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ABSTRACT

SPREADSHEET TOOLS FOR DATA ANALYSTS

SEPTEMBER 2017

DANIEL W. BAROWY

B.Sc., BOSTON UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Emery D. Berger

Spreadsheets are a natural fit for data analysis, combining a simple data storage

and presentation layer with a programming language and basic debugging tools.

Because spreadsheets are accessible and flexible, they are used by both novices and

experts. Consequently, spreadsheets are hugely popular, with more than 750 million

copies of Microsoft Excel installed worldwide. This popularity means that spreadsheets

are the most popular programming language on the planet and the de facto tool for

data analysis.

Nevertheless, spreadsheets do not address a number of important tasks in a typical

analyst’s pipeline, and their design frequently complicates them. This thesis describes

three key challenges for analysts using spreadsheets. 1) Data wrangling is the process

of converting or mapping data from a “raw” form into another form suitable for use

with automated tools. 2) Data cleaning is the process of locating and correcting

omitted or erroneous data. 3) Formula auditing is the process of finding and correcting

vi



spreadsheet program errors. These three tasks combined are estimated to occupy more

than three quarters of a data analyst’s time. Furthermore, errors not caught during

these steps have led to catastrophically bad decisions resulting in billions of dollars

in losses. Advances in automated techniques for these tasks may result in dramatic

savings in both time and money.

Three novel programming language-based techniques were created to address these

key tasks. The first, automatic layout transformation using examples, is a program

synthesis-based technique that lets spreadsheet users perform data wrangling tasks

automatically, at scale, and without programming. The second, data debugging, is

technique for data cleaning that combines program analysis and statistical analysis to

automatically find likely data errors. The third, spatio-structural program analysis

unifies positional and dependence information and finds spreadsheet errors using a

kind of anomaly analysis.

Each technique was implemented as an end-user tool—FlashRelate, Check-

Cell, and ExceLint respectively—in the form of a point-and-click plugin for Mi-

crosoft Excel. Our evaluation demonstrates that these techniques substantially improve

user efficiency. Finally, because these tools build on each other in a complementary

fashion, data analysts can run data wrangling, cleaning, and formula auditing tasks

together in a single analysis pipeline.
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INTRODUCTION

Spreadsheets are one of the most popular applications on the planet, with more

than 750 million estimated users of Microsoft Excel alone. Their point-and-click

interface and intuitive interaction model means that novice users can start using them

quickly and with little training. Their apparently simplicity belies a sophisticated

dynamic, functional programming language, a reactive presentation layer, automated

processing and debugging facilities, and many other features. Given these features,

spreadsheets are also appealing to many experts, and are therefore the de facto tool

of choice for data analysis.

Unfortunately, a number of key tasks in a typical data analysis pipeline are not

well supported by spreadsheets. This dissertation addresses three tasks that remain

challenging in the context of spreadsheets: data wrangling, data cleaning, and formula

auditing. Collectively, these three tasks comprise the majority of a data analysts’s

time.

0.0.1 Data wrangling

The first problem arises because spreadsheets allow users great flexibility in storing

data. This flexibility comes at a price: users often treat spreadsheets as a poor man’s

database, leading to creative solutions for storing high-dimensional data. The trouble

occurs when users need to answer queries. Data manipulation tools make strong

assumptions about data layouts and cannot read these ad hoc databases. Converting

data into an appropriate layout, a task called data wrangling, requires programming

skills or a major investment in manual reformatting.
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0.0.2 Data cleaning

The second problem is that data inputs frequently contain errors and omissions.

Addressing these data issues, a task called data cleaning, is necessary to ensure that

the ensuing calculations are correct. Finding data errors is complicated by the size of

datasets and the fact that it is typically impossible to know a priori which inputs are

wrong, since data rarely comes with precise specifications. Worse, some calculations

are sensitive to input errors while others are not, meaning that there is not necessarily

a correlation between the magnitude of the input error and the effect that error has

on the calculation that depends on it.

0.0.3 Formula auditing

The third problem is that, like ordinary programs, spreadsheet programs frequently

contain programming errors. Spreadsheet environments encourage poor programming

practices. For example, spreadsheets lack high-level abstractions like user-defined

functions, encouraging programmers to manually copy formulas to perform repeated

calculations, so the number of formulas scales with the input data. Consequently, it is

increasingly difficult to ensure correctness as spreadsheets grow.

0.0.4 Contributions

This dissertation presents three techniques that address the key data analysis tasks

outlined above. Collectively, these techniques substantially reduce the effort required

for data analysts to produce large-scale, bug-free spreadsheets.

1. Automatic layout transformation using examples is a program synthesis-

based technique that lets ordinary users convert ad hoc layouts into relational

tables without programming. Instead, users supply examples of the desired

output rows. At its core is Flare, a novel extraction language that extends

regular expressions with geometric constructs. A novel program synthesis
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algorithm generates Flare programs in seconds from a small set of examples in

a wide variety of real-world scenarios. FlashRelate, an interactive tool for

Microsoft Excel, builds on these core techniques, letting end users extract data

by pointing and clicking.

2. Data debugging is an approach that combines program analysis and statistical

analysis to automatically find likely data errors. Testing and static analysis can

help root out bugs in programs, but not in data. Since it is impossible to know a

priori whether data are erroneous, data debugging instead locates data that has a

disproportionate impact on the computation. Such data is either very important

or wrong. CheckCell, the first data debugging tool for Microsoft Excel, was

built to evaluate this approach. CheckCell is more precise and efficient than

standard outlier detection techniques, and it automatically identifies a key flaw

in the infamous Reinhart and Rogoff spreadsheet.

3. Spatio-structural program analysis is a hybrid statistical and static pro-

gram analysis for spreadsheet formulas, designed to locate data reference errors,

a common form of spreadsheet program bug. The analysis leverages the obser-

vation from conventional programming languages that anomalous code is often

wrong. Spatio-structural analysis extends this finding to spreadsheet programs

by learning likely data reference invariants; deviations from these invariants often

indicates a data reference error. We built ExceLint, a spatio-structural bug

finding tool for Microsoft Excel. Evaluated against 29 real-world spreadsheets,

ExceLint dramatically reduces the effort needed to audit spreadsheets and it

improves on the state of the art by providing a high precision, user-friendly tool

that finds three times the number of reference bugs identified by previous state

of the art tools.
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CHAPTER 1

BACKGROUND

Despite the availability of tools and techniques for programming data analyses

using spreadsheets, this task remains a challenge. An end-to-end view of the data

analysis pipeline is illustrative. Problems often start at the very beginning, when

importing data. Users must choose a layout for their data, often before they know

exactly how the data will be used. Revising these layouts, in order to make an analysis

possible, is called data wrangling. Next, data quality must be addressed as users

discover that their data contains errors, missing values, and other irregularities. This

activity is called data cleaning. After writing analysis code, programs are often flawed.

Programmers remove these errors by debugging their programs. Programmers rarely

perform these activities in a linear fashion, revisiting the same steps over and over.

Data wrangling and data cleaning are estimated to comprise anywhere from 50-80%

of an analyst’s time [65]. Debugging is conservatively estimated to comprise 50% of an

analyst’s remaining time [95]. At best, an analyst spends a meager 25% of their time

actually developing the desired data analysis code. Even worse, errors sometimes go

completely unnoticed during development, meaning that flawed analyses are produced

and relied upon for critical decision-making.

This dissertation aims to improve analyst productivity and effectiveness by intro-

ducing techniques designed to reduce the amount of time spent doing these ancillary

activities and to support the development of correct analyses. The following sections

expand on these problems and detail prior attempts at resolving them.
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A B C D E

1 value year value year

2 Albania 1000 1950 930 1981

3 Austria 3139 1951 3177 1955

4 Belgium 541 1947 601 1950

5 Bulgaria 2964 1947 1959 1958

6 Czech . . . 2416 1950 2503 1960

. . .

Figure 1.1: A semi-structured spreadsheet excerpt with two sample tuples highlighted.
The first tuple (red) represents the timber harvest (per 1000 hectares) for Albania in
1950. The second tuple (blue) represents the timber harvest for Austria in 1950.

1.1 Data wrangling: Automation is layout sensitive

Spreadsheets combine their data model and view, a combination that gives spread-

sheet creators a high degree of freedom when laying out their data. Although spread-

sheets are tabular and ostensibly two-dimensional tables, end users may store any

high-dimensional data in a spreadsheet as long as they can devise a spatial layout

(using, e.g., headers, whitespace, and relative positioning) that projects that data into

two dimensions. As a result, while spreadsheets allow compact and intuitive visual

representations of data well suited for human understanding, their flexibility compli-

cates the use of powerful data-manipulation tools (e.g., relational queries) that expect

data in a certain form. We refer to these spreadsheets as semi-structured because

their data is in a regular format that is nonetheless inaccessible to data-processing

tools. Unless semi-structured data can be decoded into the appropriate normal form

expected by these tools, data is effectively “locked-in” to the user’s format.

This lock-in problem is widespread. Research suggests that few spreadsheets

are trivially convertible to database relations. Only 22% of 200 randomly-chosen

spreadsheets scraped from the web can be converted by performing “Export as

CSV.” [23] For a user with data trapped in one of these formats, little hope is available

in the form of off-the-shelf tools.
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Country Harvest Date

Albania 1000 1950

Albania 930 1981

. . .

Austria 3139 1951

Austria 3177 1955

. . .

Belgium 541 1947

Belgium 601 1950

. . .

Figure 1.2: A normalized spreadsheet excerpt with two sample tuples highlighted.
The highlighted tuples are the same as shown in Figure 1.1.

The spreadsheet shown in Figure 1.1 pairs timber harvest values with their year in

a structure that repeats to the right for each country listed in the column on the left.

While this spreadsheet may be convenient to answer certain queries1, for others it

presents difficulties. For example, the simple query “How many years did the timber

harvest exceed 2000?” cannot be answered without complex selection logic like the

kind shown in the Visual Basic for Applications program in Figure 1.3. By contrast,

the same data, laid out in the form shown in Figure 1.2, trivially answers the same

query using Microsoft Excel’s point-and-click “wizard” tools.

Users are faced with a difficult choice. One option is to choose the layout best

suited for processing before any data entry has started. The other option is to reformat

data after entry. Assuming that the user even knows what queries they intend to

run, the first option makes processing easy but may require data entry using an

inconvenient form. Furthermore, knowing the right database “normal form” requires

formal training in database theory, which is not likely to be common given that the

majority of spreadsheet users are not professional programmers. The alternative

facilitates data entry and may be visually appealing, but users must either write

1Aside from storing data, this spreadsheet’s purpose is not clear to this author.
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Function Extract () As Collection

...

Set Tuples = New Collection

rYear.Pattern = "^19[0 -9]{2}$"

rValue.Pattern = "^[0 -9]+$"

For Each ws In Worksheets

For Each cell In ws.UsedRange

x = cell.Column

y = cell.Row

x_rt = x + 1

If rYear.Test(cell.Value) _

And rValue.Test(_

ws.Cells(y, x_rt). Value) Then

Dim tupleCoords

tupleCoords = Array(ws.Index , x, _

y, x_rt , y)

Tuples.Add (cellCoords)

End If

Next

Next

Extract = Tuples

End Function

Figure 1.3: A Visual Basic for Applications program for extracting spreadsheet data
into a normal form. This program contains navigation logic and must maintain a
tabular data structure (a collection of tuples). This program produces the extraction
shown in Figure 1.2. Variable declarations and driver code are omitted for brevity.
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selection code—well beyond the capabilities of most spreadsheet users—or be willing

to manually reformat (i.e., re-enter) the data. Given that many users make the wrong

layout choice with respect to automation, many spreadsheets are effectively “locked”

into ad hoc formats.

Finally, it is frequently the case that analysts are forced to work with data in the

form that is given to them. For instance, the U.S. federal government’s Open Data

Policy transparency initiative requires that all newly-generated data to be machine

readable, and except in certain circumstances, publicly available. As of the time of

this dissertation, there are more than 15,000 datasets in the CSV spreadsheet format

available on their website, data.gov. Nonetheless, given the set of queries that a

user has in mind, this freely-accessible data may not be simple to query without first

changing the layout. Although data.gov is a large-scale effort to make data available,

this data is still inaccessible to a large number of interested parties—e.g., journalists,

policy makers, and educators—because these parties may not possess skills needed to

automatically reformat the data.

1.1.1 Related Work

There are many approaches to data wrangling. By contrast to the techniques

described below, this dissertation proposes a solution for arbitrary transformations

(relying on no database of patterns) that need not be hierarchical. We believe that

this dissertation presents strong evidence that the appropriate transformation schema

is task-dependent; in other words, there is no single “best” transformation. Finally,

our approach does not require that users understand the transformation logic itself,

which may be complex. Users need only understand the end result of transformation

logic, instead driving the transformation process by supplying sample transformed

outputs.

8
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1.1.1.1 Programming-By-Example

The area of programming by example (which includes FlashRelate) promises

to enhance productivity for end users [46, 64]. The most closely related work is

ProgFromEx [50], which performs tabular transforms for spreadsheets already in

tabular format using a version-space algebra and input-output example pairs. Another

recent technology, Quicksilver [66], synthesizes relational algebra queries over

normalized spreadsheet tables. Quicksilver cannot handle any of the transformation

tasks in our benchmarks. FlashExtract is a by-example framework for extracting

data from text files [63]. FlashExtract uses only relative string positions, so it

cannot make use of 2D spatial information (including the motivating example in

Fig. 1.1). FlashExtract programs are strictly hierarchical, so multiple constraints

cannot refer to “overlapping” regions.

1.1.1.2 Language Approaches

SXPath [75] includes spatial primitives in its queries. The PADS project simplifies

ad hoc data-processing tasks for programmers by developing DSLs and learning

algorithms to extract data from textual formats [40]. OpenRefine helps users clean

and transform their spreadsheet data into relational form, but requires that users

program [89]. None of these synthesize extraction programs.

1.1.1.3 Algorithmic Approaches

An important related body of work focuses on extracting relational data from data

on web pages [16,39]. While SILA [74] defines spatial abstractions like FlashRelate,

it extracts records algorithmically, and not from examples. Gyro [52] expresses spatial

constraints in the form of geometric regions. Gyro’s inference algorithm is based on

searching a database of known programs.

9



1.1.1.4 Machine Learning

Wrappers are procedures to extract data from Internet resources. Wrapper in-

duction automatically constructs such wrappers [62]. There has been a wide variety

of work in this area, ranging from supervised systems [57, 62, 72], semi-supervised

systems [19], to unsupervised systems [27]. Senbazuru [21] automatically infers

hierarchical structure in spreadsheets using a set of classifiers. By contrast, FlashRe-

late can be used to perform arbitrary extraction tasks from arbitrary spreadsheets.

HaExcel [28] focuses on recovering the true relational schema from the spreadsheet

data. Wrangler automatically infers likely transformation rules and presents them

in natural language. Two pitfalls with Wrangler are that users must be under-

stand the potential effects of the available transforms, and must be capable of finding

alternate transforms in the event that the inference is wrong.

1.2 Data cleaning: Input errors

After an analyst has the data in the right form, it must be inspected to ensure

that is error-free. Regardless of the source of the data, data errors are common. Prior

work has shown that data errors often arise from the following sources [51]: 1) Data

entry errors, including typographical errors and transcription errors from illegible text.

2) Measurement errors, when the data source itself, such as a disk or a sensor, is faulty

or corrupted. 3) Data integration errors, where inconsistencies arise due to the mixing

of different data, including unit of measurement mismatches.

For typographical errors alone, users make a mistake for every 0.5% to 1.23% of

characters typed on average [11, 77]. For spreadsheets, this translates to data cells

containing errors at a rate of approximately 5% [77,78]. Unfortunately, this means

that for spreadsheets of even a modest size (at least 50 cells), at least one error is

highly likely (72%) [76,78].

10



Manual checking scales poorly with data input size. Existing automatic approaches

to data cleaning include statistical outlier detection, cross validation, and input val-

idation. Outlier detection reports data anomalies by comparing them to a known

distribution. Spreadsheets do not supply information about input distributions and

it is unlikely the spreadsheet users know them. Cross-validation requires fault-free

comparison data, which may difficult or impossible to procure. Programmers perform

input validation by writing validation routines that mechanically check that inputs

match a specification. Beside being difficult to define precisely—data rarely comes

with a precise specification—no commonly-used spreadsheet package currently has

this capability.

Finally, none of these techniques capture an entire class of important subtle

errors: inputs that would pass automated checking but that nonetheless cause unusual

program behavior. Depending on the computation, an input error could be an outlier

that has no effect (e.g., MIN() of a set of inputs containing an erroneously large

value), or a non-outlier that affects a computation dramatically (e.g., IF A1 = 0,

"All is Well", "Fire Missiles"). Like regular programs, spreadsheets are often

a mix of functions that consume and produce both numbers and strings. Automatic

error-checking therefore must be capable of handling a wide variety of data types

while ideally being sensitive to the effect the error has on the program.

1.2.1 Related Work

1.2.1.1 Database Cleaning

Most past work on locating or removing errors in data has focused on data cleaning

for database systems [48,80]. Standard approaches include statistical outlier analysis

for removing noisy data [94], interpolation (e.g., with averages), and cross-correlation

with other data sources [54].

11



A number of approaches have been developed that allow data cleaning to be

expressed programmatically or applied interactively. Programmatic approaches include

AJAX, which expresses a data cleaning program as a DAG of transformations from

input to output [44]. Data Auditor applies rules and target relations entered by

a programmer [45]. A similar domain-specific approach has been employed for data

streams to smooth data temporally and isolate it spatially [59]. Potter’s Wheel is an

interactive tool that lets users visualize and apply data cleansing transformations [81].

To identify errors, Luebbers et al. describe an interactive data mining approach

based on machine learning that builds decision trees from databases. It derives logical

rules (e.g., “BRV = 404 ⇒ GBM = 901”) that hold for most of the database, and

marks deviations as errors to be examined by a data quality engineer [67]. Raz et

al. describe an approach aimed at arbitrary software that uses Daikon to infer

invariants about numerical input data and then report discrepancies as “semantic

anomalies” [35,82]. Data debugging is orthogonal to these approaches: rather than

searching for latent relationships in or across data, it measures the interaction of data

with the programs that operate on them.

1.2.1.2 Statistical Outlier Analysis

Outlier analysis dates to the earliest days of statistics, with some of its earliest

uses found in making nautical measurements more robust. Widely-used approaches

include Chauvenet’s criterion, Peirce’s criterion, and Grubb’s test for outliers [10]. For

spreadsheets specifically, Benford’s Law [73] is frequently used by forensic analysts to

detect fraudulent data [15,73]. All of these techniques are parametric: they require

that the data belong to a known distribution, e.g., Gaussian (normal). Unfortunately,

input data does not neatly fit into a predefined statistical distribution. Moreover,

identifying outliers leads to false positives when they do not materially contribute to
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the result of a computation (i.e., have no impact). By contrast, data debugging only

reports data items with a substantial impact on a computation.

1.2.1.3 Sensitivity Analysis

Sensitivity analysis is a method used to determine how varying an input affects a

model’s range of outputs. Most sensitivity analyses are analytic techniques; however,

the one-factor-at-a-time technique, which systematically explores the effect of a single

parameter on a system of equations, is similar to data debugging in that it seeks

to numerically approximate the effect of an input on an output. Recent research

employing techniques from sensitivity analysis in static program analyses seeks to

determine whether programs contain “discontinuities” that may indicate a lack of

program robustness [4, 20,47].

Data debugging differs from sensitivity analysis in two important respects. First,

data debugging is a fully-automated black-box technique that requires only dependence

information. Second, unlike sensitivity analysis, data debugging does not vary a

parameter through a known range of valid values, which must be parameterized by an

analyst. Instead, data debugging infers an output distribution via a nonparametric

statistical approach that does not require analysts to supply parameters.

1.3 Formula auditing: Formula reference errors

The last step in an analyst’s pipeline is to write code that performs an analysis.

Like other programming tasks, data analyses can have bugs. Nonetheless, despite

many years of research into automatically detecting and correcting programming

errors, spreadsheet users still make programming logic errors at an alarmingly high

rate. Recent work shows that 5% of all spreadsheet formulas contain an error, a figure

that is consistent with traditional (non-spreadsheet) programs [77]. Many of these

errors go uncaught because automated analysis tools for spreadsheets are particularly
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ineffective. A recent study of commercial static analysis tools for spreadsheets found

that they discovered formula errors at an extremely low rate: only 0.52% of errors

were correctly identified [8].

An important class of formula errors are reference errors, an error that occurs when

a formula fails to refer to the correct set of inputs. One way that reference errors occur

is because of a shortcoming in spreadsheet languages: spreadsheets have no facility for

function abstraction or subroutines. Users repeat calculations by copying and pasting

formula strings. When a user fails to update references during this copy-and-paste

workflow, reference errors occur. The likelihood of making an error increases as the

size of repeated calculations grows, making these errors hard to find.

Excel’s “formula fill” feature is intended to mitigate this problem by automatically

copying and updating formulas. Unfortunately, to operate correctly, users must

manually insert address mode annotations into the original formula. For example,

when using formula fill to copy the formula =A1 * B1 from cell C1 to cells C2, ...,

C10 such that the copies refer to B2, ..., B10 respectively, but that the reference to

cell A1 remains constant2, users must first modify the original formula. Using Excel’s

“absolute addressing mode” annotation, $, the original formula should be changed to

=$A$1 * B1 before invoking formula fill. If this modification is not performed, formula

fill inserts reference errors. For example, using the unmodified formula, it generates

the formulas =A2 * B2, =A3 * B3, =A4 * B4, and so on.

Another form of reference error is a failure to refer to all of the relevant data in a

range of cells. These kinds of omissions, referred to by one researcher as “the most

dangerous type of error,” are especially insidious because there is nothing obviously

wrong with the spreadsheet [77]. Inadvertent omissions were a key contributor to the

2A1 might literally be a constant, like π.
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flawed conclusion in the infamous Reinhart-Rogoff spreadsheet, whose logic was used

to justify flawed fiscal austerity measures in the European Union [55].

1.3.1 Spreadsheet Error Detection

The unconstrained nature of spreadsheets, in contrast to most conventional pro-

gramming languages, complicates automatic error checking. Spreadsheets have only

rudimentary dynamic datatypes, no facilities for structured or object-oriented pro-

gramming, and no user-defined functions. Beyond obvious errors like unparseable

formulas or math errors like division by zero, in general, knowing whether a given

formula is in error requires knowing user intent, which is well beyond the capabilities

of state of the art program analyses. While it is sometimes possible to glean this

information from semantic cues, such as headers (e.g., a column with the header

“Totals” probably contains numeric sums), this evidence is at best circumstantial.

Nonetheless, upon inspection, humans can often reason about user intent and find

unambiguously incorrect programs that produce wrong output. This work refers to

these bugs as manifest errors. A second, more pernicious form of error is a latent

error, which produces the correct output, but only by accident. This second class of

errors surfaces as manifest errors only later in the life cycle of a spreadsheet when

data values are updated. Reference errors, the focus of this work, can be found both

as manifest and latent errors.

Cell H58 in Figure 1.4 shows a manifest error. The programmer’s intent was to

compute a row total, however an off-by-one reference error means that the total

displayed is for the wrong row. Note that in Excel, this problem can only be spotted

by first switching to “formula view” and then by clicking on the reference inside the

formula, which highlights it. For large spreadsheets, this approach does not scale.

Cell H57 in Figure 1.4 shows a latent error. While it happens to be true that the

correct row total is zero, the value in H7 is a hand-entered value, not computed. Were
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Figure 1.4: An example spreadsheet containing several errors. This spreadsheet was
drawn from the FUSE corpus [9], shown here using Excel’s “formula view”. Cell H58
is a manifest error, computing a total for the wrong row (H59 and H60 have the same
bug). Cell H57 shows a more subtle latent error—a missing formula—which will only
appear when data in B57 through G57 are updated.

Figure 1.5: Errors are obscured in Excel’s default view. The same spreadsheet shown
in Figure 1.4. Errors are harder to spot because formulas are hidden.

the user of the spreadsheet to later update the values in B57 through G57, the total

would be wrong.

Neither of these errors are obvious as is shown in Figure 1.5, which shows that

Excel’s default view obscures them. In both cases, Excel’s built-in error checking

feature fails to flag these cells.

1.3.2 Related Work

Conventional error-checking tools for spreadsheets, like those found in Microsoft

Excel, rely on ad hoc patterns that are believed to be indicative of errors. Recent work

in the software engineering community focuses on detecting spreadsheet smells, which

like error rules are anti-patterns that reflect violations of best practices. Much like

source code “linters,” flagged items are not necessarily errors. While this work discusses
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Figure 1.6: Error checking rules provided by Microsoft Excel 2013. See Chapter 1.3.2.2.

only one smell tool at length—CUSTODES—other tools adopt similar approaches [24,

30,53]. We also discuss data type-based approaches and some approaches that exploit

user markup for context. Finally, we discuss the anomaly-based approach that forms

the basis for this dissertation.

1.3.2.1 Microsoft Excel

Figure 1.6 shows the error detection rules that Microsoft Excel employs [92], each of

which may be selectively enabled or disabled. Excel’s approach is based on recognizing

common pre-defined patterns of errors and flagging specific cells that the patterns

identify as potentially wrong.

The Excel user interface applies these rules and then uses an unobtrusive visual

cue—a green triangle in the upper left corner of the cell—to highlight cells with

potential issues3. The user can then consult a pop-up message that provides more

details about the error along with a contextual menu that offers hardcoded fixes to

the potential problem (e.g., to copy an adjacent formula into the cell). In addition,

Excel provides a rudimentary formula dependence visualization, an “arrow” overlay

pointing to (or from) a formula’s (non-transitive) dependencies.

3Oddly, the slightly more intrusive red triangle sometimes seen in the upper right corner of a cell
is reserved for user notes.
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Figure 1.7: An Excel false positive. Excel flags the error in cell H52 because it does
not reference all available data in row 53 (see green triangle in upper left of cell).
While H52 is incorrect for other reasons (it references the wrong row altogether), this
rule is a clear false positive.

These rules fall into several categories. Some rules check the contents of cells. For

example, they check that the result of a computation is not itself an error (i.e., the

expression cannot be evaluated), or that a value that appears to be a date is not

represented as a 2-digit number. Other rules involve the relationship between cells.

For example, formulas may omit cells in a contiguous region. The fixed set of rules

that Excel employs is intended to cover real-world cases that are perceived by Excel’s

developers to be both common and likely to be actual errors.

Figure 1.7 shows an example of Excel’s error reporting. In this example, Excel

flags cell H52 as problematic with a green triangle. The reason, according to Excel’s

error detector, is because the formula “omits adjacent cells.” While the flagged cell is

indeed problematic (as with the example in Figure 1.4, it sums the wrong row), Excel’s

fix is wrong: it suggests that the formula be updated to sum over B53:N53. Strangely,

the fix itself violates Excel’s rule that flags formulas that are inconsistent with other

formulas in a region, since the “fixed” formula becomes the only such formula on the

spreadsheet.
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1.3.2.2 Spreadsheet “Smells”

CUSTODES4 [24] is a command-line tool written in Java that identifies anti-

patterns, commonly referred to as “code smells,” using a combination of rules and

cluster analysis. CUSTODES is available for free online and includes a data set

of ground truth spreadsheets containing annotations for spreadsheet smells. CUS-

TODES attempts to detect four types of spreadsheet smells:

• Missing Formula Smell. Cells that contain hard-coded constants when neigh-

boring cells in rows and columns contain formulas are suspicious [24,30].

• Dissimilar Reference Smell. Cells that reference different cells than their

neighbors are suspicious. The canonical example is an omitted cell from a range

reference.

• Dissimilar Operation Smell. Cells that use different functions than their

neighbors are suspicious. The canonical example is using SUM instead of +.

• Hard-coded Constant Smell. This is a more granular version of the Missing

Formula Smell. A cell is marked as suspicious when its abstract syntax tree

(AST) contains a hard-coded constant where a neighboring cell uses a function

call.

CUSTODES is command-line tool written in Java. CUSTODES first clusters

cells in a worksheet using features such as cell layout, formatting, and AST similarity.

The tool then categorizes each cell, conditioned on its cluster. Note that CUSTODES

outputs no smell labels: it only prints the set of “smelly” cells. CUSTODES also

has no visualization. Users must consult the command-line output and compare it

against their spreadsheet manually.

4http://sccpu2.cse.ust.hk/custodes/
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Pattern-based and smell checkers are inherently limited. By definition, they cannot

uncover errors that do not fall into an existing pattern, even if a spreadsheet contains

unusual constructs. Cluster-based smell detectors like CUSTODES rely on rigid

structures and strong consistency within logical spreadsheet regions. Unfortunately,

Excel’s rules can fail to detect many serious formula errors in real spreadsheets. Fun-

damentally, smell detectors like CUSTODES employ essentially the same approach

as Excel’s, but use some statistical approaches to “relax” the rules in order to improve

recall.

Spreadsheet smells are largely orthogonal to spreadsheet anomaly detection: smells

are not necessarily anomalous, and vice versa. Unlike smell detection approaches,

our approach can detect arbitrary inconsistencies in spatial and structural reference

patterns. Further, unlike CUSTODES, our approach is based entirely on a unified

spatial and structural abstraction and does not rely on heuristics or domain knowledge.

1.3.2.3 Type and Unit Checking

Past work on detecting errors in spreadsheets has focused on inferring units and

relationships (has-a, is-a) from information like structural clues and column headers,

and then checking for inconsistencies [1,3,5,18,36,37,38,60]. For example, XeLda

checks that formulas process values with incorrect units or if derived units clash

with unit annotations. There also has been considerable work on testing tools for

spreadsheets [17,41,56,60,85,86].

These analyses can and do find real bugs in spreadsheets, but they are largely

orthogonal to the our approach In fact, many of the bugs that we find in this work

would be considered type- and unit-safe.

1.3.2.4 Other Approaches to Spreadsheet Correctness

Other approaches to spreadsheet correctness include creating stronger specifications

for a computation (such as creating models, using templates [2,33], or using declarative
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approaches to describing the computation, etc.). While these approaches may be

effective, they require additional programmer expertise, extra effort, and depending on

the technique, may not be applicable to existing spreadsheets. This dissertation aims

to support data analysis tasks for non-programmers and as many existing spreadsheets

as possible to create the greatest benefit for the spreadsheet user community.

Another promising approach is to create more informative visualizations of the

computation being performed so that the user can find errors by inspecting the

visualization (e.g. [58] is one example). This dissertation explores several visualizations

of reference behavior and of likely bugs. Many other visualizations are possible5.

1.3.2.5 Anomaly Analysis

An alternative to pattern based bug detectors are anomaly-based approaches.

Anomaly analysis leverages the observation from conventional programming languages

that anomalous code is often wrong [25, 29, 34, 49, 82, 93]. This lets an analysis

circumvent the difficulty of obtaining program correctness rules. For spreadsheets,

rules used by pattern detectors are either very general (e.g., expressions must evaluate)

or imprecise (e.g., adjacent cells should have the same formula). Anomaly analysis

circumvents this problem by instead reasoning about the relative frequency of features

found in code.

The canonical example of anomaly analysis is whether an omitted statement to

release a lock on a data structure is an error or not [34]. Knowing whether the

programmer intended to omit such a call requires knowing what effect the programmer

wanted to obtain, information that is unavailable to any program analysis. Nonetheless,

if in 999 out of 1,000 instances, lock statements are followed by an unlock statement,

it is reasonable to conclude that the omitted unlock is likely to be an error. Hard-

5We explored many visualizations during the development of this dissertation, but only present
the best visualizations here. Some interesting but ultimately sub-par visualizations included error
heatmaps, reference “spectra”, and reference “edge detection” plots.
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coding such a relationship as a rule is likely to suffer from precision problems in general,

as program control flow can sometimes obscure even rigidly-followed invariants. But

learning such a rule from a given codebase adjusts for a programmer’s idiosyncratic

code constructs.

Instead, anomaly analysis mines likely invariants using generic templates—a kind

of statistical feature—that describe relationships between program constructs. By

comparing the relative frequencies of violations of the extracted rule, likely errors

can be flagged without needing to know programmer intent. For example, a feature

might be of the form statement a is always followed by statement b. The analysis does

not need to know how to instantiate variables a and b a priori. The analysis then

applies the template across a code base, learning both a and b. For example a could

be “a lock statement” and b might be “an unlock statement.” If such a relationship

is as common as its contradiction (“a lock statement is not always followed by an

unlock statement.”), then the relationship is unlikely to be meaningful. However, if

the relationship is frequently maintained with few violations, those violations likely

indicate a real error.

Anomaly analysis was developed primarily for conventional programming languages

like C or Java, not spreadsheets. This dissertation extends the anomaly-based approach

to spreadsheets, in particular, by observing spatial relationships between formulas and

their inputs in spreadsheet layouts.
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CHAPTER 2

FLASHRELATE: EXTRACTING RELATIONAL DATA
FROM SEMI-STRUCTURED SPREADSHEETS USING

EXAMPLES

The previous chapter outlined challenges in three stages of data analysis. This

chapter presents an automated approach designed to facilitate spreadsheet layout

preparation for data analysts of all skill levels.

This chapter introduces automatic layout transformation using examples1, a pro-

gram synthesis-based technique that lets ordinary users transform structured relational

data from spreadsheets without programming. At its core is Flare, a novel transfor-

mation language that extends regular expressions with geometric constructs. Users

transform data by supplying examples of output relational tuples, and the algorithm

synthesizes a program guaranteed to satisfy those examples.

We built FlashRelate to evaluate our technique. This chapter makes the

following contributions: 1) the identification of a critical step in data analysis that

benefits from automation; 2) the Flare domain-specific language and runtime that

makes transformations possible; 3) the FlashRelate algorithm that generates correct

Flare programs in seconds from a small set of examples; 4) an intuitive point-and-click

interface for layout transformation that requires no programming expertise; and 5)

finally, demonstration that FlashRelate is effective for a large number of real-world

scenarios, many of which are drawn from Excel user help forums.

1This work appeared at PLDI 2015 [12].
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2.1 Approach

The FlashRelate tool relies on two core technologies to make automatic trans-

formation of input spreadsheets possible. The first is a formal language called Flare

that defines all possible layout transformation operations. The second is a search

algorithm that finds a valid Flare program given a set of example tuples given

by the user. The combination of formal language and search, a technique called

counterexample-guided inductive synthesis (CEGIS), is known to be complete for the

class of finite programs2. Nonetheless, näıve pairings of formal languages and search

algorithms are not likely to produce useful program synthesizers, as CEGIS’s combi-

natorial nature means that search may run for an unacceptably long amount of time.

FlashRelate defines a sufficiently expressive formal language with a domain-specific

search technique and search pruning heuristics. These refinements mean that despite

the inherent combinatorial nature of the approach, satisfactory programs can often be

found quickly (typically under 2 seconds) and with few input examples (typically 4).

As a result, is it possible to build an interactive user interface on top of these core

technologies that is fast enough to be useful, providing novice users with a practical

technology for data wrangling tasks.

2.2 The Flare Transformation Language

Flare is a domain specific language designed to support transformations. A

Flare program takes a spreadsheet as input and returns a set of tuples (a relational

table) as output. The Flare language defines the set of transformations possible

using the FlashRelate system.

The design of Flare is inspired by scripting languages with regular expression

capabilities. While regular expressions are a powerful language-based mechanism for

2“A finite program is one whose input is bounded and which terminates on all inputs after a
bounded number of operations.” [88]. All Flare programs are finite.

24



<prog> ::= <cpair> | <cpair> "[" <pseq> "]"

<cpair> ::= <spatialc> <cellc>

<pseq> ::= <cpair> | <cpair> "," <pseq>

<cellc> ::= <regx> <anchor> | <capture>
<capture> ::= "<" <name> "," <regx> ">" <anchor>

<anchor> ::= ":" <spatialc> <regx> | εa
<regx> ::= "/" String "/"

<name> ::= String

<spatialc> ::= <vert> <horiz>

<vert> ::= <vdir> <quant>

<horiz> ::= <hdir> <quant>

<vdir> ::= "u" | "d" | εv
<hdir> ::= "l" | "r" | εh
<quant> ::= "*" | "*?" | "*#"

| "+" | "+?" | "+#"
| "{" N "}" | εq

Figure 2.1: Flare syntax. Flare extends regular expressions with spatial constraints.
String represents any string literal. N represents a positive integer literal. Flare is
not sensitive to whitespace, except within regular expression String literals.
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<Harvest ,¬w>:u+/ value/

[ r<Date ,¬w>, l*<Country ,αw> ]

Figure 2.2: A Flare program that converts the table shown in Fig. 1.1 to the table
shown in Fig. 1.2. The subexpression “αw” is shorthand for the regular expression
that matches alphabetic characters and whitespace while “¬w” is shorthand for the
regular expression that matches any character except whitespace.

capturing and transforming string data, they are not powerful enough to capture

relational information encoded in spreadsheets without additional support code. This

is because spreadsheets are more than strings; they are strings embedded in a two-

dimensional matrix. Flare augments regular expressions with geometric constraints

needed to capture and transform spreadsheet data into relational tables without

support code. The key insight is that geometric constraints like direction and distance

concisely express the spatial relationships underpinning the desired table extraction.

In a nutshell, the execution of a Flare program constructively enumerates all

possible combinations of cells from the input spreadsheet that satisfy the set of con-

straints described by the program. As with regular expressions, only those constructs

that satisfy the constraints are candidates for transformation. Flare has two kinds of

constraints: 1) a cell constraint defines the set of valid strings belonging to a column

of the output table, and 2) a spatial constraint defines the set of permissible spatial

relationships between two columns of the output table. These two constraints

may be composed according to the syntax rules shown in Fig. 2.1.

2.2.1 Example

The Flare program written in Fig. 2.2 transforms the spreadsheet shown in

Fig. 1.1 into the “long” format spreadsheet shown in Fig. 1.2. In general, the right

layout depends on the query, so unless a user can anticipate all possible future queries,

no perfectly-suited layout can be chosen a priori. With FlashRelate, this choice is

unnecessary; layouts can always be changed. By asking the user for example transfor-
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mations, FlashRelate automatically produces Flare transformation programs like

the one shown in Fig. 2.2. FlashRelate frees the user to enter their data in any

layout that they find convenient.

2.2.2 Constraints

The following section discusses each constraint and its details informally. A formal

definition of Flare semantics may be found in Chapter A.

2.2.2.1 Cell Constraints

In Flare, cell constraints (<cellc> in Fig. 2.1) are essentially regular expressions3.

Regular expressions are enclosed by a pair of slashes, //. For example, the expression

/^[0-9]+$/ matches a string that contains only numbers. From here on, we refer to

this expression as Num.

Informally, a cell constraint is a boolean function that takes a spreadsheet and a

cell location as parameters and returns true if and only if the constraint is satisfied

by the cell at that location. Lines 6 and 7 in Fig. A.2 in the Appendix describe the

meaning of cell constraints formally.

As with many regular expression implementations, a Flare cell constraint may

either merely constrain or constrain and capture data (<capture> in Fig. 2.1). Cap-

turing means that cell data is returned in an output tuple in addition to being used

as a constraint. Capture is denoted by enclosing a cell constraint within a pair of

angle brackets, <>. A valid Flare program must contain at least one capturing cell

constraint. A captured cell must also be associated with a <name>; this name defines

an output column.

3FlashRelate uses C#’s PCRE-like regular expressions [70].
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2.2.2.2 Spatial Constraints

Spatial constraints describe the relative spatial relationships between two output

columns (<spatialc>, Fig. 2.1) Spatial constraints are also the mechanism used

to compose two subprograms. An n-tuple subprogram composed with an m-tuple

subprogram yields an n+m-tuple subprogram.

The essential component of a spatial constraint is a geometric descriptor (<vdir>

and <hdir> in Fig. 2.1). There are four basic descriptors, up, down, left, and right,

denoted by "u", "d", "l", and "r" respectively. A spatial constraint may contain up

to two geometric descriptors, one for the vertical direction, and one for the horizontal

direction. One may informally think of a spatial constraint as a boolean function that

takes two cell locations as parameters and returns true if and only if those two cells

satisfy the specified geometry in the spreadsheet. Line 11 in Fig. A.2 in the Appendix

describes the meaning of spatial constraints formally.

Spatial constraints are directed, declaring that a functional spatial relationship

exists between a parent cell and child cell. For example, a child cell is “to the

left” of the parent cell. Strictly speaking, the child-of operator declares a spatial

relationship between the cells yielded by two Flare subprograms (2nd rule for <prog>,

Fig. 2.1). The operator is denoted by a pair of square brackets []; the cells matching

the constraints listed inside the brackets are children of the cells matched by the

constraint outside and to the left of the brackets. When separated by commas, multiple

child subprograms are allowed inside brackets. Each child subprogram therefore defines

a spatial constraint with the same parent.

2.2.2.3 Geometric Descriptors

Geometric descriptors may be appended with a constant quantity (<quant>,

Fig. 2.1), for example, r{5}, indicating that the child cell should be 5 cells to the

right of the parent cell. In some cases, we need to express that a child cell has a
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spatial relationship of indeterminate distance from its parent (e.g., “somewhere to

the right”), and Kleene stars can be used for this purpose. As with many regular

expression implementations, the Kleene star can be interpreted in several different

ways. The language supports match-all, greedy, and non-greedy semantics using *,

*#, and *? respectively.

2.3 Algorithm

Layout transformation synthesis automatically generates a Flare program as

output given a spreadsheet and a set of positive and negative examples of tuples as

input. The synthesized Flare program is guaranteed to extract all of the positive

tuple examples and none of the negative tuple examples supplied by the user. We frame

the problem of finding a satisfactory program as a search over all valid combinations

of constraints that satisfy the positive and negative examples. Algorithm pseudocode

is shown in Figs. A.3, A.4, A.5, and A.6 in the Appendix.

Let P be the set of user-provided tuples representative of the desired relational

table, otherwise known as positive examples. Let N be the set of user-provided tuples

representing counterexamples, otherwise known as negative examples. The space of

all possible transformation programs over the columns in P and N is a graph called

the column graph. Let each column in the output table be a vertex in this graph. Let

constraints be directed edges between vertices; each edge encodes a (spatial constraint,

cell constraint) pair. Since spatial constraints relate columns, edges are directed. Cell

constraints define valid strings in the target column.

In order to correctly perform a transformation, a valid Flare program must 1)

refer to every column in the output table, and 2) define functional spatial dependence

for every column, except the first column, which is the “root”. This resulting structure

is a spanning tree over the column graph.
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The spanning tree search must also satisfy the examples in P and N . The fact

that Flare programs have a tree structure means that a blind, combinatorial search

can be avoided. Instead, the program search procedure, shown in Fig. A.4, is an

adaptation of Kruskal’s minimum-weight spanning tree algorithm [61].

By construction, all programs in the search space satisfy the positive examples, but

not the negative examples. To quickly find a program that satisfies both, heuristics

assign weights to edges such that the user’s intended program is likely to be a minimum-

weight spanning tree. When this intuition is correct, greedy search pays off. When it

is not, the search must backtrack. Heuristics are described in Chapter 2.4.

There may be many spanning trees that satisfy the examples given by the user.

While all of these programs are correct with respect to the user’s examples, not all of

them are what the user wants. Inferring user intent from incomplete specifications

is a difficult problem. Our heuristics also attempt to guide the search toward con-

straints most likely intended by users, reducing the number of examples needed (see

Chapter 2.4).

2.3.1 Synthesis Goals

Informally, the synthesizer must perform the following tasks, given P and N : 1)

For column each i in the output table, learn the set of all cell constraints that satisfy

P (Fig. A.5). 2) For column pair i, j, learn the set of all spatial constraints that satisfy

the user’s positive examples (Fig. A.6). 3) Any combination of learned cell and spatial

constraints that form a spanning tree T over all columns satisfies the user’s positive

examples, but many of them include tuples in N . The last step is to exclude any T

that includes any member of N (Fig. A.4).

30



2.4 FlashRelate Implementation

The efficient operation of the synthesis algorithm depends on three key implemen-

tation ideas. Ranking schemes prioritize the search for likely good constraints over

likely bad constraints. Pruning reduces the size of the search space, making search

more efficient. Compact data structures based on bitvectors ensure that search uses

little memory and logical operations are performed efficiently.

2.4.0.1 Ranking

At every step in the search, FlashRelate must choose between candidate con-

straints. Some constraints are more general while others are more specific. This choice

impacts both the speed of the synthesizer and the number of examples required by the

user. Favoring specific constraints may make the search fast, because they are more

likely to rule out negative examples. Specific constraints may also mean that the user

must provide more positive examples before the correct program is found. Conversely,

favoring general constraints may fail to exclude negative examples, causing the search

to backtrack frequently, slowing search. General constraints may require a user to

provide more negative examples.

FlashRelate has a strong bias toward specificity. This enables users to focus on

what they want, instead of what they don’t want, which is a more natural form of

interaction. This choice also allows for faster search. Constraints are ranked by the

following heuristics, in this order: 1) H1 Excluding more negative examples is favored

over excluding few. 2) H2 Specific spatial constraints are favored over general ones.

This implies that multiple positive examples are required to learn non-constant-length

spatial constraints. 3) H3 Simpler geometric layouts (i.e, fewer “turns”) are favored

over complex ones. 4) H4 Cells above and to the left of positive examples are implicit

negative examples. Users typically visually scan a spreadsheet starting at the top left,
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moving rightward and downward. Implicit negative examples are abandoned whenever

they contradict positive examples.

2.4.0.2 Pruning

The naive approach of enumerating all possible geometric descriptors fails when

one considers that there are an infinite number of possible constant-length descriptors.

Instead, the enumeration phase of the search returns the smallest possible set of

descriptors consistent with all the positive examples. Many descriptors can be ruled

out based observations of user examples. For example, if in two positive examples,

two cells belonging to the same column share a single candidate parent cell, constant-

amount geometric descriptors are not possible and can be pruned.

2.4.0.3 Data Structures

When interpreted over a spreadsheet a cell constraint evaluates to a set of cells.

This set of matching cells is represented as a bit vector, mapping a linear traversal of the

spreadsheet to “1” (match) or “0” (no match) to bitvector indices. This representation

is efficient for three reasons: 1) Match results are stored efficiently, and can also be

cached efficiently, since many programs share subprograms that do not need to be re-

evaluated. 2) Satisfiability can be answered using bit vector arithmetic. 3) Operations

requiring bit-counting, which is used heavily in our heuristics, is O(# bits set) [90].

2.5 Evaluation

This section evaluates the design of Flare and FlashRelate on a variety of

real-world spreadsheets. We answer the following questions: 1) It is possible to

manually write Flare programs to perform a diverse set of extraction tasks? 2) Can

FlashRelate automatically infer equivalent programs to the hand-written programs?

3) How effective are heuristics at reducing the time and number of examples required

by the synthesizer?
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2.5.0.1 Benchmark Selection

The evaluation considers two sets of benchmarks. The first set of benchmarks were

borrowed from related work [50] that examined 51 table-transformation programs

from Excel help forums. Nearly half (22) of the transformations were straightforward

relational extraction tasks that could be expressed in Flare. The remainder performed

computation (e.g., arithmetic) outside the scope of extraction programs. A second

set of benchmarks rounds out the evaluation with more difficult tasks selected from

the EUSES corpus [43]. This second set of benchmarks was chosen specifically to test

more challenging extraction tasks.

2.5.0.2 Expressiveness

To evaluate the expressiveness of Flare, we manually wrote a correct Flare

program for each benchmark and extracted the resulting output table. The Flare

language is expressive enough to extract the desired tuples from all of the multi-

dimensional data patterns we observed. We conclude that Flare is an effective tool

for performing extraction tasks.

2.5.0.3 Synthesizer Experiments

The following method is intended to simulate a user interacting with FlashRelate.

The relational table extracted by the handwritten (i.e., “ground truth”) program

represents the user’s desired extraction output; call this program the oracle. After

each invocation of the FlashRelate algorithm by the simulated user with a set of

examples, the synthesized program is considered correct if its output agrees with the

oracle. When the FlashRelate output differs, the simulated user finds the first tuple

that deviates from the oracle by scanning the extracted table from top to bottom.

Deviant tuples come in two forms: 1) if a tuple from the oracle’s output is missing

from the program output, it is a positive example; 2) if a tuple from the program

output does not appear in the oracle’s output, it is a negative example. This process
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is repeated until either the synthesizer finds a program whose output matches the

oracle’s or it times out. 10 minutes was chosen as the maximum total duration of the

task as we felt few users would wait longer.

Six algorithm configurations were measured to understand the benefit of ranking

choices. In all cases, regular expressions come from a small corpus (< 100) of common

patterns combined with a simple regular expression generator. Each configuration

examines the effect of adding a heuristic to the FlashRelate algorithm. Experiment

configurations are: 1) H1, H2, H3, H4, 2) H1, H2, and H3, 3) H1 and H2, 4)

H1, 5) no ranking, and 6) R. H# refers to the heuristic described in Chapter 2.4.

Configuration R changes the oracle model, choosing examples randomly. R

tests whether FlashRelate is robust to a wide variety of user example-selection

behaviors. Example order may matter because FlashRelate learns geometric

differences from one example to the next. Anecdotally, examples located near each

other in a spreadsheet are geometrically more similar than examples further from

each other. When examples are chosen randomly, they are unlikely to be repeatedly

drawn from the same neighborhood. The configuration enables all heuristics, runs the

experiment 30 times, and averages the results.

2.5.1 Results

In the best case, the algorithm nearly always finds a solution within 10 minutes

(Fig. 2.3). More than 80% of the benchmarks completed in less than 10 seconds total.

Users typically wait only 1.6 seconds per iteration (median: 0.6 seconds). Users also

need to provide only a few examples, for an average of 3.5 positive examples (median:

3 positive examples) and 2.0 negative examples (median: 1 negative example) (see

Fig. 2.4b).

Ranking heuristics have a sigificant effect on speed, as with ranking, the algorithm

finds a solution before the timeout 13x more often. Without ranking, the algorithm
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Figure 2.3: FlashRelate synthesis run time. Fewer seconds and a greater percentage
is better (bottom right). FlashRelate does best with most heuristics enabled
(H1,H2,H3 and H1,H2,H3,H4). For example, none (no heuristics) succeeded on
only 60% of the benchmarks before the timeout whereas H1,H2,H3,H4 succeeded
on all but one. R is a variation of H1,H2,H3,H4 where the order of examples is
randomized.

requires many more examples: an average of 3.0 positive and 13.7 negative examples

(medians: 3 positive; 9 negative). Random example selection (config. R in Figures 2.3

& 2.3) does have a small, negative effect on the speed and number examples needed

by the synthesizer, but heuristics still perform well even in this case. We think users

are unlikely to choose examples randomly.

2.6 Conclusion

We present Flare, a formal language that expresses extraction queries against

spreadsheets. We also present a layout transformation algorithm that synthesizes

Flare programs from user-provided examples. Finally, we present FlashRelate,

a layout transformation plugin for Microsoft Excel. We designed FlashRelate’s
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Figure 2.4: Number of examples needed for FlashRelate. Fewer examples and a
greater percentage is better (bottom right). Generally, H1,H2,H3,H4 requires fewer
examples than the other configurations. R is a variation of H1,H2,H3,H4 where
examples are chosen randomly.

interface to be simple, fast, and efficient. Users need only point and click to obtain the

extractions that they want. Notably, no programming is required to “unlock” data

from ad hoc layouts.
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CHAPTER 3

CHECKCELL: DATA DEBUGGING FOR
SPREADSHEETS

The second challenge in data analysis is dealing with imperfect data. Data is

routinely corrupted before it reaches a data analyst [51]. This chapter introduces data

debugging1, an approach that combines program analysis and statistical analysis to

automatically find potential data errors.

Since it is impossible to know a priori whether data are erroneous or not, data

debugging does the next best thing, locating input data that have an an unusual

impact on the computation. Intuitively, inputs that have an inordinate impact on

the final result are either very important or wrong. By contrast, wrong data whose

presence have little or no impact on the final result do not merit special attention.

CheckCell is a data debugging tool designed as an add-in for Microsoft Excel and

for Google Spreadsheets (Figure 3.2). CheckCell is best suited for large spreadsheets

where manual auditing is onerous and error-prone. CheckCell highlights all inputs

whose presence causes function outputs to be dramatically different than the function

output were those outputs excluded. CheckCell guides the user through an audit

one cell at a time, visiting the most severe likely errors first.

3.1 Approach

Data debugging is a hybrid program analysis and statistical technique that requires

only the inputs and formulas present in a user’s spreadsheet. Unlike typical machine

1This work appeared at OOPSLA 2014 [11].

37



Figure 3.1: A typical gradesheet containing an error. The formula in E6 is IF(E5 > 85,

"Pass", "Fail"). The transposition typo in B11 changes this student’s grade from
passing to failing. Gaussian outlier analysis fails to detect this error, but CheckCell
does.

Figure 3.2: CheckCell only requires that a user specify the maximum percentage of
spreadsheet inputs to audit. It then guides a user through an audit of highest-ranked
error suspects.

learning approaches, data debugging does not make use of training data or weights. We

begin by presenting an example, a typical gradesheet, in order to illustrate scenarios

where the technique is useful.

3.1.1 Example

Consider the example spreadsheet in Figure 3.1, a typical grade sheet for a

university course. Grade averages for different activities (homework, quizzes, exams)

are weighted according a table and then summed to obtain a final grade. Finally, if

the grade crosses a threshold (in this case, 85), then the student is considered to have

passed the course.
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In this example, the error is a transposition of the value in cell B11 from an 87

to a 78. Since this grade is an exam, it is weighted more heavily than the grades for

homework and quizzes. Note that a two-sided parametric outlier test based on the

Gaussian distribution (α = 0.05, two standard deviations) does not find this error.

Grades are often normally distributed, so the Gaussian distribution appears to be

an appropriate fit. A test using the Gaussian distribution will not find the error,

however, because it is not an extreme value. The most extreme values are the values

in cells B3 (77) and B5 (93). 78 is not just a valid grade, but in general, a common

one. Nonetheless, this error changes this student’s final outcome from Pass to Fail.

Data debugging is designed to find precisely this kind of subtle error. Using our

implementation of data debugging, CheckCell, the user must first decide k%, the

proportion of input values that they want to inspect (“% Most Unusual to Show”). By

default, this value is set to 5%, which is based on our empirical observation that users

tend to mistype strings at this rate (See Chapter 2.5). After clicking the “Analyze”

button, CheckCell computes likely errors and ranks them by their hypothesized

severity.

Each error is presented to the user one-at-a-time. Upon being presented an error,

the user must either mark the cell as correct (“Mark as OK”) or fix the error (“Fix

Error”). The auditing procedure terminates when either the user has examined at

most k% of the inputs, or when CheckCell determines that none of the remaining

inputs are likely errors, whichever is smaller. By increasing k%, users may increase

accuracy for a greater expenditure in effort. For this example, after a single iteration

CheckCell finds only this single error, then it terminates.

3.2 Algorithms

This section describes data debugging in detail. Chapter 3.3 includes a formal

analysis of its asymptotic performance and statistical effectiveness.
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3.2.1 Dependence Analysis

Data debugging’s statistical analysis is guided by the structure of the program

present in a worksheet. The first step is to identify the inputs and outputs of those

computations. A spreadsheet is scanned and all formula strings collected. Formulas

are parsed using an Excel grammar. References to input vectors and other formulas

are found using each formula’s syntax tree. References to local, cross-worksheet, and

cross-workbook cells are all resolved. Data debugging uses techniques similar to past

work to identify dependencies in spreadsheets [41].

Data debugging’s statistical analysis depends on the ability of the analysis to

identify replacement input values when considering a suspected input error. When a

function has only a scalar argument, namely a single cell or a constant, data debugging

does not have enough information to reliably generate other representative values.

Therefore, data debugging limits its analysis to vector inputs.

3.2.2 Impact Analysis

Data debugging operates under the premise that the value of a function changes

significantly when an erroneous input value is corrected. More precisely, the analysis

poses the (null) hypothesis that the removal of a value will not cause a large change

in function output. The analysis then gathers statistical evidence in an attempt to

reject this hypothesis.

Removing an input value requires replacing it with another representative value.

Since the analysis never knows the true value of the erroneous input, it must choose

from among the only other replacement candidates it can justify, namely other values

in the same input vector as the suspected outlier.

3.2.2.1 Function Classes

We limit the analysis to formula inputs that are justifiably homogeneous, i.e.,

input values for order-independent vector functions. In an analysis of frequently-
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used functions, we found that most spreadsheets in the EUSES corpus satisfy this

requirement.

3.2.2.2 Non-Parametric Methods: The Bootstrap

Standard approaches to outlier rejection generally depend on the shape of the

distribution. These so-called parametric methods require analysts to supply a distri-

bution and its parameters. The normal distribution is commonly assumed. Given

that the analysis needs to perform statistical tests on any formula over unknown data

distributions, parametric methods cannot be justified.

Instead, input analysis incorporates an adaptation of Efron’s bootstrap procedure,

a non-parametric (distribution-free) statistical method [32]. We use the bootstrap to

estimate the distribution of a function output, given only a sample of the distribution

of inputs. With this, one can estimate the variability of the formula in question,

allowing for reliable inference even when the sample size is small (i.e., under 30

elements), or the distribution is unknown or difficult to compute.

The procedure works as follows: 1) Draw a random sample with replacement,

Xi = (x0, . . . , xm−1), from the input vector of interest. m is the size of the original

sample. 2) Compute the function output for sample i, namely θ̂i(Xi). 3) Repeat this

process n times (see Chapter 3.3.1).

The resulting distribution θ̂ = (θ̂i, . . . , θ̂n−1) gives an approximation of θ, the true

distribution of function outputs. θ̂ can be used for inference, because the bootstrap

procedure gives an indication of the variability of θ, i.e., we know which values of θ

are unlikely.

3.2.2.2.1 Hypothesis test. To determine whether an input, x, is likely to be an

error, the analysis conditions the output distribution θ̂ on the absence of x in the data.

We call this conditional distribution θ̂e. The conditional distribution approximates

the effect of correcting the input error. If the original function output, θorig, is highly
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unusual when compared to the θ̂e, the input x is either a very important input or

wrong. The analysis performs one of two variants of the hypothesis test, depending

on whether a function is numeric or string-valued.

3.2.2.2.2 Numeric-output functions. For numeric outputs, the bootstrap dis-

tribution is sorted in ascending order, and the quantile function is applied to determine

the confidence bound of interest. If θorig falls to the left of the α/2th percentile or to

the right of the 1− α/2th percentile of θ̂e, we reject declare x an outlier.

3.2.2.2.3 String-valued-output functions. For string-valued function outputs,

the bootstrap distribution becomes a multinomial. The multinomial is parameterized

by a vector of probabilities, p0, . . . , pk−1, where k is the number of output categories

(in our case, distinct strings), and where
∑k−1

i=0 pi = 1. The analysis calculates pi

from the observed frequency of category i from θ̂e. If the probability of observing the

original function output, θorig, is less than α, we declare x an outlier.

3.2.3 Impact Scoring

Finally, all inputs that failed at least one hypothesis test are ranked and presented

to the user. There are O(i ·f) hypothesis tests, one for each (input,output) pair, where

i is the total number of inputs in the spreadsheet and f is the number of function

outputs. Likely anomalies are highlighted in varying shades of red, with bright red

cells being highly-ranked potential errors.

The analysis cannot know a priori which function outputs are the most important

to the end-users. Arguably, inputs that have large effects on large-scale computations

are more important than inputs that have large effects on small-scale computations.

We utilize a weighing scheme to differentiate the two. The total impact of an error is

defined as
∑

i,f si,f · wf where si,f is the impact score for input i and function f , and
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where wf is the weight of function f determined by the number of transitive inputs

for that function.

3.3 Analysis

This section presents an analysis of data debugging’s dominant contributor to

the cost of accurate inference: the number of resamples required to perform the

bootstrapping method. A mechanism for mitigating this cost is also discussed.

3.3.1 Number of Resamples

For an input vector of length m and a given value from that vector, x, the

probability of randomly selecting a value that is not x is m−1
m

. The probability of

selecting m such values is therefore (m−1
m

)m. As m grows, we obtain the following

identity (see Appendix B for the proof):

Theorem 3.3.1.

lim
m→∞

(m− 1

m

)m
=

1

e

Statistical literature suggests that the number of bootstraps be at least 1000 when

the computational cost is tolerable. For efficiency, we perform our bootstrapping

procedure once for each input range, and then partition the resulting θ̂ distributions

according to the value x of interest. We set n = 1000 · e. Theorem 3.3.1 ensures that,

on average, there are 1000 resamples in the bootstrap distribution for θ̂e.

For i input ranges and a bootstrap size of n, data debugging requires O(i · n) time

to analyze a spreadsheet. In practice, the caching feature described in the next section

makes observing even this modest linear cost unlikely.

3.3.2 Efficiency of Caching

Data debugging’s run time is O(i · n), or linear in the number of recalculations

required, where i is the number of input vectors and n is the number of bootstraps
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required. As n grows larger than m, the length of an input vector, the probability

that a given resample will appear again during bootstrapping increases substantially.

Our implementation of data debugging, CheckCell, caches the output of functions

whose input values have been previously calculated.

For an input vector of length m and a resample X, it must be the case that the

sum of the fingerprint counter’s values equals m. There are only f =
(

2m−1
m

)
ways to

sum to m for a fingerprint vector of length m. There are only f possible fingerprints

for an input vector of length m. Because input vectors are resampled uniformly at

random, the probability of choosing a particular fingerprint is 1
f
. We expect to see

a particular fingerprint with a frequency of n
f

for a bootstrap of size n. Clearly, for

n > f , we are likely to observe a repeated fingerprint. As n grows larger than f in

the limit, observing a repeated fingerprint is guaranteed.

3.4 CheckCell Implementation

CheckCell is written in a mixture of C# and F# for the .NET managed language

runtime, written as a plugin for Microsoft Excel using the Visual Studio Tools for Office

(VSTO) interoperability framework. It is compatible with Excel versions 2010-2016.

Unfortunately, no sufficiently accurate parser for Excel was freely available to

use for this work (Microsoft’s parser is not available to the public). Likewise, no

Excel dependence analysis tool is available to the public. Consequently, we wrote

two utilities to fill this gap, an Excel formula parser2 and an Excel data dependence

analysis engine3.

2https://github.com/plasma-umass/parcel

3https://github.com/dbarowy/Depends
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3.5 Evaluation

CheckCell was evaluated across three dimensions: its ability to reduce input

errors, its ability to reduce end-user effort in fixing errors, and its execution time.

3.5.0.1 Experimental Methodology

CheckCell was run on a random selection of 61 benchmarks from the EUSES

spreadsheet corpus. For each spreadsheet, a cell was randomly selected and its value

perturbed with a representative error drawn from an error generator (see Sec 3.5.0.5).

A simulated user examined and flagged cells as prompted by CheckCell. When the

simulated user found a real error, the cell was marked as a true positive and corrected.

When a cell did not contain an error, it was marked as a false positive. Remaining

errors not flagged by CheckCell were considered false negatives. We repeated the

procedure 100 times for each spreadsheet.

3.5.0.1.1 Baselines. The baseline for CheckCell’s effort reduction is a cell-by-

cell manual audit. Nonetheless, an experienced analyst might expect standard outlier

detection techniques to be useful, so CheckCell is also compared against a Gaussian

outlier detection method (referred to as NAll). We report CheckCell’s results with

the % Most Unusual to Show threshold set at 10% (CC10). Note that this setting

means that CheckCell may report up to 10% of the values in the spreadsheet. In

practice, this rarely occurs.

3.5.0.1.2 Procedure. The evaluation introduces a single outlier into each spread-

sheet (i.e., there is at most one true positive). While input perturbations are drawn

from a typo model, no effort is made to ensure that such errors are important. Our

experimental design lets one compare the sensitivity of the two different techniques

across two dimensions: (1) the magnitude of the input error, and (2) the magnitude

of the output error. Finally, to simplify the comparison, experiments were limited
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numerical functions. The limitation biases the experiment in favor of NAll, since

CheckCell is strictly more powerful, but it makes the comparison straightforward.

3.5.0.1.3 Latent Errors. Evidence suggests that users make input errors at a

rate of roughly 5% per string (see Chapter 3.5.0.5). Therefore, it is likely that

these spreadsheets already contain errors. We conservatively assume that all flagged

cells without ground truth are false positives. These experiments likely underreport

CheckCell’s precision.

3.5.0.2 Quantifying User Effort

Without an auditing tool, users must in the worst case inspect all function inputs.

An effective tool should reduce the number of inputs a user must manually examine.

Let z be the number of cells inspected during the use of the tool (z ≤ m, the total

number of inputs). The relative effort of the tool is then defined as effort = z/m.

3.5.0.3 Quantifying Error

Measuring the magnitude of an input perturbation is straightfoward. Measuring

the magnitude of a spreadsheet’s change in outputs needs to account for the fact that

even simple spreadsheets often have multiple outputs. The total output error metric

measures the magnitude of an output change relative to other outputs.

Let the “correct” (original) spreadsheet be a vector S of strings. Let the error-

injected spreadsheet be a vector Se of strings. Let the “corrected” spreadsheet after

an outlier procedure is run be Sc. Let f be a real-valued function over a subset of

spreadsheet inputs (a spreadsheet formula). Then the normalized error of f is:

err(f) =
|f(Sc)− f(S)|
|f(Se)− f(S)|

We compute the total error of a spreadsheet as follows. Let the set of all numeric

functions defined in a spreadsheet be F . The total error after correction is:
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errtot =
∑
f∈F

err(f)

3.5.0.4 Classifier Accuracy

CheckCell’s aims to assist a user in a spreadsheet audit by classifying inputs

into one of two categories: errors and non-errors. CheckCell cannot distinguish

between important errors and important non-errors. Nonetheless, it is informative

to examine CheckCell’s error-finding accuracy using off-the-shelf classifier metrics.

We use precision and recall to serve this purpose.

3.5.0.5 Error Generator

In order to inject representative errors into spreadsheets, we built and trained

an error model using Amazon’s Mechanical Turk to perform data entry tasks. The

model is designed to generate two kinds of errors: (1) character transpositions and (2)

simple typographical errors. Input data came from two sources: A random sampling of

formula inputs from 500 spreadsheets in the EUSES corpus (corresponding to 69,112

input strings) and 100,000 randomly generated strings. Overall, 5.26% of all retyped

strings exhibited at least one typo, consistent with similar studies [77].

3.5.1 Experimental Results

The distribution of perturbations and their effects over 2836 experiments is shown

in Fig. 3.3. Input errors are nearly Gaussian (quantiles: 0% = -14.41, 25% = -0.04, 50%

=-0.04, 75% = 0.30, 100% = 13.69). Output error is skewed; small errors dominate

(quantiles: 0% = 0.00, 25% = 0.03, 50% = 0.08, 75% = 0.25, 100% = 1.00).

3.5.1.1 Precision and Recall

Across all benchmark runs, CheckCell had a mean precision of 8.0% and a mean

recall of 12.1%. NAll had a mean precision of 5.9% and a mean recall of 15.8%. A
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Figure 3.3: The distribution of input errors. Each point corresponds to a single
benchmark run. The change in input magnitude as the result of the error is shown
on the x-axis while the change in the spreadsheet’s total error is shown on the y-axis.
Note that because the typo generator is designed to produce representative errors, it
is biased toward small-magnitude perturbations that don’t matter.

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00
Total Output Error >= x

M
ea

n 
P

re
ci

si
on

Analysis NAll CC10

Precision as Total Output Error Increases

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00
Total Output Error >= x

M
ea

n 
R

ec
al

l

Analysis NAll CC10

Recall as Total Output Error Increases

(a) (b)

Figure 3.4: Precision and recall. (a) Precision as the minimum total output error is
increased. CheckCell always has fewer false positives than NAll. (b) Recall as the
minimum total output error is increased. For errors that cause a small effect, NAll
returns more false positives, but as errors grow more severe, CheckCell returns
increasingly relevant errors.
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Figure 3.5: For errors that cause a small total error, CheckCell requires about the
same mean effort as NAll.

random-answering adversary that expects errors to occur at a rate of 5.26% has a mean

expected precision of 3.5% and a mean expected recall of 5.26%. CheckCell has

higher precision than NAll, indicating that it is more discriminating. However, NAll

has a higher recall, which means it flags more errors than CheckCell. Nonetheless,

both of these figures are strongly influenced by the presence of a large number of small

errors with little impact. The skew is an artifact of the error generator, since most

errors generated were small and had little impact.

Precision and recall numbers are more informative when one stratifies benchmarks

by a minimum total output error. Figure 3.4(a) compares CC10 and NAll. Figure 3.4(b)

compares CC10 and NAll mean recall. CC10 gains a rapid precision advantage over NAll

as errors have more of an effect on the computation. NAll’s initial recall advantage

over CheckCell also evaporates as errors grow in importance. As errors grow in

importance, CheckCell finds them more accurately than NAll.
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3.5.1.2 Effort

CheckCell and NAll require comparable effort. Across all benchmarks, CC10

required users to examine 3.6% of a spreadsheet’s inputs while NAll required users

to examine 3.2%. Again, as one stratifies by required effort, the picture changes.

Figure 3.5 shows that for larger output errors, CheckCell requires users to inspect

between 4% and 7% of the inputs. For the same errors, NAll typically requires users to

inspect between 2% and 4% of the inputs. This odd effect is because NAll is too thrify:

it frequently detects nothing at all, saving user effort only by missing important errors.

In fact, NAll’s recall is only better when errors don’t matter (Figure 3.4(b)). NAll is

the most sensitive and requires the greatest user effort for the class of unimportant

errors; CheckCell behaves in precisely the opposite manner.

3.5.1.3 Execution Time

The mean runtime over all spreadsheets is 6.42 seconds, with a median runtime of

2.98 seconds. For all but two of the 61 benchmarks, CheckCell typically takes 30

seconds or less to complete, and never takes more than 70 seconds. As the analysis in

Chapter 3.3 predicts, cost is dominated by impact analysis, which is dependent on the

number of inputs. Given the short execution times observed, we view this overhead as

acceptable for an error detection tool.

3.5.1.4 Summary

CheckCell is more precise than outlier analysis and the errors found by Check-

Cell are more impactful. While CheckCell has lower recall than NAll, the errors

missed by CheckCell are inconsequential. CheckCell is always more precise.

Even when outlier analysis has the greatest possible advantage (numerical functions),

CheckCell makes better use of a user’s limited attention, and focuses user effort

on the most important errors. Given CheckCell’s support for a richer class of non-

numeric functions, CheckCell is more useful across a wider range of spreadsheets.
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3.5.2 Case Study: The Reinhart and Rogoff Spreadsheet

In 2010, the economists Carmen Reinhart and Kenneth Rogoff, both now at

Harvard, presented results of an extensive study of the correlation between indebtedness

(debt/GDP) and economic growth (the rate of change of GDP) in 44 countries and over

a period of approximately 200 years [83,84]. The authors argued that there was an

apparent “tipping point”: when indebtedness crossed 90%, growth rates plummeted.

The results of this study were widely used by politicians to justify austerity measures

taken to reduce debt loads in countries around the world [55].

Although Reinhart and Rogoff made the original data available that formed the

basis of their study, they did not make public the instrument used to perform the

actual analysis: an Excel spreadsheet. Herndon, Ash, and Pollin, economists at the

University of Massachusetts Amherst, obtained the spreadsheet. They discovered

several errors, including the apparently accidental omission of five countries in a range

of formulas [55]. After correcting for these and other flaws in the spreadsheet, the

results invalidate Reinhart-Rogoff’s conclusion: no tipping point exists for economic

growth as debt levels rise.

While some of the errors in the Reinhart-Rogoff spreadsheet are out of scope for

CheckCell, we wanted to know whether CheckCell would be able to verify any

of the other errors or discover new ones. We obtained the Excel spreadsheet directly

from Carmen Reinhart and ran CheckCell on it. CheckCell singled out one cell

in bright red, identifying it as a value with an extraordinary impact on the final result.

We reported this finding to one of the UMass economists (Michael Ash). He confirmed

that this value, a data entry of 10.2 for Norway, indicated a key methodological

problem in the spreadsheet. The UMass economists found this flaw by careful manual

auditing after their initial analysis of the spreadsheet (emphasis ours) [6]:

For example, Norway spent only one year (1946) in the 60-90 percent
public debt/GDP category over the total 130 years (1880-2009) that
Norway appears in the data. Norway’s economic growth in this one
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year was 10.2 percent. This one extraordinary growth experience
contributes fully 5.3 percent (1/19) of the weight for the mean
GDP growth in this category even though it constitutes only
0.2 percent (1/445) of the country-years in this category. Indeed
Norway’s one year in the 60-90 percent GDP category receives equal weight
to, for example, Canada’s 23 years in the category, Austria’s 35, Italy’s 39,
and Spain’s 47.

This case study demonstrates data debugging’s utility not only for detecting errors

but also for understanding structural flaws in computations.

3.6 Conclusion

This dissertation presents data debugging, an approach aimed at finding potential

data errors by locating and ranking data items based on their overall impact on

a computation. Intuitively, errors that have no impact do not pose a problem,

while values that have an unusual impact on the overall computation are either very

important or incorrect. We present the first data debugging tool, CheckCell, which

operates on spreadsheets. We evaluate CheckCell’s performance analytically and

empirically, showing that it is reasonably efficient and effective at helping to find data

errors.

52



CHAPTER 4

EXCELINT: DEBUGGING SPREADSHEETS WITH
SPATIAL AND STRUCTURAL ANALYSIS

The last challenge in data analysis is writing correct analyses using spreadsheets.

This dissertation presents spatio-structural analysis, a novel statistical and static anal-

ysis technique that automatically identifies errors in spreadsheets. Spatio-structural

analysis reduces the problem of finding errors to that of finding anomalous formulas—

both in terms of their structure and of their position on a spreadsheet—without

relying on heuristics or domain knowledge. Previous work in conventional program-

ming languages has shown that anomalous code is often wrong [25,29,34,49,82,93].

Spatio-structural analysis extends this observation into the setting of spreadsheet

formulas.

ExceLint1 is the first spatio-structural analysis tool used to analyze spreadsheets,

written as a plugin for Microsoft Excel. ExceLint has two novel visualizations

designed to aid the programmer in finding and fixing formula errors. The first

visualization—a kind of lightweight program understanding tool—overlays a spread-

sheet with a regularity map. A regularity map shows programmers those regions

of a spreadsheet where data reference invariants are maintained. This visualization

helps users quickly locate errors by taking advantage of the innate human ability to

perceive deviations from visual patterns: discrepancies “pop out”, making them easy

to find (see Chapter 4.3.1.1). The second mode is a visualization for proposed fixes

1Barowy, Daniel W., Berger, Emery D., and Zorn, Benjamin. ExceLint: Debugging Spreadsheets
with Spatial and Structural Analysis. Manuscript in preparation.
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that helps users quickly locate the most egregious errors and their suggested fixes, and

is particularly useful for very large spreadsheets that are hard to view all at once (see

Chapter 4.3.1.2). Both modes complement each other. For example, programmers

can use the regularity map to understand the context for proposed fixes.

ExceLint is evaluated against 29 annotated worksheets drawn from the EUSES

spreadsheet corpus [42]. The evaluation shows that the problem of finding reference

errors in a spreadsheet can effectively be reduced to the statistical problem of finding

anomalous references, without relying on heuristics or domain knowledge. ExceLint

dramatically reduces the effort needed to audit spreadsheets and it improves on the

state of the art by providing a high precision, user-friendly bug finding tool.

4.1 Approach

Spatio-structural analysis consists of three key phases. The first phase abstracts

spreadsheet formula references, summarizing them only by their reference behavior.

The second phase mines likely reference invariants, by clustering formulas by their

fingerprints. The third phase uses this clustering to identify anomalous formulas and

data. It then proposes “fixes,” those likely errors and their corrections, which it ranks

by their impact on an error model of the spreadsheet. Finally, depending on the

visualization requested by the user, either the clustering or the ranked proposed fixes

are returned and displayed.

4.1.0.1 1st Phase: Discovering Formula Reference Behavior

A reference vector is a novel spreadsheet formula abstraction that unifies spatial

and structural information into a single geometric construct, namely a vector. Spatial

information, namely the position of a formula within a spreadsheet, is encoded as the

“tail” of a vector (i.e., the “origin”). Structural relationships, namely the locations
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of data dependencies from the formula’s data dependence graph, are encoded as the

“head” of the vector (i.e., the “target”).

Since spreadsheets are three-dimensional constructs—cells in a worksheet are

located in a two dimensional grid, and spreadsheet workbooks often contain multiple

worksheets—both the “tail” and the “head” of a reference vector are encoded using x,

y, and z coordinates. The “head”, which is the location of a referent, is denoted x′, y′,

and z′.

For example, given a cell C3 containing the formula =A3 + B3 + 4, which has

three data references (A3, B3, and 4), spatio-structural analysis produces three vectors,

one for each reference: C3→A3, and C3→B3, and C3→4.

Constants embedded in a formula pose a challenge to represent in vector form, such

as the reference vector C3→4. A naive vector encoding would produce zero-length

vectors, since constants are co-located with the formula in the formula expression. To

address this, reference vectors have an additional dimension, dc, which is 1 if there is

an embedded constant, otherwise 0. Reference vectors are discussed in more detail in

Chapter 4.2.3.

The set of reference vectors for C3→A3, and C3→B3, and C3→4 are encoded as

<3,3,0,-2,0,0,0>, <3,3,0,-1,0,0,0>, and <3,3,0,0,0,0,1>, respectively. Note

that, by design, a different formula with a similar reference pattern yields a similar set

of reference vectors. For example, the formula =A4 + B4 + 5 located at cell C4 yields

the reference vectors <3,4,0,-2,0,0,0>, <3,4,0,-1,0,0,0>, and <3,4,0,0,0,0,1>.

Since later phases of spatio-structural analysis need to compare the reference

behavior of two or more formulas, each formula’s set of reference vectors is compressed

into a formula fingerprint using a vector hash function. The precise vector hash

function used depends on the phase of the analysis, but in general, fingerprints

summarize reference vectors so that the degree of similarity between two formulas

can be computed with an appropriate distance function. For example, the location
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fingerprint for the formula =A3 + B3 + 4 in cell C3 is <3,3,0,-3,0,0,1>. The

location fingerprint for the formula =A4 + B4 + 4 in cell C4 is <3,4,0,-3,0,0,1>.

When paired with Euclidean distance, the distance between formulas C3 and C4, which

both perform the same computation in adjacent cells, is 1, the smallest distance

between any two formulas on a spreadsheet. A location-free fingerprint elides location

information such that both formulas in C3 and C4 yield the fingerprint <-3,0,0,1>;

the Euclidean distance between them is zero. Zero distance between two fingerprints

indicates that the two functions have the same reference behavior2.

Vector hash functions and fingerprints are described in detail in Chapter 4.2.4.

4.1.0.2 2nd Phase: Finding Likely Reference Invariants

The second phase is to identify spatial and structural patterns using the vector

fingerprint summaries described in the previous step. To achieve this, spatio-structural

analysis performs a novel rectangular clustering analysis to identify reference patterns.

Because rectilinear composition of spreadsheet formulas is encouraged by spreadsheet

tools (see Chapter 1.1), the cluster analysis decomposes a spreadsheet into distinct

rectangular regions characterized by the same reference pattern. Clusters indicate

the programmer’s likely intent to maintain a reference invariant in a given region

of a spreadsheet. For example, if formulas in cells C3 and C4 described earlier were

the only formulas in the spreadsheet, they would likely belong to the same cluster.

Numeric data, headers, and whitespace are also clustered.

Clustering is described in detail in Chapter 4.2.5.

4.1.0.3 3rd Phase: Finding Likely Bugs

Finally, spatio-structural analysis uses the rectangular clustering to construct an

error model. Because a reference error results in a formula with a different formula

2Except in the case of hash collisions, since fingerprints are actually hashes.
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fingerprint than the intended formula, the clustering will reflect this fact; formula

clusters never contain formulas with different location-free fingerprints.

We observe that a common mistake is failing to correctly update references for copy-

and-pasted formulas. These erroneous formulas tend to produce an irregular clustering,

since mistakes are adjacent to formulas that correctly maintain a reference invariant.

An important property of the rectangular clustering is that irregularities produce

more a more complex clustering—literally, more rectangles—and a more complex

clustering results in an increase in entropy when compared to simpler clusterings.

Spatio-structural analysis uses this difference in entropy to find likely reference bugs.

Because spatio-structural analysis utilizes an anomaly-based approach, suspected

bugs are always paired with likely reference invariants. This pair is naturally suggestive

of a proposed fix. A proposed fix models the effect of correcting a spreadsheet formula

error by replacing the erroneous formula with the correct formula. A good fix reduces

the model’s entropy while a bad one either has no effect or increases it. Nonetheless, a

simple reduction in entropy is not sufficient to find a good fix because of the presence

of pathological fixes such as the following: replace all formulas with a single formula.

The entropy of such a fix (ignoring other cells such as whitespace and data) will be

zero. Instead, the model augments the fix fitness criterion with two other factors:

the fix distance between a formula’s and the invariant’s references, and the invariant

significance, literally, the number of nearby cells that observe the invariant.

Proposed fixes are ranked in a total order by the model, thresholded based on

a user-definable effort parameter (by default, 5%, based on the prior likelihood of

formula errors), and returned upon user request.

Proposed fixes and the error model are described in detail in Chapters 4.2.6

and 4.2.7.
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4.1.1 Contributions

Spatio-structural analysis and the ExceLint tool address the challenge of finding

errors in an increasingly important domain—spreadsheets—for an audience that has

little programming ability—ordinary computer users. This dissertation chapter makes

the following contributions:

• Hybrid Statistical Static Analysis. Spatio-structural analysis is a novel

anomaly-based approach that casts likely program errors as a kind of statistical

outlier. While spatio-structural analysis is designed for spreadsheet programs,

it requires no large data sets, no model tuning, utilizes no heuristics, and

little domain knowledge outside basic reasoning about tabular programming

environments.

• Suggests Fixes in Context. Prior research into finding spreadsheet problems

primarily focuses on “flagging” potentially bad values. Spatio-structural analysis

goes a step further: potential errors are always returned with their suspected

invariants.

• User-Friendly Visualizations. ExceLint performs a complex hybrid statis-

tical and static program analysis on user programs, but these technicalities are

hidden from users. Instead, users interact with the analysis via a point-and-click

interface and intuitive visualizations that make reference errors easy to see.

These visualizations allow a user to understand why a potential fix is being

suggested, without having to understand the deep data dependence relationships

present in their spreadsheet.

• Interactive-Level Performance. Analyses must be carefully designed in

order to be useful in an interactive environment such as a spreadsheet bug

finder. The median runtime over a comprehensive benchmark suite shows that

ExceLint runs in just 7.83 seconds.
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Figure 4.1: Finding a bug using ExceLint’s regularity map. The map shows that
the programmer fails to maintain a reference invariant in column H. The user can
immediately see that something is amiss without having to inspect every formula.

Figure 4.2: Finding a bug using ExceLint’s proposed fix tool. The tool shows that
H60 is significantly unusual and suggests that it should be more like the cells in H58

and H59.

4.1.2 Spatio-Structural Analysis

As with all anomaly-based analyses, it is important to find a domain where rare

violations of a template model the occurrence of the error in the real world. In

spreadsheets, while nearly all spreadsheets contain at least one error, the per-cell error

rate is low, typically around 5% [11,76]. Anomaly analysis has the potential to find

errors in spreadsheets without having to manually extract domain rules.

We build on the anomaly analysis approach with spatio-structural program analysis.

Spatio-structural analysis focuses on a single statistical feature: reference invariants.

Reference invariants state that a given set of formulas must all obey the same reference

behavior. Spatio-structural analysis goes beyond frequency counts of templates:
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frequencies are conditioned by neighboring spreadsheet constructs and are checked

against an error model before being ranked and presented to the user. Spatio-structural

analysis is the first such anomaly analysis designed to find bugs in spreadsheet formulas,

and requires no hard-coded rules of any kind.

Figure 4.1 shows ExceLint’s regularity map visualization, which is built on top

of spatio-structural analysis. It is immediately apparent that something is unusual

with the cells in column H. First, cell H57 is colored blue, which indicates that it is

data like the cells found to its left. In fact, this cell should be a formula. Cells H58,

H59, and H62 stand out because they are colored orange. All of these cells exhibit an

off-by-one reference error that instead computes the row total for the row one below.

Finally, cell H60 is colored yellow. This cell exhibits an off-by-two reference error that

computes the row total for the row two cells below. When using the regularity map

visualization, all of these problems immediately “pop out.”

Figure 4.2 shows ExceLint’s proposed fixes visualization. This visualization shows

that cell H60, colored in red, is significantly different than other cells marked in green.

The green color suggests that the formula in H60 should be “more like” the formulas

in H58 and H59.

4.1.3 Reference Bugs

Since much prior work on bug-finding for spreadsheets focuses on either pattern-

based or smell-based detection, authors generally avoid defining the performance of

their tools in terms that state definitively whether a flagged cell or program construct

is incorrect. While many of these tools produce helpful output, particularly when it

comes to bad style, users cannot be certain that the tools actually help them find

bugs.

This work attempts to find bugs, and defines its purpose narrowly. Specifically,

spatio-structural analysis searches for reference bugs. Reference bugs violate reference

60



invariants. Specifically, they either (1) include an extra reference, (2) omit a reference,

or (3) misreference data (e.g., they point to the wrong cell) when compared to other

formulas in a computation. A reference bug does not a guarantee that the calculation

returns the wrong value. For instance, accidentally summing over an additional cell

that happens to be blank does not produce the wrong value. Nonetheless, we view

the formula as wrong because a user who enters a value in the blank cell—thinking

that the cell does not relate to the calculation—will introduce a calculation error into

the spreadsheet.

As discussed in Chapter 1.3.1, reference bugs come in two varieties: manifest

errors and latent errors. Manifest errors produce the wrong output. Latent errors

may produce the wrong output if the user later modifies the spreadsheet. For example,

accidentally summing over an extra cell will produce the wrong value if the user later

enters a value into that cell without realizing that the sum refers to it. These errors are

latent because future spreadsheet maintenance may cause them to become manifest

errors.

Spatio-structural analysis fundamentally cannot determine whether a reference

anomaly is a reference bug or simply an unusual but correct construction. Such

judgements require understanding user intent, which is beyond the capabilities of any

static analysis. Nonetheless, such anomalies are strongly suggestive of errors, as our

evaluation shows (see Chapter 4.4).

4.1.3.1 Bug Duals

One consequence of anomaly detection is that it draws attention to both anomalous

and non-anomalous code. While anomaly detection reveals many real bugs, it is not

always the case that the true bug is the anomaly. Sometimes the true bug is the

prevailing pattern while the anomaly is correct. In the context of spreadsheets, these

kinds of errors can arise because copying and pasting of formulas is common. When a
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user neglects to update references for the copy-and-pasted set of new formulas, the

majority of the formulas can be wrong. Our experience with the ExceLint tool

suggests that it is sufficient to flag either the anomaly or the non-anomaly in order to

find the bug. In fact, this motivated the design of the formula fix tool which always

highlights both anomalies and non-anomalies in a paired fashion during an audit (see

Chapter 4.3.1.2).

We call these pairs bug duals. Formally, a bug dual is a pair containing two sets

of cells, (c1, c2). In general, we do not know which set of cells, c1 or c2, correctly

maintains an invariant. We do know, however, that all cells in c1 maintain one

invariant and that all cells in c2 maintain another. As a denotational convention we

always refer to the smaller set as anomalous and the larger set as non-anomalous.

Not surprisingly, bug duals mirror the structure of proposed fixes (see Chapter 4.2.6);

the presence of differing invariant clusters is, in fact, how spatio-structural analysis

identifies candidate fixes.

4.2 Algorithms

Spatio-structural analysis performs a number of component analyses, which are

described in the following sections.

4.2.1 Parsing and Data Dependence Analysis

ExceLint’s analysis of a spreadsheet begins by parsing all spreadsheet formulas

and running a data dependence analysis. Both analyses are frequently utilized as

components in more complex analyses like the one performed by ExceLint. Since

both techniques are well known, we only briefly describe them here.

4.2.1.1 Parsing

The first phase, parsing, converts the program text found in Excel spreadsheet

formulas, such as =SUM(A1:A10) into an abstract syntax tree, a tree that represents a
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set of program inputs and the operations to be performed on them. ExceLint uses

the AST of formulas in order to understand the semantics of a given formula, it’s

dependence on other formulas and values, and its location in the spreadsheet.

4.2.1.2 Dependence Analysis

The second phase, a dependence analysis, is a well-known static analysis that deter-

mines whether a program statement depends on another program statement [26]. For

example, the pseudocode program a := 1; b := a + 1; exhibits a data dependency

from b to a, meaning that b cannot be computed without first computing a.

One form of a dependence analysis produces what is called a data dependence graph.

A data dependence graph represents data dependencies as directed edges in a graph.

Program statements are nodes in the graph. By building such a graph, an analysis

has access to data dependence information for every statement in a program. While

spreadsheets are strictly functional programs and do not have program statements as

in traditional procedural programming languages, data dependence graphs can still be

constructed for them.

Let G be the data dependence graph for a spreadsheet program. Let V be the

set of cells in a spreadsheet, and let E be the set of data dependencies between cells.

Since Excel is a pure, functional programming language, its dependence graph normally

contains no cycles3. Note that we introduce cycles into this graph to denote embedded

constants, which can be thought of a data references to the same location that a

formula resides. These are the only cycles in what would ordinarily be a directed

acyclic graph.

ExceLint utilizes the procedure in Figure 4.3 to obtain the dependence graph

for a spreadsheet. Note that Excel distinguishes between single-cell references, which

3Cycles are exceedingly rare in real-world use, they not obvious to implement, and if you do
happen to implement a cycle, Excel issues a warning. The semantics of cycles are of a fixed point
iteration so that Excel programs always terminate.
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point to a single cell, and reference ranges, which point to a (typically) contiguous,

rectangular region of cells. Reference ranges are often used in formulas that take

vectors inputs, such as SUM.

The time and space complexity of the dependence analysis are both proportional

to the number of references found in a given workbook. In practice, the cost of parsing

and building the graph is outweighed by the cost of marshaling spreadsheet data from

Excel into the analysis. Marshaling is expensive because data objects that reside with

Excel are written using the Component Object Model (COM) framework [68] and

must be copied and converted from an Excel native-language process to an ExceLint

managed-language process (see Chapter 4.3).

Dependence-Analysis(V )

1 E = {}
2 for each cell v ∈ V
3 if v is a formula
4 ast = Parse(GetFormula(v))
5 refs = ExtractReferences(ast)
6 for each ref ∈ refs
7 if ref is a range
8 E = E ∪ ref
9 else E = E ∪ {ref}

10 return (V,E)

Figure 4.3: Spreadsheet dependence analysis algorithm. It takes in a set of cells,
V , and returns a graph, G = (V,E). The function ExtractReferences returns the
set of edges between the given cell v its referents as encoded in v’s AST. The only
wrinkle when building an Excel dependence graph is that single-cell references (such
as A3) and reference ranges (such as A3:A10) must be handled specially to build the
dependence graph.

4.2.2 Data References

Spreadsheets typically (and Excel in particular) have two kinds of references:

single-cell references and range references. A single-cell reference refers to a single
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cell: for example, the formula =A1 indicates that the formula should simply return

the value stored in cell A1. Range references refer to multiple cells: for example, the

formula =SUM(A1:A10) denotes that all of the values in the contiguous range of cells

between A1 and A10 inclusive should be summed.

Note that range references are not limited to contiguous ranges of cells. The

range A1:A10,B1:B10 is an example of a single, valid discontiguous range reference

combined with a comma; Excel calls this comma syntax the range union operator. For

ease of processing, ExceLint converts all range references into a set of cell references

during dependence analysis.

4.2.3 Reference Vectors

Figure 4.4: The set of reference vectors for a formula. The formula in cell C10 “points”
to data in cells C5:C9. Reference vectors encode this simple idea.

A reference vector is the basic unit of analysis in ExceLint. It encodes not just

the data dependence between two cells in a spreadsheet, it also captures the spatial

location of the referee and the spatial location of the referent on the spreadsheet.

Reference vectors can represent all references found in Excel, even references between

worksheets and other workbooks.
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Intuitively, a vector can be thought of as an arrow that points from a formula to

one of the formula’s references. Every reference has an associated vector. For example,

the formula =SUM(C5:C9) in cell C10 (see Figure 4.4) “points” from cell C10 to cells

C5 through C9 inclusive. Vectors may cross worksheets and even workbooks (i.e., they

may reference cells in other files).

4.2.3.1 Addressing Modes

Excel has two addressing modes, known as relative addressing and absolute ad-

dressing. Note that these are different from what Excel calls the reference style, which

is the coordinate system used in formulas. The familiar A1 reference style represents

columns as letters and rows as integers, while the R1C1 style represents both rows and

columns as integers, starting from 1.

Relative addresses use references relative to the formula, while absolute addresses

use addresses relative to the spreadsheet origin, the top left corner of the spreadsheet.

Note that in Excel both address reference components, the horizontal component and

the vertical component, may each have a different addressing mode. For example, the

reference $A1 has an absolute horizontal and a relative vertical component while the

reference A$1 has a relative horizontal and an absolute relative component.

Addressing modes are not useful by themselves. Instead, they are annotations

that help Excel’s automated copy-and-paste tools, such as Formula Fill, to generate

updated addresses for copied formulas. For example, if cell C1 contains the formula

= $A$1 + B1, and Formula Fill is employed to copy C1 to cells C2 through C10,

the reference to B1 will be updated based on the location of the copy while $A$1

remains fixed. For instance, the copy in cell C10 will be = $A$1 + B10. Failing to

use reference mode annotations correctly will cause Formula Fill to generate incorrect

formula copies.
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4.2.3.2 Vector Form

Reference vectors have the following form:

ref =< x, y, z, x′, y′, z′, c >

where x, y, and z denote numerical column, row, and worksheet indices of a referee

cell in a spreadsheet, namely, the location where the reference is used in a formula.

x and y coordinates have the same semantics as Excel’s alternate one-based R1C1

addressing mode. z is defined by a canonical ordering of the sheets included in an

analysis, by default a lexicographical order of worksheet names, and is also one-based.

x′, y′, and z′ denote the numerical column, row, and worksheet indices of the referent

cell, namely, the location to which the reference points. Finally, c denotes either the

presence of an embedded formula constant, in which case its value is 1, or the presence

of a string value, in which case its value is −1, or that the cell contains no formula, in

which case its value is 0.

Every data reference in a formula has exactly one corresponding reference vector.

For example, the formula =SUM(A1:A2) + 1 + 2 in cell B1 has four data references,

B1 → A1, B1 → A2, B1 → 1, and B1 → 2. The reference vectors for these data

references are < 2, 1, 0, 1, 1, 0, 0 >, < 2, 1, 0, 1, 2, 0, 0 >, < 2, 1, 0, 0, 0, 0, 1 >, and

< 2, 1, 0, 0, 0, 0, 1 >, respectively.

Non-formula cells also have a corresponding reference vector, depending on whether

their contents are empty, numeric-, or string-valued. For example, an empty cell in

B2 has a single reference vector, < 2, 2, 0, 0, 0, 0, 0 >. A numeric cell in the same

location would be < 2, 2, 0, 0, 0, 0, 1 >. A string-valued cell, such as a header, in the

same location would be < 2, 2, 0, 0, 0, 0,−1 >.
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4.2.3.3 Computational Agnosticism

Reference vectors are computation agnostic, meaning that only the spatial and

structural characteristics of formulas matter. Spatio-structural analysis abstracts away

the exact function calls used in a formula, for example AVERAGE versus SUM. At first

glance, this appears to be a limitation. However, discerning whether a programmer

intended to use AVERAGE instead of SUM requires understanding programmer intent;

reporting such information runs the risk of producing more false positives. By

automatically filtering out this information, spatio-structural analysis improves its

precision.

An example from a real-world spreadsheet is illustrative. Cell C114 in a financial

spreadsheet4 contains the formula =SUM(B114+C111). This calculation is repeated

across the row to the right. However, one cell in the calculation contains the formula

=+D114+E111, which drops the SUM and introduces an extra unary plus sign. Both

the use of SUM and the unary plus are incorrect, but neither are manifest nor latest

bugs. The SUM adds a single number to zero, and the unary plus does nothing to the

sign of the formula, so neither has any effect, nor will they in the future. While the

two formulas are syntactically different, they are semantically equivalent. Because

spatio-structural analysis focuses exclusively on reference behavior, it treats these

formulas as identical, and reports neither of them as anomalous.

4.2.3.4 Relative Vectors

Spatio-structural analysis typically works with a relative form of a vector. This

relative vector is computed differently depending on whether the horizontal or vertical

component of the vector is absolute or relative, respectively. For an absolute component,

the origin of the vector is the top, left corner of the spreadsheet (1, 1). For a relative

component, the origin is the location of the formula, (x, y, z).

43763250 Q304 factsheet.xls, from the EUSES corpus [42].
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Consider the reference $D22 for a formula located in E3. The horizontal component,

D, which translates in R1C1 style to x = 4, is absolute, so the x′ component of

E3’s relative vector will be 4. The vertical component, 22, is relative, so the y′

component of E3’s relative vector will be −18. The complete relative vector for E3 is

< 5, 3, 0, 4,−18, 0, 0 >.

4.2.3.5 Reference Conversion

After the dependence analysis is run, every data dependency, including embedded

constants in formulas, is converted into a relative reference vector. As with dependence

analysis, the time and space complexity for this conversion is proportional to the

number of references in a workbook.

4.2.4 Vector Fingerprints

ExceLint’s statistical analysis requires one-vector summaries of formula reference

behavior in several phases of its analysis. Vector fingerprints serve this purpose. A

vector fingerprint is a hash function from a set of reference vectors to another vector.

Spatio-structural analysis utilizes two forms of fingerprints. Both fingerprint require a

computational cost proportional to the number of references being hashed together,

which is usually small.

The following helper functions are useful in defining vector fingerprints.

r computes the relative vector (see “Relative Vectors” above) for a given reference

vector,

r(< x, y, z, x′, y′, z′, c >) =< x, y, z, x′ − x, y′ − y, z′ − z, c >

t truncates the given reference vector, returning a location-free reference vector,
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t(< x, y, z, x′, y′, z′, c >) =< x′, y′, z′, c >

while e zero-extends a location-free reference vector.

e(< x′, y′, z′, c >) =< 0, 0, 0, x′, y′, z′, c >

i makes the given reference vector off-sheet address insensitive.

i(< x, y, z, x′, y′, z′, c >) =


< x, y, z, x′, y′, 0, c >, if z′ = 0.

< x, y, z, 0, 0, 1, c >, otherwise.

z truncates the given reference vector, returning a location-sensitive zero vector.

z(< x, y, z, x′, y′, z′, c >) =< x, y, z, 0, 0, 0, 0 >

4.2.4.1 Location-Free Fingerprints

The first type of fingerprint, a location-free fingerprint, is defined by the following

hash function,

hf (V ) =
∑
v∈V

t(r(i(v)))

where addition in this context is ordinary vector addition. Location-free fingerprints

are the sum of the (off-sheet insensitive) relative components of a set of vectors.

Location-free fingerprints are chosen to have the property, when paired with

Euclidean distance, such that the distance between any two formulas sharing the same

location-free fingerprint is zero. In other words, two formulas in any two different

locations “collide” if their location-free fingerprints are the same. This property aids

in computing the frequency of a formula in a spreadsheet.
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An intuitive way to think of location-free fingerprints is as resultant vectors, a

concept borrowed from engineering and physics. Here, the relative components of a

vector are added together “head to tail” to produce a single vector.

Note that the extra step of truncating z′ is taken because it was observed early

on that while it is useful to know that a reference is off-sheet, information about the

precise location of the referent on the other sheet is not. In fact, we observed that very

few off-sheet references follow any discernible pattern, even to a human eye. Omitting

off-sheet location information produces a dramatic improvement on the precision of

spatio-structural analysis.

4.2.4.2 Location-Sensitive Fingerprints

The second type of fingerprint, a location-sensitive fingerprint, is defined by the

following hash function,

hs(V ) = z(v′) + e(hf (V ))

where v′ is any vector in V .

Location-sensitive fingerprints are chosen to have the property, when paired with

Euclidean distance, such that the distance betweem two formulas sharing the same

location-free fingerprint but located in adjacent cells is one. Euclidean distance in this

context allows ExceLint to reason about formula similarity both in terms of location

on a spreadsheet and reference behavior.

4.2.5 Vector Clustering

The purpose of vector clustering is to group formulas by a combination of spatio-

structural and geometric factors as a basis for identifying anomalous formulas. Vector

clustering utilizes location-free fingerprints for its analysis, and absent other constraints,

this means that all pairs of formulas with zero distance between them belong to the

same cluster. Nonetheless, an additional constraint, that all clusters must be contiguous
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and rectangular, is imposed on the clustering procedure. This additional constraint is

imposed because Excel’s automated processing tools bias worksheets toward composing

spreadsheet programs in a rectilinear fashion. Users who fight Excel in this regard

find themselves with ad hoc layouts that are extraordinarily difficult to work with (see

Chapter 1.1). Consequently, we rarely see non-rectilinear spreadsheet layouts outside

of Excel’s alternate use as a kind of “poor man’s database.”

Vector clustering helps answer a question about user intent, namely whether

an unusual formula construct is a mistake or if it was intended. As was discussed

earlier, knowing programmer intent is a virtual impossibility. Nonetheless, one way to

approach the problem is to identify all potentially anomalous cells, and for each one,

propose one or more fixes, and observe whether fixes improve an error model of the

spreadsheet in some way.

4.2.5.1 Rectangular Decomposition

To produce a clustering of a spreadsheet amenable to our ideal error model, the

clustering should have a few features. 1) Since spreadsheets containing formulas

strongly encourage rectilinear composition, all clusters are rectangular. 2) Since

users often utilize strings and whitespace in semantically meaningful ways, such

as dividers between different computations, all cells, whether they contain strings,

whitespace, numbers, or formulas should be clustered. 3) Finally, clusters should

be as big as possible while still remaining meaningful, in order to capture the fact

that adjacent formulas that compute the same thing are not likely to be parts of

different computations. In other words, the fact that people place generally place

similar formulas together is semantically meaningful, and the analysis should attempt

to preserve this information.

Spatio-structural analysis employs a top-down, recursive decomposition that splits

spreadsheet regions into two subdivisions according by minimizing a simple statistic,
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normalized Shannon entropy [87]. Specifically, spatio-structural analysis performs a

recursive binary decomposition that, at each step, chooses the split that minimizes the

sum of the normalized Shannon entropy of location-free vector fingerprints in both

subdivisions. Normalized Shannon entropy is employed since the binary partitioning

process in no way guarantees that entropy comparisons are being made for equal-sized

sets; normalization ensures that comparisons are well-behaved [13].

Normalized Shannon entropy is defined as:

η(X) = −
n∑
i=1

p(xi) logb p(xi)

logb n

4.2.5.2 Rectangular Decomposition Algorithm

The procedure BinaryMinEntropyTree in Figure 4.5 shows ExceLint’s rect-

angular clustering algorithm for a given 2D worksheet, S. The procedure returns a

tree; regions are stored in the leaves. A cell is an (x, y) coordinate pair. S is a set of

cells, initially the entire spreadsheet. H computes the normalized Shannon entropy,

where the entropy of the empty set is defined as +∞. Values returns the set of

distinct location-free fingerprint values for the given region. Finally, Leaf and Node

are constructors for a leaf tree node and an inner tree node, respectively.

BinaryMinEntropyTree bears some resemblance to the ID3 decision tree in-

duction algorithm from machine learning [79]. As with ID3, BinaryMinEntropyTree

usually produces a good binary tree, although not necessarily the optimal (i.e., the

shortest) tree. Instead, the tree is decomposed greedily, with a worst case running

time proportional to the largest number of binary subdivisions of a rectangular grid.

After building the tree, clusters can be extracted by visiting the leaves of the tree

and extracting the set of cells stored in each leaf. Leaves correspond to exactly one

cluster.
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BinaryMinEntropyTree(S)

1 if l = r and t = b
2 return Leaf(S)
3 else
4 Left = λx.{ cell ∈ S | fst(cell) < x}
5 Right = λx.{ cell ∈ S | fst(cell) ≥ x}
6 Top = λy.{ cell ∈ S | snd(cell) < y}
7 Bottom = λy.{ cell ∈ S | snd(cell) ≥ y}
8 EntV = λx.H(Left(x)) + H(Right(x))
9 EntH = λy.H(Top(y)) + H(Bottom(y))

10 x = argminl≤x≤r EntV(x)
11 y = argmint≤y≤bEntH(y)
12 (p1,p2) = top, bottom
13 ent = 1.0
14 if EntV(x) ≤ EntH(y)
15 (p1,p2) = left, right
16 ent = EntV(x)
17 else
18 ent = EntH(y)
19 if ent = 0.0 and Values(p1) = Values(p2)
20 Leaf(S)
21 else
22 t1 = BinaryMinEntropyTree(p1)
23 t2 = BinaryMinEntropyTree(p2)
24 Node(t1, t2)
25 return (V,E)

Figure 4.5: BinaryMinEntropyTree algorithm. BinaryMinEntropyTree de-
composes a spreadsheet into rectangular regions by minimizing the entropy of the
distribution of vector fingerprints between splits. The procedure returns a tree; re-
gions are stored in the leaves. A cell is an (x, y) coordinate pair. S is a set of cells,
initially the entire spreadsheet. H computes the normalized Shannon entropy, where
the entropy of the empty set is defined as +∞. Values returns the set of distinct
location-free fingerprint values for the given region. Finally, Leaf and Node are
constructors for a leaf tree node and an inner tree node, respectively.

74



4.2.5.3 Adjacency Coalescing

While the BinaryMinEntropyTree algorithm is guaranteed to produce rect-

angular regions, it is not guaranteed to produce the optimal (i.e., smallest) tree. It is

often the case that some adjacent cells that induce the same fingerprint are stored in

different leaves of the tree. Coalescing merges these adjacencies subject to two rules,

producing a better clustering: 1) the clusters are adjacent, and 2) the merged clusters

are a contigious, rectangular region of cells.

This algorithm is a fixed-point computation, merging two regions at every step,

and terminates when no more merges are possible. In the worst case, this algorithm

takes time proportional to the total number of tree leaves produce by the binary

decomposition algorithm. In practice, the algorithm iterates a small number of

times, because the binary tree ususally produces a decomposition close to the ideal

decomposition.

4.2.6 Proposed Fixes

When a user fixes a reference bug in a formula, that formula’s fingerprint, which

summarizes its reference behavior, changes. If the user makes a change such that the

corrected formula now maintains a reference invariant, this change will be reflected in

the fingerprint clustering when the user re-runs the spatio-structural analysis. The

changed formula will have “joined” or “merged” with the cluster of other cells that

maintain the same reference invariant.

The purpose of proposed fixes is to explore the effect of such fixes. A proposed fix

is an operation that mimics the effect of “correcting” a formula. Since the working

hypothesis of the analysis is that unusual formulas are wrong, and that other, more

common formulas are likely correct, spatio-structural analysis leverages this fact to

identify which cells should be fixed, and how. Those fixes that do not cause formulas

to join existing invariant clusters are not likely to be good fixes.

75



Because running a new spatio-structural analysis for every proposed fix—of which

there may be hundreds or thousands for a given worksheet—is an expensive operation,

the analysis simulates the effect of the change instead. Since we know what the effect

will be, namely that the fixed cell joins an existing invariant cluster, the analysis

simply “moves” cells from one cluster to another. Exploring fixes in this manner is

relatively inexpensive because most of the existing analysis can be reused.

Formally, a proposed fix is the tuple (s, t), where s is a (nonempty) set of source

cells and t is a (nonempty) set of target cells. t must always be an existing cluster but

s may not be; source cells may be borrowed from other clusters. This pair should be

thought of as as operation that replaces the fingerprints of cells in s with those from

cells in t. Replacing fingerprints simulates the effect of a user changing the formula:

when a formula changes, so does its fingerprint.

Not all proposed fixes are good, and some are likely bad. Spatio-structural analysis

uses an error model to identify which fixes are the most promising. The error model

is discussed in the next section.

4.2.7 Entropy-Based Error Model

The purpose of an error model is to explore the potential effect of correcting

reference errors in a spreadsheet. The model should help both identify errors and to

see the impacts of correcting them.

Spatio-structural analysis uses an entropy-based model. The intuition of the model

is that reference errors, which result in irregularities in the rectangular clustering,

increase entropy relative to the same spreadsheet without errors. A proposed fix that

reduces entropy may be a good fix because it moves the erroneous spreadsheet closer

to the correct spreadsheet.

Since most formulas belong to large rectangular clusters, those that do not are

unusual and are likely good candidate fixes. The model allows the analysis to explore
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the impact of fixing these irregularies—making the spreadsheet more rectangular—

choosing only the most promising ones which are then presented to the user.

Formally, a model m is a set of cells in a worksheet (i.e., a rectangular clustering).

A set of proposed fixes of size n are a set of new models m′1 . . .m
′
n, where each m′i

contains one proposed fix (s, t)i. The impact of fix the (s, t)i is defined as the difference

in normalized Shannon entropy,

δηi = η(mi)− η(m)

Positive values of δηi correspond to increases in entropy and suggest that a proposed

fix is bad. Negative values of δηi correspond to decreases in entropy and suggest that

a proposed fix is good.

Somewhat counterintuitively, fixes that result in large decreases in entropy are

worse than fixes that result in small decreases. A fix that changes large swaths of

a spreadsheet will result in a large decrease in entropy, but this is not a good fix

for several reasons. First, the central hypothesis of anomaly analysis is that rare

anomalies are most indicative of errors. Since rare anomalies by definition make up

only a small proportion of a spreadsheet, fixing them should result in small (but

non-zero) decreases in entropy. The best fixes are those where the prevailing pattern

is a strong signal and so that corrections are minor. Second, large fixes are more work.

A primary goal is spatio-structural analysis is to maximize the user effort, steering

users toward those likely errors that are the hard to find and that maximize effort.

Informally, reference vector fingerprint clusters can be thought of as “summaries”

of the reference behavior of a spreadsheet. We assume that the programmer under-

stands the task at hand, and therefore, in general, the spreadsheet is well structured.

Nonetheless, we know from empirical studies of spreadsheet errors (see Chapter 4.1)

that users are likely to make a small number of errors, proportional to the size of the

spreadsheet. We seek those fixes that preserve the overall structure of the spreadsheet.
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An analogy to data compression is helps understand the intuition. Lossy data

compression, which also often utilizes the same entropy-based insight, seeks a similar

goal. The JPEG compression standard tries to find large regions of similar pixels,

which are then summarized, saving space, while preserving the overall appearance of

the image. Information loss is tolerable as long as the overall appearance of the image

is preserved.

4.2.7.1 Re-clustering

Executing a proposed fix yields a new model m̃i. This model is not yet the desired

outcome, as it is possible that a proposed fix causes adjacent clusters to change. For

example, a single error in the middle of a column of similar formulas will yield three

regions when clustered. A fix that adds such an anomaly into a cluster should split

the cluster, whereas a fix that does the converse should merge the neighboring clusters.

As a result, clustering and coalesing steps need to be repeated after proposed fixes are

executed, yielding the new model mi.

This is potentially an expensive operation. Fortunately, the binary tree decompo-

sition can be used sparingly under certain conditions. A split is defined as a fix that

produces an additional number of clusters after a fix operation. A fix that removes

a cell from the end of a cluster and moves it into an adjacent cluster is not a split

because the number of clusters does not increase. A fix that splits a cluster cannot

reduce entropy because more clusters cannot have lower entropy than fewer clusters.

Furthermore, the split is limited to the source cluster; merging a cell into a target

will never cause a split in the target. The binary tree decomposition algorithm only

needs to be run on source clusters to find new splits when a split would occur. Any

admissible (i.e., rectangular) merges resulting from a fix will be found by the coalescing

fixpoint algorithm, which is always run after a fix.
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4.2.7.2 Producing a Set of Fixes

Spatio-structural analysis considers all possible fixes for every reference invariant

cluster t–those cells that share a fingerprint–in the spreadsheet. Every cluster t is

paired with adjacent s, and the fix (s, t) is considered to be a candidate subject to

four conditions (below).

The analysis often produces far more proposed fixes than either the user is likely

to want to see. In many cases, there are also far more fixes than the likely number

of bugs in the spreadsheet. Some fixes are independent; applying fix fi and fj in

sequence has the same effect as applying them in the reverse order. Other fixes are

not independent; for instance, the analysis sometimes proposes more than one fix

utilizing the same source. Clearly, it is not possible to perform both fixes. As a result,

the analysis suppresses certain fixes, scores fixes by a fitness function, and then ranks

the fixes in order from most to least promising (i.e., in descending order by score),

thresholds the ranking and returns all proposed fixes below the threshold.

The cutoff threshold is a user-defined parameter that represents the proportion

of the worksheet that a programmer is willing to inspect. The default value, 5%, is

based on the observed frequency of spreadsheet errors in the wild (see Chapter 4.1).

The programmer may adjust the threshold to inspect more or fewer cells, depending

on their preference. In all cases, spatio-structural analysis returns the most promising

fixes below the cutoff.

4.2.7.2.1 Condition 1: Rectangularity. The first condition is that fixes pro-

duce rectangular layouts. This condition arises from the fact that Excel and other

spreadsheet languages have many affordances for rectangular composition of functions.

For instance, many functions—like SUM—are designed to take a single input vector.

An input vector in Excel is usually specified by the user with “range” syntax “:”,

such as A1:A10, which denotes a contiguous, rectangular region that includes all

cells between cell A1 and cell A10, inclusive. While it is possible in many cases to
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supply discontiguous regions using Excel’s “reference union” operator “,”, such as

A1,A5,A7:A10, doing so is cumbersome and is not supported by all functions that

take ranges. Spatio-structural analysis biases the search toward fixes (s, t) such that

s ∪ t is rectangular.

4.2.7.2.2 Condition 2: Compatible Datatypes. Likely anomalies are those

identified by fixes mi that produce small, positive values of δηi. Nonetheless, this is

not a sufficient condition to identify an anomaly. Small clusters can belong to data of

any type (string data, numeric data, whitespace, and other formulas). Fixes between

clusters of certain datatypes are not likely to produce desirable effects. For instance,

while a string may be replaced with whitespace and vice-versa, neither of these

proposed fixes have any effect on the computation, and are not formula-related errors.

Furthermore, while proposed fixes from strings and whitespace do indeed identify

certain kinds of bugs—typos and missing formulas—both of these fixes produce large

numbers of false positives because formulas are frequently adjacent to large whitespace

clusters (spreadsheet edges) and string clusters (headers).

We consider only proposed fixes of the following types: 1) fixes from formulas to

formulas, 2) fixes from numbers to formulas, and fixes from 3) formulas to numbers.

The first category includes classic formula data reference errors, such as omitting a

reference or a constant. The second category includes cases where a formula was

mistakenly omitted or where the computation is suspicious (i.e., “fudging” numbers

so that they add up to 100). The third category includes cases where formulas are

unexpectedly inserted into a primarily numeric region of a spreadsheet, which may

indicate either a copy-and-paste error, a suspicious computation (i.e., a converse

method of “fudging” numbers), or where the entire region itself probably should be

computed (i.e., a “bad neighborhood” of values).
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4.2.7.2.3 Condition 3: Inherent Computation Anomalies. Two common

forms of computation are inherently unusual in the spatio-structural domain: compu-

tation chains, and aggregate computations.

A computation chain is a data cell d and an ordered sequence of formulas f0, . . . , fn

such that f0 refers to d and each fi, i > 0 refers to fi−1. This form of constructive

computation is commonly used in functional programs. For instance, the fold

operation seen in many functional progrmming languages is a computation chain.

Since spreadsheet languages like Excel are also functional, it is not surprising that we

see such structures arise in spreadsheets.

During spatio-structural analysis, d almost always ranks highly in anomalousness.

It often sits adjacent to a large cluster of formulas, namely the computation chain.

For example, spreadsheet users often number the rows of a spreadsheet with the first

row starting at 1 and with subsequent rows refering to the previous one, as in =A1+1,

=A2+1, . . ., AN + 1. Since d is usually a false positive, spatio-structural analysis

excludes any proposed fix with {d} as its source and {f0, . . . , fn} as its target.

An aggregate computation is a formula cell fa and a set of input cells c0, . . . , cn

such that fa refers exclusively to c0, . . . , cn. Again, this is a form of computation

commonly seen in functional languages, particularly in languages with a statistical

flavor like R. Excel comes with a large set of built-in statistical functions, so functions

of this sort are invoked frequently. Examples built-in functions are SUM, AVERAGE, and

so on, and so this is also a common construction seen in spreadsheets.

During spatio-structural analysis, fa also frequently ranks highly in anomalousness.

Like with computation chains, fa often sits adjacent to c0, . . . , cn, and so fa appears

unusual. Since fa is usually a false positive, spatio-structural analysis excludes any

proposed fix with {fa} as its source and {c0, . . . , cn} as its target.

Note that eliminating these false positives does not hurt the ability of the analysis

to find many bugs. For example, off-by-one references are extremely common in
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spreadsheets, where an aggregation like SUM refers to either one more or one fewer

element. Formally, fa refers to c0, . . . , cn, d (one more) or c0, . . . , cn−1 (one fewer).

Since spatio-structural analysis only excludes aggregates that refer exclusively to

c0, . . . , cn, it still catches these common errors.

4.2.7.2.4 Condition 4: Unlikely Fixes. While high-entropy formula layouts are

often indicative of bugs, programmers sometimes do produce error-free high-entropy

layouts. Layouts that fall into this category can be thought of as “bucking the trend” to

produce rectangular computations. Spreadsheets produced in this way will repeatedly

break the inferred reference invariants produced by the clustering stage of the analysis.

Consequently, without corrective action, the analysis will propose many unnecessary

fixes.

How do we detect such a situation? Since the central hypothesis of anomaly

detection is that only unusual errors should be reported, one way is to ensure that all

proposed fixes fix only rare problems. When a proposed fix appears frequently, it is

more likely to be indicative of an unusual layout than a bug.

For example, a common spreadsheet pattern is to use the rightmost column of a

table for summary purposes. Each row sums the cells to the left, and the rightmost,

bottommost cell is a sum-of-sums of the cells above it. ExceLint expects the

rightmost, bottommost sum to be anomalous (see “Inherent Computation Anomalies”

below). However, if a programmer repeatedly places the sum-of-sums elsewhere, the

analysis may not recognize the construction as inherently anomalous and may suggest

fixing it even though it is common in the spreadsheet. A real-world example of such

a case is shown in Figure 4.6. The pattern shown was widespread in this particular

spreadsheet, occuring more than 10 times. The regularity map, a kind of visualization

of the spatial clustering produced by the analysis (see Chapter 4.3.1.1) is shown in

Figure 4.7.
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Figure 4.6: A spreadsheet with an unusual invariant. The spreadsheet shown is from
the EUSES corpus [42]. The SUM formulas in column I are all off-center, computing
the sum of the values to the left and above in column H. These formulas compute the
correct value, but the spatio-structural invariant is difficult to infer because it is not
rectilinear.

Spatio-structural analysis corrects for overrepresented fixes by computing the

probability of a fix when drawn uniformly from all possible fixes for a spreadsheet. If

a given set of highly-ranked fixes is unlikely given their probabilty of being drawn at

random, then we conclude that there is bias toward a particular fix. Bias suggests

that the underlying problem is a repeated unusual pattern and not a bug. Those fixes

with strong biases are rejected.

Formally, let F be a set of fixes of size m. Recall that a fix is the tuple (s, t)

where s is a set of cells that violate a spatio-structural invariant and t is a set of

cells that do not. (s, t) represents the operation to correct each formula in si ∈ s

such that hf(si) = hf(tj) for any formula tj ∈ t (since ∀ti, tj ∈ t, hf(ti) = hf(tj)).

The probability of seeing a given fix is the multinomial probability p1, . . . , pk where k
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Figure 4.7: An example with high entropy invariant clusters. The same spreadsheet as
shown in Figure4.6 using the regularity map visualization (see Chapter 4.3.1.1). I51
and I58 sum over differently sized ranges than I40 and 45 so their spatio-structural
invariants are different and so are their colorings on the regularity map. Because they
also have an unusual spatial relationship with their references, the entropy model will
propose them as potential fixes. Since the pattern is common on this spreadsheet,
ExceLint supresses reporting them.

is the number of distinct fingerprints there are in a spreadsheet, and each pi is the

likelihood of of seeing a fix for a given fingerprint. Let c be the maximum number of

fixes generated for a fingerprint cluster; this number is a parameter of the formula fix

search algorithm. We set c = 4 in the current algorithm, since there are only four ways

to expand a rectangular cluster by merging with an adjacent rectangle such that merge

remains rectangular5. If there are mi fingerprint clusters for a given fingerprint, then

there are c ·mi possible fixes for that fingerprint. The probability of selecting a fix for

5Other variations of the algorithm might search “further”, by considering transitive adjacencies,
or by abandoning the constraint that merges must remain rectangular.
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fingerprint i at random is cmi∑k
j=1 cmj

= mi

m
where k is the number of fingerprint clusters.

The number of trials for the multinomial is n, the maximum number of potential fixes

returned to the user (i.e., the user-defined cutoff). By default, n = 0.05 · |C|, where C

is the number of cells in the spreadsheet.

Let X = (X1 = x1, . . . , Xk = xk) be the observed fingerprint counts for a sample

of n proposed fixes. To determine whether fingerprint i is overrepresented—whether

the count xi is extreme—compute the probability t = P (Xi ≥ xi). If t ≤ α then reject

the null hypothesis and suppress fixes with fingerprint i. By default, ExceLint uses

α = 0.05, which corresponds to a 95% confidence level.

4.2.7.3 Fix Distance

Among fixes with an equivalent entropy reduction, some fixes are better than others.

For instance, when copying and pasting formulas, failing to update one reference is

more likely than failing to update all of them, since the latter has a more noticable

effect on the computation. Therefore, a desirable criteria is one that favors smaller

fixes in location-sensitive vector fingerprint space.

The following distance is inspired by the earth mover’s distance [71].

d(x, y) =
n∑
i=1

√√√√ k∑
j=1

(hs(xi)j − hs(yi)j)2

where x and y are two models, where n is the number of cells in both x and y,

where hs is a location-sensitive fingerprint hash function, where i indexes over the

same cells in both x and y, and where j indexes over the vector components of a

fingerprint vector for fingerprints of length k. As a shorthand, we denote di to refer

d(m,mi).
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4.2.7.4 Entropy Reduction Impact Score

The quality of a fix is determined by an entropy reduction impact score, Si, which

computes the potential improvement between the original model, m, and the fixed

model, mi,

Si =
nt
−δηidi

where nt is the size of the target cluster, δηi is difference in entropy from mi to m,

and d is the fix distance.

The best fixes are found by maximizing Si. Since the best fixes minimize −δηi,

such fixes maximize Si. Likewise, “closer” fixes according to the distance metric also

produce higher values of Si. Finally, the score states a preference for fixes whose

“target” is a large cluster, what we call invariant significance. This preference ensures,

in keeping with the central hypothesis of anomaly analysis, that the highest ranked

deviations are actually rare with respect to a mined invariant.

4.2.7.5 Ranking and Thresholding

After the algorithm produces a set of candidate fixes, fixes that do not meet the

four conditions above are suppressed. The remaining set of fixes are ranked by their

entropy reduction impact score. Finally, the set of ordered fixes is thresholded by the

user parameter and returned to the user.

4.3 ExceLint Implementation

ExceLint is written in a mixture of C# and F# for the .NET managed language

runtime, written as a plugin for Microsoft Excel using the Visual Studio Tools for Office

(VSTO) interoperability framework. It is compatible with Excel versions 2010-2016.
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We used the same parser6 and dependence analysis7 libraries we developed for

CheckCell in the development of ExceLint. Both libraries were extended to

support additional features needed by ExceLint8.

4.3.1 Visualizations

Figure 4.8: The ExceLint toolbar. The “Regularity Map” button displays the
regularity map. The “Audit” button performs a cell-by-cell audit. See Sections 4.3.1.1
and 4.3.1.2.

ExceLint has two visual tools that assist users to find bugs. Both tools are based

on a spatio-structural analysis of the spreadsheet. The first is the regularity map tool,

which is described in Chapter 4.3.1.1. The other is the proposed fix tool described in

Chapter 4.3.1.2.

4.3.1.1 Regularity Map

The regularity map is a visualization for finding potential bugs in spreadsheets and

is the primary contribution of this work. The map takes advantage the keen human

ability to quickly spot deviations in visual patterns. A sample spreadsheet is shown in

Figure 4.9 and its corresponding regularity map is shown in Figure 4.10.

6https://github.com/plasma-umass/parcel

7https://github.com/dbarowy/Depends

8For example, CheckCell did not need to support the peculiarities of Excel address mode
annotations, which ExceLint does.
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Figure 4.9: A buggy spreadsheet shown with Excel’s formula view. This spreadsheet
was drawn from the FUSE corpus [9]. This sheet contains a number of irregularities,
many of which are not obvious even in formula view.

Figure 4.10: A buggy spreadsheet shown using ExceLint’s regularity map. This is
the same spreadsheet shown in Figure 4.9. Irregularities become apparent because
the map’s brightly-colored invariant blocks draw attention to unevenly-sized clusters.
Cells E6, F6, D17, and D20 are suspicious and warrant further investigation. In fact,
all of these visual cues are indicative of real problems.

The purpose of the regularity map is to draw attention to irregularities in the

spreadsheet. Each colored block, an invariant block, represents a contiguous region

where a single formula reference behavior is observed. While it can sometimes be easy

to see that a particular invariant is maintained or not in formula view, such as the
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discontiguity between cell E6 and cells E7:E11, in other cases, these differences are

subtle, as in the discontiguity between cell cell F6 and cells F7:F11. In fact, cell F6

sums over one additional cell.

While the underlying clustering is strictly rectangular for the purposes of entropy

modeling, we made the decision to reuse the same color in the visualization anywhere

the same vector fingerprint is used. For example, all the numeric data in the visualiza-

tion are shown using the same shade of blue, representing the fact that all the cells in

that region contain the same kind of data. Whitespace and string clusters are also

omitted from the visualization as they mostly distract the eye.

Colors are chosen to maximize perceptual differences. The runtime attempts to

assign colors such that adjacent clusters use a complementary or near-complementary

colors. This is essentially a graph coloring problem. The algorithm works by building

a graph of all adjacent clusters, then by coloring them using a greedy coloring heuristic,

largest degree ordering [91]. This scheme does not produce an optimal coloring, but it

does have the benefit of running in O(n) time, where n is the number of vertices in

the graph.

New colors are chosen according to the following scheme. Colors are represented

internally using the Hue-Saturation-Luminosity (HSL) model, which models all repre-

sentable colors on a computer as a cylinder (see Figure 4.11). Starting from a point

on the circle at the end of the cylinder, hue is the angle around this circle. Saturation

is a number from 0 to 1 and represents the distance from the center point of the

circle, with 0 being at the center. Luminosity is also a number between 0 and 1 and

represents a point along the length of the cylinder.

The algorithm begins by choosing colors at the starting point of hue = 180◦,

saturation 1.0, and luminosity 0.5. This corresponds to bright blue. Subsequent colors

are chosen with saturation and luminosity fixed, but with the hue being the value

that maximizes the distance on the hue circle between the previous color and any
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Figure 4.11: The Hue-Saturation-Luminosity (HSL) color model. Color is represented
as a point in a cylindrical space, with hue corresponding to the angle around the
circle, saturation to the length along the radius, and luminosity to the length along
the cynlinder. Image c©2010 Jacob Rus (CC BY-SA 3.0). The original image was
cropped.

other color. For example, the next color would be HSL(180◦, 1.0, 0.5) followed by

HSL(0◦, 1.0, 0.5) and then HSL(90◦, 1.0, 0.5) (see Figure 4.12). The algorithm is also

parameterized by a color restriction so that other colors may be used in overlays. For

instance, our algorithm currently omits bright red (HSL(0◦, 1.0, 0.5)) as we plan to

add additional imformation in the future using that color.

4.3.1.2 Proposed Fixes

Another visualization, the proposed fix tool, automates some of the human intuition

that makes the regularity map an effective tool. This visualization is essentially a

cell-by-cell audit of the highest-ranked proposed fixes generated in the third phase of

the spatio-reference analysis described in Chapter 4.2.7. Figure 4.13 shows an example

proposed fix. The portion in red represents a potential error, and the portion in green

represents the set of formulas that ExceLint thinks correctly maintains the invariant.

This fix is in fact a good suggestion, as the cell in D17 is missing a formula.

Figure 4.14 shows the complete set of proposed fixes generated for the same

spreadsheet as the one shown in Figures 4.9 and 4.10. Note that this visualization

90



• 0°• 180°

• 270°

• 90°

1. 2.

4.

3.

• 45°5. • 135° 7.

• 225°8. • 315°6.

Figure 4.12: ExceLint uses complementary colors to highlight adjacent clusters. The
order of colors chosen is shown in the image. Each adjacent color is guaranteed to the
have the furthest angular distance from all previously chosen colors. Derived from
image c©2010 Jacob Rus (CC BY-SA 3.0).

Figure 4.13: The proposed fix tool in use. A flagged bug is labeled in red, with
neighboring cells that maintain a different reference invariant labeled in green.

is only shown here for the purposes of understanding the entire set of admissible

proposed fixes. ExceLint does not show all of these fixes to the user during the

audit. The cutoff threshold for this spreadsheet shows only the first two highest-ranked

outliers, D17 and F9. Both are real bugs.
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Figure 4.14: The complete set of candidate bugs for an example spreadsheet. This
visualization is for discussion purposes and is not shown to the user. In this image, all
of highlighted cells indicate true reference bugs. With the threshold to show only the
most unusual 5%, only two of the highlighted bugs are shown.

While the regularity map visualization is clearly more informative—even with the

proposed fix tool, it is often useful to see the regularity map as context when deciding

why a fix should be made—the proposed fix tool is best suited for large spreadsheets.

When a user clicks the Audit button using the regularity map, they must visually

inspect all sheets. If a spreadsheet is large or has many sheets, this may be an onerous

task. The proposed fix tool instead prioritizes likely reference bugs, highlighting and

centering the user’s view on each one, one at a time. If a sheet has no likely bugs,

unlike the regularity map, the proposed fix tool shows nothing.

4.3.2 Optimizations

Obtaining a level of performance sufficient for interactivity was a challenge during

ExceLint’s development. This section describes some of the performance optimiza-

tions undertaken to make ExceLint fast enough to meet this important usability

goal.
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4.3.2.1 Programming Language Issues

ExceLint is written in two .NET managed languages, C# and F#, and interop-

erate with Excel using the Visual Studio Tools for Office (VSTO) framework. Excel is

written in a native language programming language (C++ [69]) and utilizes Microsoft’s

Component Object Model (COM) native language framework to represent objects [68].

While VSTO and COM greatly simplify sharing data between .NET and Excel, as

COM objects have direct analogues in .NET, these frameworks introduce a number of

performance pitfalls.

Because ExceLint and Excel use different programming language runtimes (.NET

vs COM), they necessarily reside in different operating system processes. While VSTO

enables almost9 transparent use of COM objects in .NET code, it provides access to

these objects by marshaling them into .NET; in other words, read objects are always

copied. COM object read calls between ExceLint and Excel often take on the order

of tens of milliseconds per call. This fact supplies a strong incentive to minimize the

volume of object copying between Excel and ExceLint.

ExceLint avoids such overheads by eagerly marshaling all objects that it may

need to read using bulk-read functionality available in VSTO. Communication between

ExceLint and Excel occurs at the beginning of an analysis and then at the end

when results need to be returned. Sadly, fine-grained progress bars, which are a

nice affordance for users, are difficult to implement in a high-performance manner.

All user interface updates in Excel must be run “in-process”, namely in the single

COM thread in which Excel resides, which requires an expensive cross-domain call.

9Because COM and .NET use different garbage collection algorithms, in practice programmers
need to be keenly aware of the differences. COM uses a reference counting collector whereas .NET
uses a generational mark-sweep collector. When .NET holds a reference to a COM object, COM also
maintains a reference. Unfortunately, Excel refuses to shut down until the reference count on all
objects shared with .NET is zero. Since .NET provides no guarantees about when an unreferenced
object is to be collected, programmers (including myself) must resort to a number of hacks to
encourage the runtime to collect these objects sooner rather than later, such as nulling their fields
and manually calling System.GC.Collect.
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ExceLint skirts this performance trap by communicating as few progress points

back to the UI as possible, essentially one at the end of each analysis phase. The

progress bar is correspondingly coarse. These problems could have been mitigated

by writing ExceLint in a native language such as C++ and using COM directly.

Unfortunately, we were not aware of many of these performance pitfalls until after a

substantial amount of code was written.

4.3.2.2 Grid Preprocessing

One downside to the BinaryMinEntropyTree algorithm described in Chap-

ter 4.2 is that it can take a long time on large spreadsheets. While spreadsheets

rarely approach the maximum size supported in Microsoft Excel (16 thousand columns

by 1 million rows), spreadsheets with hundreds of rows and thousands of columns

are indeed commonplace. BinaryMinEntropyTree is also difficult to effectively

parallelize because binary splits rarely contain equal-sized subdivisions, meaning that

parallel workloads are imbalanced.

Nonetheless, one can take advantage of an idiosyncracy in the way that people

construct spreadsheets to dramatically speed up this computation. It is often the case

that humans use contiguous, through-spreadsheet10 columns or rows of a single class

of values as delimiters. These delimiters are usually, but not always either whitespace

or string headers.

By scanning the spreadsheet for contiguous columns or rows of equal location-free

fingerprints, spatio-structural analysis is able to subdivide spreadsheets into smaller

pieces which are more effectively parallelized. Through-spreadsheet rows and columns

should be clustered together, so preprocessing a spreadsheet in this manner does not

10“Through-spreadsheet” should be understood here to mean the portion of the spreadsheet inside
the “used range” of a spreadsheet. While all spreadsheets are technically 16 thousand columns by 1
million rows, the vast majority of that space is typically whitespace. ExceLint draws the smallest
bounding box around the non-whitespace values in a spreadsheet, referred to as the used range, and
analyzes only that region.
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run the risk of encouraging the binary tree decomposition algorithm to produce bad

subdivisions later on because dividing a contiguous row or column tends to increase

entropy. Preprocessing spreadsheets in this way also preserves the intuitive boundaries

that are likely intended by programmers.

In our experiments, the effect of this optimization was dramatic: the time taken for

large spreadsheets, which sometimes took tens of minutes to compute, were computed

in seconds after preprocessing was applied. Scanning for these splits is also inexpensive,

since there are only O(width + height) possible splits. ExceLint uses all the splits

that it can find.

4.3.2.3 Bitvector optimization

In practice, subdividing set of cells and computing their entropy is somewhat

expensive. A cell address object in ExceLint stores not just information relating

to its x and y coordinates, but also its worksheet, workbook, and full path on disk,

and are therefore “big” objects11. A typical analysis stores tens or hundreds of

thousands of address objects, one for each cell in an analysis. Address comparisons

are frequent in ExceLint, as is checking for address equivalence (an operation that

.NET’s System.Collections.HashSet<T> invokes any time an element is added to a

set, usually via the HashCode method defined on T). Furthermore, fingerprint values

for addresses must be repeatedly recalled or computed and then counted to compute

entropy.

Another way of storing information about the distribution of fingerprints on a

worksheet uses the following implicit encoding scheme, borrowed from FlashRelate

(see Chapter 2.4). For each class of location-free fingerprints on each worksheet (i.e.,

for each unique fingerprint), we store one bitvector. This means that, for each address,

no more than f bits are stored, where f is the number of unique fingerprints.

11An ExceLint Address object contains two 32-bit integers, and three 64-bit managed references.
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f is often small, so the total number of bitvectors stored is also small. A bitvector

encodes whether a cell at a given location contains that fingerprint, a 1 if it does,

otherwise 0. Computing entropy for a spreadsheet largely reduces to counting the

number of ones present in each bitvector.

Since the rectangular decomposition algorithm needs to find entropy for subdivi-

sions of a worksheet, masked bitvectors need to be computed. The bitvector mask

corresponds to the region of interest, where 1 represents a value inside the region

and 0 represents a value outside the region. Bitwise AND of the fingerprint bitvector

and the mask yields a bitvector where 1 is an instance of the fingerprint inside the

region, otherwise 0. The entropy of subdivisions can then be computed the same way

as mentioned above, since all instances of a fingerprint appearing outside the region

of interest appear as 0 in the subdivided bitvector.

The following bijective function maps (x, y) coordinates to a bitvector index.

Indexs(x, y) = (y − 1) · ws + x− 1

where ws is the width of worksheet s. The relation subtracts one from the result

because bitvector indices range over 0 . . . n− 1 while address coordinates range over

1 . . . n.

As with FlashRelate, the number of bits set can be counted in O(b) time, where

b is the number of bits set [90]. Since the time cost of setting bits is O(b) and bitwise

AND is O(1), the total time complexity is O(f · b), where f is the number of fingerprints

on a worksheet12. As with grid preprocessing, counting this way dramatically sped up

the analysis, roughly by a factor of 4.

12Technically, bitvector AND takes amortized contstant time, since ExceLint uses .NET’s
BigInteger class. BigInteger is encoded as a variable-length bitvector.
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4.4 Evaluation

The evaluation of ExceLint focuses on answering the following research questions:

1. Does the ExceLint regularity map visualization find new bugs?

2. Is the ExceLint proposed fix tool precise?

3. How does ExceLint compare against state-of-the-art pattern-based bug finders?

4. Is ExceLint fast enough to use in practice?

4.4.1 Goals

An important goal of ExceLint is to favor precision over recall, based on the

observation that low-precision, high-recall tools are usually perceived by users as

untrustworthy [14]. Interactivity is also an important goal, and drove much of

ExceLint’s algorithmic development to favor low-latency approaches. In other words,

analyses need to be both fast and precise. Finally, unlike other tools, we built a real

graphical user interface for ExceLint as a plugin for Microsoft Excel. The purpose

of the research questions above are to evaluate ExceLint on all the dimensions we

think are important: (1) bug finding ability, (2) time savings, and (3) usability.

4.4.2 Result Summary

The ExceLint regularity map visualization helps uncover many new reference

bugs when used on an existing pre-audited corpus. When using ExceLint to propose

fixes, ExceLint is more precise than a comparable state-of-the-art smell-based tool.

Finally, ExceLint is fast enough to run interactively, requiring a median of 7.8

seconds to run a complete analysis on an entire workbook.

On an important note, the experience of building a real user interface had a strong

effect on the methods used to report bugs to users. While we initially produced a

tool that could pinpoint fixes with high precision, we found that we had a strong

preference for ExceLint’s regularity map. The regularity map allows users to quickly
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locate anomalous references while graphically providing enough context to answer

the question of whether an anomaly is a bug. While using the proposed fix tool, we

found that we repeatedly referred back to the regularity map to uncover the “big

picture” about the prevailing reference patterns in a spreadsheet. This observation led

us to change the proposed fix tool to highlight both the error and the paired invariant

cluster. This change made the proposed fix much more useful, although we found that

it still did not completely supplant the regularity map. In fact, we now view the two

tools as complementary.

4.4.3 Evaluation Platform

ExceLint was evaluated on typical software development hardware, a 2017 Apple

MacBook Pro with a 1TB solid state disk, 16GB of RAM, and a two-core 3.5GHz

Intel Core i7. Since ExceLint is written using a plugin framework only available on

Microsoft Windows, ExceLint was run inside the 64-bit version of VirtualBox (version

5.1.26) using Microsoft Windows 10 (version 1607) with 8GB of RAM. ExceLint’s

cluster analysis is written using multithreaded code. Since the cluster analysis time

generally dominates the analysis time, users can expect speedups roughly proportional

to the number of cores.

4.4.4 RQ1: Does ExceLint’s Regularity Map Find New Bugs?

In order to evaluate whether ExceLint’s regularity map visualization finds new

bugs, we used a set of 68 annotated spreadsheets drawn from the EUSES corpus [42].

These spreadsheets were annotated by researchers investigating spreadsheet smells

using a tool called CUSTODES [24]. While the purposes of ExceLint and CUS-

TODES are different—the former finds reference bugs and the latter finds spreadsheet

smells—many cells are considered both reference bugs and “smelly.” Re-auditing the

same corpus with a different tool helps establish whether ExceLint helps uncover
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reference bugs that CUSTODES does not find. We also use the new annotated

corpus when evaluating questions in Chapters 4.4.5 and 4.4.6.

4.4.4.1 Procedure

We annotated 29 of the 68 spreadsheets provided by CUSTODES researchers. The

annotation procedure was as follows. Spreadsheets were chosen from the CUSTODES

corpus in alphabetical order. Each spreadsheet was opened and the ExceLint

regularity map was displayed. Regions that contained visual anomalies were inspected

either by clicking on the formula and examining its references, or by using Excel’s

formula view. If the cell was found to violate a reference invariant, it was labeled as a

reference bug. In cases where a bug had a clear bug dual (see Chapter 4.1.3), both

sets of cells were labeled, and a note was added that one set was the dual of the other.

After running ExceLint, we then inspected the CUSTODES ground truth for the

same spreadsheet, following the same procedure as before, with one exception. If it

was clear that a labeled smell was clearly not a reference bug, it was labeled “not a

bug” in our corpus.

4.4.4.1.1 Counting Reference Bugs. The presence of bug duals complicates

counting the “true number of bugs.” In the absence of ground truth, it is impossible to

determine mechanically which set—anomalous or non-anomalous—represents the true

bug. Worse, even in the presence of ground truth, which we hand-curated for this work,

the true bug is often ambiguous, and requires knowing the user’s intent. The intent of

spreadsheet programs written using insider jargon, such as in finance, or using foreign

languages can be difficult to decipher without missing context. Nonetheless, it is often

quite clear when reference errors occur, because reference invariants are broken. This

fact is analogous to off-by-one errors in an ordinary programming language; it is not

necessary to know what the user intended to accomplish to be able to observe that the

code is flawed. We were often surprised at the ease of finding reference errors purely
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Figure 4.15: ExceLint’s bug finder visualization. Cells that maintain the mined
invariant are highlighted in green and the cell that violates the invariant is highlighted
in red. Here, cell AI10 is a hard-coded constant where the formulas in green, C10:AH10,
are summary formulas. Since AI10 is the one and only reference bug in this row, we
count at most one true postive for any cells flagged in C10:AI10. Note that formulas
AJ10:AL10 also maintain the same reference invariant as C10:AH10, so it is clear upon
manual inspection that AI10 is a latent error (see Chapter 1.3.1).

by reasoning about reference invariants, even when the purpose of the calculation was

unknown.

Nonetheless, we still must produce meaningful bug counts in order to evaluate

ExceLint. We use the following scheme. Let a cell flagged by a bug-reporting tool

be called a flagged cell. If a flagged cell is not a bug, we add nothing to the total bug

100



count. If a flagged cell is a real bug, but has no dual, we add one to the total bug

count. If a flagged cell is a bug, and has a bug dual, then we maintain a count of all

the cells flagged for the given dual. The maximum number of bugs added to the total

bug count is the number of cells flagged from either set in the dual, or the size of the

anomalous set, whichever is smaller. This scheme was chosen because, in the case

where an anomaly is correct, finding a broken invariant often reveals large swaths of

incorrect cells. Yet after identifying a broken invariant, the marginal effort required to

flag the large number of actually incorrect cells is generally very small. Counting bug

duals by the size of the smaller set is therefore a more accurate measure of the actual

effort needed to audit using anomalies. This fact also renders moot the question of

which of the two sets of a bug dual is the actual bug.

Figure 4.15 shows the case where an anomaly is a true positive and we therefore

would count only a single bug. Figures 4.22 and 4.23 shows the case where the

anomalous formulas are correct but the larger invariant cluster is wrong. In this latter

case, we would count up to four bugs (the size of the anomalous set), even if we flagged

all of the cells in the larger cluster (which are all incorrect).

4.4.4.2 Results

For the 29 spreadsheets we annotated, the CUSTODES ground truth file indicates

that 1199 cells are smells. Our audit shows this data actually flags 841 reference

bugs that also happen to be smells. Using ExceLint, we found an additional 1658

reference bugs, for a total of 2499 reference bugs. We spent roughly 17 hours auditing

these spreadsheets. Since we did not perform an unassisted audit for comparison, we

do not know how much time we saved versus not using the tool. Nonetheless, since an

unassisted audit would require examining all of the cells individually, the savings are

likely substantial. On average, we uncovered 2.45 reference bugs every minute, which

is arguably an effective use of auditor effort.
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4.4.5 RQ2: Is the ExceLint Proposed Fix Tool Precise?

While the regularity map is an effective tool for finding bugs, it complicates direct

comparisons with other bug-finding tools, since it does not identify which cells are

likely bugs. By contrast, the proposed fix tool is more amenable to direct comparisons.

As mentioned earlier, we often found ourselves referring back to the regularity map

when using the proposed fix tool, so we regard it as more of a complimentary tool

than a replacement for the regularity map. Nonetheless, a comparison is informative.

4.4.5.1 Procedure

As described in Chapter 4.3.1.2, ExceLint’s proposed fix tool highlights two

things when the user requests an audit: (1) a set of suspect anomalies and (2) the

corresponding set of non-anomalies. In most cases, the set of suspect anomalies

contains a single cell, but it may contain as many cells as the corresponding set of

non-anomalies.

To determine ExceLint’s precision for true reference bugs, a highlighted cell

uncovers a true bug if either (1) the flagged cell is either marked as an anomaly in the

ground truth data or (2) it is an anomaly dual in the ground truth data. We count

the number of true positives using the procedure described earlier (see “Counting

Reference Bugs”). When ExceLint flags nothing, we adopt the standard convention

of defining precision to be 1, since it makes no mistakes, even though recall in this

case is 0.

4.4.5.2 Results

On average, ExceLint flags more than 3 out of every 4 cells correctly. ExceLint

has a mean precision of 0.766. As we discuss in the introduction to this evaluation,

usability concerns biased us strongly in favor of a high-precision tool instead of a tool

with high recall. ExceLint’s recall is a correspondingly low 0.198. ExceLint flags a

median of 3 true positives, and a median of 0 false positives.
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Figure 4.16: ExceLint’s precision finding reference bugs across the CUSTODES
benchmark suite. Results are sorted by adjusted precision (see Chapter 4.4.5).

Because it is possible that ExceLint achieves high precision because it either (1)

flags nothing, or because (2) there are so many bugs in a spreadsheet that random-

flagging is a good strategy, we also compute an adjusted precision that takes into

account the expected precision obtained by a random flagging tool. Since spreadsheets

are relatively small, we use the expected value for the hypergeometric distribution,

which is defined as

E[X] = n
r

m

where X is a random variable representing the number of true positives, m is the

total number of cells in the “used range” of the workbook, r is the set of true reference
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Figure 4.17: CUSTODES’ precision finding reference bugs across the CUSTODES
benchmark suite. Results are sorted by adjusted precision (see Chapter 4.4.6).

bugs in the workbook according to the ground truth, and n is the size of the sample,

i.e., the number of bugs requested by the user. We fix n to be the same number of

cells as flagged by ExceLint.

We define TPa, the adjusted number of true positives, to be TP −E[X]. We define

FPa, the adjusted number of false positives, to be TP + FP − TPa. Correspondingly,

we define the adjusted precision to be 0 when both the random flagger and ExceLint

flag nothing, and TPa

TPa+FPa
otherwise.

The random number of true positives E[X] for this corpus ranges from 0 to 10.8.

In only 2 of the 29 cases, the random flagger performs better than ExceLint. For

benchmarks where ExceLint achieves perfect precision because it flags nothing, a

random flagger does equally well, so the adjusted precision is 0 (4 cases). Finally, when
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benchmarks are small, or have a large number of true positives, ExceLint’s adjusted

precision is lower than its raw precision. ExceLint’s mean adjusted precision is 0.572.

In general, this suggests that ExceLint’s performance is not strongly dictated by

either poor benchmarks or by the cases where it does nothing.

A table comparing ExceLint’s and CUSTODES’ complete reference bug-finding

results is shown in Table 4.1 and charts are shown in Figures 4.16 and 4.17.

4.4.5.2.1 Negative Expected Precision. Some discussion of ExceLint’s 2

cases where the random flagger does better is in order since it reveals some limitations

of an anomaly-based approach.

In the first case, chartssection2.xls, ExceLint flags a number of formulas of

the form =[constant1] + . . .+ [constantn] where n varies considerably. Many of

these cells have differing numbers of constants. Nonetheless, despite being clearly

suspicious with respect to their surrounding cells (which are just data), it is not clear

that they are erroneous, so we marked them as “not a bug” during our audit. As a

result, ExceLint flags no true positives in this spreadsheet. The known true reference

bugs in this worksheet occur in the summary rows that appear at the bottom of each

table. Unfortunately, so few of these rows exhibit a consistent pattern that ExceLint

does not learn any meaningful invariant and it does not flag them. However, a large

number of totals rows are clearly wrong upon inspection, which is why the random

flagger performs better.

In the second case, epcdata2002.xls, two kinds of reference bug dominate: con-

stants where formulas are expected, and summary rows that sum over large swaths

of non-numeric data, such as whitespace and headers. Again, ExceLint flags no

true positives on this spreadsheet. For the first kind of bug, ExceLint does not flag

these cells because, while it is apparent as a human that a formula is missing, there

are no nearby invariant clusters for ExceLint to mine. For the second kind of bug,

erroneous summary rows are wrong without any deviation. While ExceLint mines an
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invariant, this invariant actually describes an entire bad neighborhood. Since there are

large numbers of these two kinds of bug, the random flagger outperforms ExceLint.

The cells ExceLint does flag do indeed violate local reference invariants, however,

the creator of the spreadsheet entered comments and other contextual information to

signal that these violations were intentional. Therefore, we marked them as “not a

bug” during our manual audit.

4.4.5.3 Summary

These results suggest that ExceLint’s proposed fix tool is effective at helping

users identify real reference bugs. ExceLint’s median of 3 true positives and 0 false

positives suggest that ExceLint also does not incur much auditing effort on the part

of users.

4.4.6 RQ3: How Does ExceLint Compare Against CUSTODES?

The previous procedure allow a direct comparison betweem ExceLint and CUS-

TODES. We measure CUSTODES’ performance against the true reference identified

in our audit. For completeness, we also evaluate ExceLint’s and CUSTODES’

peformance against smells.

4.4.6.1 Procedure

To evaluate CUSTODES performance finding true reference bugs, we use the

same procedure as outlined above except that we use the set of cells identified as

smells by the CUSTODES tool. Note that in order to do this comparison, we needed

to build an ExceLint-like user interface for CUSTODES, which is a command-line

tool that produces no visualizations.

We also compare ExceLint using CUSTODES’ own criteria: a flagged cell

is a “true smell” if the ground truth data marks the cell as “smelly.” Note that

CUSTODES has no corresponding notion of duals (see Chapter 4.1.3) for smells, so
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Figure 4.18: ExceLint’s mix of true and false positives finding reference bugs for the
CUSTODES suite (see Chapter 4.4.5).

there is a one-to-one correspondence between the number of correctly flagged items

and the number of true positives.

4.4.6.2 Results

CUSTODES mean precision when locating true reference bugs is 0.606, which is

lower than ExceLint’s mean precision of 0.766. CUSTODES has a higher mean
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Figure 4.19: CUSTODES’s mix of true and false positives finding reference bugs for
the CUSTODES suite (see Chapter 4.4.6).

recall than ExceLint with a value of 0.315 vs ExceLint’s 0.19813. Using the same

procedure to compute a random-flagging baseline, except that we use the number of

cells that CUSTODES flags, CUSTODES adjusted mean precision is 0.480 versus

ExceLint’s 0.572. The expected number of true positives for a random flagger

13Boosting recall over their previous tool, AmCheck, was an explicit goal of the CUSTODES
work [91].
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ranged from 0 (because it flags nothing) to 77.4. In 5 cases, the random flagger

outperformed CUSTODES. In 2 cases, CUSTODES flagged nothing. CUSTODES

flags a median of 3 true positives and 0.305 false positives.

With regard to finding smells, the tables are mostly turned. ExceLint’s mean

precision finding smells is 0.589 and its recall is 0.305. Not surprisingly, CUSTODES

performance in smell detection is better, with a mean precision of 0.736 and a mean

recall of 0.660.

A table comparing ExceLint’s and CUSTODES’ complete smell-finding results

is shown in Table 4.2. Plots showing ExceLint’s and CUSTODES’ mix of true and

false positives for true reference bugs are shown in Figures 4.18 and 4.19.

4.4.6.3 Summary

ExceLint outperforms CUSTODES when finding reference bugs. Both Ex-

ceLint’s raw and adjusted mean precision values of 0.766 and 0.572, respectively,

dominate CUSTODES’ raw and adjusted values of 0.606 and 0.480. Furthermore,

CUSTODES’s higher median false positives suggest that CUSTODES’ imposes a

higher burden on users than ExceLint, since it flags true positives and false positives

in roughly equal proportion.

CUSTODES outperforms ExceLint when finding smells. This is not surprising,

since ExceLint is not designed to find smells. While smells may indeed signal

problems with spreadsheet code, determining whether cells flagged as smelly are

incorrect requires additional effort. Reference bugs are indisputably deviations in

reference behavior, so we think that ExceLint is better suited for finding real bugs

in spreadsheets. An important contribution of this work is a more precise definition

of the kinds of features that matter in spreadsheets. In this regard, spatio-structural

vectors are clearly better suited for finding reference errors.
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Figure 4.20: ExceLint vs CUSTODES run times. ExceLint and CUSTODES
have similar performance, typically requiring a few seconds to run an analysis, although
CUSTODES maintains an edge.

Finally, it should be noted that unlike ExceLint, CUSTODES provides few

affordances for non-programmers. CUSTODES is a Java program, and takes a

spreadsheet as input using the command line. As output, it prints an unranked set

of cell addresses to inspect. By contrast, ExceLint is a plugin for Microsoft Excel,

provides two visualizations, including a proposed fix tool that ranks bugs in order of

their likelihood to be bugs, and is readily usable by non-programmers, who only need

to click the audit buttons on a toolbar.

4.4.7 RQ4: Is ExceLint Fast?

ExceLint is fast enough to be used in an interactive fashion. While ExceLint’s

mean runtime is 44.3 seconds, this figure is strongly affected by the presence of two

long running outliers. ExceLint’s median runtime is 7.83 seconds, and 73.5 analyses

run under 30 seconds.
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Figure 4.21: ExceLint’s performance across the CUSTODES benchmark suite.
Nearly 3/4 of the benchmarks run under 30 seconds for a whole-spreadsheet analysis.
Most of ExceLint’s analysis time is spent marshaling data from Excel.

A table comparing ExceLint’s and CUSTODES’ complete runtimes is shown

in Table 4.3 and the same results are shown graphically in Figure 4.20. Figure 4.21

shows ExceLint’s cost breakdown for each component of the analysis: marshaling,

parsing, dependence analysis, clustering, and proposing fixes. Clustering time usually

dominates ExceLint’s analysis.

4.4.8 Case Study: The Reinhart and Rogoff Spreadsheet

We first introduced the Reinhart-Rogoff spreadsheet in Chapter 3.5.2 in the

context of evaluating CheckCell’s data error-finding capabilities. Since ExceLint

is designed to find a complementary class of spreadsheet errors and because the
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Figure 4.22: Reinhart-Rogoff reference anomalies. ExceLint flags the formulas
in E26:H26 as anomalous, breaking the reference invariant maintained by formulas
in I26:X26. In fact, E26:H26 are correct while all of the formulas in I26:X26 are
incorrect. Our decision to draw attention to both anomalies and non-anomalies makes
the error immediately clear. In this figure, cell E26 is highlighted to demonstrate its
set of referents. We show the set of referents for cell I26 in Figure 4.23.
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Figure 4.23: Reinhart-Rogoff reference invariant. Formula I26 is highlighted to
demonstrate its set of incorrect referents. It should refer to the same set of cells as
the formula in I26 shown in Figure 4.22.
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Reinhart-Rogoff spreadsheet’s errors have been thoroughly documented, we revisit

that spreadsheet here.

In their analysis of the Reinhart-Rogoff spreadsheet, Herndon et al. call out one

class of reference error as having a particularly significant impact on the spread-

sheet [55]. In essence, the computation completely excludes five countries—Denmark,

Canada, Belgium, Austria, and Australia—from the analysis:

This spreadsheet error, compounded with other errors, is responsible
for a 0.3 percentage- point error in RRs published average real GDP growth
in the highest public debt/GDP category. It also overstates growth in the
lowest public debt/GDP category (0 to 30 percent) by +0.1 percentage
point and understates growth in the second public debt/GDP category
(30 to 60 percent) by 0.2 percentage point.

Running ExceLint on the Reinhart-Rogoff spreadsheet finds this error repeated

in two places on their summary sheet. Figures 4.22 and 4.23 show one of the sets

of errors. The cells in red, E26:H26, denote the set of anomalous cells and the cells

in green, I26:X26, denote the set of cells that maintains the inferred invariant. In

fact, I26:X26 is wrong and E26:H26 is correct, because I26:X26 fails to refer to the

entire set of figures for each country, the cells in rows 5 through 24. Nonetheless, by

highlighting both the anomaly and the invariant, it is immediately clear which of the

two sets of cells is wrong. This case study justifies our decision to highlight both sets

of cells, since it is often difficult to know without extra context which invariant is the

correct one.

During the development of ExceLint, we frequently found that failures to maintain

reference invariants were more important for finding reference bugs than deviations in

formula expressions. The Reinhart-Rogoff spreadsheet supports our decision to make

reference vectors computation-agnostic. The formulas in cells E26:H26 compute a sum

whereas the cells in I26:X26 compute the arithmetic mean. Were ExceLint sensitive

to the formula expressions themselves, we would not have found these severe errors.
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ExceLint CUSTODES
Benchmark # Bugs Precision Recall Expected TP Adj. Precision Precision Recall Expected TP Adj. Precision
01-38-PK tables-figures.xls 33 1.000 0.242 0.172 0.979 1.000 0.939 0.666 0.979
01sumdat.xls 17 0.556 0.294 0.034 0.552 0.889 0.471 0.034 0.885
04%20En%20R&D-CRB-SOR#A8312.xls 3 1.000 1.000 0.004 0.999 1.000 1.000 0.004 0.999
1999%20PWR%20Effluent-DRAFT.xls 510 1.000 0.139 10.819 0.848 1.000 0.996 77.407 0.848
2003-4%20budget.xls 17 0.063 0.059 0.196 0.050 0.200 0.118 0.123 0.188
20030114144840!Superi#A7DEA.xls 173 0.641 0.145 2.850 0.568 0.250 0.012 0.585 0.177
30Sep03InvVsPOM04TMRC#A87F6.xls 3 1.000 0.000 0.000 0.000 1.000 1.000 0.017 0.994
3763250 Q304 factsheet.xls 56 0.727 0.143 0.640 0.669 0.773 0.304 1.279 0.715
act3 lab23 posey.xls 7 1.000 0.429 0.212 0.929 1.000 0.286 0.141 0.929
Ag%20Statistics,%20NUE 2003.xls 3 1.000 0.667 0.011 0.995 0.000 0.000 0.090 -0.005
Agenda topics 8 27.xls 3 1.000 0.333 0.006 0.994 0.055 1.000 0.342 0.048
am skandia fin supple#A80EE.xls 22 1.000 0.000 0.000 0.000 0.000 0.000 0.040 -0.040
Annexure%20(Audited%2#A7E05.xls 249 0.362 0.068 2.752 0.303 0.656 0.084 1.874 0.598
AP%20Three-Year%20Stu#A8BB8.xls 3 1.000 0.667 0.002 0.999 1.000 1.000 0.003 0.999
BLANK%20CHILDCARE%20F#A8B08.xls 9 0.333 0.111 0.021 0.326 0.000 0.000 0.021 -0.007
ccmpo model cost template.xls 7 1.000 0.714 0.090 0.982 1.000 0.429 0.054 0.982
Ch5-511Fun.xls 9 1.000 0.000 0.000 0.000 1.000 0.111 0.041 0.959
chartssection2.xls 107 0.000 0.000 0.833 -0.093 0.304 0.196 6.387 0.212
Consolidated Restatem#A7F7B.xls 243 1.000 0.058 1.420 0.899 0.852 0.189 5.477 0.750
DDAA HW.xls 140 0.667 0.029 0.232 0.628 0.667 0.043 0.348 0.628
document de reference#A828A.xls 82 0.600 0.329 0.304 0.593 0.737 0.341 0.257 0.730
driving.xls 48 1.000 0.000 0.000 0.000 0.000 0.000 0.776 -0.111
eg spreadsheets.xls 19 1.000 0.053 0.131 0.869 1.000 0.000 0.000 0.000
epcdata2002.xls 83 0.000 0.000 0.161 -0.027 1.000 0.000 0.000 0.000
fastfacts03.xls 338 1.000 0.038 0.837 0.936 0.105 0.006 1.223 0.041
fin accounts.xls 204 0.514 0.088 1.902 0.460 0.667 0.108 1.793 0.612
FinalBudget.xls 34 0.750 0.088 0.113 0.722 0.636 0.206 0.311 0.608
financial outlook sta#A7DE4.xls 32 1.000 0.031 0.271 0.729 0.200 0.063 2.712 -0.071
financial outlook sta#A7DE5.xls 45 1.000 0.022 0.319 0.681 0.588 0.222 5.426 0.269
MEAN 86.1 0.766 0.198 0.839 0.572 0.606 0.315 3.704 0.480

Table 4.1: ExceLint and CUSTODES precision for reference bugs. ExceLint has
higher precision than CUSTODES when finding reference bugs. Each benchmark
was annotated with true reference bugs, and corresponds with a benchmark drawn
from CUSTODES’ annotated corpus [24]. See Sections 4.4.5 and 4.4.6.

4.5 Conclusion

Spreadsheets are popular, often used to inform major decisions, and error-prone.

This chapter introduced spatio-structural analysis, a form of static analysis that

specifically targets errors in spreadsheet formulas. Spatio-structural analysis unifies

spatial relationships and dependence relationships, enabling anomaly detection in the

context of spreadsheets. This statistical approach avoids the need for ad hoc patterns

while maintaining a low false positive rate. Our prototype spatio-structural analysis

tool, ExceLint, is efficient and accurate. Despite the fact that, like any automatic tool,

ExceLint cannot infer human intent, its analysis approach is effective at pinpointing

actual, previously-unknown spreadsheet errors. Using the visualization, we found 2499

reference bugs, three times more than the state-of-the-art tool, CUSTODES, with a

high precision on average, 0.766.
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ExceLint CUSTODES
Benchmark # Smells Precision Recall Precision Recall
01-38-PK tables-figures.xls 59 0.750 0.102 0.967 0.983
01sumdat.xls 12 0.222 0.167 0.778 0.583
04%20En%20R&D-CRB-SOR#A8312.xls 5 0.000 0.000 0.000 0.000
1999%20PWR%20Effluent-DRAFT.xls 543 1.000 0.131 1.000 0.943
2003-4%20budget.xls 16 0.160 0.250 0.700 0.438
20030114144840!Superi#A7DEA.xls 26 0.231 0.346 0.250 0.077
30Sep03InvVsPOM04TMRC#A87F6.xls 3 1.000 0.000 1.000 1.000
3763250 Q304 factsheet.xls 25 0.727 0.320 0.652 0.600
act3 lab23 posey.xls 3 1.000 1.000 1.000 0.667
Ag%20Statistics,%20NUE 2003.xls 0 0.000 1.000 0.000 1.000
Agenda topics 8 27.xls 1 1.000 1.000 0.018 1.000
am skandia fin supple#A80EE.xls 2 1.000 0.000 1.000 0.500
Annexure%20(Audited%2#A7E05.xls 43 0.191 0.209 0.500 0.372
AP%20Three-Year%20Stu#A8BB8.xls 3 1.000 0.667 1.000 1.000
BLANK%20CHILDCARE%20F#A8B08.xls 17 0.667 0.118 0.667 0.118
ccmpo model cost template.xls 7 1.000 0.714 1.000 0.429
Ch5-511Fun.xls 1 1.000 0.000 1.000 1.000
chartssection2.xls 89 0.000 0.000 0.688 0.719
Consolidated Restatem#A7F7B.xls 84 0.786 0.131 1.000 0.905
contents.xls 0 1.000 1.000 1.000 1.000
DDAA HW.xls 13 0.500 0.231 0.667 0.462
document de reference#A828A.xls 49 0.556 0.510 0.894 0.857
driving.xls 5 1.000 0.000 0.714 1.000
eg spreadsheets.xls 0 0.000 1.000 1.000 1.000
epcdata2002.xls 8 0.833 0.625 1.000 0.000
fastfacts03.xls 25 0.077 0.040 0.947 0.720
fin accounts.xls 97 0.167 0.072 0.816 0.412
FinalBudget.xls 16 1.000 0.250 1.000 0.750
financial outlook sta#A7DE4.xls 15 1.000 0.067 1.000 0.667
financial outlook sta#A7DE5.xls 32 0.000 0.000 0.895 0.531
financial-notes.xls 41 0.250 0.049 0.773 0.829
FinancialInfo.xls 5 1.000 0.000 1.000 1.000
FinHrdshp Wrksht.xls 2 0.000 0.000 0.333 0.500
FinRep2001-02%20AGM2003.xls 6 1.000 0.500 1.000 0.833
finrpt00.xls 11 1.000 0.000 0.900 0.818
G140W04.xls 11 0.545 0.545 1.000 1.000
gradef03-sec3.xls 0 0.000 1.000 0.000 1.000
grades Spring04 Geol%#A8A32.xls 4 1.000 1.000 1.000 1.000
HOMEWORK%202003.XLS 0 1.000 1.000 0.000 1.000
inc exp.xls 1 0.000 0.000 1.000 0.000
inter2.xls 422 0.000 0.000 0.961 0.924
io a3.wb1.reichwja.xl97.xls 3 1.000 0.000 1.000 0.333
Lalit TimeReport Fall02.xls 6 0.200 0.167 0.833 0.833
lspreport 02feb04.xls 12 0.412 0.583 0.917 0.917
moduleDBdataAttributes.xls 18 1.000 0.000 1.000 0.611
MyUA BudgetFY04-FY08 11-13.xls 15 0.238 0.333 0.667 0.267
p36.xls 2 1.000 0.000 1.000 1.000
Population.xls 16 1.000 0.063 1.000 0.625
PUBLIC%20FINANCE%20-%#A7DE0.xls 12 0.667 0.167 1.000 1.000
rdc022801.xls 1 0.000 0.000 0.000 0.000
Regulation.xls 22 0.800 0.364 1.000 0.045
ribimv001.xls 2 0.167 1.000 0.000 0.000
riglistana.xls 1 1.000 0.000 1.000 0.000
Sample.Problem-Ch%2013.xls 4 1.000 0.000 0.600 0.750
SectionJ01b.xls 2 0.000 0.000 1.000 0.000
Sponsoredprograms.xls 10 0.167 0.100 0.000 0.000
summ0602.XLS 0 0.000 1.000 0.000 1.000
Sy Cal 03Q2.xls 6 1.000 0.000 1.000 1.000
table 01 27.xls 30 1.000 0.067 1.000 0.167
tables.xls 0 1.000 1.000 1.000 1.000
thelinescompanyrevisions.xls 0 0.000 1.000 0.000 1.000
ti56.xls 26 0.750 0.115 1.000 1.000
timelinefor%20state%2#A7F3F.xls 1 1.000 0.000 1.000 1.000
Unaudited%20Dec%2003.xls 7 0.000 0.000 0.857 0.857
UofC-Class of 1998-99#A7B02.xls 7 1.000 0.143 0.000 0.000
VRSinventory01.xls 7 1.000 0.571 0.069 0.857
WCA May2003.xls 27 1.000 0.037 0.963 0.963
yef00.xls 1 0.000 0.000 1.000 1.000
MEAN 28.529 0.589 0.305 0.736 0.660

Table 4.2: ExceLint and CUSTODES precision for smells. CUSTODES has higher
precision than ExceLint when finding smells. Note that ExceLint is designed to find
reference bugs, not smells. Nonetheless, the fact that ExceLint finds any smells at all
suggests that many smells are reference bugs in disguise. See Sections 4.4.5 and 4.4.6.
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BenchmarkName # cells # formulas ExceLint (ms) CUSTODES (ms)
01-38-PK tables-figures.xls 1535 144 5569 2699
01sumdat.xls 4542 349 60295 5260
04%20En%20R&D-CRB-SOR#A8312.xls 2285 288 24378 12603
1999%20PWR%20Effluent-DRAFT.xls 3347 1439 81364 10470
2003-4%20budget.xls 1385 492 18626 94163
20030114144840!Superi#A7DEA.xls 2367 957 69657 14675
30Sep03InvVsPOM04TMRC#A87F6.xls 522 144 2666 3682
3763250 Q304 factsheet.xls 963 200 5672 6118
act3 lab23 posey.xls 99 40 877 1838
Ag%20Statistics,%20NUE 2003.xls 566 107 2044 2269
Agenda topics 8 27.xls 482 3 2558 925
am skandia fin supple#A80EE.xls 552 56 2489 1614
Annexure%20(Audited%2#A7E05.xls 4252 1022 157226 33592
AP%20Three-Year%20Stu#A8BB8.xls 3010 64 107641 11813
BLANK%20CHILDCARE%20F#A8B08.xls 1307 342 15967 128333
ccmpo model cost template.xls 390 275 27538 23704
Ch5-511Fun.xls 221 11 1588 1152
chartssection2.xls 1156 162 14689 7432
Consolidated Restatem#A7F7B.xls 2396 300 26263 7035
contents.xls 938 78 3903 1507
DDAA HW.xls 3619 515 19419 7210
document de reference#A828A.xls 12121 2398 391585 94395
driving.xls 433 146 7720 4717
eg spreadsheets.xls 145 47 2860 998
epcdata2002.xls 3102 581 33321 7397
fastfacts03.xls 5250 1499 71646 23265
fin accounts.xls 3754 1027 38993 39308
FinalBudget.xls 1204 280 10908 3043
financial outlook sta#A7DE4.xls 118 40 452 1396
financial outlook sta#A7DE5.xls 141 43 742 1342
financial-notes.xls 2542 261 45061 3122
FinancialInfo.xls 461 71 4716 1544
FinHrdshp Wrksht.xls 195 81 3974 2644
FinRep2001-02%20AGM2003.xls 348 86 2581 2156
finrpt00.xls 1049 180 7954 4181
G140W04.xls 739 293 20231 12956
gradef03-sec3.xls 1013 299 15265 129652
grades Spring04 Geol%#A8A32.xls 431 199 5884 4699
HOMEWORK%202003.XLS 656 154 3575 3089
inc exp.xls 614 300 12713 1337
inter2.xls 3955 44 29720 9622
io a3.wb1.reichwja.xl97.xls 204 52 1390 1516
Lalit TimeReport Fall02.xls 1686 1366 145881 178170
lspreport 02feb04.xls 3520 1155 145515 184110
moduleDBdataAttributes.xls 4128 142 65269 3353
MyUA BudgetFY04-FY08 11-13.xls 838 406 13921 3506
p36.xls 3681 558 131934 96020
Population.xls 719 9 3089 1259
PUBLIC%20FINANCE%20-%#A7DE0.xls 216 45 3055 1425
rdc022801.xls 2519 141 58552 10599
Regulation.xls 348 184 2522 4020
ribimv001.xls 5913 2662 928879 158521
riglistana.xls 1079 116 11757 7514
Sample.Problem-Ch%2013.xls 299 37 4032 1310
SectionJ01b.xls 1528 1173 43504 30402
Sponsoredprograms.xls 2654 208 29152 2280
summ0602.XLS 200 102 3298 3496
Sy Cal 03Q2.xls 359 20 2622 1368
table 01 27.xls 192 98 1145 1415
tables.xls 290 8 899 831
thelinescompanyrevisions.xls 356 55 2562 1255
ti56.xls 767 62 36440 2856
timelinefor%20state%2#A7F3F.xls 142 11 1424 854
Unaudited%20Dec%2003.xls 492 118 6771 3100
UofC-Class of 1998-99#A7B02.xls 556 115 4924 8397
VRSinventory01.xls 235 77 2922 2035
WCA May2003.xls 271 111 4432 5763
yef00.xls 396 144 2823 5071
MEAN 1585.19 355.76 44397.71 21314.75
MEDIAN 753 144 7837 3851

Table 4.3: ExceLint and CUSTODES analysis run times. Speed measurements in
milliseconds for ExceLint and CUSTODES to run a complete analysis for each tool.
Both ExceLint and CUSTODES are generally very fast, analyzing spreadsheets on
the order of seconds. See Chapter 4.4.7.
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The technique presented in this dissertation shows that a simple approach can

highlight significant errors in spreadsheets with speed and precision. At the same

time, the current approach cannot identify other errors which are also significant,

such as errors related to incorrect use of units. In the future, we plan to explore

how additional dimensions of regularity, such as more higher order spatial patterns

or more nuanced understanding of types, can be incorporated into our statistical

analysis to increase recall while maintaining precision. We also plan to investigate

performance modifications to make ExceLint’s analysis incremental; such a change

would amortize the costs of previous analyses by modifying the updated analysis with

only new dependence information as users build their workbooks.
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CHAPTER 5

FUTURE DIRECTIONS

Spreadsheets are likely to remain important for data analysis, and this dissertation

addresses a number of pain points for analysts. However, a number of problems still

remain.

Data integration remains a challenge. Less technical users may employ spreadsheets

as a kind of lightweight data collection tool, building forms using their flexible layouts

and rich markup features. Nonetheless, integrating data collected in this manner into

traditional relational database systems is problematic. Since database schemas and

spreadsheet forms are only loosely coupled, changes in either mean that automated

data import routines will likely break [22].

Maintenance tasks are also problematic. As with expert programmers in other

programming languages, building a spreadsheet is a time-consuming task, particularly

for complex calculations. Users sometimes maintain spreadsheets over long periods of

time, and they share them with other people [31]. Excel provides few affordances for

this kind of workflow. Users new to a spreadsheet may be unfamiliar with unstated

invariants, and upon maintenance, violate them, causing errors. Lightweight sanity

checks, like the assert statement found in many programming languages, would allow

spreadsheet creators to guard against many kinds of error. Additionally, spreadsheets

do not lend themselves well to existing program versioning or differencing tools like

git that simplify code reviews. Lastly, because copying and pasting is widespread,

refactoring large spreadsheets is tedious in much the same way as layout transformation.

Better debugging, versioning, and refactoring tools would ease the burden of creating
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and maintaining correct spreadsheets, particularly if tools are designed with novice

programmers in mind.

Finally, data integrity remains a problem. Since spreadsheets combine data and

formulas in a single view, spreadsheet data must be thought of as important for

program correctness as formulas. Nonetheless, when many users update a spreadsheet,

data issues may creep in and be passed along. While some errors may be simple data

bugs, like the kind discussed earlier, spreadsheets have little resistence to intentional

tampering. Early work on data provenance for spreadsheets examines techniques for

well-intentioned users, but does not consider malicious users who aim to intentionally

subvert data [7].
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CHAPTER 6

CONCLUSIONS

The unique combination of an expressive programming language and flexible data

management ensures that spreadsheets remain one of the most popular programming

environments. Spreadsheets are especially compelling when it comes to data-intensive

tasks, which is why they are used widely among both expert programmers and ordinary

end users. Unfortunately, spreadsheets also have shortcomings, particularly for a small

set of tasks common to data analysis. This dissertation takes a holistic view of the

data analysis pipeline and addresses inefficiencies that account for more than three

quarters of an analyst’s time.

6.0.1 Data Wrangling

Spreadsheets are unusually flexible in accepting a wide range of layout schemes,

and users are able to choose the layout best suited for the task at hand. However,

automated processing tools that take spreadsheets as input are generally inflexible,

requiring that data adhere to predetermined forms. Users who lack the programming

skills needed to convert data from one layout to another are forced to manually convert

layouts in order to utilize these tools. Layout transformation synthesis is a program

synthesis-based technique that bridges this “lock-in” problem, letting users convert

layouts by providing examples of what they want.

FlashRelate implements layout transformation synthesis as a plugin for Microsoft

Excel, and allows users to change their layouts using a simple point and click interface.

Users refine their programs in a similar manner, providing additional examples or
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marking incorrect transformations as counterexamples. FlashRelate is fast, typically

taking only a few seconds on commodity hardware, and requires only a few examples

from the user.

6.0.2 Data Cleaning

Bad or corrupted input data often escapes traditional techniques used to validate

inputs. Furthermore, many programs exhibit subtle sensitivities to data values

that pass validation checks. When these “data bugs” escape detection, spreadsheet

calculations can lead to wrong decisions and large financial losses. Data debugging is

a statistical program analysis technique that finds inputs likely to trigger program

sensitivities. These inputs are either very important or they are wrong. Both cases

warrant special attention.

CheckCell is an implementation of data debugging for Microsoft Excel. Users

are guided through a cell-by-cell audit of the most important data values in their

spreadsheet. CheckCell improves user effectiveness by focusing their auditing efforts

on only those inputs most likely to cause problems. CheckCell is also fast, typically

requiring only a few seconds to run an analysis on commodity hardware.

6.0.3 Formula Auditing

Large spreadsheets are likely to contain at least one formula error. Spreadsheet

environments like Microsoft Excel inadvertently encourage certain classes of errors

because the lack of user defined functions means that copy-and-paste workflows are

common. In this scenario, users must either correctly insert address mode annotations

to use Excel’s automated copy-and-paste tools, or they must manually update data

references by hand. Users fail at both tasks and reference bugs are common. Spatio-

structural analysis is a program anomaly analysis-based technique that takes advantage

of the spatial characteristics of spreadsheet programs in order to find reference bugs.
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ExceLint is a bug finder for spreadsheets built on spatio-structural analysis, and

it is available as a plugin for Microsoft Excel. Users are shown formulas that violate

likely reference invariants. These violations strongly correlate with reference bugs.

ExceLint is fast and effective, providing users with a high precision bug finding tool

that takes only seconds to perform an analysis on commodity computer hardware.
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APPENDIX A

FLARE SEMANTICS AND FLASHRELATE
ALGORITHMS
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Cell γ : (N,N)

Pair φ : (String,Cell)

Spreadsheet I : Stringw×h

Cell list Γ : [Cell1, . . . ,Cellj]

Quasi tuple τ : [Pair1, . . . ,Pairk]

Figure A.1: Types for a simple abstract spreadsheet model. These types are used by
the semantics shown in Fig. A.2. γ is a cell location (a coordinate pair), φ is a “match”
(a column name, location pair), I is an m× n matrix of Strings (the top left String is
at (0,0) with the x coordinate increasing rightward and the y coordinate increasing
downward), Γ is a list of locations, and τ is a tuple in list form (a list of matches).
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1) J<prog>K(I) = Flatten(Map(λγ.Map(λτ.ToTuple(I, τ), J<prog>K(I, γ)),AllCells(I)))
2) J<cpair>K(I, γ) = J<cpair>[ ]K(I, γ)
3) J<spatialc><cellc>[<pseq>]K(I, γ) = Map(λφ.Map(λτ.φ::τ, J[<pseq>]K(I, snd(φ))),Eval(s, c, I, γ))

= where s = <spatialc>, and c = <cellc>

4) J[<spatialc><cellc>::<pseq>]K(I, γ) = Map(λφ.Map(λτ.φ::τ, J[<pseq>]K(I, γ)),Eval(s, c, I, γ))
= where s = <spatialc>, and c = <cellc>

5) J[ ]K(I, γ) = [ ]
6) J<regx><anchor>K(I, γ) = J<regx>K(Value(I, γ)) ∧ ∃γ′ ∈ Map(λφ.snd(φ), J<anchor>K(I, γ))
7) J"<"<name>","<regx>">"<anchor>K(I, γ) = J<regx><anchor>K(I, γ)
8) J"/" Regex(σ) "/"K(s) = true iff regular expression σ matches String s.
9) J":"<spatialc><regx>K(I, γ) = EvalNamed(⊥, <spatialc>, <regx>":"εa, I, γ)
10) JεaK(I, γ) = [(Value(I, γ), γ)]
11) J<vdir><quant>v<hdir><quant>hK(γ,Γ) = J<quant>vK(true, γ, J<quant>hK(false, γ, J<vdir>K(γ, J<hdir>K(γ,Γ))))
12) J<name>K = a String.
13) JNK(v, γ,Γ) = [γ′ ∈ Γ | Distance(v, γ, γ′) = N] 18) JεhK(γ,Γ) = [γ′ ∈ Γ | fst(γ) = fst(γ′)]
14) J*K(v, γ,Γ) = Γ 19) JεvK(γ,Γ) = [γ′ ∈ Γ | snd(γ) = snd(γ′)]
15) J*?K(v, γ,Γ) = [argminγ′∈Γ Distance(v, γ, γ′)] 20) J"u"K(γ,Γ) = [γ′ ∈ Γ | snd(γ′) ≤ snd(γ)]
16) J*#K(v, γ,Γ) = [argmaxγ′∈Γ Distance(v, γ, γ′)] 21) J"d"K(γ,Γ) = [γ′ ∈ Γ | snd(γ′) ≥ snd(γ)]
17) JεqK(v, γ,Γ) = J1K(v, γ,Γ) 22) J"l"K(γ,Γ) = [γ′ ∈ Γ | fst(γ′) ≤ fst(γ)]

23) J"r"K(γ,Γ) = [γ′ ∈ Γ | fst(γ′) ≥ fst(γ)]
24) ToTuple(I, τ) ≡ 〈Map(λφ′.fst(φ′) : Value(I, snd(φ′)),Filter(λφ.fst(φ) 6= ⊥)τ)〉
25) Eval(<spatialc>, <cellc>, I, γ) ≡ EvalNamed(GetName(<cellc>), <spatialc>, <cellc>, I, γ)
26) GetName("<" <name> "," <regx> ">" <anchor>) ≡ <name>

27) GetName(<regx><anchor>) ≡ ⊥
28) EvalNamed(<name>, <spatialc>, <cellc>, I, γ) ≡ Map(λγ′.Pair(JnK, γ′), JsK(γ, [γ′′ ∈ AllCells(I)|JcK(I, γ′′)]))

where n = <name>, s = <spatialc>, and c = <cellc>

29) Distance(v, γ, γ′) ≡ |Sel(v, γ)− Sel(v, γ′)|
30) Sel(true, γ) ≡ snd(γ)
31) Sel(false, γ) ≡ fst(γ)

Figure A.2: Formal semantics for the Flare language. Lines 24-31 are macros. ::

is the list cons operator. [] is an empty list. Kleene + is omitted for space. v is a
Boolean value. See Fig. A.1 for other variable types. <anchor> is evaluated as if it is
an <cpair> with the column name ⊥. “non-captured” columns named ⊥ are removed
by ToTuple.

Synth(I, P,N)

1 for each column index i
2 AC[i] = LearnC(I, P, i)
3 for each pair of column names i, j such that i 6= j
4 AS [i, j] = LearnS(I, P, i, j)
5 return Search(∅, N,AC,AS)

Figure A.3: Synth algorithm. FlashRelate’s top-level synthesis procedure. I is
the input spreadsheet, P is the set of positive example tuples, and N is the set of
negative example tuples. The procedure precomputes all constraints satisfying P and
then calls the search routine.
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Search(CP , N,AC,AS)

1 if |CP | = NumCols
2 if

⋃
(c,s)∈CP

Negate(c) ∪ Negate(s) = N

3 return CP
4 else return Failure
5 else
6 pairs = {(c, s) | c ∈ AC[i], s ∈ AS [i, j]

s.t. G′ = (V,CP ∪ {(c, s)}) is loop-free
and i, j ∈ [1 . . .NumCols]}

7 pairs ′ = RankP(pairs)
8 k = 0
9 while k < |pairs ′|

10 C ′P = Search(CP ∪ {pairs ′[k]}, N,AC,AS)
11 if C ′P 6= Failure
12 return C ′P
13 k = k + 1
14 return Failure

Figure A.4: FlashRelate’s program search procedure. The output is a set of edges
guaranteed to be a spanning tree. The routine that inserts child-of operators is omitted
for brevity.

LearnC(I, P, i)
1 A = set of predefined constraints
2 AC = ∅
3 for each constraint α ∈ A
4 if ∀ tuples p ∈ P, [[α]] (I, p[i]) = true
5 AC = AC ∪ {Cell(i, α)}
6 return AC

Figure A.5: LearnC algorithm. LearnC learns cell constraints from positive examples;
Cell(i, α) is a cell constraint constructor that takes a column name i and a regular
expression α. p ∈ P is a tuple, and when indexed by a column name, yields a cell
(x, y).
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LearnS(I, P, i, j)

1 AS = ∅
2 V = LearnDirAmount(I, P, i, j,true)
3 H = LearnDirAmount(I, P, i, j, false)
4 for each {v, h | v ∈ V, h ∈ H}
5 AS = AS ∪ {Spatial(i,j,v,h)}
6 return AS

Figure A.6: LearnS algorithm. LearnS learns spatial constraints from positive ex-
amples; Spatial(i,j,v,h) is a spatial constraint constructor that takes two column
names i and j, a <vert> v, and a <horiz> h. LearnDirAmount is a function that
enumerates geometric descriptors; see Chapter 2.4 “Pruning”.
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APPENDIX B

NUMBER OF RESAMPLES

For an input vector of length m and a given value from that vector, x, the

probability of randomly selecting a value that is not x is m−1
m

. The probability of

selecting m such values is therefore (m−1
m

)m. As m grows, we obtain the following

identity:

lim
m→∞

(m− 1

m

)m
=

1

e

Proof.

lim
m→∞

(m− 1

m

)m
= lim

m→∞
e

ln
(m− 1

m

)m ∣∣∣x = elnx

= lim
m→∞

e
m·ln
(m− 1

m

) ∣∣∣log ba = a · log b

= e
limm→∞m·ln

(m− 1

m

) ∣∣∣If f is continuous at b and lim
x→a

g(x) = b,∣∣∣then lim
x→a

f(g(x)) = f(b) = f(lim
x→a

g(x)).

= e
− limm→∞

m

m− 1
∣∣∣L’Hôpital’s rule, etc.

= e
− limm→∞

1

1− 1
m

∣∣∣Divide by m.

=
1

e

∣∣∣Evaluate m at ∞.
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