
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

November 2017

Style-driven Shape Analysis and Synthesis Style-driven Shape Analysis and Synthesis

Zhaoliang Lun
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Graphics and Human Computer Interfaces Commons

Recommended Citation Recommended Citation
Lun, Zhaoliang, "Style-driven Shape Analysis and Synthesis" (2017). Doctoral Dissertations. 1056.
https://scholarworks.umass.edu/dissertations_2/1056

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1056&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1056&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1056?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1056&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

STYLE-DRIVEN SHAPE ANALYSIS AND SYNTHESIS

A Dissertation Presented

by

ZHAOLIANG LUN

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2017

College of Information and Computer Sciences

c© Copyright by Zhaoliang Lun 2017

All Rights Reserved

STYLE-DRIVEN SHAPE ANALYSIS AND SYNTHESIS

A Dissertation Presented

by

ZHAOLIANG LUN

Approved as to style and content by:

Evangelos Kalogerakis, Chair

Rui Wang, Member

Subhransu Maji, Member

Benjamin S Jones, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences

DEDICATION

To my parents.

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Evangelos Kalogerakis, for guiding me through

my PhD study, advising me on various projects that pave the way for my dissertation,

teaching me how to do research in a scientific way, how to coordinate with different projects

and different collaborators, how to show off my work to different audience, and many

more during my PhD life. I would also like to thank Prof. Rui Wang for getting me

started in my graduate life, helping me for my first project, first internship, first conference,

and providing advice on my research and life. I also thank Prof. Subhransu Maji as my

collaborator and committee member, who is always energetic and enthusiastic and full of

creative ideas during our collaboration. I thank Prof. Benjamin Jones for willing to become

my committee member and offering cross-disciplinary suggestions for my dissertation as an

expert. I would also like to thank everyone who gave me advices, suggestions or comments

during my dissertation writing. I acknowledge support from the NSF grants CHS-1422441

and CHS-1617333.

I am lucky to collaborate with different people, including Alla Sheffer, Richard Zhang,

Yahan Zhou, Haibin Huang, Changqing Zou, Matheus Abrantes Gadelha, with whom I

got involved in cutting-edge research in this area and from whom I learn a lot in bringing

up sparkling ideas, realizing rough concepts, tackling tough problems and summarizing

fragmented pieces into publications. I also thank R. Manmatha for being a reader for my

synthesis project. I thank Ren Liu and Brad Ek for mentoring me during my internship at

Robert Bosch Research and Autodesk Inc. I thank Cheng Jin as my undergraduate advisor

who opened the door to the graphics world for me and recommended me to join UMass.

v

During my six year of graduate life, I met many interesting people who brighten up my

days. Many thanks to my past and current lab mates in the vision and graphics lab who

built a warm, comfortable and delightful environment and offered daily laughings around

this corner of the building. To all my buddies in or outside the college, with whom we had

a wonderful time enjoying the beautiful life in the shiny and snowy New England. To all

my friends during my internship bringing me endless joys, with whom I believe I will have

intersection again someday in my future career life. To all my friends across the continent

and the ocean who share every tiny piece of happiness to me no matter when and where.

Finally, I would like to give my greatest thanks to my family, especially my parents. For

my toughest days, they are the ones who support me, relieve me and motivate me. My

parents gave me everything. I dedicate this dissertation to my parents.

vi

ABSTRACT

STYLE-DRIVEN SHAPE ANALYSIS AND SYNTHESIS

SEPTEMBER 2017

ZHAOLIANG LUN

B.Sc., FUDAN UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Evangelos Kalogerakis

In this dissertation I will investigate algorithms that analyze stylistic properties of 3D

shapes and automatically synthesize shapes given style specifications. I will start by intro-

ducing a structure-transcending method for style similarity evaluation between 3D shapes.

Inspired by observations about style similarity in art history literature, we propose an al-

gorithmically computed style similarity measure which identifies style related elements on

the analyzed models and collates element-level geometric similarity measurements into an

object-level style measure consistent with human perception. To achieve this consistency

we employ crowdsourcing to learn the relative perceptual importance of a range of ele-

mentary shape distances and other parameters used in our measurement from participant

vii

answers to cross-structure style similarity queries. I will then describe an algorithm that

utilizes this learned style similarity measure to synthesize 3D models of man-made shapes.

The algorithm combines user-specified style, described via an exemplar shape, and func-

tionality, encoded by a functionally different target shape. We transfer the exemplar style

to the target via a sequence of compatible element-level operations where the compatibility

is a learned metric that estimates the impact of each operation on the edited shape. We

use this metric to cast style transfer as a tabu search, which incrementally updates the tar-

get shape using compatible operations, progressively increasing its style similarity to the

exemplar while strictly maintaining its functionality at each step. Finally I will propose a

method for reconstructing 3D shapes following style aspects of given 2D drawings. Our

method takes line drawings as input and converts them into surface depth and normal maps

from several output viewpoints via a deep convolutional neural network with multi-view

encoder-decoder architecture. The multi-view maps are then consolidated into a dense co-

herent 3D point cloud by solving an optimization problem that fuses depth and normal

information across all output viewpoints. The output point cloud is then converted into a

polygon mesh representation, which is further fine-tuned to match the input sketch more

precisely.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES . xiii

LIST OF FIGURES . xv

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Contributions . 3

1.2.1 Learning Shape Style Similarity . 4
1.2.2 Learning Shape Style Transfer . 5
1.2.3 Learning Shape Reconstruction from Stylized Drawings 6

2. RELATED WORK . 8

2.1 Shape Style Analysis . 8

2.1.1 Style analysis for same class models . 9
2.1.2 Structure-transcending shape style analysis . 10
2.1.3 Learning style in other domains . 10

2.2 Shape Style Transfer . 11

2.2.1 Part Correspondence . 11
2.2.2 Part-based shape synthesis . 13
2.2.3 Style transfer . 13

2.3 Sketch-based Shape Modeling . 14

2.3.1 3D geometric inference from line drawings . 15

ix

2.3.2 Learning-based methods for shape synthesis . 15
2.3.3 Sketch-based 3D shape retrieval . 16

3. LEARNING PERCEPTUAL SHAPE STYLE SIMILARITY 18

3.1 Overview . 19

3.1.1 Element Similarity . 20
3.1.2 Matching Elements . 20
3.1.3 Combined Style Measure . 20
3.1.4 Learning . 20
3.1.5 Study of Style Perception . 21

3.2 Measuring Style Similarity . 21

3.2.1 Geometric Similarity . 22
3.2.2 Extracting Matching Elements . 23
3.2.3 Combined Style Similarity Measure . 27
3.2.4 Parameter Learning . 29

3.3 Study of Style Perception . 32

3.3.1 Study Format . 33
3.3.2 Questionnaire and Participant Information . 34
3.3.3 Query Response Processing . 35
3.3.4 Hypothesis Validation . 35
3.3.5 Representative Sample . 36

3.4 Algorithm Validation . 38

3.4.1 Algorithmic Choices . 38
3.4.2 Elementary Distances . 39
3.4.3 Complexity and Runtimes . 40

3.5 Applications . 40

3.5.1 Organizing shape collections . 41
3.5.2 Style-based shape tagging . 41
3.5.3 Style-based suggestions for scene modeling . 42

3.6 Discussion . 43

4. FUNCTIONALITY PRESERVING SHAPE STYLE TRANSFER 44

4.1 Style Transfer Framework . 45

4.1.1 Operations . 46

x

4.1.2 Tabu Search . 46
4.1.3 Improvement Step . 48
4.1.4 Substitution . 49
4.1.5 Curve-Based Deformation . 49
4.1.6 Element Additions and removals . 50
4.1.7 Element removals . 50
4.1.8 Termination . 50
4.1.9 output . 51

4.2 Pre-Processing and Segmentation . 51

4.2.1 Segmentation . 51
4.2.2 Curve Handles . 52

4.3 Compatibility . 53

4.3.1 Formulation . 53
4.3.2 Parameter Learning . 58

4.4 Element Alignment . 61
4.5 Curve Based Deformation . 63
4.6 Automatic Target Selection . 65
4.7 Validation . 66

4.7.1 Perceptual Validation . 67
4.7.2 Style similarity . 67
4.7.3 Functionality . 69
4.7.4 Element compatibility metric . 70
4.7.5 Implementation and Runtimes . 71

4.8 Discussion . 72

5. SHAPE RECONSTRUCTION FROM SKETCHES VIA MULTI-VIEW
CONVOLUTIONAL NETWORKS . 73

5.1 Overview . 74
5.2 Network Architecture . 75

5.2.1 Input . 76
5.2.2 Encoder . 76
5.2.3 Decoder . 77

5.3 Training . 77

5.3.1 Generating training sketches . 78
5.3.2 Loss function . 79

xi

5.4 Point Cloud and Mesh Generation . 81

5.4.1 Multi-view depth and normal map fusion . 82
5.4.2 Energy minimization . 85
5.4.3 Mesh reconstruction and fine-tuning. 86
5.4.4 Implementation. 86

5.5 Evaluation . 87

5.5.1 Datasets . 87
5.5.2 Test dataset . 87
5.5.3 Evaluation measures . 89
5.5.4 Comparisons with baselines . 90
5.5.5 Comparisons with variants of our method . 93
5.5.6 Perceptual user study . 94
5.5.7 More results . 96

5.6 Conclusion . 96

6. DISCUSSION AND FUTURE WORK . 98

6.1 Future Work . 99

APPENDICES

A. LEARNING PERCEPTUAL SHAPE STYLE SIMILARITY 101
B. FUNCTIONALITY PRESERVING SHAPE STYLE TRANSFER 104
C. SHAPE RECONSTRUCTION FROM SKETCHES . 108

BIBLIOGRAPHY . 111

xii

LIST OF TABLES

Table Page

3.1 Study statistics per category. Left to right: category, number of models,
number of queries, number and percent of queries with plurality “Both
B and C” response, number and percent of queries with plurality
“Neither B nor C” response, number and percent of queries with
plurality discriminative response, number and percent of queries with
a majority discriminative response (majority formed by more than
50% participants). 32

3.2 More study statistics per category. Left to right: category, participant
persistence across all participants and across reliable participants only,
participant consistency across all participants and across reliable
participants only, consistency for queries with a majority response,
consistency for queries considering only discriminative responses ((i)
B or (ii) C). 33

3.3 Prediction accuracy, Left to right: category, our prediction accuracy,
prediction accuracy with alternate formulations. Rows one to seven
show results where training and validation were done per category,
bottom row shows results where both were done on the entire
database. 37

4.1 Style similarity study results: per-query plurality responses (left) and raw
vote percentages (right). 68

4.2 Functionality study results: per-query plurality responses (left) and raw
vote percentages (right). 69

4.3 Element compatibility study results: per-query plurality responses (left)
and raw vote percentages (right). 70

5.1 Training dataset statistics. 87

5.2 Comparisons of our method with baselines based on our evaluation
measures (the lower the numbers, the better) . 91

xiii

5.3 Comparisons with variants of our method based on our evaluation
measures (the lower the numbers, the better). 94

5.4 Perceptual user study results comparing our method with baseline
methods: per-query plurality responses (left) and raw vote percentages
(right). 96

A.1 Pilot study statistics. 103

xiv

LIST OF FIGURES

Figure Page

1.1 Style similarity transcends structure: in the top row, the bed A is
pronouncedly more similar, style-wise, to dresser B than C; in the
bottom row, building A and C are stylistically more similar (insets
highlight some stylistically similar elements). 5

1.2 Transferring a style from a table to a TV stand (a) without (b) and with (c)
functionality constraints in place. 6

3.1 (left) Changing the style of objects in a scene influences the sense of time
and place. (right) Style similarity transcends structure: in the top row,
the bed A is pronouncedly more similar, style-wise, to dresser B than
C; in the bottom row, buildings A and C are stylistically more similar
(insets highlight some stylistically similar elements). 18

3.2 To evaluate style similarity, we identify potentially matching elements;
and use those in a distance function that accounts for element
similarity, element saliency and prevalence. The parameters of both
steps are learned from crowdsourced perceptual similarity data. 19

3.3 Literature highlights three element-level style similarity criteria: intrinsic
element geometry or shape, relative proportions or scale, and
dominant curve or line shape. 22

3.4 Extracting matching elements: (a) patch-segmentations (two levels
visualized); (b) example matches; (c) transformation space (2D MDS
projection) with clustering results; (d) extracted elements. 24

3.5 (left) Study query layout. (right) response distribution for this query. 34

3.6 (left) Examples of the 89% of queries where our method agrees with study
majority response(shared answer in green), numbers show
percentages of participants who selected each answer (not listed
answers received zero votes). (right) Some representative failure cases
(majority response blue, ours red). 37

xv

3.7 (left) Similarity weights, features from left to right are: surface distance,
curvature difference, shape distribution D2 difference, scale
difference, shape diameter difference, curve distance, light field
descriptor difference, (right) saliency weights, features from left to
right are: curvature metrics, location metrics, ambient occlusion, and
three levels of shape distinctness from [103]. 39

3.8 Embedding the column dataset in a 2D space based on learned pairwise
distances yields distinct Gaussian-like clusters that correspond to
known architectural orders visualized by colored boxes. 41

4.1 Our algorithm transfers the geometric style of three exemplars, cabinet,
loveseat, and sugar pot (left, highlighted with arrows), to the rest of the
objects in the scene, while preserving the target functionality (right).
Please zoom-in to see more details. 44

4.2 Framework overview. 45

4.3 Tabu search pseudo-code. 47

4.4 Hierarchical segmentation and extracted curves. 51

4.5 Element alignment: (a) exemplar and target; (b) seed model and
substituted-in element with identified slots and their covers; (c)
alignment using non-uniform scaling across the board; (d) style and
structure aware alignment. 61

4.6 Curve based deformation without (center) and with (right) swept surface
edits. 64

4.7 Among all possible tables on the right we selected the highlighted one as
most compatible target for the exemplar chair. 65

4.8 Typical style transfer results. For each group we show the exemplar first
then, multiple synthesized outputs in the same style with targets shown
as insets. 67

5.1 Our method takes line drawings as input and converts them into
multi-view surface depth and normals maps from several output
viewpoints via an encoder-multi-view-decoder architecture. The maps
are fused into a coherent 3D point cloud, which is then converted into
a surface mesh. Finally, the mesh can be fine-tuned to match the input
drawings more precisely through geometric deformations. 73

xvi

5.2 (a) The user can provide a front view sketch as input; (b) our network
trained on a single input sketch generates an intermediate shape; (c)
the user can further draw a sketch from the side view using the
rendered shape as a guide; (d) & (e) our network trained on inputs
from both views yields an updated 3D shape. 75

5.3 Without optimization the noisy point cloud will lead to misaligned regions
in the reconstructed shape. 82

5.4 Comparisons of shape reconstructions from sketches for our method and
baselines. 92

5.5 Query layout shown to participants of our user study. 95

5.6 Gallery of results. Blue shapes represent reconstructions produced by our
method from the input sketches. Orange shapes are the nearest shapes
in the training datasets retrieved via sketch-based retrieval. 97

xvii

CHAPTER 1

INTRODUCTION

style n. a distinctive appearance, typically determined by the principles accord-

ing to which something is designed.

— Oxford English Dictionary

1.1 Motivation

Style is an important property in object design and scene arrangement. Putting style coor-

dination into consideration, e.g. setting up a Baroque style bed alongside with a Baroque

style nightstand in a bedroom, can greatly increase the aesthetics of the environment, as

well as improving the believability in a virtual environment. However, the definition of

style is intentionally vague in terms of shape criteria in graphics literature, placing a chal-

lenge in codifying the concept of style in shape design.

In spite of the abstract nature of shape style, humans have an innate perception of shape

style similarity. On one hand, humans can easily recognize style discrepancies within an

arrangement of objects, e.g. identifying a stylistically incompatible cup among a tea set.

On the other hand, human perception of style similarity transcends structure and function:

we can meaningfully discuss style similarity between a cup and a coffee pot, a bed and

a dresser, or a church and a castle. This inspires us the possibility of a machine learning

approach to understand perceptual shape style similarity. Specifically, we would like to

learn a metric to measure style similarity between structurally different models and detect

1

models which share a similar style despite large functional differences. With the increasing

amount of stylized 3D models available in online shape repositories, a robust style simi-

larity measure can greatly facilitate the navigation through those shape databases. While

previous work focused on evaluating style similarity between objects with similar overall

structure, in this dissertation we introduce the first structure-transcending method for style

similarity evaluation between 3D shapes.

A robust measure evaluating style similarity between structurally and functionally different

models enables shape retrieval tasks in terms of shape style within a broad shape category.

A more general use case scenario of shape style similarity is to populate virtual 3D scenes

with stylistic coherent sets of objects. Unfortunately, while large databases of 3D man-

made objects already exist, sets of functionally diverse shapes in a particular style are

often not available. Manually creating shapes satisfying specific functional and stylistic

requirements is time consuming and expertise intensive. Instead, we need an automatic

method to synthesize shapes in different functionalities with style specifications. In this

dissertation, we also describe a shape synthesis algorithm that transfers the style of an

exemplar shape to structurally and functionally different target objects while maintaining

target functionality. Our framework is inspired by the typical workflow for designing style

coordinated environment: since all shapes in the environment share a coherent style, artists

tend to first design one shape satisfying the style requirements and then use it as a reference

to design other shapes in different functionalities. Following the idea of this workflow, our

framework only requires users to locate or create a single exemplar shape as input, then our

framework will automatically apply an algorithmic, cross-functional, exemplar-to-target

style transfer to synthesize shapes in diverse functionalities while having a coherent style.

This framework can significantly simplify and speed up the modeling of style coordinated

virtual environments.

2

The style transfer approach can populate the virtual environment or object collections with

stylistically coherent models. Nonetheless, all shapes being populated are constrained to

an existing style; the artists still need to design the style for the exemplar shape in the first

place. Furthermore, if there is a new requirement for style, the artists also need to mod-

ify the shapes with the new specifications. All these scenarios require a method to realize

the style requirement rather than transferring the style. Going deeper in the design cycle,

artists often prototype their style design with line drawings on common structure templates,

and then translate these conceptual line drawings into shape designs. This motivates us to

use line drawings as an intuitive medium to express style specification. The benefits of

using line drawings as abstract representations of form and style of a shape are twofold: on

one hand, line drawings convey important characteristics of the underlying shape such as

its figure-ground boundaries, surface curvature, and occlusions [63, 118, 80]; on the other

hand, sketching requires much less expertise comparing to the low-level 3D geometric op-

erations required in modern 3D modeling software. The main challenge lies in converting

2D sketches into plausible 3D models. The fact that artists tend to prototype with line

drawings in canonical views makes this problem more attainable since most style-related

salient details are often preserved in canonical views. Moreover, the huge amount of 3D

shapes available online enables a data-driven approach to infer the shape structure from

unseen view projections. In this dissertation we also propose a learning approach utilizing

the neural network architecture and post-processing optimization to infer a 3D shape that

is consistent with input sketches from one or more views of an object.

1.2 Contributions

This dissertation proposes two novel research directions. The first research direction in-

volves algorithmic understanding of geometric shape style and extending this understand-

ing to applications that require evaluation of style similarity between shapes, and transfer

3

of geometric style across objects. The second research direction aims to algorithmically

extract style specifications from a more abstract domain, i.e. line drawings, and translate it

into shape geometry.

In the context of these two novel research directions, I proposed three new methods with

the following contributions:

• a new algorithm for evaluating stylistic similarity, which is well aligned with the

human perception of style, is motivated by art history literature, and is learned from

and validated against crowdsourced data

• a new algorithm for transferring style between models of man-made objects with

different structure and functionality

• a deep learning architecture for reconstructing 3D shapes from 2D sketches

I will now present an overview of these new methods and the structure of this dissertation.

1.2.1 Learning Shape Style Similarity

In Chapter 3 we introduce the first structure-transcending style similarity measure and val-

idate it to be well aligned with human perception of stylistic similarity. Our work is moti-

vated by observations about human perception of style in art history and appraisal literature.

Art history experts often classify objects as belonging to a particular geographic or tem-

poral style by looking at salient geometric elements on the objects with recurring visual

motifs [86, 9]. For instance, classical Byzantine churches are likely to have rounded domes

and arches, while Gothic structures are dominated by steep gables and flying buttresses

(Figure 1.1).

Our style similarity metric is therefore designed around the presence of pairs of similarly

shaped, or matching, salient geometric elements on the evaluated models. Since style has

no unified quantifiable, objective, definition, we resorted to crowdsourcing and followed a

4

A B C

A B C

Figure 1.1. Style similarity transcends structure: in the top row, the bed A is pronouncedly
more similar, style-wise, to dresser B than C; in the bottom row, building A and C are
stylistically more similar (insets highlight some stylistically similar elements).

machine learning approach to quantify those geometric criteria inspired by art history liter-

ature and learn all the parameters in our measure. In collecting crowdsourced data, instead

of asking participants for an absolute style similarity score which may lead to uncalibrated

responses, we gathered participants responses on queries about relative style similarity

comparisons, which are validated to be largely consistent in the evaluation.

1.2.2 Learning Shape Style Transfer

In Chapter 4 we describe the first algorithm for synthesizing shapes by transferring style

between man-made objects with different structure and functionality. The underlying chal-

lenge in style transfer task is to implicitly separate style from function: while the output

should stylistically look similar to the exemplar, it should also fully retain the function-

ality of the target. Inspired by the observations from understanding shape style similarity

in Chapter 3, stylistically more similar shapes tend to have more geometrically similar el-

ements and fewer unshared decorative features. Therefore, we search for a sequence of

element-level operations (e.g. substitution, addition, removal and deformation) to grad-

ually bring the target shape stylistically more similar towards the exemplar shape. It is

impractical to exhaustively search for all possible combinations of element-level opera-

5

Figure 1.2. Transferring a style from a table to a TV stand (a) without (b) and with (c)
functionality constraints in place.

tions that can improve the style similarity. Moreover, not all element-level operations lead

to functionally compatible results (Figure 1.2). To this end, we introduce a new functional

compatibility metric, which is also the main contribution of this work, to supervise the

search over compatible element-level operations maintaining the original functionality of

the output model. Our compatibility metric is inspired by design literature [85] and re-

cent research [78] suggesting that gross form and arrangement of elements within a shape

are strongly correlated to its functionality. Therefore we design our compatibility measure

by leveraging the overall shape and context properties between elements. We employ a

learning based approach to derive robust metric parameters using automatically generated

training datasets following the observation that sets of coordinated same style shapes in

online shape databases can provide insights on element compatibility.

1.2.3 Learning Shape Reconstruction from Stylized Drawings

In Chapter 5 we propose a new method for reconstructing 3D shapes from 2D sketches in

the form of line drawings. Our approach appears to be the first that considers a learned,

view-based representation for generating 3D shapes from sketches. The advantages of our

approach are threefold. First, our learning model is based on a Convolutional Network

trained to map sketches to 3D shape information, which is a powerful tool in modeling

geometry and viewpoint transformation. Second, the view-based representation allows us

6

to process 3D shape information such as depth and normals at a higher resolution than a

voxel-based representation. Third, we carefully design the full optimization pipeline so

that those multi-view shape information can be fused in a consistent manner which is a

crucial step for getting plausible shape reconstruction results. We train our architecture on

automatically generated, synthetic sketches of 3D shapes without requiring supervision in

the form of human line drawings. Once trained, our method can generalize to reconstruct

3D shapes from human line drawings that can be approximate, noisy and not perfectly

consistent across different viewing angles.

7

CHAPTER 2

RELATED WORK

In this chapter we discuss the most relevant prior works. In Section 2.1 we review literature

on style analysis of shapes. In Section 2.2 we discuss prior methods on shape style transfer.

In Section 2.3 we discuss related work on modeling 3D shapes from sketch drawings.

2.1 Shape Style Analysis

The most relevant literary source for understanding human perception of 3D object style

can be found in art history and appraisal literature. These texts discuss at length the ge-

ometric features of architectural structures, furniture and other artifacts associated with

particular historic or geographic styles, e.g. [86, 9, 73], and frequently refer to characteris-

tic “elements of design” or “motifs” to describe a particular style. For example, [9] states

“starting from recognizing motifs you will soon recognize styles”, “The purpose of this

brief guide is to provide photographic illustrations of ... architectural details, elements,

and forms to enable the user to ... recognize styles and elements”. The book proceeds to

describe a range of architectural styles based on the choice of architectural elements they

employ, e.g. mansards, towers, or porches, as well as the characteristic shape of different

building parts such as roofs or windows. Nutting [86] similarly catalogs European and

American furniture styles based on the shape of different furniture elements such as feet,

trims, or posts.

The style definitions employed in this literature are descriptive rather than constructive,

motivating our search for a constructive style similarity measure. Our work on shape style

8

similarity measure builds upon previous methods for shape style analysis, as well as meth-

ods for learning style measures in other types of data, discussed below.

2.1.1 Style analysis for same class models

A range of methods provide strategies for evaluating fine-grained similarity between shapes

with similar structure [126, 56, 61, 46, 116, 132]. These methods rely on the shared struc-

ture to first extract either a dense correspondence, e.g. [61, 46] or a segmentation of the two

models into corresponding, compatible, parts (a co-segmentation), e.g. [126, 56]. They then

use these correspondences to evaluate fine-grained similarity measuring either point-wise

or part-wise geometric differences with respect to pre-defined distance metrics whose rela-

tive weights are either hard-coded or learned from database distribution. For instance, Xu et

al. [126] co-segment models into roughly corresponding parts and define the style distance

between shapes based on differences in scales and orientations of part bounding boxes.

Kalogerakis et al. [56] define object and part styles using dominant modes of a learned

probability distribution across a database of models on a range of geometric descriptors.

Kim et al. [61] and Huang et al. [46] classify shapes within the same class, e.g. chairs,

as belonging to different fine-grained categories, e.g. office or rocking chairs. Kim et al.

perform the categorization by first producing a set of probabilistic part-based templates and

grouping the shapes based on the template they fit best. Huang et al. group the shapes based

on partial and local similarity measured using a combination of spin images, distance, and

deformation fields, with the importance of each term learned from database distribution.

Yumer et al. [132] use co-analysis of shapes within the same class to learn geometric and

spatial constraints among the different parts of an object, and use this information for style

transfer and other applications.

9

2.1.2 Structure-transcending shape style analysis

So far, little has been done when it comes to analyzing style across different structures. Li

et al. [74] highlight the difficulty in evaluating or defining structure-transcending styles for

3D objects. Thus, rather than considering style of 3D shapes, they focus on identifying

styles on closed 2D curves. They segment the curves at curvature extrema, and evaluate

style similarity between curves by comparing segment shapes and curvature histograms.

Their conclusions highlight the need to perform a perception study to establish a style

definition consistent with human intuition.

More recent works aim to address the much more challenging question of analyzing style

of structurally different 3D objects. Liu et al. [78] propose a metric for stylistic com-

patibility between furniture learned from collections of 3D scenes. They observe that the

functionality of objects is strongly correlated to the gross shape and arrangement of their

major parts, while style is strongly linked to the fine geometric details of these parts. Lim

et al. [75] propose a deep metric learning approach for style classification across differ-

ent structures and functionalities. Instead of utilizing hand-crafted geometric descriptors,

they represent shapes as rendered images in multiple views and train the neural network

to identify high-level features for discriminating styles. However they treat the shape as

a whole which potentially misses finer-detail features within sub-elements of the shapes.

Instead, our work is driven by observations in art history literature [86, 73] that point to the

presence of similarly shaped, salient, geometric elements across analyzed shapes as a key

indicator of stylistic similarity.

2.1.3 Learning style in other domains

There is a significant effort to analyze style in other types of data, such as images, video and

audio. Tenenbaum and Freeman [112] discuss ways to separate content and style factors in

speech, typography, and face images. Significant effort has been made in learning style pa-

10

rameters from exemplar images and video and transferring them to other instances [38, 11].

Researchers have addressed style analysis, recognition and retrieval in 2D images [121, 49],

music [4], and film [7]. Doersch et al [23] recognize the visual motifs, or style elements,

that distinguish photos taken in different cities.

We differ from these works in the domain of application as well as in the use of crowd-

sourced data to both facilitate and validate our style similarity measure. Our work is closer

to that of Garces et al. [32], who employ crowdsourcing to learn a similarity measure for

clip art styles. However, we target 3D shapes which require a very different style definition

and a distinct measurement approach.

2.2 Shape Style Transfer

Besides the insights from previous methods on shape style analysis, our work on shape

style transfer is also built upon previous work in part correspondence, part-based shape

synthesis, and style transfer.

2.2.1 Part Correspondence

Numerous existing methods compute correspondences between compatible parts of ob-

jects within the same class or co-segment such objects into such corresponding parts, see

[117, 125] for recent surveys. Recent methods leverage structural similarities between

shapes to extract functional part correspondences. Zheng et al. [136] match specific types

of shape substructures (called SFARR) that have the form of part triplets: two symmetric

parts and a third part connecting the two. Such special substructures do not exist in many

man-made shape categories (e.g., lamps, cutlery) and span only a small subset of compati-

ble parts on others. Liu et al. [77] extract common substructures on shapes through manual

annotation of corresponding parts. Our method instead uses more general structural rela-

11

tionships to measure functional compatibility between elements and does not require any

user interaction.

Laga et al. [67] use graph kernels to evaluate functional part correspondences between

shapes withing the same class. Our work adopts some ideas from this work, and in par-

ticular the use of graph kernels to measure element compatibility. As shown by our com-

parisons to [67], applying graph kernels successfully to evaluate element compatibility on

structurally different shapes requires different geometric feature sets, different encoding

of graph edge relationships, and different parameter estimation. In particular, instead of

hand-tuning graph kernels, we employ a learning approach to automatically adapt weights

of appropriate feature descriptors and graph walk parameters impacting cross-functional

compatibility.

A number of recent works compute functional correspondences between points, parts, or

fuzzy regions on different shapes by analyzing their potential interactions with either other

objects in the scene [43, 42], or with posed human avatars [52, 60, 96, 140, 97]. The de-

tected interactions relate parts with similar gross functionality across objects within the

same broad shape class and with sufficient input can be extended to handle patch corre-

spondences with similar interaction types across shapes with different functionality [42].

However, such correspondences can only be estimated for patches with specific types of

object interactions and require large amounts of external context data. Consequently it is

likely unrealistic to extend these methods beyond detecting gross functional part corre-

spondences. Our work uses readily available coordinated object scenes as the only training

input, and computes fine-level element compatibility, necessary for synthesis of detailed

functional geometric shapes in a given style. We demonstrate that compatibility can be

successfully evaluated without explicit functionality detection.

12

2.2.2 Part-based shape synthesis

Interactive methods for part-based shape synthesis rely on users to specify and edit parts to

assemble a shape, either directly [29, 66] or indirectly through semantic handles, attributes

and suggestion mechanisms [14, 133], and to explicitly control output style and function.

Shape grammars are used to generate new models, either by repeating structural patterns

specified manually by the user, or through automatic inference of such patterns from a set of

examples [10, 107]. The shape structure and functionality are determined by the grammar,

which operates within a particular shape class, or sub-class.

Multiple methods generate new shapes by combining parts from objects within the same

functional class [56, 44, 127, 48], employing part correspondences generated via co-segmentation

and labeling methods designed to operate on shapes with common functionality and coarse

structure. After assembling models using co-segmented same class-shapes as input, Huang

et al. [48] subsequently deform them to best fit input images. [132] facilitates structure

preserving shape deformation by providing users with deformation handles trained on co-

segmented shapes within a class. All these methods rely on co-segmentation or corre-

spondences between parts of objects within a single class. Our framework is designed

for transferring element style between shapes in vastly different classes, requiring a cross-

functional element compatibility measure and does not require any prior co-segmentation

or part labeling.

2.2.3 Style transfer

Researchers have explored style transfer for 2D curves, e.g. [39, 74] and images [38]. While

insights from these frameworks are useful for understanding the conceptual notion of style

transfer, as explained by [126, 79], algorithms developed for the 2D setting cannot be

readily extended to 3D space.

13

There had been no attempts to address generic style transfer for 3D shapes. However two

recent methods address special cases of this problem [126, 79]. Given a pre-defined coarse

segmentation of the exemplar and target shapes into corresponding parts, Xu et al. [126]

use these correspondences to anisotropically scale target parts to fit the proportions of the

matching parts on the exemplar. The method has limited applicability, as it assumes a

meaningful part level correspondence between the exemplar and target, and cannot handle

style properties beyond scale.

Following [38, 39], Ma et al. [79] require a triplet of inputs: an exemplar, a source, and a

target, where the source and target are expected to share the same style but have different

functionality, while the source and exemplar are expected to have the same functionality

and structure. They assemble the output by combining exemplar and target surface patches

guided by a combination of a dense exemplar to source mapping and a piece-wise similarity

transformation between the source and target. Their method makes a number of strong

assumptions, that rarely hold even when a source model which fits the generic criteria

above is available. For the transfer to be successful, they implicitly assume that decorative

elements on the exemplar and source are co-located, and assume most target surfaces to

have meaningful source counterparts, related via simple similarity transformations (target

surfaces with no source counterparts are left untouched by the transfer). Our style transfer

framework has none of these limitations: it does not require a source or a compatible

segmentation, and can handle a far wider range of inputs than either of the methods above.

2.3 Sketch-based Shape Modeling

There has been lots of researches focus on sketch-based shape modeling (see [88] and [22]

for a survey on the sketch-based modeling methods and systems). Below we discuss some

of the related work addressing the problem of shape modeling using sketches as input.

14

2.3.1 3D geometric inference from line drawings

Compared to using natural images, estimating 3D shape from line drawings is consider-

ably more challenging due to the lack of shading or texture information. Early works [118,

80, 76, 134] formulate the process of inferring a 3D shape based on reasoning about lo-

cal geometric properties, such as convexity, parallelism, orthogonality and discontinuity,

implied by lines and their intersections (“junctions”), to find a globally consistent shape.

These approaches produce reasonable geometry when applied to specific families of poly-

hedral objects, but are less effective for organic shapes with smoothly varying surfaces. For

smooth shapes, hand-designed rules are usually devised to extrude or elevate a 3D surface

from contours [50, 88]. More recent methods enable the creation of freeform surfaces by

exploiting geometric constraints present in specific types of line drawings, such as polyhe-

dral scaffolds, cross-section lines and curvature flow lines [99, 124, 90]. All these methods

derive geometric constraints from specific types of lines, require very accurate input draw-

ings, and can only reconstruct what is drawn.

On the other hand, various studies [64, 19] showed that humans can consistently inter-

pret 3D shapes from sparse and approximate line drawings (up to a bas-relief transforma-

tion [6]). Although the exact mechanism of 3D shape perception in humans is not well

understood, this indicates that pure geometric-based methods may not be able to mimic the

human ability of shape understanding from sketches.

2.3.2 Learning-based methods for shape synthesis

In contrast to pure geometric methods, learning-based approaches argue that shape inter-

pretation is fundamentally a learning problem, otherwise it is highly under-constrained. A

large number of learning-based methods have focused on estimating 3D shapes from single,

natural images that include color and texture. Early work was based on analyzing shading

and texture cues within image regions [40, 98], while more recent work has employed Con-

15

vNets for predicting surface depth and normals from real images [25, 120]. Driven by the

success of encoder-decoder architectures [69, 135, 54, 115, 51] that can effectively map in-

puts from one domain to another, newer methods use such architectures with convolutions

in three dimensions to generate 3D shapes in a voxelized representation [122, 17, 129]. A

different line of work has employed ConvNets to model geometric transformations of an

object to predict novel viewpoints [24, 109, 130, 138]. The approach of Tatarchenko et

al. [110] is most related to ours. Their approach takes as input a single natural image and a

viewpoint and uses a ConvNet to predict the color and depth from the provided viewpoint.

They show compelling 3D reconstructions for chairs and cars from a single color image by

projecting the depth maps from multiple views into a 3D space. Our approach is inspired by

this work, but differs in a number of ways. Our method operates on line drawings, a more

challenging type of input due to the lack of shading or color information. It predicts both

normals and depth across multiple viewpoints, which are then integrated into a high-quality

surface mesh representation through a joint optimization procedure. It also adapts a U-net

architecture [51] along with multi-view decoder branches and a structured loss function to

resolve ambiguities in the input line drawing.

2.3.3 Sketch-based 3D shape retrieval

Sketch-based retrieval methods typically transform features of the input sketch and 3D

shapes into a common space where comparisons can be made. Early work was based on

hand-engineered descriptors [30, 92, 41, 70, 26, 128, 123, 100, 37], while more recently,

ConvNets have been proposed to learn powerful representations for sketch-based retrieval

[105, 119]. Unfortunately, these methods only allow retrieval of existing 3D shapes or

parts. They provide no means to synthesize novel shapes or parts from scratch. A few

recent approaches employ category-specific, predefined parametric models to guide shape

reconstruction through ConvNets [84, 45]. These methods are only able to recover specific

shape parameters or rules from input sketches. If a drawing depicts a shape that cannot

16

be described by the parameters of these models, then the reconstruction fails. In contrast,

our method learns a representation capable of predicting shapes from sketches without any

predefined parametric model. We expect 3D shape priors to automatically emerge in our

deep network.

17

CHAPTER 3

LEARNING PERCEPTUAL SHAPE STYLE SIMILARITY

A B C

A B C

Figure 3.1. (left) Changing the style of objects in a scene influences the sense of time
and place. (right) Style similarity transcends structure: in the top row, the bed A is pro-
nouncedly more similar, style-wise, to dresser B than C; in the bottom row, buildings A
and C are stylistically more similar (insets highlight some stylistically similar elements).

The human perception of stylistic similarity transcends structure and function. An algo-

rithmically computed style similarity measure that mimics human perception can benefit

a range of computer graphics applications. Previous work in style analysis focused on

shapes within the same class, and leveraged structural similarity between these shapes to

facilitate analysis. In contrast, we introduce a structure-transcending style similarity mea-

sure and validate it to be well aligned with human perception of stylistic similarity. Our

measure is inspired by observations about style similarity in art history literature, which

point to the presence of similarly shaped, salient, geometric elements as one of the key

indicators of stylistic similarity. We translate these observations into an algorithmic mea-

sure by first quantifying the geometric properties that make humans perceive geometric

The work described in this chapter has been published as a full paper in ACM SIGGRAPH 2015. Please
also see the accompanying video: https://youtu.be/PWqZwpHQtnE

18

https://youtu.be/PWqZwpHQtnE

D(,)=? 0.16

D(,)=?

D(,)=0.29

D(,)=0.590.27

input shapes matching elements distance components output distance

Delement
(saliency × distance)

Dprevalence

0.82×0.16

0.01×0.30

0.65×0.45

0.08×0.37

Figure 3.2. To evaluate style similarity, we identify potentially matching elements; and
use those in a distance function that accounts for element similarity, element saliency and
prevalence. The parameters of both steps are learned from crowdsourced perceptual simi-
larity data.

elements as similarly shaped and salient in the context of style, then employing this quan-

tification to detect pairs of matching style related elements on the analyzed models, and

finally collating the element-level geometric similarity measurements into an object-level

style measure consistent with human perception. To achieve this consistency we employ

crowdsourcing to quantify the different components of our measure; we learn the relative

perceptual importance of a range of elementary shape distances and other parameters used

in our measurement from 50K responses to cross-structure style similarity queries pro-

vided by over 2500 participants. We train and validate our method on this dataset, showing

it to successfully predict relative style similarity with near 90% accuracy based on 10-fold

cross-validation.

3.1 Overview

Our goal is to obtain a structure-transcending style similarity measure for man-made 3D

shapes (Figure 3.2).

While the notion of style extends beyond shape, we consider a purely geometry based

measure; for most modeling applications properties such as texture can be easily changed

19

once a shape is available. Moreover shape databases frequently contain only geometric

information, making a measure which contains other properties less useful. Our framework

for computing a style similarity measure consists of the key components outlined below.

3.1.1 Element Similarity

We first develop a method to measure element-level similarity in the context of style eval-

uation. Our measure is inspired by observations in art history literature about the types of

geometric criteria that play a role in style identification (Section 3.2).

3.1.2 Matching Elements

We use this measurement method within a matching algorithm that detects similar geomet-

ric elements on the evaluated objects. We first search for paired regions on the processed

models that satisfy the approximate mapping requirement. We then group neighboring re-

gion pairs together based on geometric similarity, both within each pair of regions, and

between adjacent regions (Section 3.2.2).

3.1.3 Combined Style Measure

We seek a measure that reflects both the degree of similarity between the detected matching

elements as well as the percentage of the surface area on both models covered with similar

elements.Our overall style similarity measure balances these two terms.

3.1.4 Learning

In each of the steps above we face multiple parameter choices, such as “how to weigh

different elementary distances when evaluating element similarity?”, “how to decide when

elements are similar enough for matching purposes?”, or “how to evaluate saliency in the

context of style measurement?” As we aim to obtain parameter values that lead to a style

20

measure consistent with human perception, we elect to learn these parameters by studying

human responses to style similarity queries and algorithmically tuning the parameters to

best mimic these responses. Our training step is based on participant responses to relative

style similarity queries, which we describe next, and is designed to maximize the agreement

between our measure and participant responses.

3.1.5 Study of Style Perception

Our study was designed to achieve two goals. We wanted to examine our hypothesis that

human perception of style similarity between differently structured objects is consistent.

We also aimed to use the study results to facilitate parameter learning for our style mea-

surement algorithm. Our study was designed around relative comparisons, with users asked

to evaluate if an object A is more stylistically similar to object B or C.

The selection of queries, detailed in Section 3.3, was motivated by the two goals above.

We pre-processed the raw participant input for training and algorithm validation, removing

queries with non-discriminative majority responses and answers from participants deemed

unreliable (see Section 3.3).

3.2 Measuring Style Similarity

Man-made shapes in online databases are typically represented as partially connected meshes

(polygon soups). To evaluate style similarity we densely resample these models, represent-

ing them as point clouds with normals (normal direction is set to point outward using point

visibility). We assume the models to be upright oriented. Most models in online repos-

itories, and essentially all the inputs we downloaded, satisfy this assumption. Incorrect

orientation can corrected using the method of Fu et al. [28].

21

Shape Proportions Lines

Figure 3.3. Literature highlights three element-level style similarity criteria: intrinsic ele-
ment geometry or shape, relative proportions or scale, and dominant curve or line shape.

3.2.1 Geometric Similarity

Art-history literature [86, 9] and appraisal tutorials, e.g. [20], point to three separate geo-

metric criteria that are useful when identifying a particular style and which are applicable

across different structures: shape, proportions, and lines (Figure 3.3). This literature re-

peatedly stresses that objects with similar style are expected to have intrinsically similar,

even if differently scaled, geometric elements - see the highlighted church domes in Figure

3.3, left or the skirts of the bed and dresser in Figure 3.1. It also indicated that relative and

internal proportions of the elements play an important stylistic role - e.g. narrow vs square

windows, sturdy or thin furniture legs, and so on (Figure 3.3, center). Finally, it emphasizes

the importance of representative or noticeable surface curves in conveying style on the ob-

ject’s surface (Figure 3.3, right). Styles are often characterized by the use of straight versus

curved, or clean versus ornate lines. While for some style comparisons all three criteria

may come into play, it is the interaction or the relative weight of each criterion we seek to

learn from training data.

We measure geometric similarity using elementary distances that relate to these criteria.

When comparing intrinsic element geometry we employ both direct comparisons - measur-

ing point-wise positional and normal distances computed after aligning the elements using

22

an affine transformation, and indirect comparisons, measuring curvature distribution. We

compare element proportions using their bounding box scales and shape diameter functions

[102]. To explicitly account for line similarity we detect and compare feature curves and

representative silhouettes. All distances are normalized to the interval [0, 1]. We detail the

exact distance metrics in Appendix A.1.

We represent the distance between two elements {p, p′} as a weighted combination of the

elementary distances, using learned distance weights wi,

D(p, p′) =
F∑
i=1

widi(p, p
′). (3.1)

3.2.2 Extracting Matching Elements

Given a pair of input models, we need to detect elements of one model that match, or are ge-

ometrically similar, to elements on the other and vice versa. These matching elements may

not share the same exact geometry, but are expected to share similar geometric features, as

measured by the geometric similarity measure above. Detecting matching elements is chal-

lenging since we do not a priori know the size, location, or number of such elements. We

make the problem tractable by observing that geometric elements are typically self-similar

and can be approximately mapped to each other using an affine transformation. Following

these observations, we first locate near-convex patches on the two models that approxi-

mately map to one another, we then locate dominant mapping transformations, and finally

groups patches into elements by merging together adjacent patches that undergo a similar

dominant mapping transformation. Our grouping aims to discard matched, yet dissimilar,

patches and identify coherent geometric elements that share common geometric character-

istics and which frequently stand apart from the surrounding surface. We now describe

these steps in detail.

23

(a)

(b)

(c)

(d)

Figure 3.4. Extracting matching elements: (a) patch-segmentations (two levels visual-
ized); (b) example matches; (c) transformation space (2D MDS projection) with clustering
results; (d) extracted elements.

24

3.2.2.1 Patch Sampling

As a starting point for the matching process we sample each input model using a dense set

of approximately convex patches, computed using the method of [3] (Figure 3.4, a). Oper-

ating on patches, instead of individual points, significantly reduces the time complexity of

our element computation. Patches also provide a more reliable starting point for matching

since we can immediately evaluate match quality using our geometric distance measure,

assisting further analysis. We generate patches at a number of scales which enables us to

detect similarly shaped, but differently scaled, elements.

3.2.2.2 Transformation Clustering

For each patch computed in the previous step, we compute a transformation that approxi-

mately maps it to every patch on the other shapevia an outlier-robust iterative closest point

alignment algorithm [8]. To detect groups of adjacent patches that undergo similar trans-

formations, we use a Hough transform based voting strategy [5, 81]. To imbue the trans-

formation votes with geometric meaning, we represent each transformation as a point in

a nine-dimensional space which consists of translation, rotation, and non-uniform scaling

or reflection computed via Singular Value Decomposition. Each point is assigned a confi-

dence weight based on the shape distance between the transformed patch p and its image

p′:

ω =
A(p) + A(p′)

2
exp

(
−D(p, p′)/s

)
, (3.2)

where A(p) and A(p′) measure the percentage area of p and p′ relative to their shape. The

parameter s controls the confidence weight falloff as the distance increases, and is automat-

ically estimated by using a grid search and selecting the value that maximizes the objective

function (Equation 4.13) during model training (Section 3.2.4). To find the dominant trans-

formations in the 9-dimensional voting space we perform mean-shift clustering.

25

Each local maximum of density yields a cluster of voting transformations, and each cluster

centroid corresponds to a dominant transformation that approximately maps a number of

patches of one shape to the other. The transformation computation and subsequent cluster-

ing, visualized in Figure 3.4, are performed twice, from the first shape to the second and

vice versa.

3.2.2.3 Element Extraction

We use the dominant transformations T found in the previous step, to compute matching

elements, where each element is defined as a group of contiguous patches and the matching

element is defined by the image of these patches under T . We formulate this task as a

labeling problem to make similar inside/outside decisions for similar, contiguous patches.

The labeling assigns each patch p a binary label cp which is set to 1 if the patch is added to

the group and 0 otherwise. We compute the labels by minimizing the following objective

function over all the patch label assignments c per shape:

E(c; T) =
∑
p

E1(cp; T) +
∑
p,q

1

|N (p)|+ |N (q)|
E2(cp, cq; T) (3.3)

where p, q are adjacent patches, N (p), N (q) are the sets of all patches adjacent to p and q

respectively. The unary term in this function assesses the distance between p and its image

Tp under the transformation T , and the pairwise term assesses how likely a pair of adjacent

patches p, q is to belong to the same element. Specifically, the unary term expresses the

negative logarithm of the following probability for an individual patch p:

P (cp = 1; T) = exp(−D(p, Tp)/s) (3.4)

thus:

26

E1(cp = 1; T) = D(p, Tp)/s (3.5)

E1(cp = 0; T) = − ln
[
1− exp(−D(p, Tp)/s)

]
(3.6)

where Tp denotes all patches on the other shape that are closest to the patch p when it is

transformed under the transformation T . We use the same learned parameter s as in the

clustering step.

The pairwise term expresses the negative logarithm of the probability for pairs of neigh-

boring patches to have different binary labels based on the geometric distance between

them:

E2(cp, cq) = −[cp 6= cq] ln
[
1− exp

(
−D(p, q)/s

)]
(3.7)

To compute the distances between the patches, we apply a translation to align their cen-

troids. A small distance indicates that the two patches are likely to belong to the same

geometric element, and that the cost for assigning different labels to them should be high.

In this case the pairwise term will encourage them to be either grouped into the element

associated with Tp , or have both removed from the group depending on their unary terms.

We compute the labeling using the standard min-cut framework [36] for each shape. Each

computation yields a group of patches on one shape that approximately map to patches on

the other shape under the transformation T and are internally similar. We perform labeling

separately for the two transformation directions (from the first shape to the second and vice

versa).

3.2.3 Combined Style Similarity Measure

3.2.3.1 Element-level Similarity

Given a set M containing all the pairs of matching elements detected on the two input

shapes, element-level similarity is computed as:

27

Delement =
∑

{p,p′}∈M

C(p, p′)D(p, p′) (3.8)

where D(p, p′) is the distance between a pair of matching elements {p, p′} on the two

models, and C(p, p′) is the saliency of this pair of elements. As pointed out earlier, style

elements are expected to be visually distinct, or salient, motivating the use of saliency to

weigh the impact of individual element distances on the overall style similarity between

shapes. We define saliency using a weighted combination of elementary saliency metrics

suggested by recent literature [16, 72, 103] (see Appendix A.1). The saliency of a pair of

elements is defined as the average of their individual saliences C(p, p′) = .5[C(p)+C(p′)],

and element saliency is expressed as a weighted sum of the saliences of its sample points.

Specifically for the element p (and similarly for its matching element p′):

C(p) =
(∑

s∈p

σ
(G∑

j=1

vjxj,s + v0

)
/M(s)

)
/C(S) (3.9)

where σ(x) = 1/(1 + exp(−x)) represents the sigmoid, or logistic, function, xj,s are the

elementary saliency metrics measured at the sample point s, vj is a learned weight per

metric, and v0 is a learned bias weight shifting the sigmoid along the input axis. The

sigmoid transformation non-linearly combines the elementary saliency metrics and scales

the resulting point saliencies within the [0, 1] range. Our experiments (Section 3.4) show

that using this formulation to combine elementary saliency metrics is more predictive than

using a simple linear combination. We normalize the element saliency by the saliency

integral across the entire input model S and the number M(s) of matching elements the

sample point s belongs to:

C(S) =
∑
r∈S

σ
(G∑

j=1

vjxj,r + v0

)
(3.10)

28

3.2.3.2 Prevalence

To estimate the prevalence of the matching elements we consider the percentage of the area

not covered by these elements on both models. For identical input shapes, this percentage

will be zero, and will increase to one if no matching elements are found. As with element

similarity, we take saliency into account. If the uncovered area contains salient features,

it would indicate a poorer stylistic match between shapes than if it is nondescript. We

penalize unmatched areas z and z′ on the two objects using the saliency integral across

these areas, normalized by the saliency integral across the relevant shape

Dprevalence = 0.5[C(z) + C(z′)] · t (3.11)

where t is a learned penalty parameter.

3.2.3.3 Combined Distance Function

The distance between two shapes is defined as the sum of the two terms above:

D = Delements +Dprevalence (3.12)

We note that the distance between the two models is by definition symmetric. The impact

of each term depends on the learned individual weights on the elementary distance and

saliency metrics.

3.2.4 Parameter Learning

The input to our parameter learning step is a set of user responses to relative similarity

queries based on triplets of shapes {A,B,C}. For each query we have answers from mul-

tiple participants whether the pair of objects {B,A} is more stylistically similar than the

pair {C,A} or vice versa. The output is a set of learned parameters (total 99 parameters)

29

for the distance function and the matching algorithm, which can then be used to compute

style distances on other pairs of objects. We note that our problem setting is different from

regression or classification, since our training data does not have the form of absolute, con-

tinuous or discrete, measurements of style. Instead, we use a probabilistic framework suited

to handle relative comparisons for training. Since not all study participants are equally reli-

able in their answers, our training procedure weights each participant according to number

of times they disagreed with the majority answer in each relative comparison.

3.2.4.1 Learning Distance Parameters

Our model expresses the probability a participant rates {B,A} as more similar than {C,A},

or more compactly BA . CA as :

P (BA . CA) = σ
(
D(C,A)−D(B,A)

)
(3.13)

and similarly:

P (CA . BA) = σ
(
D(B,A)−D(C,A)

)
= 1− P (BA . CA) (3.14)

where σ(x) is a sigmoid function that converts the shape distance differences into probabil-

ities. This logistic-based probabilistic model follows [12], where it was used for learning

model rankings in the context of information retrieval.

To promote sparsity of the weights, our model contains a L1-norm regularization term

which can be seen as expressing a prior probability for the weights of elementary distances

and saliency features to be small:

P (w,v, t) = exp
(
− λ1||w||1 − λ2||v||1 − λ3|t|)

)
(3.15)

30

where w = {wi}i=1...F , v = {vj}j=1...G. The regularization parameters λ1, λ2, λ3 control

the degree of sparsification of the model and are automatically estimated through 10−fold

cross-validation on the training set. Given M training triplets, we learn the parameter

values that maximize:

L(w,v, t) = lnP (w,v, t)+
M∑

m=1

b[m] · lnP (BA[m].CA[m])+c[m] · lnP (CA[m].BA[m])

where b[m] and c[m] represents our confidence that BA[m] . CA[m] and CA[m] . BA[m]

respectively based on the user responses to the query m. The confidence per query is mea-

sured as follows. Each user is assigned a reliability weight that is equal to the percentage

of times their answers agreed with the majority answer in the queries they were asked. The

confidence b[m] (and similarly c[m]) for a query m is measured as the sum of reliability

weights for users that answeredBA[m].CA[m] (or CA[m].BA[m]) normalized by the total

sum of reliability weights of the users who answered the query. We use bound constraints

to enforce the parameters t and w to be positive.

We use Matlab’s implementation of Sequential Quadratic Programming (SQP) for the op-

timization task of our objective function. To initialize the optimization, the weights are set

to small random values. Finally, we note that all elementary distances are normalized to

[0, 1] during training by dividing them by their 90th percentile value computed across all

training pairs and then truncating all higher values to 1. The percentile is used instead of

the maximum to discard any outlier values in the training data.

3.2.4.2 Learning Matching Parameters

To learn the parameters of the overall distance function, we require the output of the match-

ing step. However, our matching step requires an element-level distance measure to eval-

uate the shape differences between pairs of patches, creating a self-referential dependency

between the two steps. To learn both sets of parameters we use an iterative procedure.

31

We start with a naive distance measure generated by computing the average closest point-

to-point patch distance after ICP and use this measure to detect an initial set of matching

elements. We then update the parameters of the distance function by training our model

with the procedure above. We repeat both steps, each time using the just learned, more

reliable, distance function in transformation clustering and min-cut labeling for element

matching, resulting in better matches. In practice three iterations were sufficient for the

method to converge to the results reported in Section 3.4.

3.3 Study of Style Perception

Category # # Total # (%) Q. # (%) Q. # (%) (i) & (ii) # (%) Q.
Shapes Queries (iii) plurality (iv) plurality plurality majority

building 238 1000 0 (0.0%) 149 (14.9%) 798 (79.8%) 731 (73.1%)
furniture 278 1250 0 (0.0%) 134 (10.7%) 1088 (87.0%) 1065 (85.2%)

lamp 186 1250 1 (0.1%) 103 (8.2%) 1121 (89.7%) 1100 (88.0%)
column 74 800 0 (0.0%) 25 (3.1%) 760 (95.0%) 743 (92.9%)

coffee set 76 270 0 (0.0%) 32 (11.9%) 233 (86.3%) 224 (83.0%)
cutlery 74 200 3 (1.5%) 10 (5.0%) 184 (92.0%) 183 (91.5%)

dish 91 200 3 (1.5%) 18 (9.0%) 170 (85.0%) 162 (81.0%)
Total 1017 4970 7 (0.1%) 471 (9.5%) 4354 (87.6%) 4208 (84.7%)

Table 3.1. Study statistics per category. Left to right: category, number of models, number
of queries, number and percent of queries with plurality “Both B and C” response, number
and percent of queries with plurality “Neither B nor C” response, number and percent
of queries with plurality discriminative response, number and percent of queries with a
majority discriminative response (majority formed by more than 50% participants).

Our study tests the hypothesis that human observers are persistent and consistent in eval-

uating relative style similarity across structurally different objects, and provides data for

training our algorithmic style similarity measure. We gathered our study data using online

questionnaires released through the Amazon Mechanical Turk (MTurk) service.

32

Category % persistence % consistency % consistency % consistency
all/reliable all/reliable majority (i) vs (ii)

building 73.8% / 76.7% 76.8% / 79.0% 86.6% 91.3%
furniture 89.5% / 90.8% 86.0% / 87.2% 91.2% 97.4%

lamp 92.5% / 93.4% 89.8% / 90.6% 94.4% 97.8%
column 86.4% / 88.8% 87.3% / 88.9% 91.7% 96.8%

coffee set 82.3% / 84.2% 83.5% / 85.0% 90.3% 94.5%
cutlery 88.1% / 89.8% 89.4% / 91.4% 93.7% 97.7%

dish 83.7% / 86.1% 78.7% / 81.6% 88.1% 92.6%
Total 85.7% / 87.7% 85.0% / 86.5% 91.3% 95.8%

Table 3.2. More study statistics per category. Left to right: category, participant persis-
tence across all participants and across reliable participants only, participant consistency
across all participants and across reliable participants only, consistency for queries with a
majority response, consistency for queries considering only discriminative responses ((i) B
or (ii) C).

3.3.1 Study Format

The queries used in our questionnaires were based on triplets of models, laid out as visu-

alized in Figure 3.5, left. Subjects were asked the question “Which of the two shapes on

the bottom (B or C) is more similar, style-wise, to the shape on the top (A)?” and were

required to select one of the following answers: “(i) B, (ii) C, (iii) can’t tell - Both B and

C, (iv) can’t tell - Neither B nor C”.

The models used for the study were organized into seven structurally diverse categories:

buildings, furniture, lamps, coffee sets, architectural columns (pillars), cutlery and dishes.

To focus on structure-transcending style similarity, for categories with clear fine-grained

structural sub-categories (furniture, lamps, coffee-sets and cutlery) B and C were selected

to have similar structure, different from that of A (e.g two dressers and a bed, Figure 3.1).

In categories with no clear structural sub-classes, the triplets were assembled based solely

on similarity bias.

Since our primary goal was to train our style similarity measure, we assembled most of

the queries with the goal of obtaining discriminative responses, where participants clearly

rank the degree of similarity between shapes, by introducing subjective bias. Specifically,

33

(i) B - 60%

(ii) C - 0%

(iii) Both - 0%

(iv) Neither - 40%

A

B C

Figure 3.5. (left) Study query layout. (right) response distribution for this query.

we generated 120 out of 4970 queries at random to validate the observation above. For the

rest of the study queries, roughly half of them were constructed such that A and one of B

or C were selected from a single database scene, or arrangement, (e.g. tableware set), and

the remaining object was drawn from a different arrangement. The remaining half queries

were constructed such that one pair was classified by the authors as being in the same

geographic or temporal style, while the third shape was subjectively classified as belonging

to a different style.

3.3.2 Questionnaire and Participant Information

Each questionnaire released via the Mechanical Turk contained 25 unique queries. Each

question was repeated twice, with B and C flipped, to measure participant persistence. To

collect a diverse set of answers per query and avoid any individual bias, we allowed each

participant to complete only one questionnaire per category. Participants were rewarded

$0.50 for each questionnaire completion.

34

3.3.3 Query Response Processing

Any large-scale study faces the risk of attracting unreliable respondents. We detected and

discarded outlier responses from participants who gave two different answers to more than

6 out of the 25 unique queries in the questionnaire, or took less than 3 minutes to complete

it. For all other participants, we ignore answers which are provided differently from the

same participant. For learning purpose we only used queries with a majority discrimina-

tive ((i) B or (ii) C) response. Table 3.1 lists the number and percentage of discarded and

remaining queries as well as those of queries with discriminative responses. For algorithm

training and validation we detected and discarded outlier responses using a two stage filter.

Participants who gave two different answers to more than 6 out of the 25 unique queries in

the questionnaire, or took less than 3 minutes to complete it, were classified as unreliable

and all their answers were discarded. For all other participants, we ignored non-persistent

answers, where a participant answered the same question differently. To form a statisti-

cally significant majority we gathered answers to each query by 10 different, reliable users.

For learning purposes we only used queries with a majority discriminative ((i) B or (ii)

C) response. While the answer “(iii) Both B and C” could potentially be used in a learn-

ing procedure, the percentage of queries with such plurality answers is negligible (0.1%)

and does not justify the extra effort required to incorporate them into the training algo-

rithm. The number and percentage of discarded and remaining queries are listed in Table

3.1 columns four through six. The number and percentage of queries with discriminative

majority responses used for learning are listed in Table 3.1 column seven.

3.3.4 Hypothesis Validation

We hypothesize that participants’ consistency and persistence in this study can be con-

sidered as a measure of human performance for comparing the style similarity of shapes.

Consistency is measured as the percentage of times that MTurk participants’ answers agree

with the plurality answer per query, i.e., the percentage, or size, of the plurality. Table 3.2

35

lists those values. The fact that on average 8.5 out of 10 users agree on the response for a

query confirms that human observers are consistent in evaluating relative style.

3.3.5 Representative Sample

An interesting question to ask is how the consistency of MTurk participants compares to a

curated participant set, and how their perception of style compares to that of experts. To an-

swer these questions, prior to conducting our large-scale study, we performed a pilot study

which included a mix of participants: 55 unique participants found through the MTurk

service, 32 casual participants located based on personal contacts, and 5 Arts Ph.D stu-

dents. The last group can be considered as experts for our task. This study had 250 queries.

Across the casual user group the average plurality size was 93.5% based on all answers and

99.3% excluding the non-discriminative answers. Within the expert user group, the plu-

ralities were very similar - 95.3% and 99.5% correspondingly. For MTurk participants in

this smaller study, the pluralities were 88.6% and 98.5% correspondingly, slightly smaller

and similar to the ones in our large study. We conclude that the overall consistency across

the different user groups is similar, and the consistency rate we observe among MTurk

participants serves as a plausible estimate of such consistency in the general population.

When comparing the majority responses across all three groups taking only discriminative

responses into account, the percentage of times that casual users or MTurk participants

disagree with the plurality answer provided by experts were negligible, 0.6%, and 1.2%

respectively. In other words when participants were able to provide a ranking these rank-

ings were essentially identical. This observation indicates that our learning method, which

relies only in discriminative majority answers of MTurk participants, is likely to be consis-

tent with expert perception of style. We observed a larger difference in the percentage of

time one group of participants chose the non-discriminative ‘Neither B nor C’ (iv) response

while the other one chose a discriminative one. Overall, MTurk participants agree with ex-

pert plurality 83% of the time, while casual participants agree with expert plurality 87% of

36

100% 0%

Both: 30% 70%0%

Neither: 10%90% 0%

Neither: 20%80% 0%

Neither: 10%90% 0%

100%0%100%0% 100% 0%

Neither: 10%90% 0%

100%0%

Neither: 20%

80%0%
Neither: 40%

60%

0%

100% 0%

Neither: 30%

70%0%

Neither: 20%

80% 0%
Neither: 20%

80%0%

90% 0%Neither: 10%

Figure 3.6. (left) Examples of the 89% of queries where our method agrees with study
majority response(shared answer in green), numbers show percentages of participants who
selected each answer (not listed answers received zero votes). (right) Some representative
failure cases (majority response blue, ours red).

Category all terms no prevalence term linear saliency no saliency term LFD
building 81.4% 77.4% 79.3% 79.9% 70.7%
furniture 91.4% 87.9% 90.8% 90.6% 74.6%

lamp 95.0% 86.1% 94.5% 94.7% 61.6%
column 90.2% 87.2% 87.8% 87.9% 55.5%

coffee set 90.6% 87.1% 89.3% 86.2% 62.1%
cutlery 85.8% 72.7% 82.5% 81.4% 61.2%

dish 89.5% 86.4% 87.0% 87.0% 88.9%
average 89.1% 83.5% 87.3% 86.8% 66.6%
mixed 86.6% 82.1% 86.3% 85.9% 67.8%

Table 3.3. Prediction accuracy, Left to right: category, our prediction accuracy, prediction
accuracy with alternate formulations. Rows one to seven show results where training and
validation were done per category, bottom row shows results where both were done on the
entire database.

the time. Such discrepancy is to be expected, as experts may look for different style cues

beyond those noticeable by laymen. Since the difference remains small and is limited to

non-descriptive answers, we believe that the MTurk participant responses can be relied on

to derive an accurate picture of human perception of relative style similarity and to train a

robust style similarity measure.

37

3.4 Algorithm Validation

We validate our style similarity measure by performing ten-fold cross-validation on queries

with a majority discriminative response among the study participants. Queries tested during

validation excluded all pairs of models present in the training queries. The percentages of

queries on which our algorithm agrees with the majority response are reported in Table 3.3,

second column. Across all categories our method agrees with the majority response 89.1%

of the time. This number is comparable to the agreement level between the individual

reliable participants for these queries (91.3%). Table 3.3, rows one through seven, report

the predictive accuracy for the scenario where the algorithm was trained and validated

separately against each model category. Performing these two tasks on all the categories

at once, the average accuracy slightly drops to 86.6% since, as one would expect, the

importance of different measure components may vary across different object categories.

3.4.1 Algorithmic Choices

We evaluated a number of alternative approaches for style measurement, summarized in

Table 3.3, columns three to five. We evaluated the impact of dropping the prevalence term,

using linear vs sigmoid saliency models, and ignoring saliency altogether. As expected each

change led to drop in prediction accuracy, with the omission of prevalence leading to the

largest drop. While one could expect an even larger drop without the prevalence term, such

a drop is prevented by our use of approximate element matching: we purposefully classify

elements as approximately matching even if the distance between them is significant. This

choice assists style similarity evaluation when the input shapes do not share identical style

elements. In the last column of Table 3.3, we provide comparisons against using the popular

LightField shape descriptor alone (LFD) as a distance measure between shapes [15]. Our

learning method has significantly higher average prediction accuracy compared to using

LFD for style similarity. As explained in Section 3.2.4, our algorithm employs an iterative

scheme that alternates between matching elements using our distance function and then

38

5% 5%

10%

15%

20%

25%

30%

10%

15%

20%

25%

30%

surf.
dist. curv. dist. AO LD PA HDcurv. D2 scale SDF curve

dist. LFD

shape proportions lines

Figure 3.7. (left) Similarity weights, features from left to right are: surface distance, cur-
vature difference, shape distribution D2 difference, scale difference, shape diameter dif-
ference, curve distance, light field descriptor difference, (right) saliency weights, features
from left to right are: curvature metrics, location metrics, ambient occlusion, and three
levels of shape distinctness from [103].

updating its parameters. After the initial iteration, the prediction accuracy of our algorithm

averaged over our seven datasets is 87.9%. At the second iteration, the accuracy increases

to 89.0%, and at the third iteration the accuracy converges to 89.1% as reported in Table

3.3.

3.4.2 Elementary Distances

Figure 3.7(left) shows the relative importance of each elementary distance as reflected by

its learned weight in the element similarity term (normalized by the sum of all elementary

distance weights), averaged over all our seven categories. We observe that the distances

between feature curves are contributing the most to our style measure. Figure 3.7(right)

similarly shows the relative importance of each saliency feature as reflected by the absolute

scale of its learned weight in the saliency model (normalized by the sum of all absolute

saliency weights). We note that the relative importance for saliency features is less direct

since we employ a non-linear sigmoid-based model for measuring saliency. Curvature- and

location-based features appeared to have higher contribution.

39

3.4.3 Complexity and Runtimes

Our distance computation has two main time-consuming steps: computation of per sample

point geometric features used for elementary distances and saliency metrics, and element

matching. Feature computation takes 40 seconds on average for a pair of shapes. Ele-

ment matching consists of patch sampling, transformation clustering and element extrac-

tion steps which take 115, 85 and 35 seconds respectively for a shape pair on average. In

total, evaluating the distance function takes about 4.5 minutes. We note that several parts

of our algorithm could be implemented much more efficiently e.g., patch segmentation is

implemented on a single thread. Regarding computational complexity, the distance func-

tion evaluation has quadratic complexity in the number of patches in shapes and linear in

the number of point samples. We note that the number of patches is relatively low, ranging

from 20 to 80 at most.

Optimizing the objective function for learning the parameters of our distance function re-

quires 30 seconds per 100 training queries. The complexity of the parameter learning stage

is linear in the number of triplets. Learning requires evaluating distance functions for all

shapes pairs in the training queries. For our largest dataset, the learning stage requires

about 50 hours. We note that the learning stage is an offline procedure; once the measure

is learned, applying it for a shape pair requires only a few minutes, as discussed above.

All running times are reported on an Intel E5-2697 v2 processor. Our data and source

code is available on our project page: https://people.cs.umass.edu/˜zlun/papers/

StyleSimilarity.

3.5 Applications

We describe three novel applications of our learned style similarity measure.

40

https://people.cs.umass.edu/~zlun/papers/StyleSimilarity
https://people.cs.umass.edu/~zlun/papers/StyleSimilarity

roman doric corinthian

ionic

spiral

doric

Figure 3.8. Embedding the column dataset in a 2D space based on learned pairwise dis-
tances yields distinct Gaussian-like clusters that correspond to known architectural orders
visualized by colored boxes.

3.5.1 Organizing shape collections

We first constructed a graph where nodes are the shapes belonging to the triplets described

in Section 3.3 and the edges represent triplet relationshaip with edge lengths equal to their

computed pairwise distance. Then we embed the graph in 2D using the Isomap technique

[111]. Figure 3.8 shows the resulting embedding for columns. Interestingly, the discovered

groups are largely correlated to architectural orders commonly used by art historians to

describe column styles.

3.5.2 Style-based shape tagging

Given a set of shapes with style labels provided by an expert, we can train a classifier that

infers, or propagates, labels to the rest of the shapes in a collection. To reliably perform

classification, we embed shapes in a high-dimensional space using Isomap technique and

concatenate the embedding coordinates per shape as the feature vector, which is provided

as input to the classifier for training and evaluation. While training the classifiers, we

41

performed hold-out validation on the training sets to choose the dimensionality D of the

embedding for each collection.We stop once the hold-out validation error increases more

than 10% with respect to the best previous value of D, or when D = 20. On average, using

single nearest neighbor classifier through ten-fold cross-validation, the labeling accuracy

in the test sets was 95.6% for columns, 86.6% for buildings, and 94.1% for coffee sets.

3.5.3 Style-based suggestions for scene modeling

Finally, our learned measure can be used to help designers during interactive scene com-

position by providing stylistic suggestions of shapes. The input to this application is a

collection of shapes and a scene being modeled. The application compiles an ordered list

of shapes from a collection according to their style distance to the shapes in the scene, or

selected shapes of interest (query shapes) specified by the designer. but evaluated across

the entire shape, sidestepping explicit element detection. In this manner, the shape that is

most structurally and geometrically similar to the query shape is found first. To generate

the ordered list, we use the geodesic distances from that shape to all other shapes in the

database through a precomputed graph, which is constructed using the process described

for organizing shape collections. We demonstrate the application of stylistic suggestions

for furniture in the accompanying video. Instead of computing the distance of the query

shape to all collection shapes which is computationally expensive, we perform a nearest

neighbor search in the space of features we use for element matching. Then we generate

the ordered list using the geodesic distances from that nearest neighbor shape to all other

shapes in the database through a precomputed graph, which is constructed using the process

described for organizing shape collections.

42

3.6 Discussion

We have described the first algorithm for computing a structure-transcending style similar-

ity measure between objects. As demonstrated, our measure is well aligned with human

perception of style, owing to our novel use of parameter learning from crowdsourced style

similarity queries. Since understanding style is fundamentally important for analysis of

man-made objects, our method directly benefits a range of applications such as the ones

described in the paper.

43

CHAPTER 4

FUNCTIONALITY PRESERVING SHAPE STYLE TRANSFER

Figure 4.1. Our algorithm transfers the geometric style of three exemplars, cabinet,
loveseat, and sugar pot (left, highlighted with arrows), to the rest of the objects in the
scene, while preserving the target functionality (right). Please zoom-in to see more details.

When geometric models with a desired combination of style and functionality are not avail-

able, they currently need to be created manually. We facilitate algorithmic synthesis of 3D

models of man-made shapes which combines user-specified style, described via an exem-

plar shape, and functionality, encoded by a functionally different target shape. Our method

automatically transfers the style of the exemplar to the target, creating the desired combi-

nation. The main challenge in performing cross-functional style transfer is to implicitly

separate an object’s style from its function: while stylistically the output shapes should

be as close as possible to the exemplar, their original functionality and structure, as en-

coded by the target, should be strictly preserved. Recent literature point to the presence

of similarly shaped, salient geometric elements as a main indicator of stylistic similarity

The work described in this chapter has been published as a full paper in ACM SIGGRAPH ASIA 2016.
Please also see the accompanying video: https://youtu.be/R-1jhH4sbRk

44

https://youtu.be/R-1jhH4sbRk

Figure 4.2. Framework overview.

between 3D shapes. We therefore transfer the exemplar style to the target via a sequence

of element-level operations. We allow only compatible operations, ones that do not affect

the target functionality. To this end, we introduce a cross-structural element compatibil-

ity metric that estimates the impact of each operation on the edited shape. Our metric is

based on the global context and coarse geometry of evaluated elements, and is trained on

databases of 3D objects. We use this metric to cast style transfer as a tabu search, which in-

crementally updates the target shape using compatible operations, progressively increasing

its style similarity to the exemplar while strictly maintaining its functionality at each step.

We evaluate our framework across a range of man-made objects including furniture, light

fixtures, and tableware, and perform a number of user studies confirming that it produces

convincing outputs combining the desired style and function.

4.1 Style Transfer Framework

Our framework takes an exemplar shape and a target shape in a different functional class as

input. Given the exemplar and target shapes, we search for modifications to the target shape

which bring it stylistically closer to the exemplar. It begins by hierarchically segmenting

both the exemplar and the target into potential geometric elements (Section 4.2) and then

45

employs a set of element-level target modifications that reduce the style distance between

the output and the exemplar (Figure 4.2). To measure this distance we use the style measure

discussed in Chapter 3.We perform only compatible operations, ones that do not violate the

target functionality. We evaluate compatibility as discussed in Section 4.3.

4.1.1 Operations

The simplest and most common operation we employ to reduce style distance between an

exemplar and a current shape is substituting elements on the current shape with (appro-

priately scaled) exemplar elements. By definition any such substitution reduces the style

distance between shapes; however, it is rarely possible to replace every single portion of

the target shape with exemplar elements without violating functionality. We therefore use

three additional operations that can improve style similarity once substitution is no longer

possible: curve-based element deformation, element addition, and element removal. The

element deformation operation embeds the exemplar curve into the candidate shape by re-

placing its target counterpart and adapting the surrounding surface, see Section 4.5. For

element addition and removal operations, We only perform those operations on elements

deemed decorative, i.e. having only marginal impact on functionality as measured by our

per-object compatibility function. To ensure that our operations preserve target shape sym-

metries, we detect all replicated elements and curve handles on the target shape, and apply

each operation to an entire symmetry group instead of to a single element.

4.1.2 Tabu Search

Our optimization procedure is designed to select modifications providing maximal style

adaptation while preserving target functionality, which follows the concept of tabu search

[34]. A detailed pseudocode of our method is provided in Figure 4.3.

46

input : Exemplar shape E in class c′, Target shape T in class c
output: An output list O of new shapes

1: Initialize search list L = {T}
2: repeat
3: Choose shape S = argmin

T ′∈L
Dstyle(E, T

′)

4: Remove shape S from search list L

// Search for element substitutions
5: for each element (or symmetric group of elements) GS in S do
6: Find elements GE in shape E with Dfunc(GE , GS) < εc,c′
7: for each retrieved element GE do
8: if replacing GS with GE drops Dstyle(E,S) then
9: Construct new shape S′ by aligning GE

10: if Dfunc(S
′, T) < εc,c and alignment is successful then

11: insert shape S′ in search list L and output list O
(unless a copy of S′ already exists in the output list)

12: end
13: end
14: end
15: end

// Search for curve-based deformation
16: for each curve (or symmetric group of curves) CS in S do
17: Find curve CE in shape E with Dcurve(CE , CS) < εcurvec,c′

18: for each retrieved curve CE do
19: Construct new shape S′ by deforming S to align with CE

20: if the constructed new shape S′ drops Dstyle(E,S) then
21: if Dfunc(S

′, T) < εc,c then
22: insert shape S′ in search list L and output list O

(unless a copy of S′ already exists in the output list)
23: end
24: end
25: end
26: end

// Search for element additions
27: for each non-used element (or group) GE in E do
28: if adding GE to S drops style distance then
29: Construct new shape S′ by aligning GE with S
30: if Dfunc(S

′, T) < εc,c and alignment is successful then
31: insert shape S′ in search list L and output list O

(unless a copy of S′ already exists in the output list)
32: end
33: end
34: end

// Search for element removals
35: for each non-substituted/added element (or group) GS in S do
36: if removing GS from S drops style distance then
37: Construct new shape S′ by removing GS

38: if Dfunc(S
′, T) < εc,c then

39: insert shape S′ in search list L and output list O
(unless a copy of S′ already exists in the output list)

40: end
41: end
42: end
43: until search list L is empty

Figure 4.3. Tabu search pseudo-code.
47

Throughout the optimization, we maintain a list of seed shapes which is initialized with

the given target shape. At each iteration, we remove a seed shape from the list and attempt

to bring it closer, style-wise, to the exemplar using one of the four supported element op-

erations. To explore the most promising solutions first, we always select the seed shape

currently closest to the exemplar in terms of style. If the attempt to improve it through

allowable operations succeeds, then the improved shape is inserted into the seed list. If

the attempt yields a shape which has been generated before, or if all evaluated operations

violate the functionality preservation constraints, then we discard and forbid the output.

We use the compatibility measure and the threshold learned from training data discussed in

Section 4.3 to examine if an operation is compatible, and only proceed if the compatibility

is higher than the threshold. We also avoid operations predicted to reduce the style distance

by less than a minimum threshold. In this manner, the tabu search only searches the space

of valid target shape modifications (a much smaller subset of the set of all possible mod-

ifications), and avoids performing operations on functionally implausible shapes. Once a

seed shape can no longer be improved it is considered to be a terminal solution, or in other

words it corresponds to a local minimum. In this case, we store it in an output list and

proceed to examine the next best seed shape in our search list, terminating when this list is

empty.

To reduce search space and avoid redundant operations we first perform tabu search using

only element substitutions, then once compatible style-distance-reducing substitutions are

exhausted we repeat the search using curve-based deformation, and finally use the same

process for adding and then for removing decorative elements.

4.1.3 Improvement Step

Given a seed shape, we aim to perform a compatible editing operation that will maximally

reduce the style distance from the seed to the exemplar. We thus cycle through all possible

operations of the currently examined type and select the one that reduces style distance the

48

most. We can only compute the exact impact of each operation after it is performed, since

most operations change the geometry of both the elements involved and their surroundings.

However, for both substitution and deformation we can reasonably predict beforehand if

the operation is incompatible, or if it does little to reduce style distance. We rely on such

predictions to avoid unnecessary computations. To examine if an operation is a priori

incompatible, we use the compatibility measure and the threshold learned from training

data discussed in Section 4.3, and only proceed with full computation if the predicted

compatibility is higher than the threshold. We also avoid operations predicted to reduce the

style distance by less than a minimum threshold. Style distances are normalized to the [0, 1]

interval and we use 1% as a threshold. Once the operation is performed we reassess both

compatibility and style distance, rejecting operations that after the fact violate compatibility

or do not sufficiently reduce style distance. We add the compatible result with the smallest

distance to the exemplar to the list of seeds.

4.1.4 Substitution

Give a pair of compatible elements in the exemplar and seed shape, we seek to replace the

seed shape element, including any of its symmetric counterparts, with the corresponding

element on the exemplar shape. This step requires alignment or coverage of slots [56],

i.e. areas on the elements which are in contact with the rest of the shape (Figure 4.5).

The alignment step, Section 4.4, balances two potentially contradictory goals: it seeks

to preserve output functionality and to minimally change the style, and specifically the

proportions, of both the substituted-in and pre-existing output elements (Figure 4.5).

4.1.5 Curve-Based Deformation

Our curve based deformation step only considers seed elements originating from the target,

and evaluates the compatibility of each possible deformation using a variant of the compat-

ibility measure designed for curves (Section 4.3). The deformation embeds the exemplar

49

curve into the candidate shape replacing its target counterpart and adapting the surrounding

surface, see Section 4.5.

4.1.6 Element Additions and removals

Addition and removal are performed after substitution and deformation, the two operations

expected to be most effective at minimizing exemplar-output style distance. We only per-

form addition of exemplar elements and removal of target elements, deemed decorative, i.e.

having only marginal impact on functionality as measured by our per-object compatibility

function. To add a new element to a model one needs to know the attachment point or slot

to place it at. We thus only consider adding elements that on the exemplar are immediately

adjacent to an element previously substituted-in or added to the seed. To add the element

we first place it next to this prior neighbor using the slots they shared on the exemplar.

4.1.7 Element removals

Finally, we perform removal of target elements that are decorative as also measured by our

compatibility function. We only remove elements if the slots they share with the rest of the

model are closed surfaces, i.e. if no gaping holes are left after removal. Typically only a

tiny fraction of elements fits these constraints.

4.1.8 Termination

Once a seed shape can no longer be improved it is considered to be a terminal solution, or

in other words it corresponds to a local minimum. In this case, we store it in an output list

and proceed to examine the next best seed shape in our search list, terminating when this

list is empty. The tabu search typically computes and evaluates a few dozen solutions.

50

4.1.9 output

If the user seeks a single output, then at the end of the process we return the shape in the

output list closest to the exemplar in terms of style distance. To provide multiple results

with different emphasis on target functionality preservation versus exemplar style adapta-

tion, we add to the output list all the seed models produced during the tabu search, as well

as models generated with more lax compatibility thresholds.

4.2 Pre-Processing and Segmentation

Our style transfer framework requires that models are first hierarchically segmented into

meaningful geometric elements. We assume that the input shapes are represented as par-

tially connected meshes (polygon soups), are consistently scaled and oriented (have the

same upright orientation, and face the same front direction when that direction is well de-

fined). Consistent orientations can be found manually or by using the automatic method

by Huang et al. [46]. Consistent scalings are computed through bounding box-based align-

ment.

Figure 4.4. Hierarchical segmentation and extracted curves.

4.2.1 Segmentation

We follow previous works that use convexity as a criterion for shape segmentation into

meaningful parts or elements. At the finest hierarchy scale, we generate geometric elements

by using the approximate convex decomposition technique by [3]. We generate elements at

51

a number of scales by repeating the segmentation with different convexity thresholds (0.3,

0.5 and 0.7). Since when designing 3D models of man-made objects artists often leave

functionally meaningful parts as separate components we also add such separate connected

components as potential elements. We introduce additional larger elements by merging

neighboring elements when they jointly approximate a portion of a primitive (box, sphere,

or cylinder). The primitive-based element grouping is based on [131]. The result of this

step is a collection of a few dozen elements at a range of scales (Figure 4.4, left). We also

detect symmetry groups of elememts by approximately matching them through ICP.

For each shape we build a graph representing its structure, which is consequently used for

compatibility evaluation (Section 4.3). The nodes of the graph are the different elements

(typically 10-50 elements per shape). The graph has three types of edges: we connect

nodes by an adjacency edge if their corresponding elements are adjacent; we create a sym-

metry edge connecting nodes whose corresponding pairs of elements are related under a

reflective, translational or rotational symmetry; and we create containment edges between

nodes corresponding to pairs of elements where one element directly contains the other in

the hierarchical segmentation.

4.2.2 Curve Handles

Our element deformation operation uses matching curve handles on target and exemplar el-

ements. We extract two types of curve handles (Figure 4.4, right): view-independent ridges

and valleys [87], and occluding contours. To compute the latter we use 12 views uniformly

distributed about the upright axis at elevation angles of 0, 30, and 60 degrees above the

horizontal plane. We extract the feature curves as described in [58], and hierarchically

segment them along element boundaries.

52

4.3 Compatibility

To effectively transfer style we need to evaluate the impact of each editing operation on the

functionality of the edited shape. We answer this question by using a set of compatibility

measures that predict the impact of each operations and also assess the a posteriori impact

of any operation on the output functionality. We formulate substitution and deformation

compatibility by considering the contextual similarity between the substituted elements

or deformation handles, and formulate shape-level similarity by analyzing compatibility

between pairs of elements on them.

4.3.1 Formulation

Previous research, e.g. [78] as well as insights from design literature [85] point to the con-

text and gross shape of geometric elements as important features in determining an object’s

functionality. While we do not aim to detect functionality, we speculate that elements with

similar context and shape features are more likely to be compatible, i.e. replacing one with

the other is less likely to negatively affect the functionality of the resulting shape. Our

metric is designed to reflect these similarities and differences.

We encode each element’s functional and contextual properties using the element relation

graph contracted as described in Section 4.2. We then use a graph kernel-based similar-

ity evaluation framework, inspired by [67] to combine those into a single compatibility

metric. In contrast to Laga et al. we design our graph kernels to measure cross-class func-

tional compatibility by choosing a different set of feature descriptors and then learning

their individual importance and kernel parameters from training data. Our procedure of-

fered dramatic improvements in performance compared to using the formulation of [67]

as-is (Section 4.7).

53

4.3.1.1 Per-Element Descriptors

We encode each element’s gross geometry and context within the overall shape using the

following set of descriptors: the element’s relative position with respect to its containing

shape, encoded by the location of its markers such as its center of mass, lowest and highest

points with respect to global object’s markers (center of mass and its projections on sup-

porting planes); its relative dimensions with respect to the object’s dimensions; its mass

distribution; and the relative orientation of the element’s major axis with respect to the ob-

ject’s coordinate axes. The full set of the detailed 13 descriptors is provided in Appendix

B.1.

4.3.1.2 Pairwise Descriptors

For each pair of elements connected by an edge in our graph we compute two sets of

relative pairwise descriptors, using the same measurement as for individual elements, but

computed for each element with respect to its graph neighbor rather than with respect to

the containing object.

We assemble these descriptors into an element compatibility measure and learn their re-

spective weights as discussed in Section 4.3.2. Intuitively, the learned weights indicate

which geometric descriptors are more relevant for evaluating functional compatibility be-

tween elements on functionally different shapes.

4.3.1.3 Element Compatibility

We evaluate compatibility between pairs of elements on two shapes by comparing the graph

walks initiated at their corresponding nodes in the respective graphs. Given an element p

in a shape S, an nth order (length) walk W (n)
S (p) is defined as a finite sequence of n + 1

vertices and n edges forming a continuous path in the graph. Given another element q in

54

another shapeE, the nth order similarityK(n)(p, q), defined for the nth order walks starting

at p and q, is given by the recursive formula:

K(n)(p, q) = Knode(p, q) ·
∑

p′∈N (p)
q′∈N (q)

Kedge(epp′ , eqq′) ·K(n−1)(p′, q′) (4.1)

where Knode(p, q) is a kernel function comparing node descriptors for elements p and q;

N (p) and N (q) represent the set of neighboring elements for p and q respectively; and

Kedge(epp′ , eqq′) is a kernel function comparing edge (i.e. pairwise) descriptors that repre-

sent relationships between elements. For n = 0 (0th order walk), the kernel function only

evaluates Knode(p, q).

We define the node and edge kernels as a weighted combination of Radial Basis Function

(RBF) kernels with learned parameters which are evaluated respectively as follows:

Knode(p, q) =
∑
k

wk · exp

{
− D2

k(p, q)

2σ2
k

}
(4.2)

Kedge(epp′ , eqq′) = δ(epp′ , eqq′)
∑
l

wl · exp

{
− D2

l (epp′ , eqq′)

2σ2
l

}
(4.3)

where Dk(p, q), Dl(epp′ , eqq′) are distances between the descriptors of nodes and edges

respectively, δ(epp′ , eqq′) is a binary function that returns 1 when the edges epp′ , eqq′ are of

the same type (symmetry, containment, or adjacency) and 0 otherwise.

Compatibility between elements p and q is then defined as a weighted combination of nth

order similarities between them across a range of walk lengths n:

Kfunc(p, q) =
∑
n

wnK
(n)(p, q) (4.4)

where wn is a learned weight for each different walk length. For computational efficiency,

in our implementation we use walks up to length 5, as in our experiments the learned

55

weights assigned to longer walks were negligible. The above similarity function is a kernel

function itself, and can therefore be normalized to ensure consistent similarity values for

graphs of different size [68]:

K̂func(p, q) =
Kfunc(p, q)√

Kfunc(p, p) ·Kfunc(q, q)
(4.5)

Given positive weights {wk}, {wl}, {wn}, our kernel is guaranteed to be positive definite,

thus distances between elements can be derived from the above kernel as follows [101]:

Dfunc(p, q) =
√
K(p, p)− 2K(p, q) +K(q, q) (4.6)

where K(p, p), K(q, q) represent the self-similarities of elements in the graphs used for

normalization.

To evaluate compatibility between pairs of symmetric group of elements GE, GS , we find

the best pairwise element match. If the best match is compatible for substitution or de-

formation, this indicates that at least one pair of elements are interchangeable. The rest

of the elements within their respective symmetric group can be substituted or deformed

under symmetry constraints. Thus, we use the compatibility of the best element match for

measuring group compatibility Dfunc(GE, GS):

Dfunc(GE, GS) = min
p∈GE ,q∈GS

Dfunc(p, q). (4.7)

4.3.1.4 Shape Compatibility

We employ the shape compatibility measure after each editing operation, to evaluate whether

the resulting new shape S ′ is functionally compatible with the original target one T . We de-

fine compatibility as the maximal compatibility distance between corresponding elements

on the two shapes, seeking the worst-case influence on shape compatibility:

56

Dfunc(S
′, T) = max

p∈T,p′∈S′
Dfunc(p, p

′) (4.8)

where p is an element on the original target shape, and p′ is its corresponding substituted

or original element on the generated shape. Note that while added or removed parts are not

explicitly accounted for by this metric, their presence or absence will be reflected in the

graph kernels of their neighboring elements.

4.3.1.5 Curve Compatibility

To evaluate curve compatibility for curve-based deformation, we take into account the com-

patibility of the elements they belong to, and the similarity between the shape, relative

location and size of the curves within the overall shape. The list of curve descriptors is

provided in Appendix B.1.

For a pair of view-independent curves e, f belonging to elements p, q respectively, their

compatibility is expressed as follows:

Kcurve(e, f) = Kfunc(p, q) +
∑
m

wm · exp

{
− D2

m(e, f)

2σ2
m

}
(4.9)

and Dm(e, f) represent distances between curve descriptors and {wm}, {σm} are learned

parameters. We note that the curves are segmented according to our hierarchical element

segmentation such that the curve segments can be associated with the corresponding ele-

ment compatibilities.

For a pair of view-dependent curves e, f , we additionally take into account the distance

between the views they are generated from:

Kviewcurve(e, f) = Kcurve(e, f) + wv exp

{
− ||v(e)− v(f)||2

2σ2
v

}
(4.10)

57

where v(e) and v(f) represent given 3D viewpoint location for these two curves, and

wv, σv are learned parameters.

Curve compatibility is defined by converting kernel similarity to distance (as in Equa-

tion 4.6). Our deformation only pairs same-type curves; that is, we do not match view-

dependent curves on one shape with view-independent curves on the other.

4.3.2 Parameter Learning

We algorithmically learn the parameters of our element and curve compatibility measures

with the same learning procedure. For element compatibility these include the kernel

weights {wk}k=1...K , {wl}l=1...L, {wn}n=1...N and RBF variances {σk}k=1...K , {σl}l=1...L

(58 parameters in total). For curve compatibility these include the weights {wm}m=1...M ,

{σm}m=1...M and wv, σv (8 parameters in total). We use the same learning procedure for

both. We note that these parameters can vary across object classes - compatibility criteria

for chairs and sofas may differ from those for beds and cabinets. We consequently learn

these parameters separately for each pair of shape classes. In our experiments we used

coarse class classification with up to five classes per broad shape category (e.g. tables,

chairs, sofas, cabinets, and beds for furniture).

Clearly, learning requires training data. One possibility to create a training dataset is to

manually specify pairs of compatible or incompatible elements or curves across shapes.

However, creating such a dataset requires human labor and supervision. Instead, we devel-

oped an automatic procedure to create training data. Specifically, we observe that online

repositories such as Google Warehouse already contain a significant number of coordinated

sets of objects in the same style. Since these shapes are designed to have the same style,

many of the objects in these scenes contain elements which are identical up to an affine

transformation. By construction these elements are compatible, since they can be clearly

substituted (subject to appropriate scaling) without affecting shape functionality. Conse-

58

quently, detected pairs of such compatible elements across different models yield valuable

training data for learning compatibility parameters. We clearly detect only a subset of

compatible pairs since compatible elements may have different geometry even on same set

shapes. However, our compatibility function is based on coarse-scale element properties

and context and does not consider fine-level element geometry. Thus, restricting our train-

ing data to elements identical up to affine transformation, does not, in our experience, bias

our learning setup. On the assumption that most random element substitutions would lead

to structurally or functionally invalid results, we complement our compatible pairs with

less compatible ones using random pair assignment.

Given a dataset of scenes downloaded from Google Warehouse, we first segment each

model, extracting elements and curves (Section 4.2); we then use an ICP based alignment to

compute all pairs of elements approximately identical up to an affine transformation. Given

these training pairs, the goal of parameter learning is to compute the set of parameters with

which our compatibility function will, on average, deem these pairs p, q more compatible

than element pairs which contain one of the elements in our compatible pair and a randomly

selected one - p, r or q, r. We use a probabilistic framework that is well suited to handle

such relative comparisons for training and is known to be robust to outliers [12, 108]. We

express the probability that a pair {p, q} is more compatible than {p, r} (or more compactly

pq . pr) as:

P (pq . pr) = σ
(
Dfunc(p, r)−Dfunc(p, q)

)
(4.11)

where σ(x) is a sigmoid function that converts the functionality differences into proba-

bilities. We also include an L1 norm as regularization term that minimizes the weights

assigned to the different descriptors. The L1-norm regularization, proposed by Tibshirani

[113], promotes sparsity by allowing some weights to dominate while pushing others to-

ward zero. In addition, when the number of training pairs is small relative to the number of

parameters, the regularization encourages more zero weights, leading to a simpler model

with better predictive performance. Our regularizer is formulated as follows:

59

P (w) = exp
(
− λ||w||1)

)
(4.12)

where the weight vector w includes all kernel weights. The regularization parameter λ

controls the degree of regularization and is automatically estimated through 10-fold cross-

validation on the training set.

Given T training triplets p, q, r, we learn the parameter values that maximize the following

likelihood:

L(w,σ) =
T∑
t=1

lnP (pq[t] . pr[t]) (4.13)

where vector σ includes all variances, pq[t] . pr[t] refers to the automatically generated

training triplet t. For element correspondences, we train the weights and variances by

maximizing the above likelihood function on the element training data for input shapes per

each pair of classes. Then for curve correspondences, we train the weights and variances by

again maximizing the same likelihood function, but this time using curve training data for

input shapes per each pair of classes. We use bound constraints to enforce all parameters

to be positive. To maximize our regularized likelihood function, we use the L-BFGS-

B method [139]. We note that analytic gradients of our kernel functions with respect to

weights can be derived following a recursive formulation explained in Appendix B.2. In

our datasets, the number of our training inputs based on the ICP-aligned pairs varied from

25 to 300 depending on the pair of classes (most were above 100). To encourage more zero

weights for a simpler model with better predictive performance, we also include anL1 norm

as regularization term that minimizes the weights assigned to the different descriptors.

4.3.2.1 Automatic Threshold Selection

We use the detected element and curve correspondences to algorithmically select the com-

patibility threshold ε used in our tabu search. For each pair of classes c, c′, we set the

threshold εc,c′ for element correspondence to the maximum distance between correspond-

60

Figure 4.5. Element alignment: (a) exemplar and target; (b) seed model and substituted-
in element with identified slots and their covers; (c) alignment using non-uniform scaling
across the board; (d) style and structure aware alignment.

ing elements in the training data. We similarly use the maximum distance between corre-

sponding curves in our training data as the threshold for curve compatibility. We note that

we can safely use these maximum distances as thresholds since any outlier matches are

pruned by the ICP matching step.

4.4 Element Alignment

Part and element adjacencies within an object obviously impact its functionality. In par-

ticular the locations of contact areas, or slots, connecting each element to the rest of the

model are likely to reflect on this element’s role within the larger whole. To preserve target

functionality when adding or substituting elements into an edited seed shape we aim to,

whenever possible, preserve all previously existing slots on both the incorporated element

and the seed model, i.e. to keep previously covered, or in contact areas, similarly covered.

We detect all slots on the seed shape and exemplar element, using the algorithm developed

by [56] for part-based model synthesis. The identified slots include shared boundary loops,

in-contact surfaces, and part-intersections. To preserve functionality, we treat object con-

tacts with the ground plane as additional slots. By construction, within a model each slot

has an opposite matching, or cover, slot. To assemble the new model, we need to compute

61

such covers for slots at the interface between the seed shape and the new element, and then

transform the elements to bring all pairs of matching slots into contact (Figure 4.5).

Aligning, or bringing slots into contact, often requires changes to element geometry, e.g. in-

corporating an armchair back into a sofa requires stretching it. Yet, unconstrained changes

to element shape, can decrease the output functionality and negatively affect style similar-

ity with the exemplar. Thus in performing alignment we seek to achieve the balance of

changing element geometry enough to provide coverage but with minimal style and func-

tion degradation. While the method of Kraevoy et al. [65] seeks to preserve geometric

features when non-uniformly resizing models, adapting it to our setting and applying it

on a per element basis using coverage constraints is too computationally expensive. In-

stead, we facilitate an effective yet efficient alignment computation using the following

framework. We first restrict the set of allowable per-element transformations to translation,

rotation, and axial scaling. By preventing non-axial shear, and penalizing deviations from

pure translation we seek to weakly preserve element proportions and orientation. How-

ever, applying a penalty approach to all elements uniformly is insufficient. Even small

non-uniform scaling can lead to visible artifacts by breaking element symmetry (Figure 4.5

c); and even small rotations of anisotropic elements can affect their look and functionality.

We therefore disallow symmetry violating scaling and rotations that change the direction

of the major axis on anisotropic elements. To detect both scenarios we use the element’s

oriented bounding box (OBB) . When an element has two or more OBB axes with roughly

similar length we constrain our transformations to maintain their length ratio (we use 20%

deviation as conservative threshold). We only allow rotations for elements that are either

isometric or that have two near identical axis lengths, in the later case rotation is allowed

only within the plane span by these axes, using the same threshold as above to detect sim-

ilar axis lengths. We also note that from a style perspective changes in thickness of thin

elements are particularly undesirable, and disallow such changes (an element is considered

thin if one of its axes is shorter than 10% of the sum of all axis lengths).

62

As in many alignment settings we face a chicken-and-egg problem, we need correspon-

dences to perform the desired transformations, but correspondences computed when two

objects are far apart are not reliable. We consequently use an iterative-closest-point (ICP)

strategy, iterating alignment and correspondence steps. We first approximately align the

new element to the seed shape. For substitution we transform the incoming element to

align its OBB with that of the outgoing one. During addition, the added-in element by

construction has at least one adjacent exemplar element that had been incorporated into the

seed. We therefore similarly transform the added-in element to align the slots it shares with

those elements. We then locate and pair seed and element slots nearest to one another. For

any unpaired slot we treat the closest points on the opposite model as the matching covers.

At each subsequent alignment step, to minimize changes in element proportions and ori-

entations we first solve for closest slot alignment using only translations. If this step is

unsuccessful, we use the set of permissible scaling constraints per element to perform a

restricted scale plus translation closest-point alignment of all participating elements. For

each element we restrict the scalings to the permissible ones, while seeking to distribute

the amount of scaling evenly between all elements. If and when this step fails we repeat the

closest-point alignment allowing restricted element rotations and scales. For all symmetric

groups of incorporated or seed elements, we constrain the transformations to preserve these

symmetries. We iterate between correspondence computation and alignment till distances

no longer improve or full coverage is achieved.

4.5 Curve Based Deformation

The input to our curve based deformation is a handle curve on the currently processed

seed shape and a corresponding exemplar curve. Our deformation step modifies the seed

by replacing the handle with the exemplar curve while smoothly deforming the seed sur-

face so as to conform to the new curve geometry while preserving local surface details

63

Figure 4.6. Curve based deformation without (center) and with (right) swept surface edits.

(Figure 4.6). While multiple surface deformation methods exist, we found that the ARAP

framework [104] works well in our setup, as it supports curve deformation handles and

preserves local geometric features under significant handle deformations. To facilitate de-

formation, we first align the endpoints of the exemplar curve with those of the handle

curve through translation and uniform scaling and use arc-length parameterization to de-

fine curve-to-curve correspondences. We then deform the seed model by moving handle

vertices to corresponding locations on the transformed exemplar curve. Using, the original,

surface-based ARAP formulation as-is for large curve deformations can cause surface self-

intersections. We therefore implemented ARAP on a volumetric graph, following the graph

construction described in [137] shown to prevent self-intersections in the case of Laplacian

deformations. In our experiments, this modification allows for the intersection-free large

deformations necessary to modify curve style.

We seek to impact not only the features but also the contours of the output shape, and note

that man-made objects are frequently dominated by swept surfaces. We implement the

desired contour changes by editing the sweep profiles on these surfaces (Figure 4.6, right).

For each handle contour curve we examine whether its underlying surface is well defined by

sweeping the contour handle along a path curve, and maintain these swept surfaces during

deformation. For simplicity we only implemented this mechanism for the most common

sweep cases, revolution and extrusion, where this structure is easiest to detect and preserve.

64

Figure 4.7. Among all possible tables on the right we selected the highlighted one as most
compatible target for the exemplar chair.

Specifically, for each pair of similarly shaped and oriented handle curves on an element, we

interpolate the curves and compare the distance from the resulting surface to the element.

If the generated surface is close to the mesh surface, then we infer that it is a swept surface.

To detect extrusions we use linear interpolation, and to detect surfaces of revolution we

interpolate handle normals and positions.

4.6 Automatic Target Selection

Our output is dependent on the choice of a particular target shape (Figure 4.7). Typically

the more similar the exemplar and the target are structurally, the more compatible their

elements are, and the more complete, or compelling, the style transfer. Thus when users

specify a database of shapes within a particular class as a target for style transfer, we use

structural compatibility as a criterion for selecting the target shape to operate on within the

database.

Intuitively one shape is more compatible with a given exemplar than another when a larger

share of its elements are more compatible with exemplar elements. Given the exemplar

shapeE and a shapeD within a target class, we compute their compatibility by first locating

for each shape element the most compatible exemplar element, and then summing up the

degrees of compatibility between them using the normalized kernel of Equation 4.5:

65

K̂(D,E) =
∑

p∈D,q∈E,q=s(p)

K̂func(p, q)

where p is an element on the database shape, and q is its most compatible element on the

exemplar shape. A simple brute-force approach for selecting the most compatible shape is

to evaluate these similarities across all database shapes and select the best one.

However, for large shape collections, this brute force approach is too slow. We speed

up the process by leveraging the observation that in practice shape databases frequently

contain clusters of structurally similar shapes. We first find such clusters, then select a

representative shape per cluster, and finally perform the above computation only for those

representative shapes, selecting one of them as the target. We perform clustering using

affinity propagation [27] with the following similarity metric between two database shapes

D1, D2:

K̂(D1, D2) =
1

|P |
∑

p∈D1,q∈D2,q=s(p)

K̂func(p, q)+

1

|Q|
∑

q∈D2,p∈D1,p=s(q)

K̂func(p, q)

where |P | is the number of elements in shape D1, |Q| is the number of elements in shape

D2, s(p) returns the most similar element in D2 to element p, s(q) returns the most similar

element in D1 to element q. The affinity propagation method automatically infers both the

number of clusters and their representative shapes.

4.7 Validation

We evaluate our method by synthesizing over a hundred new shapes using style transfer,

see Figures 4.1 and 4.8 for representative examples.We tested our method on four broad

categories of everyday objects: furniture, lamps, cutlery, and coffee and tea sets. Our

66

Figure 4.8. Typical style transfer results. For each group we show the exemplar first then,
multiple synthesized outputs in the same style with targets shown as insets.

choice of categories was motivated both by availability and by diversity of functions and

styles within each category. We use as inputs models from publicly available databases, 3D

warehouse and TurboSquid. Throughout the paper we demonstrate a diverse range of style

transfer results which convincingly combine exemplar styles with target functions.

4.7.1 Perceptual Validation

We validate the key properties of our method via three user studies: one designed to eval-

uate the degree of style similarity between the outputs and the exemplars, one designed to

evaluate the functionality of the output models, and one designed to specifically evaluate

our compatibility metric against the most similar prior work [67]. We summarize those

below.

4.7.2 Style similarity

Style similarity is an inherently relative notion, thus asking if two shapes have the same

style is often inconclusive. We consequently use relative comparison to assess our results.

We asked participants to compare style similarity between an exemplar model and our

67

plurality raw votes
T O both neither draw T O both neither

top (T) vs target (O) 100.0% 0.0% 0.0% 0.0% 0.0% 93.2% 0.4% 0.5% 6.0%
top (T) vs third (O) 78.9% 1.4% 9.9% 5.6% 4.2% 68.6% 5.5% 15.1%10.8%

top (T) vs original (O) 38.8% 26.9%19.4% 1.5% 13.4% 39.1%32.5%21.2% 7.2%

Table 4.1. Style similarity study results: per-query plurality responses (left) and raw vote
percentages (right).

output generated from it, against style similarity between the exemplar and a range of alter-

natives, aiming to ascertain the degree of success our method has at believably transferring

style. We used questionnaires based on triplets of models, laid out with one shape image

on the top and two on the bottom. The shape on the top (A) is an exemplar shape and one

of the two shapes on the bottom (B or C, assigned randomly) is the top result synthesized

by our method using this exemplar and a target in a different functional class (top). The

second shape on the bottom is in the same functional class as the output and is randomly

selected among the following alternatives: a shape from a style-coordinated pre-existing

scene which included the exemplar A (original) - these shapes can be viewed as plausible

ground truth for style transfer; a shape synthesized by our method using the same exem-

plar, but ranked as third in terms of its stylistic similarity to the exemplar (third) - this

shape is useful to evaluate the meaningfulness of our ranking; and the target shape used for

style transfer (target) which serves as a random baseline, expected to be arbitrarily different

style-wise from the exemplar. Subjects were asked the question “Which of the two shapes

on the bottom (B or C) is more similar, style-wise, to the shape on the top (A)?” and were

asked to select one of the following answers: “(i) B, (ii) C, (iii) can’t tell - both B and C,

(iv) can’t tell - neither B nor C”.

We assembled a total of 264 queries, up to three per each of our generated outputs com-

paring each output to all available alternatives. We gathered answers to each query from

10 different, reliable users.Vote distribution by query and raw vote percentages for each

answer are listed in Table 4.1. Participants perceived our synthesized shapes as at least as

68

plurality raw votes
yes no draw yes no

target 96.0% 1.6% 2.4% 89.8% 10.2%
top 92.1% 3.2% 4.8% 86.7% 13.3%

third 90.1% 7.0% 2.8% 86.3% 13.7%
lax compatibility 69.8% 23.0% 7.1% 68.4% 31.6%

Laga et al. 65.3% 29.8% 5.0% 65.2% 34.8%
exemplar 12.2% 86.1% 1.7% 17.0% 83.0%

Table 4.2. Functionality study results: per-query plurality responses (left) and raw vote
percentages (right).

similar style-wise to the exemplars as the ground truth models. Furthermore the top-ranked

shapes were perceived as more style-wise similar to the exemplar compared to the third-

ranked ones, and drastically more similar when compared to the baseline target shapes.

These results strongly validate our claim of consistently successful style transfer across

shapes with different functionality.

4.7.3 Functionality

Functionality is a largely boolean property, thus to evaluate how well our outputs preserve

target functionality we show participants one model at a time and ask “Is this a functional

X?” where X is the name of the specific, narrow, target class used for synthesis, e.g. coffee

table, loveseat, side table, etc. Users were asked to choose either “yes” or “no”. To provide

a baseline to compare against, in addition to showing participants our top and third ranked

results, we also included equal numbers of models from the following groups: original tar-

get models - intuitively one would expect a near 100% positive response on these models,

with the actual positive response rate providing a good upper bound to compare against;

top-ranking results synthesized using our framework but with either our compatibility met-

ric but with a 10-times more lax compatibility threshold, or with the original threshold but

with the similarity metric of Laga et al. [67] (based on the graph encoding, edge relation-

ships and kernel parameters described in their paper) - intuitively we expect these two sets

69

plurality raw votes
ours 93.3% 91.8%

Laga et al. 5.0% 8.2%
draw 1.7%

Table 4.3. Element compatibility study results: per-query plurality responses (left) and raw
vote percentages (right).

of results to produce less positive responses than ours; and last exemplar models - these

serve as the lower bound, as they do not share target functionality.

We assembled a total of 611 queries and gathered answers to each query from 10 differ-

ent, reliable users. The responses are reported in Table 4.2. The results demonstrate that

our synthesized shapes are deemed to fulfill their function at nearly the same rate as the

ground-truth target models. If we relax our learned threshold for element compatibility, the

functional plausibility of shapes drops significantly. Similarly, over a third of the shapes

synthesized using Laga et al.’s metric are found to violate functionality considerations. The

results validate the second goal of our method - the ability to reliably preserve target func-

tionality during transfer. The comparisons to alternative methods also confirm that our

compatibility metric and the automatic threshold setting we employ (Section 4.3) are key

to this success.

4.7.4 Element compatibility metric

We directly evaluate our metric’s effectiveness by comparing the correspondences it com-

putes against those produced using the metric of [67]. To compare the methods we ran-

domly selected pairs of an exemplar and a target across our inputs, and then selected a

random element on the exemplar. We ran both methods to find its corresponding, or most

compatible element on the target.

Our user study focused on the queries where both methods disagree with the correspon-

dences. We used questionnaires based on triplets of models, laid out with one shape image

70

on top and two on the bottom. The shape on the top (A) is an exemplar shape with the

selected element highlighted, one of the two shapes on the bottom (B or C, assigned ran-

domly) is the compatible target element selected by our method and the second shape is the

element selected by the method of Laga et al. Subjects were asked “Which of the two high-

lighted parts on the bottom (B or C) is MORE similar functionality wise to the highlighted

part on the top (A)?”, and were asked to select either B or C. The user study had the same

format and filters as the first study.

Study participants selected our result 93% of the time, and only on 5% queries did a plural-

ity of respondents prefer the correspondences computed by Laga et. al (1.7% were a draw).

Most of the outliers were on queries which compared elements on lamps with different

attachment mechanisms (floor vs ceiling vs wall) . These results confirm that our metric

is significantly better aligned with human perception of functional part compatibility. At

the same time additional features may be useful to consider to address attachment diversity

when processing hanging shapes.

4.7.5 Implementation and Runtimes

Our method is implemented in C++. Our method takes on average 6 min to synthesize a

new model, with roughly 2 min out of this time spent pre-processing the models. The rest

of the time is spent in the tabu search. Tabu search runtime depends on the complexity

and number of operations, and ranges from 2 min for typical models to up to 10 min for

the slowest ones. Learning the parameters of our compatibility measure requires about

one hour for each pair of shape classes. This learning step is an offline process: once the

compatibility measure is learned, evaluating the compatibility between all pairs of elements

on two shapes takes only a few seconds. All running times are reported on an Intel E5-

2697 v2 processor. Our source code is available on our project page: https://people.

cs.umass.edu/˜zlun/papers/StyleTransfer.

71

https://people.cs.umass.edu/~zlun/papers/StyleTransfer
https://people.cs.umass.edu/~zlun/papers/StyleTransfer

4.8 Discussion

We have described the first algorithm for synthesizing shapes by transferring style between

man-made objects with different structure and functionality. As demonstrated by our re-

sults, given a single exemplar model, our method is able to successfully generate functional,

plausible, similar-style models in a wide range of shape classes. Key to our success is a

novel, learned metric designed to assess element compatibility across shapes with different

structure and function.

72

CHAPTER 5

SHAPE RECONSTRUCTION FROM SKETCHES VIA
MULTI-VIEW CONVOLUTIONAL NETWORKS

128

128

128

128

128

64

64

64

64

64

64

32

32

32

32

32

32

16

16

16

16

16

8

8

8

8

8

8
4

4
4

4
4

4
2

216
128

64

128
256

512
512

512

64

128

256

512

512
512

512

input sketches

side view

encoder multi-view decoder
multi-view depth &

normal maps

output view 1
front view

output view 12

optimized 3D
point cloud

surface
reconstruction

surface
�ne-tuning

Figure 5.1. Our method takes line drawings as input and converts them into multi-view
surface depth and normals maps from several output viewpoints via an encoder-multi-view-
decoder architecture. The maps are fused into a coherent 3D point cloud, which is then
converted into a surface mesh. Finally, the mesh can be fine-tuned to match the input
drawings more precisely through geometric deformations.

In this chapter we propose a method for reconstructing 3D shapes from 2D sketches in the

form of line drawings. Our method takes as input a single sketch, or multiple sketches

depicting an underlying (unknown) 3D shape from different viewing angles, and outputs

a dense point cloud representing a 3D reconstruction of the input sketch(es). The output

point cloud is then converted into a polygon mesh representation, which is further fine-

tuned to match the input sketch more precisely. At the heart of our method lies a deep,

encoder-decoder network. The encoder converts the sketch into a compact representation

The work described in this chapter has been submitted as a full paper in 3DV 2017.

73

which encodes shape information based on the input sketch(es). Then the decoder converts

this representation into depth and normal maps that capture the underlying surface from

several, densely sampled, output viewpoints. The multi-view maps are then consolidated

into a coherent 3D point cloud by solving an optimization problem that fuses depth and

normal information across all output viewpoints. Compared to other approaches, such as

volumetric-based networks, our multi-view architecture offers several advantages, includ-

ing more faithful reconstruction, higher output surface resolution, better preservation of

surface detail and shape structure. We validated our results quantitatively through standard

error measures, and qualitatively through a perceptual user study.

5.1 Overview

Given a single, or multiple, hand-drawn sketches in the form of line drawings, our method

aims to reconstruct a 3D shape. Line drawings are made by humans to convey shape

information [21, 19]. They typically contain external contours (silhouettes) and internal

contours to underlie salient shape features. We designed a deep network to automatically

translate line drawings into 2D images representing surface depth and normals across sev-

eral output viewpoints (Figure 5.1). The depth and normal predictions are then fused into a

3D point cloud, which is in turn converted into a polygon mesh. Although surface normals

could be inferred by depth alone, we found that best reconstructions are achieved when

both depth and normal predictions are made by the network and coherently fused into the

point cloud.

Our network is trained to reconstruct multi-view depth and normal maps from either a

single sketch depicting the shape from a particular input view (e.g., front, side, or top),

or from multiple sketches depicting the shape from different views (e.g., front and side).

A single sketch may not be sufficient to reconstruct the shape accurately, e.g., the front

side of a car does not explicitly convey information about its back. Thus one would need

74

(a) (b) (d) (e)(c)

Figure 5.2. (a) The user can provide a front view sketch as input; (b) our network trained
on a single input sketch generates an intermediate shape; (c) the user can further draw a
sketch from the side view using the rendered shape as a guide; (d) & (e) our network trained
on inputs from both views yields an updated 3D shape.

to entirely rely on the network to reconstruct the complete 3D shape based on that single

sketch and the learned shape information during training. Yet, since there is a large, or even

infinite number of shape reconstructions (e.g., different car backs) from a single sketch , we

also allow the user to provide multiple sketches depicting the shape from difference views

as input at once, or provide them progressively while being guided by the intermediate

shape reconstructions. In the latter case, illustrated in Figure 5.2, the user draws from one

view, then our network, which is trained to reconstruct from that view, yields a 3D shape.

The user can then draw a second sketch from another view, on top of the generated shape

rendered semi-transparently from that view, similar to ShadowDraw [71]. Thus, given the

previous and new line drawing as input, our network, trained to reconstruct from both

views, yields an updated 3D shape. The process can continue until the user is satisfied with

the result, at which point he/she may edit the mesh directly.

In what follows, we discuss our network architecture (Section 5.2), and its training (Section

5.3). Then, we discuss our optimization technique to fuse the muilti-view depth and normal

maps into a single, coherent 3D point cloud, and finally the conversion to a polygon mesh

(Section 5.4).

75

5.2 Network Architecture

Our ConvNet takes as input line drawings from particular views of an object and outputs

depth and normal maps in several, uniformly sampled output viewpoints (Figure 5.1). Our

implementation uses 12 output viewpoints located at the equidistant vertices of a regular

icosahedron. A camera is placed at each icosahedron vertex looking towards the center of

the object and oriented towards the upright axis. All our training shapes are normalized

such that they fit inside the icosahedron and are consistently oriented.

5.2.1 Input

The input to our network are 256 × 256 intensity images representing the line draw-

ings. When C input sketches are available, they are concatenated as channels resulting

in 256 × 256 × C dimensional input. For each input view configuration, we train a dif-

ferent network i.e., given a sketch representing the front of the object, we use the network

trained to reconstruct the 3D shape from the front, or given two sketches representing the

front and the top of the object, we use the network trained to reconstruct from the front

and top (in this case, the two sketches are concatenated in this order). At first, this might

seem restraining, yet we note that in traditional CAD systems, it is common for users to

use canonical views [93], and better reconstruction results are achieved when the network

is trained to reconstruct from specific rather than arbitrary views.

5.2.2 Encoder

The encoder network consists of a series of convolutional layers, all using kernel size of

4 and stride of 2. The filter size and number per layer is shown in Figure 5.1. All layers

use batch normalization and leaky ReLUs (slope = 0.2) as activation functions. The output

of the encoder is a 2× 2× 512 representation, which encodes shape information based on

76

the input sketch(es). We note that this representation can be used for sketch-based shape

retrieval.

5.2.3 Decoder

The decoder consists of 12 branches, each containing a series of nearest-neighbor upsam-

pling and convolutional layers. The branches have the same layer structure but do not

share parameters. Each branch takes as input the encoder’s representation and outputs a

256× 256× 5 image for a corresponding output viewpoint. The 5-channel image includes

a depth map (1 channel), a normal map (3 channels) and a foreground probability map for

that viewpoint. All pixels that have probability more than 50% as foreground serve as a bi-

nary mask that indicates the projected surface area under that viewpoint. The output depth

and normal maps are masked using this binary foreground map.

Following the U-net architecture [94], the input to each convolutional layer is formed by

the concatenation of the previous layer output in the decoder, and a corresponding layer

output in the encoder (see Figure 5.1). The upsampling layers of the decoder upsample

their input with a factor of 2, while the convolutional layers use kernel size of 4 and stride

of 1. Each convolutional layer is followed by batch normalization and leaky ReLU (slope

= 0.2) as activation function. The first 3 layers in each decoder branch use dropout for

regularization. The number and size of filters per layer in the decoder are shown in Figure

5.1. The output layer uses the tanh activation function since depths and normals lie in

range [−1, 1]. Finally, the normal maps pass through a `2 normalization layer that ensures

they are unit length.

5.3 Training

Given a training set of 3D shapes, the goal of our training procedure is to jointly learn the

parameters of the encoder and the decoder such that our network can reliably map sketches

77

to foreground, depth, and normal maps for our output multi-view configuration. To this

end, we need to acquire training sketches according to our input view setting. One option

would be to ask human subjects to provide us with line drawings depicting each training

shape. However, gathering human line drawings is labor-intensive and time-consuming.

In contrast, we generated synthetic line drawings that approximate human line drawings

based on well-known principles. Below we discuss the procedure we followed for sketch

generation, then we discuss the objective used for learning the network parameters.

5.3.1 Generating training sketches

Non-photorealistic rendering algorithms can be used to create synthetic line drawings of

3D shapes. First, contours, or silhouettes, can be estimated by finding and connecting the

set of points on the surface whose normal vector is perpendicular to the viewing direction

[21]. Second, suggestive contours are extensions of contours that can be used to draw in-

ternal feature curves in shapes. These are found from zero-crossings of the radial curvature

(surface curvature along viewing directions) [21]. Other types of internal feature curves

include ridges and valleys, which are formed by the minima or maxima of the surface

principal curvature values [87], or view-dependent curvature (in this case, they are called

“apparent” ridges) [55]. Another type of line drawings involves edge-preserving filtering

[33] applied on rendered images of shapes under a simple shading scheme (e.g., Phong

shading) [91]. All these feature curve definitions do not necessarily coincide each other

[18]. We use a combination of these techniques to create several variants of line drawings

per input shape. This also serves as a form of data augmentation. Specifically, for each

shape and input views, we create 4 synthetic sketches by using: (i) silhouettes alone, (ii)

silhouettes and suggestive contours, (iii) silhouettes, suggestive contours, ridges, valleys

and apparent ridges, (iv) and edge-preserving filtering in rendered images of shapes. All

training sketches and corresponding ground-truth depth and normal maps are rendered un-

der orthographic projection (quite common for man-made objects) according to our output

78

viewpoints. Rendering under perspective projection could also be an option, however, since

depth has a relatively short range for our rendered objects, the differences in the resulting

images would be small. It is also common for users, such as architects, to use orthographic

projection in their drawings, especially for man-made objects, to preserve the relative size

of parts.

5.3.2 Loss function

Given training sketches of shapes along with the corresponding foreground, depth and nor-

mal maps for our output viewpoints, we attempt to estimate the network parameters to

minimize a loss function. Our loss function consists of four terms penalizing (a) differ-

ences between the training depth maps and predicted depth maps, (b) angle differences

between the training normal maps and predicted normal maps, (c) disagreement between

ground-truth and predicted foreground mask, (d) large-scale structural differences between

the predicted maps and the training maps. Specifically, given T training sketches along

with ground-truth foreground, depth and normal maps for our V output viewpoints, our loss

function is a combination of the following terms described in the following paragraphs:

L =
T∑
t=1

(λ1Ldepth(t) + λ2Lnormal(t) + λ3Lmask(t) + λ4Ladv(t)) (5.1)

where λ1 = 1.0, λ2 = 1.0, λ3 = 1.0, λ4 = 0.01 are weights tuned in a hold-out validation

set.

5.3.2.1 Per-pixel depth and normal loss

The first two terms consider per-pixel differences in the predicted depths and normals with

respect to ground-truth. Specifically, we use `1 distance for depths and angle cosine dif-

ferences for normal directions. The depth and normal differences are computed only for

pixels marked as foreground in the ground-truth:

79

Ldepth(t) =
∑
p,v

(
|dp,v(St)− d̂p,v,t|

)
f̂p,v,t (5.2)

Lnormal(t) =
∑
p,v

(1− np,v(St) · n̂p,v,t) f̂p,v,t (5.3)

where St is a training sketch, d̂p,v,t and n̂p,v,t are ground-truth depth and normal for the pixel

p in viewpoint v. Each pixel has a ground-truth binary label f̂p,v,t, which is 1 for foreground,

and 0 otherwise. The depth and normal predictions for the sketch St are denoted as dp,v(St)

and np,v(St) respectively. We note that all training depths are normalized within the range

[−1, 1] while predicted depths are also clamped in this range. Thus both terms above have

comparable scale (i.e., both range between [0, 2] per pixel). We also note that we tried `2

distance for penalizing depth differences but this tended to produce less sharp maps.

5.3.2.2 Mask loss

Penalizing disagreement between predicted and ground-truth foreground labeling can be

performed via the cross-entropy function commonly used in classification:

Lmask(t) = −
∑
p,v

(f̂p,v,t log fp,v(St) + (1− f̂p,v,t) log(1− fp,v(St)) (5.4)

where fp,v(St) is the probability for the pixel p in viewpoint v to be foreground, as predicted

by the decoder.

5.3.2.3 Adversarial loss

We add an adversarial loss [35] to penalize structural differences in the output maps with

respect to ground-truth. These have been shown as effective priors for various image-

to-image transformation tasks [51]. The adversarial loss term takes as input a 5-channel

image Iv(St) that concatenates the depth channel, the 3 normal channels, and foreground

80

map channel produced by the decoder per viewpoint, and outputs the probability for these

maps to be “real”:

Ladv(t) = −
∑
v

logP (“real”|Iv(St)) (5.5)

The probability is estimated using an “adversarial” network trained to discriminate ground-

truth (“real”) maps Îv,t from generated (“fake”) maps Iv(St). Both networks are trained al-

ternatively using the technique of [35]. The adversarial network architecture is the same as

the encoder except the last layer that maps the output to probabilities via a fully-connected

layer followed by a sigmoid activation.

5.4 Point Cloud and Mesh Generation

Given multi-view depth and normal maps produced by our network at test time, our next

goal is to consolidate them into a single, coherent 3D point cloud. The depth and normal

predictions produced by the network are not guaranteed to be perfect or even consistent

i.e., the derivatives of the predicted depth might not entirely agree with the predicted nor-

mals, or the predicted depths for common surface regions across different viewpoints might

not yield exactly the same 3D points. Below we discuss an optimization approach to fuse

all multi-view depth and normal map predictions into a coherent 3D point cloud, then we

discuss mesh generation and post-processing to match the input sketches more precisely.

Our optimization approach shares similarities with bundle adjustment and multi-view re-

construction [114, 31]. In our case, our output viewpoints are fixed and we use the normal

maps in our energy minimization to promote consistency between depth derivatives and

surface normals.

81

5.4.1 Multi-view depth and normal map fusion

The first step of the fusion process is to map all foreground pixels to 3D points. Each

pixel is considered foreground if its predicted probability in the foreground map is above

50%. Given the depth dp,v of a foreground pixel p with image-space coordinates {px, py}

in the output map of a viewpoint v, a 3D point qp,v can be generated according to the

known extrinsic camera parameters (coordinate frame rotation Rv and translation ev in

object space). Under the assumed orthographic projection, the point position is computed

as:

qp,v = Rv [κpx κpy dp,v]T + ev (5.6)

where κ is a known scaling factor, representing the distance between two adjacent pixel

centers when their centers are mapped to object space. Each point is also equipped with a

normal np,v based on the predicted normal map. The result of this first step is a generated

point set per view. In a second step, we run ICP [95] to rigidly align all-pairs of point sets.

with optimizationwithout optimization

Figure 5.3. Without optimization the noisy point cloud will lead to misaligned regions in
the reconstructed shape.

A naive reconstruction method would be to simply concatenate all aligned point sets from

all output views into a single point cloud. However, such approach often results in a noisy

point cloud with misaligned regions due to inconsistencies in the predicted depth maps.

The effect of these inconsistencies tend to be amplified during mesh generation, since a

smooth surface cannot pass through all the misaligned regions (Figure 5.3).

82

Our optimization procedure aims to deal with these inconsistencies. Specifically, we treat

the depths of all pixels as variables we want to optimize for. The pixel depths are esti-

mated such that (a) they are close to the approximate predicted depths produced by the net-

work, (b) their first-order derivatives yield surface tangent vectors that are as-orthogonal-

as-possible to the predicted normals, (c) they are consistent with depths of corresponding

3D points seen by different viewpoints. These three requirements can be expressed in a

single energy over all pixel depths D = {dp,v}, with terms imposing the above three con-

ditions:

E(D) = Enet(D) + Eorth(D) + Econs(D) (5.7)

We explain each term in detail in the following paragraphs, then discuss how the energy is

minimized.

5.4.1.1 Network prediction term

This energy term penalizes deviation from the approximate depths d̃p,v(St) produced from

the network at each pixel p and viewpoint v:

Enet(D) = w1

∑
p,v

(dp,v − d̃p,v(St))
2 (5.8)

where w1 weights this term (set to 1.0 through hold-out validation). We use `2 norm here

so that the energy minimization yields a linear system that can be solved efficiently.

5.4.1.2 Orthogonality term

The term Eorth(D) penalizes deviation from orthogonality between surface tangents, ap-

proximated by first-order depth derivatives, and predicted surface normals. Given a 3D

83

point qp,v generated for the pixel p and viewpoint v, we estimate two surface tangent direc-

tions based on the first-order depth derivatives [83], as follows:

t(x)
p,v =

[
κ 0

∂dp,v
∂x

]T
, t(y)

p,v =

[
0 κ

∂dp,v
∂y

]T
(5.9)

The first-order derivatives of the depth can be approximated with a horizontal and vertical

gradient filter which is convolved with depths in the 3 × 3 neighborhood around p. The

energy term is expressed as:

Eorth(D) = w2

∑
p,v

[(t(x)
p,v · ñp,v(St))

2 + (t(y)
p,v · ñp,v(St))

2] (5.10)

where ñp,v(St) is the approximate normal vector produced from the network andw2 weights

this term (set to 1.0 through holdout validation). Since the derivatives are unreliable near

the shape silhouette, we omit silhouette points for each view from this term.

5.4.1.3 View consistency term

Given a 3D point qp,v generated from pixel p at viewpoint v, we can calculate its depth with

respect to the image plane of another viewpoint v′ as well as the pixel that it is projected

onto as: p′ = Πv′(qp,v), where Πv′ denotes orthographic projection based on the parame-

ters of viewpoint v′. When the 3D point is not occluded and falls within the image formed

at viewpoint v′, the calculated depth dv′(qp,v) of that point should be in agreement with the

depth dp′,v′ stored in the corresponding pixel p′ of the viewpoint v′. Similarly, the normal

of that point nv′(qp,v) relative to the viewpoint v′ should be as-orthogonal-as-possible to

the surface tangent vector, approximated by the derivative of the depth stored in the corre-

sponding pixel p′. The view consistency term penalizes: (a) squared differences between

the depth at each pixel and the calculated depth of all 3D points projected onto that pixel,

84

(b) deviation from orthogonality between the surface tangent vector at each pixel and the

normal of all 3D points projected onto that pixel. The term is expressed as follows:

Econs(D) = w3

∑
p,v,p′,v′:

p′=Πv′ (qp,v)

(dp′,v′−dv′(qp,v))
2+w4

∑
p,v,p′,v′:

p′=Πv′ (qp,v)

(t
(x)
p′,v′·nv′(qp,v))

2+(t
(y)
p′,v′·nv′(qp,v))

2

(5.11)

where w3 and w4 are weights both set to 0.3.

We note that if a 3D point is projected onto a pixel that is masked as background (thus, its

depth is invalid), then we exclude that pixel from the above summation. If the 3D point is

projected onto background pixels in the majority of views, then this means that the point

is likely an outlier and we remove it from the point cloud. As a result, there are few (p, p′)

pixel pairs in the above equation: each foreground pixel often has 3-4 corresponding pixels

in other views.

5.4.2 Energy minimization

The above energy is quadratic in the unknown pixel depths, thus we can minimize it by

solving a linear system. We note that due to the orthogonality term, which involves a

linear combination (filtering) of depths within a pixel neighborhood, the depth of each pixel

cannot be solved independently of the rest of the pixels. The solution can be computed

through a sparse linear system - we provide its solution in Appendix C.1.

When we estimate the pixel depths, the corresponding 3D point positions, generated by

these pixels, are updated. Given new 3D point positions, the consistency term also needs

updating since the points might now be projected onto different pixels. This gives rise to

an iterative minimization scheme, where at each step we estimate pixel depths by solving

the linear system, then update the 3D point positions. We observed that the depth estimates

85

become increasingly consistent across different views at each iteration, and practically we

observe convergence after 3-5 iterations. The resulting point cloud yields a much smoother

reconstructed surface, as shown in Figure 5.3.

5.4.3 Mesh reconstruction and fine-tuning.

We apply the Screened Poisson Surface Reconstruction algorithm [59] to convert the re-

sulting point cloud and normals to a surface mesh. After mesh generation, our method

can optionally further “fine-tune” it so that it matches the input contours more precisely.

Specifically, for each input line drawing, we first extract its external contours and discretize

them into a dense set of 2D points. Then for each input view, we render the mesh under the

same orthographic projection, and find nearest corresponding mesh points to each contour

point under this projection. Then we smoothly deform the 3D mesh, such that the pro-

jected mesh points move towards the contour points under the constraint that the surface

Laplacians [82], capturing any underlying surface details, are preserved. We also deform

the mesh so that it better matches the internal contours of the sketch. To do this, we find

nearest corresponding mesh points to each internal contour point and scale their Laplacian

according to the scheme suggested in [82]. Mesh deformation is executed by solving a

single sparse linear system involving all constraints from all internal and external contours

across all input views. Figure 5.1 shows a reconstructed mesh before and after fine-tuning.

5.4.4 Implementation.

The network is implemented in Tensorflow [1]. Training takes about 2 days for 10K train-

ing meshes (40K training sketches) on a TitanX GPU. We use the Adam solver [62] (hy-

perparameters β1 and β2 are set to 0.9 and 0.999 respectively). At test time, processing

input sketches through the network takes 1.5 sec on a TitanX GPU, fusing the depth and

normal maps takes 3 sec, mesh reconstruction and fine-tuning takes about 4 sec (fusion

and mesh reconstruction are implemented on the CPU - running times are reported here for

86

a dual Xeon E5-2699v3). In total, it takes our method less than 10 seconds to present a

reconstructed mesh to the user. Our data and source code is available on our project page:

https://people.cs.umass.edu/˜zlun/papers/SketchModeling.

5.5 Evaluation

We now discuss the experimental evaluation and analysis of our method.

5.5.1 Datasets

To train our network, we gathered three collections of 3D shapes along with their synthetic

sketches. Each of the collections included shapes belonging to the same broad category.

The categories were 3D computer characters, airplanes, and chairs. To create the 3D com-

puter character collection, we downloaded freely available 3D models of characters from an

online repository (“The Models Resource” [2]). The collection contained humanoid, alien,

and other fictional 3D models of characters. The airplanes and chairs originated from the

3D ShapeNet [13]. We used these particular categories from ShapeNet because the shapes

in these categories have large geometric and structural variation. Table 5.1 reports the

number of training shapes and views used to generate the training sketches.

#training shapes view A view B
Character 10000 front side
Airplane 3667 top side

Chair 9573 front side

Table 5.1. Training dataset statistics.

5.5.2 Test dataset

To evaluate our method and compare it with alternatives, we created a test dataset of syn-

thetic and human line drawings for each of the above categories. Each line drawing was

87

https://people.cs.umass.edu/~zlun/papers/SketchModeling

created according to a reference test shape. The goal of the evaluation was to examine how

well the reconstructed 3D shapes from these test line drawings matched the reference test

shapes. To execute a proper evaluation, the reference test shapes should be sufficiently dif-

ferent from all training shapes. Otherwise, by overfitting a network to the training dataset

or by simply using a nearest neighbor sketch-based retrieval approach, one could perfectly

reproduce the reference shapes. To create the test dataset of reference shapes, one option

would be to randomly split the above collections into a training and test part. However, a

problem with this strategy is that several test shapes would be extremely similar to one or

more training shapes because of duplicate 3D models that often exist in these collections

(i.e., models that are identical up to an affine transformation, having tiny part differences,

or only different mesh resolution). To create our test dataset, we found 120 shapes (40 per

category) in our collections that we ensured to be sufficiently different from the shapes used

for training by performing two checks. First, for each shape, we aligned it to each other

shape in the collection through the best matching affine transformation and compute their

Chamfer distance. The Chamfer distance is computed by measuring the distance of each

of the points on one shape to the nearest surface point on the other shape, then the average

of these distances is used (we sampled 10K points uniformly per shape). We verified that

the Chamfer distance between each test shape and its nearest training shape is well above a

threshold. Second, we rendered synthetic sketches for each shape based on the input views

per category and extracted the representation from our encoder for these sketches. We then

retrieved the nearest other shape based on Euclidean distance over the sketch representa-

tions. We verified that the distance is well above a threshold. We also visually confirmed

that test and training shapes were different and the selected thresholds were appropriate.

For our 120 test shapes, we produced synthetic sketches for 90 of them (30 per category),

and gathered human line drawings for the remaining 30 shapes (10 per category). Synthetic

sketches were produced from the test shapes using the line rendering techniques described

in Section 5.3 based on the input views A and B per category (Table 5.1). The human

88

sketches were produced by asking two artists to provide us with hand-drawn line drawings

of reference test shapes. The test shapes were presented to the artists on a computer display

and were rendered using Phong shading. Their views were selected to approximately match

the input views A and B per category. We asked the artists to create on paper line drawings

depicting the presented shapes based on the selected views. We then scanned their line

drawings, cropped and scaled them so that the scanned drawn area matches the drawing

area of training sketches on average. We note that in contrast to synthetic sketches, human

line drawings might not be consistent across different views.

5.5.3 Evaluation measures

Given the above test sketches as input, the goal of our evaluation is to measure how well

the 3D shapes reconstructed by various methods, including ours, matched the reference test

shapes used to produce these sketches. Our method and the alternatives, listed in the follow-

ing paragraphs, were trained and tested separately on each shape category using the same

splits. We used five evaluation measures to compare the reconstructed shapes to the refer-

ence ones: Chamfer point-based distance, Hausdorff point-based distance, surface normal

distance, depth map error, volumetric Jaccard distance. The Chamfer distance is computed

by measuring the distance of each of the points on the reconstructed shape to the nearest

surface point on the reference shape, then computing the average of these distances; the

Hausdorff distance computes the maximum instead of the average of these distances. The

surface normal distance is computed by measuring the angle between the surface normal

at each point on the reconstructed shape and the surface normal at the nearest surface point

on the reference shape, then computing the average of the angles. The depth map error is

computed by measuring the absolute differences between pixel depths in each of the output

depth maps produced by our network and the corresponding depth maps of the reference

shape, then computing the average depth differences. To compute the volumetric Jaccard

distance, we voxelized the reconstructed and reference shapes in a 128× 128× 128 binary

89

grid and measured the number of voxels commonly filled in both shapes (intersection of

their volume) divided by the number of filled voxels for the two shapes (union of their vol-

umes). This is the Intersection over Union (IoU). We use 1 − IoU to get the volumetric

Jaccard distance.

5.5.4 Comparisons with baselines

We tested the reconstructions produced by our method (called “ShapeMVD”) versus the

following methods: (a) a network based on the same encoder as ours but using a volumet-

ric decoder baseline instead of our multi-view decoder, (b) a network based on the same

encoder as ours but with the Tatarchenko et al.’s view-based decoder [110] instead of our

multi-view decoder, (c) the convolutional 3D LSTM architecture (R2N2) provided by Choy

et al.’s implementation [17], and (d) nearest sketch-based shape retrieval.

For the volumetric decoder baseline (a), we used a 128 × 128 × 128 output binary grid

(the maximum we could fit in 12GB GPU memory). To make sure that the comparison

is fair, we set the number of parameters in the volumetric decoder such that it is compa-

rable to the number of parameters in our decoder. The volumetric decoder consisted of

five transpose 3D convolutions of stride 2 and kernel size 4 × 4 × 4. The number of fil-

ters starts with 512 and is divided by 2 at each layer. Leaky ReLU functions and batch

normalization were used after each layer. We note that we did not use skip-connections

(U-net architecture) in the volumetric decoder because the size of the feature representa-

tions produced in the sketch image-based encoder is incompatible with the ones produced

in the decoder. For Tatarchenko et al.’s method, the viewpoint is encoded into a contin-

uous 64 × 1 representation passed as input to the view-based decoder described in [110]

without separate branches. To ensure a fair comparison, we increased the number of fil-

ters per up-convolutional layer by a factor of 3 so that the number of parameters in their

and our decoder is comparable. We also train it with the same loss function as ours. We

additionally implemented a variant of Tatarchenko et al.’s decoder by adding U-net con-

90

Man-made objects (synthetic) Character models (synthetic)
Shape nearest Tatarchenko[110]+volumetric R2N2 Shape nearest Tatarchenko[110]+volumetric R2N2
MVD retrieval et al.[110] U-net decoder [17] MVD retrieval et al.[110] U-net decoder [17]

Hausdorff distance 0.092 0.165 0.142 0.121 0.113 0.144 0.089 0.200 0.119 0.092 0.152 0.148
Chamfer distance 0.015 0.025 0.022 0.017 0.021 0.026 0.015 0.036 0.025 0.016 0.026 0.032
normal distance 30.66 42.57 35.58 32.32 49.40 48.78 30.61 44.93 34.98 31.00 53.84 53.13
depth map error 0.026 0.049 0.039 0.030 0.038 0.045 0.018 0.040 0.030 0.019 0.031 0.036

volumetric distance 0.344 0.501 0.442 0.374 0.432 0.512 0.313 0.541 0.428 0.329 0.437 0.493
Man-made objects (human drawing) Character models (human drawing)

Shape nearest Tatarchenko[110]+volumetric R2N2 Shape nearest Tatarchenko[110]+volumetric R2N2
MVD retrieval et al.[110] U-net decoder [17] MVD retrieval et al.[110] U-net decoder [17]

Hausdorff distance 0.116 0.176 0.153 0.153 0.130 0.149 0.117 0.188 0.139 0.136 0.178 0.168
Chamfer distance 0.017 0.031 0.024 0.025 0.022 0.028 0.021 0.036 0.025 0.024 0.032 0.036
normal distance 27.04 40.96 32.40 30.45 48.32 48.12 33.44 43.81 36.11 34.74 54.91 54.29
depth map error 0.021 0.042 0.033 0.032 0.032 0.042 0.026 0.040 0.031 0.027 0.037 0.040

volumetric distance 0.311 0.544 0.405 0.403 0.405 0.500 0.298 0.458 0.342 0.307 0.420 0.436

Table 5.2. Comparisons of our method with baselines based on our evaluation measures
(the lower the numbers, the better)

nections between the encoder and their decoder. We report the evaluation measures on

this additional variation. For the nearest-neighbor baseline, we extract the representation

of the input test sketches based on our encoder. This is used as a query representation to

retrieve the training shape whose sketches have the nearest encoder representation based

on Euclidean distance. All methods had access to the same training dataset per category

and were evaluated on the same test sketches (two input sketches per test shape).

Table 5.2 reports the evaluation measures for all competing methods based on both syn-

thetic and human line drawings. We include evaluation separately for organic shapes (3D

character collection) and man-made shapes (measures are averaged over airplanes and

chairs). Our method produces much more accurate reconstructions than the competing

methods in all cases. With respect to Tatarchenko et al.’s method, we find that its en-

hancement with U-net connections improves its performance, but still performs worse than

our method, especially for man-made objects. This implies that U-net is a significant en-

hancement. We finally observe that the R2N2 does not perform better than our volumetric

decoder baseline.

91

Figure 5.4 shows representative input test sketches, and output meshes for competing meth-

ods. In general, the nearest neighbor results look plausible because retrieval returns

human-modeled training shapes with fine details (e.g., facial features). Such details are

not captured by any of the methods, including ours. On the other hand, as shown in the

figure, and confirmed by numerical evaluation, compared to nearest neighbor retrieval and

other methods, ours produces shapes that better match the input sketch. The main rea-

son is that our method better preserves the shape structure, topology and coarse geometry

depicted in the input sketch.

synthetic sketch

human sketch

ShapeMVD volumetric
decoder R2N2Tatarchenko

et al.
nearest
retrieval

ShapeMVD volumetric
decoder R2N2Tatarchenko

et al.
nearest
retrieval

Figure 5.4. Comparisons of shape reconstructions from sketches for our method and base-
lines.

92

We note that mesh fine-tuning was not used here for any methods. The reason was to eval-

uate the methods by factoring out the post-processing effects of fine-tuning. Fine-tuning is

optional and does not significantly affect the errors. It is used only to add details (“stylize”)

the produced meshes based on the input contours when these are precisely drawn, and if

users desire so. “Fine-tuning” can be applied not only to the reconstructed meshes of our

method but also to the resulting meshes of the other competing methods. Thus, we also

experimented when fine-tuning is applied to the results of all methods. We found that the

effect on evaluation measures tends not to be significant and our method has still much

smaller errors than the others also in this case. The reason is that the mesh deformation

applied during fine-tuning works well only if the produced shape matches the drawn shape

in terms of structure and topology (e.g., layout and number of parts). While this is mostly

true for our method, it is often not the case for shapes produced by volumetric decoders

and nearest retrieval. For example, given the line drawing of a chair with a vertical middle

bar on its back (Figure 5.4, top), the chair returned by nearest retrieval has a horizontal

bar instead. Fine-tuning cannot add or remove parts, but instead deforms irrelevant surface

points on the retrieved chair back towards the silhouette points of the vertical bar, yielding

a largely implausible shape. Due to such mismatches, fine-tuning the retrieved shapes can

slightly amplify errors with respect to ground-truth shapes. For example, for human line

drawings, Hausdorff distance is further increased by 10% for nearest retrieval when fine-

tuning is applied to the retrieved shapes. In contrast, for our method after fine-tuning, the

error drops by a tiny amount (< 1%) i.e., deformation adds small details, like the alien’s

eyes of Figure 5.1, without causing implausible deformations.

5.5.5 Comparisons with variants of our method

We also evaluated the reconstructions produced by our full method against degraded vari-

ants of it. Table 5.3 reports the results. Specifically, we tested the following variants: (a)

we do not use the optimization procedure of Section 5.4 (‘no fusion’ column), (b) we set

93

Man-made objects Character models
full no no no single full no no no single

method fusion normal GAN input method fusion normal GAN input
Hausdorff distance 0.092 0.102 0.108 0.107 0.134 0.089 0.090 0.088 0.098 0.113
Chamfer distance 0.015 0.015 0.017 0.016 0.020 0.015 0.015 0.016 0.016 0.021
normal distance 30.66 30.78 31.22 30.89 34.49 30.61 30.84 30.85 30.72 34.15
depth map error 0.026 0.027 0.029 0.028 0.035 0.018 0.019 0.020 0.019 0.026

volumetric distance 0.344 0.356 0.354 0.347 0.428 0.313 0.318 0.323 0.320 0.396

Table 5.3. Comparisons with variants of our method based on our evaluation measures (the
lower the numbers, the better).

the output of our network to depth alone (‘no normal’ column). Since Poisson reconstruc-

tion requires both points and normals as input, we produce normals by least-squares plane

fitting for each generated 3D point, (c) we skip the adversarial loss term during training

(‘no GAN’ column). For all these variants, the network uses two input sketches based on

views A and B of Table 5.1. We also tested the reconstructions produced by our method

when it uses a single sketch as input (view A, ‘single input’ column in Table 5.3) versus

two sketches as input (views A and B). We note that mesh fine-tuning was not used for any

of these variants. Based on the resulting numbers, our full method tends to produce lower

errors than its degraded variants, especially for man-made objects that often have more

structural and geometric variability than character models. We also observe that using two

sketches significantly improves the reconstructed shapes. This is not surprising since two

input sketches contain more shape information than one.

5.5.6 Perceptual user study

In addition to the above numerical evaluation measures, we also performed a perceptual

user study to compare our method with the volumetric decoder, view-based decoder based

on Tatarchenko et al. [110] and the nearest neighbor sketch-based retrieval. The user study

was executed through the Amazon Mechanical Turk (MTurk) service. Each questionnaire

included 30 queries. Each query showed: (a) a pair of synthetic or human line drawings de-

picting a test shape from two different views, (b) a rendered image of the 3D surface mesh

94

A B

(i) A - 100%

(ii) B - 0%

(iii) Both - 0%

(iv) Neither - 0%

Figure 5.5. Query layout shown to participants of our user study.

reconstructed using our method given these two input line drawings, (c) another rendered

image of the 3D surface mesh reconstructed using one of the alternative methods. The im-

ages were laid out as shown in Figure 5.5. Queries were shown at a random order, while

each page was repeated twice (i.e., 15 unique queries), with the two rendered mesh images

randomly flipped, to detect unreliable users giving inconsistent answers. Each query in-

cluded the following question: “Which of the two 3D models on the bottom (A or B) is

MORE similar to the object depicted by the line drawings on the top? ”. Participants were

asked to pick one of the following answers: “(i) A, (ii) B, (iii) can’t tell - Both A and B

look equally similar to the line drawings, (iv) can’t tell - Neither A nor B looks similar to

the line drawings”. To avoid any individual bias, we allowed each participant to complete

only one questionnaire per category. Participants were rewarded $1 for each questionnaire

completion. Each query was answered by 5 different, reliable MTurk participants. We fil-

tered out unrealiable MTurk participants who gave two inconsistent answers to more than

7 out of the 15 unique queries in the questionnaire, or took less than 2 minutes to com-

plete it. Participants agreed with each other 89.0% of the times, indicating a high degree of

consistency across participants.

In total, we gathered 1800 consistent responses from reliable users: 600 responses com-

paring the reconstructions of our method with the ones from the volumetric decoder, 600

responses comparing our method with sketch-based retrieval, and 600 responses compar-

95

plurality raw votes
A B both neither draw A B both neither

ours (A) vs Tatarchenko et al. (B) 99.2% 0.8% 0.0% 0.0% 0.0% 94.7% 2.5% 1.5% 1.3%
ours (A) vs volumetric decoder (B) 96.7% 1.7% 0.0% 0.0% 1.7% 92.8% 2.0% 3.0% 2.2%

ours (A) vs nearest retrieval (B) 87.5% 12.5% 0.0% 0.0% 0.0% 81.2% 14.7% 1.0% 3.2%

Table 5.4. Perceptual user study results comparing our method with baseline methods:
per-query plurality responses (left) and raw vote percentages (right).

ing our method with the alternative view-based decoder based on [110]. The 600 query re-

sponses were gathered for all 120 human and synthetic test sketches in all our 3 categories

(as explained above, each test sketch pair and resulting reconstructions was examined by 5

different, reliable MTurk participants).

Table 5.4 reports the results of the user study. We report the percentage of plurality re-

sponses per-query (plurality is formed by the 5 reliable users per query). Our method was

found to produce shapes that look much more similar to the depicted shapes in the line

drawings.

5.5.7 More results

Figure 5.6 shows reconstructed shapes produced by our method for various input synthetic

and human sketches. Fine-tuning was used for the meshes of this figure.

5.6 Conclusion

We presented an approach for 3D shape reconstruction from sketches. Our method em-

ploys a ConvNet to predict depth and normals from a set of viewpoints, and the resulting

information is consolidated into a 3D point cloud via energy minimization. We evaluated

our method and variants on two qualitatively different categories (characters and man-made

objects). Our results indicate that view-based reconstruction of a 3D shape is significantly

more accurate than voxel-based reconstruction. We also showed that our method can gen-

96

Figure 5.6. Gallery of results. Blue shapes represent reconstructions produced by our
method from the input sketches. Orange shapes are the nearest shapes in the training
datasets retrieved via sketch-based retrieval.

eralize to human-drawn sketches. We believe that there is significant room for improving

our method in the future. For example, it would be interesting to explore the possibility of

incorporating the fusion process in the network, and modifying its architecture such that

reconstruction is done from arbitrary viewpoints. Our reconstructed shapes often lack fine

details that users would prefer to see in production-quality 3D models. We believe that

these shapes can serve as starting “proxies” for artists to improve upon through modeling

interfaces. From this aspect, it would be useful to integrate interactive modeling techniques

into our method.

97

CHAPTER 6

DISCUSSION AND FUTURE WORK

In this dissertation we have discussed algorithms to analyze stylistic properties in 3D shapes

and algorithms to automatically synthesize shapes given style specifications in the form of

another shape in a particular style or human line drawing inputs.

We have introduced the first method for evaluating stylistic similarity between structurally

and functionally different objects. We quantified style similarity criteria into geometric

properties following observations from art history literature. We utilized crowdsourced

data to relate geometric features to actual human perception of style and employed rela-

tive comparison to learn our style similarity measure. We experimentally showed that our

learned style similarity measure is well aligned with human perception of style.

We have also described a new algorithm for transferring style between structurally and

functionally different man-made objects. We introduced a new compatibility measure for

preserving functionality without explicitly identifying functional parts. We validated our

style transfer framework via extensive user studies and showed that our method is able to

generate functionally plausible and stylistically similar models in a wide range of shape

classes.

We have also presented a system for reconstructing 3D shapes from 2D line drawings.

We proposed the first approach to use a learned, view-based representation for generat-

ing shapes from sketches. We trained the framework using mass amount of synthetic data

without the supervision from human line drawings data. We validated our algorithm quan-

titatively using standard evaluation metrics between our results and those from baseline

98

methods and variants of our method. We also validated our outputs qualitatively via a per-

ceptual user study and showed that our method can generate plausible 3D shapes from 2D

sketch inputs.

6.1 Future Work

There are many exciting directions for future work. While we put significant effort into

exploring geometric features and elementary distances relevant for visual motif and con-

sequently style analysis, it remains an open question if the features discussed in Chapter

3 are sufficient to compare the style of shapes. In particular, for large structures, such as

buildings, the overall arrangement of parts and elements is likely to play some role in style

parsing. Instead of designing features and distances from scratch, it could be interesting

to explore if these can be learned directly from raw shape data. Deep learning architec-

tures could be used for this purpose, as well as for learning more advanced models of style

similarity [75]. Our work focuses on similarity within broad object categories, such as be-

tween pieces of furniture, or buildings, where stylistic commonalities are most obvious; it

may be interesting to consider cross-category style evaluation between objects, e.g. evalu-

ating style similarity between buildings and furniture. The first step for such a task would

be to evaluate how consistent humans are at this task. In [78] they introduced a method

to evaluate style compatibility for furniture based on co-segmented shapes. We speculate

that combining feature-based joint segmentation [47] or template fitting methods [61] with

our alignment-based element matching technique could further improve our style similarity

measure for some classes.

Our style transfer algorithm requires as input an exemplar 3D model that represents the de-

sired style to be transferred to other objects. It would be interesting to explore other input

modalities that describe style. Our work on reconstructing 3D shapes from 2D sketches

provide an idea to encode style in line drawings. There are also other possible representa-

99

tions for style specification such as natural language input. Furthermore, our style transfer

algorithm leverages the structure of a target shape, either specified manually or retrieved

automatically, to synthesize new shapes. Instead of relying on a pre-existing target shape

structure, it would be interesting to employ generative models that are capable of gener-

ating plausible shape structure and accurate surface geometry automatically. Such models

could also avoid the need of slot-based part alignment that may fail when slots largely dif-

fer in number, size and orientation. Another interesting direction would be to combine our

structure-based functional compatibility metric with functionality models [60, 42] that con-

sider part interactions with agents and other objects in a scene to improve correspondences

especially for parts where such interactions are meaningful.

Our framework for reconstructing 3D shapes from 2D sketches has an optimization step to

fuse shape information from network outputs. This step requires a significant amount of

parameter tunings (point cloud filtering thresholds, surface reconstruction algorithm param-

eters, curve-based deformation parameters, etc.). It would be better to incorporate this step

into the network and learn all parameters in a unified optimization framework. Currently

following our workflow, the framework should have pre-trained networks for all possible

permutation of canonical input views, which is cumbersome in a usable application. A

more advanced model such as a recurrent module which is invariant with the order of user

input views may bypass the need for specifying the input views and can be trained as one

single network. Furthermore, it would be even better not to put any assumptions on the

input views. Recent work on view estimation [106] may give an insight on eliminating the

assumption that the input view is known to the network.

100

APPENDIX A

LEARNING PERCEPTUAL SHAPE STYLE SIMILARITY

A.1 Shape and part features

In this section we describe the features used in the style similarity measure formulation in

Section 3.2.

A.1.1 Elementary distance

We describe here the elementary distances we used for measuring geometric similarity be-

tween elements (Section 3.2.1). In total, we used 77 elementary distances. To compute

them, first we uniformly sample the surfaces of the shapes with 20K points, so that the

distances are invariant to mesh artifacts. Then we compute the elements’ surface distance,

by aligning them with ICP and including the average closest point-to-point distance and

average distance between their normals as our 2 first elementary distances. Then we com-

pute the curvature tensors for each point on the element surface and extract 13 feature

values (min/max curvature by value, min/max curvature by magnitude, mean curvature,

Gaussian curvature, the absolute value of the aforementioned six features, as well as the

mean magnitude of the two principal curvatures). We compute histograms of those 13 cur-

vature features with 16, 32, 64, 128 bins for each element. We also compute histograms of

the elements’ shape diameter [102] with 16, 32, 64, 128 bins, and the D2 shape distribution

histograms [89] with 16, 32, 64, 128 bins. On each of those curvature, shape diameter and

D2 histograms, we measure the Earth Mover’s Distances (4 × 15 elementary distances).

We then extract the following feature curves on the elements: boundaries, ridges and val-

101

leys lines. Using the same element alignment we got from ICP, we compute the average

closest curve point-to-point and normal distances for each of the three types of feature

curves separately and for the whole set of curves (4× 2 elementary distances). We extract

the silhouette of the aligned shapes under different viewpoints [15], compute their Zernike

moments, Fourier coefficients, eccentricity, circularity and estimate their euclidean distance

for each of them (4 elementary distances). Finally, we use the axis-aligned bounding box

scales of the aligned shape features and we measure their absolute differences along three

axes (3 elementary distances). Finally, all distances are scaled to have unit variance across

all training shape pairs.

A.1.2 Features for elementary saliency

We describe here the geometric features that were used for measuring element saliency

(Section 3.2.3, see Equation 3.9) and the prevalence of matching elements (see Equation

3.11). In total, we gathered 20 geometric features in our element saliency measure. All

geometric features are computed on the sample points of the elements’ surface. First we

used the height of the sample point and its horizontal distance to shape center. The met-

rics of height and horizontal distance are relative to the bounding box size of the shape

(2 saliency features). We also compute the geodesic distance from each point to all other

points and use the average geodesic distance as feature (1 saliency feature). We also com-

pute the ambient occlusion for each point by shooting rays towards the hemisphere along

its normal direction and counting the percentage of rays which do not intersect with the

shape (1 saliency feature). Similarly to the curvature-related elementary distances, we in-

clude the absolute values of min/max curvature by value, the absolute values of min/max

curvature by magnitude, the absolute value of the mean curvature and Gaussian curvature,

as well as the mean magnitude of two principal curvatures (7 saliency features). Following

the distinctness idea in [103], we compute histograms of various features and use the dis-

similarity of the histograms between neighboring points as saliency features. Besides the

102

furniture (100 triplets) MTurk Expert Casual
number of users 20 5 32
% consistency 88.2% 98.2% 94.9%

% consistency (i) vs (ii) 98.9% 99.5% 98.9%
building (100 triplets) MTurk Expert Casual

number of users 20 5 32
% consistency 87.0% 92.1% 92.9%

% consistency (i) vs (ii) 97.5% 99.2% 99.4%
cutlery (50 triplets) MTurk Expert Casual

number of users 15 5 32
% consistency 92.7% 95.7% 92.0%

% consistency (i) vs (ii) 99.6% 100.0% 100.0%

Table A.1. Pilot study statistics.

original Simplified Point Feature Histogram whose bins count relative angular directions

of the normals, we also compute spin images [53] and 3D shape contexts histograms based

on [57]. To measure distinctness among different range of contextual shape information,

we use 3 levels of neighbor ranges (3 × 3 saliency features). Note that all of the saliency

features above are calculated on points and the saliency of an element or a region is a sum

of the point saliency which implicitly accounts for the area of the element or the region.

Finally, all saliency features are shifted and scaled to have zero mean and unit variance

across all training shapes.

A.2 Extra Study Statistics

Table A.1 summarizes the results of the pilot study per participant category.

103

APPENDIX B

FUNCTIONALITY PRESERVING SHAPE STYLE TRANSFER

B.1 Descriptors

In this section we describe the descriptors used in the element compatibility formulation in

Section 4.3.

B.1.1 Per-Element descriptors

In total, we have 13 element descriptors yielding 13 distance measures. The first set of

descriptors capture the relative location of the markers on an element, including its cen-

troid, its centroid projected on the ground plane, then its highest point, lowest point, and its

centroid projected onto the upright axis (i.e., representing height from the ground plane).

When comparing nodes in our graph, element locations are expressed with respect to the

object’s coordinate system. When comparing edges in our graph, element locations are

expressed with respect to the local corresponding system of its neighboring element in the

graph (the local coordinate system is formed by the neighboring element’s corresponding

marker locations and object’s axes). Each of the five relative locations yields a Euclidean

distance when comparing two elements. The next three descriptors store the proportions

of the element’s axis-aligned bounding box, relative to the object’s bounding box pro-

portions when comparing nodes, and relative to the neighboring element’s bounding box

proportions when comparing edges. These proportions (one per each axis) yield three more

distances. The next three descriptors are similar to the previous three, but instead of the

bounding box proportions, we use the variance of the element point positions along the

104

object’s axes. The next descriptor stores the major orientation of the element estimated

via PCA. When comparing nodes, we measure the angle difference between the major

orientations of the two corresponding elements. When comparing edges, we measure the

relative angle difference between the major orientations of the two corresponding elements

with respect to their neighboring elements major axes. The last descriptor is a histogram

that approximately captures the distribution of point samples in an element. We build a

4 × 4 × 4 grid and compute a histogram by counting how many sample points on the

element surface are inside each bin. When comparing nodes, we compute the euclidean

distance between the histograms for the corresponding elements. When comparing edges,

we compute a histogram for each edge measuring the absolute difference of bin values be-

tween the corresponding histograms of neighboring elements, then measure the euclidean

distance between the resulting histograms.

B.1.2 Curve descriptors

In total, we get 3 distance measures between curve descriptors. The first one represents

distance between centroids of the two curves and the second one represents differences

between their arc lengths. The last one represents the average point-to-point distance after

aligning the two input curves via ICP.

B.2 Gradient for learning

Learning the compatibility metric requires computing the analytic gradient of our objec-

tive function (Equation 4.13) with respect to our parameters. The loss function evaluates

the compatibility metric, which is defined through the recursive formula of Equation 4.1.

Interestingly, it turns out that the gradient also follows a similar recursive definition, which

makes it possible to compute it efficiently. For clarity, we provide here the formulas that

evaluate the partial derivatives of our objective function with respect to the node kernel pa-

105

rameters {wk}k=1...K and RBF variances {σk}k=1...K . The partial derivatives for the rest of

the parameters follow a similar recursive computation. We begin by computing the gradient

of the loss function with respect to the node kernel parameters:

∂L(w,σ)

∂wk

= −λ · sign(wk) +
T∑
t=1

∂ lnP (pq[t] . pr[t])

∂wk

(B.1)

The gradient of the log likelihood per training example t can be expressed as:

∂ lnP (pq[t] . pr[t])

∂wk

=
(

1−σ
(
Dfunc(p, r)−Dfunc(p, q)

))
·
(∂Dfunc(p, r)

∂wk

−∂Dfunc(p, q)

∂wk

)
(B.2)

The partial derivatives of the distance function Dfunc(p, r), and similarly for Dfunc(p, q),

are in turn computed as:

∂Dfunc(p, q)

∂wk

=

(∂K(n)(p,p)
∂wk

− 2∂K(n)(p,q)
∂wk

+ ∂K(n)(q,q)
∂wk

)
2Dfunc(p, q)

(B.3)

The above formula requires computing partial derivatives of our graph-based compatibility

function. The derivatives also follow a recursive definition :

∂K(n)(p, q)

∂wk

=
∂Knode(p, q)

∂wk

·
∑

p′∈N (p)
q′∈N (q)

Kedge(epp′ , eqq′) ·K(n−1)(p′, q′)

+Knode(p, q) ·
∑

p′∈N (p)
q′∈N (q)

Kedge(epp′ , eqq′) ·
∂K(n−1)(p′, q′)

∂wk

(B.4)

To evaluate the above formula, the partial derivatives of the node similarity functions with

respect to the kernel node parameters are required. These are computed as follows:

106

∂Knode(p, q)

∂wk

= exp

{
− D2

k(p, q)

2σ2
k

}
(B.5)

Computing the partial derivatives of our objective function with respect to the RBF vari-

ances follow the same procedure as above with only two differences: the sign term in

Equation B.1 is omitted (no L1-norm regularization is used for variances since sparsity is

not required for them) while the partial derivatives of the kernel node functions are instead

expressed as follows:

∂Knode(p, q)

∂σk
=
wkD

2
k(p, q)

σ3
k

exp

{
− D2

k(p, q)

2σ2
k

}
(B.6)

107

APPENDIX C

SHAPE RECONSTRUCTION FROM SKETCHES

C.1 Solution to the linear system for point cloud optimization

To minimize the energy E(D) formulated in Section 5.4, we set its derivatives with respect

to the unknown pixel depths D to zero, which in turn leads to a sparse linear system in

the form of Ax = b. Here the unknown vector x consists of all pixel depths dp,v we wish

to solve for. The system is solved using the conjugate gradient method in least-squares

sense. The following Equation C.1 shows the linear system along with the sparse matrix

A and the constant vector b. In the following paragraphs, we explain how to derive the

system based on the linear constraints originating from each of the energy terms explained

in Section 5.4.1.

w1I

...(
w2 · ñ(z)

p,v(St)
)
L(x)

...(
w2 · ñ(z)

p,v(St)
)
L(y)

...

w1I

...(
w2 · n(z)

v′ (qp,v)
)
L(x)

...(
w2 · n(z)

v′ (qp,v)
)
L(y)

...

[D] =

w1 · d̃p,v(St)

...

−w2 · κ · ñ(x)
p,v(St)

...

−w2 · κ · ñ(y)
p,v(St)

...

w1 · dv′(qp,v)

...

−w2 · κ · n(x)
v′ (qp,v)

...

−w2 · κ · n(y)
v′ (qp,v)

...

(C.1)

108

C.1.1 Network prediction term

It is easy to see that this term leads to constraints dp,v = d̃p,v(St) weighted by the parameter

w1. Therefore we can fill the matrix A with w1’s and the vector b with w1 · d̃p,v(St), as

shown in Equation C.1 above.

C.1.2 Orthogonality term

Considering the two orthogonality terms separately, we have two linear constraints weighted

by the parameter w2:

ñ(z)
p,v(St) ·

∂dp,v
∂x

= −κ · ñ(x)
p,v(St), ñ(z)

p,v(St) ·
∂dp,v
∂y

= −κ · ñ(y)
p,v(St) (C.2)

Here the superscripts (x), (y) and (z) of the normal np,v indicate its x, y, or z component

respectively. The first-order derivatives of the depth are approximated with a gradient filter

[83], which is convolved with depths in the 3× 3 neighborhood per pixel:

∂D

∂x
≈ L(x)D = D ∗ 1

12

-1 0 1

-4 0 4

-1 0 1

,
∂D

∂y
≈ L(y)D = D ∗ 1

12

1 4 1

0 0 0

-1 -4 -1

(C.3)

where L(x) and L(y) are matrices which implement the above convolution. Therefore for

each pixel we can fill the corresponding columns in the sparse matrix A and entries in b,

as shown in the linear system of Equation C.1 above.

109

C.1.3 View consistency term

The view consistency terms yield similar linear constraints as above. The only difference

is that the use the projected depths dv′(qp,v) and transformed normals nv′(qp,v) (instead of

the depths d̃p,v(St) and normals ñp,v(St) produced from the network).

By combining all linear constraints, weighted by their corresponding weights, we form the

overconstrained, sparse linear system of Equation C.1.

110

BIBLIOGRAPHY

[1] TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Soft-
ware available from tensorflow.org. 86

[2] The models resource, 2017. https://www.models-resource.com/. 87

[3] Asafi, Shmuel, Goren, Avi, and Cohen-Or, Daniel. Weak convex decomposition by
lines-of-sight. In Proc. SGP (2013). 25, 51

[4] Aucouturier, J., and Pachet, F. Music similarity measures: Whats the use. In SMIR
(2002). 11

[5] Ballard, D. H. Readings in computer vision: Issues, problems, principles, and
paradigms. 1987, ch. Generalizing the Hough Transform to Detect Arbitrary Shapes.
25

[6] Belhumeur, Peter N, Kriegman, David J, and Yuille, Alan L. The bas-relief ambigu-
ity. International journal of computer vision 35, 1 (1999), 33–44. 15

[7] Bell, Robert M., and Koren, Yehuda. Lessons from the netflix prize challenge.
SIGKDD Explor. Newsl. 9, 2 (2007). 11

[8] Besl, Paul J., and McKay, Neil D. A method for registration of 3-d shapes. IEEE
Trans. Pattern Anal. Mach. Intell. 14, 2 (1992). 25

[9] Blumenson, John J. G. Identifying American Architecture: A Pictorial Guide to
Styles and Terms, 1600-1945. 1995. 4, 8, 22

[10] Bokeloh, Martin, Wand, Michael, and Seidel, Hans-Peter. A connection between
partial symmetry and inverse procedural modeling. ACM Trans. Graphics 29, 4
(2010). 13

[11] Bonneel, Nicolas, Sunkavalli, Kalyan, Paris, Sylvain, and Pfister, Hanspeter.
Example-based video color grading. ACM Trans. on Graph. 32, 4 (2013). 11

[12] Burges, Chris, Shaked, Tal, Renshaw, Erin, Lazier, Ari, Deeds, Matt, Hamilton,
Nicole, and Hullender, Greg. Learning to rank using gradient descent. In Proc.
ICML (2005). 30, 59

[13] Chang, Angel X., Funkhouser, Thomas A., Guibas, Leonidas J., Hanrahan, Pat,
Huang, Qi-Xing, Li, Zimo, Savarese, Silvio, Savva, Manolis, Song, Shuran, Su,
Hao, Xiao, Jianxiong, Yi, Li, and Yu, Fisher. Shapenet: An information-rich 3d
model repository. CoRR abs/1512.03012 (2015). 87

111

[14] Chaudhuri, Siddhartha, Kalogerakis, Evangelos, Guibas, Leonidas, and Koltun,
Vladlen. Probabilistic reasoning for assembly-based 3d modeling. ACM Trans.
Graph. 30, 4 (2011). 13

[15] Chen, Ding-Yun, Tian, Xiao-Pei, Shen, Yu-Te, and Ouhyoung, Ming. On visual
similarity based 3D model retrieval. Computer Graphics Forum 22, 3 (2003). 38,
102

[16] Chen, Xiaobai, Saparov, Abulhair, Pang, Bill, and Funkhouser, Thomas. Schelling
points on 3d surface meshes. ACM Trans. Graph. 31, 4 (2012). 28

[17] Choy, Christopher B, Xu, Danfei, Gwak, JunYoung, Chen, Kevin, and Savarese, Sil-
vio. 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction.
In European Conference on Computer Vision (2016), Springer, pp. 628–644. 16, 90,
91

[18] Cole, Forrester, Golovinskiy, Aleksey, Limpaecher, Alex, Barros, Heather Stoddart,
Finkelstein, Adam, Funkhouser, Thomas, and Rusinkiewicz, Szymon. Where do
people draw lines? In ACM Transactions on Graphics (TOG) (2008), vol. 27, ACM,
p. 88. 78

[19] Cole, Forrester, Sanik, Kevin, DeCarlo, Doug, Finkelstein, Adam, Funkhouser,
Thomas, Rusinkiewicz, Szymon, and Singh, Manish. How well do line drawings
depict shape? In ACM Transactions on Graphics (ToG) (2009), vol. 28, ACM, p. 28.
15, 74

[20] Connected Lines. Period furniture style guide, 2014.
http://www.connectedlines.com/styleguide/index.htm. 22

[21] DeCarlo, Doug, Finkelstein, Adam, Rusinkiewicz, Szymon, and Santella, Anthony.
Suggestive contours for conveying shape. ACM Transactions on Graphics (TOG)
22, 3 (2003), 848–855. 74, 78

[22] Ding, Chao, and Liu, Ligang. A survey of sketch based modeling systems. Frontiers
of Computer Science (2016), 1–15. 14

[23] Doersch, Carl, Singh, Saurabh, Gupta, Abhinav, Sivic, Josef, and Efros, Alexei A.
What makes Paris look like Paris? ACM Trans. Graph. 31, 4 (2012). 11

[24] Dosovitskiy, Alexey, Tobias Springenberg, Jost, and Brox, Thomas. Learning to
generate chairs with convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2015), pp. 1538–1546.
16

[25] Eigen, David, and Fergus, Rob. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. In Proceedings of the
IEEE International Conference on Computer Vision (2015), pp. 2650–2658. 16

[26] Eitz, Mathias, Richter, Ronald, Boubekeur, Tamy, Hildebrand, Kristian, and Alexa,
Marc. Sketch-based shape retrieval. ACM Trans. Graph. 31, 4 (2012), 31:1–31:10.
16

112

[27] Frey, Brendan J., and Dueck, Delbert. Clustering by passing messages between data
points. Science 315 (2007). 66

[28] Fu, Hongbo, Cohen-Or, Daniel, Dror, Gideon, and Sheffer, Alla. Upright orientation
of man-made objects. ACM Trans. Graph. 27, 3 (2008). 21

[29] Funkhouser, Thomas, Kazhdan, Michael, Shilane, Philip, Min, Patrick, Kiefer,
William, Tal, Ayellet, Rusinkiewicz, Szymon, and Dobkin, David. Modeling by
example. ACM Trans. Graphics 23, 3 (2004). 13

[30] Funkhouser, Thomas, Min, Patrick, Kazhdan, Michael, Chen, Joyce, Halderman,
Alex, Dobkin, David, and Jacobs, David. A search engine for 3d models. ACM
Trans. Graph. 22, 1 (2003). 16

[31] Galliani, S., and Schindler, K. Just look at the image: Viewpoint-specific surface
normal prediction for improved multi-view reconstruction. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 5479–5487.
81

[32] Garces, Elena, Agarwala, Aseem, Gutierrez, Diego, and Hertzmann, Aaron. A sim-
ilarity measure for illustration style. ACM Trans. Graph. 33, 4 (2014). 11

[33] Gastal, Eduardo S. L., and Oliveira, Manuel M. Domain transform for edge-aware
image and video processing. ACM Trans. Graph. 30, 4 (2011), 69:1–69:12. 78

[34] Glover, Fred, and Laguna, Manuel. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997. 46

[35] Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley,
David, Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. Generative adversar-
ial nets. In Advances in Neural Information Processing Systems 27, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds. 2014, pp. 2672–
2680. 80, 81

[36] Greig, D. M., Porteous, B. T., and Seheult, A. H. Exact maximum a posteriori
estimation for binary images. Journal of the Royal Statistical Society 51, 2 (1989).
27

[37] Guo, Xuekun, Lin, Juncong, Xu, Kai, Chaudhuri, Siddhartha, and Jin, Xiaogang.
Customcut: On-demand extraction of customized 3d parts with 2d sketches. Com-
put. Graph. Forum 35, 5 (2016), 89–100. 16

[38] Hertzmann, Aaron, Jacobs, Charles E., Oliver, Nuria, Curless, Brian, and Salesin,
David H. Image analogies. In SIGGRAPH (2001). 11, 13, 14

[39] Hertzmann, Aaron, Oliver, Nuria, Curless, Brian, and Seitz, Steven M. Curve analo-
gies. In Proc. Eurographics workshop on Rendering (2002). 13, 14

[40] Hoiem, Derek, Efros, Alexei A, and Hebert, Martial. Geometric context from a
single image. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International
Conference on (2005), vol. 1, IEEE, pp. 654–661. 15

113

[41] Hou, Suyu, and Ramani, Karthik. Sketch-based 3d engineering part class browsing
and retrieval. In Proc. SBIM (2006). 16

[42] Hu, Ruizhen, van Kaick, Oliver, Wu, Bojian, Huang, Hui, Shamir, Ariel, and Zhang,
Hao. Learning how objects function via co-analysis of interactions. ACM Trans.
Graph., to appear (2016). 12, 100

[43] Hu, Ruizhen, Zhu, Chenyang, van Kaick, Oliver, Liu, Ligang, Shamir, Ariel, and
Zhang, Hao. Interaction context (icon): Towards a geometric functionality descrip-
tor. ACM Trans. Graph. 34, 4 (2015). 12

[44] Huang, Haibin, Kalogerakis, Evangelos, and Marlin, Benjamin. Analysis and syn-
thesis of 3d shape families via deep-learned generative models of surfaces. Computer
Graphics Forum 34, 5 (2015). 13

[45] Huang, Haibin, Kalogerakis, Evangelos, Yumer, Ersin, and Mech, Radomir. Shape
synthesis from sketches via procedural models and convolutional networks. IEEE
transactions on visualization and computer graphics (2017). 16

[46] Huang, Qi-Xing, Su, Hao, and Guibas, Leonidas. Fine-grained semi-supervised
labeling of large shape collections. ACM Trans. Graph. 32, 6 (2013). 9, 51

[47] Huang, Qixing, Koltun, Vladlen, and Guibas, Leonidas. Joint shape segmentation
with linear programming. ACM Trans. Graph. 30, 6 (2011). 99

[48] Huang, Qixing, Wang, Hai, and Koltun, Vladlen. Single-view reconstruction via
joint analysis of image and shape collections. ACM Trans. Graph. 34, 4 (2015). 13

[49] Hurtut, Thomas, Gousseau, Yann, Cheriet, Farida, and Schmitt, Francis. Artistic
line-drawings retrieval based on the pictorial content. J. Comput. Cult. Herit. 4, 1
(2011). 11

[50] Igarashi, Takeo, Matsuoka, Satoshi, and Tanaka, Hidehiko. Teddy: A sketching
interface for 3d freeform design. In Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques (1999), pp. 409–416. 15

[51] Isola, Phillip, Zhu, Jun-Yan, Zhou, Tinghui, and Efros, Alexei A. Image-to-image
translation with conditional adversarial networks. CoRR abs/1611.07004 (2016). 16,
80

[52] Jiang, Yun, Koppula, Hema, and Saxena, Ashutosh. Hallucinated humans as the
hidden context for labeling 3d scenes. In Proc. CVPR (2013). 12

[53] Johnson, Andrew E., and Hebert, Martial. Using spin images for efficient object
recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 5
(1999). 103

[54] Johnson, Justin, Alahi, Alexandre, and Fei-Fei, Li. Perceptual losses for real-time
style transfer and super-resolution. In European Conference on Computer Vision
(2016), Springer, pp. 694–711. 16

114

[55] Judd, Tilke, Durand, Frédo, and Adelson, Edward. Apparent ridges for line drawing.
In ACM transactions on graphics (TOG) (2007), vol. 26, ACM, p. 19. 78

[56] Kalogerakis, Evangelos, Chaudhuri, Siddhartha, Koller, Daphne, and Koltun,
Vladlen. A probabilistic model for component-based shape synthesis. ACM Trans.
Graph. 31, 4 (2012). 9, 13, 49, 61

[57] Kalogerakis, Evangelos, Hertzmann, Aaron, and Singh, Karan. Learning 3d mesh
segmentation and labeling. ACM Trans. Graph. 29, 4 (2010). 103

[58] Kalogerakis, Evangelos, Nowrouzezahrai, Derek, Simari, Patricio, McCrae, James,
Hertzmann, Aaron, and Singh, Karan. Data-driven curvature for real-time line draw-
ing of dynamic scene. ACM Trans. Graph. 28, 1 (2009). 52

[59] Kazhdan, Michael, and Hoppe, Hugues. Screened poisson surface reconstruction.
ACM Trans. Graph. 32, 3 (2013), 29:1–29:13. 86

[60] Kim, Vladimir G., Chaudhuri, Siddhartha, Guibas, Leonidas, and Funkhouser,
Thomas. Shape2pose: Human-centric shape analysis. ACM Trans. Graph. 33, 4
(2014). 12, 100

[61] Kim, Vladimir G., Li, Wilmot, Mitra, Niloy J., Chaudhuri, Siddhartha, DiVerdi,
Stephen, and Funkhouser, Thomas. Learning part-based templates from large col-
lections of 3d shapes. ACM Trans. Graph. 32, 4 (2013). 9, 99

[62] Kingma, Diederik P., and Ba, Jimmy. Adam: A method for stochastic optimization.
CoRR abs/1412.6980 (2014). 86

[63] Koenderink, Jan J. What does the occluding contour tell us about solid shape? Per-
ception 13, 3 (1984), 321–330. 3

[64] Koenderink, Jan J, Van Doorn, Andrea J, and Kappers, Astrid ML. Surface per-
ception in pictures. Attention, Perception, & Psychophysics 52, 5 (1992), 487–496.
15

[65] Kraevoy, Vladislav, Sheffer, Alla, Shamir, Ariel, and Cohen-Or, Daniel. Non-
homogeneous resizing of complex models. ACM Trans. Graphics 27, 5 (2008).
62

[66] Kreavoy, V., Julius, D., and Sheffer, A. Model composition from interchangeable
components. In Proc. Pacific Graphics (2007), pp. 129–138. 13

[67] Laga, Hamid, Mortara, Michela, and Spagnuolo, Michela. Geometry and context
for semantic correspondences and functionality recognition in man-made 3d shapes.
ACM Trans. Graph. 32, 5 (2013). 12, 53, 67, 69, 70

[68] Lanckriet, Gert R. G., Cristianini, Nello, Bartlett, Peter, Ghaoui, Laurent El, and
Jordan, Michael I. Learning the kernel matrix with semidefinite programming. J.
Machine Learning Research 5 (2004). 56

115

[69] Larsson, Gustav, Maire, Michael, and Shakhnarovich, Gregory. Learning represen-
tations for automatic colorization. In European Conference on Computer Vision
(2016), Springer, pp. 577–593. 16

[70] Lee, Jeehyung, and Funkhouser, Thomas. Sketch-based search and composition of
3d models. In Proceedings of the Fifth Eurographics Conference on Sketch-Based
Interfaces and Modeling (2008), pp. 97–104. 16

[71] Lee, Yong Jae, Zitnick, C. Lawrence, and Cohen, Michael F. Shadowdraw: Real-
time user guidance for freehand drawing. ACM Trans. Graph. 30, 4 (2011). 75

[72] Leifman, George. Surface regions of interest for viewpoint selection. In CVPR
(2012). 28

[73] Lewis, Miles. Architectura: elements of architectural style. Barrons Educational
Series, 2008. 8, 10

[74] Li, H., Zhang, H., Wang, Y., Cao, J., Shamir, A., and Cohen-Or, D. Curve style
analysis in a set of shapes. Computer Graphics Forum 32, 6 (2013). 10, 13

[75] Lim, Isaak, Gehre, Anne, and Kobbelt, Leif. Identifying Style of 3D Shapes using
Deep Metric Learning. Computer Graphics Forum (2016). 10, 99

[76] Lipson, H., and Shpitalni, M. Optimization-based reconstruction of a 3d object from
a single freehand line drawing. Computer-Aided Design 28 (1996), 651–663. 15

[77] Liu, Han, Vimont, Ulysse, Wand, Michael, Cani, Marie-Paule, Hahmann, Stefanie,
Rohmer, Damien, and Mitra, Niloy J. Replaceable substructures for efficient part-
based modeling. Comp. Graph. Forum 34, 2 (2015). 11

[78] Liu, Tianqiang, Hertzmann, Aaron, Li, Wilmot, and Funkhouser, Thomas. Style
compatibility for 3d furniture models. ACM Trans. Graphics 34, 4 (2015). 6, 10, 53,
99

[79] Ma, Chongyang, Huang, Haibin, Sheffer, Alla, Kalogerakis, Evangelos, and Wang,
Rui. Analogy-driven 3D style transfer. Computer Graphics Forum 33, 2 (2014). 13,
14

[80] Malik, Jitendra. Interpreting line drawings of curved objects. International Journal
of Computer Vision 1, 1 (1987), 73–103. 3, 15

[81] Mitra, Niloy J., Guibas, Leonidas J., and Pauly, Mark. Partial and approximate
symmetry detection for 3d geometry. ACM Trans. Graph. 25, 3 (2006). 25

[82] Nealen, Andrew, Sorkine, Olga, Alexa, Marc, and Cohen-Or, Daniel. A sketch-
based interface for detail-preserving mesh editing. ACM Trans. Graph. 24, 3 (2005),
1142–1147. 86

[83] Nehab, Diego, Rusinkiewicz, Szymon, Davis, James, and Ramamoorthi, Ravi. Ef-
ficiently combining positions and normals for precise 3d geometry. ACM Trans.
Graph. 24, 3 (2005), 536–543. 84, 109

116

[84] Nishida, Gen, Garcia-Dorado, Ignacio, Aliaga, Daniel G., Benes, Bedrich, and
Bousseau, Adrien. Interactive sketching of urban procedural models. ACM Trans.
Graph. 35, 4 (2016), 130:1–130:11. 16

[85] Norman, Donald. The Design of Everyday Things. Basic Books, 1988. 6, 53

[86] Nutting, Wallace. Furniture Treasury. 1928. 4, 8, 10, 22

[87] Ohtake, Yutaka, Belyaev, Alexander, and Seidel, Hans-Peter. Ridge-valley lines on
meshes via implicit surface fitting. In Proc. Siggraph (2004). 52, 78

[88] Olsen, Luke, Samavati, Faramarz F., Sousa, Mario Costa, and Jorge, Joaquim A.
Sketch-based modeling: A survey. Computers & Graphics 33, 1 (2009), 85 – 103.
14, 15

[89] Osada, Robert, Funkhouser, Thomas, Chazelle, Bernard, and Dobkin, David. Shape
distributions. ACM Trans. Graph. 21, 4 (2002). 101

[90] Pan, Hao, Liu, Yang, Sheffer, Alla, Vining, Nicholas, Li, Chang-Jian, and Wang,
Wenping. Flow aligned surfacing of curve networks. ACM Trans. Graph. 34, 4
(2015). 15

[91] Phong, Bui Tuong. Illumination for computer generated pictures. Commun. ACM
18, 6 (1975), 311–317. 78

[92] Pu, Jiantao, Lou, Kuiyang, and Ramani, Karthik. A 2d sketch-based user interface
for 3d cad model retrieval. Computer-Aided Design and Applications 2, 6 (2005).
16

[93] Rivers, Alec, Durand, Frédo, and Igarashi, Takeo. 3d modeling with silhouettes.
ACM Trans. Graph. 29, 4 (2010), 109:1–109:8. 76

[94] Ronneberger, O., P.Fischer, and Brox, T. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted In-
tervention (MICCAI) (2015), vol. 9351, pp. 234–241. 77

[95] Rusinkiewicz, Szymon, and Levoy, Marc. Efficient variants of the icp algorithm. In
3DIM (2001). 82

[96] Savva, Manolis, Chang, Angel X., Hanrahan, Pat, Fisher, Matthew, and Niessner,
Matthias. Scenegrok: Inferring action maps in 3d environments. ACM Trans. Graph.
33, 6 (2014). 12

[97] Savva, Manolis, Chang, Angel X., Hanrahan, Pat, Fisher, Matthew, and Niessner,
Matthias. PiGraphs: Learning Interaction Snapshots from Observations. ACM Trans.
Graph., to appear (2016). 12

[98] Saxena, Ashutosh, Sun, Min, and Ng, Andrew Y. Make3d: Learning 3d scene struc-
ture from a single still image. IEEE transactions on pattern analysis and machine
intelligence 31, 5 (2009), 824–840. 15

117

[99] Schmidt, Ryan, Khan, Azam, Singh, Karan, and Kurtenbach, Gord. Analytic draw-
ing of 3d scaffolds. ACM Trans. Graph. 28, 5 (2009). 15

[100] Schneider, Rosália G., and Tuytelaars, Tinne. Sketch classification and
classification-driven analysis using fisher vectors. ACM Trans. Graph. 33, 6 (2014).
16

[101] Schölkopf, Bernhard. The kernel trick for distances. In Proc. NIPS (2001). 56

[102] Shapira, Lior, Shamir, Ariel, and Cohen-Or, Daniel. Consistent mesh partitioning
and skeletonisation using the shape diameter function. The Visual Computer 24, 4
(2008). 23, 101

[103] Shtrom, Elizabeth, Leifman, George, and Tal, Ayellet. Saliency detection in large
point sets. In Proc. ICCV (2013). xvi, 28, 39, 102

[104] Sorkine, Olga, and Alexa, Marc. As-rigid-as-possible surface modeling. In Proc.
SGP (2007). 64

[105] Su, Hang, Maji, Subhransu, Kalogerakis, Evangelos, and Learned-Miller, Erik.
Multi-view convolutional neural networks for 3d shape recognition. In Proceed-
ings of the IEEE international conference on computer vision (2015), pp. 945–953.
16

[106] Su, Hao, Qi, Charles R., Li, Yangyan, and Guibas, Leonidas J. Render for cnn:
Viewpoint estimation in images using cnns trained with rendered 3d model views. In
The IEEE International Conference on Computer Vision (ICCV) (December 2015).
100

[107] Talton, Jerry, Yang, Lingfeng, Kumar, Ranjitha, Lim, Maxine, Goodman, Noah D.,
and Měch, Radomı́r. Learning design patterns with bayesian grammar induction. In
Proc. UIST (2012), pp. 63–74. 13

[108] Tamuz, Omer, Liu, Ce, Belongie, Serge, Shamir, Ohad, and Kalai, Adam. Adap-
tively learning the crowd kernel. In Proc. ICML (2011). 59

[109] Tatarchenko, Maxim, Dosovitskiy, Alexey, and Brox, Thomas. Single-view to
multi-view: Reconstructing unseen views with a convolutional network. CoRR
abs/1511.06702 (2015). 16

[110] Tatarchenko, Maxim, Dosovitskiy, Alexey, and Brox, Thomas. Multi-view 3d mod-
els from single images with a convolutional network. In European Conference on
Computer Vision (2016), Springer, pp. 322–337. 16, 90, 91, 94, 96

[111] Tenenbaum, J.B., Silva, V.De, and Langford, J.C. A global geometric framework for
nonlinear dimensionality reduction. Science 290, 5500 (2000). 41

[112] Tenenbaum, Joshua B., and Freeman, William T. Separating style and content with
bilinear models. Neural Comput. 12, 6 (2000). 10

[113] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society 58 (1996). 59

118

[114] Triggs, Bill, McLauchlan, Philip F., Hartley, Richard I., and Fitzgibbon, Andrew W.
Bundle adjustment - a modern synthesis. In Proceedings of the International Work-
shop on Vision Algorithms: Theory and Practice (2000), ICCV ’99, pp. 298–372.
81

[115] Ulyanov, Dmitry, Lebedev, Vadim, Vedaldi, Andrea, and Lempitsky, Victor. Texture
networks: Feed-forward synthesis of textures and stylized images. In Int. Conf. on
Machine Learning (ICML) (2016). 16

[116] van Kaick, Oliver, Xu, Kai, Zhang, Hao, Wang, Yanzhen, Sun, Shuyang, Shamir,
Ariel, and Cohen-Or, Daniel. Co-hierarchical analysis of shape structures. ACM
Trans. on Graphics 32, 4 (2013). 9

[117] van Kaick, Oliver, Zhang, Hao, Hamarneh, Ghassan, and Cohen-Or, Daniel. A
survey on shape correspondence. Computer Graphics Forum 30, 6 (2011), 1681–
1707. 11

[118] Waltz, David. Understanding line drawings of scenes with shadows. In The Psy-
chology of Computer Vision (1975). 3, 15

[119] Wang, Fang, Kang, Le, and Li, Yi. Sketch-based 3d shape retrieval using convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2015), pp. 1875–1883. 16

[120] Wang, Xiaolong, Fouhey, David, and Gupta, Abhinav. Designing deep networks for
surface normal estimation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2015), pp. 539–547. 16

[121] Willats, John, and Durand, Frdo. Defining pictorial style: lessons from linguistics
and computer graphics. Axiomathes 15 (2005). 11

[122] Wu, Jiajun, Zhang, Chengkai, Xue, Tianfan, Freeman, Bill, and Tenenbaum, Josh.
Learning a probabilistic latent space of object shapes via 3d generative-adversarial
modeling. In Advances in Neural Information Processing Systems (2016), pp. 82–
90. 16

[123] Xie, Xiaohua, Xu, Kai, Mitra, Niloy J., Cohen-Or, Daniel, Gong, Wenyong, Su,
Qi, and Chen, Baoquan. Sketch-to-design: Context-based part assembly. Computer
Graphics Forum 32, 8 (2013), 233–245. 16

[124] Xu, Baoxuan, Chang, William, Sheffer, Alla, Bousseau, Adrien, McCrae, James,
and Singh, Karan. True2form: 3d curve networks from 2d sketches via selective
regularization. ACM Trans. Graph. 33, 4 (2014). 15

[125] Xu, Kai, Kim, Vladimir G., Huang, Qixing, and Kalogerakis, Evangelos. Data-
driven shape analysis and processing. Computer Graphics Forum, to appear (2016).
11

[126] Xu, Kai, Li, Honghua, Zhang, Hao, Cohen-Or, Daniel, Xiong, Yueshan, and Cheng,
Zhi-Quan. Style-content separation by anisotropic part scales. ACM Trans. Graph.
29, 6 (2010). 9, 13, 14

119

[127] Xu, Kai, Zhang, Hao, Cohen-Or, Daniel, and Chen, Baoquan. Fit and diverse: Set
evolution for inspiring 3d shape galleries. ACM Trans. Graph. 31, 4 (2012). 13

[128] Xu, Kun, Chen, Kang, Fu, Hongbo, Sun, Wei-Lun, and Hu, Shi-Min. Sketch2scene:
Sketch-based co-retrieval and co-placement of 3d models. ACM Trans. Graph. 32,
4 (2013), 123:1–123:15. 16

[129] Yan, Xinchen, Yang, Jimei, Yumer, Ersin, Guo, Yijie, and Lee, Honglak. Perspective
transformer nets: Learning single-view 3d object reconstruction without 3d supervi-
sion. In Advances in Neural Information Processing Systems (2016), pp. 1696–1704.
16

[130] Yang, Jimei, Reed, Scott E, Yang, Ming-Hsuan, and Lee, Honglak. Weakly-
supervised disentangling with recurrent transformations for 3d view synthesis. In
Advances in Neural Information Processing Systems (2015), pp. 1099–1107. 16

[131] Yumer, M.E., and Kara, L.B. Co-abstraction of shape collections. ACM Trans.
Graphics 31, 6 (2012), 166:1–166:11. 52

[132] Yumer, M.E., and Kara, L.B. Co-constrained handles for deformation in shape col-
lections. ACM Trans. Graph. 32, 6 (2014). 9, 13

[133] Yumer, Mehmet Ersin, Chaudhuri, Siddhartha, Hodgins, Jessica K., and Kara, Lev-
ent Burak. Semantic shape editing using deformation handles. ACM Trans. Graph.
34, 4 (2015). 13

[134] Zeleznik, Robert C., Herndon, Kenneth P., and Hughes, John F. Sketch: An interface
for sketching 3d scenes. In Proc. SIGGRAPH (1996), pp. 163–170. 15

[135] Zhang, Richard, Isola, Phillip, and Efros, Alexei A. Colorful image colorization. In
European Conference on Computer Vision (2016), Springer, pp. 649–666. 16

[136] Zheng, Youyi, Cohen-Or, Daniel, and Mitra, Niloy J. Smart variations: Functional
substructures for part compatibility. Comp. Graph. Forum 32, 2 (2013). 11

[137] Zhou, Kun, Huang, Jin, Snyder, John, Liu, Xinguo, Bao, Hujun, Guo, Baining, and
Shum, Heung-Yeung. Large mesh deformation using the volumetric graph laplacian.
ACM Trans. Graph. 24, 3 (2005). 64

[138] Zhou, Tinghui, Tulsiani, Shubham, Sun, Weilun, Malik, Jitendra, and Efros,
Alexei A. View synthesis by appearance flow. In European Conference on Com-
puter Vision (2016), Springer, pp. 286–301. 16

[139] Zhu, Ciyou, Byrd, Richard H., Lu, Peihuang, and Nocedal, Jorge. Algorithm 778:
L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM
Trans. Math. Softw. 23, 4 (1997). 60

[140] Zhu, Yuke, Fathi, Alireza, and Fei-Fei, Li. Reasoning about object affordances in a
knowledge base representation. In Proc. ECCV (2014). 12

120

	Style-driven Shape Analysis and Synthesis
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions
	Learning Shape Style Similarity
	Learning Shape Style Transfer
	Learning Shape Reconstruction from Stylized Drawings

	Related Work
	Shape Style Analysis
	Style analysis for same class models
	Structure-transcending shape style analysis
	Learning style in other domains

	Shape Style Transfer
	Part Correspondence
	Part-based shape synthesis
	Style transfer

	Sketch-based Shape Modeling
	3D geometric inference from line drawings
	Learning-based methods for shape synthesis
	Sketch-based 3D shape retrieval

	Learning Perceptual Shape Style Similarity
	Overview
	Element Similarity
	Matching Elements
	Combined Style Measure
	Learning
	Study of Style Perception

	Measuring Style Similarity
	Geometric Similarity
	Extracting Matching Elements
	Patch Sampling
	Transformation Clustering
	Element Extraction

	Combined Style Similarity Measure
	Element-level Similarity
	Prevalence
	Combined Distance Function

	Parameter Learning
	Learning Distance Parameters
	Learning Matching Parameters

	Study of Style Perception
	Study Format
	Questionnaire and Participant Information
	Query Response Processing
	Hypothesis Validation
	Representative Sample

	Algorithm Validation
	Algorithmic Choices
	Elementary Distances
	Complexity and Runtimes

	Applications
	Organizing shape collections
	Style-based shape tagging
	Style-based suggestions for scene modeling

	Discussion

	Functionality Preserving Shape Style Transfer
	Style Transfer Framework
	Operations
	Tabu Search
	Improvement Step
	Substitution
	Curve-Based Deformation
	Element Additions and removals
	Element removals
	Termination
	output

	Pre-Processing and Segmentation
	Segmentation
	Curve Handles

	Compatibility
	Formulation
	Per-Element Descriptors
	Pairwise Descriptors
	Element Compatibility
	Shape Compatibility
	Curve Compatibility

	Parameter Learning
	Automatic Threshold Selection

	Element Alignment
	Curve Based Deformation
	Automatic Target Selection
	Validation
	Perceptual Validation
	Style similarity
	Functionality
	Element compatibility metric
	Implementation and Runtimes

	Discussion

	Shape Reconstruction from Sketches via Multi-view Convolutional Networks
	Overview
	Network Architecture
	Input
	Encoder
	Decoder

	Training
	Generating training sketches
	Loss function
	Per-pixel depth and normal loss
	Mask loss
	Adversarial loss

	Point Cloud and Mesh Generation
	Multi-view depth and normal map fusion
	Network prediction term
	Orthogonality term
	View consistency term

	Energy minimization
	Mesh reconstruction and fine-tuning.
	Implementation.

	Evaluation
	Datasets
	Test dataset
	Evaluation measures
	Comparisons with baselines
	Comparisons with variants of our method
	Perceptual user study
	More results

	Conclusion

	Discussion and Future Work
	Future Work

	Learning Perceptual Shape Style Similarity
	Shape and part features
	Elementary distance
	Features for elementary saliency

	Extra Study Statistics

	Functionality Preserving Shape Style Transfer
	Descriptors
	Per-Element descriptors
	Curve descriptors

	Gradient for learning

	Shape Reconstruction from Sketches
	Solution to the linear system for point cloud optimization
	Network prediction term
	Orthogonality term
	View consistency term

	Bibliography

