally complex system 

that is considered adaptable (Lipsitz, 2002; Lipsitz & Goldberger, 1992). 

 Fractal analyses in human locomotion have shed light into the possible 

organization of the locomotor system that yields adaptive capabilities. The variability of 

timing from heel strike to subsequent heel strike of the same foot (i.e., stride time) has 

been a gait parameter of interest in terms of its relation to fall risk (Hausdorff, 2007; 

Maki, 1997). However, whereas numerous studies have evaluated the magnitude of stride 

time variability as a measure of systemic control, fractal analyses evaluate the structure 

of this variability. Fluctuations from stride to stride have traditionally been considered 

random noise that is not only unbeneficial but unwanted. Deeper investigation into these 

biophysical signals has provided evidence that this variance is actually structured in a 

complex manner. Fluctuations at short temporal scales are statistically correlated to larger 

fluctuations at longer scales (Hausdorff, 2007; Hausdorff et al., 1995; Hausdorff et al., 

1996). That is, the magnitude of fluctuations increases at longer time scales, yet this 

increase is not random but rather systematic. These long-range correlations have been 

observed across hundreds of strides. Fractal or long-range correlated organization may 

represent an adaptive locomotor system because these correlations across scales may 

characterize interactions within physiological processes across various temporal scales 

that ultimately help attenuate internal or external perturbations (Delignieres & Marmelat, 

2012; Delignieres et al., 2006; Rhea & Kiefer, 2013; Stergiou & Decker, 2011). For 

example, cross bridge cycling at a single sarcomere occurs at very small spatiotemporal 
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scales, yet must cooperate with other sarcomeres throughout a motor unit, which must 

combine with other motor units within a muscle, which must interact with other muscles 

to generate coordinated motion of the limbs. In this example, limb dynamics would 

represent processes occurring at large spatiotemporal scales. 

 While evidence of fractal organization in gait parameter variability exists in 

young adults, fractal dynamics may change across the lifespan (Hausdorff et al., 1997). 

That is, the organization of variability at different temporal scales may be inherently 

different in young and older adults. Older adults have been shown to exhibit less 

structured, more random stride interval fluctuations (Hausdorff et al., 1997). This may 

indicate a reduction in the interactions across spatiotemporal scales, and a corresponding 

reduction in gait adaptability. Alternatively, these fluctuations may simply represent 

higher stride-to-stride variability (that is, variance at short temporal scales) that may 

represent an overall reduction in systemic control. A separate study, though, reported no 

age differences in fluctuation structure (Bollens, Crevecoeur, Detrembleur, Guillery, & 

Lejeune, 2012). However, the study that did not observe age-related differences used a 

modified analysis to detect long-range correlations. In addition to healthy older adults, 

those with neurological disorders such as Huntington’s (Hausdorff et al., 1997) and 

Parkinson’s (Hausdorff, 2009) disease also display reduced fractality. Altered fractality in 

those with neurological disorders have led some researchers to conclude that higher order 

brain centers are the origin of locomotor fractal behavior. However, this brain-

emphasized concept contradicts the notion that fractal behavior emerges as a result of 

interactivity across spatiotemporal scales that involve all systems involved in the control 

of locomotion. Given that the gait parameters analyzed are typically global 
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representations of the locomotor system, explaining fractal behavior via one or a few 

physiological systems would require rejection of process interactivity. Finally, older 

adults who report a history of previous falls demonstrate reduced fractality beyond that of 

healthy older adults (Herman et al., 2005). However, these findings are not ubiquitous, as 

another study did not find differences between fallers and non-fallers (Paterson et al., 

2011). Clearly, more research is warranted to understand the relationship between gait 

fractality and healthy and diseased aging. 

 The concept of ‘gait adaptability’ has been scrutinized theoretically and 

mathematically, yet it is difficult to assess experimentally. For example, common 

experimental designs used to evaluate adaptability entails walking over obstacles 

(Heijnen et al., 2012), stepping onto specified locations on the floor (J. T. Choi et al., 

2016), or exposure to repeated slip perturbations (Pai & Bhatt, 2007). Generally, these 

paradigms consist of various discrete perturbations that require adaptive changes to 

locomotor patterns (e.g., greater toe clearance to step over an obstacle) over the course of 

several trials. 

 In addition to the abovementioned paradigms, advances in equipment have 

allowed for an entirely new line of experimental design for the study of adaptive gait. 

Specifically, the advent of the split-belt treadmill paradigm affords new experiments that 

evoke discrete or prolonged walking constraints (Bruijn et al., 2012; J. T. Choi & 

Bastian, 2007; J. T. Choi et al., 2009; Dietz et al., 1994). A split-belt treadmill has two 

adjacent belts with separate motors that are independently controlled, thereby allowing 

researchers to change one belt’s velocity, acceleration, and even direction of travel from 

the other. In essence, researchers can elicit prolonged asymmetric walking constraints in 
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order to quantify how and how well participants adapt. The general response to eliciting 

asymmetric belt speeds is that participants attempt to maintain or regain symmetry 

between legs, such as leg relative phasing (anti-phase) or step length symmetry, possibly 

in order to become more stable (Bruijn et al., 2012; J. T. Choi & Bastian, 2007; Dietz et 

al., 1994; Mawase et al., 2016). Older adults have been shown to modify their gait 

patterns at a slower rate and show fewer aftereffects (i.e., evidence of adaptation) 

compared to young adults (Bruijn et al., 2012), suggesting a lower capacity to adapt.  

 One important note is that the study by Bruijn and colleagues (Bruijn et al., 2012) 

did not take into account participants’ daily physical activity habits. Considering that ~ 

60% of older adults report participating in little or no moderate or vigorous physical 

activity regularly (Brach, Simonsick, Kritchevsky, Yaffe, & Newman, 2004; Crespo, 

Keteyian, Heath, & Sempos, 1996), their older adults may have been more sedentary than 

their young adults, which could be a confounding factor. Accounting for physical activity 

has been shown to eliminate previously-observed differences between age groups in other 

areas of physiology, such as muscular oxidative capacity (Larsen, Callahan, Foulis, & 

Kent-Braun, 2012).  

 Fractal analyses are thought to quantify the adaptive capacity of the locomotor 

system (Delignieres & Marmelat, 2012; Delignieres et al., 2006; Rhea & Kiefer, 2013). 

However, most of the studies assessing fractality have not incorporated paradigms that 

probe the system’s adaptability by evoking a task constraint. Without this probing, it is 

difficult to determine if these measures actually describe gait adaptability. Preliminary 

research has provided empirical support that stride time fractality during constrained 

(asymmetric) walking, but not during unperturbed steady state walking, is associated with 
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participants’ abilities to adapt their locomotor patterns effectively and expeditiously 

(Ducharme, Liddy, Haddad, Claxton, & Van Emmerik, 2017). When exposed to 

asymmetric walking, young adults’ fractality increased to more 1/f-like organization. 

Those individuals who exhibited fractal dynamics that deviated from 1/f-like organization 

(more random or overly structured/constrained) were less able to adapt to the constraint.  

 However, while constrained-walking fractality may be associated with gait 

adaptability in healthy young adults, this has not been tested in older adults. Older adults 

are a more vulnerable cohort in terms of experiencing falls and sustaining more severe 

injuries as a result. Moreover, while Bruijn et al. (2012) observed reductions in gait 

adaptability in older compared to young adults on a split-belt treadmill, physical activity 

level was not taken into account. Thus, the purpose of this study was to investigate the 

relationship between stride time fractal dynamics and gait adaptability in young and older 

adults. To control for the potential effects of physical activity, this study recruited 

individuals who self-reported being highly physically active. It was hypothesized that: 1) 

older adults would exhibit reduced fractality compared to young adults during 

unconstrained walking, and in line with the previous study (Ducharme et al., 2017), 2) 

unperturbed walking would not be associated with gait adaptability, while irrespective of 

hypothesis 1, 3) young and older adults’ asymmetric walking stride time fractality would 

be associated with gait adaptability performance. In addition, while young adults’ fractal 

behavior increases when exposed to challenging gait (Ducharme et al., 2017), there is still 

evidence that perturbations weaken long-range correlated behavior (Diniz et al., 2011). 

Thus, it was hypothesized that 4) older adults fractality would decrease (i.e., become 

more random) from unconstrained to constrained walking. Next, and based on prior 
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research (Bruijn et al., 2012), it was hypothesized that 5) older adults would exhibit 

reduced gait adaptability compared to young adults. Finally, the previous split-belt 

experiment (Ducharme et al., 2017) observed a learning effect from the first to third 

asymmetric walking condition, whereby fractal dynamics returned to values observed 

during unperturbed walking. Thus, it was hypothesized that: 6) repeated exposure to 

asymmetric walking will yield a learning effect, characterized by decreased fractal 

scaling values across asymmetric walking conditions. 

 

6.3 Methods 

6.3.1 Participants 

 Fifteen young (9 female, mean ± SD age 28.9±5.6 years, height 169.9±10.3 cm, 

mass 74.3±10.3 kg) and 15 older (9 female, mean ± SD age 64.7±2.7 years, height 

168.7±9.1 cm, mass 74.98±9.4 kg) adults volunteered for this study. Participants’ limb 

dominance was determined by asking which leg they would likely use to kick a ball. As 

part of the inclusion criteria, all participants self-reported partaking in at least 150 

minutes per week of moderate intensity physical activity, based on a Godin Leisure-Time 

Exercise questionnaire (Godin & Shephard, 1997). All participants were free from 

neurological, visual, or vestibular disease or impairments, or any orthopedic issues that 

may affect walking. In addition, participants declared that they were familiar walking on 

a treadmill, but had not experienced asymmetric walking on a split-belt treadmill. Finally, 

all participants completed a Physical Activity Readiness Questionnaire (PAR-Q) and 

informed consent document. The local Institutional Review Board approved this study. 
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6.3.2 Experimental Apparatus 

 Participants stood and walked on a split-belt treadmill (Bertec Corporation, 

Columbus, OH, USA). This treadmill has two parallel belts whose speed, acceleration, 

and direction of motion could be independently controlled. Participants wore a shoulder-

strapped harness at all times to prevent contact with the ground in the event of a fall. The 

treadmill was surrounded by 4 high speed cameras (Oqus, Qualisys, Gothenburg, 

Sweden) that collected kinematics at 120 Hz. Eight markers were placed bilaterally on 

each participant in the following locations: toe (5th metatarsal), heel (3cm inferior to the 

lateral malleolus), knee (femoral lateral epicondyle), and hip (greater trochanter). One 

additional marker was placed near each participant’s 1st sacral vertebrae.  

6.3.3 Experimental Protocol  

 This study took place over the course of two sessions, one week apart. Session 1 

first entailed determination of preferred walking speed (PWS) using a modified protocol 

to that of Jordan and colleagues (2007b). Participants were informed that the speed of the 

treadmill would continuously increase, and to verbally declare when they were walking at 

their ‘preferred’ or ‘comfortable’ speed. That is, the speed he or she would choose to 

walk as if walking through town, neither in a rush nor a leisurely stroll. The treadmill 

belts (tied) began at 0.5 m*s-1 and increased by 0.1 m*s-1 every 7-10 seconds until 

participants declared the speed to be their preferred speed. The treadmill was then 

increased to a speed 0.3 m*s-1 greater than their preferred speed and subsequently reduced 

in speed 0.1 m*s-1 every 7-10 seconds until participants again declared the speed to be 

their preferred. If the increasing and decreasing values were the same, it was considered 
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their PWS. If they differed, the process was repeated until a stable preferred speed was 

attained.  

 Following a standing calibration, participants then performed two walking bouts, 

each followed by a 5-minute seated rest. Participants first walked for 15 minutes at PWS, 

and then for 20 minutes at half-PWS. A final trial consisted of habituation to asymmetric, 

split-belt walking, whereby the non-dominant leg traveled at PWS and the dominant leg 

shifted between PWS and 75% of PWS five times over the course of six minutes. During 

all walking trials, participants were instructed to walk normally, generally near the center 

of the treadmill, and to avoid touching the handrails as much as possible. After all of the 

walking trials, participants were provided a hip worn accelerometer (ActiGraph GT3X, 

ActiGraph, Pensacola, FL, USA) and a physical activity log. They were instructed to 

wear the activity monitor for all waking hours, except for events involving water such as 

swimming or bathing. 

 Session 2 occurred one week later, and consisted of several walking bouts. After a 

standing calibration and 10-minute warm-up at PWS, participants performed three 

asymmetric walking trials, each 12 minutes long. During these trials, the treadmill belt 

under the dominant leg traveled at PWS, while the belt under the non-dominant leg 

traveled at half-PWS. Participants were encouraged to only touch the handrails initially 

while the treadmill speed ramped up if needed, and to try to not touch them otherwise. 

After the third asymmetric trial, participants walked again at PWS for 10 minutes with 

the belts tied. Following each trial, participants were provided a 5-minute, seated rest on 

a chair placed upon the treadmill.  
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6.3.4 Data Analysis 

 All kinematic data were collected using Qualisys Track Manager (Qualisys, 

Gothenburg, Sweden). Once kinematic trajectories were labeled, they were exported to 

MATLAB (The MathWorks, Natick, MA, USA) for all analyses. Kinematic data were 

low pass filtered at 7 Hz using a 4th order Butterworth filter. Heel strikes were obtained 

using kinematics of the maximum peaks in the anterior-posterior (AP) direction of the 

heel marker. Stride time was defined as the timing from heel strike to subsequent heel 

strike of the same foot. Of the 180 total trials, most (n=165) were at least 512 strides in 

length, and thus truncated to the first 512 stride times. Some of the trials (n=15) 

contained less than 512 strides, and thus entire data sets were used, ranging from 468-506 

strides. Minutes per day of moderate-to-vigourous physical activity (MVPA) we 

ascertained within the ActiLife software (version 6.13.3, ActiGraph, Pensacola, FL, 

USA) using the Freedson cutpoints of the vertical axis (Freedson, Melanson, & Sirard, 

1998). The accepted wear time criterion was at least 3 days of 10 or more hours per day 

of wear time.  

6.3.4.1 Determination of Correlation Structure  

 Stride time fractal dynamics were evaluated using detrended fluctuation analysis 

(DFA) (Hausdorff et al., 1995; Hausdorff et al., 1996; Peng et al., 1995). DFA assesses 

the potential presence of statistical long-range correlations by evaluating the correlation 

structure of the time series. This is achieved by quantifying the magnitude of localized 

fluctuations across various temporal scales. The DFA algorithm is a modified random 

walk analysis that uses signal integration to determine the degree of self-similarity (i.e., 

statistical resemblance across various scales) within a signal that exhibits long-range 
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correlations (Hausdorff et al., 2000). After integration, the signal is sectioned into non-

overlapping windows of length n. Within each window, a least-squares linear trend line is 

fit to the signal. To calculate the magnitude of local fluctuations, a root-mean-square 

analysis is applied to each data point of the signal within the window, relative to the local 

trend line by subtracting the trend line’s y-coordinate from the corresponding signal. This 

process is performed across all windows of size n, and finally averaged to yield a 

fluctuation magnitude at scale size n, or F(n): 

 

𝐹(𝑛) = !
 !/!

!
!

(𝑋! − 𝑋!)!!
!!!

 !/!
!!!         Equation 6.1 

 

where F(n) is the fluctuation magnitude at window n, N is the total number of strides, Xi 

is the integrated signal at stride interval i, and 𝑋i is the y-coordinate location of the local 

trend within window n. F(n) is obtained for all non-overlapping windows (j) of size n 

(total number of windows = N/n, Figure 6.1), and then averaged so that a single 

fluctuation magnitude represents each scale size. This procedure was performed for all 

window sizes ranging from the minimum and maximum windows of 4 and N/10, 

respectively. The selection of N/10 for a maximal window size is based on the potential 

under sampling of the more traditional N/4 value (Hu et al., 2001; Paterson et al., 2011). 

When F(n) is plotted against n on a double logarithmic plot, a linear relationship signifies 

power law scale invariance (Figure 6.1). The slope of the line of best fit on this graph 

represents the scaling exponent, or α, based on the following relationship: 

 F(n) ≈ nα 
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Figure 6.1: Evaluation of fluctuation magnitude across a range of non-overlapping 
windows. The top left and right graphs display the same time series sectioned into 
windows (red vertical dotted lines) of 10 and 25 strides, respectively. The fluctuation 
magnitudes are averaged across a window size, and double logarithmically plotted 
(bottom graph). A linear relationship (red line) on this double-log plot indicates power 
law scale invariance. The slope of the line of best fit represents the scaling exponent, or 
α. Adapted from Rhea et al. (2014). 
 

When 0.5 > α ≥ 1.0, the signal exhibits fractal-like persistent structure. A persistent 

structure is one in which a large stride time is likely to be followed by another large stride 

time, and vice versa (i.e., long-range correlated). α = 1.0 is the special case in which the 

power of the signal is inversely proportional to the oscillation period, that is, the so-called 

1/f phenomenon (Bak, Tang, & Wiesenfeld, 1987; Diniz et al., 2011; Farrell, 

Wagenmakers, & Ratcliffe, 2006; Keshner, 1982). When α ~ 0.5, the signal lacks long-

range correlations, equivalent to white noise. Finally, when α exceeds 1.0 the signal 

approaches fractional Brownian motion (α ~ 1.5), or the integration of white noise. In 

this event, the signal is characterized by highly correlated structure that is heavily 
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dependent upon previous and future trends. This characteristic represents an overly 

structured and constrained signal or behavior, and therefore less complex and adaptive. 

6.3.4.2 Surrogate Data Analysis 

 In order to distinguish between time series data with long-range scaling 

characteristics and that of random or uncorrelated processes, surrogate data sets were 

created. The surrogate data sets were randomly shuffled empirical time series for each 

participant and condition. If the empirical time series exhibits true long-range correlations 

(i.e., dependence upon previous and future states), the surrogate data sets should 

eliminate these correlations, and manifest as lower scaling exponents. 

6.3.4.3 Analysis of Gait Adaptability Performance 

 To quantify the adaptive capacity of the locomotor system, relative phasing 

between the legs was assessed. Each ‘leg’ was constructed as a segment from the greater 

trochanter to the ipsilateral heel. The sagittal plane angle was calibrated to the leg angle 

during upright quiet standing. Each stride (i.e., from heel strike to subsequent heel strike) 

was normalized to 100 data points, and a cross correlation function was applied to each 

stride for the right and left legs. The cross correlation function determines correlative 

properties bi-directionally between two signals across various temporal or spatial offsets 

by systematically shifting one signal (leg angle) by one data frame. The function yields a 

series of correlation values across the entire range of possible lags/offsets (Figure 6.2). 

By normalizing these data to a range [-1, 1] of stride lags, maximal negative correlation 

for signals that are moving in opposite directions occurs around when the lag = 0.  Given 

that unperturbed, steady state walking entails perfect anti-phasing, gait performance was 
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calculated as the deviation from intended phasing (anti-phase, i.e., maximal negative 

correlation at zero lag) for each stride (J. T. Choi & Bastian, 2007). From these data, two 

variables were calculated. First, absolute magnitude of deviation from intended phasing 

(PhaseDEV) across the first 50 strides. This variable represents the magnitude of initial 

error. Second, in order to evaluate the temporal ‘error’ component, a time-to-adaptation 

(TtA) variable was ascertained (Figure 6.3). This variable represents the time required to 

‘settle’ or ‘stabilize’. TtA was quantified by fitting an exponential decay model to the 

first 400 strides of the phase data using the equation: 

 

 𝑌 𝑥 = exp (𝑎 − 𝑏 ∗ 𝑥)            Equation 6.2 

 

where Y(x) is the model fit at stride (x), a is the initial value, and b is the rate of decay. 

TtA was determined using the principles employed by Rabufitti et al. (2011) to calculate 

‘time to stabilize’ in postural center of pressure data: 

 

 𝑇𝑡𝐴 =  !
!∗!

             Equation 6.3 

 

This analysis is generally considered a practical approximation of the time taken for the 

model to shift from its initial value (a) to infinity, i.e., the time required to dissipate 95% 

of the instability that is first observed (Rabuffetti et al., 2011). 
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Figure 6.2: Determination of leg relative phasing. A) Construction of the ‘leg’ angle 
(θ) using ispilateral markers of the greater trochanter and heel. The sagittal plane leg 
angle is standardized to the upright quiet standing position during the calibration trial. B) 
Deviation from anti-phase determined based on the cross correlation (grey dashed line) 
maximal negative correlation (Max XC (-)) for the left (blue dash-dotted line) and right 
(red line) limb angles. 
	

6.3.5 Statistical Analyses 

 Demographic data between cohorts were evaluated using independent samples t-

tests. To confirm the presence of long-range correlations, paired-samples t-tests were 

performed between the empirically derived time series fractal scaling exponents and that 

of the surrogate data sets. If the empirical data’s fractal scaling was statistically greater 

than the surrogate data, the original time series was considered a signal that exhibits long-

range correlated behavior. Fractal scaling exponents across cohorts and targeted 

conditions were assessed by submitting the data to a within-subject, repeated measures 

analysis of variance (ANOVA), with conditions as the within-subject factor, and age 

cohort as the between-subject factor. The targeted condition comparisons included: 1)  
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Figure 6.3: Exponential decay function. Example of an exponential decay model fit 
(red dashed line) for phase deviation across the first 50 strides of asymmetric walking. 
Each blue circle represents a deviation value (y-axis) at a given stride (x-axis). Time-to-
adaptation is the point at which 95% of the initial disturbance is dissipated (shown here at 
stride 42, purple dash-dotted vertical line). 

 

PWS vs. half-PWS, 2) PWS vs. split-belt 1, and 3) split-belt 1 vs. split-belt 2 vs. split-belt 

3. These targeted comparisons were assessed separately for each leg. The relationship 

between gait adaptability performance (PhaseDEV and TtA) and fractal scaling at PWS, 

Half-PWS, and during asymmetric split-belt trials was determined by fitting linear and 

quadratic regression equations to the data. All statistics were conducted using R-Studio 

(Version 1.0.136, R Foundation for Statistical Computing, Vienna, Austria). 
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6.4 Results 

6.4.1 Subject Demographics 

 All demographic data are reported in Table 6.1. Cohorts were not different in 

terms of height, mass, PWS, self-reported physical activity and objectively monitored 

physical activity. 

	
Table 6.1: Subject Demographics. Data reported as (mean ± SD). Significance based on 
independent samples t-tests. MVPA = moderate-to-vigorous physical activity; TM = 
treadmill. Age was the only significantly different variable. 

 Young (n = 15) Older (n = 15) Significance 
(p-value) 

Sex 9 F, 6 M 9 F, 6 M   ------ 
Age 28.9 ± 5.64 64.7 ± 2.7 ------ 
Height (cm) 169.9 ± 10.3 168.7 ± 9.1 0.73 
Mass (kg) 74.3 ± 10.3 74.9 ± 9.4 0.85 
TM Preferred walk  
Speed (m*s-1) 

1.17 ± 0.16 1.08 ± 0.16 0.13 

Self-report MVPA*day-1 43.3 ± 17.6 48.9 ± 26.9 0.50 
Objective MVPA*day-1 53.7 ± 17.8 42.8 ± 26.3 0.20 

 
 
Table 6.2: Comparison of fractal scaling exponent between surrogate and empirical 
data. αD and αN = dominant and non-dominant leg stride time fractal scaling exponents, 
respectively. Empirical = original time series data. Surrogate = randomly shuffled time 
series data. 

 PWS Half-PWS Split 1 Split 2 Split 3 Readapt 
αD-Empirical vs. 
αD-Surrogate 

p < 0.001 
t = 13.61 

p < 0.001 
t = 13.81 

p < 0.001 
t = 15.71 

p < 0.001 
t = 20.11 

p < 0.001 
t = 19.25 

p < 0.001 
t = 13.74 

 
αN-Empirical vs. 
αN-Surrogate 

p < 0.001 
t = 14.55 

p < 0.001 
t = 14.68 

p < 0.001 
t = 10.11 

p < 0.001 
t = 8.33 

p < 0.001 
t = 14.15 

p < 0.001 
t = 14.71 

 

6.4.2 Surrogate Analysis 

 Table 6.2 demonstrates that for both the dominant and non-dominant leg’s fractal 

scaling across all conditions and age groups, the empirically derived data were 

statistically different from the surrogate data sets (all p’s < 0.001). Specifically, all 
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surrogate tests exhibited lower scaling exponents (closer to α ~ 0.5) compared to the 

corresponding original time series data.  

6.4.3 Fractal Scaling During Steady State Unperturbed Walking 

 Table 6.3 displays the results of stride time fractal scaling indices for all 

conditions. For unperturbed walking (PWS and half-PWS, Figure 6.4), there was a main 

effect of condition (F1,28 = 20.98, p < .001 and F1,28 = 21.35, p < .001) and an age by 

condition interaction effect (F1,28 = 4.85, p = .036 and F1,28 = 4.28, p = .047) for both the 

non-dominant and dominant legs, respectively. Young and older adults exhibited similar 

scaling exponents during PWS. Walking slower yielded larger α values, and the older 

group’s scaling increased more so than that of the young group. 

 

Table 6.3: Gait parameter fractal scaling exponents. Data reported as mean (95% CI). 
Y = young adults, O = older adults. N = non-dominant leg. D = dominant leg. 

 PWS Half PWS Split 1 Split 2 Split 3 Re-Adapt 

Stride 
Time-N 

Y .77 (.04) 
O .78 (.05) 

Y .81 (.04) 
O .90 (.07) 

Y .74 (.03) 
O .78 (.05) 

Y .74 (.05) 
O .71 (.05) 

Y .72 (.04) 
O .72 (.04) 

Y .78 (.04) 
O .84 (.05) 

 
Stride 
Time-D 

Y .77 (.04) 
O .78 (.06) 

Y .82 (.04) 
O .91 (.07) 

Y .85 (.06) 
O .89 (.06) 

Y .84 (.04) 
O .83 (.05) 

Y .83 (.04) 
O .82 (.04) 

Y .75 (.04) 
O .80 (.04) 
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Figure 6.4: Steady state walking fractality in young and older adults. Unperturbed 
walking fractality (PWS and half-PWS) shown for the non-dominant (ND) and dominant 
(D) limbs in young (blue triangles) and older (red circles) adults. Data reported as mean ± 
SEM. 
 

6.4.4 Fractal Scaling During Asymmetric Walking 

 Stride time fractality in the dominant leg increased in the first split-belt condition 

compared to PWS for both groups (F1,28 = 12.30 , p = 0.002, Figure 6.5), but not for the 

non-dominant leg (F1,28 = 0.19, p = .66 ). There was no effect of age for either leg (p’s > 

0.35). 

6.4.5 Age Effects of Gait Adaptability 

 There was no main effect of age for phase deviation (F5,140 = 2.34, p = 0.14) or 

time-to-adaptation (F5,140 = 0.84, p = 0.37, Figure 6.6).  
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Figure 6.5: Unperturbed versus asymmetric walking fractal dynamics. Stride time 
fractal scaling exponents (mean ± SEM) for the non-dominant (ND, left) and dominant 
(D, right) legs in young (blue triangles) and older (red circles) adults. PWS = Preferred 
walking speed; Split 1 = Asymmetric split-belt conditions.  
	
	
	
	

 

Figure 6.6: Gait adaptability in young and older adults. Quantification of gait 
adaptability performance (mean ± 95% CI) during the first asymmetric walking trial 
(Split 1) based on deviation from intended leg phasing (anti-phase, left plot), and time-to-
adaptation (right plot).  
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6.4.6 Prediction of Gait Adaptability from Steady State Walking Fractality 

 Regression analyses of young adults’ stride time fractal dynamics during steady 

state preferred speed walking and gait adaptability (PhaseDEV) revealed a single quadratic 

association between the dominant leg’s PWS α and phase deviation (Table 6.4, Figure 

6.7, p = 0.049, r2 = 0.30). All other r2 values were ≤ 0.20 and p’s > 0.05 for PWS and 

half-PWS associations with PhaseDEV and TtA. Older adults’ scaling exponents during 

PWS and half-PWS were all uncorrelated to adaptability performance (Table 6.5, all p’s 

> 0.05, r2’s ≤ 0.15).  

 
 

 
Figure 6.7: Relationship between phase deviation and preferred walk speed stride 
time fractal dynamics for the dominant limb in the young adult group. Line of best fit 
(black solid line) indicates a moderate quadratic association (r2 = 0.30) between the 
dominant limb α and phase deviation. 
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6.4.7 Prediction of Gait Adaptability from Asymmetric Walking Fractality 

 Young adults’ stride time fractal dynamics during the first split-belt condition 

were not associated with gait performance (Table 6.4). However, older adults’ stride time 

fractal dynamics were associated with both PhaseDEV and TtA (Table 6.5). For PhaseDEV,  

 

 
Figure 6.8: Comparison of Gait Adaptability performance and non-dominant limb 
fractal scaling during asymmetric walking in older adults. Line of best fit (black line) 
indicates a moderate curvilinear association (r2 = 0.31) between the non-dominant (ND) 
limb α and phase deviation.  
 

non-dominant leg scaling exponents approaching α = 1.0 were associated with better gait 

adaptability performance (Figure 6.8) for the older adults. TtA (not shown) was poorest 

for those older individuals with dominant leg α values greater than 1.0. However, these 

TtA relationships appear to have been influenced by a major outlier (TtA = 400, i.e., 

he/she did not adapt). Removing this individual erased the association for TtA in the 

dominant leg (p = 0.25). For the young cohort, removing two clear outliers (TtA = 400) 
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from the regression equation did not change the results (i.e., there were still no 

associations). 

6.4.8 Effects of Repeated Exposure to Asymmetric Walking on Stride Time 
Fractality 

 To examine the effects of repeated exposure to asymmetric walking, a repeated-

measures ANOVA was conducted for stride time fractality across the three split-belt  

 

 
Figure 6.9: Stride time fractal dynamics as a function of asymmetric walking trial. 
Data reported as mean ± SEM. Non-dominant (ND, left plot) and dominant (D, right plot) 
legs shown for the young (blue triangles) and older (red circles) adults. Split  = 
Asymmetric split-belt conditions. 

 
 

conditions. There was an overall main effect of condition for the dominant leg (F2,56 = 

3.354, p = .042 ) but not for the non-dominant leg (F2,56 = 1.71, p = 0.19 ). Dominant leg 

stride time fractality decreased closer to scaling exponents observed during the initial 

PWS condition. Neither leg exhibited an age effect (F1,28 = 0.13, p = 0.72, and F1,28 < 

0.01, p = 0.95 for the dominant and non-dominant legs, respectively) nor an age by 
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condition interaction (F2,56 = 0.92, p = 0.40 and F2,56 = 0.84, p = 0.44 for the dominant 

and non-dominant legs, respectively, Figure 6.9). 

 
Table 6.4: Association between young adults’ gait adaptability performance and 
fractal scaling exponents. αD and αN = dominant and non-dominant leg scaling 
exponents, respectively. 

Dependent 
Variable 

Independent 
Variable 

Model p R2 Significant 

      

PhaseDEV at 1st 
Split-Belt 
Condition – 
Young Adults 

αD at PWS Linear 0.17 0.07  
Quadratic 0.049 0.30 * 

αN at PWS 
Linear 0.24 0.03  
Quadratic 0.10 0.20  

 

αD at Half-PWS 
Linear 
Quadratic 

0.77 
0.91 

-0.07 
-0.15 

 

αN at Half-PWS 
Linear 
Quadratic 

0.85 
0.75 

-0.07 
-0.11 

 

 

αD at Split 1 Linear 0.17 0.08  
Quadratic  0.22 0.09  

αN at Split 1 
Linear 0.20 0.06  
Quadratic 0.28 0.06  

 
TtA at 1st Split-
Belt Condition – 
Young Adults 

αD at PWS Liner 0.15 0.09  
Quadratic 0.11 0.20  

αN at PWS 
Linear 0.19 0.06  
Quadratic 0.22 0.10 

 
 

αD at Half-PWS Linear 
Quadratic 

0.99 
0.99 

-0.08 
-0.16 

 

αN at Half-PWS 
Linear 
Quadratic 

0.92 
0.59 

-0.08 
-0.07 

 

 

αD at Split 1 Linear 0.19 0.06  
Quadratic 0.16 0.14  

αN at Split 1 
Linear 0.19 0.06  
Quadratic 0.15 0.15  
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Table 6.5: Association between older adults’ gait adaptability performance and 
fractal scaling exponents. αD and αN = dominant and non-dominant leg scaling 
exponents, respectively.  

Dependent 
Variable 

Independent 
Variable 

Model p R2 Significant 

      

PhaseDEV at 1st 
Split-Belt 
Condition – 
Older Adults 

αD at PWS 
Linear 0.53 -0.04  
Quadratic 0.80 -0.12  

αN at PWS 
Linear 0.76 -0.07  
Quadratic 0.94 -0.15  

 

αD at Half-PWS Linear 
Quadratic 

0.89 
0.37 

-0.08 
0.01 

 

αN at Half-PWS 
Linear 
Quadratic 

0.83 
0.60 

-0.07 
-0.06 

 

 

αD at Split 1 
Linear 0.12 0.11  
Quadratic  0.26 0.07  

αN at Split 1 
Linear 0.046 0.22 * 
Quadratic 0.04 0.31 * 

 
TtA at 1st Split-
Belt Condition – 
Older Adults 

αD at PWS Liner 0.99 -0.08  
Quadratic 0.91 -0.15  

αN at PWS 
Linear 0.80 -0.07  
Quadratic 0.94 -0.15 

 
 

αD at Half-PWS Linear 
Quadratic 

0.23 
0.29 

0.04 
0.05 

 

αN at Half-PWS 
Linear 
Quadratic 

0.22 
0.31 

0.04 
0.04 

 

 

αD at Split 1 
Linear 0.06 0.19  
Quadratic 0.04 0.33 * 

αN at Split 1 Linear 0.10 0.14  
Quadratic 0.19 0.11  

  
 

 
6.5 Discussion 
	
 The purpose of this study was to examine differences in stride time fractal 

dynamics in young and older adults during steady state and asymmetric walking, and to 

ascertain if gait parameter fractality is associated with the adaptive capacity of the 

locomotor system. The first hypothesis that older adults would exhibit reduced fractality 

compared to young adults during unperturbed walking was not supported. The young and 

older groups exhibited fractal dynamics of ~ α = .78 (both legs) during unperturbed 
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preferred speed walking. In contrast to hypothesis 1, half-PWS revealed age-based 

changes in that the older cohort’s fractality increased more so than that of the young 

cohort. The second hypothesis that unperturbed walking α would not associate with gait 

adaptability performance was confirmed for the older cohort, but not for the young 

cohort. There was a moderate quadratic relationship between young adults dominant leg 

PWS α and gait adaptability performance, whereby α values less than or greater than the 

mean were associated with poorer performance. The third hypothesis that asymmetric 

stride time fractality would be related to gait adaptability performance was supported in 

the older cohort by a moderate quadratic relationship; those older adults whose stride 

time fractality approached α = 1.0 exhibited the greatest adaptive gait performance in 

PhaseDEV. The fourth hypothesis that stride time fractality would decrease in older adults 

when exposed to asymmetric walking was not supported. Rather, older adults’ dominant 

leg stride time fractality during asymmetric walking increased closer to α = 1.0 (α ~ .87), 

similar to the increase observed in young adults. Also similar to young adults, older 

adults’ non-dominant limb’s α was unchanged from PWS to asymmetric walking. The 

fifth hypothesis that older adults would exhibit reduced gait adaptability compared to 

young adults was not supported, as both cohorts exhibited similar adaptive gait 

performance. Finally, the hypothesis that repeated exposure to asymmetric walking 

would yield a learning effect was supported, as the fractal scaling decreased from the first 

to last asymmetric walking condition, but this effect was only observed for the dominant 

leg’s scaling characteristics. 
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6.5.1 Preferred Speed Walking Fractality was not Different between Young and 
Older Adults 

 Stride time fractal dynamics were first reported to decrease in older versus young 

adults (Hausdorff et al., 1997). These findings were interpreted as the manifestation of 

impaired neurological functionality. In a more recent experiment, age did not impact 

stride time fractality (Bollens et al., 2012). This current study provides evidence that 

accounting for physical activity negates previously observed age-related differences in 

stride time fractal dynamics (Figure 6.4). That is, while healthy yet otherwise sedentary 

older adults may potentially exhibit reductions in stride time fractality, participating in 

regular physical activity appears to attenuate or eliminate these reductions. However, in 

order to provide further evidence to support the role of PA in stride time fractality, a 

study would need to assess both physically active and sedentary older adults. 

6.5.2 Slow Walking Fractality was Greater in Older Adults 

 Slow walking has been shown to yield higher fractal scaling values compared to 

preferred speed walking (Hausdorff et al., 1996; Jordan et al., 2007b), and the results 

from this study further support this notion (Figure 6.4). Interestingly, though, the older 

adults fractal scaling increased more so than that of the young adults. Considering fractal 

scaling closer to α = 1.0 (i.e., 1/f) represents greater adaptive capacity, these findings 

could suggest that the older adults displayed more adaptive gait than the young adults 

during slow walking. This finding again may highlight the fact that highly active 

individuals participated in this study. While there were no differences in PA levels (Table 

6.1), type of activities performed may have differed between groups that might yield 

these results. Alternatively, constraints and difficulty appear to impact fractal scaling (see 
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section 6.5.4 below). Thus, the higher fractal scaling in older adults during the slow 

walking condition may indicate that slow walking is more challenging for this group. 

Slow walking does not allow for the same extent of passive limb dynamics (e.g., inverted 

pendulum) observed in preferred speed walking. For this reason, slow walking requires 

greater relative muscle force and balance compared to preferred speed walking. Older 

adults may have simply required greater physical or attentional effort to perform this task.  

One final explanation may be that older adults’ preferred walk speeds were slower 

(though not significantly) than the young adults, and therefore the half-PWS speeds were 

also slower. Thus, while all participants walked at the same relative speeds (half of 

preferred speed), the older adults absolute speeds were slightly slower (0.54 m*s-1 vs. 

0.58 m*s-1 for young adults) during half-PWS walking. However, this minor discrepancy 

in speed likely would not result in such a large difference in fractal scaling.    

6.5.3 Relationship Between Fractality and Gait Adaptability 

 Recent work (Ducharme et al., 2017) has provided evidence that steady state 

fractality does not predict adaptive gait performance. This current study surprisingly 

displayed a quadratic relationship between young adults’ PWS α and constrained walking 

gait performance (Figure 6.7). Those individuals whose α during symmetric PWS 

walking were larger or smaller than the average eventually performed poorer on during 

the challenging walking task. These findings are promising in that a major goal of fall 

prevention research involves predicting gait adaptability via unperturbed gait analysis. 

However, the observed relationship between preferred speed fractal scaling and gait 

performance (PhaseDEV) was relatively weak (r2 = 0.30) and possibly influenced by a few 

outliers. In addition, these findings were not observed in the non-dominant limb, nor in 
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either limb for the older adults, nor in either limb in the previous study (Ducharme et al., 

2017). Clearly, in order to establish that a relationship exists between unperturbed 

walking α and adaptive gait, more research is warranted. 

 In the previous study (Ducharme et al., 2017), fractality during asymmetric 

walking was strongly associated with gait adaptability performance in young adults. The 

participants whose stride time fractality increased close to α = 0.9-1.0 exhibited the best 

adaptive performance, while those participants whose fractality did not increase (i.e., α ~ 

0.7) or increased excessively (i.e., α ~ 1.2) displayed the poorest performance. In this 

study, these results were not repeated with our young cohort. However, the older adults 

stride time fractality displayed a similar relationship previously observed, and expected to 

see with this young adult cohort. The older adults whose non-dominant leg’s stride time 

fractal dynamics increased close to ~ α = 0.9-1.0 exhibited the lowest deviation from 

intended phasing (Figure 6.8). These findings are further evidence for the potential 

functional advantages of stride time fractal dynamic ranges in responding to task or 

environmental stressors. The reduction in fractal dynamics in some individuals may be a 

result of more large-scale error correcting behavior at short temporal scales that the DFA 

algorithm would translate into a decrease in the scaling exponent. The requirement for 

large error correcting may be due to reduced systemic stability, similar to the 

interpretation that greater gait parameter variance represents reduced control of the 

locomotor system. However, this statement requires empirical investigation. 

 The fact that no association emerged between constrained walking fractality and 

adaptability in young adults was in contrast to earlier findings (Ducharme et al., 2017). 

Young adults’ dominant leg fractality increased closer to α = 1.0 during the asymmetric 
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condition, and was not statistically different from the older cohort. However, the non-

dominant leg’s α did not increase in response to asymmetric walking. The differential 

responses of the limbs may have affected the overall relationship with adaptive 

performance. Moreover, the lack of association may be because highly active participants 

were recruited. Finally, the absence of associations could have been a result of the 

inherent variance of biological systems, or a result of other unknown factors. Even the 

older adults’ fractal dynamics explained only a portion of the observed variance, 

indicating other factors must be responsible for the emergent behavior. 

6.5.4 Fractality Increased When Exposed to Task-Level Constraint Comparably in 
Both Cohorts 

 Similar to previous observations in young adults (Ducharme et al., 2017), both 

groups’ dominant leg stride time fractal dynamics increased when exposed to asymmetric 

gait. Earlier research in gait fractal dynamics provides evidence for increased fractality 

when participants walk faster or slower than their self-selected preferred walking speed 

(Hausdorff et al., 1996; Jordan et al., 2007b). It appears that constraining the locomotor 

system into tasks other than steady state preferred speed walking yields fractal dynamics 

that increase closer to α = 1.0. Beyond gait, task-level constraints have been shown to 

shift fractality closer to 1/f (α = 1.0) in postural studies. For example, fractality migrates 

towards 1/f when participants transition from eyes open to eyes closed during quiet 

standing (Caballero Sanchez et al., 2016; Tanaka et al., 2002), or when the size of the 

support surface is reduced (Caballero Sanchez et al., 2016). This shifting of fractal 

scaling may be the manifestation of modified interactivity of processes across the various 

temporal scales being investigated. Earlier research has provided evidence that dynamical 
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systems exhibit critical fluctuations (i.e., increased variability) when approaching 

transitions to a different state (Kelso, 1995; Kelso & Ding, 1993; Van Emmerik, Miller, 

et al., 2013). These fluctuations are a key characteristic of phase shifts because this 

increased variability is required to change from locally stable to potentially more globally 

stable states. While traditionally believed to be random in nature, critical fluctuations 

may actually exhibit fractal-like characteristics (Bak & Chen, 1991). If the fluctuations 

are persistent, the likelihood of a phase transition will increase, compared to that of 

random fluctuations (Torre, 2010). If persistent fluctuations are functionally beneficial, 

evidence of altered fractality represents an emergent reorganization of the locomotor 

system that provides a better ability to respond to task stressors and shift to more stable 

states. This idea has been tested empirically in a bimanual coordination task, and findings 

indeed suggest that fractality shifts closer to 1/f when approaching a potential phase shift 

(Torre, 2010). Regarding locomotion, walking slower or faster than preferred speed may 

be perceived as approaching a transition to standing or running, respectively. 

 The increase in α during split-belt walking was not observed in the non-dominant 

limb. This is in contrast to the earlier study’s (Ducharme et al., 2017) observance of 

increased fractality of the non-dominant leg during constrained walking. The main 

difference between this and the previous study’s protocol was that, in this study, 

participants wore a body-supporting harness. This may have been perceived as an 

additional constraint because the harness partially limited total body displacement in the 

anterior-posterior directions. This additional constraint, while allowing the locomotor 

system to maintain persistence of the dominant, preferred speed leg, may have restricted 

the variance in stride times (e.g., reduced range) in the non-dominant leg.  
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 The lack of differences in fractal dynamics during asymmetric walking between 

the young and older groups was unexpected but promising. That is, one potential 

explanation for these findings is that the participant pool consisted of active young and 

older adults. The previously observed reductions in fractal scaling in older adults were 

considered a result of age-related neurological decrements. This loss in neurological 

function may in fact be a consequence of disuse or underuse that often accompanies 

physical activity behavior of older adults (Brach et al., 2004; Crespo et al., 1996). 

Recruiting healthy and highly active adults aged 60-70 years may have diluted potential 

age-related differences in performance or fractality. If sedentary adults or much older 

adults (e.g., aged > 75 years) were recruited, age effects may have emerged. However, 

this statement is speculative and necessitates empirical investigation. 

6.5.5 Young and Older Adults Exhibited Similar Adaptive Performance 

 Older adults were hypothesized to display poorer adaptive performance in the 

form of greater deviation from intended phasing, and greater time-to-adaptation in 

response to the asymmetric walking constraints compared to young adults. Instead, older 

adults exhibited similar values to that of the young group. PhaseDEV values were 0.204 ± 

0.18 and 0.117 ± 0.13 for the young and older groups, respectively. TtA values were 

82.47 ± 124.95 and 44.4 ± 100.6 strides for the young and older groups, respectively. 

These values were highly variable, and were largely impacted by a few large outliers 

(TtA > 300). When these three participants (2 young, 1 older adult) are removed, TtA for 

the young and older adults were 36.69 ± 33.51 and 19 ± 21.95, respectively. However, 

omitting outliers still does not reveal group differences (independent samples t-test p = 
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0.12). One plausible explanation for the lack of differences between cohorts is again that 

everyone recruited was physically active. Thus, perhaps previously observed 

discrepancies between young and older adults (Bruijn et al., 2012) may have been based 

on the possibility that the older adults recruited were also more sedentary, and/or had 

been sedentary for a longer time (e.g., the past 30 vs. 5 years). In addition, the older 

cohort was relatively young (60-70 years) considering studies of older adults often span 

60-85 years of age. 

6.5.6 Repeated Exposure to Asymmetric Walking  

 Stride time fractal dynamics of the dominant limb in both cohorts systematically 

decreased from the first to third asymmetric walking conditions (Figure 6.9). This 

phenomenon was not observed for the non-dominant limb, however. These findings of 

the dominant limb α coincide with the previous study in which three asymmetric trials 

were also performed, and fractal scaling eventually returned to values similar to observed 

PWS α’s (Ducharme et al., 2017). Each participant had no prior experience walking 

asymmetrically before the first asymmetric trial, and therefore were naïve to this type of 

walking. By the third trial, this gait had now been performed for 24+ minutes, and thus 

was no longer a novel experience. Fractal scaling increases when participants are 

experiencing a challenging gait task, and once the task is no longer challenging (or at 

least less challenging), fractal scaling returns to that of unperturbed symmetric walking. 

These findings further strengthen the argument that, when exposed to a challenging, 

perhaps less stable, walking task, the system reorganizes to better respond to exposure to 

perturbations. This reorganization manifests as higher fractal scaling (i.e., closer to α = 

1.0). 
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6.5.7 Limitations 

 All participants self-reported being physically active. This was confirmed with 

objective monitoring using accelerometry (Table 6.1). This study did not recruit 

sedentary young or older adults, and therefore can suggest but not determine conclusively 

the effects of physical activity on gait fractality or adaptive performance. 

 In addition, the non-dominant leg speed was always reduced during the 

asymmetric walking trials. It is currently unknown how leg dominance affects responses 

to asymmetric split-belt walking in terms of both adaptive performance and fractality. 

One challenge with this paradigm, and similar to other perturbation studies, is that 

individuals rapidly adapt to these constraints. Thus, evaluating the differences between 

reducing the speed of the dominant versus non-dominant leg would likely yield an order 

effect. In order to truly establish effects of leg dominance, researchers would need to 

develop a paradigm that does not exhibit such a rapid rate of learning or recruit a large 

sample size for a between-subject study design. 

 Moreover, fractal dynamics were assessed using stride time dynamics. Thus, 

while a plethora of gait parameters could have been analyzed, the results presented in this 

study are based on a single measure. The selection of stride time was based on the 

general acceptance that it is the best overall representation of the locomotor system 

because it includes all of the phases of a gait cycle (e.g., double support, stance, swing) 

for both legs, and could therefore be considered the ‘final output’ of the many processes 

of the system (Hausdorff, 2007).  

 Finally, assessing fractal dynamics using the DFA algorithm assumes mono-

fractality, that is, a constant fractal scaling exponent across the time series. In order to 
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truly evaluate the potential presence of fractality within a signal, a multifractal analysis 

would need to be employed. This multifractal analysis would confirm or reject the 

potential presence of interactivity of processes across various temporal scales. 

 

6.6 Conclusion 
	
 Stride time fractal dynamics were not different between young and older adults 

during normal unperturbed walking, and older adults even exhibited higher fractal scaling 

during slow walking. Young adults fractal scaling during unperturbed, preferred speed 

walking associated moderately with adaptive gait performance. Fractality during 

constrained walking was moderately associated with gait adaptability performance in 

older, physically active adults. While both cohorts displayed increased fractality (i.e., α 

closer to 1.0) in the dominant (but not the non-dominant) limb when required to walk 

asymmetrically, those older adults whose fractality was closer to α = 1.0 exhibited the 

best adaptive gait performance. These findings are in agreement with an earlier study that 

observed similar changes to gait fractality in response to constrained walking in young 

adults (Ducharme et al., 2017). In this current study, though, young adults asymmetric 

walking fractal dynamics did not associate with adaptive performance. The observed 

increase in fractal dynamics during asymmetric walking may be a manifestation of 

altered self-organization of the locomotor system when phase transitions are perceived to 

be imminent. The emergent relationship between stride time fractal dynamics and 

adaptive gait capacity indicates this modified self-organization may allow for improved 

adaptability during challenging gait tasks. 
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CHAPTER VII 

MULTIFRACTALITY OF UNPERTURBED AND ASYMMETRIC 

LOCOMOTION 

 

7.1 Abstract 
	
 Steady state walking in humans has been previously described as monofractal or 

slightly multifractal in nature. The degree of multifractality in perturbed locomotion is 

unknown. The purpose of this study was to explore the potential extent of multifractality 

in steady state unperturbed and constrained human locomotion, and to determine if 

multifractality predicts gait adaptability performance. To achieve this, young, healthy 

participants (n=15) experienced unperturbed preferred and slow walking, as well as 

asymmetric walking, whereby their legs traveled at different speeds on a split-belt 

treadmill. Participants’ dominant and non-dominant legs traveled at preferred and half 

preferred speed, respectively. Multifractality of stride time variance was assessed via a 

local detrended fluctuation analysis, which evaluates fluctuations both spatially and 

temporally. Preferred speed walking and slow walking both exhibited monofractal 

behavior. Asymmetric walking displayed an increase in multifractal spectrum width 

(overall range and interquartile range) in the faster moving limb, indicating greater 

intermittent periods of extreme high or low variance. In all, these findings provide further 

evidence that unperturbed human locomotion is essentially monofractal, and establish 

that perturbed walking yields multifractal behavior. 
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7.2 Introduction 
	
 Upright, bipedal locomotion provides numerous benefits to humans, such as 

improved vantage and unrestricted upper limbs. However, these advantages come at the 

cost of reduced systemic stability. Thus, the locomotor system utilizes many degrees of 

freedom to generate stable cyclic patterns to maintain a sufficient level of stability. Here 

‘degrees of freedom’ refers to the various independent components of the locomotor 

system. Although these components are autonomous by definition, by interacting with 

other components, they can generate the same task goal in an infinite number of ways. 

 While the system benefits from its ability to generate rhythmic patterns, true 

human locomotion must take into account emergence of various environmental, task, or 

individual factors. Indeed, locomotion might best be described as intermittently cyclic, or 

more precisely, cyclic with intermittent periods of corrective control. In other words, the 

locomotor system may allow various gait parameters to persist until an adjustment is 

necessitated. For example, stride time variance may increase steadily and indefinitely 

until it interferes with the task goal (in gait, the task goal would be continued upright, 

relatively stable locomotion). The concept of intermittent control may be likened to that 

of the uncontrolled manifold (Scholz & Schoner, 1999) or goal equivalent manifold 

(Cusumano & Dingwell, 2013) analyses, or the theoretical concept of the minimum 

intervention principle (Todorov, 2004). While different algorithms, these analyses 

generally adhere to the concept that some or many of the system’s degrees of freedom do 

not need to be tightly controlled, or at least not at all times, as they do not affect the task 

goal. The ‘task goal’ may consist of maintaining upright overground walking (i.e., not 

falling), or staying on the treadmill while treadmill walking (i.e., not walking off the front 
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or back of the machine). If any parameter does threaten the task goal, it is regulated so 

that the goal can be attained. Variance is a common parameter of interest in assessing 

intermittency. In response to the many internal and external stressors placed upon a 

biological system, an expected and necessary output is gait parameter variance. The 

essence of intermittency is that, instead of attempting to minimize variance, the system 

may regulate this variance in a beneficial way (Cusumano & Dingwell, 2013). Here 

sensory feedback can be utilized intermittently to parameterize control variables (Loram, 

Van de Kamp, Gollee, & Gawthrop, 2014). For example, in human upright standing, 

instead of continuously modulating center of mass motion, ballistic muscular bursts are 

used to regulate center of mass motion to maintain upright homeostasis (Loram, 

Maganaris, & Lakie, 2005). This is similar to the ‘serial ballistic control’ method of 

balancing an inverted pendulum (Loram, Gollee, Lakie, & Gawthrop, 2011). 

Intermittency may be preferred over continuous control because active, continuous 

adjustments might arguably entail greater cognitive and metabolic load. 

 Regarding gait variability, any variance has historically been considered a 

consequence of imprecise control (i.e., indicative of error in the locomotor system). 

However, the emergence of chaos theory and fractal physiology has further challenged 

the previously established notion that variability is a negative effect. Utilizing an 

alternative measurement approach and theoretical underpinning (Mandelbrot, 1977), 

structures or behaviors were no longer observed from a single temporal or spatial scale. 

The magnitude of gait parameter variability is not universal across a time series, but 

rather dependent upon the temporal scale observed. For example, the magnitude of stride 

time variability across 10 consecutive strides is dissimilar from that of 100 consecutive 
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strides. What is of particular interest, however, is the relationship between the magnitude 

of variability and the size of the observed scale across various scales (Liebovitch, 1998). 

A behavior is considered ‘self-similar’ when it exhibits statistical similarities at various 

temporal or spatial scales. Self-similar behaviors are also referred to as ‘fractal’ in nature, 

characterized by a lack of a single representative ‘scale’ and infinitely-repeating patterns 

across a multitude of temporal or spatial scales. 

 While several methods have been developed to evaluate the self-similarity of a 

biological signal (e.g., power spectral analysis or examination of the signal’s 

autocorrelation properties), perhaps the most commonly used measure is Detrended 

Fluctuation Analysis (DFA). DFA benefits from locally detrending of the data, and thus 

is often the most appropriate measure when dealing with inherently nonstationary 

biological signals. DFA quantifies the magnitude of variance about a local trend across 

various temporal scales. When logarithmically transformed, a self-similar structure or 

behavior exhibits a linear, power-law relationship between fluctuation magnitude and 

scale size. The slope of the relationship between fluctuation size and scale size indicates 

the correlation structure, or fractal-like organization of the system, also known as the 

scaling exponent or α (Hausdorff et al., 1997; Hausdorff et al., 1995; Hausdorff et al., 

1996; Peng et al., 1995). An example of a gait parameter that exhibits scale invariance is 

the temporal evolution of stride time variability. 

   The principle shortcoming of fractal analyses is that the fluctuation magnitude at 

a given scale is averaged across many windows of the same scale size. This inherently 

assumes the fluctuation magnitude is constant through the time series across windows of 

a particular window size, and thus a single global scaling exponent can accurately 
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describe the fractal nature of the system. In other words, this method assumes 

monofractality and thus is considered a ‘monofractal approach’. As mentioned earlier, 

locomotion is likely not perfectly cyclic as it requires constant adaptations to imposed 

constraints. Thus, fractal analyses of behaviors that are not precisely cyclic require a 

multifractal approach. Multifractality indicates the behavior of interest is not constant 

throughout a time series, but rather changes based on demands (West & Scafetta, 2005). 

If the behavior is not monofractal, the temporal evolution of fractal scaling exponents 

across a time series will yield a spectrum of scaling exponents (Scafetta, Griffin, & West, 

2003; Struzik, 1999, 2000). There may be intermittent periods of high or low variance 

that would manifest as varying fractal characteristics (Ihlen & Vereijken, 2013b).  

 In assessment of the spectrum of exponents that results from the temporal 

evolution of physiological signals, the width of this spectrum indicates the degree of 

multifractality. That is, a monofractal signal would have a narrow spectrum width, as the 

fractal characteristics would not change throughout the temporal evolution of the signal. 

In fact, the spectrum width approaches zero as the data length approaches infinity for a 

monofractal signal. A multifractal signal, on the other hand, would have intermittent 

periods of high and low variance, manifesting as low and high scaling indices, 

respectively, and thus a greater spectrum width across the time series (Ihlen & Vereijken, 

2013b). Researchers generally define a wider multifractal spectrum width as a more 

complex and adaptable system (Ivanov et al., 1999; Munoz-Diosdado et al., 2003).  

 Multifractal analysis of human locomotion has indicated that steady state walking 

appears monofractal or slightly multifractal in nature (Dutta, Ghosh, & Chatterjee, 2013; 

Ihlen & Vereijken, 2014; Muñoz-Diosdado, 2005; Munoz-Diosdado et al., 2003; Scafetta 
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et al., 2003; Scafetta, Marchi, & West, 2009; West & Scafetta, 2005). Further, age and 

disease may alter multifractal behavior. Muñoz-Diosdado and colleagues reported that, 

compared to healthy controls, the multifractal spectrum width was wider in both children 

(aged 3-10 years) and healthy older adults, and is even wider in individuals with 

Parkinson’s disease, Huntington’s disease, and Amyotrophic Lateral Sclerosis (Muñoz-

Diosdado, 2005; Munoz-Diosdado et al., 2003). In contrast, Dutta and colleagues (2013) 

observed a reduction in multifractal spectrum width in those with Parkinson’s and 

Huntington’s disease compared to healthy controls. Moreover, Ihlen and Vereijken 

(2014) reported decreased multifractality in older adults compared to young, which was 

interpreted as reduced active regulation of the system. 

 Given the aforementioned studies, it is difficult to assess the functional meaning 

of the multifractal spectrum for the locomotor system. On one hand, more stable 

rhythmic patterns would be expected to yield nearly monofractal-like behavior, absent of 

the need for intermittent corrections and thus extreme fractal scaling values. On the other 

hand, this monofractal-like behavior may indicate a constrained locomotor system, 

incapable of producing rapid corrections when needed. It could be predicted that 

persistent fluctuations in gait dynamics will yield little or no intervention, while stressors, 

such as task constraints or organism-level errors (e.g., missteps) may require rapid, 

discrete periods of intermittent anti-persistence. In the event of intermittent periods of 

anti-persistence, variance at short scales would increase, thereby decreasing the fractal 

scaling exponent, and thus the range of observed fractal scaling exponents would be 

expected to widen. 
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 One paradigm that may elucidate the potential multifractality of locomotion is 

asymmetric walking using a split-belt treadmill. This experimental design allows one leg 

to move at a different speed than the other, thus inciting asymmetries. The split-belt 

paradigm has been used to measure the adaptability of locomotor patterns, such as leg 

relative phasing (J. T. Choi & Bastian, 2007; J. T. Choi et al., 2009) or leg symmetry 

adaptation (Bruijn et al., 2012). In general, individuals are able to adapt to asymmetric 

belt speeds by adopting a more symmetrical pattern of walking. This adaptation paradigm 

provides valuable information in terms of how the locomotor system organizes or 

reorganizes in response to constrained walking. That is, does constrained walking yield 

greater or lesser multifractal behavior, and does the multifractal behavior correlate to 

enhanced adaptive gait performance? The only other study to evaluate multifractality in 

response to imposed constraints entailed walking with or without an auditory metronome 

at various speeds (Ihlen & Vereijken, 2014). In this study, participants walked with and 

without a metronome at slow, preferred, and fast walking speeds. Multifractality 

increased during metronome-constrained walking compared to walking without a 

metronome at various speeds, likely a result of more anti-persistence in response to 

temporal regulations, which the authors’ suggested was indicative of ‘healthy’ 

adjustments being made. 

 While a multifractal analysis has been conducted on steady state and metronome-

entrained walking, what has not been evaluated is how forced asymmetric walking alters 

multifractality. When individuals are exposed to a novel gait pattern (i.e., forced 

asymmetry), how does the locomotor system’s organization respond? Moreover, while 

monofractality is thought to represent the adaptive capacity of the locomotor system 
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(Delignieres & Marmelat, 2012; Delignieres et al., 2006; Rhea & Kiefer, 2013), the 

extent to which multifractality describes the adaptive organization has not been tested. 

Thus, the purpose of this study was to determine: 1) if steady state, unperturbed 

locomotion exhibits multifractal characteristics, 2) how forced asymmetries affect the 

multifractality of human locomotion, and 3) if steady state, unperturbed multifractality 

describes systemic control and predicts adaptive gait capacity. It was hypothesized that: 

1) unperturbed preferred speed locomotion would exhibit monofractal behavior, 2) 

exposure to asymmetries would yield greater multifractal behavior as a result of increased 

intermittent corrections applied, and 3) greater multifractality in steady state walking may 

represent more complex and adaptive gait, and thus associate with better adaptive gait 

capacity.  

 

7.3 Methods 

7.3.1 Participants  

 Fifteen young, healthy adults (8 male, mean ± SD age 28.5 ± 4.7 years, height 

169.4 ± 8.2 centimeters, mass 75.7 ± 15.8 kilograms) participated in this study. All 

participants were free from neurological, visual, or vestibular impairments that might 

affect walking. Every participant described themselves as right-leg dominant, based on 

the question of which leg he or she would likely use to kick a ball. Each participant 

completed a PAR-Q document and provided written informed consent. The local 

Institutional Review Board approved this study. 
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7.3.2 Experimental Setup 

 All data were collected on a split-belt treadmill (Bertec Corporation, Columbus, 

OH, USA). This treadmill has two belts side-by-side, and each belt can be independently 

controlled in terms of displacement, speed, acceleration, and direction of travel. Six 

markers were placed bilaterally on each participant’s heel (lateral malleolus), toe (5th 

metatarsal), and hip (greater trochanter). A 7th marker was placed near the 1st sacral 

vertebrae. Kinematics were collected at a sample rate of 120 Hz using high-speed 

cameras (Oqus, Qualisys, Gothenburg, Sweden) and recorded by Qualisys Track 

Manager. Once trajectories were identified, data were exported to MATLAB (The 

MathWorks, Natick, MA, USA) for further analysis. Kinematic trajectories were filtered 

at 8 Hz using a 4th order, low pass Butterworth filter. 

7.3.3 Experimental Protocol 

 Participants were first instructed to stand still for 10 seconds in order to obtain a 

standing calibration. Next, preferred walking speed (PWS) was acquired by progressively 

increasing and decreasing the treadmill belt speeds in a manner similar to Jordan et al. 

(2007b). Specifically, the belt speed began at 0.5 m*s-1 and increased 0.1 m*s-1 every 5-10 

seconds until participants verbally declared they were walking at their ‘preferred’ or 

‘comfortable’ speed, that is, the speed at which they choose to travel if walking through 

town while neither in a rush nor on a leisurely stroll. Once PWS at increasing speeds was 

reported, the treadmill increased 0.3 m*s-1 faster than declared PWS, and decreased in 

speed by 0.1 m*s-1 until participants again declared their PWS. This process was repeated 

another time if the increasing and decreasing speeds differed, in this case increasing or 

decreasing by .05 m*s-1 when participants were unable to assert a specified speed. 
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 Following determination of PWS, participants performed three 15-minute walking 

bouts, each followed by a 5-minute seated rest on the treadmill (a chair was placed upon 

the treadmill). For each trial, participants were instructed to walk as normal as possible, 

to remain in the general center of the treadmill, and to avoid touching handrails as much 

as possible. The first trial consisted of walking at the participant’s PWS. In the second 

trial, participants walked at half of their preferred walking speed (half-PWS). This was 

performed so that a baseline level of fractal dynamics at slow walking could be 

ascertained. The last trial consisted of participants walking asymmetrically, whereby the 

right (dominant) leg travelled at PWS and the left (non-dominant) leg at half-PWS. This 

asymmetric condition was also called the ‘split-belt’ condition. 

7.3.4 Evaluation of Multifractality 

 The timing from heel strike to subsequent heel strike of the ipsilateral heel (i.e., 

stride time) was used for analysis. The temporal evolution of the local fractal scaling 

exponent was determined to assess the extent of multifractality, as described by Ihlen 

(Ihlen, 2012; Ihlen & Vereijken, 2013a, 2014). While the q-order statistics method (e.g., 

see Ivanov et al. (1999)) is more commonly used to assess multifractality, evaluating the 

local fractal scaling is more appropriate for shorter data sets (e.g., < 5000 data 

points)(Ihlen, 2012), and importantly provides the spatiotemporal evolution of the 

localized fractal behavior (Ihlen, 2012). First, the standard DFA algorithm is performed 

on the time series signal. DFA assesses the potential presence of statistical persistence of 

a behavior, whereby a persistent signal is characterized by interval trends that are likely 

to be followed by intervals of similar sizes. For example, large stride times tend to be 

followed by additional large stride times. This algorithm is a modified random walk 
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analysis, whereby DFA first integrates the signal, and then sections it into windows of 

various sizes from the smallest to largest parameterized. Here the smallest and largest 

window sizes were 10 and 50 strides, respectively. Within each window, a local trend 

line is fit to the data, and a root-mean-square analysis determines the magnitude of 

fluctuation: 

 

𝐹(𝑛) = !
 !/!

!
!

(𝑋! − 𝑋!)!!
!!!

 !/!
!!!          Equation 7.1 

 

where F(n) is the fluctuation magnitude at window n, N is the total number of strides, Xi 

is the integrated signal at stride interval i, and 𝑋i is the y-coordinate position of the local 

trend in window n. F(n) is obtained for all non-overlapping windows (j) of size n (total 

number of windows = N/n, Figure 7.1), and then averaged so that a single fluctuation 

magnitude represents each scale size. This process is performed for all window sizes, and 

the fluctuation magnitudes and scale sizes are then logarithmically transformed. A linear 

relationship in this double-log plot indicates power law scale-invariance. The slope of 

this linear fit (Figure 7.1, red line) represents the fractal scaling exponent. The local DFA 

(DFALOC) method (Ihlen, 2012; Ihlen & Vereijken, 2013a, 2014) is a continuation of 

earlier work by Struzik (Struzik, 1999, 2000) and later West and colleagues (Scafetta et 

al., 2003; Scafetta et al., 2009; West & Scafetta, 2005) who used wavelet transform to 

determine local singularity strengths or Hölder exponents. DFALOC computes a ‘local 

scaling’ value by evaluating the fluctuation magnitude at a given temporal location. 
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Figure 7.1: Dispersion plot of fluctuation magnitudes across temporal scales. Red 
line represents line of best fit between the logarithmically transformed scale size (n) and 
fluctuation magnitude (F). The slope of this fit line represents the fractal scaling 
exponent. 
 

The local scaling exponent is defined as the slope of the fit line from the fluctuation 

magnitude at scale x (here determined from scale 7-17) to the position of the original 

DFA’s regression line fit at the largest scale (i.e., 50, Figure 7.2 left): 

 

𝛼 𝑡,𝑛 =  !"# ! !,! !(! !"#(! ! !)
!"# ! !!"# (!!)

+  𝛼             Equation 7.2 

 

where log(F(t,n)) is the local fluctuation at scale n and time t, α(log(n)+C) represents the 

regression line at scale n of the original DFA. The DFA’s regression line fit at the largest 

scale is represented by log(nN). In this equation (7.2), the scaling exponent α is a function 

of both window size n and local time t (Ihlen & Vereijken, 2014). The result is a series of 

fractal scaling exponents within the probability distribution function (PDF, Figure 7.2 

right) p(h) that represent the multifractal spectrum D(h): 
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𝐷 ℎ =  !"# (!(!)/!!"#(!))
!!"# (!)

+ 1                 Equation 7.3 

 

where pmax(h) is the maximal probability of the PDF p(h). Here the multifractal spectrum 

D(h) is directly proportional to the distribution of local scaling exponents p(h). 

 

 
Figure 7.2: Quantification of multifractality based on local fluctuations. Left) 
Fluctuation magnitudes (black dots) at various time scales (7-17 strides) across the time 
series. Local scaling is based on the slope of linear fit from magnitude of fluctuation to 
the location of the original DFA regression line (red line) at the largest scale (50). Blue 
diamonds represent the original DFA dispersion plot values. The largest and smallest 
fluctuation magnitudes coincide with the smallest and largest slopes, respectively, of the 
dotted blue lines. Right) All local scaling exponents are entered into a probability 
distribution function in order to obtain the multifractal spectrum width (max – min) and 
interquartile range.  
 

The spectrum width was defined based on the overall range (minimum and maximum) of 

scaling exponents within the PDF. Because this method is sensitive to outliers within the 

PDF, the interquartile range (IQR) width (25th to 75th percentile) was also evaluated 

(Ihlen & Vereijken, 2014). A monofractal time series spectrum width will converge to 

zero as the series length approaches infinity. However, because the data herein involves 

discrete time series, the monofractal spectrum width is expected to be greater than zero. 
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Thus, to provide evidence for the presence or absence of multifractality, as opposed to a 

monofractal signal with inherent noise characteristics, we assessed the data based on the 

conventions suggested by Scafetta and colleagues (2003). First, several (n=15) time 

series signals were generated that exhibited fractal-like power spectral characteristics and 

the same mean preferred walking speed monofractal scaling exponent (α = 0.71 [0.69-

0.73]). Second, DFALOC was performed to determine the multifractal spectrum width for 

each generated signal. Finally, if the spectrum width of the generated time series signals 

were statistically less than the empirically derived data, the original data were accepted as 

more heterogeneous and thus more likely to be multifractal (Kelty-Stephen et al., 2013; 

Scafetta et al., 2003). 

7.3.5 Assessment of Gait Adaptability Performance 

 Gait adaptability was measured by determining the phasing between left and right 

legs. Sagittal plane leg segments were constructed as a rigid segment from the greater 

trochanter to the ipsilateral heel for each leg. The leg angle was defined based on the 

angle of the leg segment at the hip (greater trochanter) relative to its standing calibration 

position. These angles were normalized to 100 data points for each stride. Cross 

correlation analysis was used to calculate the bi-directional correlations across a range of 

positive and negative lag values. The cross correlation data were normalized to a range  [-

1, 1] stride cycles such that maximal negative correlations observed at 0-lag represented 

perfect anti-phase (i.e., legs moving in opposite direction). Because steady state walking 

entails nearly perfect anti-phasing, gait adaptability performance was assessed as 

deviation (in lags) from this intended anti-phasing, i.e., deviation of the maximal negative 

correlation from 0-lag (J. T. Choi & Bastian, 2007; J. T. Choi et al., 2009). From the 
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phase deviation data, gait adaptability was quantified as the summed absolute magnitude 

of deviation from perfect anti-phase across the first 50 strides.   

7.3.6 Statistical Analysis 

 Evidence of multifractality was assessed via paired-samples t-tests between the 

artificially generated monofractal signals and the corresponding multifractal spectrum 

widths of the empirical data. The choice to use paired samples was founded on the 

rationale by Scafetta et al. (2003), whereby the spectrum widths are based on the length 

of the time series and the monofractal scaling exponent. Because these parameters are the 

same for both empirical and artificial data, the variance is assumed to be a result of 

identical point-to-point fluctuations or effects. Multifractal ranges (MFRANGE) and 

interquartile widths (MFIQR) were assessed across conditions by submitting the data to a 

one-way, repeated measures analysis of variance (ANOVA) with participant as the 

within-subject factor and walking condition (PWS, half-PWS, asymmetric) as the 

between-subject factor. Separate ANOVAs were performed for the right and left legs. 

Cohen’s D effect sizes (ES) were performed for comparisons between conditions, with 

0.2, 0.5, and 0.8 indicating small, moderate, and large effects, respectively (Vincent & 

Weir, 2012). By convention, negative ES values indicate an increase in multifractality 

from 1) PWS to half-PWS, 2) PWS to asymmetric walking, or 3) half-PWS to 

asymmetric walking.  Linear and quadratic regression analyses were used to determine 

associations between gait adaptability (Phase Deviation) and MFRANGE and MFIQR across 

all three walking conditions. In addition, the IQR may be categorized as too conservative, 

as it only considers the spread of half the data. Thus, to evaluate the overall range by 

maintaining the majority of its width characteristics while not being influenced by a few 
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outliers within a given participant’s PDF, the 95% percentile range (MF95, 2.5% to 

97.5%) was also assessed for correlations. In the event of significant findings, a simple 

leave-one-out validity analysis was performed to ensure that no single inter-participant 

observation influenced the relationship between variables. All statistics were performed 

using R-studio (Version 1.0.136, R Foundation for Statistical Computing, Vienna, 

Austria). 

 

7.4 Results 
	
 The empirical time series data during PWS and half-PWS were monofractal in 

nature, as no differences between empirical and simulated time series were observed for 

both dominant and non-dominant limbs (Table 7.1). For asymmetric split-belt walking 

the dominant leg’s asymmetric walking spectrum width (MFRANGE) was statistically 

larger than the expected monofractal signal (p = .02), and close to significant for the 

MFIQR (p = .06), while no differences were found for the non-dominant limb (Table 7.1). 

 
	

Table 7.1: Multifractal evaluation of empirical versus generated signal. 
Generated Signal Condition p-value Effect Size 

 
MFRANGE - 
Dominant 

PWS .98 -0.01 
Half-PWS .22 -0.47 
Split-Belt .02 -1.04 

 
MFRANGE – 
Non-Dominant 

PWS .82 -0.09 
Half-PWS .12 -0.63 
Split-Belt .32 -0.39 

 
 
MFIQR –  
Dominant 

 
PWS 

 
.19 

 
 0.48 

Half-PWS .49 -0.26 
Split-Belt .06 -0.75 

    
MFIQR – 
Non-Dominant 

PWS .35  0.38 
Half-PWS .24 -0.47 
Split-Belt .58  0.21 
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Table 7.2: Multifractal ranges across conditions. Total Range and interquartile range 
(IQR) displayed for the dominant (right) and non-dominant (left) legs. Data reported as 
mean (SD). Main effects based on one-way, repeated measures ANOVA. Targeted 
comparisons based on Cohen’s D effect sizes. 

                                                  Descriptive Statistics 
          MFRANGE                MFIQR 
 Non-dominant Dominant Non-dominant Dominant 

PWS 0.669 (0.12) 0.661 (0.16) 0.138 (0.02) 0.137 (0.02) 
Half-PWS 0.734 (0.15) 0.708 (0.12) 0.152 (0.02) 0.148 (0.02) 
Asymmetric 0.704 (0.14) 0.801 (0.17) 0.139 (0.02) 0.159 (0.03) 

 
                                                       Gait Condition Main Effect 

 F2,28 = 1.66,  
p = 0.209 

F2,28 = 3.15, 
p = 0.058 

F2,28 =2.07, 
p = 0.145 

F2,28 = 4.20, 
p =0.025 

 
                                                        Targeted Comparisons (Effect Size) 

PWS vs. Half PWS  -0.48  -0.33 -0.75  -.067 
 

PWS vs. Asymmetric  -0.27 -0.84  -0.08  -1.06 
 

Half PWS vs. 
Asymmetric 

0.21  -0.62 0.55  -0.50 
 

 

 

Multifractal spectrum widths (MFRANGE and MFIQR) are reported in Table 7.2. For the 

dominant, faster moving right leg, there was a main effect of condition for the dominant 

right leg MFIQR (F2,28 = 4.202, p = .025), and nearly significant effect for the dominant leg 

MFRANGE (F2,28 = 3.149, p = .058). The multifractal spectrum width (range and IQR) 

increased from preferred speed walking to half-speed walking, and further increased in 

response to the asymmetric walking condition. For the non-dominant, slower moving left 

leg, there was no main effect of condition.  The dominant and non-dominant legs 

exhibited large and small effects (ES = -0.841 and -0.266, respectively) as MFRANGE 

increased from PWS to asymmetric walking. The dominant leg MFIQR increased from 

PWS to asymmetric walking (ES = -1.058). The large effect sizes observed in dominant 

leg MFRANGE and MFIQR between PWS and Asymmetric were further confirmed via two-

tailed, paired samples t-tests (p < .05). Both legs showed small effects from PWS to half-
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PWS in MFRANGE, and moderate effects in MFIQR for the non-dominant leg (ES = -0.746). 

From half-PWS to Asymmetric, the dominant leg MFRANGE and both legs MFIQR 

exhibited moderate effects, whereby asymmetric walking increased and decreased 

multifractality for the dominant and non-dominant legs, respectively.  

 

 
Figure 7.3: Multifractal spectrum widths across all three conditions. Plots (mean ± 
SEM) illustrate the overall range (top row, MFRANGE) and interquartile range (bottom 
row, MFIQR) for the left (left column) and right (right column) legs. Dashed pink 
horizontal line represents the monofractal signal’s mean spectrum width. All participants 
were right leg dominant. Asymmetric = split-belt walking condition. 
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Table 7.3: Regression equations for gait adaptability and multifractal widths. Linear 
and quadratic regression equations for steady state symmetric (PWS and half-PWS) and 
asymmetric walking conditions in relation to the gait adaptability measure, phase 
deviation. D = dominant leg; N = non-dominant leg. 

Dependent 
Variable 

Condition Independent 
Variable 

Model 
Type 

p-value Adj. R2 

Phase 
Deviation 

Preferred 
Speed 

N-MFRANGE Linear 
Quadratic 

0.63 
0.37 

-0.06 
0.01 

D-MFRANGE Linear 
Quadratic 

0.93 
0.60 

-0.08 
-0.07 

N-MFIQR Linear 
Quadratic 

0.26 
0.38 

0.03 
0.01 

D-MFIQR Linear 
Quadratic 

0.49 
0.12 

-0.04 
0.18 

N-MF95 
Linear 
Quadratic 

0.48 
0.59 

-0.03 
-0.07 

D-MF95  
Linear 
Quadratic 

0.99 
0.87 

-0.08 
-0.14 

Half-
Preferred 
Speed 

N-MFRANGE  
Linear 
Quadratic 

0.04 
0.10 

0.22 
0.21 

D-MFRANGE Linear 
Quadratic 

0.03 
0.03 

0.26 
0.36 

N-MFIQR Linear 
Quadratic 

0.80 
0.26 

-0.07 
0.07 

D-MFIQR Linear 
Quadratic 

0.89 
0.49 

-0.08 
-0.03 

N-MF95 
Linear 
Quadratic 

0.56 
0.37 

-0.05 
0.01 

D-MF95 
Linear 
Quadratic 

0.42 
0.71 

-0.02 
-0.10 

Split-Belt 
Asymmetric 

N-MFRANGE 
Linear 
Quadratic 

0.19 
0.30 

0.06 
0.05 

D-MFRANGE Linear 
Quadratic 

0.11 
0.29 

0.12 
0.05 

N-MFIQR Linear 
Quadratic 

0.28 
0.39 

0.02 
0.00 

D-MFIQR Linear 
Quadratic 

0.19 
0.26 

0.06 
0.07 

N-MF95 
Linear 
Quadratic 

0.34 
0.23 

0.00 
0.09 

D-MF95 
Linear 
Quadratic 

0.19 
0.41 

0.06 
0.00 

 
 
	
 Preferred walking speed multifractal spectrum widths (MFRANGE, MFIQR, MF95) 

were not associated with adaptive gait performance (Table 7.3, all p’s > 0.05; r-squared < 

0.18). Half-PWS speed walking MFRANGE exhibited a positive linear relationship with 



210 
	

gait adaptability. However, these results may have been heavily influenced by a single 

observation, and removing this observation yielded p = .23, r2 = .05 and p = .29, r2 = .06 

for non-dominant and dominant legs, respectively. Finally, there was no relationship 

between asymmetric walking spectrum widths and phase deviation (all p’s > 0.05, r-

squared ≤ 0.12). 

	
7.5 Discussion 
	
 The purpose of this study was to investigate the potential extent of multifractality 

in steady state unperturbed and constrained human locomotion, and to determine if 

multifractality associates with gait adaptability performance. Young, healthy participants 

experienced unperturbed normal and slow walking, as well as asymmetric walking, 

whereby their legs traveled at different speeds on a split-belt treadmill. Based on the data 

presented herein, steady state stride time variance in humans appears to be monofractal. 

Moreover, exposure to asymmetric walking manifests as increased multifractal 

characteristics for the faster moving leg, but not the slower moving leg. Finally, neither 

unperturbed nor asymmetric walking multifractal spectrum widths were associated with 

adaptive gait performance.  

7.5.1 Monofractal Nature of Human Locomotion 

 Prior studies have indicated that unperturbed walking is monofractal, or that there 

is a slight presence of multifractality in young, healthy adults (Ihlen & Vereijken, 2014; 

Muñoz-Diosdado, 2005; Munoz-Diosdado et al., 2003; Scafetta et al., 2003; Scafetta et 

al., 2009). Indeed, data from these earlier studies suggest that healthy gait may even 

qualify as purely monofractal in nature. Thus, it was hypothesized that steady state 



211 
	

preferred speed walking in the present study would be monofractal. However, one 

challenge with comparing the findings herein to those of other studies is that many of the 

earlier studies did not explicitly define multifractality, nor distinguish what constitutes 

mono versus multifractality. Rather, these studies assess comparative changes in 

spectrum widths across conditions, such as gait speed manipulations. Scafetta and 

colleagues (2003) addressed this issue by recommending that the observed multifractal 

spectrum widths be statistically compared to (presumably) monofractal signals that 

exhibit a similar Hölder exponent (i.e., similar to that of the scaling exponent). Adhering 

to these guidelines, the results from this study support the hypothesis that PWS would 

yield monofractal behavior, as the multifractal spectrum widths were statistically similar 

to the generated monofractal noise signals (Figure 7.3, Table 7.1). These findings are in 

agreement with the previously observed notion that steady state, unperturbed walking in 

healthy, young adults is monofractal. This is in contrast to the findings of Scafetta and 

colleagues (Scafetta et al., 2003; Scafetta et al., 2009) who observed slight multifractality 

in walking at various gait speeds.  

 Disparities between these findings of PWS monofractality compared to observed 

multifractality in PWS may be due to several differences between studies. In the current 

study, participants walked for 15 minutes at preferred speed, and the first 512 strides 

were analyzed. In the study by Scafetta and colleagues (2003), time series data used were 

from one hour of unconstrained walking and over 2,500 strides. Longer time series from 

human walking may produce more stable statistical output, but also may result in fatigue 

or boredom. In addition, while the wavelet transform methods used by Scafetta et al. 

(2003) and the DFALOC scaling methods used herein (Ihlen, 2012) are similar 
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theoretically and should be comparable, differences in the algorithms may have 

contributed to contrasting interpretations of the results. The use of wavelet analysis 

requires q-order statistics. Moreover, the studies by Muñoz-Diosdado et al. (Muñoz-

Diosdado, 2005; Munoz-Diosdado et al., 2003) and Dutta and colleagues (2013) also 

entailed multifractal analysis using q-order statistics. The choice to use DFALOC instead 

of the q-order method was because q-order analysis requires several thousand data points 

for accurate assessment. In addition, while some authors refer to q-order statistics as a 

‘direct’ estimation of multifractality (Kelty-Stephen et al., 2013),  other authors argue 

that this method is an ‘indirect’ examination of time series data (Ihlen, 2012). This 

method artificially expands and shrinks different fluctuation magnitudes by raising the 

signal to positive or negative exponents. Weak exponents are amplified and large 

exponents suppressed with large negative q values, and vice versa for large positive q 

values (Struzik, 2000). Thus, the q-order method assesses the time series signals 

differently than the algorithm used herein and as such may not be comparable to the 

temporally localized scaling method. 

 Regarding slow walking, previous research (Scafetta et al., 2003; Scafetta et al., 

2009) indicated that slow walking increased multifractality compared to preferred speed 

walking. While slow walking multifractal spectrum widths were statistically not different 

from the generated monofractal spectrum width, we observed moderate effects between 

the generated monofractal signal and slow walking spectrum widths (Table 7.1), as well 

as from PWS to half-PWS (Table 7.2, small and moderate effects for MFRANGE and 

MFIQR, respectively, for both legs). Given that previous studies describe multifractality as 

more complex (Ivanov et al., 1999; Munoz-Diosdado et al., 2003), these findings suggest 
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that slow walking is either similar to or slightly more biologically complex than walking 

at preferred speed. The forced speed constraint likely yielded suboptimal locomotor 

patterns that the system would have (perhaps intermittently) attempted to adjust. In 

general, slower walking is more variable, and thus would be expected to generate more 

fractal variability. While multifractality is generally considered to be the manifestation of 

more complex gait, the task of walking unperturbed at preferred speed on a treadmill may 

have not demanded that more complex gait emerge in this group. Assuming this young, 

healthy cohort was absent of balance or stability decrements, there may have not been a 

need for intermittent periods of high or low variability. Indeed, biological complexity 

may emerge only when the system is constrained in some manner that necessitates 

frequent corrections or adjustments. In order to verify this empirically, participants would 

need to be exposed to a more challenging locomotor task.  

7.5.2 Forced Walking Asymmetry Begets Multifractality 

 When exposed to asymmetric belt speeds on the split-belt treadmill, participants’ 

multifractal spectrum widths (both MFRANGE and MFIQR) expanded compared to that of 

steady state preferred or half-preferred speed in the dominant leg (Table 7.2, Figure 7.3), 

and was greater than the generated monofractal signals (Table 7.1). These findings are in 

agreement with the second hypothesis that a more challenging task would require greater 

intermittent corrections. From a constraints-based approach, these results also agree with 

the findings of Ihlen and Vereijken (2014) who observed increased multifractality when 

participants were required to match their foot strike timing to an auditory metronome. 

Scafetta et al. (2003) observed greater multifractality at slower and faster walking speeds 
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compared to preferred speeds. Albeit different constraints, in all instances constrained 

gait elicited greater multifractality.  

 While the faster moving dominant leg exhibited multifractality during asymmetric 

walking, the slower moving non-dominant leg did not. The faster moving leg could 

reasonably be considered to be performing the more challenging task compared to the 

slower moving leg. If this were true, it would support the idea that more challenging 

walking conditions trigger multifractality.  

 Walking in an asymmetric, potentially less stable manner may afford periods of 

strong persistence, but also will likely demand intermittent corrections that manifest as 

discrete moments of randomness or anti-persistence. In addition to the asymmetric 

constraints, participants walked on a finite sized treadmill. This spatial constraint may 

have also required anti-persistence to avoid walking off the treadmill. For example, 

Terrier and colleagues (2012) noted that, while stride time, stride length, and stride speed 

(stride length / stride time) exhibit monofractal persistence during overground walking, 

stride speed exhibits anti-persistence while walking on a treadmill in order to maintain 

the treadmill speed. It is likely that the attempt to maintain two independent treadmill belt 

speeds was more challenging, leading to greater errors from the task goal and therefore 

greater anti-persistent corrections, especially for the faster moving leg. Ultimately, 

greater errors in maintaining a neutral position on the treadmill, and thus more frequent 

intermittent corrections, are observed as greater multifractal spectrum widths. 

7.5.3 Steady State Multifractal Spectrum Does Not Predict Gait Adaptability  

 Multifractality is thought to represent complex gait behavior (Ivanov et al., 1999; 

Munoz-Diosdado et al., 2003). It was therefore hypothesized that greater multifractality 
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during steady state unperturbed walking would associate with greater adaptive gait 

performance. In contrast to our hypothesis, there was no relationship with unperturbed 

(PWS or half-PWS) or asymmetric multifractal spectrum widths and gait performance.  

 One possible reason why the multifractal analysis did not predict gait 

performance is that the paradigm involved a task that may not have been difficult enough 

to reveal multifractal behavior changes. The PWS and half-PWS conditions resulted in 

monofractal characteristics. A more challenging locomotor task may have more clearly 

revealed differences in adaptive gait performance and the multifractal nature of stride 

intervals across participants. As mentioned earlier regarding slow walking, young, 

ostensibly healthy adults were likely able to produce stable repeating locomotor patterns 

during unperturbed walking. A more challenging locomotor task, such as walking with 

varying terrains, might demand greater multifractal behavior, similar to that observed 

during asymmetric walking.  

 Alternatively, unperturbed walking multifractality may simply not be a critical 

parameter for adaptive gait in young healthy adults. Monofractal analyses consistently 

provide evidence that the locomotor system does not optimize the structure of stride 

interval variance during unperturbed walking, otherwise the observed fractal scaling 

exponent would be α ~ 1.0 (i.e., 1/f). Instead, unperturbed walking monofractal scaling is 

often observed at α ~ 0.75 (Jordan et al., 2007b; Rhea & Kiefer, 2013; Rhea, Kiefer, 

D'Andrea, et al., 2014; Terrier, 2012), which represents the midline between highly 

correlated 1/f pink noise and uncorrelated white noise. The system is likely attempting to 

regulate numerous components, such as minimizing metabolic cost or maintaining some 

threshold of dynamic stability. In this current study, the young, healthy group may have 
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been too homogenous to reveal any relationships between multifractal characteristics and 

gait adaptability. Multifractal analysis, though, may still be able to distinguish between 

cohorts, such as old versus young, or those with and without neurological disease.  

7.5.4 Limitations 

 Given the relatively small sample in this study size (n=15), the associations 

reported from regression analyses were likely affected by biological variability. A greater 

sample size would be needed to more accurately understand the potential relationship 

between stride time multifractality and adaptive gait performance. In addition, the 2:1 

ratio asymmetric walking condition may not have been difficult enough to bring about 

changes in multifractal behavior for young, healthy adults. To confirm this notion, a 

study would require either 1) a more challenging experimental paradigm, or 2) less 

capable participants, such as older adults, or those with neurological impairments. 

 Also, the DFALOC method to assess multifractality is a less common technique 

compared to the more classic q-order statistical method. The rationale for using DFALOC 

is that it may be more appropriate for short data sets. To further confirm the findings 

reported herein, the q-order method may be used if very large data sets are collected. 

However, having participants walk for extended periods of time (i.e., over 1 hour) may 

result in fatigue or boredom, and therefore this experimental design might be limited in 

participant pool (i.e., highly fit individuals may need to be recruited).  

 

7.6 Conclusion 
	
 Steady state locomotion in healthy, young adults appears to be monofractal in 

nature, characterized by stable, repeated gait patterns over the course of several hundred 
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strides. Exposure to asymmetric walking yielded multifractal stride time characteristics in 

the faster (but not slower) moving leg, likely a result of more intermittent corrections. 

Unperturbed and asymmetric walking multifractality was not associated with adaptive 

gait performance. In all, these findings provide further evidence that unperturbed human 

locomotion is essentially monofractal, and establish that perturbed walking yields 

multifractal behavior. 
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CHAPTER VIII  

GENERAL DISCUSSION 

 
8.1 Introduction 
	
 The purpose of this dissertation was to investigate the potential relationship 

between stride time fractality and gait adaptability. The structure of stride-to-stride 

fluctuations (i.e., fractal dynamics) is a conceptual representation of the overall adaptive 

abilities of the system. This series of studies provided an empirical attempt to connect the 

concept of fractal dynamics with a gait adaptability paradigm in order to validate the use 

of fractality as a measure of adaptive capacity. While the structure of variability is often 

cited as a theoretical measure of how well the system can adapt, this dissertation 

delivered the needed empirical investigation to support or refute such claims. By 

demonstrating the existence or absence of a relationship between fractal dynamics and 

gait adaptability, researchers may be able to better develop study questions and 

paradigms to reveal more information about the locomotor system, and ultimately 

quantify gait adaptability. If, for example, fractal dynamics are in fact associated with 

adaptive capacity, researchers might be able to use this fractal measure to assess 

interventions designed to enhance adaptability, or to quantify adaptability in order to 

potentially predict fall risk. 

 Chapters 4, 5, and 6 of this document are reported here as studies 1, 2 and 3, 

respectively. The purpose of the first study was to investigate if steady state, unperturbed 

walking fractal dynamics could predict an individual’s ability to adapt locomotor patterns 

effectively when exposed to asymmetric walking constraints. The task to assess adaptive 

capacity consisted of walking on a split-belt treadmill in which each belt traveled at 
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different speeds. This was presumably the first study to extend beyond the standard 

analysis of steady state, unperturbed walking fractal characteristics by incorporating a 

constrained walking task requiring adaptation. The results revealed no associations 

between unperturbed walking fractal dynamics and adaptive gait capacity in young, 

healthy adults. However, this first study provided preliminary evidence for the emergent 

relationship between asymmetrically constrained fractal dynamics and gait adaptability. 

Individuals whose fractal scaling during asymmetric walking was higher or lower than 

the average (mean = 0.94 and 0.86 for right and left legs, respectively; α close to 1/f) 

performed the poorest in the gait adaptability. In addition, fractal scaling increased (i.e., 

α closer to 1.0) compared to unperturbed walking when participants experienced 

asymmetric walking, possibly indicating enhanced adaptive capacity in response to a 

challenging task.  

 The aim of the second study was to determine the relationship between fractal 

dynamics and gait adaptability in older adults. Ultimately, the goal of quantifying gait 

adaptability is to improve the ability to predict and reduce the odds of a future fall. 

Young adults are at low risk of a fall, or at the least, a fall that is detrimental to one’s 

physical, psychological, or emotional wellbeing. Thus, the second study evaluated if 

fractal dynamics during unperturbed or asymmetrically constrained walking could predict 

adaptive gait performance in healthy older adults. To avoid habitual physical activity 

level as a potential confounder, healthy, active young and older adults were recruited. 

Interestingly, young and older adults exhibited no differences in unperturbed (PWS and 

Half-PWS) or asymmetric walking fractal dynamics, as well as adaptive gait 

performance. Similar to the findings from study 1, unperturbed walking fractal dynamics 



220 
	

were not related to gait adaptability for either cohort, except for a modest association in 

the young adults’ dominant leg (r2 = 0.30). Asymmetric walking fractal dynamics were 

moderately associated with gait adaptability in the older cohort in a similar fashion to that 

observed in study 1 with young adults. Those with fractal scaling values closer to 1.0 

displayed the most adaptive gait. These results further strengthen the idea that changes to 

the organization and structure of stride time variance may enhance adaptive gait capacity. 

 Finally, while the first two studies investigated the relationship between stride 

time monofractal scaling and adaptive gait performance, study 3 evaluated the potential 

multifractality of unperturbed and asymmetric walking in young individuals. A 

monofractal analysis assumes that the relationship between fluctuations at various 

temporal scales remains constant across a time series. A multifractal behavior, on the 

other hand, exhibits brief intermittent bursts of extremely high or extremely low variance. 

These intermittent bursts manifest as a wider range of observed fractal scaling values 

across the temporal evolution of a time series. A greater range is thought to represent a 

more complex behavior. This experiment aimed to understand if multifractal 

characteristics could predict gait adaptability. These analyses were conducted using data 

acquired during study 1, and therefore the participant pool consisted of young, healthy 

adults whose physical activity status was unknown. Findings from study 3 suggest 

unperturbed walking exhibits monofractal behavior, while challenging asymmetric 

walking yields multifractality in young, healthy adults. These results suggest that 

challenging gait is more complex than unperturbed gait. In addition, the extent of mono 

or multifractality was not associated with gait adaptability.  
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8.2 No Relationship Between Unperturbed Walking Fractal Dynamics and Gait  
    Adaptability 
	
 In the first study, unperturbed preferred speed and slow speed walking fractal 

dynamics were not associated with gait adaptability. These results were repeated in the 

second study’s older cohort (both dominant and non-dominant legs), and in the young 

cohort’s non-dominant leg. The only association observed between unperturbed fractal 

dynamics and adaptive gait capacity was in the young adults’ dominant limb in the 

second study. This relationship was quadratic, whereby those individuals whose 

unperturbed walking fractal dynamics were at the frontier between random and structured 

(i.e. α ~ 0.75) exhibited the most adaptive gait performance. These findings may be of 

interest, because if the manner in which individuals self-organize during unperturbed 

walking ultimately affects gait adaptability, the significance of fractal analyses is 

heightened. However, it should be reiterated that this relationship between unperturbed 

walking fractality and adaptive gait was not observed in the first study, or in the second 

study’s older cohort, or in the second study’s young cohort’s non-dominant leg, and was 

not strong in the young adults’ dominant leg (r2 = 0.30) The conflicting reports may be 

due to biological variability that presents difficulties when performing regression 

equations on small sample sizes (n = 15 per cohort). Alternatively, the observed 

relationship between young adults’ unperturbed walking fractal dynamics and gait 

adaptability may be a false positive. Finally, stride time variability is one of many gait 

variables to assess, and other parameters or combinations of parameters may potentially 

elucidate associations with adaptive gait performance. In all, results from the two studies 

indicate there is an overall lack of potential predictive power of unperturbed walking 
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fractal dynamics. Therefore, more research is warranted to elucidate potential 

associations. 

 
8.3 Constrained Walking Fractal Dynamics Associate with Gait Adaptability 
	
 In the first study, unperturbed preferred speed and slow speed walking fractal 

dynamics did not predict gait adaptability. However, fractal dynamics during the 

asymmetric walking task were quadratically associated with gait adaptability 

performance. Individuals whose fractal scaling was too high or low were also the poorest 

at adapting their gait patterns. These results provide the first indication that the 

correlation structure of gait variance during challenging gait associates with actual 

adaptive performance. While from a theoretical perspective it has been suggested that 

fluctuations exhibiting 1/f characteristics represent the most adaptive, complex behavior 

(Lipsitz, 2002), this was not confirmed for unperturbed, steady state walking. However, 

this study provides preliminary empirical support that 1/f fluctuations during a 

challenging gait task are indeed associated with enhanced gait adaptability. For this 

reason, the observed changes to fractality from unperturbed to perturbed walking suggest 

a systemic behavioral reorganization in order to better respond to stressors. 

 Findings from the second study further support the notion that asymmetrically 

constrained fractal dynamics are associated with adaptive gait performance. The older 

cohort exhibited a curvilinear relationship between asymmetric walking fractal dynamics 

and gait adaptability, whereby those individuals whose fractality approached 1/f 

characteristics also displayed the best gait adaptation performance. Interestingly, these 

findings only existed in the slower moving, non-dominant leg. Although the dominant 
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limb’s fractal scaling somewhat associated with gait adaptability performance (r2 = 0.11), 

these results were not statistically significant. 

 Unexpectedly, constrained walking fractal dynamics and gait adaptability did not 

associate in the young cohort. This lack of association is in contrast to the previous 

study’s reports, and the reasons are unclear. The second study’s young cohort consisted 

of healthy and highly active adults. The group as a whole exhibited an increase in fractal 

scaling from unperturbed to asymmetric walking. The group may have simply been too 

homogenous for minor differences among fractal scaling exponents to show a correlation 

with gait adaptability. In other words, if the homogenous group exhibited similar adaptive 

gait performance or fractal scaling values, potential associations may not have surfaced. 

The fact that these participants were all highly active may explain why these results 

differed from those in study 1. The first study’s participant pool consisted of young 

healthy adults, but physical activity levels were not reported. Therefore the relationship 

observed in study 1 may have been a result of recruiting a mix of active and potentially 

inactive adults. However, it should be noted that the second study’s young cohort could 

reasonably be defined as heterogeneous based on physical activity (range [28.5, 86.9] 

minutes per day moderate-to-vigorous physical activity). 

 

8.4 1/f Fluctuations Emerge During Constrained Asymmetric Walking  
	
 Previous research has indicated that constraining individuals to walk slower or 

faster than preferred speed actually increases fractal scaling exponents closer to α = 1.0 

(Hausdorff et al., 1996). Other work suggested that any constraint applied to the 

individual, task, or environment will break down long-range correlated behavior (Diniz et 
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al., 2011). In the current series of studies, it was predicted that the challenging, likely 

destabilizing, task of asymmetric walking would result in a breakdown of correlated 

structures. On the contrary, stride time fractal dynamics increased closer to α = 1.0 when 

participants were exposed to asymmetries. This occurred in both the faster and slower 

moving legs in study 1, and in the faster moving leg in study 2 for both cohorts. The 

essence of this finding is that enhanced fractality is a response to challenges to the 

locomotor system. This shift in fractality closer to 1/f has been observed in various other 

paradigms in motor behavior, and may represent a system close to a phase transition and 

more poised to contest perturbations at various scales (Torre, 2010). The change in fractal 

scaling may reflect systemic reorganization to increase interactivity. It may be posited 

that the purpose of this reorganization is functionally relevant because, as discussed in 

section 8.3, the individuals whose fractality remained less structured or transitioned to an 

overly structured state were less adaptable. Therefore, the increased fractal scaling may in 

fact be indicative of the capacity to adapt locomotor patterns. 

 

8.5 Fractal Dynamics are Similar in Active Young and Older Adults 
	
 There is limited research investigating age-based differences in fractal dynamics 

between health young and older adults. It is generally expected that fractal scaling 

exponents decrease to more random fluctuations with aging (Hausdorff et al., 1997). 

Study 2 provides evidence that when recruiting healthy, active adults, there are no age-

related differences in fractality across a range of walking conditions, including preferred 

speed, slow, and asymmetric walking. Fractal scaling is, in fact, higher in older adults 

during slower walking in both legs. This finding is of importance because often various 



225 
	

gait parameters are reported to diminish with age, yet physical activity status is rarely 

accounted for. By not accounting for physical activity, it is not possible to conclude that 

any differences between young and older groups are a result of age, physical activity, or 

an interaction between the two. While previous studies have stated that older adults stride 

time fluctuations are less structured than that of their younger counterparts, this study 

indicates physically active adults fractal scaling exponents are similar across a wide age 

range. 

 

8.6 Unperturbed Walking Stride Intervals are Monofractal; Perturbed Walking      
    Stride Intervals are Multifractal 
	
 The findings from study 3 suggest that unperturbed walking is monofractal in 

nature, while more challenging asymmetric walking exhibits multifractality. Fractal 

qualities in general are posited to signify complex, adaptive behavior (Delignieres & 

Marmelat, 2012), and greater multifractal characteristics may represent further 

complexity (Ivanov et al., 1999). Multifractal behaviors exhibit intermittent bursts of very 

high or low variance that are absent in a monofractal behavior (Ihlen & Vereijken, 2014). 

The results herein suggest that challenging gait tasks necessitate more complex gait 

behavior. Interestingly, multifractality only emerged in the faster moving leg. This may 

be because the faster moving leg was qualitatively reported to be the more challenging 

portion of the task, compared to the slower moving leg. These differential effects support 

the idea that multifractality emerges based on task difficulty, even within a single 

locomotor system.  

 This third study indicated no relationship between multifractal characteristics and 

gait adaptability. Interestingly, monofractality during asymmetric walking associated 
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with gait adaptability, as fractal dynamics closer to 1/f associated with better adaptive 

performance. While multifractal analysis indicated greater intermittency during 

asymmetric walking, this intermittency did not appear to assist gait adaptation. These 

lack of associations between multifractality and adaptive gait suggest that, while 

multifractality is an emergent behavior in response to challenging gait tasks, this 

modified behavior may not help to enhance adaptive gait. Alternatively, the modified 

behavior may afford to take on a large range of characteristics in young, healthy adults 

without consequence in the form of reduced gait adaptability. That is, there may have 

been a ceiling effect, whereby all participants were relatively successfully at performing 

the task, and thus minor differences in multifractality would not distinguish gait 

performance. 

 Finally, participants in study 3 consisted of healthy adults whose physical activity 

status was unknown. Thus, the observed monofractality in unperturbed walking, 

multifractality in asymmetric walking, and lack of associations between multifractality 

and gait adaptability may have been influenced by physical activity levels. At the least, 

these findings can be generalized to young adults who may or may not be physically 

active, while the findings may not describe highly active or highly sedentary individuals. 

 

8.7 Future Directions 
	
 Based on the findings in study 1, it is difficult to ascertain whether changes in 

fractal dynamics closer to 1/f during asymmetric walking were caused by, an effect of, or 

simply associated with changes in gait adaptability. The findings herein alone do not 

provide sufficient evidence for clinical applications or recommendations. However, it is 
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of importance to note that earlier studies have provided evidence that fractal dynamics 

can be modified when entraining foot strike timing to a visual or auditory metronome that 

exhibits fractal-like inter-beat intervals (Hove et al., 2012; Marmelat et al., 2014; Rhea, 

Kiefer, D'Andrea, et al., 2014; Rhea, Kiefer, Wittstein, et al., 2014; Roerdink, 

Daffertshofer, Marmelat, & Beek, 2015; Terrier, 2016; Terrier & Deriaz, 2012). Future 

studies might determine if modifying fractal scaling via metronome entrainment can 

improve adaptive gait capacity when exposed to asymmetric or other constraints. By 

systematically changing fractal scaling characteristics and subsequently examining gait 

adaptability, causative effects may be discovered. If fractal entrainment improves 

adaptive gait capacity, it may behoove clinicians, fitness specialists, or community 

programs to include this type of training in a fall prevention intervention. 

 Study 2 recruited highly active young and older adults, and did not observe 

differences between cohorts. To strengthen the argument that physical activity mediates 

previously reported age-related decrements in fractal scaling and gait adaptability, either 

sedentary groups would need to be included, or a physical activity intervention would 

need to be employed. In addition, the ‘older’ age group might be classified as ‘young-old’ 

because the age range was 60-70 years (Forman, Berman, McCabe, Baim, & Wei, 1992), 

and therefore may not best represent the older population. One study found that fall 

occurrences increased from 21% in those aged 46-65 years to 35% in those aged 65 years 

and older (Talbot, Musiol, Witham, & Metter, 2005). Future studies may benefit from 

either an older group (i.e. ~ 75-80) or a larger sample size that incorporates a large range 

of ages (e.g., 60-85). In addition to older adults, determining the utility of the potential 

relationship between fractal dynamics and gait adaptability in other cohorts at high risk 
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and consequence of falls, such as those with neurological disease, would provide more 

relevant information from a clinical or applied perspective, especially if direct 

correlations can be made between quantified gait adaptability and fall risk.  

 Study 3 evaluated the potential existence of multifractality in the stride time 

variance of unperturbed and asymmetrically constrained walking. Long data sets are 

recommended in order to accurately capture the potential intermittency of stride time 

fluctuations (Ihlen, 2012). Gait paradigms, however, are confronted with the dilemma of 

dealing with either short datasets or extended trials that may result in participant fatigue 

or boredom. Researchers must determine a sufficient data length size in order to accept or 

reject their study hypotheses. In this third study, multifractality was evaluated across 512 

strides, which is considered sufficient for monofractal analyses, and given the algorithm 

used, for multifractal analysis as well. Another issue aside from data length is that this 

study recruited young, healthy adults. The lack of associations between multifractality 

and gait adaptability may have been a consequence of having a healthy, homogenous 

group of participants. Recruiting sedentary and active groups, or special populations such 

as older adults or those with neurological disorders, may elucidate if multifractal 

characteristics are in fact describing the locomotor system in a meaningful way. 

 A remaining challenge in fractal gait analysis involves establishing a 

physiological explanation for fractal phenomena. That is, what are the different 

neurophysiological processes operating at different temporal or spatial scales? If specific 

processes can be identified, researchers may be better able to quantify the interactivity 

across spatiotemporal scales that are thought to produce this fractal behavior. However, 

this precision may be difficult in locomotion, as the gait parameters evaluated (e.g., stride 
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intervals) are discrete in nature. In contrast, fractal analyses of other tasks, such as 

standing posture, involve continuous signals (e.g., center of pressure or center of mass). 

In this case, researchers may be able to determine which process or temporal scales (i.e., 

frequency ranges) are being modified for different postural tasks. Although challenging, 

future research should continue to develop paradigms that aim to reveal more about the 

precise neurophysiological aspects of the emergent fractal behavior of walking.  

 As a general suggestion for all three studies, there are an infinite number of 

experimental designs that can be crafted to test gait adaptability by evoking constraints at 

the individual, task, or environmental level. This dissertation consisted of asymmetric 

walking on a split-belt treadmill, in which one belt traveled at twice the rate as the other, 

in order to assess how people adapt their gait to forced leg speed asymmetries. In order to 

confirm the findings reported herein, more paradigms involving various constraints 

should be developed to determine the robustness of these results. Even within the split-

belt treadmill paradigm, various tasks can be employed, such as differing speed ratios, 

belt directions, or trial lengths. Importantly, adaptive gait must not only be able to alter 

behavior patterns and sustain this alteration for numerous strides, but also make various 

changes to gait behavior (e.g., step length, step width, stance time) on a step-to-step basis. 

The challenge of developing more ecologically valid gait adaptability paradigms is that 

the fractal analyses used herein require steady state walking. Future studies may benefit 

from the development of a paradigm that incorporates numerous required adaptations to 

locomotor patterns with steady state walking behavior.  
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8.8 Conclusion 
	
 This dissertation has aided in the advancement of gait adaptability studies through 

the examination of fractal dynamics as a measure of locomotor adaptive capacity. This 

series of studies may be the first to investigate fractal dynamics while concurrently 

testing gait adaptability via a challenging gait task. The studies herein provide evidence 

that stride time fractal dynamics during unperturbed walking do not associate with the 

adaptive abilities of the locomotor system. In contrast, asymmetric walking fractal 

dynamics are associated with adaptive gait capacity, and may help explain why certain 

participants perform better than others during a gait adaptability task. The observed 

increase in fractal scaling in response to asymmetric walking constraints may be 

functionally relevant by helping to attenuate perturbations at various scales. In addition, 

recruiting physically active young and older adults negates age-related differences in 

fractal scaling during unperturbed and asymmetric walking, as well as gait adaptability 

performance. Finally, while unperturbed walking in young healthy adults exhibits 

monofractal behavior, asymmetric walking appears to reveal multifractality, as more 

intermittent corrections may have been required. However, this multifractal feature does 

not associate with gait adaptability performance in young healthy participants during, 

suggesting multifractality may not be a critical control parameter in this split-belt 

adaptation paradigm.  
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APPENDIX A  

INFORMED CONSENT DOCUMENT FOR STUDY 1 AND STUDY 3  

 
 
 
 

Participant ID______________ 
 
 

Consent Form for Participation in a Research Study 
University of Massachusetts Amherst 

 
 
Researcher(s):  Michael Busa PhD, Scott Ducharme MS, and Richard van 

Emmerik PhD 
Study Title:  Gait Adaptations During Split-Belt Walking in Young 

Healthy Individuals 
 
 

	
1. WHAT IS THIS FORM? 
 
This form is called a Consent Form. It will give you information about the study so you 
can make an informed decision about participation in this research. This consent form 
will give you the information you will need to understand why this study is being done 
and why you are being invited to participate. It will also describe what you will need to 
do to participate and any known risks, inconveniences or discomforts that you may have 
while participating. We encourage you to take some time to think this over and ask 
questions now and at any other time. If you decide to participate, you will be asked to 
sign this form and you will be given a copy for your records. 
 
2. WHO IS ELIGIBLE TO PARTICIPATE? 
 
You are being asked to participate in this study because you are a healthy adult with some 
experience walking on a treadmill. Persons between the ages of 18 and 45 years with no 
current lower extremity injuries will be eligible for participation. Your eligibility was 
assessed by the inclusion criteria on the flyer and completion of the PAR-Q 
questionnaire. 
 
You will be excluded from participation if you currently: have a lower extremity injury in 
the past year that affects walking gait, have a neurological or visual impairment, 
vestibular dysfunction, cardiovascular or pulmonary disease, are pregnant, have no 
experience walking on a treadmill, or answered ‘yes’ to any of the modified PAR-Q 
questions and have not been cleared by your doctor. 
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3. WHAT IS THE PURPOSE OF THIS STUDY? 
 
 The purpose of this study is to investigate how humans regulate changes in the 
time taken to complete each stride while walking, and if these changes are altered by 
walking speed or gait symmetry. 
 
4. WHERE WILL THE STUDY TAKE PLACE AND HOW LONG WILL IT 
LAST? 
 
This study will take place in the Locomotion Neuromechanics Laboratory (room 28 
Totman building) at the UMass Amherst campus. You will be asked to come to the lab 
for 1 visit lasting approximately 2.25 hours.  
 
5. WHAT WILL I BE ASKED TO DO? 
 
If you agree to take part in this study: 
 

1.  You will be asked to participate in one testing session, lasting approximately 
2.25 hours.  
 

2. The testing session will begin with measurements of body mass and height, using 
a standard physician’s scale. (5 min) 
 

3. To be prepared for data collection, you will be asked to change into form fitting 
clothing and running shoes provided by the laboratory. (5 min) 
 

4. Next, reflective markers will be placed on your on your body in order to record 
3-D gait kinematics. The position of the reflective markers will be recorded by 
high-speed infrared cameras circling the data collection space containing the 
treadmill. (10 min) 
 

5. After the placement of reflective markers, 1 non-invasive accelerometer will be 
placed on your torso for the determination of trunk fluctuations. (3 min) 

 
6. Once markers have been placed, you will be asked to stand in the data collection 

space to record a standing calibration trial of the markers. The standing 
calibration trial will be used to create a computer model of you on which data 
analysis will be performed. (1 min) 

 
7. You will then be asked to perform several short bouts of walking on a treadmill 

in order to determine your preferred speed. The treadmill speed will be based on 
determining your preferred walking speed. The treadmill will be either increased 
or decreased until you identify the same speed in successive attempts, as your 
preferred pace of walking. During this walking task researchers will note which 
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leg you take your first step, from a standing position, and this leg will be 
identified as your dominant leg. (8 mins) 

 
8. Once this preferred speed has been determined you will be given a short period 

of rest, and the experiment will not continue until you have indicated you feel no 
residual fatigue from the protocol thus far. 

 
9. After you indicate you are prepared to continue you will be asked to under go 5 

15-minute bouts of walking: (total walking time: 75 minutes) 
  a) 1-bout at your preferred walking speed. 
  b) 1-bout at half your preferred walking speed.  
    c) 3-bouts where you walk with your dominant leg (identified previously) on the 

treadmill belt moving at your preferred walking speed and the other (non-
dominant) leg walking on the treadmill belt going at your preferred walking 
speed. 

 
Between each of these bouts you will be given 5 minutes of rest to recover from the 

effort (total rest time: 25 minutes) 
 
10. After you complete all 5 bouts, all of the equipment will be removed. (3 min) 
 
Total Estimated time: 135 min 
 

 
6. WHAT ARE MY BENEFITS OF BEING IN THIS STUDY? 
 
You may not directly benefit from this research; however, we anticipate that your 
participation in this study will directly contribute to the understanding of how individuals 
regulate their stride fluctuations during walking and if these can provide information 
regarding the adaptability of gait. A better understanding of the extent humans can adapt 
to a novel walking task may provide information to assist in fall prevention programs and 
fall risk analysis.  
 
7. WHAT ARE MY RISKS OF BEING IN THIS STUDY? 
 
During any type of exercise there are slight health risks.  These include the possibility of 
fatigue and muscle soreness.  However, any health risks are small in subjects who have 
no prior history of cardiovascular, respiratory or musculoskeletal disease or injury.  Any 
ordinary fatigue or muscle soreness is temporary. In the unlikely event of balance loss, 
the treadmill has handrails on both sides that extend the entire length of the treadmill's 
walkable surface. You will be advised that you may hold onto the handrails at any time if 
you feel unstable. 
 
8. HOW WILL MY PERSONAL INFORMATION BE PROTECTED? 
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The following procedures will be used to protect the confidentiality of your study 
records. The data and records collected in this study are for research purposes only. 
Confidentiality will be maintained throughout the study.  
 
All data will carry an identifying code, not the actual participant’s name to ensure 
confidentiality. A master key that links names and codes and any identifiable health 
information will be maintained in a separate and secure location. All electronic data will be 
stored on secure and encrypted computer hard drives. The master key will be destroyed 6 
years after the close of the study. Only investigators of this project will have access to this 
data. At the conclusion of this study, the researchers will publish their findings. Information 
will be presented in summary format and you will not be identified in any publications or 
presentations.  
 
 
9. WILL I RECEIVE ANY PAYMENT FOR TAKING PART IN THE STUDY? 
 
There is no payment for participating in this study. 
 
 
10. WHAT IF I HAVE QUESTIONS? 
 
Take as long as you like before you make a decision. We will be happy to answer any 
question you have about this study. If you have further questions about this project or if 
you have a research-related problem, you may contact the researchers, Scott Ducharme at 
(413) 545-6075 or Dr. Richard van Emmerik at (413) 545-0325. If you have any 
questions concerning your rights as a research subject, you may contact the University of 
Massachusetts Amherst Human Research Protection Office (HRPO) at (413) 545-3428 or 
humansubjects@ora.umass.edu. 
 
 
11. CAN I STOP BEING IN THE STUDY? 
 
You do not have to be in this study if you do not want to. If you agree to be in the study, but 
later change your mind, you may drop out at any time. There are no penalties or 
consequences of any kind if you decide that you do not want to participate. 
 
12. WHAT IF I AM INJURED? 
 
The University of Massachusetts does not have a program for compensating subjects for 
injury or complications related to human subject research, but the study personnel will 
assist you in getting treatment. 
 
 
13. SUBJECT STATEMENT OF VOLUNTARY CONSENT 
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When signing this form I am agreeing to voluntarily enter this study. I have had a chance 
to read this consent form, and it was explained to me in a language which I use and 
understand. I have had the opportunity to ask questions and have received satisfactory 
answers. I understand that I can withdraw at any time. A copy of this signed Informed 
Consent Form has been given to me. 
 
Participant Signature:__________________________________        Date:____________ 
 
Print Name: _________________________________________                                
 
 
By signing below I indicate that the participant has read and, to the best of my 
knowledge, understands the details contained in this document and has been given a 
copy. 
 
Signature of Person: __________________________________         Date:____________ 
Obtaining Consent 
 
Print Name:__________________________________________ 
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APPENDIX B 

INFORMED CONSENT DOCUMENT FOR STUDY 2 

 
 
 

Participant ID______________ 
 
 

Consent Form for Participation in a Research Study 
University of Massachusetts Amherst 

 
 
Researcher(s):  Scott Ducharme MS, and Richard van Emmerik PhD 
Study Title:  Gait Adaptation and Re-Adaptation in Young and 

Older Adults 
 
 
1. WHAT IS THIS FORM? 
 
This form is called a Consent Form. It will give you information about the study so you 
can make an informed decision about participation in this research. This consent form 
will give you the information you will need to understand why this study is being done 
and why you are being invited to participate. It will also describe what you will need to 
do to participate and any known risks, inconveniences or discomforts that you may have 
while participating. We encourage you to take some time to think this over and ask 
questions now and at any other time. If you decide to participate, you will be asked to 
sign this form and you will be given a copy for your records. 
 
2. WHO IS ELIGIBLE TO PARTICIPATE? 
 
You are being asked to participate in this study because you are a healthy active adult 
with some experience walking on a treadmill. Adults between the ages of 21-40 years and 
60-70 years with no current lower extremity injuries will be eligible for participation. 
Your eligibility was assessed by the inclusion criteria on the flyer and phone screen, 
including verbal and written completion of the PAR-Q questionnaire. 
 
You will be excluded from participation if you currently: do not self-report participation 
of at least 150 minutes per week of moderate intensity physical activity, have a lower 
extremity injury in the past year that affects walking gait, have a neurological or visual 
impairment, vestibular dysfunction (e.g., vertigo or vestibular neuritis) or any conditions 
causing dizziness or balance impairments, cardiovascular or pulmonary disease, are 
pregnant, have no experience walking on a treadmill, or answered ‘yes’ to any of the 
modified PAR-Q questions and have not been cleared by your doctor. 
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3. WHAT IS THE PURPOSE OF THIS STUDY? 
 
 The purpose of this study is to investigate how humans regulate changes in the 
time taken to complete each stride while walking, and if these changes are affectd by gait 
symmetry or age. 
 
4. WHERE WILL THE STUDY TAKE PLACE AND HOW LONG WILL IT 
LAST? 
 
This study will take place in the Locomotion Neuromechanics Laboratory (room 28 
Totman building) at the UMass Amherst campus. You will be asked to come to the lab 
for two (2) visits, each lasting approximately 1.5 hours. In addition, you will be asked to 
wear an activity monitor each day between laboratory visits (7 days), and provide notes 
regarding exercise or physical activities during this time.  
 
 
5. WHAT WILL I BE ASKED TO DO? 
 
If you agree to take part in this study: 
 

1.  You will be asked to participate in two testing sessions, each lasting 
approximately 1.5 hours. In addition, you will be asked to wear an accelerometer 
on your hip for 7 days between these sessions, and complete a notebook of 
physical activities performed during these 7 days. The accelerometer will be 
worn for most of your waking hours, and will be used to measure your minutes 
per day of moderate or vigorous physical activity. 
 

2. Session 1 will begin with reading and signing this informed consent document. (5 
min) 

 
3. The next step will be measurement of body mass and height, using a standard 

physician’s scale. You will be asked to change into form fitting clothing and 
running shoes provided by the laboratory. (8 min) 
 

4. Next, reflective markers will be placed on your body in order to record 3-D gait 
kinematics. The position of the reflective markers will be recorded by high-speed 
infrared cameras circling the data collection space containing the treadmill. In 
addition to reflective markers, 1 non-invasive accelerometer will be placed on 
your torso for the determination of trunk fluctuations. (10 min) 

 
5. Once markers have been placed, you will be asked to stand in the data collection 

space to record the first postural condition in which you will be asked to stand 
quietly and minimize movement for 30 seconds. This trial will also serve as the 
standing calibration, which will be used to create a computer model of you on 
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which data analysis will be performed. There will be a brief rest (30 sec) 
following this trial. (1 min) 

 
6.  The second postural condition will again be standing quietly, but with eyes 

closed. This will again be for 30 seconds, followed by a 30 second rest. (1 min)  
 
7. You will then be asked to perform several short bouts of walking on a treadmill 

in order to determine your preferred speed. The treadmill speed will 
incrementally change to determine your preferred walking speed. The treadmill 
will be increased and decreased until you identify the same speed in successive 
attempts, as your preferred pace of walking. During this walking task researchers 
will note which leg you take your first step, from a standing position, and this leg 
will be identified as your dominant leg. (10 min) 

 
8. Once this preferred speed has been determined you will be given a short period 

of rest, and the experiment will not continue until you have indicated you feel no 
residual fatigue from the protocol thus far. (5 min) 

 
9. After you indicate you are prepared to continue you will be asked to undergo two 

bouts of walking: (total walking time: 35 minutes) 
  a) 1 bout at your preferred walking speed. (15 min) 
  b) 1 bout at half of your preferred walking speed. (20 min) 
 
  Between these bouts you will be given 5 minutes of rest to recover from the 

effort. (5 min) 
 
10. After you complete both bouts, all of the equipment will be removed, and you 

will be provided with a hip-worn accelerometer. The accelerometer data will be 
used to determine your actual level of physical activity. (10 min) 

 
Session 1 Total Estimated Time: 90 min 
 
11. During the intercession between lab visits, you will be asked to wear the 

accelerometer device for as many waking hours as possible (not including 
swimming or shower) for the next 7 days. You will also be provided with a 
notebook to keep track of activities performed over the next week. (7 days) 

 
 
12. Session 2 take place 7 days following session 1. Session 2 will begin with 

collection of the accelerometer and notebook. (1 min) 
 
13. Next you will again be asked to change into appropriate attire, and the same 

setup    
       of markers and accelerometer will be placed on your body. (8 min) 
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14. You will again be asked to stand quietly on the treadmill for 30 seconds, 
followed  

       by a 30-second rest. (1 min) 
 
15. You will also be asked to stand quietly with eyes closed for 30 seconds, 

followed by 30-seconds of rest. (1 min) 
 
16. You will then be asked to undergo four bouts of walking: (total walking time: 

56 minutes) 
  a) 1 bout at your preferred walking speed. (10 min) 
  b) 3 bouts where you walk with your dominant leg (identified previously) on the 

treadmill belt moving at your preferred walking speed and the other (non-
dominant) leg walking on the treadmill belt moving at half of your preferred 
walking speed. (12 min per bout, 36 min total) 

  c) 1 bout where the treadmill belts are again traveling at the same speed. (10 
min) 

 
  Each walking trial will be followed by 5 minutes of rest sitting on a chair. (total 

rest time (20 min) 
 
17. Following treadmill walking, markers and accelerometer will be removed. (3 

min) 
 
Session 2 Total Estimated Time: 90 minutes 
 
Total Laboratory Time: 3 hours 
Time wearing accelerometer and filling out notebook: 7 days 
  

 
6. WHAT ARE MY BENEFITS OF BEING IN THIS STUDY?  
 
You may not directly benefit from this research; however, we anticipate that your 
participation in this study will directly contribute to the understanding of how individuals 
regulate their stride fluctuations during walking and if these can provide information 
regarding the adaptability of gait. A better understanding of the extent humans can adapt 
to a novel walking task, and if this ability to adapt is affected by age, may provide 
information to assist in fall prevention programs and fall risk analysis.  
 
 
7. WHAT ARE MY RISKS OF BEING IN THIS STUDY? 
 
During any type of exercise there are slight health risks.  These include the possibility of 
fatigue and muscle soreness.  However, any health risks are small in subjects who have 
no prior history of cardiovascular, respiratory or musculoskeletal disease or injury.  Any 
ordinary fatigue or muscle soreness is temporary. In the unlikely event of balance loss, 
participants will be placed into a total body harness prior to data collection. This will 
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eliminate the possibility for unwanted contact with the support surface. In addition, the 
treadmill has handrails on both sides that extend the entire length of the treadmill's 
walkable surface. You will be advised that you may hold onto the handrails at any time if 
you feel unstable. 
 
 
8. HOW WILL MY PERSONAL INFORMATION BE PROTECTED? 
 
The following procedures will be used to protect the confidentiality of your study 
records. The data and records collected in this study are for research purposes only. 
Confidentiality will be maintained throughout the study.  
 
All data will carry an identifying code, not the actual participant’s name to ensure 
confidentiality. A master key that links names and codes and any identifiable health 
information will be maintained in a separate and secure location. All electronic data will be 
stored on secure and encrypted computer hard drives. The master key will be destroyed 6 
years after the close of the study. Only investigators of this project will have access to this 
data. At the conclusion of this study, the researchers will publish their findings. Information 
will be presented in summary format and you will not be identified in any publications or 
presentations.  
 
 
9. WILL I RECEIVE ANY PAYMENT FOR TAKING PART IN THE STUDY? 
 
After completion of both sessions, you will receive a $15 Dunkin Donuts Gift Card. 
 
 
10. WHAT IF I HAVE QUESTIONS? 
 
Take as long as you like before you make a decision. We will be happy to answer any 
question you have about this study. If you have further questions about this project or if 
you have a research-related problem, you may contact the researchers, Scott Ducharme at 
(413) 545-6075 or Dr. Richard van Emmerik at (413) 545-0325. If you have any 
questions concerning your rights as a research subject, you may contact the University of 
Massachusetts Amherst Human Research Protection Office (HRPO) at (413) 545-3428 or 
humansubjects@ora.umass.edu. 
 
 
11. CAN I STOP BEING IN THE STUDY? 
 
You do not have to be in this study if you do not want to. If you agree to be in the study, but 
later change your mind, you may drop out at any time. There are no penalties or 
consequences of any kind if you decide that you do not want to participate. 
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12. WHAT IF I AM INJURED? 
 
The University of Massachusetts does not have a program for compensating subjects for 
injury or complications related to human subject research, but the study personnel will 
assist you in getting treatment. 
 

 
13. SUBJECT STATEMENT OF VOLUNTARY CONSENT 
 
When signing this form I am agreeing to voluntarily enter this study. I have had a chance 
to read this consent form, and it was explained to me in a language which I use and 
understand. I have had the opportunity to ask questions and have received satisfactory 
answers. I understand that I can withdraw at any time. A copy of this signed Informed 
Consent Form has been given to me. 
 
 
Participant Signature:__________________________________        Date:____________ 
 
Print Name: _________________________________________ 
 
 
By signing below I indicate that the participant has read and, to the best of my 
knowledge, understands the details contained in this document and has been given a 
copy. 
 
Signature of Person: __________________________________      Date:____________ 
Obtaining Consent 
 
Print Name:_________________________________________  
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APPENDIX C 

SCRIPT TO READ BEFORE ISSUING THE PAR-Q 

 
	
	
Thank you for coming in today. Before you officially enroll in this research study, I will 
be asking you to complete a Physical Activity Readiness Questionnaire (PAR-Q).  It 
should take you no more than 5 minutes to complete. This questionnaire is a screening 
tool that will ask you questions about your health history to determine your eligibility for 
participation in the study which involves physical activity.  
 
If you are determined ineligible to participate, your completed questionnaire will be 
destroyed. If you are determined eligible to participate, your completed questionnaire will 
be retained until the study is complete.  We will protect your information contained in the 
PAR-Q as confidential information safeguarding it from unauthorized disclosure.  Only 
research personnel will have access to the information contained in your PAR-Q.  
 
If the PAR-Q indicates that you are eligible to participate, we will proceed directly to 
obtaining your written informed consent for participation in the study. Do you have any 
questions? 
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APPENDIX D 

STUDY 2 PHONE SCREEN 

 
 

Physical Activity Questions (modified Godin Leisure-Time Exercise Questionnaire) 
 
1. During a typical 7-day period (a week), how many times on the average do you do the 
following kinds of exercise for more than 15 minutes during your free time (write on 
each line the appropriate number) 
 
                  Times Per          Minutes Per 
                                   Week                Time/Bout 
 
a) STRENUOUS EXERCISE   
    (HEART BEATS RAPIDLY)                                    ___________         ___________ 
(e.g., running, jogging, hockey, football, soccer,  
      squash, basketball, cross country skiing, judo,  
      roller skating, vigorous swimming, vigorous  
      long distance bicycling) 
 
b) MODERATE EXERCISE  
   (NOT EXHAUSTING)                                           ___________         ___________  
(e.g., fast walking, baseball, tennis, easy bicycling,  
     volleyball, badminton, easy swimming, alpine  
     skiing, popular and folk dancing) 
 
 
Strenuous Minutes x Times x 2  = ________________ 
 
Moderate Minutes x Times         = ________________ 
 
TOTAL MVPA                         = _________________ (if less than 150, individual is  
               excluded) 
 
 
 
 
Additional Exclusion Criteria: 
 
1. Are you unfamiliar with walking on a treadmill?                         _______ 

2. Have you ever experienced asymmetric walking on a split-belt treadmill?        _______ 

3. Do you have a lower extremity injury that affects walking?                               _______ 
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4. Do you have a neurological or non-corrected visual impairment?           _______ 

5. Do you have vestibular dysfunction?              _______ 

6. Do you have cardiovascular or pulmonary disease?                       _______ 

7. Are you pregnant?                                       _______ 

    

if yes to any of these questions, individual is excluded 
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APPENDIX E 

PHYSICAL ACTIVITY MONITOR LOG 

	

	

	

	

	
						

	
	

	
ACTIVITY	MONITOR	LOG	

	
	
	
Participant	ID#:	___________________________	

Monitor	ID	#_______________	

Start	Date:	________________	

	
	
	
	
	
	
	
	
	
	
	

UNIVERSITY	OF	MASSACHUSETTS		
School	of	Public	Health	&	Health	Sciences	
Department	of	Kinesiology	
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INFORMATION	ABOUT	THE	ACTIVITY	MONITOR	
	
The	Activity	Monitor	is	a	small,	plastic	box	containing	electronic	circuitry.		When	
you	wear	the	Activity	Monitor,	it	measures	how	much	you	are	moving.		
	
Please	remember	a	few	important	things	about	the	monitor:			

• Snap	the	belt	around	your	waist.	
• The	monitor	should	be	worn	around	your	waist	and	positioned	at	the	top	of	the	

right	hipbone.	
• DO	NOT	GET	THE	MONITOR	WET	(Sweat	is	okay).	
• You	should	wear	the	monitor	while	you	are	awake	for	7	days,	removing	the	

device	only	for	sleep	and	water-based	activities.	
• Please	return	the	monitor	and	this	log	to	the	UMass	Muscle	Physiology	

Laboratory,	Totman	Bldg.,	Room	22.	
	
INSTRUCTIONS	FOR	COMPLETING	THIS	ACTIVITY	LOG	

	
We	want	to	know:	

	

• When	you	woke	up	and	when	you	went	to	bed	
• When	the	monitor	was	put	on	and	taken	off	
• Any	activities	you	completed	that	day	(e.g.,	long	walks,	yard	work,	etc.).	
• If	there	was	anything	out	of	the	ordinary	about	your	activity	pattern	

	
If	you	went	on	a	long	walk	from	11:00	am	to	11:30	am,	write	walking	in	the	activity	
column,	11:00	am	to	11:30	am	in	the	time	column,	and	30	minutes	in	the	duration	
column.	
	
	
	

If	you	have	any	questions	please	contact:	

Scott	Ducharme	

UMass	Motor	Control	Lab	

Phone:	(860)	573	-	7954	

Email:	sducharm@kin.umass.edu	
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Day	1					        

 

Date:	___________			Day	of	the	week	___________	
	
Wake	up	Time:	________________	 	 Bed	Time:	___________________________	
Monitor	on	Time:	______________	 	 Monitor	off	Time:	____________________	
	
1)	Please	list	any	physical	activities	(such	as	long	walks,	yard	work,	fitness	club,	etc),	
as	well	as	any	naps	during	the	day:	
	
Activity:	 	 	 	 	 Time:	 	 	 	 Duration	
	

	

	

	

	

	

	
Did	you	wear	the	monitor	during	all	waking	hours	(except	for	showering)?	
	
	Yes		 	 	 	No,	Times	not	worn:____________________________	

	

Was	there	anything	out	of	the	ordinary	about	your	activity	pattern	this	day?	
	
	Yes,	Explain	Below	 	 	 	No		
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Day	2					        

 

Date:	___________			Day	of	the	week	___________	
	
Wake	up	Time:	________________	 	 Bed	Time:	___________________________	
Monitor	on	Time:	______________	 	 Monitor	off	Time:	____________________	
	
1)	Please	list	any	physical	activities	(such	as	long	walks,	yard	work,	fitness	club,	etc),	
as	well	as	any	naps	during	the	day:	
	
Activity:	 	 	 	 	 Time:	 	 	 	 Duration	
	

	

	

	

	

	

	
Did	you	wear	the	monitor	during	all	waking	hours	(except	for	showering)?	
	
	Yes		 	 	 	No,	Times	not	worn:____________________________	

	

Was	there	anything	out	of	the	ordinary	about	your	activity	pattern	this	day?	
	
	Yes,	Explain	Below	 	 	 	No		
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Day	3					        

 

Date:	___________			Day	of	the	week	___________	
	
Wake	up	Time:	________________	 	 Bed	Time:	___________________________	
Monitor	on	Time:	______________	 	 Monitor	off	Time:	____________________	
	
1)	Please	list	any	physical	activities	(such	as	long	walks,	yard	work,	fitness	club,	etc),	
as	well	as	any	naps	during	the	day:	
	
Activity:	 	 	 	 	 Time:	 	 	 	 Duration	
	

	

	

	

	

	

	
Did	you	wear	the	monitor	during	all	waking	hours	(except	for	showering)?	
	
	Yes		 	 	 	No,	Times	not	worn:____________________________	

	

Was	there	anything	out	of	the	ordinary	about	your	activity	pattern	this	day?	
	
	Yes,	Explain	Below	 	 	 	No		
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Day	4					        

 

Date:	___________			Day	of	the	week	___________	
	
Wake	up	Time:	________________	 	 Bed	Time:	___________________________	
Monitor	on	Time:	______________	 	 Monitor	off	Time:	____________________	
	
1)	Please	list	any	physical	activities	(such	as	long	walks,	yard	work,	fitness	club,	etc),	
as	well	as	any	naps	during	the	day:	
	
Activity:	 	 	 	 	 Time:	 	 	 	 Duration	
	

	

	

	

	

	

	
Did	you	wear	the	monitor	during	all	waking	hours	(except	for	showering)?	
	
	Yes		 	 	 	No,	Times	not	worn:____________________________	

	

Was	there	anything	out	of	the	ordinary	about	your	activity	pattern	this	day?	
	
	Yes,	Explain	Below	 	 	 	No		
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Day	5					        

 

Date:	___________			Day	of	the	week	___________	
	
Wake	up	Time:	________________	 	 Bed	Time:	___________________________	
Monitor	on	Time:	______________	 	 Monitor	off	Time:	____________________	
	
1)	Please	list	any	physical	activities	(such	as	long	walks,	yard	work,	fitness	club,	etc),	
as	well	as	any	naps	during	the	day:	
	
Activity:	 	 	 	 	 Time:	 	 	 	 Duration	
	

	

	

	

	

	

	
Did	you	wear	the	monitor	during	all	waking	hours	(except	for	showering)?	
	
	Yes		 	 	 	No,	Times	not	worn:____________________________	

	

Was	there	anything	out	of	the	ordinary	about	your	activity	pattern	this	day?	
	
	Yes,	Explain	Below	 	 	 	No		
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Day	6					        

 

Date:	___________			Day	of	the	week	___________	
	
Wake	up	Time:	________________	 	 Bed	Time:	___________________________	
Monitor	on	Time:	______________	 	 Monitor	off	Time:	____________________	
	
1)	Please	list	any	physical	activities	(such	as	long	walks,	yard	work,	fitness	club,	etc),	
as	well	as	any	naps	during	the	day:	
	
Activity:	 	 	 	 	 Time:	 	 	 	 Duration	
	

	

	

	

	

	

	
Did	you	wear	the	monitor	during	all	waking	hours	(except	for	showering)?	
	
	Yes		 	 	 	No,	Times	not	worn:____________________________	

	

Was	there	anything	out	of	the	ordinary	about	your	activity	pattern	this	day?	
	
	Yes,	Explain	Below	 	 	 	No		
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Day	7					        

 

Date:	___________			Day	of	the	week	___________	
	
Wake	up	Time:	________________	 	 Bed	Time:	___________________________	
Monitor	on	Time:	______________	 	 Monitor	off	Time:	____________________	
	
1)	Please	list	any	physical	activities	(such	as	long	walks,	yard	work,	fitness	club,	etc),	
as	well	as	any	naps	during	the	day:	
	
Activity:	 	 	 	 	 Time:	 	 	 	 Duration	
	

	

	

	

	

	

	
Did	you	wear	the	monitor	during	all	waking	hours	(except	for	showering)?	
	
	Yes		 	 	 	No,	Times	not	worn:____________________________	

	

Was	there	anything	out	of	the	ordinary	about	your	activity	pattern	this	day?	
	
	Yes,	Explain	Below	 	 	 	No		
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APPENDIX F 

STUDY 1 FLYER 

 
 

  
 

Motor Control Walking Study 
 

                   
 

Research Volunteers Needed 
 
Are you: 
• A healthy male or female? 
• Between the ages of 18-45? 
• Free of lower extremity  

injury? 
 
 

If so, you may be eligible! 
       Contact us: 
        (413) 545-6075 
       sducharm@kin.umass.edu 
 **requires approximately 2.25 hours 

 
 

Department of Kinesiology, University of Massachusetts 

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
 (413) 545-6075 

  

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
 (413) 545-6075 

  

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
 (413) 545-6075 

  

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
 (413) 545-6075 

  

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
 (413) 545-6075 

  

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
 (413) 545-6075 

  

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
 (413) 545-6075 

  

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
 (413) 545-6075 

  
W

alking Study 
Scott 

sducharm
@

kin.um
ass.edu 

 (413) 545-6075 
  

Excluded if: 
• Lower extremity injury in past 

year 
• Neurological/visual/vestibular 

impairments 
• Cardiopulmonary disease 
• No experience walking on a 

treadmill 
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APPENDIX G 

STUDY 2 FLYER 

		 	

  
 

Motor Control Walking Study 
 

                   
 

Research Volunteers Needed 
 
Are you: 
• An active, healthy male or female? 
• Between the ages of 21-40 or 60-

70? 
• Free of lower extremity  

injury? 
 

If so, you may be eligible! 
       Contact us: 
        (860) 573-7954 
       sducharm@kin.umass.edu 
 

 ** requires two 1.5-hour sessions and 1 week of wearing a physical  
    activity monitor and documenting physical activity 

 

Department of Kinesiology, University of Massachusetts 

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
  (860) 573-7954 

 

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
  (860) 573-7954 

 

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
  (860) 573-7954 

 

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
  (860) 573-7954 

 

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
  (860) 573-7954 

 

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
  (860) 573-7954 

 

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
  (860) 573-7954 

 

W
alking Study 

Scott 
sducharm

@
kin.um

ass.edu 
  (860) 573-7954 

 
W

alking Study 
Scott 

sducharm
@

kin.um
ass.edu 

 (860) 573-7954 
 

Excluded if: 
• Lower extremity injury in past 

year 
• Neurological/visual/vestibular 

impairments 
• Cardiopulmonary disease 
• No experience walking on a 

treadmill 
• Participate in less than 150 

minutes per week of moderate 
intensity activity 

 

Compensation: $15 Dunkin Donuts Gift Card 
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